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A B S T R A C T

Ischemic stroke is one of the primary causes of death and disability
worldwide. Common origins of cerebral ischemia are the two carotid
arteries that supply most of the intracranial circulation. Therefore,
detecting and analyzing carotid stenoses, i.e., potentially lethal con-
strictions of these arteries, is a critical task in clinical stroke prevention
and treatment. Carotid surgery can reduce the stroke risk associated
with stenoses, however, the procedure entails risks itself. Therefore,
a thorough evaluation of each case is necessary. Clinical evaluation
requires assessing the vessel shape (morphology) and the properties
of the internal blood flow (hemodynamics). The latter is typically
assessed using Doppler ultrasonography, which requires specialized
equipment and personnel to be carried out.

With the emergence of computational fluid dynamics (CFD), the
simulation of intricate biological transport processes became possible,
including flow in actual physiological structures, such as blood ves-
sels. These simulations of the internal blood flow field could facilitate
the visual integration of hemodynamic and morphological informa-
tion, provide a higher resolution on relevant parameters than current
screening methods, and enable the analysis of new flow-derived pa-
rameters associated with stenosis progression. While hemodynamic
simulations offer groundbreaking opportunities to enhance clinical
decision-making, a successful translation of CFD to the clinical fore-
front is highly challenging.

In this thesis, a self-contained pipeline is built, which integrates
streamlined model extraction and pre-processing along with a collec-
tion of visual exploration tools into a single framework. Methods are
proposed and evaluated to analyze the internal blood flow, anatomical
context, and vessel wall composition, and to automatically and reli-
ably classify stenosis candidates. Through retrospective user control
over the processing stages, error detection and correction are greatly
simplified. As hemodynamic simulations are intrinsically complex,
time-consuming, and resource-intensive, their application conflicts
with the time-sensitive nature of clinical workflows. To address these
transfer challenges, a novel visualization system is integrated into the
pipeline, which enables instant flow exploration without performing
on-site simulation. The framework was developed and evaluated in
multiple iterative user studies, involving a group of eight radiolo-
gists and neurologists working in stroke care. It is publicly available,
along with a database of 152 carotid bifurcation geometries with sim-
ulated flow that were extracted with the framework from computed
tomography data.

v



Z U S A M M E N FA S S U N G

Der ischämische Schlaganfall ist eine der führenden Invaliditäts- und
Todesursachen. Ein häufiger Ursprung für die Entstehung zerebraler
Ischämien sind die beiden internen Karotisarterien, die den größten
Teil des intrakraniellen Kreislaufs versorgen. Daher ist die Erkennung
und Analyse von Karotisstenosen, also potenziell tödlichen Veren-
gungen dieser Arterien, eine entscheidende Aufgabe der klinischen
Schlaganfallprävention und -behandlung. Ein chirurgischer Eingriff
kann das mit Stenosen verbundene Schlaganfallrisiko verringern, doch
dieser selbst ist mit Risiken verbunden. Daher ist in jedem Einzelfall
eine gründliche Risiko-Nutzen-Abwägung eines möglichen Eingriffs
erforderlich. Die klinische Bewertung erfordert eine Beurteilung der
Gefäßform (Morphologie) und der Eigenschaften des internen Blut-
flusses (Hämodynamik). Letzteres wird in der Regel mittels Doppler-
Ultraschalluntersuchung beurteilt, für deren Durchführung entspre-
chende Geräte und spezialisiertes Personal erforderlich sind.

Mit dem Aufkommen der numerischen Strömungsmechanik (engl.
computational fluid dynamics, Abk. CFD) wurde die Simulation kom-
plizierter biologischer Transportprozesse möglich, einschließlich der
Strömung in tatsächlichen physiologischen Strukturen, wie zum Bei-
spiel Blutgefäßen. Diese Simulationen des internen Blutflussfeldes
können die visuelle Integration hämodynamischer und morpholo-
gischer Informationen erleichtern, eine höhere Auflösung relevanter
Parameter als die derzeitigen Screening-Methoden bieten und die Ana-
lyse neuer Parameter im Zusammenhang mit dem Fortschreiten von
Stenosen ermöglichen. Während hämodynamische Simulationen neue
Möglichkeiten zur Verbesserung der klinischen Entscheidungsfindung
bieten, ist eine erfolgreiche Umsetzung von CFD in die klinische Praxis
eine große Herausforderung.

In dieser Arbeit wird eine in sich geschlossene Pipeline entwickelt,
die eine optimierte Modellextraktion und -vorverarbeitung zusam-
men mit einer Sammlung von visuellen Untersuchungswerkzeugen
in ein einziges Framework integriert. Es werden Methoden zur Ana-
lyse des internen Blutflusses, des anatomischen Kontexts und der
Gefäßwandzusammensetzung vorgeschlagen und bewertet, um Steno-
sekandidaten automatisch und zuverlässig zu klassifizieren. Durch die
retrospektive Kontrolle des Benutzers über die Verarbeitungsschritte
werden Fehlererkennung und -korrektur erheblich vereinfacht. Da hä-
modynamische Simulationen von Natur aus komplex, zeitaufwändig
und ressourcenintensiv sind, steht ihre Anwendung im Konflikt mit
dem zeitkritischen Charakter klinischer Arbeitsabläufe. Um diesen
Herausforderungen zu begegnen, wurde ein neuartiges Visualisie-
rungssystem in die Pipeline integriert, das eine sofortige Untersu-
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chung der Strömung ermöglicht, ohne dass eine Simulation vor Ort
durchgeführt werden muss. Das Framework wurde in mehreren ite-
rativen Nutzerstudien, mit einer Gruppe von acht Radiologen und
Neurologen, entwickelt und evaluiert. Das Framework ist öffentlich
verfügbar, zusammen mit einer Datenbank von 152 Geometrien von
Karotisbifurkationen mit simuliertem Blutfluss, die mit dem System
aus Computertomographiedaten extrahiert wurden.
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1 Introduction





1
I N T R O D U C T I O N

The effective treatment and prevention of stroke are of high societal
importance [107]. Globally, stroke has remained the second-leading
cause of death for several years and it also is the third-leading cause
of death and disability combined [100]. Post-stroke care is associated
with considerable economic expenses [257]. The annual number of
deaths from stroke is increasing, which is partly attributed to the shift
towards an older population and also to an increase in risk factors like
high blood pressure and high body-mass index. The Global Burden of
Disease (GBD)1 2019 stroke collaborators conclude that “without urgent
implementation of effective primary prevention strategies, the stroke burden
will probably continue to grow across the world” [100].

The majority of strokes, about 80–90%, are ischemic [2, 80, 301], which
means they are caused by lack of blood flow to the brain. Ischemic
stroke is typically caused by a constricted or blocked blood vessel. A
crucial component of clinical stroke care and prevention is the detec-
tion, classification, and possibly treatment of arterial stenoses – local
vessel constrictions – which are often due to atherosclerotic plaque. A
predilection site for stenosis development is the carotid bifurcation,
where the internal carotid splits off the common carotid artery. The
two internal carotids supply the largest part of the brain’s circulation
and a large portion of ischemic strokes are directly linked to carotid
stenosis [80]. Therefore, sophisticated clinical workflows are in place
for screening the carotids [76]. Typically, a computed tomography
angiography (CTA) or magnetic resonance angiography (MRA) and an
ultrasonographic assessment are used to determine the morphological
and hemodynamic properties of potential stenoses. Physicians face
multiple challenges when analyzing the resulting images. The deriva-
tion of geometrical properties of a stenosis, e.g., the shape, length,
minimal diameter, and plaque distribution from slice-based depictions
is not intuitive, as multiple successive images need to be mentally
combined. Volume renderings are sometimes also used but can be
problematic to interpret due to visual clutter from the surrounding
blood vessels, connective tissue, and artifacts from tooth fillings. Yet, a
comprehensive understanding of the stenosis properties is central to
determining the ideal treatment approach. Furthermore, integrating
the results from multiple modalities, like CTA and ultrasonography, is
challenging. Important hemodynamic properties, such as peak veloc-
ity and the extent of poststenotic turbulence, are only visible using

1 The GBD study is the largest global observational epidemiological study to date. See
also: https://www.thelancet.com/gbd.
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6 introduction

Doppler ultrasonography. However, many morphological parame-
ters are better derived from angiographic volume imaging. A central
value is the stenosis degree, since it is used as a threshold determining
the need for surgical intervention [88]. It can be attained from both
CTA and ultrasonography, however, considerable fluctuations of the
stenosis degree exist depending on the observer and modality [209].

The clinical decisions made in acute stroke care and stroke preven-
tion are highly case-specific. Determining the appropriate management
strategy for carotid stenosis depends not only on the degree of stenosis
but also on individual patient factors such as age, comorbidities, and
overall cardiovascular risk profile. The risk of stroke always needs to
be weighed against the risk of complications from intervention and
different surgical strategies exist, for instance, plaque removal or stent
insertion. The pathological progression of developing stenoses and
the interplay of anatomical and hemodynamic factors are not yet fully
understood. Due to the prevalence of stroke, stenosis formation and
stenosis risk assessment remain major research areas [107].

1.1 motivation

In the clinical detection and evaluation of arterial stenoses, many
challenges persist. While several imaging techniques are available for
detecting carotid stenosis, each has its limitations. Common meth-
ods include carotid ultrasound, MRA, CTA, and digital subtraction
angiography. Each modality has its strengths and weaknesses, and
interpreting results accurately requires expertise. Often, multiple as-
sessments are carried out by different experts at several points in time
and sometimes different clinics. To derive the best treatment strategy,
physicians then need to piece together the results to get the full picture.
Stenoses can progress gradually over time, and the severity can vary
from mild to severe. Monitoring disease progression and accurately
assessing the degree of stenosis require regular follow-up and precise
measurements, which can be challenging. Determining the appropriate
management strategy for carotid stenoses necessitates a comprehen-
sive evaluation and often multidisciplinary decision-making involving
neurologists, vascular surgeons, and other specialists.

Blood flow simulations, typically based on computational fluid
dynamics (CFD), can complement and improve the processes involved
in detecting and managing carotid stenosis in several ways. Through
visualization of hemodynamics, CFD simulations can provide insights
into blood flow patterns within the carotid arteries. These can help
clinicians better understand the complex flow dynamics associated
with stenotic lesions, including areas of turbulence, recirculation, and
low shear stress, which are important factors in the progression and
rupture of atherosclerotic plaques [186]. Visualizing simulated blood
flow enables a direct integration of morphology and hemodynamics.
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CFD further allows for the quantification of hemodynamic parameters
such as wall shear stress (WSS), pressure gradients, flow velocities, and
flow rates. These parameters can help identify regions of potential
plaque vulnerability or increased risk of thrombosis [124, 229].

Despite their potential benefits, integrating CFD-based methods
into clinical workflows poses several challenges, due to the often time-
consuming, resource-intensive, and complex nature of the simulations.
Executing and analyzing CFD simulations requires expertise in fluid
dynamics, numerical methods, and spezialized software tools. Clini-
cians and healthcare professionals may lack the necessary training and
experience to perform or interpret CFD analyses, making it difficult
to incorporate these methods into routine clinical practice. Effectively
communicating the results of CFD simulations to clinicians requires
clear visualization and interpretation of complex hemodynamic data.
Furthermore, performing CFD simulations often requires access to
high-performance computing resources, which may be expensive and
not readily available in clinical settings, limiting the feasibility of
conducting real-time simulations or large-scale analyses.

In visualization research, a variety of techniques were developed
that enable tailored exploration and analysis of simulated blood flow
data. Techniques were proposed for both, conducting medical research
and decision-making in clinical workflows. Existing methods primarily
target flow features in cerebral aneurysms and the aorta [234]. Visual-
izing blood flow in stenoses and analyzing risk-factors for ischemic
stroke has only been sparsely covered.

1.2 contributions and structure

In this work, to address the challenges outlined above, methods from
blood vessel and flow visualization are refined and adapted for the
exploration of carotid hemodynamics and morphology [342]. On this
basis, novel methods are developed for the spatio-temporal exploration
of vascular models employing map-like abstractions [343, 346]. Further,
techniques are introduced to efficiently detect stenoses and perform
automatic and accurate stenosis degree classification [339, 344]. To
target the challenge of the applicability of blood flow simulations in
direct patient care, a novel approach is implemented to circumvent
complex individual flow simulations [345].

At the core of this work lies a multi-stage, unified software frame-
work, which combines pre-processing and the data exploration tools
listed above, making them readily available to clinical practitioners
and researchers. Interactive visualizations are used for data inspection
and adaption to guide the user through the processing stages. Stream-
lining the data processing and enabling retrospective user control
seem to have a major impact on user trust in medical visualizations
and increase the data validity, ultimately making sophisticated vi-
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sualization systems more readily usable in routine. All techniques
developed in this thesis were evaluated by an interdisciplinary group
of visualization experts, numeric simulation researchers, neurologists,
and radiologists. The framework has a modular and extendable archi-
tecture and is available as an open-source platform [48]. It was used
to procure a database of, at the time of writing, 152 carotid bifurcation
geometries. The database was also extended to include simulated
blood flow and is publicly available [347].

This thesis is structured as follows. The initial part provides a broad
review of the medical and application background:

• Chapter 2 gives an overview of the relevant medical background.
The prevalence and epidemiology of carotid stenosis are outlined,
as well as current clinical workflows regarding carotid screening,
diagnostic capabilities, and possible treatment strategies.

• Chapter 3 complements the medical background with the tech-
nical state-of-the-art in computerized medical imaging, hemo-
dynamic simulation, and vessel visualization. The particular
focus lies on the carotids and carotid stenosis, however, all tech-
niques relevant to the development of the methods presented in
later chapters are reviewed. Section 3.1 discusses how vascular
models can be extracted from image data, Section 3.2 provides
an overview of hemodynamic simulation techniques, and Sec-
tion 3.3 summarizes how the resulting vascular models and
possibly blood flow data can be visualized.

• Chapter 4 provides a classification of vessel maps – map-like vi-
sualizations of cardiovascular structures [343]. A comprehensive
review of vessel maps is given, yielding an overview of the vast
landscape of these techniques, which have been broadly applied
to simplify and abstract complex three-dimensional (3D) vascular
structures. Vessel maps are applied on several occasions in this
thesis, where the investigations from Chapter 4 serve as a basis.

In the next part, techniques for the visual analysis of carotid stenoses
are developed. The proposed methods extend existing procedures
for visualizing hemodynamics. The contributions of this thesis are as
follows:

• Chapter 5 targets the exploration of hemodynamic parameters
that affect the vessel wall. An algorithm for creating a vessel
surface map is developed, which cuts and flattens vessel tree
surfaces fully automatically [346]. The advantage over previous
approaches is that only the vessel mesh is required as an input.
No centerlines, manual cuts, or landmarks are needed. Both the
cutting and flattening stages are designed to facilitate an intu-
itive and accurate assessment of parameter distributions on the
surface. Natural vessel cuts are introduced to solve the tendency
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of most cutting algorithms to wrap cuts around elongated struc-
tures. The flattening develops a free boundary with minimized
area distortions while keeping the layout close to the original
structure.

• Chapter 6 targets the exploration of flow parameters inside
stenoses and their integration into the patient-specific anatomical
context. A comprehensive visualization framework is developed
that allows for exploring and analyzing time-dependent hemody-
namic simulations of the carotids [342]. A vessel network map is
used as an overview depiction of the vessel diameter to quickly
identify stenosis candidates. The map doubles as a navigational
aid to efficiently and unambiguously probe any region in the
simulation domain.

During the development and testing of the above frameworks, sev-
eral challenges became apparent, which hinder the clinical adoption
of advanced vessel visualization and patient-specific hemodynamic
simulation. These challenges are not specific to the analysis of carotid
stenosis but similarly occur in most cardiovascular simulation and
visualization applications. In the following part of this thesis, tar-
geted methods were developed that directly address these transfer
and application bottlenecks:

• Chapter 7 introduces a fully integrated pipeline for the extrac-
tion, exploration, and analysis of carotid bifurcation geometries
from clinical image data [339]. The pipeline directly connects
multiple sophisticated processing stages, including a neural
prediction network for lumen and plaque segmentation and
automatic global diameter computation. Visualization modules
are provided, which allow exploring the processed data. The
frameworks developed in Chapter 5 and Chapter 6 are accessi-
ble as visualization modules. The integration of processing and
visualization stages enables interactive and retrospective user
control over the processing steps without leaving the application.
Providing the users with guided insight into the data processing
showed to increase their trust in the resulting visualizations
and helped to make the application of the pipeline scalable.
The pipeline was used to extract 152 carotid bifurcation models,
which were made publicly available [347].

• Chapter 8 targets a second overarching issue: the translation
of hemodynamic simulation into clinical decision-making and
disease monitoring is highly challenging. Hemodynamic simu-
lations are intrinsically complex, highly time-consuming, and
resource-intensive, which conflicts with the time-sensitive na-
ture of clinical workflows and the fact that hospitals usually do
not have the necessary resources or infrastructure to support
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flow simulations. The chapter describes the development of a
similarity-based visualization system to address these transfer
challenges, which enables instant flow exploration without per-
forming on-site simulation [345]. A database of high-resolution
carotid blood flow models is created from the models extracted
in Chapter 7. Then, similarity metrics are used to place a new
carotid surface model into a neighborhood of simulated cases
with the highest geometric similarity. The neighborhood can be
immediately explored. A core visualization that is used here is
the surface map developed in Chapter 5. The geometries, sim-
ulated flow, and wall-related parameters can be comparatively
analyzed. If the models are similar enough in the regions of
interest, a new simulation leads to coinciding results, allowing
the user to circumvent complex individual flow simulations.



Part II

B A C K G R O U N D





2 Medical Background





2
M E D I C A L B A C K G R O U N D

Medical conditions that affect the heart or blood vessels are grouped
as cardiovascular disease (CVD) [211]. With more than 30% of global
deaths attributed to CVD, it is the leading cause of fatality world-
wide [99]. It is estimated that up to 90% of CVD may be preventable [207,
231] by reducing risk factors like smoking, changes in diet and exer-
cise, and timely identification and treatment of developing conditions.
The most prominent complication from CVD is myocardial infarction,
commonly known as a heart attack, where blood flow to the coronary
arteries of the heart decreases, damaging the heart muscle. The second
most relevant complication is stroke, a condition in which a circula-
tory disorder limits blood flow to the brain, ultimately causing cell
death. Other diseases include venous thrombosis, which can impact
lung function, peripheral artery disease, which may necessitate limb
amputation, heart valve insufficiency, which impairs overall blood
circulation, and many more [211]. The underlying mechanism of many
CVDs is atherosclerosis, in which lesions in the inner wall of an artery
occur that, over time, lead to the buildup of fatty deposits called
plaques. The progression of atherosclerosis is usually asymptomatic
for decades, as the arteries compensate for the plaque growth by en-
larging [265]. Symptoms only occur after severe narrowing of an artery
reduces the blood flow enough to affect an organ or if particles break
off a lesion site and block a smaller vessel upstream (embolization).
The buildup of atherosclerotic plaque is particularly alarming if it
affects the arteries supplying the heart or brain.

This work focuses on the prevention of stroke and stroke-like attacks,
in particular ischemic stroke. Stroke can either be hemorrhagic if it is
caused by internal bleeding or ischemic if it is due to reduced blood
flow. Ischemic stroke accounts for 80–90% of all cases [2, 80, 301]. In
2015, stroke led to 6.3 million deaths worldwide, about 11% of the
total, making it the second most frequent cause of death after coronary
artery disease and before cancer [98]. In non-fatal cases, stroke often
results in permanent neurological disabilities [107] and post-stroke
care is associated with substantial economic costs [257]. About 50% of
people who survived an acute stroke live less than a year [80]. In non-
fatal strokes, common ensuing symptoms include paralysis, sensory
malfunction, speech disorder, and impaired vision, coordination, and
cognition [200]. Known causal risk factors for ischemic stroke are high
blood pressure, hypercholesterolaemia1, atrial fibrillation2, and carotid

1 A lipid disorder in which the low density lipoprotein (“bad cholesterol”) is too high.
2 A rapid and irregular beating of the atrial heart chambers.
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internal
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Figure 1: Arteries of the neck. The relevant parts of the right carotid artery
are annotated. Image from [113] (public domain).

stenosis [123]. Carotid stenosis describes a localized narrowing of the
(internal) carotid arteries, which is usually caused by atherosclerosis.

2.1 carotid artery stenosis

The carotids are two large arteries that run on both sides of the neck.
Together with the two vertebral arteries, they provide blood supply
to the brain. The anatomical layout of the carotid arteries is shown in
Figure 1. The right and left common carotid arteries (CCAs) originate
from the aorta. Each CCA splits into an internal carotid artery (ICA) and
an external carotid artery (ECA), at about half the length of the neck.
The location where these vessels split is called the carotid bifurcation.
While the ECA provides blood flow for the face and neck, the ICA

supplies the brain and eyes. After the bifurcation, the ECA immediately
branches into further appended vessels, whereas the ICA travels along
the remaining length of the neck and into the skull without any side
branches. Only after emerging from the base of the skull, the first side
branches can be found. Inside the skull, the ICA forms a small arc,
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often S- or U-shaped, which is also called the carotid siphon. After
the carotid siphon, the vessel’s diameter quickly diminishes, as the
ICA branches into several smaller arteries responsible for brain blood
supply.

Carotid stenosis is usually caused by the buildup of atherosclerotic
plaques in the inner lining of the artery. As these plaques grow, they
can constrict the artery and reduce blood flow. A stenosis of the ICA

can result in a stroke in three ways. (1) A stenosis can grow such that it
severely impedes blood flow to the brain or entirely blocks the artery.
Reduced blood flow in one ICA may be partially substituted by other
arteries. A severe stenosis or multiple stenoses in the left and right ICA

increase the stroke risk. (2) Plaque deposits can rupture and emboli
can break off and travel to the cranial blood vessels, where they block
a smaller artery. (3) Blood clots can form on the irregular surface of
the stenosed artery wall, which may occlude the artery at the steno-
sis site or break off and block a smaller vessel upstream. A typical
predilection site for stenosis development is shortly after the carotid
bifurcation, as shown in Figure 2. The prevalence of extracranial3

carotid stenosis is about 4% in adults, but rises to 6–15% after the age
of 65 [76]. Considering the demographic shift towards an older popula-
tion, the healthcare system needs to be prepared for an increased risk
of stroke due to carotid stenosis. Already, in Germany alone, about
one million patients are living with extracranial carotid stenosis and
approximately 30,000 strokes every year are directly linked to this
condition [76]. As such, the prevention of carotid stenosis-induced
stroke is of fundamental societal importance.

2.2 stenosis screening , diagnostics , and treatment

Patients who suffered a stroke or show symptoms that may indicate
possible stenoses are typically subjected to ultrasonography of the
carotids [76]. With Doppler ultrasonography, the blood flow velocity
in the CCA and ICA can be measured [279]. Based on the Doppler
effect, the frequency shift between a transmitted and received ultra-
sonic signal is measured. This shift is proportional to the speed of the
blood which reflected the signal, allowing quantitative measurements
of blood flow. The constricted vessel walls of a stenosis lead to an
increase in flow velocity, which abruptly drops behind the stenosis.
Using this pattern, stenoses can be detected and classified according to
measured flow speeds. Clinically relevant are especially the systolic4

peak velocities within the stenosis maximum and after the stenosis.
These two values can be used to grade a stenosis, for example, a sys-
tolic peak velocity of 350–400 cm

s inside the stenosis and a poststenotic
peak velocity of < 50 cm

s would classify an 80% ICA stenosis [76]. The

3 Outside of the skull.
4 Part of the cardiac cycle where blood is pumped through the body.
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Figure 2: Anatomy of the carotid bifurcation. A stenosis caused by plaque
on the arterial wall restricts blood flow in the internal carotid.

sudden reduction in velocity leads to turbulent flow after the stenosis
that sometimes also becomes visible, especially in severe stenoses.
Similarly, the end-diastolic5 velocity within the stenosis maximum is
sometimes used as an additional gradation criterium; it often exceeds
100 cm

s in severe stenoses [76].
The hemodynamic information gained with Doppler ultrasonogra-

phy is highly relevant for neurologists treating stroke patients. The
method is also widely adopted as it is fast, inexpensive, and non-
invasive. A limitation, however, is the susceptibility of Doppler ultra-
sonography to artifacts. For instance, image quality is considerably
worse in the case of obese patients. Additionally, the results are highly
dependent on the orientation of the ultrasound transducer held by
the physician, resulting in possible inter-observer variability [269].
Not only does this affect which cross-section of the examined vessel
is visible, but also the measured speeds [289]. The Doppler effect is
dependent on the angle between the flow and measurement direction.
The most accurate signal is found at 0◦ difference between these di-
rections, i.e., the blood flows directly towards or away from the probe.
This is problematic, as the carotid arteries do not necessarily have a
straight layout, meaning the direction of flow varies. Consequently,
carotid ultrasound screenings require a highly qualified physician to
execute. Smaller hospitals often do not have the proper equipment
or personnel to perform these types of tests. Further, stenoses might
occur after the ICA enters the skull. Although transcranial6 Doppler ul-

5 Part of the cardiac cycle where the heart fills with blood.
6 Through the skull.
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trasonography does exist, it is even more difficult to properly execute,
as the relevant arteries are occluded by the skull.

In many cases, an angiography is also performed, often in the form
of a CTA or MRA, to reveal the intracranial7 vessels and give a more
accurate representation of the morphology. The injection of a con-
trast agent highlights the lumen, i.e., the region inside a vessel where
blood actively flows, in the resulting volume images. This allows for
determining the position and size of a stenosis, based on which its
severity can be derived. Besides the evaluation of individual slices, pro-
cedures used in practice include maximum intensity projection [226],
shaded surface display [187], and volume rendering [46]. Current
clinical guidelines base the treatment recommendations largely on
the stenosis degree. Following the results from the North American
Symptomatic Carotid Endarterectomy Trial (NASCET) [88], a high indi-
cation for surgical intervention is given for symptomatic patients with
above 70% ICA stenosis. On angiographic imaging, the stenosis degree
SNASCET is computed using the NASCET criteria. The diameters of the
vessel lumen inside the stenosis dmin and after the stenosis dnormal are
compared:

SNASCET =
dnormal − dmin

dnormal
· 100%. (1)

However, CTA and MRA reveal no hemodynamic flow features. As a
result, in carotid artery diagnostics, clinicians need to mentally com-
bine the outcomes of multiple examinations before deciding on viable
treatment options. Using the stenosis degree as a threshold value alone
does not include other properties, such as the individual shape of the
stenosis, the wall composition, or the plaque type and distribution.
Comprehending these factors and an accurate assessment of objective
descriptors of the disease are crucial for ideal treatment and monitor-
ing of a patient’s condition. Furthermore, treatment decisions need to
be made on an individual basis, considering a large number of factors
involved, including the age, background, gender, and medical history
of a patient.

Conservative treatments using medication to control vascular risk
factors, e.g., lowering blood pressure or antithrombotic medication,
are recommended for almost all patients with carotid stenosis [76].
If developing stenoses are identified at the right stage, endovascu-
lar8 or operative approaches can be taken to avoid total closure and
drastically minimize the risk of embolization. It has been repeatedly
shown that timely surgical intervention can prevent stroke as a result
of carotid stenosis [120, 258]. The most common procedure is carotid
endarterectomy, where plaque is removed from the carotid bifurcation
in open surgery. Current evidence suggests that carotid endarterec-
tomy has some benefit for patients with 50–60% symptomatic ICA

7 Inside the skull.
8 A minimally invasive procedure, where a catheter is used to access the artery.
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stenosis and is highly beneficial for those with 70–99% stenosis [259].
Alternatively, a stent, i.e., a small tube-like mesh, can be inserted in
an endovascular procedure to stabilize the arterial wall and keep the
passageway open. However, carotid surgery has its own risks that
must be carefully considered against the likelihood of a stroke [121].
For example, the stroke risk during carotid endarterectomy is between
1–5% [37]. Selecting the right moment for surgery and the best treat-
ment strategy is critical, which requires careful evaluation and an
interdisciplinary discussion of each case.
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V E S S E L E X T R A C T I O N , F L O W S I M U L AT I O N , A N D
V I S UA L I Z AT I O N

Various frameworks and techniques for visualizing blood vessels were
developed to solve specific tasks of clinical practitioners [343, 234,
251, 252]. Generally, a differentiation is made between model-free
and model-based techniques [251]. Model-free techniques work di-
rectly on the image data, for example, using slice-based depictions,
image reformations [142, 221], or volume rendering [167, 349]. Model-
based techniques rely on a processing pipeline that extracts geometric
models from volume images. Typically, the vessels of interest are
segmented on the image, after which a surface is reconstructed. In
many clinical and research applications, such models are used to de-
scribe the bounds of the target structure, for instance, an organ [75,
108], bones [338, 348], or the surface of a vessel tree [183, 223]. The
model usually is a triangulated surface mesh or quad mesh [283]. An
advanced application of patient-specific vascular models is their use
in computational hemodynamics, i.e., the simulation of the internal
blood flow.

The ability to simulate and analyze flow in actual physiological
structures, such as patient-specific blood vessels, was made possible
by complementary progress in image processing, high-performance
computing, and the creation of advanced clinical visualization meth-
ods [27]. In computational hemodynamics, a volumetric mesh is built
from the target domain, and then a CFD simulation is carried out,
where predefined boundary conditions dictate the flow behavior at
vascular walls, inlets, and outlets. A large body of visualization meth-
ods has been developed that enable analyzing the resulting flow field
and any derived parameters like WSS, the pressure gradient, or the
volumetric flow rate [234]. A common approach is the combination of
multiple coordinated data views with different purposes, for example,
slice-based renderings, volume renderings [167], 3D surfaces, views
of integral lines [40], focus lenses [96], map-like depictions [343], and
also data graphs or charts [213].

3.1 vessel extraction and pre-processing

The two principal source modalities for non-invasive capturing of a
patient’s vasculature are CTA and MRA. Both yield volume images of
the scanned region where vessels are contrasted against other struc-
tures. They are typically not temporally resolved, i.e., they record
a static image. Exceptions are specialized techniques, like real-time

23



24 vessel extraction, flow simulation, and visualization

magnetic resonance imaging (RT-MRI) [64] and phase contrast magnetic
resonance imaging (PC-MRI) [288], which have a temporal dimension.
PC-MRI in particular is used to determine not only the occurrence of
blood flow but also the flow velocities in large arteries. In clinical
routine, cardiovascular structures are also often examined using ultra-
sound. Ultrasound generally has a lower resolution and more artifacts
compared to CTA or MRA, which is why in diagnostics it is often used
in addition to, e.g., a CTA scan of the same region. In routine exami-
nations, mostly traditional two-dimensional (2D) ultrasound is used
but 3D ultrasound is an emerging alternative [133]. Further imaging
modalities that have been applied in some cases are rotational angiog-
raphy [118] and digital subtraction angiography [140]. Also, invasive
capturing techniques exist, such as intravascular ultrasound [95] and
intravascular optical coherence tomography [24], where a probe is
inserted into the vasculature via a catheter. For model-based vessel
visualization and to simulate blood flow, a processing pipeline as
shown in Figure 3 is typically used.

3.1.1 Vessel enhancement

The recorded volume image is often filtered to enhance the contrast of
the target structure. A comprehensive overview of vessel enhancement
procedures can be found in the survey of Fraz et al. [91]. Prominent
are vesselness filters, originally introduced by Frangi et al. [90]. A
variety of similar and improved filters have been proposed [171].
Other approaches include Wavelets [285] and diffusion filtering [166].
In some cases, like PC-MRI processing, artifacts need to be explicitly
removed [156].

3.1.2 Model extraction

Model extraction can be split into segmentation, where a target struc-
ture is marked in the volume, and surface reconstruction, where the
geometric model is created. Sometimes, multiple models are defined,
for example, to differentiate the inner and outer walls of a vessel or to
extract regions with atherosclerotic plaque [139]. Due to their simplic-
ity, intensity-based approaches like thresholding and region growing
are sometimes used to segment vessels. While they might apply to
image data where vessels are delineated, they often do not produce
the expected results, as they are not robust against noise and artifacts.
Deformable models have also been applied to vascular structures,
particularly active contours [199, 204]. They match an initial model
to fit the specific image, e.g., based on its gradient. Similarly, graph-
based methods, especially graph cuts, have been adapted to vessel
tracking [21, 84]. Temporally resolved volumes, such as from PC-MRI or
ultrasound, require a segmentation of every time step to adjust for the
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Figure 3: A typical processing pipeline used for model-based vessel visual-
ization and hemodynamic simulation.

moving morphology [41]. For example, Köhler et al. [159] proposed a
modified graph cut to segment the aorta in PC-MRI data. Many model
extraction techniques require some form of manual input, such as
landmarks or outlined contours. A survey of conventional techniques
for vessel lumen segmentation is provided by Lesage et al. [183].

As many of these methods are computationally slow and not as
robust against noise and artifacts as desired, recent years have seen a
surge in machine learning-based methods [194, 254, 321]. Especially
convolutional neural networks (CNNs) have proven to be highly suc-
cessful tools for image analysis. Their advantage lies in the fact that
image features are automatically learned, i.e., no specific descriptor
needs to be provided. This allows complex automatic segmentations
of data with noise, image artifacts, or different types of atherosclerotic
plaque, which is often difficult to differentiate from the vessel lumen.
CNNs have been applied to segment various types of vessels [194,
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224, 254, 321]. They generally require a basis of manually segmented
image volumes for training. Specialized networks for carotid lumen
and plaque segmentation have been proposed [34, 72], where good
performing networks, with a Dice similarity1 of 82%, were based on as
low as 15 training data sets [332]. For further reading, we recommend
the surveys of Moccia et al. [223] and Zhao et al. [330]. Extracted
surfaces can also be further processed and given additional infor-
mation, such as relevant landmarks or morphological features. For
example, aneurysms can be detected and segmented in models of
vessel trees [176]. Particularly relevant are also centerline extraction
methods that produce a topological model of the vessel tree structure.

3.1.3 Centerline extraction

Many mesh processing and visualization algorithms that work with
vascular models require a centerline. The centerline is the geometric
vessel skeleton. More generally speaking, it is a graph that defines the
tree or network topology of the vascular structure it lies in. It can be
reconstructed either from a surface model or directly from the volume
image. An overview of skeletal representations for surface meshes
is provided by Tagliasacchi [294] and a survey on skeletonization
algorithms is given by Saha et al. [270].

Various approaches to computing the skeleton of voxel volumes,
like medical volume images or voxelized surface meshes, have been
proposed. A common idea is topological thinning, for instance, by
peeling one layer of voxels at a time [101, 238, 243, 281] or iteratively
contracting the volume until a linear graph is retained [309]. If the
centerline is to be derived from a volume image, these techniques
typically require a binarized volume, where the voxels belonging to
the target structure are separated [180]. A second widely studied
approach is to use distance metrics on the image graph. By connecting
neighboring voxels in a graph structure, individual skeleton paths can
be defined through the volume [333]. After a start node is selected,
the end node can be determined by maximal distance and an ideal
path can be found using Dijkstra’s algorithm [78]. For the centerline
to adhere to the center of the volume, passing through edges closer to
the border of the structure can be penalized [25, 26, 273].

If a surface geometry is given, a common strategy for finding the
centerline of a vessel tree is to use the medial axis transform of the
geometry [28]. For a 3D shape, the medial axis tracks the positions of
the maximally inscribed spheres. Each sphere is described by three
points on the surface. The medial skeleton is then defined by a set of
sheets, each described by three points [102]. Connecting the centers

1 The Dice similarity coefficient computes a similarity measure between two samples.
It is a common measure for comparing algorithm output against reference masks in
medical image segmentation.
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of the spheres retrieves a curve skeleton – the vessel centerline. An
advantage of this method is that the minimum radii of the tubular
structure are computed as a byproduct. For surfaces made of polygons,
the medial axis can be derived by computing the bisectors [73]. This
method, however, is computationally complex. Faster strategies usually
approach this as a Voronoi diagram problem [235]. First, the boundary
points are sampled, then a 3D Voronoi diagram is computed on them.
The medial axis can then be derived by choosing a fitting subset of
the diagram, i.e., cells that lie inside the geometry. Antiga et al. [6]
demonstrate this approach with surface models of vessel trees. Other
popular approaches for the skeletonization of surface meshes include,
similar to the thinning of volumes, a topology-based thinning of the
surface [12] and retrieving the centerline from a clustering of the
points composing the object [87].

Implementations of vessel centerline algorithms have been included
in commonly used medical image analysis toolkits. Examples are the
skeletonization plug-in in ImageJ [276], which is based on the method
by Lee et al. [180] and the vascular modeling toolkit (VMTK) [7, 135],
which has been implemented as an extension for 3D Slicer [151, 247].
A comparison of these methods is provided by Wang et al. [310].

Centerlines and lumen segmentations have also been used for semi-
automatic stenosis grading. Tang et al. [295] used level sets with a
centerline prior to segment the carotid artery lumen and propose an
automated stenosis quantification based on cross-section diameters
or areas. Kaufhold et al. [149] developed a tool to quantify lumen
diameters on different image data sets, yielding an estimate of the
quantification uncertainties. There has also been a documented chal-
lenge for carotid lumen segmentation and stenosis grading at the 2009

MICCAI conference [122].

3.2 computational hemodynamics

In an extensive processing step, numerical methods can be used to
compute a prediction for the blood flow. Overviews of techniques for
the generation and visualization of blood flow data can be found in
the reviews of Caballero and Laín [44], Vilanova et al. [307], Köhler
et al. [156], and Oeltze-Jafra et al. [234]. Usually, CFD is used to solve
the flow field based on boundary conditions on the vessel wall and
domain inlets and outlets at the caps of the vessel tree [172]. CFD

requires a volumetric mesh that discretizes the full domain where the
simulation should occur. After the simulation, each mesh cell stores
information about the predicted flow, which can also be time-resolved.
Further quantities, like the WSS or normal wall stress (NWS), can be
derived from the flow field.

