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Abstract: Slow feature analysis (SFA) has attracted much attention as a method for dynamic modelling. 
However, SFA has an inherent limitation in that it assumes that the dynamic behaviour is linear. In this 
paper, a new criterion for SFA in general dynamic systems is defined based on the motivation of 
maximising the information retained during system evolution, which is called EVOLVE·INFOMAX. The 
theoretical properties of this new criterion are rigorously justified, the optimisation function under 
EVOLVE·INFOMAX is proposed, and a tailored algorithm based on neural networks is designed. The 
case study on a simulated data set and the Tennessee Eastman process benchmark shows that the 
proposed method has better performance to extract slow features of nonlinear dynamical systems. 
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1. INTRODUCTION 

In the big-data era, one of the crucial tasks is to represent the 
high dimensional and large volume data in a compact and 
parsimonious way, while retaining meaningful information. 
The extracted features should be optimal in the sense of a 
predefined criterion that measures the information of interest, 
while disentangled, and thus, containing different aspects of 
information. This makes the resulting model parsimonious. 
For data with time dependence, the dynamic structure is 
useful information to understand the data and the underlying 
system. Slow feature analysis (SFA) is a dynamic modelling 
method that seeks to find the slowly varying latent features 
(Wiskott & Sejnowski, 2002). It has gained much attention 
and been used in many fields, e.g., understanding the 
complex mechanism of the visual cortex cell reaction to 
visual signals (Berkes & Wiskott, 2005), online time-series 
analysis (Kompella, et al., 2012), blind source separation 
(Sprekeler, et al., 2014), process monitoring and fault 
diagnosis (Gao & Shardt, 2021), as well as soft sensing and 
quality forecasting (Shang, et al., 2015). However, the 
original definition of SFA has the inherent limitation, in that 
it is based on the assumption of linear dynamic behaviour.   

In the paper, a new criterion for SFA of general dynamic 
systems, which is called EVOLVE·INFOMAX, is defined 
based on the motivation of maximizing the evolutionary 
information during system evolution process. The theoretical 
properties of EVOLVE·INFOMAX are justified and the 
equivalence to the original SFA under linear Gaussian 
systems is analysed. The objective function of the generalised 
SFA is derived based on EVOLVE·INFOMAX and a tailored 
algorithm based on artificial neural networks (NN) is 
designed to solve the problem. Finally, the results on a 
simulated data set and the Tennessee Eastman process (TEP) 
benchmark are presented.  

2. ORIGINAL SLOW FEATURE ANALYSIS  

SFA is an unsupervised model to extract dynamic latent 
features s(t) = [s1(t)  sk(t)]  from the observation signal 

x(t) = [x1(t)  xk(t)]. The extracted variables are called slow 
features (SFs) due to their slowly time-varying property. This 
can be achieved by minimising the expectation of the squared 
first-order difference of the SF sequence, that is (Wiskott & 
Sejnowski, 2002)  

 

( )

( )
( )

( ) ( )

2

( )

2

min

s.t. 1). 0

2). 1

3). 0

j
jg

j

j

i j

s t

s t ,

s t ,

i j , s t s t

=

=

∀ ≠ =





 (1) 

where gj(⋅)  is the input-output function that needs to be 
found, ṡ(t) = d(s(t))/dt ≈ s(t) – s(t–1)  is the first-order 
derivative/difference, and <⋅> is the time averaging operator. 
Constraint 1) centres the SF sequences to simplify the 
problem. Constraints 2) and 3) whiten the SF variables to be 
isotropic and with unit variances. The slowness ∆(s) in 
Equation (1) can be translated into  (Blaschke, et al., 2006) 

 ( ) ( ) ( ) ( )( )22 = 1 =2 2s s t s t s t λ∆ = − − −  (2) 

where λ is the first-order autocorrelation of sequence {s(t)}, 
which is a measure of the linear autocorrelation. Equation (2) 
clearly shows that the definition of the slowness in the 
original SFA is only suitable for modelling linear dynamic 
behaviour. It has inherent limitations for general dynamic 
systems with both linear and nonlinear time dependencies. 
Furthermore, SFA treats the SF sequence as a deterministic 
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time series rather than a stochastic process. The effect of 
system noise is not taken into consideration. This paper 
proposes the EVOLVE·INFOMAX criterion from the 
information-theoretic perspective for slow feature extraction 
of general dynamic systems, which can grasp the full 
structure of the temporal relationships and automatically 
incorporate the influence of noise on the system dynamics. 
Unlike the original definition that is a moment-based 
approach, EVOLVE·INFOMAX directly uses the underlying 
distributions. 

