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Abstract

Since the late 1990s, massive multiple-input multiple-output (MIMO) has been suggested to improve
the achievable data rate in wireless communication systems [AHK21]. To overcome the high path losses
in the high frequency bands, the use of massive MIMO will be a must rather than an option in future
wireless communication systems. At the same time, due to the high cost and high energy consumption
of the traditional fully digital beamforming architecture, a new beamforming architecture is required.
Among the proposed solutions, the hybrid analog digital (HAD) beamforming architecture has received
considerable attention. The promising massive MIMO gains heavily rely on the availability of accurate
channel state information (CSI). This thesis considers a wideband massive MIMO orthogonal frequency
division multiplexing (OFDM) system. We propose a channel estimation method called sequential al-
ternating least squares approximation (SALSA) by exploiting a hidden tensor structure in the uplink
measurement matrix considering the HAD architecture at the base station (BS). Then, the channel ma-
trix is estimated sequentially using an alternating least squares (ALS) method. The proposed SALSA
algorithm is applicable for any massive MIMO system regardless of the channel characteristics. De-
tailed simulation results show that SALSA offers flexible control of the complexity-accuracy trade-off
compared to the classical least squares (LS) and minimum mean squared error (MMSE) methods. Then,
we propose a HAD beamforming with a low-complexity design applicable to any hybrid architecture,
where we decouple the designing of the baseband and analog beamforming matrices. We show that the
analog beamforming matrix design can be written as a series of convex sub-problems that are updated
iteratively until convergence is obtained. Compared to the reference algorithms, our framework either
achieves a comparable performance or significantly outperforms them depending on the HAD beam-
forming architecture. Our proposed HAD beamforming design has a low-complexity and is applicable
for any hybrid architecture.

Exploring new less-congested frequency bands, such as millimeter wave (mmWave) frequencies,
i.e., 30 - 300 GHz, has been proposed as a promising solution to increase network capacity. How-
ever, mmWave and high-frequency bands suffer from a high path loss compared to the sub-6 GHz
band, which renders them applicable only for short-range and indoor communication scenarios. Re-
configurable intelligent surfaces (RISs) have been introduced as a low-cost and energy-efficient green
solution to improve the communication range and overcome blockage issues in future wireless com-
munication networks. This thesis considers an RIS-aided mmWave MIMO system, where the RIS is
constituted of passive reflecting elements. We propose two novel channel estimation techniques for
Single RIS (S-RIS)-aided systems. By exploiting the low-rank nature of mmWave channels in the angu-
lar domains, we propose a non-iterative Two-stage RIS-aided Channel Estimation (TRICE) framework,
where every stage is formulated as a multi-dimensional direction of arrival (DoA) estimation problem.
As a result, our TRICE framework is very general in the sense that any efficient multi-dimensional DoA
estimation solution can be readily used in every stage to estimate the associated channel parameters.
Then, we extend our TRICE framework by exploiting the tensor structure of the received signals, which
admit a canonical polyadic decomposition (CPD), which is also known as Parallel Factor (PARAFAC)
analysis. This extension is called Tensor-based RIS Channel Estimation (TenRICE), in which the tensor
factor matrices are estimated via an ALS method. Numerical simulations evaluate the resulting system
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performance and show that both methods require a lower training overhead and a lower computa-
tional complexity, compared to the benchmark solutions, while TenRICE has a superior performance
approaching the Cramér Rao lower Bound (CRB). After that, we propose a heuristic non-iterative two-
step method to design the RIS reflection coefficients, where the RIS reflection vector is obtained in a
closed-form using the Frobenius-Norm Maximization (FroMax) strategy. Our simulation results show
that FroMax achieves a comparable performance to benchmark methods with a lower complexity.

Since the performance of the S-RIS-aided systems depends on the distance of the RIS to the trans-
mitter and the receiver, multi-RIS-aided systems have attracted more attention in the recent years. This
thesis considers a flat-fading Double RIS (D-RIS)-aided MIMO system and proposes channel estima-
tion techniques when (i) both RISs have the same training overhead and (ii) RISs have different training
overheads. For case (i), we propose an ALS-based channel estimation method, called channel estima-
tion for joint training (CEJOINT), by exploiting the Tucker2 tensor structure of the received signals. We
show that if the reflective elements of the S-RIS system are carefully distributed between the two RISs in
a D-RIS system, the training overhead in the D-RIS system can be reduced and the estimation accuracy
can also be increased compared to the S-RIS system. For case (ii), we show that the received signal can
be represented as a 4-way tensor satisfying a nested PARAFAC decomposition model. Exploiting such a
structure, we propose a closed-form Khatri-Rao Factorization (KRF)-based and an iterative ALS-based
channel estimation method, which are called KRF-based for separate training (KRF-SEPT) and ALS-
based for separate training (ALS-SEPT), respectively. The numerical results show that both proposed
methods have a comparable performance as long as the identifiability conditions of the KRF-SEPT are
satisfied, while the ALS-SEPT method can achieve a satisfactory performance with less training over-
head. Moreover, the performance of the proposed ALS-SEPT method can further be improved by using
KRF-SEPT as an initialization.
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Zusammenfassung

Seit den späten 1990er Jahren wurden massive MIMO (multiple-input multiple-output) Systeme
vorgeschlagen, um die erreichbaren Datenraten in drahtlosen Kommunikationssystemen zu verbessern
[AHK21]. Um die hohen Pfadverluste in den Hochfrequenzbändern zu überwinden, wird die Ver-
wendung von massive MIMO in zukünftigen drahtlosen Kommunikationssystemen eher ein Muss als
eine Option sein. Gleichzeitig ist aufgrund der hohen Kosten und des hohen Energieverbrauchs der
herkömmlichen volldigitalen Beamforming-Architektur eine neue Beamforming-Architektur erforder-
lich. Unter den vorgeschlagenen Lösungen hat eine hybride analog digitale (HAD) Beamforming-
Architektur erhebliche Aufmerksamkeit erhalten. Die vielversprechenden Gewinne durch den Ein-
satz von massive MIMO hängen stark von der Verfügbarkeit von genauer Kanalzustandsinformation
(CSI) ab. Diese Arbeit betrachtet ein breitbandiges OFDM-System mit massive MIMO. Wir schlagen
eine Kanalschätzmethode namens SALSA (sequential alternating least squares approximation) vor, die
eine versteckte Tensorstruktur in der gemessenen Uplink-Matrix unter Berücksichtigung der HAD-
Architektur an der Basisstation (BS) ausnutzt. Anschließend wird die Kanalmatrix sequentiell mit
einer ALS (alternating least squares)-Methode geschätzt. Der vorgeschlagene SALSA-Algorithmus ist
unabhängig von den Kanaleigenschaften auf jedes massive MIMO-System anwendbar. Detaillierte
Simulationsergebnisse zeigen, dass SALSA im Vergleich zu den klassischen LS (least squares)- und
MMSE (minimum mean squared error)-Verfahren eine flexiblen Abtausch zwischen Komplexität und
Genauigkeitaufweist. Anschließend schlagen wir einen Entwurf für die Beamforming-Matrix mit geringer
Komplexität vor, der auf jede hybride Architektur anwendbar ist und bei dem wir den Entwurf der
Basisband- und der analogen Beamforming-Matrizen entkoppeln. Wir zeigen, dass das Design der
analogen Beamforming-Matrix als eine Reihe von konvexen Teilproblemen geschrieben werden kann,
die iterativ aktualisiert werden, bis Konvergenz erreicht ist. Im Vergleich zu den Referenzalgorith-
men erreicht unser Algorithmus entweder eine vergleichbare Leistung oder übertrifft sie erheblich, je
nach der HAD Beamforming Architektur. Der von uns vorgeschlagene Entwurf für die Beamforming-
Architektur weist eine geringe Komplexität auf und ist auf jede Hybridarchitektur anwendbar.