CFD involves simulating the movement of a fluid and its interaction
with other elements. The behavior of the fluid is determined by a
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set of governing equations that describe the conservation of mass,
momentum, and energy [275]. Blood, as a fluid, can be characterized
by properties such as density and viscosity, making it suitable for
analysis through CFD simulations. To solve fluid dynamics problems, a
defined problem space is necessary. In the case of hemodynamics, i.e.,
the dynamics of blood flow, this space typically consists of an internal
flow field containing flow properties like velocity and pressure, sur-
rounded by spatial boundaries such as arterial walls. Flow enters the
domain through predetermined inlets and exits through designated
outlets. By providing initial conditions for variables and accounting
for potential input or boundary changes over time, the internal fields
can be solved. Although analytical solutions exist theoretically, they
are only applicable to small and often artificial CFD problems. Vari-
ous numerical approaches are available, requiring the domain to be
divided into discrete volumes called cells. Each cell holds information
about internal variables and interfaces with one or more boundary
layers (inlets, outlets, or walls). The numerical solver updates these
values iteratively, taking into account neighboring cells and boundary
conditions.

Another approach, not discussed in this work, is smoothed-particle
hydrodynamics, which models the problem domain using freely flow-
ing particles. Smoothed-particle hydrodynamics methods have gained
popularity due to their parallelizability and sparse characteristics [71,
255]. However, they have drawbacks when it comes to handling bound-
ary conditions [280], particularly in computing particle displacements
near walls. For this reason, hemodynamic simulations are typically
performed using cell grids.

3.2.1 Blood Flow Simulation

Hemodynamic simulation has been a widely explored area of interest
in biomedical research for several decades. As a result, numerous
studies have incorporated CFD techniques to improve patient-specific
evaluation and treatment planning in medicine. Given a vessel wall
model, an internal flow field can be simulated. The process typically
involves many additional steps, including capping the ends of the
model, building a volumetric mesh from the surface, and creating
profiles for incoming and outgoing flow. One major research focus is
the study of aneurysms.2 Typically, mechanical risk factors associated
with the development and formation of aneurysms are identified.
Moreover, analyzing flow characteristics before and after surgical
treatment can aid in clinical decision-making [61]. Other fruitful areas
of research include CFD investigations of large arteries such as the
aorta [249, 328] and the carotids [5, 66, 245, 248], as well as advanced

2 Enlargements of arterial walls that can potentially rupture.
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simulations of internal hemodynamics in the human heart and the
interaction of blood flow with heart valves [74].

The main objective is to detect and analyze flow patterns that may
indicate pathological vessel deformations, offering additional infor-
mation to clinicians. This involves deriving numerical attributes to
classify cases or using visualization techniques to enhance the intuitive
understanding of flow patterns suggestive of pathologies. The infor-
mation obtained can then be used alongside other factors to determine
the most promising treatment approach [250]. Additionally, the results
of surgical interventions can be evaluated post-treatment [66].

Performing a CFD simulation requires the predefined geometry of
the target vessel. Various modalities, such as CTA, MRA, and ultrasonog-
raphy, can be used to acquire this geometry. However, sonography is
less suitable due to the high noise associated with the technique [324].
The segmentation of the domain can be done manually, automatically,
or semi-automatically [183, 326], as described in Section 3.1.2. Typically,
the lumen is identified in each image slice, and it may be beneficial
to mark the outer vessel walls or other relevant structures. The seg-
mentation is then interpolated across image slices to generate a 3D

surface representation, which is used to create a volumetric mesh for
the simulation [193]. In a CFD challenge conducted in 2013 to estimate
the rupture probability of aneurysms, the majority of participating
groups used commercial solutions to compute hemodynamics [23,
137]. ANSYS Fluent3 is one commonly used tool in this context [131].
Open-source solvers like OpenFOAM4 or specific in-house solutions
are also alternatives [260].

Boundary conditions need to be defined for CFD simulations. Re-
garding the carotid arteries, similar conditions and assumptions are
often employed [324]. Lopes et al. [198] review hemodynamic simula-
tion approaches applied to carotid artery models. Typically, the flow
inlet is set at the CCA, and two outlets are assigned, one at the ICA and
another at the ECA. For simulations covering one or multiple cardiac
cycles, a pulsatile waveform is defined at the inlet to specify the inflow
volume. The waveform can be standardized based on average flow
values or customized using patient-specific data if available. Blood
viscosity is usually assumed to be constant throughout the domain,
and the internal arterial walls are considered rigid. The outlets can
have different boundary conditions based on the desired results. Op-
tions include a zero pressure boundary, where the fluid exits outlets
without resistance, explicit flow splitting on the ICA and ECA, where
a predefined volume exits each outlet, or the more accurate Wind-
kessel condition, which models the flow resistance of downstream
microvasculature [137]. For instance, Conti et al. [66] implemented the
Windkessel condition in their work. An example for setting up such

3 https://www.ansys.com/products/fluids/ansys-fluent

4 https://www.openfoam.org

https://www.ansys.com/products/fluids/ansys-fluent
https://www.openfoam.org
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Figure 4: Schema of boundary conditions used to simulate carotid hemody-
namics. A post-operative (stented) case is shown with a cyclical
flow rate waveform at the inlet and two resistance/compliance
models at the outlets. Reprinted from [66] with permission from
Elsevier.

boundary conditions is shown in Figure 4. After generating the mesh
and defining the boundary conditions, the simulation is performed
over several time steps, the number of which depends on the solver
configuration requirements. The literature reports values ranging from
hundreds [79] to thousands [131] of time steps per cardiac cycle. Sousa
et al. [287] and Guerciotti et al. [116] compared the simulated velocities
in carotid arteries with measurements from Doppler ultrasonography.
Both show good agreements between the measurement and simula-
tion. Sousa et al. report a maximum velocity deviation of 5% in the
ICA, demonstrating the applicability of CFD to model physiological
blood flow in the carotids.

The resulting velocity fields are sometimes saved for specific time
points, although this can be memory-intensive and may not always be
done. Wall-related attributes are often computed in post-processing,
serving as potential predictors or indicators of vascular wall dysfunc-
tion. Low WSS, in particular, has been repeatedly linked to atheroscle-
rotic plaque development [124]. These attributes require fewer memory
resources and can be saved for multiple time steps or as time averages.
Examples of such parameters include WSS, the oscillatory shear in-
dex (OSI), and relative residence time [179]. Probing the velocity field
also allows the calculation of the volumetric flow rate, which measures
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the amount of blood volume passing through a defined surface region
per unit of time:

Q = ||u||A cos(θ), (2)

where u is the velocity vector, θ is the angle between the flow direction
and the surface, and A is the surface area.

It is important to note that there are several limitations and chal-
lenges in carotid hemodynamic simulations. Many studies rely on a
limited number of datasets, sometimes as few as one or two, which
raises concerns about the generalizability of the results [61]. Modeling
the carotid artery with only two outlets introduces further inaccuracies
since the ECA has multiple branches that split immediately after the
bifurcation. Therefore, the computation of blood volume may be inac-
curate if only the main branch is considered as an outlet. Defining flow
input conditions is challenging due to waveform variations among
patients and changes based on factors such as physical activity or body
position. Almost all works in the literature assume rigid walls [198], al-
though technically the carotid walls are elastic and stretch depending
on blood pressure. Modeling this elasticity is difficult as it depends
on various factors, including patient age. These limitations emphasize
the need for method refinement and overcoming persistent challenges
in simulating carotid hemodynamics. Tailored visualizations could
potentially aid research in this field by providing better access to the
simulation results and enabling effective comparisons, leading to more
accurate simulations and improved communication of results.

3.3 vessel and blood flow visualization

The emergence of more accurate CFD methods to simulate hemody-
namics with higher resolutions and new parameters has led to a
necessity for specialized visualizations to explore and analyze the re-
sulting flow data. Furthermore, these visualizations provide a means of
transfer into medical practice, where clinicians can benefit from depic-
tions tailored to specific data exploration tasks. Specialized techniques
have been proposed for three areas in particular: hemodynamics of
aneurysms, blood flow in the aorta, and nasal airflow, as outlined
in the state-of-the-art report by Oeltze-Jafra et al. [234]. One focus of
this thesis lies in the visual analysis of blood flow in stenoses, which
has only been sparsely covered before. However, it will be assumed
that advances made in the other application domains for blood flow
visualization can be transferred with some modulation to be appli-
cable for carotid stenosis analysis. Therefore, this section refers to
aspects of related works, from which methods and findings are then
generalized and adapted to match specific requirements regarding
carotid stenosis. It is based on the state-of-the-art reports by Vilanova
et al. [307], Köhler et al. [156], and Oeltze-Jafra et al. [234].
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Figure 5: Animated pathlines of blood flow in a vessel with aneurysm. The
pathlines are visualized using arrow glyphs. Image from [175],
© 2016 IEEE, reprinted with permission.

Analyzing biomedical flow fields is a complex task that can ben-
efit greatly from tailored visualization methods [307]. Oeltze-Jafra
et al. [234] identify which types of exploration different approaches
facilitate, such as overview representation, probing, and contextual-
ization. Often, multiple coordinated views of the underlying data
are combined to facilitate different purposes. These may include 3D

renderings of vessel surfaces, integral lines of the internal flow field,
tools for data probing, and also graphs or plots of the data. Using
these multiple-view frameworks, focus-and-context visualizations are
an effective strategy to analyze complex flow data. For example, a
flow lens can be used to probe a user-selected focus region, while
spatial context is provided by the vessel wall model [96, 299]. Most
approaches focus on exploring flow in a single vascular model, for
instance, in aneurysms [213, 215, 216, 233] and the aorta [4, 31, 83,
212].

3.3.1 Overview

Generally, users first require an overview of the properties across the
spatio-temporal domain. These can refer to the hemodynamics, wall-
related attributes, or both [215]. A useful overview depiction guides
towards points of interest. Wall-related parameters can be shown using
colormaps, textures, and opacity [10]. The visualization of 3D flow
fields generally relies on either integral curves [52], arrow glyphs [40],
or particles [322]. Integral curves track the flow over a certain distance,
starting at a defined point in the field. Integration techniques are used
to follow the velocity vector field, resulting in paths, which can be
shown as lines. Arrow glyphs are simple glyphs, which primarily
encode direction and need to be seeded at defined points of the flow
field. Arrow glyphs may also be used to trace along integral curves,
such as pathlines. An example is shown in Figure 5. Particles, similar
to integral curves, track the flow field from a starting position and
display the fluid dynamics through animation.

More advanced approaches take these ideas further and perform,
e.g., clustering of flow curves [216, 233, 303]. An example of stream-
line clustering is shown in Figure 6. Similarly, the simulation space
can be partitioned using glyphs scattered across the domain [169].
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Figure 6: Streamlines (left) and streamline clusters with nine representa-
tives (right) visualizing flow in an aneurysm. Image from [233],
© 2014 IEEE, reprinted with permission.

Information on vessel walls can be combined with internal flow field
data through dynamic cutaway views, which show both surface and
flow-related parameters [175]. This effect can be seen in Figure 5.
Straightened representations, for instance of the aorta [4], result in
simplified depictions that allow at-a-glance assessments [157, 233].
Such reduced depictions of the domain may also be used in combina-
tion with statistical data, resulting in 2.5D visualizations that register
abstract and spatial data [215]. Tree-like structures like vasculature can
be transferred to graphs or maps that display the underlying connec-
tivity [14, 30, 189]. In general, dimensional reduction techniques have
shown great effect when creating overview visualizations in the medi-
cal domain [343, 163]. In Chapter 4 the wide range of techniques that
create map-like depictions from vascular structures will be classified
as vessel maps.

3.3.2 Temporal analysis

Blood flow is intrinsically time-dependent. This aspect of the data
often needs to be shown, e.g., to allow investigation of stability or
to assess the flow behavior over the cardiac cycle [218]. The general
goal is to display the temporal evolution of the data and to highlight
important spatio-temporal features. Typically, consecutive time steps
of a simulation are shown in a juxtaposition [19, 86, 320]. However, the
interpretation of such depictions can be time-intensive and exhausting.
Therefore, advanced approaches facilitate animation or integrated
displays of multiple time steps. For example, integral lines can be
highlighted [304] or animated [174] according to the point in time.
Abstract representations may also help. For instance, a circular plot
was proposed to show the spatio-temporal flow behavior of vortices
using the angle-to-clock analogy [158].
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3.3.3 Probing

After familiarizing themselves with the domain, users often need to
further explore specific regions of interest and quantify values. For this
purpose, many visualization tools offer the ability to probe flow fields
at specified locations, resulting in the output of numerical values or
more detailed views. Common approaches are cut planes, which show
2D cross-sections of the 3D domain [19]. Also, integral curves are often
dynamically seeded at such user-defined planes [315]. More advanced
ideas include flexible probing geometries that can be arbitrarily placed
or dragged through the 3D object. Such slice widgets can, for instance,
show the contour of walls at the cross-section of vessels [105, 206].
Similarly, the use of a flow lens was proposed to separate the domain
into a focus (inside) and context region (outside) [96].

3.3.4 Filtering

Exploration can be simplified if physically meaningful patterns are
automatically extracted. Hiding uninteresting parts of the data, the
visualization is then restricted to such features or highlights them.
This is related to the concept of overview followed by probing. The
key difference is the automatic filtering of the domain, which can
be based on known importance measures for specific application
scenarios. For instance, vortices are often the relevant parts of a flow
field. They can be extracted and shown as isosurfaces [42, 43]. Some
works have also proposed the automatic classification of vortices
based on pattern matching [244]. Further examples include view-
dependent filtering, such as automatic opacity modulation [117] and
line-density control [146]. If features are known, integral curves and
surfaces can also be seeded accordingly, achieving a more focused
flow visualization with less distracting lines [36, 165].

3.3.5 Contextualization

Context rendering of the anatomy surrounding a focused structure,
like a vascular tree, can support spatial orientation and correlation of
flow and morphology [234]. The objective of the underlying task is
to understand the initiation and progression of a possible pathology.
A typical approach to display context information is to use semi-
transparent surfaces, e.g., of the near vasculature [3, 93]. For example,
cerebral aneurysms can be embedded within the arterial system [125].
Advanced visualization methods are often specific regarding either
general structures (far context) or directly connected tissue (near
context) [234].

Far context might refer to bones, vessels, or tissue that could help
to understand the location and orientation of the focus structure [128,
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Figure 7: Slice-based representations of the scalar fields of two data sets di-
rectly on one component: surface mesh (top), volume (middle), and
path lines (bottom). The pressure and velocity values are compared
before and after the surgical treatment of laryngeal cancer. Image
from [351], under Creative Commons license [70].

129]. This type of information can be found directly in the medical
volume images and can be filtered before display, to avoid clutter and
occlusion [150, 228]. It can also be displayed indirectly using volume
rendering with pre-defined transfer functions [128, 129]. Sophisticated
transfer functions take the gradient of the volume into account, in addi-
tion to the intensity values [128, 129]. This allows visual differentiation
between vessels, bones, and other types of structure.

Near context is often associated with vessel walls, a display of which
is useful to provide context for the internal flow field [97]. Methods
that proved successful to display vessel walls with this aim are front
face removal, view angle-dependent transparency, local shadows, and
distance-dependent desaturation [97]. Crossing into the area of illus-
trative visualization, other approaches rely on contour rendering [138,
304], contour enhanced rendering of shaded surfaces [127], and sil-
houette rendering with half-toning [31, 32].

3.3.6 Comparison

If multiple instances of data need to be compared, e.g., to contrast
treatment approaches, to study differences across patients or cohorts,
or to validate a simulation, techniques for explicit comparison are
required. Such methods target to highlight differences in data sets
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and allow exploration of these disparities at various levels of detail.
In CFD research, again, juxtapositions are usually used to accomplish
this task [3, 94, 173]. Dedicated visualizations, on the other hand,
utilize integrated comparative views. Such displays can be based on
glyphs [216] or flattening techniques [110]. Another example is the
work by van Pelt et al. [305], who allow the concurrent investigation
of an untreated aneurysm’s hemodynamics and up to four virtual
treatment approaches. This is made possible by limiting the compari-
son to selected important parameters. Recently, Meuschke et al. [351]
investigated different methods for the integrated comparison of two
data sets with internal flow fields. An example of the approach is
shown in Figure 7.

3.3.7 Robustness Evaluation

Relying on CFD to derive hemodynamics requires evaluation and
validation of the computed data. This is especially important if the
objective is clinical use. Multiple studies have found significant correla-
tions between data measured in-vivo and computed through CFD [11,
51, 132], concluding that fluid simulations might be a non-invasive
alternative to current methods [109]. However, it has also been demon-
strated that uncertainties persist in the prediction of flow patterns [274].
These can arise from image artifacts, incorrect segmentation, and over-
simplified boundary conditions. Also, a multitude of solving proce-
dures exists, which can produce varying results. For this reason, visu-
alizations have been developed that encode uncertainty directly [29,
35, 160].
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V E S S E L M A P S

Maps of the cardiovascular system have existed for a long time for ed-
ucation and reference purposes. Their function is to simplify complex
3D vascular structures in 2D abstractions to allow efficient identifica-
tion of principal vessels and branching points and ultimately foster an
understanding of blood flow supply areas. Take, for instance, Weber’s
schemata of the human pathways, a collection of abstract depictions of
the circulatory and nervous system designed in the 1970s for medical
education [312]. Figure 8 shows the human arterial system, including
all major arteries, their topological connections, and supply areas on a
single page. Notably, a high level of abstraction is employed to reduce
the visual complexity. The arteries are flattened to a 2D plane and
straightened links are used to increase legibility and achieve a very
high information density. Line thickness is utilized to encode the size
of different arteries and make important pathways more prominent.
The anatomical context is provided by outlines of the head and respec-
tive organs. Due to these abstractions, the resulting illustration bears
similarity to a complex street map.

The advance of imaging techniques that can non-invasively capture
patient-specific vasculature has spawned the creation of numerous
techniques for map-like visualization of cardiovascular structures. The
objectives of these vessel maps follow a similar principle as the illustra-
tion discussed above: they provide a single uncluttered overview of
anatomical features that can be interpreted at a glance. These views
can be used to detect and evaluate features by abstracting information
and presenting it in a comprehensible layout. Occlusion-free maps
of vascular structures can guide medical practitioners to efficiently
understand a patient’s state, assess possible vessel pathologies, and
navigate complex vessel trees. As opposed to other rendering tech-
niques, such as direct volume rendering, map-like depictions generally
require more preprocessing of the underlying data but yield repre-
sentations that drastically reduce the required user interactions and
already filter key features. If the map creation is standardized, it can
further enable comparisons in cohort studies and help quantify the
effects of treatments, ultimately leading to better and increasingly
individualized treatments. Due to the prevalence of cardiovascular
disease [99], techniques that capture clinically relevant features from
angiographic imaging in clear and expressive map-like depictions
are of fundamental importance. Creating a vessel map, however, is a
twofold challenge. First, in the medical application domain, a broad
spectrum of requirements exists that depends on specific tasks in di-

39
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Figure 8: Map-like illustration of the human arterial system from [312].
© Springer-Verlag Berlin Heidelberg 1978.

agnosis, treatment planning, or research. There is no single depiction
of a patient’s cardiovascular system that can cover all possible applica-
tions. Second, numerous data types can be visualized in a vessel map,
necessitating different approaches for creating map layouts, trans-
ferring the geometry of the data to that layout, and visualizing the
underlying attributes (cf. Figure 9). To make the challenge of creating
vessel maps more approachable, this chapter reviews techniques to
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compute patient-specific vessel maps that emerged at the cross-section
of visualization, computerized medical imaging, and radiology.

Despite the relevance of the topic and the extensive amount of
map-like depictions proposed to visualize cardiovascular structures,
no taxonomy or classification of vessel maps has been proposed yet.
Most existing surveys on vessel segmentation and visualization do not
cover map-like depictions of vessels but focus on 3D techniques [39,
183, 251]. The recent state-of-the-art report on map-like visualization
by Hogräfer et al. [130] discusses abstract map creation in different
visualization contexts, however, it does not cover medical data or appli-
cations. Only in their survey on flattening-based medical visualization
techniques, Kreiser et al. [163] review a subset of the methods pro-
posed to create 2D overviews of vascular structures under the umbrella
of “circulatory system flattenings”. However, the selected literature
is incomplete, as the focus lies on mesh parameterization, missing
other techniques for the generation of map-like depictions. Also, no
further differentiation of methods is provided. In the following, we
will show that a diverse assortment of such methods exists, which are
based on heterogeneous data spaces. For instance, the curved planar
reformation of an image volume is an entirely different approach than
the mesh parameterization of a vessel surface or the radial graph em-
bedding of a centerline. Yet, all techniques intend to facilitate similar
user tasks centered around overview, exploration, navigation, and/or
comparison. This chapter aims to fill this gap in the literature and
provide a consistent classification and complete overview of vessel
map techniques that have been proposed. Furthermore, we connect the
techniques to the domain-specific tasks, from which we ultimately de-
rive suggestions regarding the usefulness and applicability of various
vessel map approaches.

Vessel maps are also different from map-like depictions of other
anatomical structures. They usually need to transfer geometry from
the R3 to the R2 space, while simultaneously creating a readable
network layout. The core challenge lies in creating an optimal lay-
out, mapping the data geometry into the layout, and then encoding
the data attributes in the resulting map-like visualization. For each
technique, we further filtered relevant attributes, including their algo-
rithmic dependencies (e.g., if a centerline or view direction is required),
which type of graphs the technique can handle, whether it is general-
izable to different vascular structures and if properties like the vessel
length are preserved. In summary, this chapter has the following core
contributions:

• A review of domain requirements for vessel maps.

• A classification of the literature on vessel maps according to their
mapping technique.
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• Recommendations for the creation of vessel maps, depending
on user task and data source for the relevant cardiovascular
structure.

Selection Criteria. The literature included in this chapter comes from
a range of different journals and venues, covering interdisciplinary
contributions to the topic. In all selected cases, a map-like visualization
of some part of the cardiovascular system is employed to address a
medical domain task. The vessel maps are created from patient-specific
data and are designed to facilitate diagnostic, treatment, or research
purposes. Primarily, the search engines from Google Scholar1, the IEEE
Xplore Digital Library2, the ACM Digital Library3, the Vispubdata
data set4 [134], and the Eurographics Digital Library5 were used. We
searched for keywords that are a combination of (1) vessel, vascu-
lar, or cardiovascular with (2) map, planar visualization, unfolding,
untangling, straightening, projection, flattening, parameterization, or
reformation.
Outline. First, an overview of the medical requirements for vessel
maps is provided, followed by a review of the data spaces from
which vessel maps are created. Then, we introduce the taxonomy
of vessel maps, structuring different approaches and outlining the
design considerations that must be made. Next, the existing literature
is categorized by the taxonomy. We use the geometry mapping type
(cf. Figure 9) for the top-level categorization of techniques because
we aim to provide an overview for readers who know which data
they will work with and are looking for related techniques. Finally,
we conclude with recommendations on how to create a vessel map,
which are derived from the domain requirements, the taxonomy, and
the challenges solved by existing techniques.

4.1 vessel map requirements

As described in Chapter 2, an expansive range of symptoms, causes,
risk factors, and underlying mechanisms for CVD exist. This leads to
the fact that diagnostics, treatment, prevention, and research are often
handled by interdisciplinary teams. Within the medical domain, ex-
perts from cardiology, hematology, pulmonology, neurology, radiology,
vascular surgery, cardiac surgery, and neurosurgery need to cooperate
to combat the complexity of CVD. By simplifying the visual output of
vascular imaging and increasing recognizability and comparability,
vessel maps can aid the cross-communication of different experts. A
useful vessel map needs to distill the important details relevant to the

1 https://scholar.google.com/

2 https://ieeexplore.ieee.org/

3 https://dl.acm.org/

4 https://vispubdata.org/

5 https://diglib.eg.org/

https://scholar.google.com/
https://ieeexplore.ieee.org/
https://dl.acm.org/
https://vispubdata.org/
https://diglib.eg.org/
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Figure 9: We describe the creation of a vessel map as a three-step process: the
layout of the map must be derived, the geometry or spatiality of
the data must be mapped, and the data attributes must be mapped.
We differentiate between image volume maps, flow volume maps,
vessel wall maps, and vessel network maps depending on the
primary data structure the map-like visualization is based on.

clinical task and present them effectively. Therefore, it is crucial to
determine which features can be targeted and which tasks exist.

CVDs that include visible morphological changes to cardiovascular
structures, i.e., vascular malformations that are discernible in imaging
data, can be addressed by the use of a vessel map. Three major types
of vascular malformation exist, stenosis, aneurysm, and dissection. A
stenosis is a localized vessel narrowing, often due to atherosclerotic
plaque that builds up on vessel walls. It can cause a stroke if the
blood supply to areas of the brain is restricted and heart disease if
coronary arteries are affected. An aneurysm is a localized bulging of a
vessel, often due to a weak spot on the vessel wall. Aneurysms come
in various shapes and sizes but generally increase in size over time.
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They may rupture, causing uncontrolled internal bleeding. A ruptured
aneurysm in the brain can also cause a stroke. A dissection is a tear
in the wall of a blood vessel, leading to a cavity or pouch of blood
that forms within the wall. It may also cause a stroke or heart attack
if the blood supply to the brain or heart is reduced as a result of the
dissection.

In diagnostics, treatment planning, and treatment evaluation of CVD,
multiple tasks exist that clinicians need to perform when analyzing
a (potential) vascular malformation. First, patient-specific anatomy
needs to be assessed. This visual search task requires clinicians to local-
ize pathologies by spotting irregularities. Concrete examples include
the detection of stenoses, aneurysms, or missing arteries. If any candi-
dates are found, they need to be contextualized to judge their severity,
e.g., their spatial location must be known. Next, the distribution of a
measured or simulated attribute on the patient’s anatomy may need
to be assessed. For example, the distribution of atherosclerotic plaque
at a stenosis or the WSS on an aneurysm wall can be of interest. At
this point, the integration of multiple features is often required, for
instance, by combining the morphology, hemodynamics, and vascular
connectivity in the vicinity of the targeted segment. For standardized
treatments, many medical guidelines require the classification of cases
by measuring predetermined properties, e.g., width, length, volume,
shape, or blood flow velocity. An example is the classification of the
stenosis degree by measuring its diameter inside versus behind the
stenosis [88], see also Section 2.2. Lastly, if surgical intervention is
deemed necessary, the accessibility of the target region and the fit-
ness of different approaches need to be determined. For instance, the
topology of a vascular tree is analyzed before a minimally invasive
procedure, during which a surgical instrument needs to be inserted
and traverse the inside of the vasculature.

Concurrent with tasks in medical practice, many objectives in CVD

research exist that can also benefit from vessel maps. For one, medical
researchers are trying to assess correlations of different attributes to
determine new and more accurate markers for classifying CVD. Often,
recurring patterns are sought in multiple data sets, i.e., cohort studies,
to generate new hypotheses. In later-stage clinical trials, usually, the
effects of a particular treatment are studied to test these hypotheses
and create a predictor for future cases. Ultimately, the findings of
many studies are then condensed into clinical guidelines, for instance,
by incorporating a new measurable quantity into the decision-making
process for a particular disease treatment. In all of these tasks, visual-
izations can be effective tools. Map-like visualizations in particular can
help to find correlations by providing better overviews that require less
interaction. Standardized vessel maps can aid in comparative tasks,
make patterns visually discernible, and provide a way to quantify
attributes.
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Figure 10: The typical pipeline used to derive the data structures from which
vessel maps can be created. Other possibilities also exist, for exam-
ple, some modalities allow measuring flow instead of a simulation.

From the tasks in medical practice and research, abstract visualiza-
tion tasks can be derived that map-like depictions can facilitate. We
differentiate five categories of abstract tasks:

overview : Identifying features, detecting outliers, exploring attribute
distributions, and browsing the topology.

contextualization : Analyzing the spatial and/or topological
context of features.

quantification : Measuring attributes on the local coordinate space
of the map and classifying features.

navigation : Using the map to navigate other representations of the
domain.

comparison : Comparing features, distributions, and/or the topol-
ogy of multiple domain instances.

4.2 data structures

Vessel maps can be created from divergent data structures, yet they
are all based on similar imaging techniques. How these structures are
typically derived is shown in Figure 10. A complete description of the
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processing pipeline can be found in Section 3.1. The underlying data
can be encoded in four spatial structures:
Voxel Volume. The cells of a voxel volume are a regular 3D grid. This
can be the original or filtered medical volume image. Data is typically
expressed as intensity, i.e., scalar values, which are specific to the
imaging modality used. The volume not only covers the cardiovas-
cular structure but also the surrounding context. Usually, there is no
temporal resolution, although exceptions exist. Often, the location of a
target structure is automatically or semi-automatically marked during
preprocessing.
Flow Volume. The cells of a flow volume typically are an irregular
3D grid that describes the blood flow inside a vessel. It can originate
from flow simulation or PC-MRI and is normally confined to the vessel
lumen (the volume encased by the inner wall of a vessel, where blood
is flowing). A flow volume is often temporally resolved. Common
attributes stored in the volume are flow velocity (vector), pressure
(scalar), and derivations of the flow field.
Surface. Data can be located on vertices or polygons of a surface
geometry. These are usually one or multiple surfaces embedded in
R3, like the inner and outer walls of a vessel. Wall surfaces can be
temporally resolved, this is typically the case if they are combined with
a flow volume. Common attributes stored on vessel wall geometry
include wall thickness (scalar), WSS (scalar), wall normal stress (scalar),
wall displacement (vector), and the occurrence or thickness of plaque
(scalar).
Graph. Lastly, data can be located on the vertices of a centerline graph,
which is also embedded in R3. It is usually not temporally resolved
and encodes properties like the vessel radius (scalar), cross-section
area (scalar), or branch label.

4.3 taxonomy

We introduce the notion of vessel maps as a collective for map-like
visualizations of the cardiovascular system. Vessel maps have been
proposed for heterogeneous data structures, like volumes, surfaces, or
trees, and can be based on a divergent range of algorithmic approaches,
for example, untangling, straightening, unfolding, flattening, or refor-
mation. However, they share a common purpose in the simplification
of complex cardiovascular structures for visual interpretation, they
map attribute distributions and/or connectivity information, and they
are designed to aid one or multiple of the tasks described in Section 4.1.
We use the term map-like to allude to the properties of the described
visualizations, which are similar to maps in the traditional sense. First,
they are 2D depictions of a spatial domain and aim to preserve the
locality and the relative positioning of features. Second, they abstract
the attributes relevant to the observer to increase legibility. Third, they
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conform to the uses of maps, which include getting an overview of a
region, navigating a domain, exploring distributions and connections,
and comparing different areas. Following the definition of Hogräfer et
al. [130], map-like visualizations exhibit traits of both (cartographic)
maps and charts/plots. In this sense, vessel maps are schematizations
of cardiovascular structures instead of geospatial data.

Vessel maps are also an interesting case to study from a pure vi-
sualization point of view. Their spectrum ranges from visualizations
of networks and trees to the depiction of surface fields. Interestingly,
many ideas proposed for vessel maps do not fall completely into either
category but are situated somewhere in between. This range requires
otherwise distinct techniques to be merged, like network and surface
visualization. For the creation of a vessel map, three aspects must be
considered:

1. What is the layout of the resulting map?

2. How is the geometric component of the data mapped to
this layout?

3. How is the attribute component of the data mapped to
this layout?

These steps are also shown in Figure 9. Steps one and two are
sometimes solved interdependently [55, 59, 334], sometimes indepen-
dently [30, 188, 205, 319]. Depending on the user task, the branching
topology, object geometry, or data attributes can be of interest. It
should be kept in mind, however, that preserving a specific property
in the mapping process might require sacrificing another.

4.3.1 Layout Generation

Commonly, a vessel map needs to create a flat layout from an input
graph in R3. Most techniques use constraints to build the layout. Typ-
ical constraints include preventing self-intersections and preserving
original properties, such as angles, overall shape, or the relative length
of segments. As illustrated in Figure 9, the layout directly depends on
the input graph of the vascular structure. Also, it indirectly depends
on the user task, as it needs to visualize the appropriate region.

In the simplest situation, the region is a single segment, in which
case no considerations regarding branching must be made. This is easy
to solve, as no actual graph layout must be determined. In practice,
a map of a specific vascular segment or surface patch is created, like
an individual aneurysm [110, 215]. If the region is a tree of depth 1,
singular branch points must be considered. We list this as an individual
case, as sometimes a specific vessel segment is focused but branches
exist in the evaluated region [142, 201, 264]. Often, solving the layout
for a tree of depth 1 does not require sophisticated algorithms. An
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Figure 11: Straightening of a mouse aorta centerline tree with depth 1 for
curved planar reformation (CPR). (1) The projected centerline,
(2) the straightened centerline, (3) the straightened centerline with
90◦ bifurcation angles, and (4) the straightened centerline with
normalized segments. On the right, a polygonal mesh derived
from the centerline is shown. Image from [264], © 2009 IEEE,
reprinted with permission.

example of a straightening for a depth 1 tree is shown in Figure 11.
If the region is a tree of depth n, a variable number of successive
sub-branches must be considered. Usually, a generalized solution is
used that can be applied to different trees. For the most part, on
the macroscopic level, the vascular system is a tree and many layout
approaches make use of this property. If the region is a cyclical graph,
sub-branches and loops must be considered, which is a harder problem
to solve. This is the case, for instance, for the circle of Willis, a central
arterial structure in the cranium.

Depending on which properties the final visualization should have,
different 2D layouts are suitable. In simple cases, projection has been
used to create a 2D from a 3D tree structure [33, 143, 227, 298]. The
obvious flaws of this approach are possible self-intersections that may
lead to visual ambiguity and/or occlusion of data. Still, simple pro-
jection may be viable if, e.g., only a single segment is mapped. Many
techniques attempt to create a readable layout that follows certain
rules. A straightening lays out the branches of a tree as straight lines,
which can be connected [342] or disconnected [104]. The advantage
of straightening is that the individual segments can be easily visually
followed. Often, the arc length of segments is preserved. An untan-
gling removes self-intersections in the layout, while simultaneously
preserving attributes like the overall curve or relative positioning of
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segments [205]. Untangled views are closer to the original layout, im-
proving familiarity, but can also create more complex depictions than
other techniques. Some techniques also use a fully pre-determined
layout. The input graph is then fitted to align with this blueprint [239].
With this type of procedure, high comparability between multiple
vessel maps can be achieved and it is often used for standardization
purposes. However, the original proportions of the input graph will
be lost.

4.3.2 Geometry Mapping

The layout determines where the data should appear in the visual-
ization. How the data is mapped from R3 to R2 is determined by
the geometry mapping, see Figure 9. Sometimes, layout and geometry
mapping are solved as the same step in an algorithm [218] but they
can also be solved independently [205]. Common constraints used
for geometry mapping techniques are the prevention of overlaps and
the minimization of the area or angle distortions, i.e., the original
proportions are attempted to be preserved.

The geometry mapping directly depends on the data structure
of the geometry – not on what the data is but where it is. The data
structure can be a regular 3D grid, which typically is the voxel volume
of an angiographic imaging modality. Hence, we group the vessel
map visualizations that directly build on this type of data under the
term image volume maps. These can either be created by cutting the
volume with a surface and reformatting the cut in a planar layout or by
showing voxel values that were aggregated in the vicinity of the vessel.
The geometry can also be an irregular grid, which is normally the
case for flow volumes, where each cell holds properties of a field that
describes the blood flow. Therefore, we call the resulting visualizations
flow volume maps. Flow volume maps can be created by reforming the
data space, e.g., by straightening the flow volume, or by deriving a
graph layout from the flow features. Often, data is situated not in
a volume but on a surface embedded in R3. Focusing the analysis
on wall properties makes sense, as CVD generally develops on or
inside the walls of the cardiovascular system. If the data shown in
the resulting map-like visualization is associated with the vertices
or faces of a wall geometry, we call it a vessel wall map. Such maps
were created with projection techniques or surface parameterizations.
Lastly, data can be located on the vertices of a centerline graph. If
the data is encoded exclusively on this type of graph, the layout step
already defines the geometry mapping. As the resulting vessel maps
focus on the vascular tree or network, we call them vessel network maps.
They can either keep some geometric properties by straightening or
untangling the graph structure or be abstract representations that only
convey the topology.
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4.3.3 Attribute Mapping

In the final step, a visual encoding for the data attributes needs to
be chosen. The attribute mapping is notably distinct from the layout
and geometry mapping, as it only defines how the data is shown,
not where. We encourage thinking of this step as an individual part
of a vessel map visualization. Some data structures have a strong
association with certain attribute mappings, e.g., visualizations of
image volumes tend to use a grayscale colormap. Defaulting to such a
mapping can have benefits regarding recognizability but might also
mean that other possibilities are overlooked and remain untested.

The suitability of an attribute mapping must be determined by the
user task that it should facilitate. For instance, if the user attempts to
find certain features in an attribute range, they should be highlighted
by the chosen encoding. For vessel maps, five types of attribute map-
pings have proven to be useful:

1. Size encodings, which are often used as a way to show the
thickness of a vessel by varying the width of rendered segments.
The width can be quickly visually read and is, naturally, an
intuitive representation of vascular morphology.

2. Windowing encodings that map intensity values to gray val-
ues while providing the necessary interaction to explore the
entire data range (usually 12 bits). Interactions include changing
brightness and contrast. These encodings can be considered a
special case of colormaps and are predominantly applied to
image volume maps.

3. Color encodings are widely utilized to make full use of the
properties of colormaps. They are particularly beneficial to show
scalar field distributions.

4. Some approaches exist that use illustrative encodings [213, 215].
Techniques like hatching can be used to identify certain regions.

5. If multiple attributes must be visualized, glyphs can be used
as an additional way to encode information [112, 219]. Symbols
that encode attributes through their shape, size, and color are
common in traditional maps, as they can add explorable layers
of information to a spatial domain without the need for direct
interaction. The advantages of glyphs can just as well be utilized
for vessel maps.

Attribute mappings can also be combined to show multiple at-
tributes at once. For example, a size encoding can easily be used
in combination with a colormap. Combining attribute mappings to
exploit multiple visual channels makes map-like depictions a pow-
erful tool for communicating information efficiently and exploring
correlations.
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4.3.4 Classification

In the following, a classification of the literature on vessel maps is
provided. We discuss the application domains, which structures are
visualized, and why the respective data space is chosen. The primary
questions we answer follow the taxonomy:

• What is the input graph? (segment, tree of depth 1 or n, cyclical
graph)

• What is the layout of the resulting map? (projection, straighten-
ing, untangling, fitting)

• How is the geometric component mapped? (cut surface, voxel
aggregation, flow straightening, flow graph, surface projection,
mesh parameterization, network straightening/untangling, topol-
ogy map)

• How is the attribute component mapped? Which encodings are
used? (size, windowing, color, illustrative encodings, glyphs)

If applicable, the following secondary questions are answered:

• Which tasks are facilitated? (overview/exploration, contextual-
ization, quantification, navigation, comparison)

• Which dependencies exist in addition to the data structure?
(centerline, view direction, landmarks, manual cut)

• Is the approach generalizable to different structures? If yes, has
this been demonstrated?