3. SLOWNESS REDEFINITION: INVARIABILITY OF A 
SYSTEM DURING THE EVOLUTION PROCESS  

This section defines EVOLVE·INFOMAX, justifies its 
properties, and shows its equivalence to the original SFA. 

3.1  EVOLVE·INFOMAX: A New Criterion for SFA for 
General Dynamic Systems  

Intuitively, slow means some amount of invariability related 
to time. For a dynamic system that evolves in the time 
domain, slowness can be regarded as a measurement of the 
invariability of system states over time. To be more specific, 
this invariability can be interpreted as the amount of 
information the system states retained during system 
evolution, or in other words, the information transmitted from 
the previous state to the current one. Generally speaking, the 
more information from the historical states is contained in the 
current states, the more significant the invariability of the 
system, and thus, the slower the system changes. Therefore, 
the slowness of a dynamic system state can be conceptually 
defined as the invariability of the system state in the time 
domain, or the amount of state information preserved during 
process of system evolution.  

Corresponding to the Pearson’s correlation for linear 
dependency, mutual information (MI) measures the complete 
structure of the dependency including linear and nonlinear 
components between two random variables. Hence, for a 
general, time-discrete dynamic system, slowness can be 
defined as maximising the amount of information of a state 
transmitted between successive time instants. Given two 
random variables X and Y, MI is defined as the Kullback-
Leibler (KL) divergence between the joint and the product of 
the marginals, that is, 

 ( ) ( )
( )

( ) ( ) ( )logp x ,y

p y | x
I X ;Y H Y H Y | X

p y
= = −  (3) 

where p(⋅), p(⋅,⋅), p(⋅|⋅), H(⋅), and H(⋅|⋅) are the corresponding 
marginal, joint, conditional distributions, entropy, and 
conditional entropy. It has been proved that 0 ≤ I(X; Y) ≤ 
log || < +∞ (Cover, 1999).  

Define a general dynamic system 
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where s is the system states that are mutually independent, x 
is the observation measurements, e and ε are the system and 
observation white noise with general distribution forms and 
independent elements, and the system and observation 
functions f and g are both vector-valued functions. We 
assume f to be a deterministic function such that, given the 
previous states, the uncertainty of the system comes only 
from the additive system noise. As well, f is assumed 
invertible and continuous. Then, the information retention of 
a state between the successive time instant during evolution 
can be measured by I(s(t); s(t−1)), where s is one of the states 
in s, and the subscript is omitted for simplicity. 

For the convenience of analysis and comparison with the 
original SFA, the generalized slowness can also be defined as 
∆(s) = e−2I(s(t); s(t−1)). It follows that ∆(s) ∈ [e−2H(s(t)), 1]. When 
∆(s) equals one, this means s(t) is not the slow feature, while 
as ∆(s) approaches e−2H(s(t)), s(t) varies slowly. This is similar 
to the original definition.  

3.2  Properties of the EVOLVE·INFOMAX Criterion  

After giving the formal definition of the slowness for the 
generalized SFA, several important results of the 
EVOLVE·INFOMAX criterion are presented in the 
following lemma and theorems, from which the optimisation 
objective is derived. The only assumption for the properties 
to hold is that the dynamic system (4) be stationary. 

Lemma 1: For the general dynamic system given in (4), the 
uncertainty of the system state H(s(t)) at time instant t 
consists of two parts: the uncertainty reduction I(s(t); s(t−1)) 
through system evolution given the previous state s(t − 1), 
and the uncertainty of the system noise H(e). 

Proof: Since  p(s(t)|s(t−1)) = p(e) and Equation (3), we have  

 
( ) ( )( ) ( )( ) ( ) ( )( )

( )( ) ( )
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H s t H e

− = − −

= −
 (5) 

Thus, Lemma 1 is proved.  Q.E.D. 

Lemma 1 gives a coarse skeletal relationship between the 
system evolution and the system noise. Theorem 1 will 
further describe the noise suppression property and the 
extreme conditions of EVOLVE·INFOMAX. It bridges the 
system characteristics and the model behaviour. 

Theorem 1: (Noise suppression property and the extreme 
conditions) Under the assumption of stationarity, the 
generalised SFA based on EVOLVE·INFOMAX suppresses 
noise. The slowness follows that ∆(s) ∈ [e−2H(s(t)), 1]. Under 
the extreme condition of ∆(s) = 1, the extracted SF is a white 
noise process. In the other extreme of ∆(s) = e−2H(s(t)), the 
system function f is a general identical map whose Jacobian 
equals one, and the state process will become {s(t) = s(0)} or 
{s(t) = (−1)t s(0)}. 