Die Erkundung neuer, weniger überlasteter Frequenzbänder, wie der Frequenzen im Millimeter-
wellenbereich (mmWave), d. h. 30 - 300 GHz, wurde als vielversprechende Lösung zur Erhöhung der
Netzkapazität vorgeschlagen. Diese Frequenzbänder weisen jedoch im Vergleich zum Sub-6-GHz-Band
hohe Pfadverluste auf, so dass sie nur für Kurzstrecken- und Innenraumkommunikationsszenarien
geeignet sind. Rekonfigurierbare intelligente Oberflächen (RISs - Reconfigurable intelligent surfaces)
wurde als kostengünstige und umweltfreundliche Lösung zur Verbesserung der Kommunikationsre-
ichweite und zur Überwindung von Blockierungsproblemen in zukünftigen drahtlosen Kommunika-
tionsnetzwerken eingeführt. Diese Arbeit betrachtet ein RIS-basiertes mmWave MIMO-System, bei
dem die RIS aus passiven reflektierenden Elementen besteht. Wir schlagen zwei neue Kanalschätzmeth-
oden für Single RIS (S-RIS)-basierte Systeme vor. Unter Ausnutzung der geringen Rangstruktur von
mmWave-Kanälen in der räumlichen Auflösung schlagen wir einen nichtiterativen TRICE (Two-stage
RIS-aided Channel Estimation)-Algorithmus vor, bei dem jede Stufe als mehrdimensionales Richtungs
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(DoA)-Schätzproblem formuliert wird. Infolgedessen ist unser TRICE-Algorithmus sehr allgemein
in dem Sinne, dass jede effiziente mehrdimensionale DoA-Schätzlösung ohne weiteres in jeder Stufe
zur Schätzung der zugehörigen Kanalparameter verwendet werden kann. Wir erweitern dann un-
seren TRICE-Algorithmus, indem wir die Tensorstruktur der empfangenen Signale ausnutzen, die
eine CPD (canonical polyadic decomposition)-Analyse, auch bekannt als PARAFAC (Parallel Factor)-
Analyse, ermöglicht. Diese Erweiterung wird als TenRICE (Tensor-based RIS Channel Estimation) beze-
ichnet, wobei die Tensorfaktormatrizen mit einer ALS-Methode geschätzt werden. Numerische Sim-
ulationen bewerten die resultierende Systemleistung und zeigen, dass beide Methoden im Vergleich
zu den Benchmark-Lösungen weniger Trainingsaufwand und Rechenkomplexität erfordern, während
TenRICE eine überlegene Leistung aufweist, die der Cramér Rao Schranke CRB nahekommt. An-
schließend schlagen wir ein heuristisches, nicht-iteratives zweistufiges Verfahren zum Entwurf der
RIS-Reflexionskoeffizienten vor, bei dem der RIS-Reflexionsvektor in geschlossener Form unter Ver-
wendung der FroMax (Frobenius-Norm Maximization)-Strategie ermittelt wird. Unsere Simulation-
sergebnisse zeigen, dass FroMax eine vergleichbare Leistung wie Benchmark-Methoden mit geringerer
Komplexität erreicht.

Da die Leistung von S-RIS-gestützten Systemen von der Entfernung der RIS zum Sender und Empfä-
nger abhängt, haben Systeme mit mehreren RISs in den letzten Jahren mehr Aufmerksamkeit erhal-
ten. In dieser Arbeit wird ein Double RIS (D-RIS)-basiertes MIMO-System mit flachem Fading betra-
chtet und es werden Methoden zur Kanalschätzung vorgeschlagen, wenn (i) beide RISs den gleichen
Trainingsaufwand haben und (ii) die RISs unterschiedliche Trainingsaufwände haben. Für den Fall (i)
schlagen wir eine ALS-basierte Kanalschätzungsmethode, genannt CEJOINT (channel estimation for
joint training), vor, die die Tucker2-Tensorstruktur der empfangenen Signale nutzt. Wir zeigen, dass,
wenn die reflektierenden Elemente des S-RIS-Systems sorgfältig zwischen den beiden RISs in einem
D-RIS-System verteilt werden, der Trainingsaufwand im D-RIS-System reduziert werden kann und
die Schätzgenauigkeit im Vergleich zum S-RIS-System ebenfalls erhöht werden kann. Für den Fall
(ii) zeigen wir, dass das empfangene Signal als ein 4-dimensionaler-Tensor dargestellt werden kann,
der ein nested PARAFAC-Zerlegungsmodell erfüllt. Unter Ausnutzung einer solchen Struktur schla-
gen wir eine geschlossene Form für eine KRF (Khatri-Rao Factorization)-basierte und eine iterative
ALS-basierte Kanalschätzungsmethode vor, die als KRF-SEPT (KRF-based for separate training) bzw.
ALS-SEPT SEPT (ALS-based for separate training) bezeichnet werden. Die numerischen Ergebnisse
zeigen, dass beide vorgeschlagenen Methoden eine vergleichbare Leistung haben, solange die Identi-
fizierbarkeitsbedingungen der KRF-SEPT-Methode erfüllt sind, während die ALS-SEPT-Methode eine
zufriedenstellende Leistung mit weniger Trainingsaufwand erreichen kann. Darüber hinaus kann die
Leistung der vorgeschlagenen ALS-SEPT-Methode durch die Verwendung von KRF-SEPT als Initial-
isierung weiter verbessert werden.
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Chapter 1

Introduction

1.1. Motivation
Guglielmo Marconi’s successful attempt in 1895 to transmit a three-dot Morse code over a distance of
three kilometers using electromagnetic waves brought the first glimmer of hope to the idea of wireless
communications [SSS09]. The evolution of wireless communication systems started using the cellular
infrastructure from the first generation (1G) operating with analog systems in the 1980s. Since the
introduction of 2G in the 1990s, wireless communication systems have been operating fully digitally.

Every decade, a new generation of wireless communication systems emerges to enable higher achiev-
able data rates with lower latency through the use of higher frequencies, larger bandwidths, and mul-
tiple antennas. According to the studies [Akh+20; Cho+20], an explosive increase in mobile data traffic
is expected in the next decades due to new applications such as augmented reality (AR), virtual reality
(VR), and Internet of Things (IoT) [Shi+18] (from 7.462 Exabyte (EX)/month in 2010 to 5016 EX/month
in 2030 [Cho+20]). These new applications and their new service requirements cannot be supported by
the current 4G wireless communication systems and will put significant pressure on the existing sys-
tems. Therefore, the researchers in both academia and industrial communities are actively proposing
new technologies and solutions to meet the requirements of current and new applications and use cases.
The next generations of wireless communication network, i.e., 5G and beyond, should provide some
key performance indicators such as supporting an order of magnitude increase in the peak data rate
with more area spectral efficiency (SE) and energy-efficient networks [And+14]. An overview of the de-
velopment of wireless communication systems from 1G to 6G with the timeline in terms of applications,
network characteristics, technology, and key indicator factors is given in Fig. 1.1 [Akh+20].

In the following, we give an overview of some key enabling technologies that are the main focus of
this thesis and have been proposed for 5G and beyond wireless communication networks to meet the
aforementioned performance requirements.

1.1.1. Part I: Massive MIMO Wireless Communication Systems

The multiple-input multiple-output (MIMO) technology is a key element of current 4G and future wire-
less communication standards such as IEEE 802.11n, Long Term Evolution (LTE), and 5G new radio
(NR). By taking advantage of the rich scattering environments, i.e., multipath propagation phenomena,
MIMO technology is able to provide higher data rates and more robust and reliable communications.
Assuming a single-user MIMO system, as its simplest implementation, two different types of trans-
mission modes can be realized, i.e., (i) transmit/spatial diversity, where multiple antennas transmit the
same data simultaneously to boost the signal to noise ratio (SNR) and communication reliability and
(ii) spatial multiplexing, where independent data streams, which are also called layers in the 3rd Gen-
eration Partnership Project (3GPP) specifications, are sent on each antenna to increase the capacity and
data throughput [Guo+17; Tel00; Gol+03; ZT03; Ala98; TJC99; Ges+03; Pau+04]. While both techniques

1



1.1. Motivation

can be used together in MIMO systems to achieve a balance of reliability and high data rates, spatial
multiplexing is one of the best known MIMO methods. The same approach is applied for the multi-user
MIMO setting by splitting the layers among the users. From the introduction of spatial multiplexing
in 3GPP Release 7 up to Release 12, the same antenna array structure is assumed, where the antennas
are built in columns and each column is controlled separately for spatial multiplexing in the azimuth
direction. Release 13 brought a paradigm shift in the antenna arrays, allowing networks to provide
larger and more direct arrays, referred to as full-dimension MIMO by controlling antenna elements
in both azimuth and elevation for 3D beamforming [DH23]. Release 13’s achievements in separating
physical antennas from logical elements has paved the way to larger arrays, also known as massive
MIMO technology, which increases the number of antennas in the existing MIMO systems by orders of
magnitude [Lar+14]. By increasing the number of antenna elements, e.g., to a few hundreds, we can
transmit a more significant number of data streams and serve many dozens of terminals in the same
time-frequency resource, which basically offers all the benefits of traditional MIMO but on a much
larger scale. In Fig. 1.2, you can find the 3GPP timeline and some of the features [3GP16a; 3GP16b;
3GP20b; 22; 21b; 21a].