• Which properties are preserved? (arc length, diameter, surface
area, angles)

4.4 image volume maps

This section covers all techniques that work on the voxel level. Mostly,
these are derivations of curved planar reformation (CPR), i.e., tech-
niques that use centerlines to align non-planar cuts and then perform
image reformation to display selected vascular structures in volume
images within a single 2D depiction. The results are map-like visual-
izations of the vasculature, which are commonly used to identify and
assess calcified plaque and potential vessel stenosis. Typical challenges
are diameter preservation, how to incorporate vessel wall features, and
how to preserve or display the surrounding context. We differentiate
between techniques that display volume cuts [1, 13, 104, 126, 142–145,
164, 177, 201, 263, 272, 290] and techniques that aggregate voxel values
to display certain features [45, 77, 221, 222, 264].
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Achenbach et al. [1] generated CPRs to study stenotic regions of
coronary arteries in electron beam computed tomography (CT). They
manually defined the cross-sections of each coronary artery in axial
slices and use a reference plane (axial, sagittal, or possibly coronal)
to create the reformations. The results show an image for each vessel
branch in stretched form, allowing distance measurements. Context
visualizations outside the vessel lumen were not presented. This ap-
proach can be applied to any tubular structure, since only a curve
reflecting the course of the vessel is needed, together with a recon-
struction or reference plane.

Kanitsar et al. [143] describe a workflow to examine peripheral arter-
ies for stenosis or occlusion. To provide an unobstructed view of the
blood vessels in CTA data, the bones must be segmented without holes
and masked out. To this end, they use a threshold-based procedure
that consists of two steps, the identification of outer cortical bone
and the subsequent extension to the softer marrow. In the next step,
vessels are tracked between user-defined start and endpoints. The
shortest path between the respective two points is calculated using a
cost function. Eventually, the obtained vessel centerlines are centered
in perpendicular cross-sections using a ray-casting approach. After
that, CPRs can be generated and the vessels examined. This workflow
is generalizable to arbitrary tubular structures, but some thresholds
have to be adjusted accordingly.

Medial axis reformation was introduced by He et al. [126] to visual-
ize the interior of blood vessels. Their approach extracts the medial
axis of each vessel branch using a centroid-based skeletonization ap-
proach and then improves the centering based on their medialness.
These centerlines are then spread segment-wise in image space. The di-
rection of the spread can be controlled by the user. At branching points,
the image is split and the process continues for each sub-image. Since
each vessel branch is considered a cylinder, it can be projected into
image space without any deformation, allowing the user to measure
the length and diameter of the branch. This is similar to a stretched
CPR as described by Kanitsar et al. [142]. The technique was applied
to coronary, carotid, and iliac arteries imaged by electron beam CT.

Kanitsar et al. [142, 145] discuss the properties of projected, stretched,
and straightened CPR. The projected CPR offers good spatial orienta-
tion, while the straightened CPR does not. The stretched CPR still offers
good spatial orientation, because the centerline is stretched only in
local areas. Stretching and straightening retain the arc length of the
centerline, while straightening also preserves the vessel diameter hor-
izontally. The authors also introduce a rotation of the ruling vector,
which is referred to as the vector of interest in this work. This allows
the entire vessel lumen to be inspected from different viewing angles.
However, the axis of rotation is fixed, which causes problems when
the vessel path is nearly perpendicular to it. To visualize the interior
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Figure 12: Untangled CPR of a peripheral CTA data set showing the entire
vessel tree in a single image. Image from [144], © 2003 IEEE,
reprinted with permission.

of multiple vessels simultaneously in a single image, the multipath
CPR method is presented. To improve accuracy when inspecting small
vessels, a thick CPR can be rendered. Here, instead of a thin surface,
a small slab is resampled and rendered using averaging, maximum
intensity projection (MIP), or minimum intensity projection. The pre-
sented techniques are demonstrated on a phantom data set and mainly
discussed on peripheral CTA data sets, except for a bronchial example.
All presented methods are generalizable to any tubular structure but
require a tree as input. The generated 2D layout of peripheral vessels
is created by partitioning the image according to the projected branch
points.

Although (rotated) CPRs require only a few images to examine the
entire vessel lumen, they can still add up to a considerable amount. To
reduce the number of images, Kanitsar et al. [144, 145] proposed two
approaches, namely a helical and an untangled CPR. In the former, a
sampling helix is used instead of a ruling vector. This allows the entire
lumen to be acquired at once and eliminates the need for rotation.
However, only a single vessel can be displayed straightened using
this method. The other approach, the untangled CPR (see Figure 12),
is composed of stretched CPRs of each tree branch without overlaps.
For each vessel branch, even if the ruling vector is rotated, a so-
called vessel hull (circle sector) is constructed from bottom to top,
i.e., starting from the leaves of the tree, in the image space. Then
these envelopes are arranged without overlap and the final image
is partitioned similarly to the multipath CPR. Results are presented
using peripheral CTA data sets, and both methods can be generalized
to tree-like tubular structures, where the spiral CPR can visualize only
one branch at a time.

To improve visual discontinuities when depicting multiple vascular
branches in a single image using ruled surfaces as in medial axis
reformation or CPR and to represent cut surfaces of irregular structures
such as the jaw or human pelvis, Saroul et al. [272] used free-form
surfaces. First, they extend CPR by defining the orientation of the
ruling vector based on the principal direction of the analyzed 3D

centerline. The ruled surface is then flattened into image space by
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resampling the rectangular facets spanned by the vector between two
consecutive centerline points and the ruling vector. Flattening this
ruled surface produces no angular or metric distortions. They then
propose free-form Coons surfaces [67] for analysis of the human aortic
arch, including its branches, and other structures such as the jaw.
By defining curves along the centerline of a vessel that represent the
maximum diameter, the resulting surface interpolates these curves and
displays the variation in aortic diameter in a single image. Since Coons
surfaces cannot be flattened without distortion, the user can choose a
direction along which distances are preserved, as demonstrated on the
aortic arch and its branches. The authors also show all teeth of a jaw
that was flattened with Coon surfaces in a single image. Specifying
free-form surfaces by interpolating user-defined boundary curves does
not require centerlines of vascular structures.

To this time, CPR has only represented a cut surface along a curve
or tubular structure, without considering alternative visual represen-
tations outside the vessel lumen. Straka et al. [290] presented several
ways in which CPR (focus) can be combined with direct volume ren-
dering (DVR) or MIP (context). They differ mainly in the transitions
between the focus and context regions and in the way obstructed
vessels are represented, e.g., by occlusion lines. Results are presented
using peripheral CTA data sets, and the layout of the visualization
resembles a multipath CPR. The approach is generalizable to other
focus structures and applies not only to vascular structures but to
importance-driven rendering in general.

Lee and Rasch [177] focused on improving curved sections through
generally-oriented vessel trees by aligning the ruling vectors perpen-
dicular to the vessel centerlines. The projected vessel tree is arranged
from top to bottom with the largest medialness node at the top. The
reason for this decision is that the branch diameter decreases with
increasing depth of the tree and the largest node should be at the top.
Since the projected y-direction corresponds to the parameterized arc
length, the approach resembles a stretched CPR. Results are presented
for coronary and peripheral arterial trees.

Roos et al. [263] evaluated multipath CPR in a clinical prospective
study involving ten patients with peripheral arterial disease. The
result showed that multipath CPR produces artifacts when vessels
are coincident or nearly collinear with the ruling vector and when
multiple vessels positioned behind each other are examined as they
overlap in image space. Other than that, it is a viable solution for
examining peripheral arteries in a single image but does not replace
either single-path CPR or MIP.

Since a single CPR is usually insufficient to assess the entire vessel
lumen, several such sections must be examined from different angles
(about 20–30◦). Cai [45] attempted to reduce the number of images
to be inspected by enclosing the entire 3D vessel lumen with a so-
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called biconvex slab rendered with MIP or X-ray. This approach can be
viewed as an inverse VesselGlyph [290] with enhanced contextual rep-
resentation of the lumen and a thin section through the surrounding
anatomy. In this way, the entire lumen of a vessel is represented in a
single image. However, a MIP of the biconvex slab shows a stenosis or
complete occlusion in case of concentric calcification, because the rays
are cast along the viewing direction. This is the reason why CPR needs
to be rotated in the first place. Furthermore, this approach presents
only a single-path stretched-like CPR on coronary and carotid arteries
from CTA data sets.

To obtain centerlines of vascular structures, Lv et al. [201] used
active contours or snakes. Since active contours depend strongly on
their initial curve, the authors proposed an improved initial contour
determined by casting rays radially from the center to each point
on the contour and taking the point with the largest slope. Since
this initial contour is close to the true boundary, the snakes quickly
converge to the true contour. The midpoints of the resulting contours
in the chosen slices are then used to create a straightened CPR of
the vessel branch. Results are presented on several individual vessel
branches from a head aneurysm CTA data set.

Multimodal vascular reformation was explored by Ropinski et
al. [264] on positron emission tomography (PET)/CT data of the mouse
aortic arch. The aim was to study the development of atheroscle-
rotic lesions at the morphological, functional, and molecular levels.
The PET and CT data sets were registered using three artificially in-
serted ceramic markers. PET captures inflammatory activity, whereas
CT captures structure. The vessel centerlines were extracted using a
curve skeletonization approach. To compare several different mice
or a single mouse over time, a normalization of the aortic arch with
its outgoing arteries was introduced. For this purpose, a modified
straightened multipath CPR was used. Vessels are flattened outward
from the centers using a ray-casting approach to allow comparative
assessment. Two options are proposed: the first preserves and displays
the diameter of the aorta, while the second flattens the entire aorta
into a rectangle. Since this leads to undesirable distortions, especially
when normalizing the distances of the aortic arch branches between
different individuals, and degradation of spatial orientation, they use
multiple linked views to obtain a spatial overview and a comparable
detailed view.

Mistelbauer et al. [222] proposed centerline reformation, which uses
wavefronts instead of a ruling vector to render a CPR. Their approach
resembles a projected multipath CPR and renders the cut surface
through the vessel lumen of arbitrarily oriented vascular structures.
To ensure proper visibility of multiple overlapping CPRs in image
space, their approach uses a depth buffer and parameterizes the
vessel tree according to the length of its branches. Depending on
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Figure 13: Anatomical layout of a peripheral CTA data set (right in 3D) show-
ing several CFA visualizations arranged from the center to the left
and right. Image from [220], courtesy of Gabriel Mistelbauer.

the viewing direction, the lumen that is closer to the viewer and has
a minimum distance from the current lumen in the buffer, along the
graph (arc length), is chosen. To provide additional depth information,
halos [85] can optionally be added around the lumen visualization
and a volume rendering can be displayed as context. Vessel centerlines
were extracted from CTA data sets using multiscale vesselness. The
results show the vessels of a human head, pulmonary arteries, and
a human abdominal aorta. As demonstrated on a phantom data set
consisting of differently-sized helices, the technique is generalizable
and extensible.

To reduce the number of CPR images when examining a vessel
lumen, Mistelbauer et al. [221] use nonlinear ray-casting along con-
centric circles perpendicular to the centerline of the vessel. Samples
along these circular rays are then combined (or aggregated) into a
single value using the minimum or maximum. By straightening the
centerline of the vessel in the final image, it is divided into left and
right sides. Each side can then show either the same aggregation
method or two different methods. A combination of MIP and mini-
mum intensity projection allows the radiologist to view either calcified
or soft plaque in CTA data. Results are presented for stenoses of the
abdominal aorta and peripheral arteries. For the latter, an anatomic
layout was proposed because multiple vessels were inspected, see Fig-
ure 13. This technique is generalizable to all tubular structures, but
the anatomic layout of the multiple straightened curvicircular feature
aggregations (CFAs) is case-specific.

At the same time as CFA, Diepenbrock et al. [77] introduced nor-
malized circular projection. They acquired PET/CT data to analyze
the development of atherosclerotic lesions in mouse carotid arteries.
Analogous to CFA, normalized circular projection uses a sampling
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scheme around the centerline of a vessel but starts outside the vessel
wall. Within cross-sections perpendicular to the centerline, rays are
defined and sampled outward from the centerline point. The vessel
wall is estimated in CTA using the maximum gradient along these rays.
Once the wall is found, the PET data are sampled. By inflating the
vessel wall into a cylinder, PET activity outside the vessel is visualized
using normalized circular projection with MIP aggregation and in a
straightened way. In a multiple linked view application, users can
examine the left and right carotid arteries of mice in a standardized
and normalized manner.

Previously, CPR rotation was mainly constrained by the ruling vector,
with the main challenge to ensure a continuous and smooth section
along the centerline of the vessel and through its surrounding parts.
Curved surface reformation, introduced by Auzinger et al. [13], allows
unrestricted rotation of a vessel tree while continuously examining
the lumen and surrounding parts of multiple vessels with sufficient
visibility. The approach is based on ray-casting, where each ray cuts
small strips generated by extruding the small line segments of the
sampled vessel branching curves perpendicular to their direction and
the viewing direction. A cost function decides which intersection
point to use for the final result, favoring points that are closer to the
viewer and the vessel centerline. The resulting images correspond
to a projected multipath CPR, but with unrestricted rotation. Vessels
of a human head and peripheral vessels, both acquired with CTA,
are shown and also presented with maximum intensity difference
accumulation [38] as context. The technique requires only a graph
consisting of curves (vessel branches) and is therefore generalizable.

Kretschmer et al. [164] propose an improvement to most CPR ap-
proaches. By filtering the depth image of the cut surface immediately
before sampling the data set, small discontinuities are removed. To
ensure that the surface still passes through the vessel lumen, the
projected pixels of the centerline are marked as fixed and are not
considered in the filtering; this could be extended to the entire lumen
if diameter information were available. To preserve large discontinu-
ities caused by distant vessel branches along the vascular tree, but to
smooth vessels that are close to each other, a bilateral filter is used.
The results are demonstrated on a CTA data set.

Gillmann et al. [104] present a visualization for coronary artery anal-
ysis, especially for surgical preparation, intervention, and restoration.
Coronary artery centerlines are obtained from coronary CT data sets.
The layout of their visualization is oriented from left to right and is sim-
ilar to a treemap and the visualization presented by Borkin et al. [30].
The individual branches show a CFA with maximum aggregation at
the top and average aggregation at the bottom. They use constant arc
length sampling along the curved rays or concentric sampling circles.
Calculations or intensity values that are above a user-defined isovalue
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are highlighted in red to draw the user’s attention to that region and
prompt further analysis.

4.5 flow volume maps

Maps of flow volumes are a less explored area that is nonetheless dis-
tinct from other techniques. Blood flow information can be acquired
from PC-MRI, Doppler ultrasonography, or simulated with CFD. The
results are often visualized with 3D techniques like integral lines, par-
ticle animations, volume rendering, or flow profiles of cross-sections.
Some visualization techniques have been proposed to create map-like
depictions of complex flow volumes, which are easier to compare
and can be quickly assessed. One approach is to straighten vascular
structures, including the flow field [4, 22, 278], another is to create a
2D graph visualization of the flow [296, 329]. The challenge here is
not only to straighten the vessel structure but also attributes derived
from the surface area. Information such as scalar fields on the domain
and especially flow data represented as vector information within the
surface domain also needs to be transformed consistently. Therefore,
it is not sufficient to just straighten the surface; 3D flow information
must also be straightened consistently.
Flow volume straightening. Angelelli and Hauser [4] present a straight-
ening approach to simplify the aorta with its simulated blood flow.
Using volumetric data, they first extract the centerline of the aorta
and use it to construct a curvilinear grid, which is then straightened
preserving the length of the centerline. The curved grid can also be
used to reformat the blood flow into the straightened space, giving a
simplified overview of the aorta and blood flow simulation. The blood
flow is then represented with streamlines or path lines using a color
map. Behrendt et al. [22] use a 2.5D representation of the aorta with
its blood flow. As in the approach of Angelelli and Hauser [4], a cen-
terline is needed to transform the vertices of the surface mesh as well
as the points of the pathlines into a straightened space. In addition,
the centerline has six landmarks that are used to further simplify the
straightened aorta. The parts of the centerline between the landmarks
are either stretched or compressed to ensure equal spacing, and the
radius is also normalized such that the simplified aorta becomes a
cylinder, see Figure 14. During this simplification process, length and
radius are intentionally distorted to ensure a consistent model for the
comparison of different data sets. Seifert et al. [278] applied a straight-
ening approach to 2D flouresence reflectance imaging. Using their
standardized layout they aim to detect patterns in the development of
atherosclerosis. To achieve this, multiple boundary points on the aorta
must be defined by the user. Then, the boundary is smoothed and
connected to form a polygonal net. In the next step, the centerline is
straightened with the polygonal net, which also results in straightened
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Figure 14: Normalized map of the aorta with flow, created with the tech-
nique of Behrendt et al. [22]. From top to bottom: 3D rendering
of the domain, straightening, even distribution of segments, radii
normalization, flattening along the circumference.

flouresence reflectance imaging. To ensure comparability, the image is
normalized over the radii of the vessel.
Flow graphs. Another approach to mapping the flow volume while
preserving the perceptual structure of a vessel was proposed by Tao
et al. [296]. The volume of the vessel is divided into blocks, which
are then transformed into 2D points. The formation of the 2D vessel
structure is formulated as a graph layout problem. Both Euclidean
distances and geodesic distances of the volume are integrated to
preserve the perceptual structure and to ensure that there is no self-
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occlusion in the final result. After the 2D map is created, the user
can further explore the underlying blood flow data with heatmaps,
graphs, histograms, and color-coded matrices. Brushing-and-linking
techniques on the map are used for the navigation of the domain.
Recently, Zhang et al. [329] proposed a simplification of flow data
based on a 2D map-like depiction of stream surfaces. Their approach
can be applied to a variety of data, including vascular structures with
flow fields. To achieve a simplified 2D representation of the flow, the
problem is considered as a graph layout optimization based on three
energy terms. These energy terms are used to order the simplified
flow so that parts of the flow are closer together when they are close
in time. This applies to the x- and y-axes and it avoids temporal
flipping, i.e., when the temporal ordering changes in the x-direction.
The simplification yields a 2D overview of stream surfaces, where color
is used to differentiate multiple seeding curves. Additional ellipsoidal
glyphs are used to represent velocity or vorticity. A stacked layout of
the resulting curves facilitates overview and comparison tasks.

4.6 vessel wall maps

As vascular pathologies develop on the vessel walls, numerous tech-
niques focus on creating maps of these walls, on which properties
like thickness, plaque occurrence, normal stress, or shear stress can
be displayed. There are two principal approaches to generating map-
based visualizations of vessel walls: employing mesh parameterizations
or projections. Approaches that rely on mesh parameterizations create
one-to-one maps of surface meshes embedded in 3D. Mesh parameteri-
zations are used for mapping different vascular structures comprising:
specific structures like aneurysm surfaces [110, 213, 215, 217, 218],
stenosis predilection sites [8, 9, 53–59, 331], or heart valves and cavi-
ties [340, 147, 350, 202, 230, 242, 261, 316] but also arbitrary vessel tree
walls [346, 334–337]. For techniques based on surface projections, the
properties are projected onto a parametric structure like a cylinder,
disk, or sphere [33, 168, 227, 232, 282, 298]. The approach is simi-
lar to mesh parameterization, however, the topology is not retained,
which means bijectivity cannot be ensured. The advantage of these
approaches is that they usually can be computed on the fly for local
structures.

All of these techniques result in maps where surface parameters can
be assessed without rotation. Some are additionally used for naviga-
tion in visualization frameworks and some are specifically standard-
ized maps for anatomical correspondence and statistical evaluations in
medical studies. Typical challenges are how to handle branching, how
to preserve properties like the area of features, how to standardize
layouts, and how to cut vascular structures into topological disks.
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Figure 15: Morphology of a cerebral aneurysm. Image from [234], © 2018

The Eurographics Association and John Wiley & Sons Ltd.

4.6.1 Maps of Cerebral Aneurysms

Several works dealt with the generation of map-based visualizations
of cerebral aneurysms. A patient-specific assessment of the rupture
risk is important to decide whether treatment, which is also associated
with risks, is necessary or whether the aneurysm can continue to
be observed. Because the estimation of rupture risk is based solely
on morphological characteristics, such as the size and shape of the
aneurysm, is not reliable, numerous papers are concerned with simu-
lating cerebral blood flow in aneurysms to derive meaningful factors
regarding rupture risk. For visual analysis of the simulation data, 3D

surface models of the aneurysm and adjacent vessels are usually recon-
structed from the clinical image data. An example of a reconstructed
cerebral aneurysm is shown in Figure 15. On these 3D models, various
simulated scalar values, such as WSS, pressure, or wall thickness, are
displayed using standard techniques such as color coding. The goal
is to find wall regions where rupture-prone correlations of the scalar
fields occur, such as regions with a low wall thickness and high WSS.
Due to the time-dependence of the scalar fields over a cardiac cycle
as well as complex shapes of the aneurysms, the visual analysis of
the 3D models is complicated. The user must rotate the 3D model, as
well as change the encoding of the currently displayed scalar field, to
explore the complete domain. However, since the scalar fields usually
change via animation on the surface to reflect the cardiac cycle, it
is often difficult for the user to spot prominent wall regions based
on 3D models. The creation of 2D aneurysm maps solves the rotation
problem. In addition, the 2D maps were combined with techniques to
explore more than one scalar field at a time to more easily identify
conspicuous wall regions. Currently, all aneurysm maps based on the
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mapping of the vessel wall take a segment as input, since only the
aneurysm, without adjacent vessels, is mapped.

Neugebauer et al. [227] developed the only approach in which the
geometry of the aneurysm was mapped using a multi-perspective
projection. The 3D vessel surface is centered within an invisible cube.
Afterward, the perspective projections are used to map the 3D surface
to the cube sides. The resulting map consists of five regions repre-
senting the flow information of the left, right, top, bottom, and back
sides of the vessel surface, giving an overview of the whole 3D sur-
face. Besides the surface mesh, no other dependencies are needed for
mapping. However, the map does not preserve any properties such
as arc length, diameter, area, or angles of the 3D surface. The map
is linked to a 3D view of the aneurysm, where a scalar field can be
color-coded. The 3D vascular surface is shown in the center of the
illustration surrounded by the map, where a spatial relation between
both views is created. With bidirectional interaction between the two
views, the map supports navigation on the 3D surface. In principle,
their approach could be applied to aneurysms on arbitrary vessels.

While there is only one projection-based approach to generating an
aneurysm map, several works used mesh parameterization techniques
for aneurysm mapping. One of the first concepts in this area is the
work of Goubergrits et al. [110], who generated an aneurysm map
to analyze statistical WSS distributions. The basic idea is to transfer
the aneurysm wall to a unit circle. For this purpose, first, the vertices
of the aneurysm surface are moved towards the center of mass of
the aneurysm, ensuring that the distance to the center is equal for all
vertices. This results in a unit sphere, where an azimuthal equidistant
projection is then used for mapping the geometric component, where
angle information is preserved. Besides the 3D surface mesh of the
aneurysm, no further dependencies such as a centerline are needed
for the map generation. To assign the attribute component (the WSS

distribution), a simple color coding based on the rainbow color map
was used. With the generated map, an overview is given about the WSS

on the aneurysm wall, where different maps can easily be compared
due to the uniform shape of the map. However, reasonable results
are just produced for convex structures, where the center of mass
lies inside the surface. For irregularly shaped aneurysms, where the
center of mass is outside the surface, this method results in area
distortions in the map, especially for regions farther from the center
of the map. Furthermore, this dependence on regular shapes limits
the generalizability of the method to other anatomical structures.

Meuschke et al. generated aneurysm maps with different parame-
terization techniques to support the visual analysis of multiple scalar
fields simultaneously [213, 215, 217, 218]. Since only the aneurysm
without adjacent vessels is to be mapped, the aneurysm has to be
separated from the healthy vessel part first. Therefore, the user can
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click on the 3D surface mesh to define landmarks that are automati-
cally connected to a cut line by applying the Dijkstra algorithm [78]
that determines the shortest path based on the Euclidean distances.
The cut line follows the border of the aneurysm ostium, which is an
imaginary surface that separates the aneurysm from the healthy vessel
part. To provide anatomical context information, the cut line along the
ostium is color-coded on the aneurysm map as well as the 3D surface.

In their first work [215], they employed least squares conformal
maps (LSCM) [185] to generate angle-preserving maps. In addition to
the cut line, two points are needed as constraints for the parameter-
ization, which are also set by the user by clicking on the mesh. For
anatomical context information, these landmarks are also shown on
the resulting map. On the map, two scalar fields can be visualized
simultaneously. The first attribute is mapped to a cool-to-warm color
scale, while the second attribute is encoded by an image-based hatch-
ing scheme. Dark red, strongly cross-hatched regions represent high
scalar values. Additionally, a 3D bar chart is used above the map to
visually encode a third attribute through the height and color of the
bars. The resulting 2D map provides an occlusion-free overview of the
aneurysm domain and supports the navigation of the corresponding
3D surface. By clicking on an interesting region in the 2D map, the
virtual camera automatically moves to the region on the 3D surface,
facilitating navigation in the 3D space. Regarding generalizability, the
authors mentioned that their method could also be applied to other
aneurysm types, such as aortic aneurysms, but they did not show
exemplary results for other structures.

Later Meuschke et al. [218] used the previous aneurysm map based
on LSCM parameterization again to visually explore the interplay be-
tween scalar fields defined on the aneurysm wall and scalar fields
defined on path lines that represent the internal blood flow. On the
aneurysm map, a scalar field is color-coded using a gray-to-red color
scale. Moreover, the internal blood flow is grouped by hierarchical
clustering, where the user can explore the resulting clusters. The path
line points of a selected cluster are projected onto the aneurysm map
and are visualized as circles by applying depth-dependent halos. For
this projection, for each path line point, the nearest surface point of
the aneurysm part is determined using the Euclidean distance. On the
resulting contour-based rendering of the path lines, a blue-to-yellow
color map is applied to encode a flow-related attribute such as flow ve-
locity. With this, the context and interplay of the wall- and flow-related
attributes can be analyzed to further improve the rupture risk assess-
ment. To reduce the manual effort needed for generating aneurysm
maps, Meuschke et al. [213] later used the spectral conformal pa-
rameterization [225], which is also an angle-preserving approach. In
contrast to LSCM, spectral conformal parameterization can be applied
without constraints. It tries to optimize the boundary of the mesh such
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Figure 16: Simultaneous analysis of two scalar fields on an aneurysm map
using a checkerboard visualization. The continuous value γ pro-
vides a smooth transition between both fields. Image from [213],
© 2019 IEEE, reprinted with permission.

that the mapping leads to appropriate results. Again, the map was
used to explore two scalar fields simultaneously. For this purpose, the
authors introduced a checkerboard visualization to create a smooth
transition between two selected scalar fields, see Figure 16. Both scalar
fields are represented by two different color scales and the user has
the possibility to transition between them with a slider. Moreover, by
clicking on the map, the corresponding scalar field values are shown.

To enable a simultaneous exploration of more than two scalar fields,
Meuschke et al. [217] introduced an aneurysm map combined with
a glyph-based depiction of the corresponding scalar values, called
“Skyline visualization”, see Figure 17. Since the size of conspicuous
wall regions on the map should be preserved, the area-preserving
As-Rigid-As-Possible (ARAP) parameterization [196, 286] was chosen.
On the resulting map, a 2D regular grid is defined. For each grid
cell, a 3D bar is computed, which is separated into floors along its
height, where each floor represents a simulated time step. On the
side surfaces of the floors, the scalar fields are color-coded. This gives
the user an overview of the temporal behavior of the simulated data
on the aneurysm wall. In addition, a threshold can be set for each
scalar field. If the associated scalar fields within a floor fall below the
thresholds, the floor is hidden. Thus, the user can interactively find
regions where conspicuous correlations of scalar fields occur. Besides
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Figure 17: Skyline visualization to visually analyze multiple scalar fields on
surfaces simultaneously. On the aneurysm map, 3D bar charts are
generated, where the color coding of the floors encodes different
scalar values. Reprinted from [217], with permission from Elsevier.

aneurysms, the authors have applied their method to other examples,
such as simulated inducer data and iterative smoothed surfaces of
organs, to show the generalizability of their approach.

4.6.2 Stenosis Predilection Sites

Several works explored the visual analysis of vessel bifurcations, as
these highly curved regions favor the initiation and development of
atherosclerosis. Atherosclerotic plaque deposits can lead to vessel
stenosis or stroke in case the vessel is fully blocked or deposits detach
from the vessel wall. Moreover, there are different drug treatments
where it is necessary to analyze if plaque deposits are receding. As
the assessment of plaque distribution and thickness based on 3D

imaging is challenging, much work has been done to create 2D maps
of bifurcating regions, i.e., trees of depth 1. The main applications
are the carotid arteries and their bifurcations, where stenoses often
develop and have a high risk of causing a stroke.

Antiga et al. [8, 9] introduced an automated mesh parameterization
to straighten bifurcations to a 2D parametric plane. For this purpose,
first, the centerlines are computed automatically. Based on the center-
lines, a reference system is defined at the bifurcation. It consists of four
points, which are determined by computing the intersections between
the centerline branches and the mesh tubes corresponding to the indi-
vidual branches. With this, a bijective mapping can be generated to
preserve the location of the parameterized surface points relative to
the reference system. Using the reference points, the bifurcating vessel
is then split into its three constituent vessel branches. Afterward, each
branch is parameterized in the longitudinal direction by solving a
Laplacian equation over the circumferential direction of the surface-
based on the tortuosity of the centerline. Each parameterized branch
is mapped onto a rectangular parametric space, where the individual
branches are patched together. Due to the bijective mapping on the
parametric plane, their algorithm allows a quantitative comparison of
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anatomically different surface distributions. On the resulting patches,
a scalar field is color-coded to observe the results of blood flow sim-
ulations, e.g., wall regions with high WSS values which might be an
indicator for the generation of atherosclerotic plaque. The authors ap-
plied their technique to different bifurcating vessel geometries which
shows its robustness and generalizability.

Chiu et al. [55] introduced a map-based representation of carotid
arteries to visualize the point-wise change of wall thickness due to
plaque deposits. First, the outer vessel wall and vessel lumen were seg-
mented in high-resolution 3D ultrasonography images for two points
in time, at baseline and a second scanning session. This results in
stacked contour-based representations of the lumen and vessel wall
which can be transformed into 3D surface meshes. Then, the wall thick-
ness is computed for both time points by determining the point-wise
distance between the lumen and outer vessel wall. Afterward, the
change in wall thickness must be calculated. For this purpose, the two
3D meshes of the vessel wall are registered to each other using the iter-
ative closest point algorithm. Subsequently, the point-wise change of
wall thickness can be computed using the Euclidean distance between
the registered walls. To straighten the baseline wall mesh to the 2D

domain an arc length parameterization is used that maps the contours
in each slice to straight lines. The parameterization was applied to
each of the three branches of the bifurcation. For this, three planes
are defined to cut open the mesh for mapping. The cut planes are
described by the bifurcation apex as well as the centerlines and corre-
sponding tangent vectors of the left and right carotid branches. Since
an area-preserving map is needed to assess the change in the amount
of plaque within a selected region, the area-preserving method by
Zhu [336] is applied in a post-processing step. On the resulting map,
the change of wall thickness is color-coded, where the user can select
specific regions on the map to quantitatively assess the change in the
amount of plaque. However, the carotid map by Chiu et al. [55] is less
suited to compare carotid arteries of different patients, since, the map
shape is influenced by the shape of the corresponding 3D vessel wall
mesh. To overcome this problem, the authors presented an extension of
their carotid map by introducing a standardized carotid map [56, 57].
While the segmentation, wall reconstruction, and thickness computa-
tions stay the same, the straightening of the carotid branches changed.
To generate a standardized map, the bifurcation apex is mapped to
the origin of a Cartesian coordinate system. Moreover, the left and
right branches of the carotid artery are mapped to the negative and
positive x-axis, where their centerlines are straightened to the y-axis.
Thus, the 2D standardized map allows quantitative group-wise com-
parison between distributions of the thickness changes. Choi et al. [58,
59] extend this line of work and propose an L-shaped continuous
template to map the carotid bifurcation as a single 2D patch. They
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present a conformal mapping approach that retains the local geom-
etry [58] and an angle-preserving technique [59]. The standardized
vessel wall thickness change maps were used in clinical studies to
investigate biomarkers that show the effect of different therapies for
atherosclerosis [53, 54, 56, 331].

4.6.3 Maps of the Heart

The heart is the center of the cardiovascular system. In the following,
we summarize techniques to generate map visualization of different
anatomical structures of the heart comprising maps of its wall muscle
(see Section 4.6.3.1) as well as its valves and cavities (see Section 4.6.3.2)
together with maps of inserted stents to treat cardiac diseases.

4.6.3.1 Heart Wall Muscle

Abnormal movement of the myocardium6 is an important indicator
of many heart diseases. A crucial role falls on the left ventricle, the
thickest of the heart’s four chambers, as it supplies the body with oxy-
genated blood. With the help of magnetic resonance and CT imaging,
the complex motion of the left ventricle as well as its perfusion can be
analyzed to diagnose cardiac pathologies. To simplify the analysis of
cardiac function parameters on the complex left ventricle geometry,
several works dealt with the generation of map-based visualizations.
All of them used the cardiac Bull’s Eye Plot (BEP) as a basic map design.
The BEP is an abstract 2D plot that represents a standardized segmen-
tation of the myocardium into 17 regions. These regions are arranged
in a circular pattern, with the apex of the heart being projected into
the center of the plot and more distant regions being projected into
peripheral plot segments. This corresponds to an anatomical unfolding
of the cone-shaped myocardium, where only the myocardial surface
is needed as input to generate the BEP. Cardiologists are familiar with
this segmentation, therefore, they can immediately understand the
information presented and mentally reconstruct the original geometry.

Kuehnel et al. [168] use the BEP to display perfusion data that are
relevant for the diagnosis of coronary artery disease, where plaque
buildup in the wall of the arteries that supply blood to the heart. The
acquisition of perfusion data occurs frequently at rest and under stress,
induced by drugs. Within the plot segments, a perfusion parameter is
color-coded to provide an overview about myocardial perfusion which
simplifies the detection of regions with poor blood supply. Oeltze et
al. [232] extend the BEP-based visualization of myocardial perfusion
data. For the simultaneous representation of rest and stress perfusion,
the segments of the plot are divided in two, resulting in 34 segments,
with 17 each color-encoding rest and stress perfusion, respectively,

6 The heart wall muscle.
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Figure 18: Simultaneous visualization of two perfusion parameters, in rest
and stress state, based on the BEP to identify ischemic areas. Image
courtesy of Anja Kuß.

see Figure 18. The ring-wise subdivision of the segments ensures that
adjacent segments in the plot are also adjacent on the heart wall. In
this way, it is possible to clearly show the influence of rest and stress
on perfusion in the respective area.

To visually analyze regional motion patterns of the myocardium
Sheharyar et al. [282] applied novel glyph based techniques to the BEP.
For visual encoding of the myocardial motion, different techniques are
provided, i.e., warped BEP segments, pins, and warped lines, where
a blue-to-red color scale is used to depict the motion strengths. This
supports the detection of abnormal myocardial motion, which is an
important indicator for multiple cardiac pathologies. Since the stan-
dard BEP does not provide any anatomical information and does not
show the amount of scar tissue induced by cardiac diseases, Teermeer
et al. [298] introduced the volumetric BEP. While the basic projection
of the myocardium is the same as before, in addition, the thickness
of the myocardial wall is mapped to the height of the plot segments.
The resulting volume shows the amount and position of scar tissue.
Furthermore, anatomical information is added to the volumetric BEP

by projecting the coronary arteries and displaying two dots that mark
the locations where the right ventricle connects to the left ventricle.
While all BEP-based visualizations simplify the analysis of complex
myocardial data, the depictions do not preserve any properties of the
3D myocardium surface. Moreover, the generalizability is limited due
to the underlying standardized segmentation of the myocardium.

4.6.3.2 Heart Valves and Cavities

Several approaches have been proposed to generate maps of the com-
ponents of the heart, such as the mitral valve.7 A possible strategy

7 One of the four heart valves.
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Figure 19: Mitral valves with two color maps quantifying local surface prop-
erties indicative of pathologies. A 3D and map-like 2D depiction is
shown. Regions of possible blood backflow in (d) are occluded by
geometry in the 3D model but become visible on the map. Image
from [340], © 2019 IEEE, reprinted with permission.

to provide an overview of the valve surface is to flatten its structure,
which can also facilitate exploring time-dependent data on the result-
ing map [340]. The motivation behind this technique is to enhance
the clinical assessment of heart valve defects. The surface mesh of the
mitral valve is rolled out in the 2D domain to provide a simplified
overview [341, 350], see Figure 19. Layering the map-like depictions
allows full exploration of the time-dependent nature of these data. For
further exploration, different color maps can be used to encode scalar
field information, such as the probable closure zone of the heart valve.
Later, Casademunt et al. [49] also employed the method to encode
additional information, e.g., contact distribution, curvature, and the
principal stress, as a colormap on the flattened map.

Karim et al. [147] proposed a map of the left atrium.8 The left atrium
has multiple incoming vessel connections and can thus be seen as a
branched structure of depth 1. Their goal was to simplify this struc-
ture to study patients with atrial fibrillation, which is an irregular
and rapid heart rhythm. The used surface parameterization attempts
to find a trade-off between an area-preserving and angle-preserving
parameterization to balance distortions of the relative locations and
sizes of features. It uses a fixed rectangular layout to enhance compa-
rability. To apply the surface parameterization, an initial manual cut
must be defined. The resulting map can then be used to color-code
blood flow information, such as delayed enhanced magnetic resonance
imaging (MRI) data.

Ma et al. [202] presented two methods to obtain an overview of
cardiac structures. First, a BEP of the left ventricle is presented with
the coronary sinus9 mapped. Second, a technique for parameteriza-
tion of the left atrium was presented. For this, the orientation of the
structure given by the image data is used to generate wrapping con-
tour lines. These lines are unfolded into the 2D domain at uniform

8 One of the four chambers of the heart. It receives oxygenated blood from the lungs
and passes the blood to the left ventricle.