Proof: If the system state s(t) is stationary, the entropy of the 
state at each time instant is a constant H(s(t)) =   (see 
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time series rather than a stochastic process. The effect of 
system noise is not taken into consideration. This paper 
proposes the EVOLVE·INFOMAX criterion from the 
information-theoretic perspective for slow feature extraction 
of general dynamic systems, which can grasp the full 
structure of the temporal relationships and automatically 
incorporate the influence of noise on the system dynamics. 
Unlike the original definition that is a moment-based 
approach, EVOLVE·INFOMAX directly uses the underlying 
distributions. 

3. SLOWNESS REDEFINITION: INVARIABILITY OF A 
SYSTEM DURING THE EVOLUTION PROCESS  

This section defines EVOLVE·INFOMAX, justifies its 
properties, and shows its equivalence to the original SFA. 

3.1  EVOLVE·INFOMAX: A New Criterion for SFA for 
General Dynamic Systems  

Intuitively, slow means some amount of invariability related 
to time. For a dynamic system that evolves in the time 
domain, slowness can be regarded as a measurement of the 
invariability of system states over time. To be more specific, 
this invariability can be interpreted as the amount of 
information the system states retained during system 
evolution, or in other words, the information transmitted from 
the previous state to the current one. Generally speaking, the 
more information from the historical states is contained in the 
current states, the more significant the invariability of the 
system, and thus, the slower the system changes. Therefore, 
the slowness of a dynamic system state can be conceptually 
defined as the invariability of the system state in the time 
domain, or the amount of state information preserved during 
process of system evolution.  

Corresponding to the Pearson’s correlation for linear 
dependency, mutual information (MI) measures the complete 
structure of the dependency including linear and nonlinear 
components between two random variables. Hence, for a 
general, time-discrete dynamic system, slowness can be 
defined as maximising the amount of information of a state 
transmitted between successive time instants. Given two 
random variables X and Y, MI is defined as the Kullback-
Leibler (KL) divergence between the joint and the product of 
the marginals, that is, 

 ( ) ( )
( )

( ) ( ) ( )logp x ,y

p y | x
I X ;Y H Y H Y | X

p y
= = −  (3) 

where p(⋅), p(⋅,⋅), p(⋅|⋅), H(⋅), and H(⋅|⋅) are the corresponding 
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where s is the system states that are mutually independent, x 
is the observation measurements, e and ε are the system and 
observation white noise with general distribution forms and 
independent elements, and the system and observation 
functions f and g are both vector-valued functions. We 
assume f to be a deterministic function such that, given the 
previous states, the uncertainty of the system comes only 
from the additive system noise. As well, f is assumed 
invertible and continuous. Then, the information retention of 
a state between the successive time instant during evolution 
can be measured by I(s(t); s(t−1)), where s is one of the states 
in s, and the subscript is omitted for simplicity. 

For the convenience of analysis and comparison with the 
original SFA, the generalized slowness can also be defined as 
∆(s) = e−2I(s(t); s(t−1)). It follows that ∆(s) ∈ [e−2H(s(t)), 1]. When 
∆(s) equals one, this means s(t) is not the slow feature, while 
as ∆(s) approaches e−2H(s(t)), s(t) varies slowly. This is similar 
to the original definition.  

3.2  Properties of the EVOLVE·INFOMAX Criterion  

After giving the formal definition of the slowness for the 
generalized SFA, several important results of the 
EVOLVE·INFOMAX criterion are presented in the 
following lemma and theorems, from which the optimisation 
objective is derived. The only assumption for the properties 
to hold is that the dynamic system (4) be stationary. 

Lemma 1: For the general dynamic system given in (4), the 
uncertainty of the system state H(s(t)) at time instant t 
consists of two parts: the uncertainty reduction I(s(t); s(t−1)) 
through system evolution given the previous state s(t − 1), 
and the uncertainty of the system noise H(e). 

Proof: Since  p(s(t)|s(t−1)) = p(e) and Equation (3), we have  
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Thus, Lemma 1 is proved.  Q.E.D. 

Lemma 1 gives a coarse skeletal relationship between the 
system evolution and the system noise. Theorem 1 will 
further describe the noise suppression property and the 
extreme conditions of EVOLVE·INFOMAX. It bridges the 
system characteristics and the model behaviour. 