The almost worldwide deployed 4G wireless communication networks operate mainly in the sub-6
GHz frequency band. Since most of the sub-6 GHz frequency bands are already occupied and 4G has
reached its capacity limits due to the spectrum scarcity, a switch to higher frequency bands, i.e., mil-
limeter wave (mmWave) and Terahertz (THz), is widely considered in 5G and future wireless networks
[Rap+13]. This can be explained by the large amount of unused spectrum, which enables extremely
high data rates and thus a significant increase in capacity. However, during the last few years, several
studies have been published about channel measurements at high-frequency bands [Mac+15; Han+15b;
Rub+19; Rub+23; Dup+20] showing that their propagation channel suffers from a higher free space
path loss compared to the sub-6 GHz band [Dup+18; Dup+19a; Rub+23]. In addition, as shown in
Fig. 1.3, some high-frequency bands experience more attenuation due to atmospheric absorption, rain,
and snow effects [Tri+21]. These issues make higher-frequency bands applicable only for short-range
or indoor communications. In other words, the high-frequency bands are only realizable in outdoor
communication applications by either increasing the transmission power or by using high-gain, high-
directional antennas. While an increase in transmit power is limited and must be within the range es-
tablished by regulations, the high beamforming gain in large array systems can combat the path losses
and provide links with adequate SNR. Therefore, using massive MIMO systems becomes a must rather
than an option in the future wireless generation. Thanks to the small wavelength of high-frequency
bands, packing a large number of antennas into small form factors is realizable and practically possible,
which suits the requirements of massive MIMO in 5G and beyond.

However, both high-frequency bands and massive MIMO technologies make signal processing dif-
ferent and more complicated from conventional wireless communication systems [Gao+19]. First, new
hardware constraints are required to enable a practical implementation of massive MIMO systems such
as power consumption and circuit technology [WDV23; Don+16]. Traditionally, the amplitude and
phase of signals are adjusted using a digital precoder in the baseband of conventional MIMO systems.
This kind of beamforming architecture is known as fully digital, in which a dedicated radio frequency
(RF) chain including a signal mixture and an analog-to-digital converter (ADC) are required for each
antenna element. Due to their high cost and power consumption, implementing a fully digital precod-
ing architecture in a high-frequency band-based massive MIMO system is currently very challenging, if

2
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Figure 1.2: 3GPP release timeline [3GP16a; 3GP16b; 3GP20b; 22; 21b; 21a].
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1. Introduction

not impossible. Therefore, other kinds of beamforming architectures are proposed for massive MIMO
systems such as analog and hybrid analog digital (HAD) beamforming architectures. On the one hand,
analog beamforming is a very simple and cost-effective architecture, where the digital output of the
RF chain is mapped to a large number of antennas via a network of phase shifters (PSs) or switches
[Wan+09; BBS13; Hur+13; Son+15]. However, the main idea of MIMO systems, i.e., spatial multiplex-
ing, cannot be realized with analog beamforming alone. To overcome this issue, HAD beamforming
architectures have been proposed, which split the signal processing operations between the analog and
the digital domains to reduce the number of RF chains as compared to the number of antenna elements
[GAH20; Aya+14; Ard+18; HMP19]. Compared to the fully digital counterparts, the HAD beamform-
ing architectures have received a lot of attention recently [Alk+14; LW20; XXX17; MH14; BBS13] and are
widely considered for future wireless communication systems, since they provide a better compromise
between cost, size, complexity, energy-consumption, and SE.

To exploit the potential of massive MIMO systems, the knowledge of propagation channel charac-
teristics, i.e., channel state information (CSI) at the transmitter and the receiver is critical for wireless
communication system design, simulation, and modeling. Since the multipath propagation results in
rapid changes in the phase and amplitude of the transmitted signal, the receiver needs to know the
accurate CSI in order to mitigate their impact and decode the received signal successfully [Lar+14].
On the other hand, the transmitter needs to know the accurate CSI in order to efficiently design the
transmit precoding matrices so that the received signals add constructively at the desired receivers
and destructively at the unwanted receivers.Therefore, there is a need to develop new channel estima-
tion algorithms that provide accurate channel estimation with low training overhead and with a low
SNR, while considering (i) the different channel models in the sub-6 GHz and high-frequency bands,
i.e., high-rank versus low-rank channels and (ii) the corresponding HAD beamforming architecture.
Moreover, HAD beamforming problems are inherently non-convex and difficult to design in contrast
to their fully digital counterparts, mainly due to some additional non-convex constraints, e.g., constant
modulus constraints imposed on the analog domain part of the designed beamforming matrices. In
Part I of this thesis, we address these problems and propose new and efficient channel estimation
and HAD beamforming design methods for massive MIMO systems, while taking into account the
above design and practical constraints.

1.1.2. Part II: RIS-aided Wireless Communication Systems

Achieving high data rates while maintaining the system’s energy efficiency remains a major concern in
future 6G wireless communication networks [WZ19]. An ultra-dense network (UDN) with dense small
cells has been proposed to boost the achievable data rate [Boc+14]. However, because of (i) the energy
consumption of the circuits and cooling of the base station (BS)s and (ii) the increasing number of the
active components such as BSs and relays, the energy consumption scales up almost linearly with the
number of active components in the network [Zha+17]. Cognitive radio [Lav+17] is also becoming in-
creasingly important in future wireless communication networks, where a flexible spectrum allocation
is proposed to further improve the resource management.

On the other hand, the propagation problems in the high-frequency bands, i.e., short communica-
tion coverage due to high path loss and blockage, remain a challenge for providing reliable outdoor
wireless communications. Therefore, an energy-efficient technology is needed that improves the com-
munication coverage and overcomes the propagation blockages in the high-frequency bands. Numer-
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Figure 1.3: Atmospheric absorption variation due to several factors [Tri+21].

ous techniques already exist to overcome the above issues, such as amplify-and-forward (AF) relays
[GAH21], backscatter communications, and massive MIMO [Lia+19; Bas+19; WZ19; Yan+20b]. How-
ever, these techniques have some disadvantages. For example, the AF relay requires a transmitter
module to amplify and regenerate the signal. Moreover, an AF relay usually operates in half-duplex
(HD) mode, since the full-duplex (FD) mode requires additional effective interference cancellation tech-
niques to eliminate the strong self-interference. On the other hand, backscatter communications are
based on communications between a radio frequency identification (RFID) tag and a reader, where the
RFID tag reflects the signal sent by the reader. Particularly, the RFID sends its own information back to
the reader. Obviously, the backscatter communication technique cannot be used to improve the com-
munication link. Therefore, other techniques are required for wireless communication systems not only
to further improve the data rate but also to keep the energy and hardware costs low.