9 The largest vein of the heart. Its function is to drain deoxygenated blood from the
heart muscle into the right atrium.
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Figure 20: Standardized map of the left atrium with a fixed zone layout.
Image from [316] under Creative Commons license [70].

intervals, yielding a surface parameterization. A color map is used to
encode data recorded with MRI on the map. Similarly, Nuñez-Garcia
et al. [230] studied the left and right atrium and provided a solution to
parameterize these structures in a quasi-conformal manner. To achieve
this, boundary conditions must be satisfied. Here, the edges of the
structures are mapped onto a 2D disk and holes in the structures that
indicate incoming or outgoing vessels are also mapped to predefined
contours within the disk. To ensure quasi-conformity, two quadratic
programming problems are solved that return the 3D vertex position
in 2D to minimize the deviation of the angle. The resulting maps are
used to encode wall thickness and delayed enhanced MRI data with a
color map.

Paun et al. [242] propose a parameterization of the left and right ven-
tricles. In the first step, the boundary surface mesh must be extracted.
Then, two landmarks are manually placed on the ridge of the bound-
ary. Finally, the ridge is mapped onto a 2D slice. By using Laplace’s
equation and the gradient of the Laplace field the 3D anatomy mesh is
reconstructed in 2D. The result is a 2D representation with additional
detailed anatomy information. Roney et al. [261] presented a parame-
terization method that maps the left or right atrium to a unit square.
For this, as with the previous approach, the Laplace equation was
solved by defining boundary conditions as well as manually placed
landmarks. The parameterization can be used to map information
with a color map and compare different data sets.
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Williams et al, [316] propose a different unfolding technique to
visualize the left atrium in an abstract plot. They unfold the atrium
with all the structures to a predefined map illustrating the individual
parts, see Figure 20. The mapping can be considered an extension
of the BEP to the left atrium. It uses a 2D disk and fixed contours
within the disk. Then, the left atrium with its incoming branches is
identified and mapped onto the 2D slice. The simplified map can be
used to illustrate data with color, such as local activation time or
delayed enhanced MRI data. This standardized abstract representation
is highly suitable for comparison tasks.

4.6.3.3 Stent Projections

The aortic valve separates the left ventricle from the trunk of the aorta,
i.e., it lies between the heart and the main arterial system. Born et
al. [33] introduced a map-based depiction to investigate side effects
occurring after treatment of aortic valve stenosis using transcatheter
aortic valve implantation (TAVI). TAVI is a minimally invasive treatment
method in which the abnormal valve is displaced toward the aortic
wall by an expanded stent10 containing a prosthetic aortic valve. After
a TAVI procedure, paravalvular leakage may occur, which is the back-
flow of blood between the stent and its surrounding structures into
the left ventricle, resulting in volume overload and potential dilatation
of this ventricle. Based on numerical simulations, different risk factors
were identified for paravalvular leakage such as stent deformation,
radial attachment forces, or calcifications. To analyze the influence of
these risk factors Born et al. [33] presented a 2D visualization (stent
maps) of the expanded stent. As input the stent mesh including its
centerline as well as mesh-based representations of calcifications are
needed. Moreover, six anatomical landmarks manually placed in CT

images are used to add context information to the resulting stent
maps. For generating the stent map, the stent geometry is projected to
a curved cylinder around the stent leading to generalized cylindrical
coordinates. Based on this cylinder representation the stent can be
easily unrolled to 2D. On the stent map, a scalar field is color-coded.
Moreover, anatomical landmarks are shown together with a contour
rendering of the calcifications and the stent geometry. The stent map
provides a comprehensive overview of possible risk factors and allows
to contextualize relations between stent placement and thickness of
aortic valve calcifications. Due to the generalized cylindrical coordi-
nates, different data sets can be easily compared to identify patterns
that are typical for paravalvular leakage. Furthermore, the stent map
could be applied to other medical use cases such as treatment planning
of other heart valve defects and cerebral aneurysm stenting.

10 A metallic or polymer mesh tube that is inserted into an artery to keep it open.
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4.6.4 Arbitrary Vessel Trees

A 2D map-based representation of complex vascular trees with nu-
merous branches supports diagnostic tasks such as the detection of
narrowed, dilated, and thrombosed vessel areas as well as the detec-
tion of lung nodules.11 Zhu et al. [334, 337] introduced a conformal
parameterization to project trees of depth n to the 2D domain. As
input, the centerline of the vessel tree is needed, which is divided
into y-shaped parts consisting of one branch point and three end-
points. Between the branch point and the endpoints smooth curves
are defined that are used as cut lines to unroll the 3D surface part.
By stitching multiple unrolled parts together, the whole vessel tree is
mapped. The resulting map provides an overview of the 3D domain
where a scalar field can be color-coded on the map. Besides, vascular
trees the authors discussed other applications, such as the mapping
of bronchial trees. Moreover, they reused their conformal mapping to
generate an area-preserving mapping [335, 336]. For this purpose, they
computed a density map that encodes the area changes from 3D to 2D

using conformal mapping. Based on this density map, they applied
optimal mass transport to minimize the area changes. However, since
in both approaches the y-shaped parts are mapped independently of
each other, unexpected cuts may result.

In Chapter 5, a bijective mapping of 3D vascular trees to the 2D

domain will be introduced [346]. The method automatically cuts and
flattens vessel trees. No centerline or other inputs are necessary be-
sides the vessel surface itself. First, vessel branches and endpoints
are automatically detected. Subsequently, the cutting lines for project-
ing the mesh to the 2D domain are found automatically. Instead of a
centerline, the graph topology of the cut is used to create an initial
straightened layout in the 2D domain. For mapping the geometry,
the area-preserving ARAP parameterization technique is used. As the
boundary is not fixed, the final layout resembles an untangling of the
input tree. The algorithm can be applied to any tree-like structure that
can be represented by a surface mesh.

4.7 vessel network maps

The visual search for malformations in vascular networks can be un-
derstood as a combination of abstract network analysis tasks, like
browsing and path following. The underlying idea of vessel network
maps is to facilitate such overview tasks, for instance, feature iden-
tification and topology browsing. Similarly, they can be applied to
analyze the topological context of features and navigate a complex
interconnected domain. For tasks involving spatial memory and identi-
fication, 2D depictions of data have shown to be more effective than 3D

11 Small growths in the lung that can be cancerous.
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Figure 21: Untangling of the abdominal aorta centerline. (a) Surface render-
ing of the vessel tree. (b) Flattened centerline with vessel diameter
mapping. (c) Bounding box representation. (d) Untangled bound-
ing boxes. (e) Color coding of the width relative to the median
width of the segment. Image from [318], © 2013 IEEE, reprinted
with permission.

represenations [63, 89, 154, 161, 300]. Therefore, vessel network maps
transfer the spatial vascular topology into a 2D map-like visualization.
Typically, node-link visualizations are used, as they are popular in
visualizing networks and have been extensively studied [20, 82, 256,
311]. Vessel network maps are based on a graph data structure that
describes the connectivity of the cardiovascular region. Usually, this is
the vessel centerline derived from image data. Besides the topology,
other attributes can be of interest, such as the vessel diameter.

4.7.1 Connectivity Maps of Large Arteries

Large vessels, like the aorta, femoral, or carotid arteries, are clearly vis-
ible in angiographic imaging modalities. They can be seen as a treelike
system of tubes that quickly becomes complex if multiple branches are
considered, resulting in intricate 3D structures. Won et al. [317–319]
propose an uncluttered single-image visualization of the abdominal
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aortic tree. They optimize the 3D geometry of a binary tree of depth n
in a 2D layout to resolve overlaps. Their original method [317] built on
Kanitsar et al. [144]. They use the stretched CPR mapping to initialize
a 2D layout of the centerline, which may have overlaps of different
branches, but already prevents overlaps of individual segments. Then,
they relax the spatial configuration of segments but keep the branches
connected. They prioritize large branches, such that they inhabit pre-
dictable positions and place small branches last. A radial sweep line
algorithm is used to iteratively find the available region for the place-
ment of each segment. Later adoptions optimized this procedure [318,
319]. The relaxation is performed using bounding boxes around each
vessel segment, which are rotated to find an optimal configuration
(see Figure 21). Each box is denoted by v ∈ V, where V is the index set
of the vessel parts. The orientation of a bounding box is given by an
angle Θv. An optimal configuration of bounding boxes minimizes their
overlap given by Ω(·) and, simultaneously, minimizes the deviation
of the layout from the initial configuration, described by the energy
∆(·). The idea is to preserve the relative location of segments and the
natural shape of the vessel tree, i.e., an untangled layout is created.
As the optimization criteria contradict each other, a score function is
optimized, which is a linear combination of both:

E(Θ1, ..., Θ|V|) = Ω(Θ1, ..., Θ|V|) + λ · ∆(Θ1, ..., Θ|V|). (3)

To optimize this function, Won et al. [319] first used simulated anneal-
ing [153] and later proposed another approach that uses a technique
inspired by the protein side-chain placement problem [184, 318]. Jeon
et al. [141] also extended the procedure to parallel computing architec-
ture. The resulting visualization uses a size and colormap encoding
to highlight deviations in vessel width. The overview is thus helpful
for identifying possible stenoses and aneurysms. It could, in theory,
also be used to compare or navigate domains. As the initial layout is
created by stretched CPR and only rotations of vessel segments occur,
the relative arc length of the vessels is preserved but the technique is
also view-dependent.

Borkin et al. [30] propose a diagram representation of coronary
artery trees of depth n. They found that users are more efficient
and accurate at identifying atherosclerotic lesions (possible stenoses),
compared to using a 3D surface depiction. The layout they propose
disconnects branches and straightens them parallel to each other,
preserving segment length. They map the vessel circumference to
the size of the visualized segments. As their centerlines are based
on surface models they are also able to add a projection of surface
properties into this area, for example, simulated WSS. The resulting
field is encoded with a colormap (see Figure 22). They show how the
map can be used for overview tasks and navigation by combining
a view of a focus domain with a view of the full domain, where



4.7 vessel network maps 75

Figure 22: Coronary artery tree visualized as a surface rendering (bottom)
and as a map of segments (top). Line width encodes the vessel
diameter, the colormap encodes a scalar field (shear stress). Image
from [30], © 2011 IEEE, reprinted with permission.

the focus region is marked. While they limit the demonstration to
coronary artery trees, other vessel trees could plausibly be visualized
with the same approach.

Targeting a general solution, Marino et al. [205] propose a planariza-
tion of treelike 3D structures. They demonstrate the applicability of
the approach to arterial trees of depth n. While they use a surface
geometry as input, the creation of the map-like depiction effectively
only requires centerline and width information, which is why we
classify the output as a vessel network map. Depending on the 3D

view direction, the centerline is projected onto the 2D view plane,
which typically leads to overlaps. Separate from this first step, a radial
planar layout of the centerline is constructed based on the embedding
of phylogenetic trees [17]. Then, the original shape of the tree is recov-
ered by iteratively converging to the angles that are measured in the
projection from step one. Again, the final layout is an untangling of the
input graph, aiming to achieve visual coherence with the 3D depiction.
In the proposed visualization, they map two attributes to the layout:
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vessel width and segment depth. The width is directly mapped to the
width around the centerline geometry and depth cues can be added in
form of a grayscale border. The authors also demonstrate how to map
a surface into the resulting shape, however, all information visible
in the final representation (width, z-axis depth) can be encoded on
the centerline alone. Mapping the surface may be useful for future
applications, although it should be noted that the surface area is highly
distorted in the process, as the vessel width encodes the diameter, not
the circumference.

Vessel network maps can also been used as part of multiple coordi-
nated views. A possibility is to use the map to first locate points of
interest and then navigate to these locations, e.g., by steering a camera
in a 3D rendering linked to the map. In Chapter 6, a framework for an-
alyzing hemodynamics in carotid stenoses is proposed [342]. Therein,
a network map of the vessel tree is integrated to find and navigate
regions of interest. The input trees of the left and right carotids are
straightened and the two sides are aligned such that their principal
branches are in parallel. Side branches are connected at a fixed angle.
Thus, the layout trades preservation of the original angles for a uni-
form and symmetric view of the vessel. Similar to other approaches
that focus on stenosis analysis, the vessel diameter is mapped to the
line width of the rendering. In the final application, the map is then
used for overview purposes, comparing the left and right trees, and
for quantifying stenosis length, which can be directly read on the map.
Also, the spatial domain can be navigated with draggable markers on
the branches that control probe positions in the 3D data.

Some applications require analysis of a highly branched structure,
like the arterial tree of the liver investigated by Lichtenberg et al. [188].
One objective of this approach is to show the proximity of vessels and
branch structures for intervention planning to minimize the risk of cut-
ting through vital arteries. The technique visually separates individual
subtrees in a straightened compact binary tree layout. A hierarchical
or radial layout can be used. In both, overlaps are prevented and the
subtrees are delineated. Then, they apply color coding on the subtrees
for branch identification and compute a screen space parameterization
for pattern mapping [190]. This parameterization enables an illustra-
tive encoding as an overlay of the map. It shows the proximity of
branches to selected structures, for example, vessels close to a tumor
or the distance to a simulated surgical needle, which can be utilized
for operation path planning. An application is shown in Figure 23.
Later, Lichtenberg and Lawonn [189] applied a similar straightening
technique and radial embedding of subtrees to generate 2D overview
plots. They use an HSV colormap defined in the 2D domain to identify
subtrees in a 3D model. Both methods are based on topology analysis
of a mesh centerline. The visualizations reduce complex structures to
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Figure 23: A 3D view (top) and 2D map (bottom) of the arterial tree of a liver.
Three possibilities to reach a large tumor structure with a surgical
needle are shown. A distance field around the needle is calculated
and color-coded on the map. Vessels with a minimal distance of
less than 20 mm are at risk of being damaged. They are highlighted
with a stippling pattern, which allows for determining an optimal
path. Image from [188], © 2019 The Eurographics Association.

abstract map-like depictions. Original geometric features are lost in
exchange for a visual focus on the branch structure.

4.7.2 Cerebral Connectivity Maps

The cerebral arterial system can be modeled as a graph with weighted
edges. These are mostly directed edges, as blood flow is distributed
into increasingly smaller arteries, ending in capillaries.12 Compared to
other areas of the cardiovascular system, the cerebral arterial network
is a special case for three reasons. First, small disturbances in blood
distribution can cause stroke and be life-threatening. Second, there are
also regulating cyclical arteries, which are undirected graph edges. In
our graph model, these hierarchical and non-hierarchical components
form a mixed hierarchy. Third, the cerebral network topology is highly
relevant to determining which parts of the brain are affected by a
vessel pathology and how and if a malformation can be treated. The
mechanical accessibility of a pathology is a key factor in clinical risk
assessment. Neuroradiologists need to identify stenoses, aneurysms,
or missing arteries and then plan a potential intervention, where the
ideal path to reach the respective site with surgical instruments needs
to be determined, starting from the trunk. The cerebral arterial network
can be thought of as consisting of three components. There are four
entry points where the two carotid and the two vertebral arteries bring

12 Minuscule vessels through which oxygen and nutrients are exchanged with the
surrounding tissue.
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new blood into the system. They are connected in the circle of Willis,
which regulates flow between them and acts as a layer of redundancy –
a blockage in one artery can often be circumvented. Many anatomical
variations of the circle of Willis exist, which necessitates individual
assessment. Lastly, the cerebral arteries connect to the circle of Willis
and distribute blood further throughout the brain.

Miao et al. [219] propose a standardized description of arteries in
the circle of Willis in the CoWRadar. The CoWRadar is an abstract map-
like depiction that allows visual quantification of segment width and
connectivity information. They implemented an automatic pipeline to
detect the circle of Willis in image data, create a centerline, derive the
vessel graph, and label arteries. The network is fitted to a predeter-
mined layout. The length of segments and vessel intensity in the image
data are shown by arc glyphs at fixed locations. The connectivity is
visualized with active/inactive line connections on the map. They
show how the CoWRadar can be used to quickly identify the presence
of vessels, understand the patient-specific network configuration, and
quantify the blood perfusion of segments. An resulting depiction is
shown in Figure 24.

Pandey et al. [239] developed CerebroVis, an abstract 2D network
visualization of the cerebral arteries that aims to preserve spatial con-
text. They report an increased accuracy in stenosis detection tasks in
comparison to conventional 3D visualizations of the same network.
The readability of network visualizations is dependent on multiple
factors. Node-link depictions should minimize edge-crossings [256],
path continuity facilitates visual browsing tasks [155, 311], and sym-
metry helps comparison [192]. The authors apply these principles to
CerebroVis, resulting in an abstract fitting of the topology with spatial
constraints, e.g., the left and right sides of the brain are separated,
see Figure 25. Furthermore, they run undirected edges horizontally
in the final layout, to differentiate them visually from the hierarchi-
cal components. This idea was originally proposed by Gutwenger et
al. [119]. Width and color encoding are used to display vessel diameter
and an arbitrary additional property, like blood diffusion. CerebroVis
can be used to detect points of interest, place them in their topological
context, and navigate a 3D rendering of the network by clicking on
segments.

A further technique that should be mentioned is the animated un-
tangling of the circle of Willis by Saalfeld et al. [268]. While technically
not a 2D map visualization, the geometry is unfolded and acts as a
map for annotations. The centerline approximates a planar layout and
the depiction can be used from a single perspective, yet the surface
geometry remains 3D. The approach is a proof-of-concept, as the un-
folding and animation are created manually, which is unrealistic for
time-sensitive clinical applications.
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Figure 24: The CoWRadar, a standardized connectivity map for the circle
of Willis. (a) Maximum intensity projection of the circle of Willis
with a centerline and extracted labels. (b) The resulting CoWRadar.
The arc glyphs encode the length of segments (outer arc) and the
perfusion in the image data (inner arc). Image from [219], © 2016

The Eurographics Association and John Wiley & Sons Ltd.

4.7.3 Maps of Microvasculature Networks

The analysis of microvessels is crucial for research in tissue develop-
ment, pathophysiology, and treatment [18, 92, 246]. Tissue degener-
ation, for example, initiated by diseases, results in subtle differences
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Figure 25: Projection of a cerebral artery network (left) and an automatically
generated network map (right). Line thickness encodes the vessel
diameter and color encodes the vessel category. Image from [239],
© 2020 IEEE, reprinted with permission.

Figure 26: Microvasculature map (top) and 3D vessel structure (bottom). Mul-
tiple steps are presented, in which a microvessel cluster is selected
and explored. Image from [112], © 2019 IEEE, reprinted with per-
mission.

between networks. Microvasculature consists of complex intercon-
nected vessels across large volumes, which is difficult to visualize [111].
Tracing the topology of microvasculature results in a highly cyclical
but sparse graph with a large number of redundant edges. Govyadi-
nov et al. [112] propose a bi-modal visualization with a graph-based
and a geometry-based view of the same microvasculature data. They
extract the centerline of microscopy tissue slices with a GPU-based
predictor-corrector algorithm [111], which results in a graph of the
capillary branches. On this graph, they compute a spectra clustering
over a user-selected property, like the microvessel length. Then, they
show a highly intricate 3D representation of the segmented network,
accompanied by a 2D map of clusters and connections between them.
They use color to encode the cluster correspondence and arc glyphs to
encode the inter- and intra-cluster relationships. The graph view can
be used to navigate the volumetric view by brushing and linking. For
example, selected regions in a cluster are highlighted in the 3D model.



4.8 recommendations for vessel map creation 81

An example of the application is shown in Figure 26. They show how
to use the representation to compare microvasculature networks and
detect small changes caused by diseases like Alzheimer’s.

4.8 recommendations for vessel map creation

With the diverse range of existing vessel map techniques, it can be chal-
lenging to choose an appropriate method. We propose the following
recipe to aid in this process. The outlined steps should be considered
as overarching design considerations. They are not guidelines per se,
as they are not founded on a well-enough base of perception studies
on vessel maps alone. Large-scale quantitative evaluations of vessel
maps are practically non-existent. Meaningful evaluation tasks that
test the effectiveness of a vessel map require domain experts, often
highly specialized physicians or medical researchers. Nonetheless,
vessel maps have proven successful in terms of adaptation. They are
a popular tool for abstracting information about the cardiovascular
system, which is unsurprising considering the large body of map-like
depictions used to illustrate cardiovascular anatomy in medical educa-
tion. We base these recommendations on the domain requirements we
distilled for vessel maps (Section 4.1) and recurring patterns found in
the discussed literature. Also, the lack of quantitative studies can to
some degree be substituted with observations from perception stud-
ies that involve similar map-like depictions from other contexts, like
geospatial data [154, 161] or node-link visualizations [82].

4.8.1 Identifying Domain Tasks

The first and crucial step is to consider what the map is for. Which
purpose does it serve? Along the lines of typical visualization design
studies [237, 277], we recommend first clearly identifying and abstract-
ing the user tasks that need to be facilitated. Typical motives, which are
pursued by all the discussed vessel map approaches, are overview tasks
such as identification of features, exploring distributions, or browsing
the topology. The usual incentive is to provide a 2D or abstracted view
that is better suited for these tasks than overly detailed 3D renderings
of the data. Fitting a spatial domain in one picture may increase legibil-
ity, leading to higher efficiency and/or accuracy in these tasks. We do,
however, encourage thinking beyond these aspects. Other tasks that
could be facilitated may be contextualization tasks. Where exactly does
a feature occur? What are its spatial relations to the cardiovascular
structure? What is the surrounding anatomical context? What is the
topological context in the vascular network? Also, some maps allow
direct quantification. Can data values be quantified directly on the
map? For example, can sizes be measured? The map coordinates may
serve this purpose if the geometry mapping preserves the relevant
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properties. There may also be navigation tasks. Could the map be used
to navigate another domain? Does it need to represent all necessary
information or could it serve as a secondary depiction, along the lines
of focus and context? Examples, where this applies, are typically sys-
tems with multiple coordinated views. Keep in mind that maps can
help navigation in spatial [342] and temporal [340] dimensions. Lastly,
aiding comparison is also a common purpose for map-like depictions.
May the map be a useful asset to compare multiple instances of a
domain? These could be an individual before and after treatment or
different patients up to cohorts examined in medical research.

4.8.2 Choosing Data Type and Region Complexity

Depending on the domain tasks, the appropriate data type and region
of interest must be determined. Even for general mapping approaches,
it is advisable to think about which specific tasks – they can be abstract
– may be facilitated. The common data structures for vessel maps are
described in Section 4.2. Define, where specifically the information
relevant for the tasks associated with the map is. For example, the data
structure could be a vessel tree surface, but if our main interest for
the map is to give a topology overview, it may be much more sensible
to create a map based on data encoded on the centerline. Similar
considerations should be made regarding the region’s complexity.
Knowing if a single segment, a tree, or a network is required to
accommodate the tasks, enables choosing an appropriate map layout.

4.8.3 Preservation versus Standardization

The question of whether to preserve attributes or provide a more
consistent, maybe even standardized map, is a core consideration that
should be made before any algorithm is implemented. It is closely
related to the question of how vigorously the present information
should be simplified for the sake of uniformity and legibility. Preser-
vation can refer to geometric proportions. For mesh parameterization,
in particular, techniques are generally grouped by their preservation
characteristics. A parameterization method may be area-preserving or
angle-preserving (conformal) regarding the mapped mesh structure.
But in vascular geometry, more general features may also be preserved,
like the arc length of individual segments, the diameter of vessels, or
the branching angles. Preservation can also refer to the topology of a
vessel tree or network. Preserving the branching topology is required
for most overview, navigation, and contextualization tasks.

The primary consideration for preserving attributes is that informa-
tion crucial to a task is retained. For example, a task might be to assess
the distribution of a certain attribute, like plaque occurrence, where
the size is important to determine the severity. Sometimes, though,
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preserving the actual data values might not be the ideal approach to
facilitate a task. For instance, the variation in the vessel diameter may
be important but too small to be visually discernible [342]. In very spe-
cific instances, it might make sense to explicitly exaggerate values to
draw attention to points of interest. This possibility should be handled
with care and only applied if the quantification of said values is done
outside of the map. Another advantage of attribute preservation lies
in the increased familiarity that the resulting depictions might have.
Users may be familiar with the 3D shape of a particular vessel tree and
quickly understand and correspond to a map that preserves, e.g., the
overall layout.

The core benefit of uniform maps, on the other hand, is that they
are more directly comparable. This applies to visual exploration but
also algorithmic evaluation. The advantage particularly holds for
approaches that attempt to define a standardized map, where map
coordinates are fixed to specific cardiovascular substructures. The
goal of standardization in vessel maps is often to develop quantifi-
able biomarkers [49, 54], where threshold values can support clinical
decisions.

4.8.4 Layout, Geometry, and Attribute Mapping

Only after these considerations should the actual vessel map be de-
signed. We propose to think of the process in terms of the taxonomy
outlined in Section 4.3 and view the layout, attribute mapping, and
geometry mapping as separate steps. If the region complexity is very
low, e.g., for a surface patch or vessel segment without branches, the
layout step can usually be solved implicitly. If the underlying data
is only of the centerline graph type, the layout and geometry map-
ping are the same step. Mind that, depending on the input graph,
the layout algorithm needs to build on either a hierarchical or mixed
hierarchy structure. In most cases, general readability principles from
network visualization apply, e.g., regarding edge-crossings [256], path
continuity [155], and symmetry [192]. As a rule-of-thumb, untangling
techniques lie on the preservation end of the abstraction-level scale,
while fitting techniques are more applicable if standardization is re-
quired. Often intertwined with the layout step, the geometry of the
data needs to be mapped. Here, similar rules apply: choose or develop
a technique that fits the necessary preservation characteristics and
shows the data required to solve the domain tasks. We also recom-
mend paying attention to the algorithmic dependencies. Requiring
landmarks or manual cuts may impose additional pre-processing steps,
making the technique less viable for broader applications. Depending
on the 3D view direction may defeat the advantage that the map gives
a single-image overview. Still, this dependency may be useful in some
scenarios. For example, a vessel tree may have a “default” viewing
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direction, like facing the patient, which may be used to construct the
map. Lastly, the data attributes need to be visualized on the map. This
should be regarded as an individual step in the map design process,
as it is distinct from the geometry mapping. An encoding shared with
different (3D) representations of the data may increase familiarity and
visual coherence. However, relying only on familiar encodings might
mean that alternatives are overlooked. Common trends are to visualize
vessel diameter with a scale/thickness encoding and to visualize scalar
fields with a colormap. Categorical colors are sometimes used, for
instance, to distinguish subtrees. The use of glyphs is recommended
to encode multiple values or more complex information. Furthermore,
we encourage thinking about possible combinations of attribute map-
pings for simultaneous use of multiple visual information channels.

4.9 open challenges

The high number of recent works in the flow, wall, and network
maps areas evinces that concurrent investigations into vessel maps
are ongoing. While many techniques for mapping vascular structures,
ranging in complexity from individual segments to highly branched
microvasculature networks, have been investigated, some core chal-
lenges remain.
Flow volume maps. Map-like visualizations of blood flow, in partic-
ular, are underexplored. The core challenge lies in finding a suitable
geometry mapping not only for a 2D embedded structure like the
vessel wall but also for the internal 3D flow field. To foster an un-
derstanding of qualitative flow information in branched structures,
abstractions that transfer flow features into a 2D graph layout appear
to be a promising direction [296, 329].
Network maps. While several mapping techniques for treelike vascular
structures have been proposed, only a few approaches exist that handle
cyclical graphs and complex microvasculature [112, 239]. Current
advances in 3D imaging using, e.g., micro-CT or light-sheet microscopy
result in increasingly complex vascular data. All arteries eventually
terminate in interconnected networks and any increase in imaging
resolution poses a need for network-based algorithms to explore these
data.
Temporally resolved data. A further insufficiently examined appli-
cation area is temporally resolved data spaces. The cardiovascular
system is, after all, a spatio-temporal domain that is highly dependent
on the cardiac cycle. The possibility of using vessel maps for, e.g., tem-
poral navigation tasks, has only been adopted in very few works [340,
217, 329]. Not only blood flow information is temporally resolved,
but parts of the cardiovascular system, namely the heart and larger
arteries, are also constantly in pulsating motion. How to reproduce
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the motion on a map or in which cases this would be beneficial, has
not been sufficiently investigated.
Data curation. Furthermore, we would like to draw attention to the
general challenge of data curation [103]. In many areas of medical
visualization, the applied techniques require data in very specific
formats and of sufficient quality to produce adequate results. Vessel
maps are no exception. To increase the robustness and comparabil-
ity of techniques, the availability of standardized data sets must be
encouraged.
Clinical adoption. Finally, clinical adoption requires either evidence-
based quantifiable biomarkers or strong validations through effec-
tiveness evaluations. Both need objective benchmarks to measure the
potential benefits of a new method, which are currently rare.

4.10 conclusion

This chapter presented a literature overview of map-like visualiza-
tions of the cardiovascular system. To give a structure to the diverse
approaches for the creation of such vessel maps, it provides a classifi-
cation centered around the four principal data types used to generate
them: medical volume images, blood flow volume meshes, vessel sur-
face meshes, and centerline graphs. Further, not only are the various
algorithmic techniques to transfer these data types to a map layout
discussed, but also the visualizations examined in terms of their appli-
cability. For this purpose multiple aspects were filtered: their visual
design properties (layout types, encodings), the domain tasks they
facilitate, and the dependencies that must be met to use them. Based
on the literature review, considerations were reviewed that are re-
peatedly made in the visual analysis of cardiovascular structures and
condensed to recommendations for the design of vessel maps.

Within the general domain of map-like visualizations, vessel maps
are schematizations of cardiovascular structures. They emphasize
the display of data over anatomical accuracy. Hogräfer et al. [130]
identified various techniques for performing schematizations. The
majority of vessel maps naturally use either path-centered techniques,
if the network structure is focused, or shape deforming techniques,
if the aim is to display surface or volume data. Other types of tech-
niques derived from the schematization of cartographic maps might
be worth exploring, but many are not applicable. After all, vessel
maps represent anatomical structures, which means data is typically
not organized around, for example, borders. On a high level, vessel
maps do, however, share their advantages and limitations with other
map-like visualizations. Their benefits include that they are easier to
decode than convoluted 3D renderings and features are filtered from
irrelevant anatomical context information. Relevant parts of the data
are emphasized, fostering an understanding of important relations.
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A pitfall to avoid is that misinterpretations become possible due to
geometric deformations and data abstractions. Therefore, the purpose
of the map must be clear. Often, a certain task is well facilitated by the
map but it also needs to be complemented by other techniques to pro-
vide an actual benefit. Despite persistent challenges, vessel maps prove
to be a valuable component in the toolbox of cardiovascular structure
analysis. Through domain simplification and standardization, they
enable otherwise impractical or impossible visual and algorithmic as-
sessments and are a significant asset for vascular disease monitoring,
treatment planning, and research.
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5
AU T O M AT I C V E S S E L WA L L M A P S

As described in Section 3.2, recent advances in simulated hemodynam-
ics allow for the modeling of blood flow properties based on CFD [44,
293]. These simulations are performed on patient-specific arterial wall
geometry. Typically, one flow inlet is defined, for instance, at a cross-
section of the CCA. Here, inflow is simulated following the pattern
of a standardized human heart cycle. The flow exits the domain at
one or more predefined outlets, which lie downstream from the inlet.
Together with the wall, the inlet and outlets constitute boundary con-
ditions that allow solving the internal flow field. This yields various
parameters at arbitrarily high resolutions, some of which cannot be
measured in-vivo. These simulation results can help understand the
progression of cardiovascular disease and may even provide additional
markers for medical treatment decisions in the future. A principal
interest is the analysis of wall-related parameters, such as NWS or WSS,
as they show how the vessel wall is affected by the flow field.

The analysis of CFD data is a cumbersome process. Often, a large
spatio-temporal data space needs to be examined, where comparisons
need to be made regarding values over time and different parameteri-
zations of the simulation. To provide better insights into this complex
data, a variety of visualization techniques and frameworks have been
proposed for medical flow visualization [234]. An overview of these
works is provided in Section 3.3. Following this line of research, this
chapter introduces overview depictions for at-a-glance assessments
of wall-related CFD results. Existing model-based techniques for the
flattening of vessel surfaces either create patches and do not show
a continuous domain [9, 30, 110], or do not preserve the surface
area [205]. For example, Borkin et al. [30] proposed 2D projections
of cylindrical vessel segments. They map coronary artery trees to a
diagram representation for overview assessment of simulated WSS.
However, the geometry is not preserved as they use a projection and
vessel bifurcations cannot be shown. Marino et al. [205] introduced a
mapping for arbitrary branch configurations, which shows the whole
vessel and achieves bijectivity. They fit the surface into the fixed 2D

boundary shape with an adapted harmonic mapping. For the pur-
poses outlined in the following, however, the method is not suited as
the area is not preserved. Furthermore, the cuts used in many previ-
ous works optimize geodesic distance, which results in unintuitive
cutting paths, as we show in Section 5.2. Area-preserving maps of
the carotids have also been proposed. Notable are, for instance, the
works of Antiga et al. [9], Zhu et al. [336], and Choi et al. [59]. The

91



92 automatic vessel wall maps

fundamental problem of these approaches is that they are specific
to a limited segment of the carotid, whose geometry is well-defined
by three connected cylinders: the CCA, ICA, and ECA. The extracted
section around the carotid bifurcation is about 20–25 mm in length,
which allows these techniques to assume the branches as straight and
cut them with predefined planes along known landmarks. On average,
the carotid covers more than 200 mm in length in adults [60]. If the
focus region is too small, stenoses that occur anywhere but directly at
the carotid bifurcation will be hidden. Furthermore, for accurate CFD

simulations, larger segments with potentially more than two outlets
are of interest.

The flattening approach presented in this chapter is a global surface
parameterization that creates a single patch. The parameterization
preserves the vertex and connectivity information, except for the cut,
making it simple to map any data fields defined on vertices or faces
of the mesh. For a realistic assessment of parameter distributions,
we minimize area distortion while keeping the layout close to the
original structure. The approach is also fully automatic and requires
no manual cuts or predefined landmarks. In contrast to other methods,
the single input is the 3D mesh of the vessel tree, we do not require
a centerline. Further, the flattening results in intuitive 2D views of
the unrolled inner vessel wall. We achieve this by introducing natural
vessel cuts, which remain on one side of the cylindrical vessel shape.
The proposed method supports vessel trees of various sizes with an
arbitrary number of outlets, contrary to existing approaches to map
the walls of the human carotid that only consider a limited region of
the vessel with a specific geometry [55, 59].

Furthermore, we investigate a use case for the flattening. We inte-
grated the method into a CFD pipeline that simulates blood flow in the
carotids of real patients. We provide a graphical user interface (GUI)
to generate flattened depictions of the extracted wall geometries, on
which scalar fields can be mapped. The tool supports navigation of
the 3D and 2D spaces as well as the temporal dimension through in-
terpolated animation of time steps. The demonstration focuses on the
carotid as an example of a highly relevant application area. However,
we also show how our method can be generalized to any vessel tree.

5.1 objectives

The objective is to create a flattening through surface parameterization.
We assume the vessel tree is a triangulated surface with vertices V and
faces F , where (i, j, k) ∈ F with i, j, k ∈ V means that the vertices i, j, k
form a triangle. The 3D position of a vertex i is denoted by vi ∈ R3.
We want to find a configuration of (u, v) parameter coordinates where
each vertex vi = (xi, yi, zi) corresponds to exactly one point (ui, vi).
For an unambiguous representation of scalar field data on the flattened
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surface, we aim for a bijective mapping between the 3D and parameter
space. No overlaps or triangle flips should occur.

The goal is to facilitate use cases in CFD and medical research, where
surface attributes on the vessel need to be analyzed. This analysis
involves localization of certain attribute distributions to understand,
e.g., where irregularities occur. Naturally, not only the location but also
the size of these feature distributions need to be accurately portrayed
for visual analysis. Therefore, the parameterization needs to preserve
surface area if possible. Simultaneously, the surface layout should be
intuitive, i.e., it should be easy to recognize anatomical features and
mentally project them into the 3D space. All parts of the input surface
should be visible, even if in specific cases some side branches might be
less medically relevant. Mapping the total surface per default makes
the technique more generally applicable. Also, for CFD research, it is
important to examine and compare the behavior of parameters on the
whole surface that defines the simulation domain.

We expect the input mesh to be triangulated and assume open
boundaries at inlets and outlets, which is the typical morphology of
vessel walls in CFD blood flow simulations. The rest of the mesh should
be watertight and not contain self-intersections. The vertex indices
of each triangle must be ordered consistently with normals pointing
outwards. As we focus on vasculature, we assume a tree-like surface
structure where sub-branches on average get thinner as compared
to their root branch. Result data can be given as scalar/vector fields
discretized on V or F . It should be kept in mind that vessels do not
consist of perfect cylinders and small deformations are the norm. Also,
stenoses are possible that can disturb the cylindrical shape.

5.2 cutting

To find a valid surface parameterization that can be rendered in a flat
layout, the input mesh must be cut such that it becomes homeomorphic
to a disk. We want to find natural vessel cuts that are necessary for an
intuitive flattened layout. We define natural vessel cuts as follows:

1. The first cut starts at the inlet boundary of the vessel tree.

2. At each branch of the vessel tree, the cut splits in two child cuts,
one for each branch.

3. At each outlet boundary exactly one cut terminates.

4. Cuts may only intersect at the point where they connect.

5. Wherever possible, cuts travel in the longitudinal direction of
cylindrical vessel segments.

This results in a minimal number of connected cuts that slice open
each vessel segment, creating a single surface patch. The definition is
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(a) Generic disk cut. (b) Minimizing geodesic distance.

(c) Natural vessel cuts (ours).

Figure 27: Different cutting approaches that all result in a mesh homeomor-
phic to a disk.

similar to the boundary creation as described by Marino et al. [205].
However, we additionally impose the last point as a crucial condition.
Cuts should remain on one side of the cylinders and not wrap around
them. By taking this requirement into account, we can generate cuts
that enable intuitive mental mapping between 3D and 2D, as the surface
will “unfold” in a consistent orientation. The advantage of these cuts
becomes apparent when compared to the traditional approaches of
either using a generic cutting algorithm [115] or minimizing geodesic
distance (see Figure 27). We create natural vessel cuts by following the
minimal principal curvature, which, on a cylindrical object, defines a
tangent field along its length.