Theorem 1: (Noise suppression property and the extreme 
conditions) Under the assumption of stationarity, the 
generalised SFA based on EVOLVE·INFOMAX suppresses 
noise. The slowness follows that ∆(s) ∈ [e−2H(s(t)), 1]. Under 
the extreme condition of ∆(s) = 1, the extracted SF is a white 
noise process. In the other extreme of ∆(s) = e−2H(s(t)), the 
system function f is a general identical map whose Jacobian 
equals one, and the state process will become {s(t) = s(0)} or 
{s(t) = (−1)t s(0)}. 

Proof: If the system state s(t) is stationary, the entropy of the 
state at each time instant is a constant H(s(t)) =   (see 

 
 

     

 

Chapter 4 of (Cover, 1999)). From Lemma 1, the slower the 
state varies (namely, the smaller the slowness ∆(s)), the 
larger the uncertainty reduction I(s(t), s(t−1)) is, and thus, the 
smaller the system noise uncertainty H(e). 

Since I(s(t); s(t−1)) ∈ [0, H(s(t))] , the slowness follows 
∆(s) ∈ [e−2H(s( t)), 1]. In the extreme of maximum slowness, 
that is ∆(s) = 1 (the fastest feature), we have 
I(s(t); s(t−1)) = 0, which means s(t) is independent of s(t−1) 
and H(s(t)) = H(e). The corresponding system equation of the 
system (4) becomes s(t) = e(t), namely, a white noise process. 
For the other extreme ∆(s) = e− 2 H (s ( t ) ) , it implies that 
I(s(t), s(t−1)) = H(s(t)) , and thus, H(e) = 0. Then, the system 
equation in (4) will become a deterministic transition process 
{s(t) = f(s(t−1))}. For an invertible, continuous function f, the 
density of s(t) can be obtained as 

 ( )( ) ( )( )( ) ( )( )
( ) ( )( )11

11 1
s t f s t

p s t p f s t p s t
J −− =

= − = −  (6) 

where ( )
( )1

ds t
J

ds t
=

−
 is the Jacobian of the system function f. 

Since {s(t)} is stationary, we have H(s(t)) = H(s(t−1)) =  . 
Expanding the entropy expression using Equation (6) gives 

 ( )( ) ( )( ) ( )( )1 log 1H s t H s t J H s t= − + = −  (7) 

Therefore, we have |J| = 1, which further limits f to a general 
identical map that yields the state process {s(t) = s(t−1)} or 
{s(t) = −s(t−1)}. Therefore, given the initial state s(0), the 
state at any time instant t will be determined as s(t) = s(0) or 
s(t) = (−1)t s(0). Q.E.D. 

Lemma 1 and Theorem 1 can be schematically presented in 
Figure 1. The line with a gradient colour represents Equation 
(5). The generalized SFA tends to extract the features lying 
on the green part of the line. 

 

Figure 1: Schematic interpretation of Lemma 1 and 
Theorem 1. 

Theorem 2 states another important property of the system 
transition function f under EVOLVE·INFOMAX.  

Theorem 2: If the entropy H(s(t)) of a stationary state s(t) of 
system (4) exists, the corresponding system function f is 
Lipschitz continuous, that is, |J| ≤ K < eH(s(t)). 

Proof: The independence of s(t−1) and e(t) in (4) implies that  

 ( )( ) ( )( ) ( )( ) ( )( ) ( )11 1p s t p f s t e t p s t p e
J

= − + = − ∗ (8) 

where ∗ is convolution. Then, H(s(t)) can be transformed to 
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with the last equals sign satisfied due to Lemma 1. Hence, we 
obtain Equation (12). It can be concluded that 
log |J| ≤ I(s(t); s(t−1))  as the KL divergence is nonnegative. 
Therefore, due to I(s(t); s(t−1)) ≤ H(s(t)) , the Jacobian of f is 
bounded as 

 ( ) ( )( ) ( )( )1I s t ;s t H s tJ e e−≤ ≤  (10) 

with the first inequality being equality if 
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 (12)

At such a point, DKL reaches its minimum DKL = 0. Let the 
characteristic functions of p(s(t−1)) and p(e) be φs(t – 1)(γ) = 
𝔼𝔼𝔼𝔼p(s(t – 1)(exp(iγs(t – 1))) and φe(γ) = 𝔼𝔼𝔼𝔼p(e)(exp(iγe)), 
respectively. Performing the Fourier transform (with a 
reversal in the sign of the exponent) on both sides of 
Equation , gives the identical critical condition of the 
Jacobian upper bound in Equation  as 

 ( ) ( ) ( ) ( )1e es tϕ γ ϕ γ ϕ γ−=  (13) 

However, this critical condition does not necessarily meet the 
critical point of the second inequality in Equation (10). 