During the last few years, the reconfigurable intelligent surface (RIS) technology has attracted much
attention as one of the key enabling technologies for improving future wireless communication sys-
tems. An RIS, also known as an intelligent reflecting surface (IRS), software-controlled metasurface
(SCM), and large intelligent surface (LIS), is a man-made surface from electromagnetic materials that
can be controlled electronically by adjusting their phase, amplitude, and/or polarization to influence
and to tune the wireless communication channels in real-time. There are different implementations
of RISs such as liquid crystal surfaces, reflected arrays, and software-defined meta surfaces [The+22;
Lia+18b; Lav+18; Liu+18; Hon23]. The peculiarity of the RIS technology, which distinguish it from
other technologies used in the current 4G and 5G wireless communication networks design principles,
is the ability to create a controllable and smart environment by shaping and fully controlling the elec-
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Figure 1.4: RIS applications and use cases in wireless communication systems [Hon23].

tromagnetic response of environmental objects distributed in the network [Lia+18a]. Moreover, most of
the RIS implementation architectures are made of passive, inexpensive, and thin electromagnetic mate-
rials, which make them easy to deploy on environment structures such as building facades and indoor
walls. Due to their unique characteristics, the RIS technology has found a wide range of applications
and use cases [Hon23], as shown in Fig. 1.4. In Fig. 1.4 (a), the RIS creates a virtual LoS link, which
avoids the obstacle between the transmitter and the receiver via a smart reflection. Moreover, adding
more RISs provides more signal paths, resulting in a higher channel rank as shown in Fig. 1.4 (b). Due
to the obstacles, the channel between the transmitter and the receiver can be modeled as Rayleigh/fast
fading, while the RIS-aided link provides a Rician/slow fading channel. The coexistence of these two
channels improves the channel statistics/distribution, which is crucial for ultra high-reliability com-
munication applications as shown in Fig. 1.4 (c). Fig. 1.4 (d) illustrates the possibility of cancelling the
inter-cell interference or suppressing the co-channel interference by smartly adjusting the RIS reflection
coefficients.

Comparing RISs with the AF relays [GAH21; BÖL20; Yil+21; Wan+22], (i) the power consumption
for the smart controller to adjust the reflection matrix of an RIS is practically negligible compared to
the transmit power of AF relays [Hua+19], (ii) the RIS operates in FD mode, which is spectrally more
efficient. Moreover, in RIS-aided systems, the Line of Sight (LoS) and the reflected paths with the same
information signals can be designed to add coherently to strengthen the received signal, unlike the
backscatter. On the other hand, massive MIMO is completely different from RISs in terms of array ar-
chitecture, i.e., active antenna elements versus passive/semi-passive reflecting elements, and operating
mechanism, i.e., transmit versus reflect [WZ19]. Moreover, the energy consumption in massive MIMO
and mmWave technologies cannot be arbitrarily reduced due to the use of costly RF chains and also the
complex signal processing, which is required to achieve high-performance communications [Wu+17].
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Although the RISs have many promising unique potentials, from a signal processing perspective,
they face us with new challenges to efficiently integrate them into wireless communication networks,
such as reflection coefficient design and optimization, channel estimation, and deployment from a com-
munication design perspective. In contrast to conventional wireless communication systems, in which
all communication nodes use only active elements, RIS-based systems are deployed with semi-passive
or completely passive components, to reduce the RIS cost and complexity. This in turn complicates
the channel estimation methods, since the propagation channel can only be sensed and estimated at
the receiver side. Moreover, the large number of channel coefficients to be estimated limits the feasi-
bility of CSI acquisition within a practical coherence time, since an RIS is expected to have a massive
number of reflecting components. On the other hand, RIS reflection matrix design problems are inher-
ently non-convex and difficult to solve, mainly due to the massive number of reflecting components
and some additional non-convex constraints, e.g., constant modulus constraints imposed due to the
RIS hardware requirements. In Part II of this thesis, we address these problems to propose new and
efficient channel estimation and RIS reflection design methods for RIS-aided systems, while taking
into account the above design and practical constraints.

1.2. Major Contributions
The content of this thesis is organized in two separate parts, which can be read independently of each
other. Also, each chapter is self-contained, so one can read the chapters in any order. The common
algebraic tools used in both parts are outlined in Subsection 1.3. The structure of the thesis is visualized
in Fig. 1.5. In the following, we give a summary of the main contributions.

1.2.1. Part I: Massive MIMO Wireless Communication Systems

The first part of the thesis is devoted to massive MIMO wireless communication systems. Our main
focus in this part is on channel estimation and beamforming design for massive MIMO orthogonal
frequency division multiplexing (OFDM) systems with a large number of antennas.

Chapter 2 considers a wideband massive MIMO OFDM system operating in a sub-6 GHz band
where a single-user with a fully digital beamforming structure communicates with a BS having a HAD
beamforming architecture. In contrast to earlier works on channel estimation for massive MIMO sys-
tems, which mainly considered the low-rank channel characteristics of the mmWave frequency bands,
we propose a novel channel estimation method called sequential alternating least squares approxima-
tion (SALSA) by exploiting a hidden tensor structure in the uplink measurement matrix. Specifically,
by showing that any MIMO channel matrix can be approximately decomposed into a summation of R
factor matrices having a Kronecker structure, the uplink measurement matrix can be reshaped into a
3-way tensor admitting a Tucker decomposition [HRD08]. Exploiting such a tensor representation, the
MIMO channel matrix can be estimated sequentially using the alternating least squares (ALS) method,
where one of the three factor matrices that represents the analog training beams is known [CLA09].
Detailed simulation results are provided showing that the SALSA-based approach can achieve a more
accurate channel estimation in difficult scenarios as compared to the classical least squares (LS)-based
and minimum mean squared error (MMSE) approaches. Here, note that the proposed SALSA method
is not limited to the single-user case and can easily be applied for multi-user scenarios using orthogonal
pilot signals. The content of this chapter has been published in
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Figure 1.5: Structure of the thesis.

[GAH23] S. Gherekhloo, K. Ardah, and M. Haardt, "SALSA: A Sequential Alternating Least
Squares Approximation Method for MIMO Channel Estimation," IEEE Transactions on
Vehicular Technology (2023), doi: 10.1109/TVT.2023.3347290.

In Chapter 3, we consider a frequency-selective downlink multi-user MIMO OFDM system and
propose a hybrid beamforming design approach with a low complexity that is applicable for any hybrid
beamforming architecture. We assume that the transmit baseband beamforming matrices are designed
using the classical zero forcing (ZF) method, while the receive baseband beamforming matrices are
designed using the MMSE approach [Chr+08]. Moreover, we derive an approximation of the system’s
SE upper-bound, which is used as the objective function of the transmit HAD matrix optimization.
To obtain a solution, we divide the problem into a series of convex sub-problems that are updated
iteratively until convergence is obtained. Our proposed solution has either a comparable or a slightly
better performance compared to the benchmark method, depending on the beamforming architecture.
The content of this chapter has been published in

[GAH20] S. Gherekhloo, K. Ardah, and M. Haardt, "Hybrid Beamforming Design for Downlink
MU-MIMO-OFDM Millimeter-Wave Systems," in Proc. IEEE 11th Sensor Array and
Multichannel Signal Processing Workshop (SAM), Hangzhou, China, 2020, pp. 1-5.

1.2.2. Part II: RIS-aided Wireless Communication Systems

In this part, our focus is on RIS-aided wireless communication systems. The main motivation for con-
sidering RISs is to improve the system coverage and overcome the obstacles in the high-frequency
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bands.

Chapter 4 considers the channel estimation, the beamforming, and the RIS reflection design prob-
lems in point-to-point Single RIS (S-RIS)-aided MIMO systems using the mmWave channel model. We
assume that the RIS contains passive reflecting elements and the direct link between the transmitter
and the receiver is blocked or pre-estimated by turning the RIS elements off, as in [MJ19]. We pro-
pose two channel estimation methods. First, we use a structured channel training procedure to propose
a Two-stage RIS-aided Channel Estimation (TRICE) framework for single-user S-RIS-aided mmWave
MIMO communication systems. In the first stage, the directions of departure (DoDs) of the dominant
paths of the transmitter-to-RIS channel and the directions of arrival (DoAs) of the dominant paths of
the RIS-to-receiver channel are estimated. In the second stage, by using the estimated channel parame-
ters of the first stage, the effective azimuth and elevation angles of the cascaded transmitter-to-RIS-to-
receiver channel at the RIS are estimated, one-by-one, including the effective complex path gains. In
both stages, we show that the parameter estimation can be carried out via a multi-dimensional DoA
estimation scheme, for which several solutions exist as in [HRD08; ZH17a; ZH17b; SPP18; AAH19a;
MRM16; Cao+18; AH21], among many others. For instance, we estimate the DoAs and DoDs in a
closed-form using the Discrete Fourier Transform (DFT)-beamspace Estimation of Signal Parameters
Via Rotational Invariance Techniques (ESPRIT) methods of [ZH17a; ZH17b]. Moreover, we use the
Compressed Sensing (CS) techniques [SPP18; AAH19a; MRM16; Cao+18; AH21] to further improve the
estimation performance in the case of difficult scenarios such as high noise power or a small number
of measurement vectors. The TRICE method is compared to the LS and the on-grid CS technique pro-
posed in [Wan+20], where all channel parameters are estimated jointly. It is shown that the proposed
TRICE method has a lower training overhead and a lower computation complexity, compared to the LS
estimate and the proposed method in [Wan+20].