5.2.1 Sorting boundaries

To create the cuts we first find the set of existing boundary vertices
VB ⊂ V . We select an arbitrary vertex in VB and recursively search
for one neighboring vertex that is also in VB until we found a loop.
Then, the process is repeated with an unvisited boundary vertex until
all boundary vertices are visited. This gives us one ordered boundary
loop for the inlet and one for each outlet. To prepare for the flattening
where these loops are effectively “unrolled”, we check that the loop
orientation is consistent with the winding order of the mesh faces.
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Figure 28: The minimal principal curvature is aligned with the vessel direc-
tion, serving as the basis to orient the natural vessel cuts.

This means a vertex candidate is only appended to a loop if it and
the previous vertex would occur in the same order as they do in the
face they share. They can only share one face as they are both on
the boundary. This condition only needs to be tested for the second
vertex of a new loop, as two neighbors to the first vertex are possible
candidates. Ultimately, we sort the list of loops by the arc length of the
loops. We expect the root of the vessel tree to lie at the thickest branch.
Hence, the longest boundary loop is considered to be the inlet, all
others are considered to be outlets. The advantage of this procedure is
that no manual landmarks need to be set.

5.2.2 Aligning curvature

We compute the principal curvature directions at each vertex and
extract the minimum principal curvature Cmin ⊂ R3, which is a good
geometric estimator of the longitudinal direction along a cylinder. The
idea was also employed by Lichtenberg and Lawonn [189] to compute
a continuously increasing scalar field across a vessel tree. We use the
method by Panozzo et al. [241] to compute the principal curvature
cross-field. The principal curvature is numerically solved on a best-fit
quadric over the neighborhood of each vertex. This method is fast and
robust. It allows the definition of a scale for the quadric based on the
average edge length of the mesh edges e. As in the original proposal,
we set the scale to a default of 5e. Then, the quadric fitting will take
into account a large portion of neighboring vertices, which effectively
smoothens noise and parts of the surface that deviate from the ideal
cylinder. As such, the curvature field will be aligned with the overall
shape of the vessel tree. It is robust against irregularities in the vessel
structure, small aneurysms, and deformations from stenoses.
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A problem when using the principal curvature is that the sign of
individual elements ci ∈ Cmin is ambiguous. At each vertex ci or −ci
can be computed. We need all directions in Cmin to be aligned towards
the root of the tree geometry. We resolve this ambiguity as proposed
by Lichtenberg and Lawonn [189]. First, the geodesic distance G ⊂ R

is computed as a scalar field over V , where each vertex is assigned
the distance to the inlet boundary. We use the geodesics in heat
method [69] as it is fast and sufficient for the purpose. As G increases
strictly monotonously over the vessel tree, we can use its gradient at
vertex positions gi ∈ ∇G to obtain the aligned curvature Z :

zi =

ci, if ⟨ci, gi⟩ < 0

−ci, otherwise.
(4)

The resulting field of aligned minimal curvature is shown in Figure 28.

5.2.3 Finding optimal paths

The mesh is now sliced open with natural vessel cuts that when traced
from outlets to the inlet minimize deviation from the directions given
in Z . We will use cuts that run along existing mesh edges, i.e., no
new topology will be introduced in the process. This makes it simple
to map any data fields between the 3D and 2D representations, as a
complete set of (u, v) coordinates will be defined.

Picking any two vertices on the mesh, an optimal path can be found
between them by interpreting the mesh as a directed graph. In this
graph, a unique node exists for each element in V and each mesh
edge is represented by two directed graph edges, one in each direction.
By associating each directed edge with a travel cost, we can find the
path between two selected nodes that minimizes the total cost. For
simplicity, we use Dijkstra’s algorithm [78] to find the path. Due to
its logarithmic complexity, it also scales with large meshes. The cost
function can be used to control the path. From a mesh vertex vi edges
exist to any direct neighbor vj. When setting the cost to the Euclidean
distance from vi to vj, the path – along existing edges – with minimal
geodesic length is found:

Eg(vi, vj) = ||vj − vi||. (5)

In this case, the graph could be undirected. To minimize the deviation
of the path from the aligned curvature zi at vi, however, we need
directed edges with costs:

Ec(vi, vj) = 1 −
〈 vj − vi

||vj − vi||
,

zi

||zi||
〉
. (6)
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(a) (b)

Figure 29: Robust cutting of a carotid bifurcation. (a) Schema of the path
finding for cutting. Paths start at the outlets and connect to the
inlet or the closest existing cut. (b) Resulting cut geometry applied
to the original mesh edges.

Due to the normalization, the edge length is ignored. If edge lengths
deviate strongly from their mean, it is possible to factor in higher costs
for longer edges by interpolating the geodesic and curvature costs:

Ecg(vi, vj) = a · Ec(vi, vj) + (1 − a) · Eg(vi, vj). (7)

This is usually not a problem for meshes used in CFD, which typically
have a semiregular triangulation. Therefore, we found the most intu-
itive cuts ensue from using Ec alone (equivalent to a = 1) but reserve
the option to use Ecg if required.

After creating the graph representation with edge costs, we compute
one cut for each outlet. We resolve the ambiguity of where to split the
path at branch locations by creating the cuts in reverse, i.e., we start
one cut at each outlet, as illustrated in Figure 29. The first cutting path
runs from the largest outlet to the inlet. This initial cut follows the
vessel branches with the largest diameter and, therefore, the highest
flow volume. On this principal branch, the cut will lie as straight on
the vessel geometry as the triangulation allows (cf. Figure 30). Every
vertex that lies on a cut is appended to a set VC ⊂ V . For the following
cutting paths, we iterate the remaining outlet boundaries from largest
to smallest. In every iteration, we find the vertex in VC that is closest
to the starting outlet. Choosing this vertex as the target ensures that
we always hit an existing cut in the vicinity of a branch location and
that cuts do not cross.

We provide two options to decide which point on an inlet/outlet
boundary will be chosen to start or end the cut. (1) The points on a
boundary loop can be connected to a common imaginary node with
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(b)(a)

(c) (d) (e)

Figure 30: Natural vessel cuts on different geometries. (a)-(b) Human carotid
arteries. (c) Cerebral artery with an aneurysm. (d) Aorta with an
aneurysm. (e) Large segment of a carotid.

zero edge costs. The imaginary node is not present on the mesh and is
only used in the graph search. It has only outgoing edges at an outlet
and only incoming edges at the inlet. When computing a cut, the
imaginary nodes ensure that the most cost-efficient path is found. This
requires no further input and is fully automatic. (2) If a cut should
face the observer (which makes it easier to mentally reconstruct the
unfolding process), a single 3D point can be given as a parameter, for
example, the current viewpoint or a fixed location in front of the vessel.
Then, we choose the point with the minimal Euclidean distance to this
location from each boundary loop. Figure 30 shows the robustness
of this approach with different vessel geometries. Finally, the cut is
applied to the mesh by duplicating the vertices in VC and solving the
topology in F accordingly. If data fields are present on the affected
vertices they are copied as well.

5.3 flattening

The flattening should balance area preservation and recognizability of
the anatomy. We use a boundary-free approach, which benefits both
requirements. However, we fix the inlet boundary loop to an iso-u line
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hstem

hleaf

α
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inlet

outlet

outlet
q1

qm

Figure 31: Possible layout initialization that fixes the (u, v) coordinates of
inlet and outlet boundaries to resemble a tree. The angle is set to
α = 45◦ but can be arbitrarily chosen. All other values are read
from the cuts.

centered on (u, v) = (0, 0), which serves as a reference in parameter
space above which the remaining coordinates can develop. Fixing the
inlet this way increases the comparability of different flattenings. We
use the ARAP method for mesh deformation introduced by Sorkine
and Alexa [286], which was extended for single-patch surface param-
eterization by Liu et al. [196]. The ARAP method attempts to retain
distances in triangles, preserving their shape up to a rigid transfor-
mation, which yields quasi-isometric results when applied to surface
parameterization. A trade-off is achieved between area preservation
and conformality. The drawback of this method is that it requires an
initialization of (u, v) coordinates in parameter space. Typically, this
initialization can be done by mapping the surface to a convex shape,
such as a square or circle, for which fast and robust methods exist,
e.g., harmonic parameterization. We found, however, that the tree-like
structure of the mesh is not suited for this approach and extensive
overlaps occur within the parameter domain. A better way is to pro-
vide a flat initialization that already resembles the expected target
layout and then use ARAP deformation to restore the proportions as
observed on the 3D surface.

Different ideas have been proposed for the layout of vessel maps,
depending on the use case, as discussed in Chapter 4. We first simplify
the convoluted 3D vessel shape. We fix the inlet and outlets to prede-
termined (u, v) coordinates and move them to their desired locations,
as shown in Figure 31. Each inlet/outlet loop contains an ordered set
of boundary vertices p1, ..., pn ∈ R3. We re-order the loops such that
they start at the cut and the last vertex pn is the copy created of p1

during the cutting. The loops are unrolled as straight lines, where
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each boundary point pi ∈ R3 is associated with a point in parameter
space qi ∈ R2. Given the arc length of one such loop

s =
n

∑
i=2

||pi − pi−1||, (8)

we create an intermediate initialization of the mapping that preserves
the arc length:

q̃i =



−0.5s

hleaf

 if i = 1

q̃i−1 +

||pi − pi−1||

0

 otherwise.

(9)

The resulting line is centered around the v-axis in parameter space.
The height hleaf approximates the length of the vessel segment that
is capped by the boundary loop (cf. Figure 31). The intermediate
mapping is then recursively displaced by the transforms Φ1, ..., Φd,
where d is the branch depth of an outlet:

qi = Φ1 ◦ ... ◦ Φd(q̃i), Φ(q̃i) = Rq̃i +

(
0

hstem

)
. (10)

This is effectively a transformation hierarchy, where the displacement
of a segment is passed on to all child segments. The 2 × 2 matrix R
describes a rotation around an angle α. The angle can be constant or
vary depending on the geometry or desired layout. We automatically
determine the sign of α by testing if the branch lies to the left or right
of the stem it is attached to. A good approximation for the heights
hstem and hleaf can be read from the scalar field G by subtracting the
value at the start from the value at the end of the corresponding vessel
cut. Note that slight variations of the heights do not affect the result, as
the (u, v) coordinates will be displaced in the ARAP stage anyway. The
parameter coordinates of the LSCM step only serve as an initialization.

After the boundary loops are fixed to the (u, v) plane, the remaining
surface coordinates need to be mapped to the parameter domain. It
is not important which algorithm is used for this purpose, as long as
it creates a bijective mapping that is adequate for use with the ARAP

method. As originally proposed [196], we use LSCM [185] for this step.
LSCM requires at least two fixed (u, v) coordinates but does not need
a fixed boundary. We solve the LSCM with fixed inlet/outlets, which
results in a flattening that already approximates the desired layout
(see Figure 32). Finally, the (u, v) coordinates are optimized with the
ARAP method, which displaces the 2D mesh such that it retains the
proportions of its 3D counterpart wherever possible (a quasi-isometric
parameterization). In this last step, only the inlet boundary remains
fixed. Results of the flattening on different geometries are shown in
Figure 33.
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Figure 32: Stages of the flattening. The cut mesh is first flattened to a prede-
termined layout using LSCM. Then, ARAP is applied to retain the
original proportions.



102 automatic vessel wall maps

(a) (b)

(c) (d)

(e) (f)

Figure 33: The flattening applied to different geometries. Overall, the area is
visibly preserved. We keep the general layout of the vessel trees but
complex shapes are straightened, yielding a better overview. (a)
Phantom data set of a bifurcation. (b)-(e) Human carotid arteries.
(f) Cerebral artery with an aneurysm.
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5.4 application

A possible application for the flattening is result analysis in CFD

workflows. Therefore, we applied the flattening method to analyze
simulations of blood flow in the carotid arteries. The overarching
goal of this line of research is to better understand the pathological
progression of vascular diseases, e.g., how the arterial wall is affected
by blood flow in the vicinity of stenoses. These insights could reveal
why stenoses often first develop in regions like the carotid bifurcation
or siphon and lead to additional markers for clinical decision-making.

The input of the simulation is a model of the carotid inner and outer
walls. The data is acquired by solving a fluid-structure interaction
problem. The underlying simulation consists of the incompressible
Navier-Stokes equations for a Newtonian fluid and its interaction with
a linear elastic vessel wall modeled as a 3D geometry with thickness.
The fluid equations are equipped with a velocity function at the inlet
boundary and a “do-nothing” boundary condition for the normal
stress at the outlets. The vessel wall is considered to behave as a linear
elastic material with its outer wall moving freely. The continuity of
fluid and solid velocities and the continuity of forces are maintained
at the fluid-structure interface.

Artificial truncation of the vessel results in surfaces perpendicular
to the blood flow which are kept stationary throughout the simulation.
A density of ρblood = 1000 kg

m3 [308] and constant blood viscosity of
µ = 0.00345 Pa·s are chosen [210]. The vessel wall has a Young’s
modulus between E = 0.25–0.75 MPa, a Poisson’s ratio of ν = 0.17,
and a density of ρvessel = 1100 kg

m3 . The cyclic inflow profile of one heart
cycle (0.9 s) has peak systolic and diastolic velocities of 0.59 m

s at 0.2 s
and 0.29 m

s at 0.55 s, respectively. For insights into pathophysiological
risk parameters we evaluate the WSS:

WSS :=

√√√√ 2

∑
j=1

(
(T · n) · τ(j)

)2 (11)

and the NWS on the fluid-structure interface:

NWS := (T · n) · n (12)

with the fluid Cauchy stress tensor T, the unit outward normal n,
and the unit tangential vectors τ(j). Parameters that are defined on
the whole wall domain, such as displacement, stresses, and strains,
can either be evaluated on the fluid-structure interface or the outer
vessel wall since they stay approximately constant in radial directions.
The CFD simulation was solved with the finite element method (FEM)-
based partial differential equation toolbox COMSOL 6.0 [65]. With
around 60k elements and an average element-to-volume ratio of 10−4,
the simulation over two cardiac cycles takes approximately 43 hours
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on two Intel® Xeon® Gold 5115 CPUs @2.4 GHz and 256 GB DDR4
RAM.

The simulation results in temporally resolved scalar fields and a dis-
placement vector defined on each vertex. For the output analysis, we
use a discretization increment of 0.02 s over the span of 1.8 s. These are
effectively 90 time steps that contain two heart cycles. Exploring this
spatio-temporal domain is a non-trivial task, which is why we apply
the map for the visual analysis of the result data. As in Figure 34, we
show the 3D wall geometry on which any computed scalar field can be
color-mapped. The temporal dimension can be explored through ani-
mation or the selection of time points, where we smoothly interpolate
the data between time steps. If wall displacement was computed it
can be animated in the 3D view. We provide a GUI to apply the cutting
and flattening to the observed model. The method can be seamlessly
integrated into the analysis workflow. Cuts automatically face the
viewer and the mesh is flattened on demand. The animated colormap
is synchronized automatically between the 3D and 2D domains. We
found the 2D view especially useful during temporal exploration (see
Figure 35), as the whole domain is constantly visible. No interaction
is necessary as compared to the 3D rendering, where only ever one
side of the model can be shown and self-occlusions of geometry may
occur.

5.4.1 Implementation

The cutting and flattening are implemented in Python, where time-
critical tasks are executed on C++ libraries. The mesh processing
largely relies on the implementations in libigl1 [136]. We use a heap
queue for Dijkstra’s algorithm to achieve logarithmic complexity. The
user can interface with the cutting and flattening through a GUI that
also allows the exploration of surface fields. All common mesh formats
supported by libigl can be loaded. CFD data is optional and supplied
through a table. The application integrates a PyQt2 GUI with OpenGL3

3D rendering. If CFD data is available, we use a texture to pass the
surface deformation (three components) and the selected scalar field
(one component) to the GPU. The texture contains one entry for
each vertex and time step, allowing us to interpolate the temporal
dimension at interactive speed.

5.5 results and discussion

We tested our system with carotid vessel trees segmented from five
patients. The models we used vary in length, morphology, degree

1 https://libigl.github.io/

2 https://www.qt.io/

3 https://www.opengl.org/

https://libigl.github.io/
https://www.qt.io/
https://www.opengl.org/
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Figure 34: A surface parameter (WSS) is colormapped to a carotid artery. In a
3D projection (top) interaction is necessary to examine the whole
surface. We propose an automatic method to cut and flatten vessel
trees, which shows the full surface while retaining its proportions
and layout (bottom).
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Figure 35: The flattened geometry can be used to map parameters, like NWS

(top) or WSS (bottom). This is particularly beneficial for analysis
of the temporal evolution as the whole surface can be assessed at
once.

of stenosis, and mesh resolution to cover a broad range of scenarios.
Overall, we found the surface area to be well preserved in the 2D

mappings (see Figure 33), which is to be expected due to the ARAP

optimization. This makes it possible to accurately assess the distribu-
tion of scalar fields on the surface. Additionally, the area preservation
along with the natural vessel cuts lead to an undistorted visualization
of the vessel circumference. This shows where narrow parts of the
vessel are located. For instance, in Figure 33b the two stenoses close
to the carotid bifurcation are visible in the flattened mesh. We also
maintain the general shape of the vessel tree and the orientation of
branch locations. This helps to mentally map the flattened surface to
the original 3D structure. Complex bends and twists are straightened
by the layout constraints we impose (cf. Figure 31). This filters out
unimportant geometrical information and provides a simpler view of
the data.

5.5.1 Performance

All tests of the cutting and flattening were executed on an AMD Ryzen
7 5800X processor with 32 GB of RAM. See Table 1 for the impact of
different steps and model sizes on the overall performance. For typical
use cases of meshes with 10k to 50k triangles, the cutting and surface
parameterization executes in 1–12 s. Therefore, we found the flattening
can be easily integrated into an analysis workflow. The user only
needs to set the frontal direction before initiating the cutting, which
determines the starting location of the cut on the mesh. The parameter
is set automatically by positioning the camera, making this interaction
efficient and intuitive. Currently, the slowest step is the application
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Table 1: Timings in seconds of each cutting/flattening step for meshes of
different sizes. |F |: Number of triangles. Z : Computing and aligning
curvature. GC: Graph conversion. VC: Finding cutting paths with
Dijkstra’s algorithm. AC: Applying the cuts to the mesh topology. L:
Layout initialization. F: Flattening stages LSCM and ARAP.

|F | Z GC VC AC L F Total

4k 0.1 0.1 0.1 0.1 < 0.1 < 0.1 0.5

13k 0.3 0.4 0.3 0.7 < 0.1 0.1 1.9

13k 0.3 0.4 0.4 0.4 < 0.1 0.1 1.7

19k 0.5 0.6 0.5 1.1 < 0.1 0.1 2.8

20k 0.4 0.7 0.6 1.7 0.1 0.2 3.6

24k 0.8 0.8 1.1 2.4 0.1 0.2 5.3

28k 0.6 0.9 1.2 2.9 0.1 0.3 5.9

44k 1.2 1.4 2.3 5.6 0.4 0.3 11.2

300k 16.2 9.1 38.1 109.0 1.0 2.3 175.8

of cuts to the mesh topology. This bottleneck is due to the indexed
face-set data structure we use. Performance could be improved by
integrating a mesh data structure that enables more efficient cutting.

5.5.2 Generalizability

The application demonstration shows the potential of the flattening for
the analysis of carotid wall parameters. The presented algorithm is not
specific to certain geometries but can be used for a variety of domains,
as well as large and small sections of the carotids (see Figure 33). The
inlet and outlets are automatically detected. Also, the branch layout
does not affect the result, i.e., our method is robust against bends
or twists of the vessel. The flattening with attribute mapping would
also be equivalently applicable for measured instead of simulated
wall properties, for instance, plaque occurrence or wall thickness.
Furthermore, we demonstrate that the method can be applied to other
vessel trees, not just the carotids. We show examples of cerebral and
aortic vessel trees with aneurysms (cf. Figure 30 and Figure 33), which
pose similar problems in CFD and medical research. Last but not least,
the cutting is independent of the flattening stage. As a result, natural
vessel cuts could be used in other scenarios or with a completely
different flattening approach.
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Figure 36: The flattening does not resolve self-intersections of the layout. This
can be problematic for trees with many branches.

5.5.3 Limitations

LSCM and ARAP ensure that no triangle flips occur and the surface is
parameterized as a single patch. However, self-intersections may still
appear in the parameter domain. In some models, we could observe
this happening close to branch locations. These overlaps could only be
solved by introducing area deformation. Also, they only affect small
portions of the parameter domain. Larger overlaps can ensue from
more complex vessel trees with numerous branches and sub-branches.
In Figure 36 the flattening produces noticeable artifacts as the ARAP

optimization relaxes the mesh such that it intersects itself. Our layout
initialization (see Figure 31) does not account for possible overlaps
of segments. Therefore, we would advise against using the flattening
method for overly complex vessel trees. The cutting, however, is not
affected by the number of branches and can be applied to any tree
(see Figure 37).
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Figure 37: The cutting performs well even on complex structures like this
arterial tree segmented from a liver.

5.6 conclusion

In this chapter, a fully automatic technique for cutting and flatten-
ing vessel tree geometries was presented. Natural vessel cuts were
introduced that remain on one side of cylindrical vessel segments and
face the observer when possible. Furthermore, we demonstrated a
use case for the analysis of fluid-wall interaction simulations in the
human carotids. The application is not limited to the carotids but
can be generalized to similar tree-like structures. In contrast to other
approaches, the technique requires only the surface mesh as an input
and creates a boundary-free parameterization that is quasi-isometric
and retains the original vessel shape. The cutting is robust and will
always return a valid disk cut given a tree-like geometry, where the
cut connections will be at branch locations. The flattening always
results in a single connected patch. We presented an automatic way to
determine a layout for the flattened geometry that can be used for the
carotids or vessel trees with similar complexity.

In the future, the layout initialization could be improved with ad-
ditional constraints that prevent overlaps of segments. Further ideas
include leveraging the flattened geometry for more advanced visual
exploration and interaction techniques. Camera control, as well as
brushing and linking of interesting regions, could be facilitated by the
flattened geometry. Due to its visual simplicity, the 2D depiction could
also be used to create comparative views of data set collections. Such
overviews would be advantageous when comparing patient cohorts
or CFD parameter sets.
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6
V I S UA L I Z I N G B L O O D F L O W I N C A R O T I D
S T E N O S E S

Finding stenoses of the ICA and accurately determining their severity
is a crucial clinical task in stroke prevention diagnostics, as reviewed
in Chapter 2. A well-timed surgical intervention prevents the closure
of the critical artery and drastically reduces the possibility of plaque
particle separation (embolization). However, choosing the best mo-
ment for surgery and determining the optimal treatment strategy
requires a thorough analysis of each case and typically involves mul-
tiple specialized experts. Today, two widely implemented diagnostic
methods for carotid stenosis are CTA and Doppler ultrasonography.
CTA is used to determine vessel morphology, i.e., the 3D shape. Ul-
trasonography reveals some hemodynamic properties, describing the
blood flow. The parameters measured with each modality need to be
mentally combined to derive a decision.

Recent years have seen advances in simulated hemodynamics, which
derive properties of the flow field based on CFD [44, 271, 293]. This
emerging domain could substitute or complement the information
gained through sonographic assessments. CFD can generate high-
resolution hemodynamic information based on patient-specific mor-
phology and can also be applied to regions where ultrasound signals
are distorted or occluded. The comprehensive work covering medical
flow visualization shows that carefully designed exploration methods
can support the transfer of simulated hemodynamics into medical
research and practice [234], see also Section 3.3. We propose to extend
these efforts to cover the domain of stenosis analysis in the carotids.
In particular, better visualization tools would allow the integration
of hemodynamic and morphological features, which are currently
separately assessed. This chapter introduces concepts of how medical
practitioners could navigate the spatio-temporal data space faster and
more effectively by using sophisticated exploration methods. An appli-
cation that integrates these methods was implemented, attempting to
aid in the identification, comparison, and evaluation of stenoses. Ulti-
mately, the goal is to facilitate clinical decision-making and, therefore,
advance stroke prevention.

As this chapter is motivated by the conjecture that visualizing blood
flow in the carotids could support real-world analysis tasks, we follow
the recently proposed outline to a data-first design study [237]: We
contribute a stakeholder analysis, concluding that medical practition-
ers could benefit from simulated flow in the human carotids. We then
analyze and abstract the data and tasks involved in studying blood
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flow properties w.r.t. stroke prevention. Based on our conclusions, we
distill the most promising methods developed in medical flow visual-
ization, which we adapt for the exploration of carotid hemodynamics
and morphology. We implemented and tested these methods and dis-
cussed our approaches with an interdisciplinary group of physicians,
simulation researchers, and flow visualization experts.

6.1 domain characterization

The vascular models used in blood flow simulations are often seg-
mented from already available volume images, which means that no
additional diagnostic methods are necessary to acquire the data. In
the case of carotid hemodynamics, CTA scans are routinely performed,
vessel segmentation algorithms based on these scans exist [203], and
a variety of CFD techniques were developed [198]. On this basis, we
analyzed who would profit from this data, which types of tasks exist,
and whether visualization methods needed to be adapted to better
facilitate these use cases. We took this data-first perspective [237] to
better understand the challenges and opportunities the data poses
before applying it to a problem. Further, we intend to provide an
initial frame to the domain of visualizing flow in the carotids and
outline possible directions.

6.1.1 Data Abstraction

CFD simulations of blood flow span a wide range of methods pro-
ducing different results. On an abstract layer, however, the types and
semantics of the outputs are comparable. The simulation computes
attribute fields over the domain, which can include scalars (e.g., pres-
sure) and vectors (e.g., velocity). Each field is resolved in a spatial
dimension, which can either refer to the volume inside of the vessel or
the wall. Spatial data granularities contain the region of the vascular
tree used in the simulation and the spatial resolution, describing the
number and size of individual cells. If physical time is simulated, the
fields are also temporally resolved. Temporal data granularities are the
aggregate, for example, the number of cardiac cycles that are simulated
in total, as well as the temporal resolution, which effectively describes
the number of discrete time steps that are output.

In general, CFD allows full control over the spatial and temporal res-
olutions and the aggregate. The simulated region is only constrained
by the lumen visibility in the underlying volume data. This creates
opportunities for flow analysis beyond the capabilities of traditional
diagnostic methods, as hemodynamic and morphological information
are intrinsically combined in the simulation domain. In addition to val-
ues like velocity that are already used in clinical routine, simulations
can compute supplementary parameters which could be linked to the
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pathological progression of stenoses, such as wall shear stress [327]. It
should be noted, however, that computational flow models necessarily
rely on simplifications, which poses challenges. The role of CFD to
derive hemodynamic factors is controversial due to the difficult valida-
tion of the generated data [323]. Results have been shown to vary [274],
depending on the employed methods of segmentation, mesh creation,
and flow simulation. Only gradually, increasingly sophisticated meth-
ods are able to produce robust calculations that are reasonably close
to measured parameters [293].

6.1.2 Stakeholder Analysis

Currently, medical and simulation researchers are actively working
with flow data generated by CFD in various domains, including carotid
hemodynamics. Their tasks evolve around the validation and compar-
ison of models, as well as hypothesis forming and testing. The second
group of stakeholders who could profit from detailed carotid flow
parameters are medical practitioners, foremost neurologists and neuro-
radiologists. The additional information could help make therapeutic
decisions, plan interventions, and evaluate treatment success.

We reached out to several independent stakeholders: a flow simu-
lation researcher (13 years of experience) working with carotid data
sets, a neurologist (15 years of practice), and a radiologist (30 years
of practice). Both physicians are involved in the treatment of stroke
patients. We discussed the prospects of simulated blood flow analysis
for stroke prevention and the current state-of-the-art in each field.

Medical and simulation researchers use workflows that rely on
standard depictions of the result data, e.g., color-coded vessel wall
geometry. These depictions could presumably be improved to enable
more direct comparisons and integrated evaluations of multiple pa-
rameters. However, when speaking with medical practitioners, we
found another issue: Even though CFD use for carotid hemodynamics
has been extensively studied [198], the transfer to medical practice
is low. A possible reason is that such simulations miss validations
and derived implications seem to have a small impact [323]. Another
possibility might be that the generated data is difficult to grasp for
clinicians and does not target their immediate necessities. Most likely,
a combination of both factors is involved, which makes the applied
use of computed carotid blood flow difficult. If the data is not broadly
validated it cannot be used to derive implications and will not be
integrated into clinical workflows. However, if it is not integrated,
large-scale trials that could validate the data are less likely. We be-
lieve that exploration and visualization methods tailored to clinical
needs could help bridge the gap between research and application.
For this reason, this chapter focuses on possible clinical use cases. We
conjecture that visualization methods developed to derive insights
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from other types of hemodynamic simulations, like blood flow in
aneurysms, can be selectively adapted to fit these scenarios.

6.1.3 Task Abstraction

Our goal is to identify which types of visual displays are required
to map the information derived from CFD to the tasks involved in as-
sessing carotid stenoses. We iteratively discussed possible approaches
with the physicians and found that the typical tasks performed when
analyzing stenoses condense to the following: First, possible stenoses
need to be identified. This is a substantial task, as often patients ex-
hibit more than one critical region with a buildup of atherosclerotic
plaque. Second, morphological features are analyzed w.r.t. questions
like: What is the diameter inside and after the stenosis? Over which length
is the vessel constricted? If precise values are needed, they are usually
measured based on CTA. We found that these first two aspects re-
quire large parts of the vessel to be visible, as the morphology of the
whole artery is taken into account. Third, hemodynamic features are
analyzed, typically based on ultrasonography. Physicians are mostly
interested in the two time points of highest (systole) and lowest flow
(diastole). What is the peak velocity? Is turbulence visible?

In addition to the primary tasks, further inquiries revealed processes
that are performed in parallel and might not be obvious at first but are
equivalently important. For one, the location of a stenosis determines
possible treatment and intervention strategies. An intracranial stenosis
needs to be handled differently than one at the bifurcation. This is a
trivial factor, however, it needs consideration, as visualizations should
not remove this context information. Further, it should be factored in
that full assessments include the analysis of tissue around a stenosis.
If plaque causes the vessel constriction, its type (e.g., soft or calcified)
and configuration (e.g., even or fractured) can be used to judge the
pathophysiological factors at play. This answers questions like: How
fast did the stenosis develop? How likely is the rupture of plaque? Last but
not least, the left and right-side carotid are often contrasted for a full
picture to inquire, for example: Does one side compensate for a stenosis in
the other? We summarize these findings in four types of tasks that a
visualization needs to cover:

T1 Gain an overview of the attribute space and find relevant points.

T2 Probe selected spatio-temporal data points.

T3 Compare observations regarding time and side (left vs. right).

T4 Explore the context of global and local anatomical features.

We presume that CFD simulations of carotid blood flow could fa-
cilitate these tasks and enhance state-of-the-art diagnostics. Routine
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Figure 38: The pipeline used in this work. The carotid lumen is reconstructed
from CTA volumes. Based on the models, a simulation of the hemo-
dynamics is performed, resulting in discrete flow fields for both
sides over multiple time steps. The simulation results can then be
explored with our framework. Navigation relies on the centerline
of the segmented models and we incorporate the original data for
contextualization and validation purposes.

CTAs could serve as a sensible basis for further data processing. If a
sufficiently broad domain is segmented T1 could be assisted. A 3D

model reconstruction in combination with computed flow fields could
further support advanced probing (T2). Fine spatial resolutions can
be achieved in the simulation and morphological attributes like the
diameter are accessible. A temporal resolution is also available. For
comparison (T3), flow in the left and right carotid can be computed
and the results can be displayed in a synchronized visualization. Lastly,
the CTA and the simulation data complement each other. Therefore, we
propose an integrated visualization, which includes the CTA volume
and allows to evaluate near and far context (T4).

6.2 pre-processing

We obtained 13 CTA data sets of patients with differing degrees and
locations of carotid stenoses. From these volumes, we segmented the
lumen of the full CCA and ICA on both sides until the vessels split
into smaller branches. We also include parts of the ECA close to the
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bifurcation, which are required for a correct flow simulation. We
used the level-set method from the VMTK [7] and subsequent manual
corrections to perform the segmentations. Then, we computed the
centerline of the extracted vessel tree based on the 3D Voronoi diagram
of the geometry, as this method yields robust and accurate results [310].
Each centerline consists of around 3000 points, providing smooth
and consistent lines. Furthermore, the vessel radius is computed as
a convenient byproduct, since the procedure aims to maximize the
enclosed spheres.

We used the freely available toolkit OpenFOAM [236] to generate
volume meshes of the segmented carotid lumen and perform the CFD

simulation. We applied a standard velocity profile at the inlet of the
CCA which models a typical flow waveform of the cardiac cycle [5].
Solving the Navier-Stokes equations lead to patient-specific flow in-
formation, where blood is considered an incompressible Newtonian
fluid. For each data set, we simulated three cardiac cycles (about 2.7
seconds) from which we saved 30 equidistantly spaced time steps. The
full pipeline is illustrated in Figure 38.

6.3 methods

We chose and adapted a variety of methods developed in flow visu-
alization and implemented them in a framework that allows simul-
taneous exploration of the morphology and hemodynamics of both
carotids. Over our implementation cycles, we converged on the layout
shown in Figure 39, combining four linked views. We present the 3D

domain as either a surface rendering or a streamline visualization
(A). The data space navigation is split into the temporal and spatial
components of the CFD results. Orientation in the temporal dimension
is facilitated by a line graph showing the volumetric flow rate in each
vessel (B). This depiction is representative of the simulated cardiac
cycles. A sought time step can be selected by dragging a slider across
the graph. The spatial orientation is aided by a vessel map (C), which
provides at-a-glance information on the vessel diameter. The location
of the probes is determined by markers in this reduced depiction,
which can be dragged over the domain and snap to the nearest vessel.
The probe views (D) show cross-sections of the vessels at the selected
spatio-temporal data points and enable a comparison of the two sides.

A simulation parameter can be selected and is mapped via a col-
ormap shared in (A) and (D). Technically, the framework is capable
of showing arbitrary scalar fields. However, in this study, we focused
on velocity magnitude and pressure as these are the conventional
attributes utilized in clinical routine. We use the Viridis colormap, as
its colors are perceptually uniform and can also be perceived by most
forms of color blindness [197].
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Figure 39: Screenshot of the application. Four views are linked. (A) 3D de-
piction of the domain that either displays a surface model or
streamlines. (B) Graph of the flow rate for temporal navigation.
(C) Map of the carotids for spatial navigation. (D) Cross-sections of
the vessels at the probe locations.

6.3.1 Domain Overview

We show an initial overview of the 3D geometry as a surface render-
ing to give a general impression of the morphology. The colormap
encodes parameter values on the surface. This view can also be set to
display a streamline rendering (see Figure 39A), showing the structure
of the flow and the value distribution inside of the vessel for the se-
lected parameter. We chose integral lines instead of glyphs or volume
rendering, as they are best suited to reveal occurring turbulence. We
found that physicians tend to evaluate singular time steps, e.g., at
peak systole where the highest flow occurs. Therefore, we chose to dis-
play streamlines rather than other types of integral lines or animated
particles because they display the state of the flow field at exactly one
time step. This aids in the overview task (T1) and minimizes necessary
interaction.

The streamline seeds are placed in 100 random cells of each carotid
volume mesh, resulting in a display that broadly covers the domain.
We use the adaptive Runge-Kutta integration scheme [170, 266] of 5th
order with a maximum propagation of 0.2 meters (about the length of
the carotid). When rendering the streamlines we apply two techniques
that have proven to be beneficial in similar scenarios [234]. First, we
use front-face culling to add context information about the vessel wall
without occluding the lines. Second, we render implied tubes instead
of lines, which are shaded to enhance depth perception.
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Figure 40: The map creation follows this blueprint. The branches are con-
verted into lines, keeping the length l between the segments.

6.3.2 Vessel Map

In 3D depictions of vessel trees, self-occlusions are usually unavoid-
able. Considerable user interaction is required to assess all parts of
the geometry. This makes the diameter of the vessel lumen difficult to
compare across the full domain and means that developing stenoses
might be overlooked. In the past years, dimensional reduction tech-
niques were effective to overcome these types of issues [163] and
many approaches to construct vessel maps were proposed [343], as
reviewed in Chapter 4. In this sense, we construct a 2D map of the
segmented vasculature to enable at-a-glance assessments of the diam-
eter and increase the comparability of data sets based on this abstract
representation.

In the map the CCA and ICA are combined to a fixed straight line,
providing an overview of this clinically relevant segment. Neighboring
vessels, like the ACE, are drawn splitting off at a constant angle, e.g.,
ϕ = 30◦, to indicate branch locations and give the map a tree-like
appearance. Computation of the map is performed as follows: We
treat each branch of the vessel centerline as a curve described by
the 3D points p1, ..., pn connected in ascending order. This curve is
straightened to a line made up of the corresponding 2D points q1, ..., qn.
The main branch (CCA and ICA) is laid out first and side branches are
recursively connected at their relative positions. Given the recursion
depth d ∈ N0 and a start point q1, which is either at 0 for d = 0 or the
branch location otherwise, the mapping for one curve is defined by:

qi = qi−1 +

(
cos(ϕd)

sin(ϕd)

)
· ||pi − pi−1|| ∀i ∈ [2, n] (13)
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Figure 41: Map of the carotids used for overview and navigation. The line
thickness encodes the vessel radius. Zooming in shows that the
stenosis is about 20 millimeters long.

This procedure preserves the geodesic distance between points, show-
ing the accurate length of each vessel segment in the map. A schematic
of this approach is shown in Figure 40.

As mentioned earlier, we already retrieved the radius information of
the inscribed sphere at each sample location of the centerline. We now
map this information to the flattened representation by scaling the
thickness of the rendered line. We first used a linear scaling, however,
we found that differences in the line thickness did not become obvious.
We overcame this problem by using a non-linear scaling which shrinks
“small” radii and enlarges “large” ones. This emphasizes narrow re-
gions and thus highlights possible stenoses. Small and large radii
are distinguished with a threshold value t. We use t = 3 millimeters,
which is the average radius of the carotid in a healthy adult [60]. Each
radius ri is then scaled by

s(ri) = t1−ara
i , (14)

where a ∈ R ≥ 1 determines the “linearity” of the scaling. A value
of a = 1 produces a linear scaling. We found stenoses to be suitably
emphasized at around a = 2.