Hence, we presume the Jacobian of the system function f is 
loosely upper bounded by |J| < eH(s(t)). If H(s(t)) exists, 
namely, H(s(t)) < +∞, there exists a finite constant K > 0 that 
satisfies  

 ( )( )H s tJ K e≤ <  (14) 

which implies that f is Lipschitz continuous.  Q.E.D. 

Note: Since the two terms on the right side of the last 
equality in Equation (12) are both related to ∆(s) (especially 
the complicated relationship between ∆(s) and the DKL-term), 
the direct relationship between ∆(s) and |J| is difficult to 

H(s(t)) 
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∆(s) = 1 

H(e) 
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obtain in the general dynamic system (4). This is unlike the 
original SFA for a linear dynamic system, where the direct 
relationship is given by Equation (2). Also, the critical 
conditions  or (13) does not necessarily guarantee the 
maximum of log |J|, since I(s(t); s(t−1)) might also be 
minimised when the DKL-term reaches its minimum.  

Lemma 1, as well as Theorems 1 and 2, introduce several 
related quantities. They are presented in Figure 2 and 
summarized as  

(1) ( )( ) ( ) ( )( ) ( )1H s t I s t ;s t H e= − +  

(2) ( ) ( )( ) ( )( ) ( )11 log -termKLp s tI s t ;s t J D−− = +  

(3) ( ) ( )( )log 1J I s t ;s t≤ −  

 

Figure 2: Relationships between the variables in 
EVOLVE·INFOMAX 

The black lines show H(s(t)), which do not change. The green 
dashed and dash-dot lines indicate respectively relationships 
(1) and (2), whose values can change during model 
optimisation. Please note that the green dashed line will not 
cross the two black lines since MI and H(e) are nonnegative, 
while the green dash-dot line can cross the upper black line 
but not the green dashed line due to relationship (3). 

3.3  Equivalence Analysis between EVOLVE·INFOMAX and 
the Original Slowness   

In the case of a linear Gaussian process {s(t) = λs(t−1) + e}, 
the original SFA constrains the variance of s(t) to one, that is, 

 ( )( ) ( )( )( )22 2 21 1s t s t eλ λ σ= − + = + =   (15) 

where σ is the standard deviation of e. From Equation (2), the 
objective of SFA is  

 ( )min =2 2s λ∆ −  (16) 

Based on Theorem 1, the entropy of s(t) should be 
constrained to a constant  in the generalized SFA. In the 
linear Gaussian case, this can be expressed as 

 ( )( ) ( ) ( )( ) ( )
2

2

1 21 log
2 1

eH s t I s t ,s t H e π σ
λ

= − + = =
−

 (17) 

After normalization, Equation (17) is the same as (15). As 
well, in this situation, the objective of the generalised SFA 
simplifies to 

 ( ) ( ) ( )( )2 1 2min 1I s t ;s ts e λ− −∆ = = −  (18) 

Hence, for linear Gaussian systems, from Equations (18) and 
(16), the generalized SFA is equivalent to the original version 
if λ > 0. Nevertheless, the former also pays attention to the 
oscillation signals when λ < 0. Similar characteristics applies 
to LTSFA (Gao & Shardt, 2021), another extension of SFA. 

4. GENERALISED SFA 

In the previous section, the EVOLVE·INFOMAX criterion of 
SFA for a general dynamic system is defined mathematically, 
followed by a rigorous justification of its properties. In this 
section, the objective function of the generalised SFA under 
EVOLVE·INFOMAX is proposed. The optimization 
algorithm is designed based on NN to address the intractable 
distributions and integrations. 

4.1  Optimization Objective of the Generalised SFA  

Based on EVOLVE·INFOMAX, an implementation instance 
of the generalized SFA can be formulated as 
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  (19) 

where s(t) = g(x(t)) is the SF vector, g = [g1, , gK] ∈  is a 
vector-valued function that needs to be found, D(s) is the 
complete dependency between the elements of s given the 
data x, and  and δ are both constants. The function gj can be 
a stochastic map pj(sj|x) between x and sj. The first constraint 
comes from Theorem 1 and aligns each SF based on the level 
of uncertainty. In some circumstances, the uncertainty can be 
equivalently measured by entropy and variance, e.g., a 
unimodal Gaussian model. Thus, this constraint is equivalent 
to the second constraint of the original SFA in Equation (1) 
for the Gaussian assumption. The second constraint is used to 
force SFs to be mutually independent. The complete 
dependency D(s) is defined based on the property of 
conditional independence of the elements in s given x. Thus, 
the conditional distribution p(s|x) can be factorised as 