After that, we extend our TRICE framework and propose a canonical polyadic decomposition (CPD)-
based channel estimation method called Tensor-based RIS Channel Estimation (TenRICE), by jointly ex-
ploiting the tensor structure of the received signals and the low-rank nature of the mmWave channels.
Note that the CPD is also known as Parallel Factor (PARAFAC) analysis. Using the TenRICE method,
the transmitter-to-RIS and the RIS-to-receiver channels can be estimated separately using ALS, up to a
trivial permutation and scaling factor. The TenRICE method has a superior performance compared to
the TRICE framework, approaching the Cramér Rao lower Bound (CRB). This superior performance of
the TenRICE compared to the TRICE is due to the exploitation of the tensor structure of the received sig-
nal in addition to considering the low-rank characteristics of the channel. In the end, we formulate the
beamforming and the RIS reflection design as a SE maximization problem. Due to its non-convexity, we
propose a heuristic non-iterative two-step solution, where the RIS reflection vector is obtained, different
from [ZZ20a], in a closed-form using a Frobenius-norm Maximization strategy, termed FroMax. Our
proposed FroMax solution achieves a comparable performance to benchmark methods with a lower
complexity. The content of this chapter has been published in

[Ard+21] K. Ardah, S. Gherekhloo, A. L. F. de Almeida, and M. Haardt, "TRICE: A Channel
Estimation Framework for RIS-Aided Millimeter-Wave MIMO Systems," IEEE Signal
Processing Letters, vol. 28, pp. 513-517, 2021, doi: 10.1109/LSP.2021.3059363 .
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[Ghe+21] S. Gherekhloo, K. Ardah, A. L. F. de Almeida, and M. Haardt, "Tensor-Based
Channel Estimation and Reflection Design for RIS-Aided Millimeter-Wave MIMO
Communication Systems," in Proc. 55th Asilomar Conference on Signals, Systems, and
Computers, Pacific Grove, CA, USA, 2021, pp. 1683-1689, doi: 10.1109/IEEECONF533
45.2021.9723362.

Chapter 5 considers a Double RIS (D-RIS)-aided MIMO system. First, we propose an efficient chan-
nel estimation method by exploiting the tensor structure of the received signal, called channel estima-
tion for joint training (CEJOINT). Specifically, we show that the received signals in flat-fading D-RIS-
aided MIMO systems can be arranged in a 3-way tensor that admits Tucker2 decomposition. Accord-
ingly, an ALS-based method is proposed, where the transmitter-to-RIS-1 channel, the RIS-1-to-RIS-2
channel, and the RIS-2-to-receiver channel can be estimated separately, up to trivial scaling factors. We
compare an ALS method for S-RIS systems proposed in [AA20; AAB21] with CEJOINT in terms of the
minimum training overhead and the estimation accuracy. It is shown that if the RIS elements in the S-
RIS systems are distributed carefully between the two RISs in the D-RIS systems, the training overhead
for CEJOINT can be reduced and the corresponding channel estimation accuracy can also be improved.

Then, different from CEJOINT, we assume that the training overhead assigned to each RIS in D-
RIS-aided MIMO systems can be adjusted separately. Consequently, we show that the received signals
in flat-fading D-RIS aided MIMO systems can be represented as a 4-way tensor that satisfies a nested
PARAFAC decomposition model. Exploiting such a structure, we propose a non-iterative three-step
channel estimation method, where one of the three channel matrices in each step can be determined in
closed-form using a low-complexity Khatri-Rao Factorization (KRF) technique. To enhance the channel
estimation accuracy, we further propose an ALS-based channel estimation method where we estimate
one channel matrix assuming that the other two are fixed. We call the closed-form and the iterative
channel estimation methods KRF-based for separate training (KRF-SEPT) and ALS-based for separate
training (ALS-SEPT), respectively. The ALS-SEPT has more relaxed constraints on the training over-
head than the KRF-SEPT method. Here, and different from the CEJOINT, we propose to initialize two
channel matrices in ALS-SEPT using the closed-form KRF-SEPT method, even if the constraints of KRF-
SEPT are not satisfied. Via computer simulations, we show that the ALS-SEPT method using KRF-SEPT
initialization does not only have a faster convergence rate but has also a better estimation accuracy as
compared to the ALS-SEPT method with random initializations. Moreover, we show that both pro-
posed methods have a comparable estimation accuracy if the identifiability constraints of the KRF-SEPT
method are satisfied. However, if less training overhead is used, the ALS-SEPT method outperforms
the closed-form KRF-SEPT method with less training overhead. Last but not least, both proposed chan-
nel estimation methods can be extended to a multi-user scenario, where the channel estimation can be
performed separately for each user with orthogonal training sequences in the time, frequency, and/or
space domains without any multi-user interference. The content of this chapter has been published in

[Ard+22] K. Ardah, S. Gherekhloo, A. L. F. de Almeida, and M. Haardt, "Double-RIS Versus Single
-RIS Aided Systems: Tensor-Based MIMO Channel Estimation and Design Perspectives,"
in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Singapore, 2022, pp. 5183-5187, doi: 10.1109/ICASSP43922.2022.9746287 .
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[Ghe+23] S. Gherekhloo, K. Ardah, A. L. F. de Almeida, M. Maleki, and M. Haardt, "Nested PAR-
AFAC Tensor-Based Channel Estimation Method for Double RIS-Aided MIMO
Communication Systems," in Proc. 31st European Signal Processing Conference (EUSIPCO),
Helsinki, Finland, 2023, pp. 1674-1678, doi: 10.23919/EUSIPCO58844.2023.10290107.

In Chapter 6, we present the main conclusions along with some future research directions. We refer
the readers to Appendix A for the proofs and the derivations in this thesis.

1.2.3. Scientific Production

The list of publications from which the content and the contribution of this work are taken is given
below.

[GAH23] S. Gherekhloo, K. Ardah, and M. Haardt, "SALSA: A Sequential Alternating Least
Squares Approximation Method for MIMO Channel Estimation," IEEE Transactions on Vehicular
Technology (2023), doi: 10.1109/TVT.2023.3347290.

[Ard+21] K. Ardah, S. Gherekhloo, A. L. F. de Almeida, and M. Haardt, "TRICE: A Channel
Estimation Framework for RIS-Aided Millimeter-Wave MIMO Systems," IEEE Signal Processing
Letters, vol. 28, pp. 513-517, 2021, doi: 10.1109/LSP.2021.3059363 .

[GAH20] S. Gherekhloo, K. Ardah, and M. Haardt, "Hybrid Beamforming Design for Downlink
MU-MIMO-OFDM Millimeter-Wave Systems," in Proc. IEEE 11th Sensor Array and Multichannel
Signal Processing Workshop (SAM), Hangzhou, China, 2020, pp. 1-5.
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1.3. Preliminary Definitions and Concepts
This section defines the notation and some necessary basic concepts used in this thesis. All proper-
ties/definitions required to understand the following chapters are summarized in a compact and sys-
tematic form. First, the general notation used throughout the work is defined. Then, an overview of
some of the matrix and tensor properties/concepts used in the rest of the thesis is given.