The vessel map is constructed for each of the two carotids. Then, the
maps are displayed in a combined depiction, where we flip the left-side
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carotid vertically and align the vessel trees in a stacked format (see
Figure 41). We register them horizontally at the bifurcation, which is
the defining landmark. Our plot allows zooming and panning and we
label the horizontal axis with millimeters. This way, the flat depiction
can be used to measure the length of a stenosis in the ICA. The CCA,
ICA, and ECA are automatically labeled.

6.3.3 Flow Rate Graph

To give the user a sense of the temporal dimension, we plot the inflow
volume of each side over time, resulting in a view showing superposed
line graphs (see Figure 39B). This is a beneficial depiction for two
reasons: First, temporal patterns regarding the vascular system are
commonly based on the cardiac cycle. The flow rate graphs provide an
overview of the simulated cardiac cycles and, therefore, tie in with the
background knowledge of the users. Second, the volumetric flow rate
is a vital global parameter, which essentially determines the quantity
of oxygen a vessel can transport. As the flow rate cannot be easily
measured in-vivo, it is typically not used in practice. In a simulation,
however, the in- and outflow volumes are always known or can be
derived. Therefore, they should be visually integrated to provide an
impression of the transported blood volume.

As two graphs are used, the flow rate of the left and right carotid
can be directly compared. Further, the display is leveraged to show the
flow rate inside specific vessel branches. A second line is rendered per
side in a dashed style, illustrating the flow in one additional branch.
This can be used to compare how much of the total flow is received
by one branch, e.g., the ICA. Displaying the flow rate in more than one
additional branch per side would clutter the superposed line graphs.
Therefore, we select this branch based on where the spatial probe is
located. As the simulation assumes incompressibility of the fluid, the
flow rate is equal at every location in one vessel branch.

6.3.4 Navigation and Probing

We aim to visually guide users to derive relevant insights quickly,
thereby minimizing the necessary interaction. Simultaneously, we
want to make the spatio-temporal data space (T2) accessible, allowing
all parameters to be thoroughly assessed. In our use case, the temporal
dimension appears to be utilized less during exploration. It is often
set at the beginning of the analysis process and is only infrequently
adjusted. Therefore, we approach this optimization problem by par-
titioning the controls for data exploration into temporal and spatial
navigation.

We use the flow rate graph as a tool for temporal navigation. It
reflects the cardiac cycle, providing an intuitive sense of time. Points
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of interest, typically the systolic and diastolic time steps, can be easily
discerned. We integrate a slider that can be dragged over the plot,
which selects the nearest time step in the data series and updates all
views accordingly.

Probes are placed via the vessel map, as it presents the full spatial
domain in one depiction and is designed to highlight relevant regions,
where stenoses could be located. We use a triangular marker to indi-
cate the probe position, as it is conveniently selectable and does not
hide information about the vessel thickness. This omits the need for
ambiguous placement interactions in the 3D domain. There exists a
variety of options for how a spatial probe could be implemented. In
the discussions with the domain experts, we concluded that vessel
cross-sections, i.e., plane cuts, would be most useful. They show the
vessel shape for morphological assessments and the parameter dis-
tribution (e.g., the velocity profile) for hemodynamic analysis. Also,
they resolve the full scale of the simulation and cover the whole do-
main, which complements the streamlines that can only show a subset
of values. The optimal plane cut is usually orthogonal to the vessel
direction. This is the most accurate representation of the diameter,
which would otherwise be elongated in at least one axis. Therefore,
we compute the direction of the cutting plane as follows. The plane is
positioned on the selected 3D point pi and oriented according to the
normal n̂ defined by:

n =
1
5

i+5

∑
j=i+1

pj −
1
5

i−1

∑
k=i−5

pk, n̂ =
n

||n|| (15)

By averaging the predecessors and successors, noise on the centerline
is reduced, which would otherwise lead to jittering when the plane
is dragged. The method requires i ∈ [6, n − 6], which means the
plane cannot be placed at the far edges of the centerline. However,
regions proximal to the inlets and outlets should not be included in
the analysis anyway, as they are likely to contain simulation errors.
By relying on the vessel map for positioning and by automatically
orienting the cutting plane, only minimal interaction is required to
place the plane and none to orient it.

The resulting cut could be shown in the 3D view. However, such a
display of the vessel cross-section would suffer from perspective distor-
tion and the viewer’s direction would need to be changed depending
on the probe position, to see it fully. Therefore, we implemented a
separate 2D view of the cross-section, which is aligned on the vessel
center (see Figure 39D). We overlay the probe view with a millimeter
grid to enable measurements and size estimations. Simultaneously,
we indicate the probe location in the 3D view with the same 20 × 20
millimeter grid. Furthermore, the computed diameter is displayed
below the probe view, as it is an important quantifiable parameter. It
is also hinted at as a circle to allow validation of the numerical output
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Figure 42: Dragging the probe reveals the hemodynamics of stenoses. Usually,
the velocity profile should be homogeneous with slower flow in
proximity to vessel walls (1). Velocity increases in stenoses (2),
followed by visible turbulence (3 and 4).

in regions where the vessel is more elliptical. For direct comparisons
(T3) we display two probe views, one for the left and right carotid. We
differentiate between the two sides in all views using labels and uni-
fied colors. To facilitate a fluent evaluation of the parameter domain
along the vessel centerline, the probe can be interactively dragged over
the vessel map. The probe view then shows an animation of how the
diameter changes and helps to analyze how turbulences behave (see
Figure 42).

6.3.5 Contextualization

We determined that, for a full assessment, surrounding structures
need to be evaluated (T4). To give a sense of the global context, we
embed the original CTA data on-demand into the 3D scene using
volume rendering. The definition of transfer functions for volume
rendering is a demanding task. As the depiction is only intended to
show additional context information, we simplify this for the user. We
use preset transfer functions (intensity to color, intensity to opacity,
and gradient to opacity), which we derived from functions that have
been found suitable in coronary artery visualization [106].

Some control, however, is given to the user, as the region of interest
can vary depending on the task, e.g., whether vessels or tissue should
be shown. Also, the value ranges of CTAs are not universal due to dif-
ferences in the contrast agent diffusion. Two sliders are implemented
for this purpose: The first shifts the window of the visible value range
and the second defines the overall opacity. This way, the user can
quickly adjust the density region shown and determine how dominant
the volume rendering should be. The final scene is rendered using
volume ray casting with composite blending. This method allows a
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internal jugular vein
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Figure 43: Hemodynamics visualization with contextual volume rendering
enabled. (a) The context rendering shows that the stenosis is
located in the upper neck area. (b) Adjusting the thresholding
and opacity reveals that the internal jugular vein is in front of this
stenosis, potentially complicating surgery.

hybrid depiction of the polygonal models (segmented carotids and
streamlines) within the CTA volume. Figure 43 illustrates how this
could facilitate far context analysis.

The contextualization is also extended to the 2D probe view, to show
the near context of tissue and possible plaque surrounding the vessel
cross-section. We sample the CTA volume with the probe plane. The
resulting texture is optionally displayed in the background of the
probe view. It is rendered with shades of gray similar to the standard
CTA representations. We map the Hounsfield Unit range [−800, 1200]
linearly to the gray levels [0, 255].

The primary purpose of the contextual CTA slice is to enable the
analysis of plaque on the vessel walls. However, it is also useful to
validate the segmentation, as demonstrated in Figure 44. The user
can adjust the opacity of the model cross-section to reveal all of the
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Figure 44: The probe can also sample the CTA volume. This allows to (a) as-
sess plaque and (b) validate the segmentation at crucial locations.
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Figure 45: The probe follows the vessel’s direction when dragged. This gives
an accurate depiction of the lumen diameter, which is essential
when assessing the stenosis at (c). Probing the CTA volume unveils
the cause of this stenosis – a buildup of plaque on the vessel wall.

original data if desired. With this representation, the CTA volume
can be explored similarly to the spatial simulation domain. Dragging
the probe across the vessel map reveals the varying shape of the
carotid, occurrences of plaque, and changes in the contrast agent
diffusion. Aligning the view plane orientation to the vessel direction
allows a consecutive evaluation of the vessel following the orthogonal
cross-section (see Figure 45). This gives a more accurate view of the
vessel morphology as compared to using a fixed slice orientation,
which is the typical exploration method in practice. Furthermore, no
deformation of the volume is introduced, as is the case when applying
planar reformation methods [314].
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6.4 evaluation

We conducted qualitative reviews with seven domain specialists (2
female, 5 male; 26–61 years old), including the three experts we spoke
to during the stakeholder analysis. To evaluate if the methods we
adapted aid in the defined tasks, we first individually interviewed two
radiologists, one neurologist, and one neuroradiologist who routinely
treat stroke patients. We reviewed the concept of flow simulation based
on CFD and explained the pipeline used to generate our data sets. Then,
we introduced them to our framework and demonstrated how it can
be used to simultaneously explore hemodynamic and morphological
information. We explained each view and the ideas behind it. Then,
we consecutively presented three data sets of differing types (full
stenosis, developing stenosis, and no stenosis). For each set, we asked
the participants to interact with the framework themselves and explore
the data as if they were to perform a diagnosis. We inquired what they
could tell us about the data sets and which information they could
gain from the visualizations. We encouraged them to think aloud
during this process. Afterward, participants filled out a questionnaire.
We associated each view with a series of statements relating to the
tasks the view was designed for. Participants were to rate how much
they agreed with the statements on a five-point Likert scale (−−, −,
◦, +, ++). We also showed two pictures of the vessel map, one with
linearly scaled diameter mapping and one based on our non-linear
scaling method. Without knowing the scaling parameters, participants
were to choose on which map they could better identify possible
stenoses.

While physicians can evaluate how useful the proposed methods
would be in practice, they are less aware of which exploration and visu-
alization approaches exist to display CFD data. To determine whether
we chose and transferred fitting flow visualization techniques and
which other options might exist, we extended the evaluation. We
interviewed two researchers working with CFD simulations of the
carotids and a flow visualization expert with a research background in
aneurysm hemodynamics. We followed a similar evaluation procedure,
however, we did not ask the experts to perform mock-up diagnoses.
Instead, we demonstrated the steps clinicians took when exploring
the data sets, summarizing what was important during clinical as-
sessments. In the questionnaire, we omitted the parts relevant only
to physicians, e.g., regarding the analysis of plaque in embedded CTA

data. We discussed whether other visualization methods were known
and could be applied.
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6.5 results and discussion

All participants quickly understood the linked views and were able to
explore the data without noticeable difficulties. When the clinicians
examined the example data sets, they mostly defaulted to a single
systolic time step and analyzed the domain at this point of peak flow.
They immediately identified the stenoses (T1) and predominantly
used the framework to probe the surrounding velocity magnitudes
and vessel diameters. For this task, the vessel map was extensively
used as a navigational tool. All experts preferred the non-linear over
the linear diameter scaling. They did not see an issue with over- or
underestimation of the diameter, as the map was mainly used for
localization of potential stenoses, which were then assessed in detail
using the probe view. The radiologists pointed out that dragging the
plane probe along the carotid shows cross-sections well suited for
probing (T2), as they could instantly evaluate the lumen diameter,
shape, and condition of the wall over a vessel segment. In some cases,
participants placed a probe at an equivalent point on the opposite
carotid to compare the diameters (T3). All physicians extensively used
the contextual CTA slice around the probe (T4) and appreciated the
integration of hemodynamic information on top of the CTA. However,
participants also mentioned that they felt uncertain about the cor-
rectness of the computed values. Parts of the carotid branches in the
cranium form a vascular short circuit between the left and right sides.
Due to this connection, a severe stenosis of one side often leads to a
reversed flow in the following section of the ICA. As flow is typically
simulated separately for each carotid, this phenomenon is not repre-
sented. Therefore, we argue that hemodynamic simulations of carotid
stenosis could be improved by enlarging the compuational domain
and taking further cranial branches into account.

The interviewed simulation and visualization experts generally
found the selected methods suitably chosen and adapted. They had
only minor recommendations and improvement suggestions. One CFD

expert proposed to include quantified information on stenoses, e.g.,
the minimum diameter at a predicted stenosis. This could be included
in the vessel map view for a faster initial comparison of multiple
stenoses. The flow visualization expert suggested extracting plaque
geometry in addition to the vessel lumen and integrating it into an
overview depiction (the 3D or the map view). Calcified plaque could
be automatically segmented from CTA and used to indicate regions
where pathological processes occur.

The questionnaire results can be seen in Figure 46. They reflect the
generally positive impressions of all participants. Still, some aspects
should be discussed. The volume rendering was well received for the
localization of stenoses, but was less used to explore surrounding
structures, as participants found the noise distracting. Filtering could
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Figure 46: Results of the questionnaire with color-encoded Likert scores.
Each box shows the answer of one participant.

be applied to remedy this issue, however, this would not be a trivial
task, as context information should not be occluded. Different types
of structures (e.g., tissue, vessels, or bones) can be of interest, which
makes the definition of automatic filters difficult.

One assertion in the survey led to disagreements: The framework
appropriately combines hemodynamic (as in Doppler ultrasonography) and
morphological information (as in CTA). Two participants argued that the
hemodynamic data shown is simulated not measured, i.e., the frame-
work does not combine information but rather shows additional data.
One could suggest that we should have phrased the statement dif-
ferently, to better reflect our actual workflow. Then, we could argue
that the validity will increase with better simulations available. As
this would likely not affect how the data should be visualized, we
could dismiss the issue as outside of our research domain. However,
we want to draw attention to this point, as it is, again, indicative of an
important challenge: Many clinicians see the validity of the simulation
results as a barrier to the practical adoption of CFD methods. We re-
visited this discussion with researchers from both sides (medical and
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CFD) and singled out a core problem: advances in the CFD domain are
rarely brought to the attention of physicians, and the requirements of
clinicians are often unknown to researchers in the field of CFD. This
bottlenecks clinical integration of computed flow data, which would
be necessary for large trials that could support data validation. We
believe that visualizations of simulated data could be key to solving
this issue, as they can provide clinicians with appropriate views on
the computation results, which has a high potential to improve inter-
disciplinary communication. Furthermore, our discussions led to two
options for how visualizations could directly address the uncertainty
around simulated flow data: A possible approach would be to register
measured data from CTA and ultrasonography in a combined visual
display. This is a challenging objective due to the low resolution and
high noise associated with ultrasound assessments. Also, ultrasonog-
raphy is usually not recorded in a way that CTA or MRA are but used
mainly for live exploration. Another option is to use sonographic
measurements to initialize boundary conditions for the simulation in
areas where ultrasonography can be performed. Ideally, this would
combine the advantages of ultrasonography and CFD.

6.6 conclusion and future work

In this chapter, we investigated how medical flow visualization can be
applied to enhance the diagnostic evaluation of carotid stenoses. We
developed and tested an application with four linked views, which
enables physicians to explore the vessel morphology in combination
with simulated hemodynamics. Our findings indicate that many con-
cepts from flow visualization research can be transferred to match
specific tasks in this scenario. We found geometry abstractions to
support overview tasks and the identification of points of interest.
We stress that this appeared particularly useful for spatial navigation,
as demonstrated by the vessel map we employ to place data probes.
Further, we would like to emphasize the importance of contextual-
ization in medical visualization, which is a key feature of this work.
Context information can not only be used to localize stenoses but
also to explore important additional features (such as plaque), and
perform on-the-fly validations. We also realized that some caveats
should be considered when developing visualizations with respect to
stenosis analysis. For clinical use cases, the local view of flow patterns
and parameters in the vicinity of stenoses should be complemented
by a more global perspective. To gain a full picture, it is crucial that
the general distribution of blood flow and the occurrences of multi-
ple stenoses can be explored. Furthermore, we found the temporal
dimension to be of less importance than we first anticipated. From
our evaluations and discussions, we assume that a depiction focused
on the systolic and diastolic values could be more useful in practice
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than the integration of a high number of time steps. Lastly, it should
be noted that CFD can generate an extensive amount of data. The
exploration of this data in application scenarios, such as medical diag-
nostics, can be cumbersome and prevent the integration into routine.
It is therefore essential that the core tasks of users are distilled first,
followed by tailoring methods to match these tasks exactly, aiming
to minimize necessary interaction. In this study, developing the right
exploration techniques played a similarly important role as choosing
and adapting visualization methods.

In the future, a central objective should be to increase the validity
and, therefore, the applicability of hemodynamics computed with
CFD. We mentioned two options for how visualization could advance
these efforts. First, different modalities (e.g., CTA and ultrasonogra-
phy) could be visually integrated. Then, data visualizations could, for
example, illustrate which parts of the data were measured and which
were simulated. Second, a larger vascular domain could be segmented
to compute the correct flow properties of arterial short circuits. This
would pose the question of how such an extended domain could be
depicted without cluttering the view. Furthermore, we prioritized
parameters that are widely used, such as flow velocity and vessel
diameter. However, CFD is often employed to generate complementary
attribute fields, which could also play a role in pathogenesis. To foster
a better understanding of such additional factors, future work should
aid in the investigation of occurring patterns. This would contribute
to understanding the initiation and development of stenoses. Cohort
visualizations could facilitate this endeavor by enabling comparisons
across patient collectives. Potentially, this would allow further insights
to be derived which could then be applied to supplement diagnostic
assessments.
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A F U L LY I N T E G R AT E D P I P E L I N E A R C H I T E C T U R E

Model-based vessel visualization provides a wide range of specialized
tools for aiding clinical analysis tasks [251, 252]. It also opens up the
possibility of automatic feature classification [176]. The drawback is
that advanced model-based vessel visualizations tend to have a high
adoption cost, as they typically depend on multiple fragmented tools
for data curation and processing. The same holds for the approaches
described in Chapter 5 and Chapter 6. A comprehensive visualization
of the stenosis shape, anatomical context, and flow information is
only possible with sophisticated prior data processing. Keeping this
processing opaque to the end user may not only hinder efficient
adoption but also negatively impact user trust. With highly processed
data, how can users assure the correctness of what they see? In this
chapter, we approach this challenge by proposing a fully integrated
pipeline for segmentation, pre-processing, and visual analysis of the
carotids. As its fundamental principle, the pipeline interface enables
interactive and retrospective user control over all data processing
stages. Through the pipeline design, we target increasing user trust by
making the underlying data validatable on the fly, decreasing adoption
costs by minimizing external dependencies, and optimizing scalability
by streamlining the data processing.

7.1 introduction

There already exist a number of data processing frameworks designed
for researchers working with vascular models. The VMTK [7, 135] is
a suite of command-line scripts for segmentation, centerline creation,
vessel mesh processing, and volume mesh generation. There are also
generalized, multi-purpose software frameworks for processing medi-
cal volume data, most notably 3D Slicer [151] and ImageJ [276]. Due
to their high versatility, they are broadly used. However, due to their
steep learning curve and vast range of functions, in terms of usability
for specialized (clinical) tasks they cannot compete with individual-
ized tools specifically designed for these purposes. Considering the
prevalence of cardiovascular disease, it is unsurprising that abundant
proposals have been made to improve monitoring, treatment planning,
and medical research using techniques from the visualization tool-
box. This includes volume renderings [167], image reformations [221,
263], map-like depictions [343], and visualizations of hemodynamics
(blood flow) [234]. These individualized tools, however, are difficult
to implement in practice due to their typically high number of exter-
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nal dependencies and complex pre-processing requirements. Notably,
in almost all related medical applications, data processing happens
separately from data visualization. The processing pipeline is usually
present but not fully integrated into the final application. From the
user’s perspective, this means there is no insight into the correctness
of the data and no easy way to fix errors or adapt the presented mod-
els. We identify four major bottlenecks for the practical transfer of
methods that we aim to address with our approach: (1) the users’ trust
in what is visualized, (2) the efficiency of using a visualization with
new data, (3) the compatibility of the used data formats, and (4) the
scale at which such systems are validated.

To analyze carotid stenosis, essential objectives are the proper as-
sessment of the stenosis location, degree, composition, and shape,
i.e., the vessel morphology. In this chapter, we introduce a fully inte-
grated pipeline to efficiently extract and visualize 3D vascular models
from CTA images. We pair AI-assisted segmentation and automatic
feature extraction with carefully selected user interaction options in
a processing pipeline with step-wise visual feedback. Based on the
resulting vascular models, we introduce a specialized tool to imme-
diately detect, assess, and accurately classify stenoses of the internal
carotids. The pipeline is outlined in Figure 47. It aims to target the
identified transfer bottlenecks by streamlining data processing. Giv-
ing the user carefully chosen control over the pipeline then allows
for uncomplicated validation of data and even on-the-fly correction,
ultimately improving understanding and trust in what is shown. Addi-
tionally, a modularized pipeline design supports the implementation
of new processing steps and visualization modules. We elaborate on
the design of the pipeline for the analysis of stenoses of the inter-
nal carotids. The concept could be transferred to other domains like
cranial circulation [219], aneurysm risk-assessment [213, 214], liver
surgery planning [189], or the analysis of heart valves [340, 341]. In
summary, this chapter contributes:

• A fully self-contained processing and visualization pipeline for
carotid bifurcation geometries.

• A modularized and open-source framework design, which al-
lows easy integration of processing and visualization modules
interfacing with a shared patient database.

• A novel visualization for highly efficient carotid stenosis detec-
tion and classification implemented as a pipeline module.

To evaluate the effectiveness of the approach, the pipeline has been
used to generate 152 carotid bifurcation models from real patients.
We hope that this will provide a basis for further research to validate
vessel visualization methods more broadly. The open-source code of
all integrated modules and the carotid model database are available
online [48, 347].
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Figure 47: The integrated pipeline is split into three pre-processing modules
(the crop module, the segmentation module, and the centerline
module) and one visualization module (the classifier module) to
analyze vessel stenoses. At any time, the user can inspect and, if
necessary, make corrections to any of the processing steps. The
results are automatically propagated.
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7.2 bottlenecks in clinical transfer

The traction of vessel visualization techniques and frameworks in
clinical practice has been notoriously challenging when compared to
other, non-medical, application domains. These challenges are partly
attributed to the difficulty of properly developing and evaluating med-
ical visualizations [253] – user studies with a large number of highly
specialized medical experts are not a conceivable option – and also
to the integration of new algorithms into clinical workflows, which
requires going through elaborate legal procedures. These obstacles
mean that, for most visualization researchers, it is not lucrative to
sustainably determine the benefits of new vessel visualizations. From
the literature on vessel visualization systems and discussions with
clinicians we do, however, repeatedly get the impression that advanced
visualizations of vascular features, including morphology, connectiv-
ity, wall parameters, and blood flow, do posses a high potential value
for diagnosis and treatment. So why are they only sparsely adopted?
While various probable reasons exist, in discussions we kept iterating
on a particular aspect: commonly, in prototypical development, the fo-
cus is not the streamlined integration of data processing. This leads to
the fact that many solutions for pre-processing, segmentation, feature
extraction, and visualization exist, yet most of them are individual
and scattered. At the same time, these solutions are becoming more
and more complex, as they tackle increasingly sophisticated problems,
making it harder to functionally connect them. From this lack of inte-
gration, we distill four aspects that are dominant bottlenecks for the
clinical transfer of vessel visualization techniques:

B1 Trust. With highly processed data, how can a user assure the
correctness of what they see? This is an exceptionally critical
factor in clinical environments. Medical personnel has to be able
to fully trust the algorithms and their results, partly without
understanding how they are computed. In medical decision-
making, the liability question is always a focal consideration.
Physicians bear immediate responsibility over their patients’
lives and, thus, need to know to which extent they can trust a
data representation.

B2 Efficiency. Many advanced medical visualization frameworks
have a high adoption cost, as they depend on various fragmented
tools for data curation and processing. The result is that small
corrections early in a processing pipeline often require extensive
effort to propagate through later stages.

B3 Compatibility. Additionally, these tools sometimes suffer from
high interface costs, as specific data formats with varying degrees
of standardization are used [103].
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B4 Validation Scale. Typically, only a handful of example data sets
are used for the development and validation of vessel visualiza-
tions, as processing steps like model extraction or simulation are
profoundly time-intensive. This reliance on selected data sets,
however, may lead to unwanted side effects, such as algorithms
and visualization techniques that are overfitted, i.e., biased to-
ward certain data attributes. Repeating the performed processing
steps with new data might be more challenging than initially
anticipated. In the worst case, this results in low generalizability
and transferability.

7.3 system design

This chapter introduces an approach to address the described bot-
tlenecks using the example of visual carotid morphology analysis.
Advancing the detection and classification of carotid stenoses has a
high potential value due to the frequency and severity of the affliction.
In routine diagnostics, a suspected carotid stenosis is screened using
angiographic volume imaging, typically a head and neck CTA, as out-
lined in Chapter 2. Of particular importance is the stenosis degree
SNASCET ∈ [0%, 100%], based on the NASCET criteria [88]. It requires
the minimal inner diameter inside a stenosis dmin and the normal
poststenotic vessel diameter dnormal , see also Equation 1. In practice,
the exact positions for measuring dmin and dnormal are not known and
are subject to the estimate of the physician. The stenosis degree then
needs to be considered in light of all factors, including the general
anatomy, progression, and composition of the stenotic region.

In discussions with two collaborating physicians who treat stroke
patients, one radiologist and one neurologist, we found that a tailored
visualization based on an extracted model of the carotid could aid
in these tasks. The efficiency could be improved if the identification
and classification of stenoses could be performed faster. Also, the
classification accuracy would benefit from a computed diameter that
can be used to derive the stenosis degree objectively and automatically.
Additionally, general qualitative aspects could be enhanced, like the
assessment of the overall anatomy, insight into the 3D distribution of
plaque, and communication between professionals could be fostered.
To meet these goals, however, we require a 3D reconstruction of the
vessel lumen, as well as a diameter model, e.g., based on a centerline.
The necessary processing of the image data automatically runs into
the bottlenecks discussed above.

As a way to alleviate the low transferability that usually results
from complex data processing, we propose a fully integrated, adap-
tive, and modular pipeline. Integrated means that all tasks around
data processing and visualization can be performed within a single
software framework. A minimal data interface that only requires the
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Figure 48: User interface of the analysis framework. (A) Module selection bar.
The crop module is currently active. (B) Global discard and save
buttons. (C) The data inspector shows the list of available data
sets and which files exist for the left and right carotid. (D) Slice
view of the crop module. The left and right volumes can be set
here. (E) Volume rendering of the CTA scan with the selected crop
regions highlighted.

CTA image data in standardized Digital Imaging and Communications
in Medicine (DICOM) format as input ensures maximal compatibility
(B3 Compatibility). By adaptive, we mean that manual edits at any
pipeline stage will propagate to the later stages automatically, where
only the necessary parts of the data are updated. This greatly simpli-
fies validating and correcting the models (B2 Efficiency) and fosters
a better understanding of the processing steps (B1 Trust). Modular
means that the pipeline is compartmentalized into secluded process-
ing and visualization stages with minimal data interfaces between
them. Processing modules may be optional and new modules can be
easily integrated. The database resulting from the processing modules
is shared between distinct visualization modules. This means new
visualizations that provide a different view of the data can simply be
appended, allowing direct comparisons and evaluations.

The overarching objective of our work is to increase the efficiency,
accuracy, and quality of clinical workflows. However, we noticed that
more concern should fall on intermediary goals, primarily increasing
the trust medical users have in the data views. We consider this the
only way to ultimately increase the adoption rate of promising vessel
visualizations. With the integrated pipeline, we target to give the user
insight into the processing stages directly. We believe these stages
should be automated where sensible, but at the same time, control
should be enabled where required. We found that this balancing act
of controllability versus ease of use is a considerable challenge on its
own.
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7.4 system implementation

The pipeline takes as input only the raw CTA images of patients as
they are exported by clinical workstations (DICOM format). As shown
in Figure 47, three data processing modules are integrated for crop-
ping the original volume, segmenting the carotid lumen and plaque,
and computing the vessel centerlines and diameter information. In
each stage, the results are saved in standard formats. Volumes and
masks are written as nearly raw raster data (nrrd) and triangulated
surface models as STL files. This enables easy integration of further
processing modules if desired. Similarly, plain visualization modules
can be appended, which do not modify the data but only visualize it.
We propose one such module for detecting and classifying stenoses.
The system user interface is shown in Figure 48. The pipeline stages
are layered on top in left-to-right order. In each stage, the user can save
and propagate or discard changes they made. The selected module
is shown in the window center. A database view can be toggled that
displays the imported patients and shows which files were created per
case. All files can also be externally used if desired. We append ad-
ditional header information in the files to achieve cross-compatibility
with typical volume image processing tools like 3D Slicer.

The implementation is Python-based with backend C/C++ libraries
to allow an efficient setup and development while reducing any per-
formance compromises. The user interface is developed in PyQt for
platform independency. New modules can be easily integrated as Qt
widgets. The segmentation module uses PyTorch for machine learning
with a U-Net architecture from MONAI [47]. The 3D visualizations are
based on the Python VTK wrapper and 2D graphs are created with
PyQtGraph1 to enable smooth real-time interaction.

7.4.1 Crop Module

Before the vessel can be segmented from the input image, the regions
of interest need to be cropped. The subsequent automatic labeling
stage uses a CNN, whose quality can be significantly improved by
consistently providing a small target domain with a fixed resolution.
To crop the image, we first show an axial slice view of the volume (see
Figure 48 left), which the users are familiar with, as it is commonly
used to analyze the carotids in CTA. The user can set the desired win-
dowing by dragging on the image, which is a common interaction in
radiology workstations. Selecting any point close to the carotid bifur-
cation automatically positions the bounding box of the crop region
around that point. We include voxels in a fixed region of 35 × 45 × 80
millimeters, which describes a reasonable section around the carotid
bifurcation in adults to cover any possible stenoses. The region of

1 https://www.pyqtgraph.org/

https://www.pyqtgraph.org/
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interest is also indicated in a volume rendering (see Figure 48 right) to
facilitate the quick assessment of the 3D box position. We use a transfer
function preset that highlights vascular structures, but the transfer
function may also be modified. The user can place one crop region
each for the left and right sides. When saved, the volume is cropped
and interpolated to a fixed resolution of 120 × 144 × 248 voxels using
the windowed sinc kernel, as it provides favorable passband charac-
teristics, preserving local contrasts [182]. If a segmentation already
exists, for example, if the user decides to adjust the region of interest
retrospectively, the segmentation label map is not discarded but only
cropped to align with the new region extends.

7.4.2 Convolutional Neural Network

Deep neural networks, CNNs in particular, have rapidly evolved and
been widely used in medical image analysis [195]. Inspired by the
biological visual system [191], CNNs were designed to process data
with grid patterns through convolution operation with kernels, and
thus are ideal for image processing and analysis. One of the main
components of a CNN is a group of convolutional layers, which can
automatically extract spatial features from an input image in a hier-
archical manner. For image segmentation, one of the most popular
candidates is the U-Net [262], which is a CNN variant proposed for
biomedical image segmentation. A U-Net consists of a contracting
(encoding) path for feature extraction and a symmetric expanding
(decoding) path for precise localization and image dimension restora-
tion. U-Nets have been extensively studied and improved in recent
years [62, 81, 284]. To segment the carotids in CTA volumes, we chose
a state-of-the-art 3D U-Net implemented in PyTorch from MONAI [47].
The input to the network is the cropped CTA dataset. The output is
the predicted segmentation mask with three channels: background,
lumen, and plaque. We manually segmented 37 datasets, which we
then split into training (25), validation (6), and test (6) sets. The pre-
processing steps include windowing (Hounsfield units [180, 650]) to
remove irrelevant structures, as well as normalization to the intensity
range of [0, 1]. The data was augmented by random horizontal and
vertical flipping with a probability of 0.5. The network was optimized
using Dice loss, which is robust against class imbalance [291] and
trained for 100 epochs with a learning rate of 0.001 and a batch size
of 4. The network performance was evaluated on the test datasets,
reaching a Dice score of 0.776. Note that this score also contains the
plaque label whose shape and proportions vary extensively between
datasets and is thus hard to train for.
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Figure 49: In the segmentation module, the result of the automatic labeling
can be reviewed in a slice-based view (left). The resulting 3D model
is shown in a second view. If adjustments are required, the user
can switch into edit mode (right), where multiple drawing tools
are available to correct the segmentation mask.

7.4.3 Segmentation Module

While the automatic labeling of the carotid vessel lumen and plaque
produces highly useful results and the trained models have substan-
tially improved in recent years, the segmentation masks do sometimes
contain errors. Especially patients with atypical anatomy, e.g., with
complex plaque distributions, are difficult to train for. To cover all
possible input data, a correction mechanism must be in place that
ideally allows the user to quickly inspect and adjust the segmentation
mask without leaving the application. In the segmentation module,
we show an axial view of the cropped CTA region with an outline
of the segmentation mask rendered on top (see Figure 49). To make
adjustments of the segmentation directly visible, next to the slice view
we show the extracted 3D models of the lumen and plaque. The model
is continuously and automatically generated by applying discrete
marching cubes [114] to the segmentation label map. It is smoothed
with a windowed sinc filter [297] (20 iterations, passband 0.005).

When the user decides to switch to edit mode, we show a direct
overlay of the discrete segmentation mask in which pixel-precise
changes with a brush and eraser are possible. With the brush, new
pixels are labeled as plaque or lumen while the eraser removes the
label of the current volume and inscribes the pixels as background. The
size of the brush can be adjusted with a slider. The user can choose to
draw or erase either two-dimensionally, i.e., in the individual slices, for
precise corrections, or three-dimensionally with a spherical volume to
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Centerline
 

Computation

Figure 50: In the centerline module, the user can select the approximate start
and endpoints of the desired centerline tree by clicking on the
model. The resulting lines can be reviewed before they are saved.

cover more area faster. A marker shows the current drawing position to
facilitate the navigation of the brush both in the slice and the 3D view.
To further simplify the manual editing, a threshold can be set which
restricts drawing to the image values above. This threshold allows
locally adjusting the image value range that is considered lumen or
plaque and quickly drawing over larger areas without overwriting
the background. The finished segmentation can then be saved and
the generated models are propagated to the subsequent modules.
A fundamental advantage of the integrated pipeline is that edits
can also be made retrospectively, for example, if during the analysis
of the vessel morphology an inaccuracy in the model is suspected.
Retrospective changes are also automatically forwarded and the data
is updated in all consecutive modules.

7.4.4 Centerline Module

To enable analyzing the change in vessel width, we compute a cen-
terline tree using the medial axis method, which gives us the radius
of the maximally inscribed sphere, i.e., the minimal internal radius,
at every centerline point. The minimal lumen diameter is used by
clinicians to determine the stenosis degree, which means, with the
radius information, we can effectively specify the stenosis degree at
any point of the vessel. To compute the centerlines, we use the VMTK

implementation of the method by Antiga et al. [6]. By clicking on the
model, the user can choose the centerline source and target points.
This provides flexibility regarding the number of branches to be ana-
lyzed. The user may select the tip of the internal carotid as a target,
but they can also add the external carotid and any potential further
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outgoing branches that are of interest. Then, the centerline tree is
automatically computed and displayed with the vessel hull as shown
in Figure 50, such that the user can quickly visually inspect the results.

7.4.5 Stenosis Classifier Module

We integrated an interactive visualization module to detect and classify
stenoses of the internal carotid as an example of how the results of the
processing pipeline can be directly used by physicians. The module
consists of two linked views, one that shows diameter plots and a 3D

view of the vessel model (see Figure 51 right). The most important
information is the vessel diameter, for which we chose a simple line
graph as a direct form of representation. We plot the vessel length
(x-axis) against the computed diameter (y-axis). As centerlines for
multiple branches might exist, we show one graph for each branch.
We considered superposing the line graphs to enable comparisons
of the changing diameter after branches, but we later rejected this
approach as it makes the individual diameters less readable. Instead,
we juxtapose the graphs vertically with a shared x-axis and indicate the
branching points with dashed lines (visible in Figure 51D). Hovering
over a graph highlights the respective vessel segment in the 3D model
to intuitively connect the two visualizations. This interaction is shown
in Figure 52.

Candidates for stenoses can be easily spotted as local minima of
the line graphs. To analyze such a candidate, the user can drag a
horizontal line over the plot, which interactively sets a local diameter
threshold. Everything below the threshold is classified as part of a
potential stenosis. This interaction is shown in Figure 51 left. The
selected region is filled with a color in the line graph as well as on the
3D model surface to visually link the two representations. If multiple
stenotic regions are selected, which is a common occurrence in patients
with increasing atherosclerosis, they automatically receive different
colors to make them discernible. We apply a qualitative color map,
which we generated using the ColorBrewer [50].

The central benefit of the interactive region selection is that stenoses
can be instantly and automatically classified, removing the need for ap-
proximating diameters in slice views of the CTA volume. The stenosis
degree, following the NASCET guidelines, is derived from the small-
est diameter dmin inside the stenosis and the poststenotic diameter
dnormal of the vessel. We use the local minimum in each user-selected
region for dmin. As the precise location of dnormal is not defined, we
first default to a diameter at a position that lies ½ of the length of the
stenosis behind it. The user can interactively change this location by
dragging a vertical line on the line chart. One such line is given for
each detected stenosis and is visually linked using the same color. The
position dnormal is also marked with a circle in the 3D view, providing
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Figure 51: The classifier module is composed of a diameter graph for each
branch modeled by a centerline and a 3D view of the vessel lumen.
As shown on the top, dragging the branch-specific threshold,
indicated by a horizontal line, segments the corresponding stenosis
candidate in the surface model. Based on the diameter model, the
stenosis degree is automatically computed. (A) Diameter graph of
the common and internal carotid. (B) 3D view of the vessel model.
(C) Diameter graph of the external carotid. (D) The dashed line
shows the bifurcation point. (E) The vertical line can be dragged
to set the sampling point for the poststenotic reference diameter.
This point is also shown on the 3D model by a small disc.
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(a) CCA and ICA (b) ECA

Figure 52: Hovering over the plots indicates the corresponding branch in the
vessel model.

the user with an intuitive way to quickly chose a location where they
consider the diameter to be normal. The stenosis degree is displayed at
dmin under the diameter curve and on top of the 3D model. Hovering
over a stenosis reveals additional information, such as the stenosis
length, and the exact values of dmin and dnormal . Results of the auto-
matic stenosis classification with different degrees of severity can be
seen in Figure 53.