 ( ) ( )K
jj

p p s= ∏s x x  (20) 

if sj is conditionally independent of each other. Then, the 
distance between the conditional distribution with mutually 
independent elements and those with arbitrary elements can 
be defined as the complete dependency D(s) of the elements 
of s given data x, which gives the second constraints of the 
generalised SFA in Equation (19). 
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obtain in the general dynamic system (4). This is unlike the 
original SFA for a linear dynamic system, where the direct 
relationship is given by Equation (2). Also, the critical 
conditions  or (13) does not necessarily guarantee the 
maximum of log |J|, since I(s(t); s(t−1)) might also be 
minimised when the DKL-term reaches its minimum.  

Lemma 1, as well as Theorems 1 and 2, introduce several 
related quantities. They are presented in Figure 2 and 
summarized as  
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(1) and (2), whose values can change during model 
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cross the two black lines since MI and H(e) are nonnegative, 
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but not the green dashed line due to relationship (3). 

3.3  Equivalence Analysis between EVOLVE·INFOMAX and 
the Original Slowness   

In the case of a linear Gaussian process {s(t) = λs(t−1) + e}, 
the original SFA constrains the variance of s(t) to one, that is, 

 ( )( ) ( )( )( )22 2 21 1s t s t eλ λ σ= − + = + =   (15) 

where σ is the standard deviation of e. From Equation (2), the 
objective of SFA is  

 ( )min =2 2s λ∆ −  (16) 

Based on Theorem 1, the entropy of s(t) should be 
constrained to a constant  in the generalized SFA. In the 
linear Gaussian case, this can be expressed as 
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After normalization, Equation (17) is the same as (15). As 
well, in this situation, the objective of the generalised SFA 
simplifies to 
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Hence, for linear Gaussian systems, from Equations (18) and 
(16), the generalized SFA is equivalent to the original version 
if λ > 0. Nevertheless, the former also pays attention to the 
oscillation signals when λ < 0. Similar characteristics applies 
to LTSFA (Gao & Shardt, 2021), another extension of SFA. 

4. GENERALISED SFA 

In the previous section, the EVOLVE·INFOMAX criterion of 
SFA for a general dynamic system is defined mathematically, 
followed by a rigorous justification of its properties. In this 
section, the objective function of the generalised SFA under 
EVOLVE·INFOMAX is proposed. The optimization 
algorithm is designed based on NN to address the intractable 
distributions and integrations. 

4.1  Optimization Objective of the Generalised SFA  

Based on EVOLVE·INFOMAX, an implementation instance 
of the generalized SFA can be formulated as 
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where s(t) = g(x(t)) is the SF vector, g = [g1, , gK] ∈  is a 
vector-valued function that needs to be found, D(s) is the 
complete dependency between the elements of s given the 
data x, and  and δ are both constants. The function gj can be 
a stochastic map pj(sj|x) between x and sj. The first constraint 
comes from Theorem 1 and aligns each SF based on the level 
of uncertainty. In some circumstances, the uncertainty can be 
equivalently measured by entropy and variance, e.g., a 
unimodal Gaussian model. Thus, this constraint is equivalent 
to the second constraint of the original SFA in Equation (1) 
for the Gaussian assumption. The second constraint is used to 
force SFs to be mutually independent. The complete 
dependency D(s) is defined based on the property of 
conditional independence of the elements in s given x. Thus, 
the conditional distribution p(s|x) can be factorised as 
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if sj is conditionally independent of each other. Then, the 
distance between the conditional distribution with mutually 
independent elements and those with arbitrary elements can 
be defined as the complete dependency D(s) of the elements 
of s given data x, which gives the second constraints of the 
generalised SFA in Equation (19). 
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It can be seen that D(s) is actually a high-dimensional 
generalisation of the conditional MI I(s1; s2|x) when K = 2. 
D(s) is constrained to be no larger than a small constant δ to 
enhance the independence. If δ is set to zero, then constraint 
2) will exactly result in the conditional independence 
condition (20), which is equivalent to the constraint 3) of the 
original SFA in the case of a Gaussian distribution. Since the 
generalised SFA in this paper is based on underlying 
distributions rather than moments, the first constraint of the 
original SFA (1), which centres the first moment and will not 
change the uncertainty, is no longer needed. 