1.3.1. Notation

We present a scalar, column vector, and matrix as a,a, and A, respectively. The (i, j)th element of the
matrix A is denoted by [A][i,j]. For the vector case, the ith element of a is denoted by [a][i]. We use
the superscripts (·)−1, (·)+, (·)∗, (·)T, (·)H, and ∠(·) to denote the matrix inverse, Moore-Penrose pseudo
inverse, complex conjugate, transposition, conjugate transposition, and angle, respectively. Moreover,
E{·}, trace[·], ∥ · ∥F, and ∥ · ∥2 denote the expectation, trace, Frobenius norm, and 2-norm operators,
respectively. We use ⌈x⌉ to denote the ceiling function. We define 1N as the all ones column vector of
length N , IN as the N × N identity matrix, CN (0,R) as the circularly symmetric complex Gaussian
distribution with zero mean and covariance matrixR.

1.3.2. Matrix Properties

For the two matrices A ∈ CN×M and B ∈ CP×Q, the Kronecker product between them, i.e., A ⊗B is
defined as

A⊗B =


[A][1,1]B · · · [A][1,M ]B

...
. . .

...

[A][N,1]B · · · [A][N,M ]B

 ∈ CNP×MQ (1.1)

The Khatri-Rao product is another important operator. It can be obtained by calculating the column-
wise Kronecker product of the matrices, which requires thatA andB have the same number of columns,
i.e.,A ∈ CN×M andB ∈ CP×M , where the Khatri-Rao product between them is defined as

A ⋄B =
[
[a][:,1] ⊗ [b][:,1], · · · , [a][:,m] ⊗ [b][:,m], · · · , [a][:,M ] ⊗ [b][:,M ]

]
∈ CNP×M (1.2)

To perform the element-wise product between matrices, the Hadamard product is defined. Note
that the two matrices A and B must have the same dimensions, i.e., A ∈ CN×M and B ∈ CN×M ,
where the Hadamard product between them is defined as

Z = A⊙B ∈ CN×M , (1.3)

[Z][a,b] = [A][a,b][B][a,b] for a = {1, · · · , N}, and b = {1, · · · ,M}. In the following, we summarize some
of the important related properties of the products discussed above as [Bre78; PP06]

A⊗B ̸= B ⊗A (1.4)

(A⊗B)T = AT ⊗BT (1.5)

(A⊗B)H = AH ⊗BH (1.6)

(A⊗B)+ = A+ ⊗B+ (1.7)
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∥A⊗B∥F = ∥A∥F · ∥B∥F (1.8)

(A⊗B)⊗C = A⊗ (B ⊗C) (1.9)

(A ·C)⊗ (B ·D) = (A⊗B) · (C ⊗D) (1.10)

(A ·C) ⋄ (B ·D) = (A⊗B) · (C ⋄D) (1.11)

(A ⋄B)T · (A ⋄B) = (AT ·A)⊙ (BT ·B) (1.12)

rank(A⊗B) = rank(A)rank(B). (1.13)

Assuming a matrix A = [a1,a2, · · · ,aM ] ∈ CN×M , where a1,a2, · · · ,aM are its columns, we use
the vec{·} operator to vectorizeA as

vec{A} = [aT
1 ,a

T
2 , · · · ,aT

M ]T ∈ CNM×1. (1.14)

We use unvec{·} as the inverse of the vec operator, i.e.,

unvecN×M{[aT
1 ,a

T
2 , · · · ,aT

M ]T} = A ∈ CN×M . (1.15)

The diag{·} operator is used to create a diagonal matrix as

diag{a} =


[a][1] 0 · · · 0

0 [a][2] · · · 0
...

. . .
...

0 0 · · · [a][M ]

 ∈ CM×M (1.16)

where a ∈ CM . Moreover, undiag{·} is the reverse of the diag operator, i.e.,

undiag




[a][1] 0 · · · 0

0 [a][2] · · · 0
...

. . .
...

0 0 · · · [a][M ]




= a ∈ CM , (1.17)

it extracts the diagonal of the square matrix.

In the following, we list some of the vec{·} properties [Bre78; PP06; Neu69]

vec{A ·X ·B} = (BT ⊗A) · vec{X} (1.18)

vec{A ·B} = (IP ⊗A) · vec{B} = (BT ⊗ IM ) · vec{A} (1.19)

vec{A · diag{x} ·B} = (BT ⋄A) · x (1.20)

where A ∈ CN×M , B ∈ CP×Q, X ∈ CM×P , and x ∈ CM . Note that, in (1.19) and (1.20), we assume
that M = P . In addition, we use the trace operator with the following properties assuming that the
multiplication are well defined [Bre78; PP06; Neu69]

trace[A ·B] = trace[B ·A] = vec{AT}T · vec{B} (1.21)

trace[A ·B ·C ·D] = trace[B ·C ·D ·A] = trace[C ·D ·A ·B] = trace[D ·A ·B ·C] (1.22)
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trace[A⊗B] = trace[B] · trace[A] (1.23)

trace[A ·B ·C] = vec{AT}T · (IN ⊗B) · vec{C} (1.24)

trace[B · Y ·BH] = vec{B}H · (Y T ⊗ IP ) · vec{B}, (1.25)

where Y ∈ CQ×Q.

Lemma 1.3.1. LetA1 ∈ CJ1×L1 andA2 ∈ CJ2×L2 . Then

A1 ⊗A2 = A1Ω1 ⋄A2Ω2, (1.26)

where Ω1 = IL1 ⊗ 1T
L2

and Ω2 = 1T
L1
⊗ IL2 so that Ω1 ⋄Ω2 = IL1L2 .

Proof: Please refer to Appendix A.1.

1.3.3. Tensor Algebra

1.3.3.1 Definitions and Properties

Tensor algebra is a mathematical discipline that has become very popular in various scientific fields
from psychometrics and chemometrics [KB09] to array signal processing [Lim+17], communications,
biomedical signal processing, etc. [Cic+15]. Tensors are used throughout this thesis, so we give a brief
introduction in the hope that it may help the non-familiar reader to understand the basic concepts of
tensor algebra.

In [KB09], a tensor is defined as an element of the tensor product of vector spaces. In other words, a
tensor can be represented as a multi-dimensional array defined for any coordinate system. In this thesis,
we consider the canonical coordinate system [Com14]. The number of dimensions, also called modes, of
the associated multi-dimensional array defines the tensor order. Therefore, A ∈ CM1×M2×···×MD repre-
sents an D-way tensor with Md denoting the size along the dth dimension (mode) for d ∈ {1, 2, · · · , D}.
Obviously, the tensors with D = 2 are matrices. The (m1,m2, · · · ,mD)th element of A is denoted
by [A][m1,m2,··· ,mD] for md ∈ {1, · · · ,Md} and d ∈ {1, · · · , D}. The total number of elements of A is
M = ΠD

d=1Md. By fixing all indices except for the dth index, we refer to the d-mode vectors of a tensor,
which are the generalizations of row and column vectors of matrices. A matrix [A](d) with the dimen-
sion of Md× M

Md
is called the d-mode unfolding of A, which contains all d-mode vectors as its columns.

Depending on the ordering of the columns in the d-mode unfolding, the arrangement of the other d− 1
indices is defined. Below we present the two most popular ordering options from the multitude of
existing ones.

• Reverse cyclical: In [DDV00], the authors introduce this way of ordering, which has become the
standard practice in the community. The ordering starts with the (d−1)th index, then the (d−2)th,
and it continues up to the 1st, then it starts over with the Dth index, the (D − 1)th, and continues
up to the (d+ 1)th index.

• Forward column ordering: This d-mode unfolding is obtained by starting at the first index and
going up to the Dth index by omitting the dth index. This can be implemented in MATLAB using
the "permute" and "reshape" commands. In Fig. 1.6, a 3-way tensor A ∈ C5×4×3 and its forward
unfoldings are shown. Throughout this thesis, we use the forward column ordering.
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Figure 1.6: Graphical representation of the forward unfolding of a 3-way tensor.

The d-mode product of a tensor A with a matrixB ∈ CN×Md is defined as

C = A×d B ⇒ [C](d) = B · [A](d), (1.27)

where C ∈ CM1×···×N×···MD . Let the tensor C be defined as

C = A×1 X1 ×2 X2 ×3 · · · ×D XD. (1.28)

Then, the d-mode unfolding can be expressed as

[C](d) = Xd · [A](d) ·
(
XD ⊗XD−1 ⊗ · · · ⊗Xd+1 ⊗Xd−1 ⊗Xd−2 ⊗ · · · ⊗X1

)T
, (1.29)

where Xd ∈ CNd×Md , d ∈ {1, 2, · · · , D}, are the factor matrices. Note that the order of the matrices in
the Kronecker product is a direct result of the forward column ordering that was chosen for the d-mode
unfolding. Some more properties of the d-mode product and d-mode unfoldings are listed below.