7.5 system evaluation

During the course of the development cycle, we internally evaluated
the system’s applicability by processing a wide range of input CTA

volumes. Our first goal was to validate the generalizability regarding
heterogeneous input (B3). The second goal was to establish a database
of carotid bifurcation models that is publicly accessible for use in
further research. We imported head and neck CTA scans from two
different clinics. In total, we processed 62 patients, resulting in 110
carotid bifurcation models2, one each for the left and right sides. Ar-
teries with 100% stenosis were omitted, as fully occluded arteries are
not visible in the CTA data. The database is available online [347]. To
assess the usefulness of the integrated pipeline for carotid morphol-
ogy analysis, we performed a user study with four physicians who
routinely treat stroke patients. Our goal was to gather impressions
regarding the encodings we use for interactive stenosis classification
and also regarding the concept of the integrated and adaptive pipeline
in general. In particular, we wanted to know if the clinicians’ trust (B1)
is aided by the option to inspect the processing steps and whether they
find the workflow efficient enough (B2) to be applicable in practice.

2 The database was later extended and currently contains 152 carotid models extracted
from 79 patients.
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Figure 53: Exemplary results of the stenosis classifier with increasing stenosis
degree from (a) to (g). The disc glyph marks the sampling point
for the poststenotic reference diameter. If multiple stenoses are
selected, they are differentiated by color, as shown in (f).
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7.5.1 Method

We recruited four neurologists by word of mouth (P1–P4; two female,
two male; ages 34–42). They have 17, 13, 8, and 15 years of working
experience in clinics for neurology, respectively. None have used the
developed software framework before. We conducted individual inter-
views lasting about 60 minutes. We first explained the pipeline concept
and goals and, subsequently, demonstrated the execution of all pro-
cessing steps using an example case. Then, we asked the physicians to
evaluate the carotid morphology and classify possible stenoses of three
patients using the framework. The data sets were not pre-processed,
so they had to perform the cropping, segmentation, and centerline
creation themselves. We chose data sets with high variation in the
carotid geometries and stenosis degrees. One contained no stenosis,
one represented an edge case with mild stenosis, and one had strong
calcifications and multiple stenoses. We deliberately included a case
where we found the segmentation prediction to often exhibit errors,
to see if the participants would find and correct them.

After they interacted with the framework, the participants were
given a questionnaire to rate their impressions of the pre-processing
workflow, the carotid stenosis classification module, and their overall
trust in the application. We used a series of statements, summarized
in Figure 54, regarding the workflow and modules, which the par-
ticipants were to score on a five-point Likert scale (−−,−, ◦,+,++).
We further discussed multiple open questions, including whether the
data views in the analysis framework would present new possibilities
for clinical practice and if they found the insights into the processing
pipeline necessary and helpful. We also compared the results of the
stenosis classification performed by the participants with the stenosis
degree from the radiology report of each case. If the values differed
notably, we asked the physicians how they believed the difference
came about.

7.5.2 Findings

We report on frequent comments and feedback that we gathered
from the interviews. Overall, the framework was very well received.
Participants repeatedly mentioned the advantage of the interactive
stenosis analysis based on the 3D reconstruction, as compared to the
image-based representation they currently use:

“Understanding the location, the shape, the length [of a stenosis]
is immensely important when we discuss surgery, if we should
do an endarterectomy or stenting. The 3D model would be much
better to discuss this. I particularly like that I can also see the
plaque. We often need to estimate if the stenosis is stable or if
emboli can break off.” (P4)
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Experience (y.) 17 13 8 15

Participant P1 P2 P3 P4

Workflow

Classifier
Module

Trust

Understand which vessel section is shown

Generate 3D carotid models

Detect errors in the segmentation

Correct errors in the segmentation

Easy to identify stenoses 

Easy to derive stenosis degree

Fast identification of stenoses

Fast classification of stenoses

Vessel model would aid in clinical practice

Diameter graph would aid in clinical practice

Horizontal slider is helpful (stenosis diameter)

Vertical slider is helpful (reference diameter)

...understanding how the models are computed

...identifying errors in the processing steps

Importance of being able to check the steps

Importance of correcting errors in the steps

Would use tool in clinical routine 

Likert score

Viewing the processing steps aids in...

+++o---

Figure 54: Results of the questionnaire with color-encoded Likert scores.
Each box represents the answer of one physician.

All physicians stated they would find the tool highly useful to support
the screening of the carotids. P3 and P4 asked how they could import
new patients. P1 and P4 requested details about the implementation
and how complicated the setup of the framework would be on their
local system.

The comments the participants made while using the framework
were also reflected in the questionnaire. The results are shown in detail
in Figure 54. All participants found executing the pipeline straightfor-
ward and the processing steps and interactions comprehensible. Only
when correcting errors in the segmentation mask, did P2 and P4 note
that the interaction was occasionally tricky and would require some
training to be smooth and efficient. The physicians agreed that the
stenosis classification module enables highly efficient identification
and classification of stenoses.
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“Seeing the dips in the graph, I can very quickly highlight the
stenosis. That it instantly gives me the stenosis degree is very
impressive.” (P3)

“Computing the NASCET value with this is super efficient. If the
model has no [segmentation] errors, doing all the steps before
is also quite fast, so I think it could be integrated into practice.”
(P4)

All four noted that the ability to smoothly change the reference diam-
eter sampling position is highly advantageous. P1 said, “It is always
different where the poststenotic diameter should be measured. With this, I can
tune the position very accurately and get immediate feedback.”

Regarding their trust in the visualizations, the participants re-
sponded very positively. The general impression was that performing
or simply being able to inspect the processing steps fosters under-
standing the model extraction and preventing errors:

“I would not want to use this [the classifier module] without
being able to check if the model is correct. I can adjust what
I need to see and make quick corrections, that is what makes
this tool actually useful. The automatic NASCET computation is
really neat but it would be pointless if I couldn’t see where the
model comes from.” (P1)

“Seeing the overlay on the CT is really helpful. I can immediately
see if something is not right and correct it. I could even imagine
merging the CT with the last tab [the classifier module], so I don’t
have to switch between the views.” (P4)

One participant (P2), however, argued that she would rather use the
classifier module only, as inspecting the processing stages would be
too time-intensive in urgent situations. Nevertheless, she agreed that
as long as the processing stages were not widely established and
tested for accuracy, there should be an option to manually verify the
correctness of the models.

When we checked the stenosis degree computed with the classifier
module against the degree given in the radiology report, we some-
times found differences in the values. The participants made the same
observation on the example data sets they explored with the frame-
work. Remarkably, when asked which value they thought to be more
accurate, all four claimed they would rather trust the application than
the report:

“It might be more effort to first create the 3D model and make
sure it is correct, but the upside is, I think then it gives us the
most accurate results. Getting the diameters from the CT can be
challenging, it is up to the observer where to measure the two
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values. With the model, the minimum can be found numerically.
And if I can see that the model fits with the CT, I would rather
trust the computed value.” (P4)

7.6 discussion

Our discussions during the interviews showed that the visualizations
of the extracted carotid bifurcation models would benefit the under-
standing of the morphology and aid in clinical decision-making. The
physicians repeatedly stated that the demonstrated visual encodings
allowed them to intuitively assess the lumen shape, the location of
stenoses, and the distribution of plaque. The automatic stenosis la-
beling based on coordinated views, as implemented in the classifier
module, was considered highly promising. Here, the users particularly
cherished real-time interactions, which are directly reflected in the
visualizations. These enable experimenting with suspected stenosis
sites considerably more efficiently than when relying on slice-based
representations only. These observations are underlined by Figure 53,
where it becomes evident that stenoses, even reduced to those at the
carotid bifurcation, vary in their location, shape, and size, making
individual assessments indispensable. If the models are correctly ex-
tracted, the resulting stenosis degrees are also highly accurate, as the
minimum internal diameter can be precisely computed.

In this chapter, we attempted to address typical bottlenecks in the
clinical transfer that arise for visualizations of processed medical data.
In the interviews, we found that the concept of the fully integrated
pipeline allows users to better understand the different processing
stages and assure the correctness of what they see (B1). To enable
these insights, tailored visualizations are key, as they allow uncom-
plicated inspection of each processing step. From the feedback we
gathered, we determine that this approach is an effective way to lower
the adoption costs (B2) since the combined framework can be set up
once as a self-contained unit. The only inputs are the already existing
CTA volumes in the format they are exported from clinical worksta-
tions. This results in increased transferability, which we noticed during
the interviews, as participants were eager to try the framework on
their own data, for which they only needed to import existing image
volumes (B3). Furthermore, to combat algorithmic bias (B4), we lever-
aged the streamlined processing to create a comprehensive database
of models extracted from 62 different patients [347]. This effort was
only viable due to the tightly intertwined processing modules, which
allow new image volumes to be swiftly processed and later edits to
be directly propagated. As a result, the modules were developed and
tested with a large variety of geometries, increasing their robustness
against different inputs.
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It should be noted that even with B1-B4 addressed, the transfer of
methods into clinical everyday use still presents a major challenge.
While the experts agreed that the pipeline would be a useful tool,
many more certification and integration steps are necessary to deploy
such a framework. For these to be feasible, any change in a clinical
procedure must prove to provide a substantial benefit that would
justify integration costs. Therefore, in the next step, we intend to
deploy the pipeline in clinical research, gathering further feedback
and testing the applicability in the real world.

7.6.1 Controllability vs. Ease of Use

When asked about the importance of being able to inspect and po-
tentially correct the processing steps, one of the interviewed experts
argued that the required time to do this properly would be too high
in an applied clinical context. The others disagreed and two even
highlighted the ability to control the pipeline themselves as the most
important feature for enabling adoption. This is indicative of a core
challenge. In an integrated application, like the presented pipeline,
should we favor controllability or ease of use from the users’ per-
spective? Allowing more control will likely produce more accurate
results. Furthermore, our evaluation indicates that pipeline insight
and control do increase user trust and understanding of the processed
data. However, increasing control options makes the whole process
inevitably more complex, which might ultimately backfire and hinder
adoption. On the other hand, favoring automated processing would
benefit efficiency, making the application more suited for time-critical
scenarios. Automating and hiding processing stages, though, comes
at the cost of less fidelity, which could lead to decreased validity
of the results. The challenge is to reduce control options up to the
point where they have the maximum benefit. For example, in the
proposed pipeline, the user may select the endpoints for the centerline
computation. The points could be computed automatically in the back-
ground [189], but the selection can be done quickly, as only a handful
of points need to be clicked, and this short task greatly improves the
results. Automatic endpoint selection can be unstable and the user
might only be interested in a subset of vascular branches. We found a
promising rule of thumb is to automate processes where reasonably
possible, but always let the user inspect stages where automation is
prone to fail. For example, the machine learning models for vessel
segmentation have become impressively capable of delivering fast and
“good enough” results. Still, to cover unusual cases, the user must
be able to correct the geometries. If inaccuracies in the processing
are sometimes observed, in a medical treatment context, the whole
application becomes useless if these errors cannot be reliably detected
and rectified.
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7.6.2 Opportunities and Future Work

The integrated pipeline proposed in this work, together with the
database of already processed and tuned carotid bifurcation models,
lays the foundation for the efficient development of further extensions.
The framework is implemented using a modularized architecture,
where additional processing or visualization stages can simply be
inserted. Conceivable are, for example, modules geared for hemody-
namic simulation analysis or epidemiological cohort studies. Existing
processes could also be improved, for instance, it would be benefi-
cial if the segmentation prediction network would continuously and
automatically learn from the user-corrected masks. In clinical prac-
tice, the carotid stenosis degree is currently estimated from diameters
measured in CTA scans, as well as from blood flow velocities recorded
with Doppler ultrasonography. We plan to evaluate the automatic
stenosis classification in a clinical comparative study to investigate the
differences between these methods.

7.7 conclusion

This chapter presented a system for the visual analysis of the carotid
morphology to improve cardiovascular disease screening and treat-
ment. The methods are implemented in a modular and fully integrated
processing and visualization pipeline. By combining state-of-the-art
techniques, like pairing a neural network for segmentation mask pre-
diction with graphics-based user control, we make the pre-processing
required for advanced visualization applicable to practical scenarios.
We show how the processed data can be used to interactively detect
and classify stenoses quickly and reliably.

A general takeaway from this work is that the integration of medical
data processing and visualization is a challenging task. Implementing
and testing the presented system was a considerable collaborative and
time-intensive effort, not least because of the difficulty of connecting
previously detached solutions for model extraction and interactive
visualization. Yet, we found that this type of integration may make
the adoption of methods feasible that could improve medical imaging
analysis tasks. A key question is where the user should be able to
interrupt and adapt automatic processing. Favoring higher accuracy
in the results might be desirable but is also more time-intensive for the
user and adjusting complicated algorithms may also be hard to learn.
Our impression from this line of work is that if intensive processing
is a requirement for novel medical visualization tools, for example,
if segmenting images is necessary, any required interaction must be
fast enough such that introducing a new way to analyze the data
does not significantly disrupt the clinical workflow. An interesting
opportunity arises from the fact that machine learning models, like
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CNNs, are just becoming good enough that they can substitute tasks
in this process that would otherwise be too time-intensive. We hope
that the insights gathered in this work will spawn further endeavors
to connect fragmented processing and visualization techniques in
medical applications, which may ultimately pave the way for applying
advanced visual analysis tools in medical practice.
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S I M I L A R I T Y- B A S E D H E M O D Y N A M I C S A N A LY S I S

Carotid stenosis is commonly diagnosed using CTA and Doppler ultra-
sonography, as reviewed in Section 2.2. CTA provides a static volume
image of the head and neck region with highlighted arteries. Doppler
ultrasonography is used to get a dynamic view of the blood flow
and to measure the flow velocity. The blood flow velocity increases
with a smaller vessel diameter, and as such it is used as a primary
clinical marker for the severeness of the stenosis. A disadvantage of
these methods is that the data from the CTA and sonography need to
be mentally combined. Two separate procedures, involving different
experts and equipment need to be performed. Doppler sonography, in
particular, requires a highly trained medical professional to be carried
out correctly. The necessary personnel and devices are not available in
many smaller clinics, which means measuring flow can be inaccessible.

In the last decades, a large body of research has been dedicated to
simulating arterial blood flow [27, 44, 198, 293]. These simulations are
numerical predictions commonly using CFD to derive flow properties
based on the vessel wall geometry. This geometry can be extracted
from static imaging like CTA, theoretically omitting the need for ad-
ditional diagnostic procedures. Hemodynamic simulation can also
yield a much higher resolution than sonography and it can be ap-
plied to regions where ultrasound signals are occluded. It can further
be used to derive many additional parameters beyond flow velocity,
where some are relevant biomarkers for predicting the progression
of atherosclerotic diseases [124, 229]. Studies based on hemodynamic
simulation could show that carotid bifurcation plaque formation is in-
fluenced by WSS, dynamic pressure, strain rate, and the total pressure
gradient [186]. However, these factors are not taken into account in
clinical decision-making, as performing hemodynamic simulations on
site remains practically impossible.

While hemodynamic simulations have the potential to significantly
impact patient care and treatment outcomes, they are difficult to
integrate into clinical workflows, due to the often time-consuming,
resource-intensive, and complex nature of the simulations. The simula-
tions used in this work, for instance, required an average computation
time of 4 hours and 50 minutes per artery, excluding pre- and post-
processing steps like geometry extraction. Hemodynamic simulations
are often developed by specialized research groups and require signif-
icant expertise, as well as specific software and hardware to perform.

This chapter introduces a method to circumvent performing hemo-
dynamic simulation for each new case individually. An overview

161
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Figure 55: Overview of the data processing and visualization steps. The ves-
sel geometry and features are extracted from an imported DICOM

series. Using similarity criteria, the new model is matched against
a flow model database. Then, we use comparative visualization
techniques to enable the exploration of flow parameters in the
best-matching vessels.

of the approach is shown in Figure 55. We created a database of
high-resolution flow models for a wide range of carotid bifurcation
geometries. Then, we developed a framework that, given a new carotid
wall geometry, finds the candidates with the highest similarity from
the simulation database. We enable exploring these candidates and
visually comparing their geometries, simulated flow, and wall-related
parameters. We investigated how similarity between vascular models
can be established and whether similarity-based analysis is a viable
approach to circumvent complex individual flow simulations. We
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enabled exploring multiple candidates and visually comparing their
geometries, simulated flow, and wall stress. In summary, the contribu-
tions of this chapter are:

• Extending the open-source database of carotid bifurcation mod-
els created in Chapter 7 with high-resolution blood flow simula-
tion data. At the time of writing, the database encompasses 152
individual bifurcation models extracted from real patients [347].

• Developing difference metrics to create an alignment space and
derive model similarity.

• Implementing and testing an interactive framework that, given
a new vessel wall model, can be used to instantly find and
visualize the most fitting flow simulations.

The developed software is open source and implemented as an ex-
tension module of the CarotidAnalyzer framework [48], which was
introduced in Chapter 7. The carotid flow database is available on-
line [347]. It contains fluid data (velocity, pressure) and surface data
(WSS) for the two clinically relevant time steps of peak systole and
end-diastole.

8.1 task analysis

For the development of our framework, we collaborated with three in-
dependent specialists: a neurologist leading a stroke unit (P1, 17 years
of practice), a radiologist (P2, 32 years of practice), and a hemodynamic
simulation expert (H1, 15 years of experience). At the beginning of the
project, we conducted multiple focus group interviews to extract the
clinical tasks and requirements a similarity-based blood flow explo-
ration framework would need to address. Both physicians emphasized
the potential impact of such a system:

“If I could get flow information immediately from the CT, that
would be transformative. The blood flow is really ultimately
what I’m interested in. If I can get a reasonable prediction of
the flow velocity inside a stenosis, for example, that would be
highly valuable. A good estimate would already be better than
nothing, we do not work with highly exact values anyway. Even
when we measure the flow with Doppler, we have a high observer
variability.” (P1)

“I have worked with CFD simulations before. I think the potential
of CFD in medicine is really restricted by the fact that doing these
simulations is so laborious. Building a database of many pre-
simulated cases could be a breakthrough idea. I suspect for regions
where we often find very similar anatomical variations, like the
carotid bifurcation, this could work. It would be important to
find out how many cases we need in the database.” (P2)
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They stressed the significance of good automatic matching of the
models and efficient exploration of similar cases. “No physician would
go through the database manually. Ideally, the best matches are shown au-
tomatically and I can get a peak of what they look like before I read out
any specific values (P2).” When asked about which flow parameters
should be derived from the simulations, the physicians argued that
to complement current clinical decision-making the maximal flow
velocity should be the primary focus. It should be possible to probe
the maximal velocity in different branches, e.g., inside a stenosis, but
also in the CCA, ECA, and after a stenosis. P1 added that the occurrence
of poststenotic turbulence and resulting reverse flow can sometimes
be observed in sonographic screenings and that such flow patterns
can provide cues about the severity of a stenosis and the probability of
plaque separation. Further, P2 noted that studying WSS distributions
is increasingly important for understanding stenosis progression. Re-
garding the temporal flow dimension, the physicians argued they are
essentially only interested in the peak systolic flow, i.e., the point in
the cardiac cycle with the maximal arterial flow. In some cases, the
systolic flow velocity is also compared against the diastolic (lowest)
flow.

Last but not least, we must stress that the applicability of the pro-
posed framework depends highly on the efficiency of the model ex-
traction. To compute any similarity metric between a new case and
a pre-computed CFD simulation, a geometric vessel model must be
available. We quickly determined that using CTA imaging is the most
sensible starting point, as CTAs are acquired routinely in stroke diag-
nostics, in both preventive and acute cases. CTA is a comparably fast
procedure that images the arterial lumen with good contrast, shows
plaques and is simultaneously used to rule out internal bleeding.
Therefore, to make the system usable in practice, we must integrate
an efficient way to generate a geometric model from a CTA volume
that we can then compare against the flow database. In summary, the
following tasks should be fulfilled:

T1 Extract a carotid bifurcation vessel wall model from CTA.

T2 Find matching models with pre-computed flow fields.

T3 Visually compare the new model against the selected models.

T4 Explore relevant flow-derived parameters in the selected models:
velocity, reverse flow, WSS.

T5 Probe any subregion of the flow fields and extract the maximal
local flow velocity.

Visually comparing multiple vessels with hemodynamic informa-
tion has been investigated before, however, only for a limited number
of instances. For instance, techniques for integrated comparison of two
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data sets with internal flow were proposed by Meuschke et al. [351].
They provide several exploration tools for comparing two data sets,
e.g., before and after treatment. To the best of our knowledge, there
are no frameworks geared for comparative visual exploration of larger
sets of hemodynamic simulations, such as patient cohorts. The most
promising techniques that could be used to compare multiple hemo-
dynamic simulation instances fall in the category of vessel maps, see
Chapter 4. Vessel maps have been, for example, applied to track plaque
development in the carotids over multiple sonography scanning ses-
sions [58, 59].

8.2 streamline clustering

A popular method to reveal the structure of internal flow fields is the
use of integral lines, such as streamlines. To minimize visual clutter
that can lead to occlusion and to highlight flow patterns, various
streamline clustering techniques were proposed and many of them
specifically target medical applications. The motivation behind cluster-
ing in the context of streamlines is usually to find similar patterns and
reduce the number of lines. A clustering method needs a metric that
measures how similar two lines are and an approach to group lines
based on their similarity [325]. Corouge et al. [68] applied clustering
methods on fiber bundles. As a similarity measure, they proposed
three different metrics: the closest point distance, the mean distance
of closest distances, and the Hausdorff metric. The clustering itself
is based on a threshold, whenever the distance between two fibers is
less than the threshold, they are grouped in a cluster. McLoughlin et
al. [208] provided a similarity metric that was based on geometrical
properties, e.g., curvature and torsion. Afterward, agglomerative hier-
archical clustering (AHC) with average linking was used to group the
streamlines. Clustering of blood flow inside an aneurysm was first ap-
plied by Oeltze et al. [233]. They slightly changed the distance measure
by Corouge et al. [68] and compared various clustering methods. To
account for temporally resolved flow fields, Meuschke et al. [351, 218]
developed a physical-based similarity metric. Then, they also apply
AHC to group the lines. To further identify blood flow patterns in an
aneurysm independent of their individual shape, Meuschke et al. [213]
clustered streamlines based on the method of Oeltze et al. [233]. This
method identifies classical flow patterns, enabling comparability be-
tween different aneurysm data sets.

8.3 methods

This work is a first attempt at comparison-based blood flow analysis.
The primary objective is to test the viability of this approach. For this,
we require an initial database of hemodynamic simulations, which
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allows us to find geometrically proximate matches to a new carotid
bifurcation wall model. When choosing the size of the database, we
must consider the number of instances required to test the viability of
the system, but also the feasibility of performing a numerical simula-
tion for each instance. Studies that employ hemodynamic simulations
in patient-specific vascular anatomy typically only focus on very few
subjects. The processes of image data acquisition, model extraction,
pre-processing, and numerical simulation incur substantial time and
computational costs. In their systematic review, Lopes et al. [198] iden-
tified 49 studies on the simulation of blood flow in patient-specific
geometries of the carotid artery bifurcation. Out of these studies, the
majority are based on 1–5 bifurcation geometries. Recently, some larger
studies with up to 50 carotid bifurcations were conducted [16, 178], but
these remain exceptions. While statistical evidence is lacking regard-
ing the number of cases sufficient to cover the anatomical variations
of carotid stenosis, we assume that we require more cases than even
these larger studies. Consulting our collaborating physicians, we de-
termined that it would be sensible to include at least 100 variations in
the database to be able to reasonably test the approach. We also need
to consider additional overhead for testing, i.e., we need models with
simulated flow that are not part of the test database. Consequently, we
have factored in a 20% overhead and extracted 120 individual carotid
bifurcation models from CTA volumes to construct the numerical flow
database.1 From the radiological report of each case, we have prior
knowledge regarding the severity of the ICA constriction. We chose
cases with ICA stenosis close to the bifurcation and aimed to cover
the full spectrum of this type of stenosis. Therefore, we systematically
selected an approximately equal number of cases with no/mild (0–
49%), moderate (50–69%), and severe (70–99%) stenosis. Generally, we
extracted both the left and right carotid in each scan, however, we
excluded arteries with full occlusion (100% stenosis), as these vessel
are not discernible in the CTA. Each extraction covers 80 mm in height
with the bifurcation approximately at the center. This section contains
the carotid bifurcation and any nearby stenoses. We extract the vessel
lumen, therefore, the surfaces model the inner vessel wall. The wall
thickness is not reliably detectable in CTA. The data was sourced from
two different hospitals. In Section 8.4.2 we test the accuracy of this
initial system in predicting flow parameters and in Section 8.4.3 we
investigate its clinical applicability.

1 The current database is larger with 152 models at the time of writing. This is because
the database was later extended with new cases. The evaluations in the following
sections are based on the initial 120 models.
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Figure 56: Capping of the branch geometry to create inflow and outflow
boundaries for simulation.

8.3.1 Creating a Database of High-Resolution Carotid Flow Models

We performed flow simulations on the segmented vessels, including
the full extracted bifurcation domain. Only the tips of the vessel
branches were trimmed to define cross-sectional areas for the flow
inlets and outlets, an example is shown in Figure 56. Each model has
one flow inlet at the CCA and one outlet at the ICA. The ECA splits into
an arbitrary number of sub-branches, for each of which we modelled
an outlet. We setup the boundary conditions such that both primary
branches may contain an arbitrary number of subbranches, which is
necessary to correctly model the flow behaviour of the ECA, which
tends to quickly split into multiple smaller arteries. All cuts are made
to preserve the branching morphology as exactly as possible and
furthest away from the bifurcation point. That way, the impact of the
numerical boundary conditions is minimized in the crucial areas of
the simulation, i.e., the bifurcation areas and narrowed sections of
possible stenosis in the ICA.

The blood flow in the carotid artery tree was simulated by solving
the underlying incompressible Navier-Stokes equations for Newtonian
fluids. This was achieved in the FEM software COMSOL 6.0 [65]. The
fluid-flow problem was solved on a rigid domain with constant fluid
density ρblood = 1000 kg

m3 [308]. We set the viscosity to µ = 0.00345 Pa · s,
which is typically used for blood as a Newtonian fluid as it is the
lower viscosity limit of the shear-thinning models µ∞ [210]. At the
inflow, we prescribe a cyclic velocity function that mimics a cardiac
cycle. We use an instantaneous inflow velocity boundary condition
corresponding to a typical CCA temporal flow rate profile, see Richter
et al. [352]. The mean flow is 432 ml

min . This results in an average in-
flow velocity of 0.22 m

s , which corresponds to the normal flow velocity
measured in the CCA of adults [181]. The no-slip boundary conditions
are prescribed on the vessel walls. The outflows are modeled with a
boundary condition that simulates the resistance of the down-stream
vessel tree. At each outflow boundary, we implement a varying pres-
sure condition with a resistance approach to split volume flow through
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the ICA and ECA with a 70% : 30% ratio. As long as a stenosis does not
fully block the blood flow, this split is a good approximation [148, 313].
This is because a developing stenosis is first compensated through
dynamic cerebral autoregulation, which is an important physiological
mechanism that maintains constant cerebral blood flow [240]. The
result is an increase in flow velocity inside the stenosed region. As
Vignon-Clementel et al. [306], we specify the total vascular resistance
Rtot = Pmean/Qmean with the mean pressure obtained as a combination
of systolic (120 mmHg) and diastolic (80 mmHg) pressures. At a nor-
mal resting heart rate, systole is typically shorter than diastole. We use
Pmean = 1

3 · 120 mmHg + 2
3 · 80 mmHg, which resembles the ratio be-

tween the systolic and diastolic phases we use at the inflow. The mean
flow rate is Qmean ≈ 7.2 ml

s . According to the law of adding resistances
in parallel, we get resistances Rint = Rtot/0.7 and Rext = Rtot/0.3
for the ICA and ECA, respectively. Further branching of the ECA dis-
tributes the flow volumes according to their cross-sectional outflow
areas Aexti for i = 1, . . . , k in relation to the total external outflow area
Aext = ∑i Aexti . After an initial cardiac cycle, the second cycle is used
to evaluate the flow field parameters to mitigate initialization errors.
We derive velocity, pressure, and the risk parameter WSS. Our volume
meshes vary from 9 · 105 to 45 · 105 elements with an average around
20 · 105. The meshes are mostly composed of tetrahedral elements and
include two boundary layers of prism elements to adequately resolve
the velocity gradients near the wall. We apply linear finite elements
representing the piece-wise linear numerical solution for both the
velocity and pressure field. For equal polynomial order for velocity
and pressure representations, the FEM is stabilized by streamline and
crosswind diffusion. We use an adaptive time-stepping scheme with a
maximum time step constraint of 0.01 s.

The mean simulation time for one artery, excluding pre- and post-
processing, is 4 hours 50 minutes on an Intel® Xeon® Gold 5122 CPU
at 3.60 GHz with 4 cores. The total pure computation time for all
arteries was 30 days and 15 hours. While the time requirements for
simulation could be reduced by faster hardware, the pre- and post-
processing are also time-intensive. Each data set required an expert
additionally 1–3 hours to prepare, setup the simulation, and export
the results.

The export of a reliable wall stress parameter is dependent on the
magnitude and the orientation of fluid stresses at the vessel wall. For
our purpose, we focus on evaluating both, WSS amplitude as well as
WSS alignment with the mean flow direction represented by the center-
line. In the latter approach, the centerline’s tangent is projected onto
the vessel surface to achieve a consistently aligned tangential vector
field in each vertex. For the details on longitudinal WSS evaluation and
its advantage over the conventional amplitude-based indicators, we
refer to Richter et al. [352]. Negative values of the longitudinal WSS
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Reverse Flow (longitudinal WSS)
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Figure 57: Visualizing the negative range of longitudinal WSS reveals reverse
flow zones. These regions are highly indicative of turbulent vor-
tices, a gradation criterion for stenoses. The first model shows
signs of reverse flow and closer exploration indeed reveals the
vortex flow. The second model is a counterexample of a stenosis
of similar degree but without turbulence.

are indicative of regions with reverse flow, which often occurs after a
stenosis due to turbulent vortices, see Figure 57.

8.3.2 Extracting Carotid Bifurcation Geometries

While the CFD simulation can be externally computed to build the
flow database, any new bifurcation geometry must be extracted from
CTA imaging within the clinical workflow (T1). We address T1 by
building our flow visualization methods as an extension module to
the integrated pipeline developed in Chapter 7 [48]. The pipeline
already provides a user interface for importing CTA volumes in stan-
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dardized DICOM format, efficiently labeling the carotid bifurcation
lumen, and extracting surface models. The pipeline can further be
used to compute vessel tree centerlines using the method of Antiga et
al. [6]. These centerlines also provide diameter information at every
point inside the model. Using this information, the stenosis degree
can be derived, following the NASCET guidelines [88]. In summary, we
use the integrated pipeline to efficiently extract carotid bifurcation
surface geometries, centerlines, and the inner vessel diameter, and
derive the stenosis degree. During testing, we found that after a short
introduction users can perform the segmentation and pre-processing
steps for a new dataset within 2–10 minutes. The extraction is executed
in a single application, it is fully guided by a user interface, and it
requires no knowledge of the underlying algorithms. The extracted
models are seamlessly imported into our extension module, where
they can be instantaneously compared against the flow simulation
database.

8.3.3 Aligning the Carotid Data

To visualize different carotid data comparably and measure their simi-
larity, we need to align them, as the individual models are arbitrarily
positioned. For consistent alignment, we consider the centerlines of
different parts of the carotid artery: the CCA, the ICA, and the ECA. For
a detailed description refer to Section 2.1 and Figure 1. We denote
the point of the carotid bifurcation as pB and define it as the point
where the CCA centerline splits into the two carotid subbranches. The
centerlines we receive from the extraction pipeline are already labeled
accordingly. To align different carotid datasets, we must ensure that
the corresponding parts are aligned, i.e., the ICA of the first dataset
should not be aligned with the ECA of the second dataset, even if
they are more similar in shape. The main feature point pB should be
placed at the origin. Therefore, each carotid is translated so that the
corresponding point pB = (0, 0, 0). Next, we register the parts of the
carotid artery. We have to find optimal rotations

Rα,β,γ = Rx(α), Ry(β), Rz(γ)

=

1 0 0

0 cos α − sin α

0 sin α cos α

 ·

 cos β 0 sin β

0 1 0

− sin β 0 cos β



·

cos γ − sin γ 0

sin γ cos γ 0

0 0 1


(16)

such that the parts are optimally aligned. For simplicity, we omit the
angles: R := Rα,β,γ. Since the morphology of the parts can be very dif-
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Figure 58: Range of the weighting function applied to the carotid surfaces.

ferent, we create an artificial carotid artery and align the other carotid
arteries accordingly. The artificial CCA consist of the points (0, 0,−λ),
the ICA of the points (λ, 0, λ), and the ECA of thepoints (−λ, 0, λ) with
λ ∈ [0, 0.5, 1, 1.5, . . . , 20]. Decreasing the step size has no visual effect
on the result. The set of points are denoted with AC, AI , AE. When
aligning the parts (CCA, ICA, ECA) with their corresponding set of
points PC

i , PI
i , PE

i of an arbitrary carotid i to the artificial ones, we have
to find an optimal rotation such that:

arg min
R

max{dH(AC, R · PC
i ), dH(AI , R · PI

i ), dH(AE, R · PE
i )},

(17)

where dH(·, ·) denotes the Hausdorff metric. We solve Equation 17 with
the approach by Ugray et al. [302] provided in the Matlab framework.
We solve this optimization problem for every carotid and apply the
rotation yielding aligned data sets. Unfortunately, if we stop here,
some carotid models are not well aligned. This is due to the high
variance in the morphology at the end of the centerlines. Therefore,
we weigh the points so that it becomes more important to align the
points near the origin pB. We define a weighting function and multiply
the points of the carotid data sets and the artificial carotid points by
the weighting. The weight is defined based on the distance to the
origin:

W(p) = 5 · exp(−∥p∥2/10). (18)

The rationale behind this weighting is that we emphasize the region
around the critical landmark pB. The weighting drops from 5 to 1
when the distance exceeds 4 cm, see Figure 58. The results of the
alignment are shown in Figure 59.

8.3.4 Visualizing the Alignment Space Neighborhood

To facilitate T2 we need to query the flow database for matching cases.
First, we derive the geometric similarity Sg between the models. We
define Sg as the remaining Hausdorff distance after registration, i.e.,
it is a byproduct of the branch alignment. We found that for finding
matching cases, using this similarity of the vessel tree shape alone
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Figure 59: Carotid geometries automatically aligned with our method. The
ICA branches to the right, the ECA to the left, and the bifurcation
point is centered.

does not yield ideal results, as it does not incorporate information
on the vessel thickness. Therefore, we use the layout-independent
information we gain from the model extraction pipeline as additional
similarity measures, namely, the point-wise difference of the inner
vessel diameter Sd and the difference of the stenosis degree Ss. As
a standard clinical measure, the stenosis degree is an established
comparison metric already. However, Ss alone can be misleading, as
different stenosis shapes and locations can produce the same degree.
Therefore, we further use the variation in vessel diameter of the CCA

and ICA branches. We align the diameter profile of any two subjects
at the BP and compute their point-wise distance. As the extracted
branches differ in arc length, the longer profile is clamped to match
the shorter one when computing Sd. When experimenting with test
cases manually, we found that good search results ensue from merging
the three metrics. Sg measures similarity regarding the branching
geometry and layout. Sd measures similarity regarding the vessel
diameter and where a stenosis is located, i.e., how far it is from the
bifurcation. Ss measures similarity regarding the severeness of the
constriction. To make the values comparable, we normalize each metric
linearly to S̄g, S̄d, S̄s ∈ [0, 1]. For each metric, the maximum 1 is a
theoretical identical match and the minimum 0 is assigned to the
database model with lowest fit. Given a new input geometry, S̄g, S̄d, S̄s

are relative measures of how well a model in the database fulfills
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Figure 60: The user interface of the visualization framework. (A) Toolbar with
parameter selection and color map. (B) 3D view of the extracted
vessel surface geometry. (C) 3D views of the selected comparison
cases from the flow database. (D) Panel to control which compar-
ison metrics are queried. (E) Bar charts showing how similar a
match is regarding each metric. (F) Vessel surface maps giving an
overview of the flow parameters.

each metric. The normalized metrics can be arbitrarily weighted to
derive a total distance between two data sets. As a starting point
for our evaluations, we use an evenly weighted linear combination
S̄gds = 1

3 (S̄g + S̄d + S̄s), which showed good preliminary results. A
first measure of the performance of this matching is provided in
Section 8.4.2. The system is designed such that other metrics could
also be added.

The candidates with highest similarity S̄gds are provided for visual
comparison. We found that only showing a single match may not
be the best approach, as the similarity search is not a trivial task.
Different candidates may be relevant, depending on what the user
is looking for. Therefore, we explicitly visualize the subset of the
flow database closest to the new model regarding S̄gds. We call this
subset the alignment space neighborhood. As we do not know how
many samples are required, the user can choose the neighborhood
size arbitrarily. To show how similar a model is regarding each metric,
we visualize a bar chart for each candidate, where each metric S̄g, S̄d,
S̄s is shown by one bar. We use these bar charts, as they are instantly
readable even at a small size. The axis values are omitted, as the
numerical value of each bar is meaningless and only the relative
length of each bar is relevant. We sort the candidates automatically
and display them below a view of the newly extracted 3D carotid
model, see Figure 60E. The candidates are shown with decreasing
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fit from left to right. We implement an option to toggle individual
metrics on or off, which re-sorts the candidate list. This allows, for
example, to run the following queries: Is there a model with the same
stenosis degree? Give me models that are very similar in shape. Give me a
model with a similar diameter profile.

We quickly noticed that when displaying the alignment space neigh-
borhood, a visual representation of each candidate’s geometry is highly
beneficial for navigation. Providing visual cues about the geometry
and flow parameters increases recognizability and accelerates finding
the ideal match. An overview of the flow parameters also allows the
efficient identification of different types of models. For example, the
user might want to get a best and worst-case comparison.