4.2  Algorithm Based on Neural Networks 

The optimization objective of the generalised SFA (19) is 
very complex, which contains distributions and integrations 
that are in general intractable. In the present paper, NNs are 
used to tackle the intractable terms in the problem. First, the 
input-output function is parameterised by a NN considering 
its approximation capacity, denoted as gθ (⋅). To simplify the 
problem, the first constraint is relaxed to unit variance, which 
can be achieved by constructing a normalisation layer after  
gθ (⋅) to normalize the output. Hence, the problem (19) can be 
re-arranged to 

 ( ) ( )( ) ( )max 1I t ; t D
θ

β− −
g

s s s  (21) 

where β is the trade-off weight. For the first term in Equation 
(21), the lower bound of MI is calculated based on 
contrastive predictive coding (NCE) by another NN fα (⋅)  
(Van den Oord, et al., 2018) (Poole, et al., 2019), that is, 
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(22) 

where the expectation is over N independent samples from 
the joint distribution p(s(t), s(t − 1)). Thus, MI can be 
estimated by iteratively maximising the lower bound. 

For the complete dependency D(s) term in (21), an 
independence testing trick called permutation is used to 
obtain the samples from the product of marginals 

( )K
jj

p s∏ x  (Arcones & Gine, 1992). Specifically, 

randomly permuting each latent dimension across the set of s 
to obtain a new set of ŝ. The product of the marginals can be 
closely approximated by ŝ if the set is sufficiently large. For 
the detailed permutation algorithm, one can refer to 
Algorithm 1 in (Kim & Mnih, 2018). After obtaining the 
samples of the two distributions within the KL divergence 
term, ( )p s x  and ( )K

jj
p s∏ x , the density-ratio trick 

(Nguyen, et al., 2010) is used to estimate D(s), which actually 
approximates the density ratio of the two distributions by a 
discriminator dψ. The discriminator dψ, a binary classifier (in 
this paper, a NN), seeks to distinguish the categories that the 

samples come from, whose output dψ(s) is the probability of s 
coming from the two categories. Hence, given two sets of s 
and ŝ, dψ can be obtained by minimising the cross-entropy of 
the outputs, that is, 

 ( ) ( ) ( ) ( ) ( )( )( )1 11log log 1ˆp p ˆd dψ ψψ −= − + −s ss s   (23) 

Having trained the discriminator dψ, the complete 
dependence D(s) of an arbitrary s can be estimated as 
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where we assume dψ(s) is the probability of s coming from 
p(s| x), and thus, 1 − dψ(s| x) is the probability from the 
product of marginals. Thus, we can now access all the 
intractable terms contained in Equation (21). Combining 
Equations (21), (22), and (24), the optimization problem can 
be translated into 
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The detailed algorithm is presented in Algorithm 1. 

Algorithm 1 The algorithm for generalised SFA 
 Input: Observation ( ){ }

1

Ni

i=
=X x , where 1 mx x=   x 


, 

Batch size M, latent dimension K, weight β; 
Initialise the parameters θ, α, and ψ of the SF extractor gθ (⋅), 
MI estimator fα (⋅), and discriminator dψ. 

 Repeat: 

1. Randomly sample ( ){ }
1

Mi

i=
x , ( ) ( ) ( ) ( )( ){ }

1
1

M
i i

i
t , t

=
−x x  from X. 

Obtain ( ){ }
1

Mi

i=
= s , ( ) ( ) ( ) ( ){ }

1
1

Mi i
pair i

t , t
=

= −s s  by s = gθ (x). 

2. Iteratively update dψ using Equation (23): 

permute  to get ( ){ } ( ){ }
1 1

M Mi i

i i
ˆ ˆ π

= =
= =s s ; 

( ) ( )( ) ( )( )( )( )1 log log 1min 2
i i

ˆˆ
ˆd d

M ψ ψ
ψ

ψ
∈ ∈

= − + −∑ ∑s s
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 . 

3. Iteratively update fα (⋅) by ( ) ( ) ( ) ( )( )1max 
pair

i i
fI t ; t
αα

−s s


. 

4. Iteratively update gθ (⋅) based on Equation (25): 
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 . 

Until convergence. 