A×dXd ×pXp =A×pXp ×dXd where d ̸= p (1.30)
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A×dXd ×d Yd =A×d (Yd ·Xd), (1.31)

where d, p ∈ {1, 2, · · · , D} and Yd ∈ CPd×Md .

The d-rank of the tensor A refers to the dimension of the space spanned by the d-mode vectors which
is also known as d-space of A. In other words, the d-rank is the rank of the d-mode unfolding, i.e., [A](d).
The d-rank of a tensor is also called the multi-linear rank and denoted as d-rank(A),∀d ∈ {1, 2, · · · , D}.
Note that all d-rank(A) can be different. Similar to a matrix that can be constructed as the sum of R
rank-one matrices, a tensor can be constructed as the sum ofR rank-one tensors. Therefore, the smallest
possible number of rank-one tensors that are summed to construct the tensor is defined as the tensor
rank R. It is important to mention that the tensor rank is not directly related to the d-ranks, but it only
provides an upper bound, i.e., rank(A) ≥ d-rank(A),∀d.

In the following, we introduce the vectorization operation for tensors

vec{A} = vec{[A](1)} = P d
M1,M2,··· ,MD

· vec{[A](d)}, (1.32)

where P d
M1,M2,··· ,MD

is a unique set of permutation matrices for d ∈ {1, 2, · · · , D}. Note that the equa-
tion (1.32) shows the fact that the vectorized versions of different unfoldings contain the same elements
in a different order. Therefore, the permutation matrices with correct ordering can be defined as in
[Roe13]. The vec-operation applied to a tensor A can be performed by stacking it in an increasing or-
der, i.e., start from the first index and going up to the Dth index. Below, we show the vectorization of a
3-way tensor A ∈ CM1×M2×M3 as

vec{A} =vec{[A][:,:,1] ⊔3 [A][:,:,2] ⊔3 · · · ⊔3 [A][:,:,M3]]

=
[
vec{[A][:,:,1]}T vec{[A][:,:,2]}T · · · vec{[A][:,:,M3]}T

]T
, (1.33)

where [A][:,:,j] ∈ CM1×M2 is the jth slice of A for j ∈ {1, 2, · · · ,M3} and ⊔d denotes the concatenation
along the d-mode.

The higher order norm ∥ · ∥H or Frobenius norm of a tensor is defined as

∥A∥H = ∥[A](d)∥F = ∥vec{[A](d)}∥2 ∀d ∈ {1, 2, · · · , D}, (1.34)

which is the higher-order extension of the Frobenius norm.

1.3.3.2 Tensor Decompositions

In the past two decades, several works have been written on tensor decompositions because it is one
of the most appealing features of multi-linear algebra for signal processing [Sid+17]. Particularly, the
uniqueness conditions of the decompositions have many benefits in signal processing applications, such
as blind detection and identification schemes [Alm+06] and relaxed parameter estimation identifiability
conditions [MGB08]. Here, we focus on the two most popular tensor factorization methods, i.e., CPD
(CANDECOMP/PARAFAC Decomposition) and Tucker decomposition.

CPD (CANDECOMP/ PARAFAC Decomposition) In the same manner as a matrix that can be ex-
pressed by the summation of its rank-one components, e.g., in the singular value decomposition (SVD),
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tensors of rank R can be constructed by summing its rank-one tensor components. Assume that the
D-way tensor A admits a rank R, then its CPD is given as

A =
R∑
r=1

[A1][:,r] ◦ · · · ◦ [AD][:,r]

= ID,R ×1 A1 ×2 A2 ×3 · · · ×D AD, (1.35)

where Ad ∈ CMd×R, d = {1, · · · , D}, are the factor matrices, ID,R ∈ RR×R×···×R is the super-diagonal
tensor of the order D, where there are ones on the super-diagonal and the rest of the elements is zeros,
and ◦ denotes the outer product between the columns of the factor matricesAd. The d-mode unfolding
of A, i.e., [A](d), is expressed as

[A](d) = Ad(AD ⋄ · · · ⋄Ad+1 ⋄Ad−1 ⋄ · · ·A1)T ∈ CMd×M1···Md−1Md+1···MD . (1.36)

Note that the factor matrices in the CPD are not unitary, which means that the D underlying com-
ponents are not necessarily orthogonal.

For the CPD, it has been shown that the factor matrices are unique up to scaling and permutation
ambiguities, which renders the CPD a very practical tool for a wide range of applications. For a matrix
A, its Kruskal rank, i.e., k-rank(·), represents the largest k number of columns, which are linearly in-
dependent. The sufficient condition for uniqueness of the CPD can also be derived using the Kruskal
rank [Kru77; Kru89; Com14], e.g., for a 3-way tensor A ∈ CM1×M2×M3 the sufficient condition for the
uniqueness is given as

k-rank(A1) + k-rank(A2) + k-rank(A3) ≥ 2R+ 2, (1.37)

whereAd ∈ CR×Md is the dth factor matrix for d ∈ {1, 2, 3}.
This guarantee enables us to determine the conditions required to recover column-scaled and column-

permuted versions of the factor matrices Ad by decomposing A. Further discussions on the sufficient
conditions for the CPD are outside the scope of this thesis, so for interested readers, we refer to [KB09].

Tucker Decomposition The Tucker decomposition was first proposed in [Tuc66]. Assuming a D-way
tensor A ∈ CM1×···×MD , the Tucker decomposition is expressed as

A =
R1∑
r1=1
· · ·

RD∑
rD=1

[G][r1,··· ,rD]

(
[A1][:,r1] ◦ · · · ◦ [AD][:,rD]

)
,

= G ×1 A1 ×2 · · · ×D AD, (1.38)

where Ad ∈ CMd×Rd is the dth factor matrix for d = {1, · · · , D} and G ∈ CR1×···RD is the core tensor.
The d-mode unfolding of A, i.e., [A](d), can be expressed as

[A](d) = Ad[G](d)

(
AD ⊗ · · · ⊗Ad+1 ⊗Ad−1 ⊗ · · ·A1

)T
. (1.39)
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Part I

Massive MIMO Wireless
Communication Systems
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This part of the thesis is devoted to the wideband massive multiple-input multiple-output (MIMO)
orthogonal frequency division multiplexing (OFDM) wireless communication systems. We consider
both the channel estimation problem and the hybrid analog digital (HAD) beamforming design prob-
lem. In particular, in Chapter 2, we propose a novel channel estimation algorithm called sequential
alternating least squares approximation (SALSA), which exploits the hidden tensor structure of the re-
ceived signals. In Chapter 3, on the other hand, we propose a hybrid beamforming design algorithm
that is applicable to any HAD beamforming architecture. The effectiveness of the proposed algorithms
is illustrated by numerical results.



Chapter 2

Channel Estimation

2.1. Introduction and State of the Art
Massive MIMO [Mar+16] is one of the key enabling technologies of 5G NR wireless communication
networks [DPS20] and it shall remain relevant in future 6G wireless systems. By employing a large
number of antennas at the BS relative to the number of scheduled users, massive MIMO systems in-
crease the data throughput relative to legacy systems by providing a large beamforming gain and an
improved multi-user interference suppression owing to its high spatial resolution [Bjö+15]. Recently,
massive MIMO communications have received a special attention with the introduction of mmWave-
based wireless communications [Hea+16], since the use of massive MIMO in such systems becomes a
requirement rather than an option to compensate the high path loss encountered in the wireless commu-
nications at higher-frequency bands. On the other hand, it is well-known that the promised theoretical
gains of massive MIMO systems heavily rely on the availability of accurate CSI and the considered
beamforming structure. However, the CSI acquisition task in massive MIMO systems has been recog-
nized as very challenging, due to the high dimensionality of the channel matrices, the overwhelming
training overhead, and the prohibitive computational complexity [Xie+18].