When visualizing ten or more 3D vascular models, scalability be-
comes an issue. Visually assessing multiple complex 3D renderings
is problematic, as small depictions become hard to read, 3D interac-
tion would be required to view the full surface, and self-occlusion
of the branches obstructs the view. To address these shortcomings of
3D renderings, vessel maps have been shown to be an effective tool.
They can provide an instant overview of surface fields, require no
interaction, and allow the comparison of many instances since they re-
main readable even at small scales [343]. Therefore, we show flattened
maps of the vessel wall surfaces in the candidates view. We computed
a surface map of every instance in the flow database and visualize
these maps below the corresponding bar chart, see Figure 60F. We use
the method developed in Chapter 5 to compute the maps, which is a
global surface parameterization technique aimed at creating a single
patch for vessel trees. The method automatically cuts and flattens
tree-like surface meshes with an arbitrary number of branches. It uses
vessel cuts that are positioned on one side of the cylindrical vessel
branches, enabling intuitive 2D views of the unrolled vessel wall. The
approach preserves vertex and connectivity information, facilitating
mapping of data fields defined on mesh vertices. It minimizes area
distortion while maintaining proximity to the original branch layout.
The area optimization is also useful to identify stenosis candidates. We
use the resulting maps to show the flow-derived surface parameters.
These are the WSS and the reverse flow field that we compute from the
stress vector and the vessel directionality, as described in Section 8.3.1.
We pre-render the maps as 1000 × 1000 pixel textures, which means
they can be quickly loaded and displayed. The textures encode a scalar
value of each surface field. During the rendering, we apply a colormap
to the surface parameter. The active surface parameter, the colormap,
and the visualized value range are chosen by the user. Any perceptu-
ally uniform colorCET colormap [162] can be applied. The user can
zoom into the candidate list, to display fewer candidates and read
details on the maps, and zoom out to show more candidates. How
many candidates are sensible depends on the screen size. With the
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maps, specific queries can be made at a glance. For example, during
testing we encountered the following queries: Is there a similar model
that shows signs of turbulence? Give me a similar model with high WSS at
the bifurcation. How fast is the flow in a slightly worse stenosis?

8.3.5 Comparative Visualization of Multiple Vascular Flow Models

To enable T3, we need to facilitate a comparison of the new case
with any selected matching models from the flow database. Visual
comparison can be implemented by a superimposition of instances,
juxtaposition, interchange, or explicit encoding [152]. In our case, the
complex vascular geometry excludes superimposition as an option,
as the view would just become cluttered. We do not know how many
comparisons are required and the user should be able to inspect each
geometry individually and simultaneously. Therefore, we use a juxta-
position to enable a comparison of the 3D geometries and flow fields.
By clicking on a vessel map or the bar chart above, a view of the
corresponding 3D model is toggled on or off. This way, an arbitrary
number of models can be displayed, which are automatically laid out
in a grid beside the inspected case, see Figure 60C. A trackball-style
interaction can be used to interact with the vessels. An apparent disad-
vantage of these side-by-side views is that the 3D interaction becomes
cumbersome for multiple models. For a more fluent interaction, we
integrated a synchronized juxtaposition that can be enabled on demand.
In the synchronized view, we transform the displayed models into the
alignment space where the CCA, ICA, and ECA branches are registered.
Then, the camera is synchronized between all views, i.e., all views are
simultaneously rotated, zoomed, or translated.

The flow information is mapped on the model to address T4. The
same colormap that is set for the vessel maps is shared across all
depicted surface models. To analyze the systolic or diastolic veloc-
ity field, we need to provide a view inside the vessel. If instead of
a surface field a velocity field is chosen, we render streamlines of
the flow and contextualize them with the backside of the vessel wall.
The absolute velocity is color mapped on the lines. We chose this
streamline encoding, because primarily the single time step of peak
systolic velocity is relevant to the users and the streamlines reveal
features of interest, such as poststenotic vortices. For the integration,
we use the 5th order Runge-Kutta method [170, 266] with a maxi-
mum propagation of 0.2 m, which is about the length of one carotid
bifurcation model. The streamline seeds are placed in 300 random
cells of each carotid volume mesh to distribute them across the mesh.
The streamline geometry is pre-computed and cached for each case.
Therefore, they can be immediately shown once a case is chosen for
display or the time steps are switched.
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(a) 300 streamlines. (b) 100 streamline clusters.

Systolic Velocity
5 m/s0 m/s

Figure 61: The adaptive streamline clustering ensures that features are not
lost to occlusion when the 3D rendering is small. (a) The inner
streamlines are hidden, giving a false impression of the velocity.
(b) Clustering reduces the number of active lines while retaining
flow features.

8.3.5.1 Adaptive Streamline Clustering

If multiple flow models are displayed their viewports become in-
creasingly smaller, resulting in streamlines overlapping each other.
At some point, this can obstruct the view of the velocity information
at the inner layers of the flow field. Further, the rendering of many
high-resolution lines can lead to low framerates, depending on the
rendering hardware. Therefore, we introduce an adaptive streamline
clustering that groups similar lines with decreasing viewport size. To
cluster the streamlines of the blood flow, we need to determine the
similarity between different streamlines. To do this, we compute a
distance matrix based on the same Hausdorff metric as utilized in
Section 8.3.3, followed by an AHC. We show 300, 200, 100, 30, or 10
clusters for up to 1, 4, 9, 16, and > 16 juxtaposed views, respectively.
We found these thresholds to provide good results, where the ren-
dered clusters cover the domain and display relevant flow features but
do not excessively occlude each other. Using more thresholds for even
finer granularity is possible, but seemed redundant in our testing. Like
the streamlines, the clusters are pre-computed and can be instantly
applied to every model in the database. Through adaptive clustering,
we ensure that important features are not lost if the views become
smaller. We show this effect in Figure 61. Using clustering is more
feature-sensitive than using fewer lines, where some regions would be
undersampled. The clustering ensures that lines are chosen which are
representative of a collection of stream traces, preserving larger flow
features.
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8.3.5.2 Probing

Lastly, T5 requires functionality to probe the flow field at user-defined
locations and extract the maximal local flow velocity. We implemented
a type of flow lens, which can be activated when the flow velocity is
displayed. When the flow lens is enabled, we shoot a ray into the scene
of the active viewport, originating from the cursor position on the
screen. We determine the first hit position of the viewport’s vascular
model or, if no hit is found, the closest surface point to the ray. Around
this point, we create a sphere with a user-adjustable radius. The sphere
is used as an implicit function to filter the streamlines and we crop the
line geometry outside the sphere. We filter the actual 3D geometry, not
the image space, which allows us to accurately determine the highest
flow velocity inside this region. The extracted value is displayed next
to the probed region, see Figure 62. The probe can be continuously
moved by dragging the cursor, allowing smooth exploration of the
flow field and determining the maximal flow velocity in all required
regions, e.g., inside the stenosis, but also in the CCA or behind the
stenosis.

8.4 evaluation

We evaluated the numerical soundness of the comparison-based flow
analysis to get a baseline of how well flow parameters can be predicted
with the system. We also tested the interactive framework with five
physicians working in stroke care.

8.4.1 Performance Evaluation

To test how the interactivity of the system scales with the database size,
we measured the performance of the operations that are dependent on
the number of underlying flow models. Thse are (1) the computation
of similarity metrics when loading a new geometry and (2) the sorting
of the candidates list when changing the weighting of the metrics. The
metric computation has linear time complexity, as it compares the
input to each database entry once. The candidate sorting computes
the weighting and then sorts a list with one floating point entry per
data set. Both operations should not run into performance issues. In
Table 2, we provide benchmarks for the two operations on a system
with an Intel® Core i9-9900K CPU @3.6 GHz and 32 GB of DDR4
RAM. For the database sizes > 120, we have added additional models
by duplicating the existing ones.

Technically, the initial loading of the database entries into memory
is also dependent on the database size, but this is only noticeable
once when starting the tool. Note that the actual flow data, mesh
geometry, and field data, are only loaded for a specific model when
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Figure 62: A probe lens can be interactively dragged over the vessel to focus
on the flow in a specific region. The maximal flow velocity within
the selection is extracted automatically.

the candidate is selected. All remaining operations (displaying maps,
selecting candidates, exploring flow features, changing the active scalar
field, changing the colormap) are not dependent on the database size.

8.4.2 Numerical Evaluation

We want to quantify the current error of the prediction when com-
pared to performing a case-specific CFD simulation. For this purpose,
we applied a standard 80/20 split on the database, leading to 96 re-
maining models in the prediction database and 24 test instances. The
test cases were randomly selected. For each test instance, we measured
the deviation between the simulation ground truth and the system’s
prediction. For the prediction, we use the database geometry with
the highest similarity metric S̄gds, which for simplicity we will call
the best match. Furthermore, to assess the robustness of the similarity
metrics, we compare S̄gds against choosing the best match based on
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Table 2: Results of performance testing of operations that are dependent on
the size of the database.

Database Size Computing Metrics Sorting Candidates

120 flow models 0.01195 s 0.00025 s

240 flow models 0.02335 s 0.00043 s

1200 flow models 0.11433 s 0.00157 s

12000 flow models 1.26789 s 0.00956 s

the smallest Hausdorff distance, which is a widely applied standard
for matching geometric objects [15, 267]. In summary, for each of the
test instances, we find the best matching model in the database, once
using our combined similarity metric and once using the Hausdorff
distance. For each match, we compute how the flow properties differ
between the ground truth and the prediction. For our comparisons, we
focus on flow parameters relevant to clinical contexts as well as flow
field analysis. We determined the prediction error regarding velocity,
vorticity, WSS, and pressure. The systolic peak velocity is highly rele-
vant as it is used for stenosis grading. The occurrence of poststenotic
turbulent or vortex-like flow is also used as a secondary marker in
clinical stenosis grading [76]. We measure the vorticity as a property
of the flow structure. Note, however, that vorticity has limited expres-
siveness, as it is not only influenced by vortices but also the velocity
and shear flow near vessel walls. WSS and pressure measure the forces
acting on the vessel walls and have been linked to plaque formation
in the carotids [186].

Comparing the flow properties of a best match to the ground truth
is not a straightforward task, since the wall geometry and layout of
the test instance can differ from the match, even after aligning the
models. A match may be very similar in terms of the diameter and
stenosis degree, leading to a high similarity score, but have branches
of a different length and/or layout. This means a direct comparison of
the flow fields is impractical. To enable a sensible comparison, we use
predetermined samples of the flow field at the clinically most signifi-
cant and uniformly recognizable landmarks: inside the CCA close to
the bifurcation, inside the ICA stenosis, and shortly after the stenosis.
These sample positions are indicated in Figure 62, positions (b), (c),
(d). They are the relevant locations examined in carotid ultrasound
diagnostics. The hemodynamic parameters at the sample location are
averaged within a 5 mm radius to prevent noise from affecting the
measurement. We also measure the peak velocity, i.e., the maximum
value within each sample region. For every test instance, we sample
the three landmarks at the peak systolic and end-diastolic time points,
as these are the two time points used in clinical assessments. By com-
puting the absolute deviation for each sample location and time point
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between the case-specific simulation and the prediction, we determine
the prediction error.

8.4.3 Structured Interviews

To validate if the tasks T1–T5 can be performed, we conducted quali-
tative interviews with five physicians (P1–P5; two female, three male;
ages 30–63). They have 17, 32, 13, 9, and 15 years of working experi-
ence in clinics for neurology or radiology. P1 and P2 have also taken
part in earlier discussions and the task analysis.2 Also, they acquired
the CTA data and validated the lumen/plaque segmentations we used
to create the flow database. None of the participants had used the
developed software framework before.

We conducted individual in-person interviews lasting about 60 min-
utes, where we first acquainted the participants with the concept of
the similarity-based hemodynamics analysis. Then, we demonstrated
how a model can be extracted from CTA using the integrated pipeline
and how the wall geometry can be viewed in our extension mod-
ule. We explained and showed all exploration features, e.g., how the
neighborhood can be filtered, how candidates can be selected, and
how the flow parameters can be analyzed. After the introduction, the
participants were asked to analyze three new CTAs, which were not
included in the flow database. One represented a healthy patient, one
contained a mild, and one a severe stenosis. We asked the partici-
pants to extract one geometry from each CTA volume (T1), find one
or multiple matching flow models (T2), and compare them to the
extracted geometry (T3). We further asked which flow parameters
they could gather from their selection (T4, T5) and if these confirmed
their expectations. During these case studies, we employed a think-
aloud protocol. We followed the case studies with a questionnaire,
where we asked questions regarding the fulfillment of each task and
the comprehensibility and usefulness of each visual encoding (vessel
maps, bar charts, color maps, streamlines, probe). The participants
rated each question on a five-point Likert scale (−−, −, ◦, +, ++)
and we noted down verbal comments regarding each item.

8.5 results and discussion

The results of the numerical evaluation are summarized in Table 3.
For the majority of the samples, the predictions are highly accurate.
For the peak velocity, we achieve a median error of 0.06 m

s using the
S̄gds matching metric. For the average velocity, the median error is
0.04 m

s . Our mean errors are 0.12 m
s (peak velocity) and 0.08 m

s (average
velocity). The magnitude of these velocity errors can be better inter-
preted by looking at the clinical measurement variability. The mean

2 Their identifiers, P1 and P2, are consistent with Section 8.1.



8.5 results and discussion 181

Table 3: Results of the numerical evaluation. The deviation from the ground
truth is measured individually per sample – for each position and
point in time. The median, mean, and maximum of these errors
are shown. Hausdorff: The prediction was selected based on the
Hausdorff distance between aligned models. S̄gds: The prediction
was selected based on the proposed combined similarity metric. For
each measured parameter, the observed value range in the ground
truth samples is given as a reference for the scale of the absolute
errors.
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Mean (Hausdorff) 0.34 0.15 0.44 5.22 498

Mean (S̄gds) 0.12 0.08 0.22 2.43 337

Maximum (Hausdorff) 3.75 1.59 5.99 74 4487

Maximum (S̄gds) 0.82 0.79 1.93 21 3605

Ground Truth Minimum 0.1 0.05 0.03 0.3 10177

Ground Truth Maximum 4.5 1.95 6.49 80.3 32463

interobserver variabilities for ultrasound assessments of the CCA and
ICA peak velocities were observed to range from −0.08 to 0.14 m

s [209].
The limits of agreement for individual patients were found to be −0.68
and 0.85 m

s [209]. Our limits of agreement for individual samples are
−0.72 and 0.82 m

s for the peak velocity and −0.79 to 0.28 m
s for the

average velocity. This means, for the clinically relevant flow velocity,
our prediction errors are within the currently tolerated limits. The sys-
tem showed to be able to find similar cases and predict flow velocities
with errors comparable to the disagreement between physicians when
performing velocity measurements.

Generally, the median error of all assessed parameters is low with
regard to the typically observed value range. The mean error, however,
in all cases is higher than the median error, indicating a skewed
distribution due to some predictions with disproportionately larger
errors. This assumption can be verified by looking at the boxplots of
the error distributions, see Figure 63. For all flow parameters, at least
half of the samples only show small errors close to 0. However, there
are outliers with a larger error which skew the distribution. 25% of the
peak velocity samples and 16% of the average velocity samples show
an error larger than the observed interobserver variability of 0.14 m

s .
These cases seem to be insufficiently covered by the pre-computed
flow fields, leading to the conclusion that the database will need to be
extended.

Lastly, we observe that the combined similarity metric S̄gds is consis-
tently better at choosing a prediction model than using the Hausdorff
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Figure 63: Boxplots of the error between the ground truth simulation and
prediction. H: The prediction was selected based on the Hausdorff
distance. S̄gds: The prediction was selected based on our combined
similarity metric.

metric (H). The median error is significantly lower for all tested param-
eters and the spread of the error distribution is smaller. These results
indicate that the relevant flow parameters are more dependent on the
CCA/ICA vessel diameter, stenosis location, and stenosis degree than
on the shape or layout of the vessel branches. A core observation of
this study is that the clinically relevant blood flow parameters can be
predicted by a vessel model with a similar stenosis (regarding location,
length, and diameter), even if the branch layout is different and the
number of modelled ECA branches varies. Our proposed algorithm to
build the alignment space appears to accurately match cases with simi-
lar flow in the relevant areas, i.e., inside the ICA and potential stenoses,
even if no model exists that has a globally equivalent surface geometry.
This observation may aid future research regarding comparison-based
flow analysis, as it shows that the database does not need to cover
all potential geometric variations of the target anatomy but can be
constrained to focus on variations of the crucial features, such as the
stenosis position and shape.
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Figure 64: Likert scores assigned in the questionnaire. Each box represents
the answer of one physician.

8.5.1 Interview Results

The Likert score results of the questionnaire are shown in Figure 64.
We report on frequent comments and feedback from the interviews.
The overall impressions of the participants were highly positive. The
processing pipeline was well received and the model extraction (T1)
was deemed efficient enough to be applicable.

“I highly appreciate that the software is usable as is. It is very
well integrated. I can import a DICOM image and very quickly
get an impression of the internal flow field.” (P3)

The participants were generally able to find similar enough compari-
son cases (T2).
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“Considering you only have about 100 models, I am surprised
how well the pairing works. I think for some we could get even bet-
ter results, but that is just a question of extending the database.”
(P4)

The comparison metrics were understood and all experts noted they
found the metrics sensible. P1 emphasized, “Especially the diameter
makes total sense. I think the exact progression of the branches is not so
important, so it’s nice that I can turn that filter [shape similarity] off.”
We observed that typically one or two and rarely more than four
comparison cases were used simultaneously. Two participants noted
they would only want to see the closest case and that “the less interaction
is required the better” (P2). However, opinions on this matter diverged.
P5 noted, “It highly depends on the variance. If I can get one really good
match it is sufficient. But otherwise, I definitely need three or more similar
cases for comparison.” Also, the option of comparing a slightly worse
stenosis to visualize the possible progression was mentioned.

Regarding the clinical relevance of the shown parameters, we gath-
ered the impression that as long as no clinical guidelines exist, using
WSS and reverse flow is only of supplemental importance. For instance,
P5 said, “It is nice to have but cannot be the basis for a treatment decision.”
All experts agreed that the peak flow velocity is currently of the high-
est clinical relevance. P2 argued, ”I would still definitely keep the other
parameters, especially WSS is increasing in importance. Having it available
is never a drawback.” When asked about the temporal resolution, ev-
ery interviewed expert underlined that they are almost exclusively
interested in the peak systolic flow and would not see the upside of
including more time steps.

Furthermore, all participants stated that the bar charts used to depict
the model similarity are highly useful to judge the appropriateness of
a case. The vessel maps were also positively received as a way to get
an overview of the displayed candidates.

“I used the maps extensively to choose a model that reflects my
presumptions about the flow. I want to see them and make the
decision which model should be compared.” (P5)

“The maps give a good impression of the overall form already.”
(P4)

When assessing the 3D models (T3, T4), the participants mentioned
that the streamlines were helpful to judge if turbulence occurred. All
five physicians remarked that the ability to synchronize the model
orientations is highly beneficial. For example, P3 said, “The linked per-
spective is extremely helpful. I first struggled to align all the cases manually,
it is so much faster with the linking. The branches are really nicely aligned.”
They also stated that they found the probing interaction (T5) very
useful and intuitive.
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“The probe is very helpful, also that I can change its size. It’s
like an enhanced ultrasound, I can peak into every branch and
get a quick reading of the velocity, this is exactly what I need.
Dragging the region is very smooth and the visual presentation
is elegant.” (P2)

After the interview, three participants expressed immediate interest to
deploy the tool and proposed to perform a validation study to compare
the results against the measured flow. Notably, P4 described a further
application scenario that we did not consider at the beginning:

“Every day, I have to decide if we transfer stroke patients from
smaller clinics to the university hospital. They cannot do a
Doppler ultrasound there, I have to judge the stenoses on the CTA

alone. This is also a question of resource management, we cannot
transfer everyone and very often we transfer unnecessarily, most
patients do not need an endarterectomy [surgical plaque removal].
If I could get a good prediction of the flow from the CT images,
that would vastly improve these decisions. I would use this on a
daily basis.” (P4)

8.5.2 Limitations

In many of the test instances of the numerical evaluation, we observed
that the approach produces suitable results. If vessel wall models with
high similarity in the crucial areas are available in the database, the
framework accurately predicts the flow properties of a case-specific
CFD simulation at the clinically relevant landmarks. However, we also
observed test instances with a higher prediction error. These instances
are visible mainly as outliers in the distribution of the sample errors.
Unusually large errors occurred if no model with a high similarity
metric was available. Keeping in mind that the database we used
during the testing only involved 96 models, we still consider the results
of the numerical evaluation a positive outcome. We demonstrate that
with the existing pre-simulated cases, we can already predict the
clinically relevant flow parameters in a large portion of carotid stenosis
cases and achieve velocity errors similar to the interobserver variability
of physicians. However, for a usable application, the current database
needs to be extended. This extension should not only increase the
database size but also improve the data variation. When selecting
CTA scans, we only differentiated them by stenosis degree. To fully
sample the shape space of ICA stenosis, other geometric factors should
be considered. This includes the stenosis position, length, and also
local properties such as the regularity of the internal wall structure.
We also noticed that since the velocity does not increase linearly
with the stenosis degree, we require further artery models with severe
stenoses to achieve more precise results in these edge cases. One option
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to improve the database size and variation would be to introduce
artificial modulations to the data. By varying the position and degree
of stenoses, their shape space could be systematically sampled. With
artificial geometries, however, it could be difficult to reproduce exactly
how stenoses develop. In general, more testing will be required to
form a better understanding of the relation between the database size
and quality of results.

We tested one set of similarity metrics to relate vascular geometries
and CFD results. While the developed combined metric S̄gds showed
better matching results than the Hausdorff distance, we did not test
other weightings or other measures. It would be conceivable to use
more refined approaches. For instance, when comparing the vessel
diameters, S̄d is based on a fixed alignment, which could benefit from
techniques like the Fréchet distance that would optimize the alignment
of the diameter profiles. When the database of flow models grows and
geometric features become more nuanced, the discriminative power
of the metrics may also be insufficient. Overcoming this issue would
require an adaptation of the metrics that takes the actual surface
geometry more into account.

CFD necessarily needs to employ simplifications. Standard bound-
ary conditions model realistic but averaged parameters that might
not apply to every patient. Some CFD studies use patient-specific
boundary conditions, such as inflow velocities that were recorded
using Doppler sonography. Using such boundary conditions requires
a measure first, which defeats a substantial advantage of computed
hemodynamics – dynamic flow data can already be generated from
static image data, without additional procedures. Such simulated flow
provides an estimate of important hemodynamic parameters from
a single CTA scan but necessarily requires the use of standardized
boundary conditions. Many of the resulting parameters, e.g., the peak
velocity and the occurrence of poststenotic turbulence, are key factors
for stenosis evaluation but cannot be directly derived from CTA. An
estimate of the blood flow can already provide a substantial benefit,
especially where measurements have not been or cannot be conducted,
for example, if a stroke patient was delivered to a hospital where
Doppler ultrasonography is not performed. Ultimately, the accuracy
of the simulations determines their viability. During the interviews,
we received the feedback that the validation of flow-derived param-
eters is yet to be improved. First studies have shown that velocities
measured with Doppler sonography can be reproduced with CFD [116,
287]. However, larger studies with more subjects are pending. While
many studies exist that link WSS to plaque progression [124], further
long-time studies are necessary to make flow-derived parameters part
of clinical guidelines. The feasibility of extensive clinical CFD studies
depends highly on the applicability of hemodynamic simulation in
real-world contexts. The method described in this work addresses the
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latter, specifically the challenging time and resource-intensive nature
of these simulations. Our approach should be seen as a complement
to research targeting the validity of hemodynamic simulation.

Lastly, we need to note that the extraction efficiency (T1) is key
for applicability. Currently, the extraction speed highly depends on
the segmentation step. If the labels predicted by the neural network
are good, this step is fully automatic. However, we still see cases
where manual corrections to the segmentations are required, which
can slow the whole process down. Fortunately, segmentation networks
have shown constant improvements in the past decade, minimizing
necessary manual corrections.

8.5.3 Opportunities and Future Work

Two interviewed physicians independently mentioned that the flow
parameters of matching models could be interpolated depending on
their similarity distance. This could provide more accurate values
and projecting them on the new geometry would make them directly
readable on the extracted vessel. However, we note that this approach
might also be riskier than the purely comparison-based analysis, as
the interpolation could be misleading if no good match is available.
Similarly, first studies have shown that hemodynamic surface param-
eters like WSS can be predicted using CNNs [292]. The disadvantage
compared to our approach is that the prediction model is obscure to
the observer, i.e., it is not clear where the information comes from.
In our case, the user can immediately see if no reasonably similar
vessel geometry is found, instead of getting a potentially misleading
prediction.

In the future, we intend to extend both, the flow database and the
simulation domain. The latter was proposed by one study participant,
who noted that extending the region to include intracranial vessels
would be highly beneficial. Measuring intracranial flow velocities
with Doppler ultrasonography is extremely challenging due to the
distortion of the ultrasound signal by the skull. Yet, it is still a widely
adopted procedure, as non-invasive alternatives are missing. Likewise,
we plan to apply the similarity-based flow analysis to aneurysms,
for many of which only static imaging is available. Similarity-based
analysis could also help to find similar cases with other information
than flow. For instance, from an aneurysm database, geometrically
close cases could be queried for which a rupture status is known. This
would allow to derive a geometry-based rupture probability.

8.6 conclusion

We presented the first approach for similarity-based visual analysis
of hemodynamics. While we focus our implementation and testing
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on blood flow in carotid bifurcations, the concept could equally be
transferred to other transport problems, like intracranial circulation,
blood flow in the aorta, or hemodynamics of aneurysms. We propose
a method to form a vascular alignment space that registers vessel
branches in a common coordinate system. Using clinically motivated
similarity metrics, the distances between a new vessel model and
models in a database can be derived. For the models in the database,
we pre-computed flow fields, relevant flow-derived parameters, and
velocity streamlines. Given a new carotid bifurcation, the most similar
geometries with computed flow can be queried from the database and
visualized, providing an instantaneous approximation of the blood
flow. We provide an overview of fitting candidates using map-like
visualization and facilitate simultaneous exploration and comparison
of flow in selected models. The framework is built as an extension to
the carotid analysis pipeline described in Chapter 7, which provides
an efficient toolset for the extraction of carotid bifurcation models
from CTA images [48]. It uses the vessel wall map developed in Chap-
ter 5 to create scalable overview visualizations of a matching subset
of the model database. We show that for models in the database that
are geometrically close, clinically relevant flow parameters, like the
peak systolic velocity, are highly similar. The user study confirmed
that the similarity-based flow analysis could benefit critical clinical
processes, which demand fast access to relevant parameters such as
flow velocity. In conclusion, we investigated a possibility to combat
one of the strongest weaknesses of CFD in medicine – due to the
time-consuming and resource-intensive nature of hemodynamic simu-
lations, they are difficult to directly apply in clinical workflows. Our
hope is that the insights gathered in this work will support efforts
to make hemodynamic simulations more accessible and useful for
clinical decision-making.
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C O N C L U S I O N

In recent years, data and simulation-based methods have gained in-
creasing popularity as an approach to personalize and optimize med-
ical diagnostics and treatment [27]. For the prevention of ischemic
strokes, information gained through typical imaging techniques like
CTA, MRA, and ultrasonography could be supplemented by hemody-
namic simulations based on patient-specific arterial wall models [186,
198, 352]. To explore and analyze the multidimensional hemodynamic
data gained with these simulations, visualization methods are indis-
pensable [234].

Arterial stenoses are a frequent cause of ischemic stroke – the most
common type of stroke [80] – yet the visualization of blood flow in de-
veloping stenoses has only been sparsely covered. This thesis focuses
on two major areas. First, blood vessel and flow visualization methods
are adapted and refined for the exploration of carotid stenoses, filling a
gap in the literature. The carotid arteries serve as a basis for the contri-
butions of this thesis, as they are a primary factor for stenosis-induced
strokes [76]. The second focus of this work lies in the integration of
distinct sophisticated processing and analysis stages, with the objec-
tive to increase the real-world applicability of the developed methods
and to address persisting clinical transfer challenges.

9.1 summary

This thesis is composed of four parts. After an introduction to the
topic in Part i, Part ii covers the relevant medical and computational
background. CFD simulation methods, processing steps, as well as the
state-of-the-art in vessel and blood flow visualization are reviewed.
The concept of vessel maps is introduced, including a comprehen-
sive survey of methods to dimensionally reduce 3D vascular struc-
tures to map-like depictions. Vessel maps emphasize data display
over anatomical accuracy and utilize techniques like path-centered or
shape-deforming methods. A taxonomy of vessel maps is proposed
that categorizes these visualizations based on four types of underly-
ing data: medical volume images, blood flow volume meshes, vessel
surface meshes, and centerline graphs. The techniques to create vessel
maps and their applicability are discussed, considering visual design
properties, domain tasks, and dependencies. Vessel maps are valu-
able for cardiovascular analysis, aiding disease monitoring, treatment
planning, and research.
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Part iii focuses on developing techniques for the visual exploration
and analysis of vascular stenoses. An automatic technique for cutting
and flattening vessel tree geometries is introduced, featuring natural
cuts that maintain visibility and positioning for analysis. The method
is demonstrated using simulations of fluid-wall interactions in human
carotid arteries, but its applicability extends to similar tree-like struc-
tures. Unlike other approaches, the technique operates solely on the
surface mesh input, without additional dependencies, and produces
a boundary-free quasi-isometric parameterization that preserves the
original vessel shape. The cutting process is robust, ensuring valid disk
cuts with connections at branch locations, and the flattening results in
a single connected patch. The simplicity of the 2D representation can
aid in creating comparative views of datasets for tasks like studying
patient groups or analyzing CFD parameter variations.

After focusing on the vessel wall features, techniques are developed
utilizing visualizations of the simulated internal flow field to improve
the diagnostic assessment of carotid stenoses. An application with
interconnected views is created, allowing physicians to examine vessel
morphology alongside simulated hemodynamics. The study shows
that concepts from flow visualization research can be effectively ap-
plied to specific tasks in this context. Of particular significance are
appropriate exploration techniques alongside visualization methods.
A vessel map encoding the diameter profile of the two carotids proved
to be highly useful for gaining an overview and identifying key points.
The flattened vessel tree aids in spatial navigation and data probing.
Embedding contextualization in the visualizations is vital, as it can
assist in localizing stenoses, exploring additional features like plaque,
and performing on-the-fly validations of the underlying models.

Some further considerations emerged when developing these tools
for stenosis analysis. Clinical use cases require both, a combination
of local flow pattern views near stenoses and a broader global per-
spective. The temporal dimension was found to be less significant
than anticipated, suggesting that focusing on systolic and diastolic
values might be more practical than including numerous time steps.
Additionally, dealing with the substantial data generated by CFD can
be challenging for medical diagnostics. Prioritizing core user tasks
and tailoring methods to minimize interaction is essential.

Part iv of this work approaches challenges in the applicability and
transferability of methods, especially considering clinical use cases.
Four major bottlenecks in the transfer of advanced vessel visualizations
are identified: user trust in the visualizations, the efficiency of the
data processing, the compatibility of the underlying tools and file
formats, as well as the validation scale applied to new methods. An
integrated pipeline is built to approach these issues. The pipeline
combines all preprocessing and visual analysis stages for the example
of carotid stenosis grading. Advanced techniques, such as neural
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network-based segmentation and interactive visual analysis methods,
are combined in a single framework. A significant takeaway of the
ensuing study is that actively visualizing the processing steps and
enabling retrospective control allowed users to better understand the
different processing stages and assure the correctness of what they see.
In some of the cases, the stenosis degrees determined by the physicians
testing the framework differed considerably from the degree given
in the patient’s radiology report. Remarkably, when asked which
value they thought to be more accurate, all clinicians claimed they
would rather trust the application than the report, as they found the
numerical derivation comprehensible and were able to assure the
correctness of the geometry.

The integration of advanced data processing and visualization is
challenging. The developed system required considerable collaborative
and time-intensive efforts to connect previously separate solutions for,
e.g., model extraction and automatic stenosis grading. This integration,
however, has the potential to make the adoption of new methods that
enhance medical imaging analysis feasible. A key consideration is de-
termining where users can interrupt and adjust automatic processing.
Balancing result accuracy with user time and effort is crucial, particu-
larly when dealing with complex algorithms in medical applications.
The results of this study suggest that if extensive processing is essential
for new medical visualization tools, such as image segmentation, any
required user interaction must be fast enough to not disrupt clinical
workflows significantly. With the increasing capabilities of machine
learning models like CNNs, there is an opportunity to replace time-
intensive tasks in this process. The developed framework was applied
to reconstruct more than 150 geometric models from CTA scans, which
were also made openly accessible [347].

Lastly, a novel approach to similarity-based visual analysis of hemo-
dynamics is introduced, which can circumvent complex individual
flow simulations. The application extends the integrated pipeline,
focusing on blood flow in carotid bifurcations. The concept itself,
however, would be applicable to other transport problems like in-
tracranial circulation, aortic blood flow, or aneurysm hemodynamics.
The method involves creating a vascular alignment space that registers
vessel branches in a common coordinate system. Similarity metrics are
used to compute distances between new vessel models and a database
of models. The database contains pre-computed flow fields, flow-
derived parameters, and velocity streamlines. Given a new carotid
bifurcation, the most similar geometries with computed flow can be
retrieved from the database and visualized, offering a quick approxi-
mation of the blood flow properties. Since the framework extends the
integrated carotid analysis pipeline, efficient tools for carotid bifurca-
tion model extraction from CTA images are already provided. A study
was performed to assess the prediction errors of this system regarding
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the clinically relevant flow parameters. The results show that if geomet-
rically close models exist in the database, the relevant flow parameters,
such as peak systolic velocity, can be predicted with the necessary ac-
curacy. With 120 pre-computed flow models, the measured prediction
errors are already in the same range as the interobserver variability
that exists in carotid Doppler ultrasonography. It also showed that
a good approximation of the relevant blood flow parameters is not
dependent on a globally similar surface geometry, but features such
as the stenosis degree and vessel diameter are more important for
similar flow behavior. This observation implies that for similarity-
based analysis to succeed, the database does not need to cover all
anatomic variations (branch layouts, vessel lengths) and should rather
focus on variations of the features that will dictate the relevant flow
parameters (vessel diameter, stenosis degree, stenosis length). In a user
study involving five radiologists and neurologists, the potential of
similarity-based flow analysis to enhance clinical processes requiring
quick access to these flow parameters was validated. While this novel
approach is inevitably prototypical, it addresses a significant limitation
of hemodynamic simulations in medicine – their time and resource
intensity, which hinder direct application in clinical workflows. The
approach offers a way to overcome this limitation, with the potential to
advance personalized medicine and make hemodynamic simulations
more accessible and valuable for clinical decision-making.

9.2 future work

Validation of computational hemodynamics. The validation of sim-
ulated flow and flow-derived parameters in carotid stenoses is yet
to be improved. First studies have shown that velocities measured
with Doppler ultrasonography can be reproduced with CFD [116, 287].
We also successfully compared the flow between simulation and an
in-vitro model of the carotid bifurcation [353]. However, since these
studies are limited to a handful of subjects, larger studies and gen-
eralizable results are pending. Therefore, in the future, a key goal
should be to enhance the validity and applicability of hemodynamics
computed through CFD. To enable such validations, the integration
of different imaging modalities, such as CTA and ultrasonography,
could be achieved through visual means. Visualizations of registered
data spaces could make measured and simulated parameters directly
comparable. Furthermore, this work has shown that the extraction and
flow simulation of 100 and more patient-specific carotid bifurcation
geometries is feasible, which means that large-scale evaluations of
measured versus simulated flow properties are within reach.

Multi-factor analysis. In this work, the clinically most relevant prop-
erties of stenoses are targeted, which are primarily the stenosis degree
and the systolic peak velocity. The visualization of hemodynamic scalar
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data, like the WSS, is also considered in some contexts. In many concur-
rent studies from the field of CFD, the interplay of different parameters,
such as high/low WSS or the OSI are analyzed for their potential as
disease progression markers [124, 186, 229]. Future research could
further investigate these supplementary factors to uncover patterns
and insights into the initiation and progression of stenoses. In this con-
text, visualization techniques could greatly facilitate understanding
the interplay of multiple factors in stenosis and atherosclerotic plaque
development.

Intracranial vessels. This work examined the carotid bifurcation as
it is a typical predilection site for stenosis development. Extending
the analyzed domain to include intracranial vessels (or the vertebral
arteries), could be valuable and has been mentioned by collaborating
physicians multiple times. Detecting stenoses in larger vessel trees
is considerably more challenging and can benefit from automated
processing and vessel visualization techniques. Also, expanding the
segmented vascular domain to accurately compute flow properties of
arterial short circuits could be explored. In many anatomical variations
of the circle of Willis, the two internal carotids are directly connected,
which means one side can compensate for a stenosis in the other.
Hence, the specific layout of the arterial subtree following the ICA is
highly relevant for clinical decision-making. Furthermore, measuring
intracranial flow velocities via Doppler ultrasonography is challenging
because of skull-induced signal distortion, but remains a common
procedure due to the lack of non-invasive alternatives. High-resolution
computed hemodynamics could be substantially beneficial in these
scenarios. Presenting such an extended domain without visual clutter
is a considerable challenge.

Pipeline extensions. The integrated pipeline proposed in Chapter 7, in
conjunction with the carotid bifurcation model database [347], serves
as a platform for efficient extension development. Based on the modu-
lar pipeline architecture, additional processing or visualization stages
can be seamlessly incorporated. Possible extensions encompass mod-
ules designed for epidemiological cohort studies or the integration
of multimodal data – such as MRA or Doppler ultrasonography. En-
hancements to current processes are also feasible, such as enabling the
segmentation prediction network to continuously and autonomously
learn from user-corrected masks.

Extend comparison-based analysis. During interviews with physi-
cians, the idea of interpolating flow parameters based on the similarity
distance for matching models was mentioned. If we interpret a model
as a vector in the similarity space, an interpolation of the nearest
cases seems to be sensible to “sample” the unknown data point. This
approach could potentially yield more accurate values, and projecting
the results onto the new geometry could enhance readability. However,
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there is a risk of misinterpretation if good matches are unavailable,
i.e., if the sampling density in the similarity space neighborhood of
the input model is insufficient.

Similarity-based flow analysis could also be applied to other struc-
tures, such as aneurysms. In many clinical cases, only static imaging
is available, where flow parameters could enhance the evaluation.
In the long term, similarity-based analysis could also aid in finding
similar cases with more comprehensive information than just flow. For
example, it could be possible to query geometrically similar aneurysm
cases from a database with recorded parameters beyond simulated
flow, such as the rupture status of similar aneurysms.
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