5.  CASE STUDY 

In this section, two cases are conducted to verify the validity 
of the proposed method. Three ordinary, multilayer 
perception (MLP) NNs are used as the SF extractor gθ (⋅), MI 
estimator fα (⋅), and discriminator dψ shown in Algorithm 1. 
No other advanced deep NN structure is used considering the 
potential instability caused by the interactions between the 
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three nets during the training process. The trade-off weight β 
is 0.1. The first case is the exponential transformation of the 
trigonometric polynomials  

 ( ) ( )exp cos
K

t k
k

t ktε = + 
 

∑x α  (26) 

where x, ε, α ∈ Rm, m = 100, coefficients α  ~  N(0, I), and 
the noise ε  ~  N (0, 0.1), the degree of the polynomials K = 
300. A total of 1000 data samples are generated. For ease of 
comparison, the original slowness defined in Equation (1) is 
used to evaluate the performance of the generalised SFA and 
the original SFA. Figure 3 shows the generalised SFA has 
slower and smoother SFs than SFA. The second case uses the 
open-sourced TEP data, and the results in Figure 4 also show 
a better ability to extract slower and smoother SFs.  

 

Figure 3: SFs by (left) the generalised SFA and (right) SFA 

 

   Figure 4: SFs by (left) the generalised SFA and (right) SFA 

The two cases show that the NNs in the model are harnessed 
as we expected, that is, they do pay attention to the slowly 
time-varying features. The noise is filtered out. Nevertheless, 
the generalised SFA seems to lack the ability of decomposing 
the observational signals into regularly varying components 
with distinct frequencies, namely, different frequency 
components still mixed in the extracted SFs. This might be 
due to the insufficient disentanglement capacity provided by 
constraining the complete dependency. Further, the instability 
resulting from the interaction of the three NNs also matters. 

6. CONCLUSIONS 

A new criterion for SFA for general dynamic systems is 
defined in this paper, which is called EVOLVE·INFOMAX. 

The theoretical properties are rigorously justified. An 
implementation objective function is derived and the 
optimization algorithm based on the training of NNs is 
designed. The case study shows the feasibility of the NN-
based implementation of the generalized SFA. In the future, 
the technique of stabilising the NN’s joint optimisation, as 
well as more advanced and powerful NN structures will be 
considered, e.g, recurrent neural networks might work better 
as an input-output function. In addition, stable and accurate 
estimation methods of MI should be investigated, especially 
for the high-dimensional data with relatively large MI values. 
To improve disentanglement ability, the theoretical properties 
of complete dependency should be investigated, and thus, 
propose potential improvement. Furthermore, different 
implementations of objective functions based on 
EVOLVE·INFOMAX can be developed. 

REFERENCES 

Arcones, M. A. & Gine, E., 1992. On the bootstrap of U and 
V statistics. The Annals of Statistics, pp. 655-674. 

Berkes, P. & Wiskott, L., 2005. Slow feature analysis yields a 
rich repertoire of complex cell properties. Journal of 
vision, 5(6), pp. 9-9. 

Blaschke, T., Berkes, P. & Wiskott, L., 2006. What is the 
relation between slow feature analysis and independent 
component analysis?. Neural computation, 18(10), pp. 
2495-2508. 

Cover, T. M., 1999. Elements of information theory. s.l.:John 
Wiley & Sons. 

Gao, X. & Shardt, Y. A., 2021. Dynamic system modelling 
and process monitoring based on long-term dependency 
slow feature analysis. Journal of Process Control, 
Volume 105, pp. 27-47. 

Kim, H. & Mnih, A., 2018. Disentangling by factorising. 
Stockholmsmässan, PMLR. 

Kompella, V. R., Luciw, M. & Schmidhuber, J., 2012. 
Incremental slow feature analysis: Adaptive low-
complexity slow feature updating from high-dimensional 
input streams. Neural Computation, 24(11), pp. 2994-
3024. 

Nguyen, X., Nguyen, M. J. & Jordan, M. I., 2010. Estimating 
divergence functionals and the likelihood ratio by 
convex risk minimization. IEEE Transactions on 
Information Theory, 56(11), pp. 5847-5861. 

Poole, B. et al., 2019, May. On variational bounds of mutual 
information. Long Beach, PMLR. 

Shang, C., Huang, B., Yang, F. & Huang, D., 2015. 
Probabilistic slow feature analysis‐based representation 
learning from massive process data for soft sensor 
modelling. AIChE Journal, 61(12), pp. 4126-4139. 

Sprekeler, H., Zito, T. & Wiskott, L., 2014. An extension of 
slow feature analysis for nonlinear blind source 
separation. The Journal of Machine Learning Research, 
15(1), pp. 921-947. 

Van den Oord, A., Li, Y. & Vinyals, O., 2018. 
Representation learning with contrastive predictive 
coding. arXiv e-prints, pp. pp.arXiv-1807. 

Wiskott, L. & Sejnowski, T. J., 2002. Slow feature analysis: 
Unsupervised learning of invariances. Neural 
computation, 14(4), pp. 715-770. 