Massive MIMO systems can either be deployed in time division duplexing (TDD) mode or frequency
division duplexing (FDD) mode. Using the TDD mode, both the uplink and the downlink communi-
cations occur in the same frequency band, but at different time slots. However, in the FDD mode, the
uplink and the downlink communications operate simultaneously at the same time, but on different
frequency bands. Operating on different frequency bands for the uplink and downlink in FDD-based
communication systems means that the downlink channel is neither the same nor can it be derived from
the uplink channel. In this case, the conventional downlink channel strategy used in the TDD mode, in
which the receiver estimates its own downlink channel and sends it to the transmitter for subsequent
signal transmission and resource allocation, is no longer applicable. In addition, downlink channel es-
timation in Massive MIMO systems has other drawbacks, such as an enormous training effort, which
reduces system efficiency. Therefore, much attention has been paid to the TDD mode, wherein the chan-
nel reciprocity feature occurs due to the use of the same frequency band for the uplink and downlink
communications, which can be exploited to obtain the downlink channel from its uplink counterpart.
Therefore, the training overhead for channel estimation can be reduced significantly [Mar+16; Xie+18;
Geb+21].

In conventional pilot-based channel estimation methods, the transmitter emits a sequence of known
bits called pilots or reference signals (RSs) [BG06], wherein the receiver uses the measurements and
known pilots/RSs to estimate the propagation channel. In practical systems, such as 3GPP 5G NR, the
CSI-RSs are used to estimate the channel in the downlink direction, i.e., from a BS to a user equipment
(UE), and the sounding reference signals (SRSs) are used to estimate the channel in the uplink direction,
i.e., from a UE to a BS. Pilot-based channel estimation methods are very well established in the literature
[BG06; Geb+21]. However, since the transmission of pilot signals consumes some system resources, e.g.,
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time, frequency, and power, they usually incur some efficiency loss, which increases with an increasing
pilot-transmission overhead. In order to reduce the impact of the pilot transmission overhead, some
alternative techniques have been proposed such as semi-blind and blind channel estimation methods
[Keh+19; ZN04; MCD02; HLL13]. Specifically, semi-blind techniques utilize not only the known pilot
symbols but also the unknown data symbols to reduce the amount of pilot data to achieve the required
estimation accuracy. Thereby the SE and channel throughput are improved. On the other hand, blind
methods jointly perform channel estimation and data detection without the use of pilot symbols, at the
expense of a higher computational complexity. Moreover, blind methods suffer from certain ambigui-
ties that need to be resolved, which add to the complexity of the communication.

In mmWave systems, the channel estimation problem is often transformed into a multi-dimensional
DoA estimation problem [ALH15; Ard+20b; ZH17a], thanks to the low-rank (sparse) nature of mmWave
MIMO channels [Hea+16], where several techniques, e.g., CS [ALH15; Ard+20b; PTV23] and ESPRIT
[ZH17a] can be readily employed to obtain a high CSI estimation accuracy while requiring only a small
training overhead. Differently, in sub-6 GHz-based systems, the MIMO channels often experience a
high-rank nature, which makes most, if not all, mmWave-based MIMO channel estimation methods
unfeasible. To this end, classical channel estimation techniques, e.g., LS and linear minimum mean
squared error (LMMSE) methods [BLM03; BG06] can be used to estimate MIMO channels in the sub-6
GHz band. These methods were originally developed for single-antenna and small-scale MIMO sys-
tems. On the one hand, the LS technique is very simple, but it suffers from a severe performance
degradation in difficult scenarios, e.g., with a small number of training snapshots and/or a low SNR
[ZP06]. On the other hand, the LMMSE-based method offers a more robust performance in dealing
with noise than LS at the cost of higher computational complexity [Sri+04]. Moreover, the LMMSE-
based method requires some prior estimation of the statistical channel correlation matrix and noise
variance, which makes it challenging to realize LMMSE in practice [AIU06; UV18]. Since sub-6 GHz
massive MIMO communications are, and will remain, an integral part of current 4G and 5G and fu-
ture wireless communication systems, more efficient channel estimation techniques than the classical
methods are required.

2.1.1. Chapter Contributions

In this chapter, we consider the channel estimation problem in sub-6 GHz uplink wideband MIMO-
OFDM communication systems. It is assumed that a UE equipped with multiple antennas and a fully
digital beamforming architecture communicates with a BS that is equipped with a massive antenna ar-
ray and a HAD beamforming architecture. A generalized HAD beamforming architecture, as shown in
Fig. 2.1 is assumed at the BS, which comprises the classical fully connected (FC) and partially connected
(PC) architectures as special cases. As the main contribution, we propose a novel channel estimation
method called SALSA by exploiting a hidden tensor structure in the uplink measurement matrix. Specifi-
cally, by showing that any MIMO channel matrix can be approximately decomposed into a summation
of R factor matrices having a Kronecker structure. In this case, the uplink measurement matrix can be
reshaped into a 3-way tensor admitting a Tucker decomposition [HRD08]. Exploiting such a tensor rep-
resentation, the MIMO channel matrix can be estimated sequentially using the ALS method [CLA09].

In the literature, we note that several tensor-based channel estimation methods have been proposed,
e.g., [CLA09; Alm07; dFR18; Lin+20; Qia+18; Ghe+21; HRD08], and references therein. However, these
methods exploit simplified design assumptions on the antenna array structure and channel matrices,
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which generally lead to a relatively straightforward tensor modeling. Nonetheless, practical channel
models, e.g., the 3GPP clustered delay line (CDL) channel model [3GP20a; RDT22], do not necessarily
comply with these assumptions, and therefore, the existing methods, in many cases, cannot be em-
ployed. On the other hand, the proposed SALSA method does not require these assumptions on the
channel models, which renders it very general and appealing for practical implementations. The con-
tent of this chapter has been published in [GAH23].

2.1.2. Chapter Organization

In this chapter, we start with the system configurations in Section 2.2, where the channel model, beam-
forming architectures, and the system model are discussed in detail. Then, the baseline LS and LMMSE
methods and the proposed SALSA algorithm are presented in Section 2.3. To examine the proposed
channel estimation algorithm performance, we generate the channel matrix as described in Subsec-
tion 2.2.2 using the realistic and well-known 3GPP TR 38.901 CDL channel simulator. The benefits
of the SALSA method compared to the baseline LS and LMMSE methods are demonstrated through
numerical simulation results in Section 2.4. Finally, the conclusion is provided in Section 2.5.

2.2. System Configuration

2.2.1. System Model

We consider an uplink single-user wideband MIMO-OFDM communication system, as depicted in
Fig. 2.1, where a UE with MUE antennas is communicating with a BS with MBS antennas over K sub-
carriers. The UE has a fully digital beamforming architecture while the BS has a HAD beamforming
architecture with NBS ≪ MBS RF chains. We assume that the MBS antennas and the NBS RF chains are
divided equally1 into G ≥ 1 groups, where each group has M̊BS = MBS

G antennas and N̊BS = NBS
G RF

chains (i.e., MBS = M̊BS · G and NBS = N̊BS · G) and the RF chains in every group are connected with
every antenna element in the same group.

2.2.2. Channel Model

We assume that the considered MIMO OFDM system operates on a perfectly tuned TDD channel, which
enables the assumption of channel reciprocity. Moreover, a cyclic-prefix OFDM-based multi-carrier
modulation scheme is used, which avoids inter symbol interference (ISI) by choosing the cyclic-prefix
larger than the number of channel taps to combat the multipath effect as well as enables zero inter carrier
interference (ICI). The system bandwidth B with the center frequency fc is divided into K OFDM sub-
carriers each with bandwidth ∆f , i.e., B = K ·∆f .

The communication between the BS and the UE takes place over the time-variant frequency-selective
MIMO channel H(τ, t) ∈ CMBS×MUE , where t and τ represent the continuous time- and delay-domain,
respectively. The channel matrixH(τ, t) with L significant multipath components can be expressed as

H(τ, t) =
L∑
ℓ=1

Hℓ(t) · δ(τ − τℓ), (2.1)

1To simplify the exposition, we assume that MBS, NBS, and G are selected so that M̊BS and N̊BS are integer numbers, without
loss of generality.

23



2.2. System Configuration

Figure 2.1: Uplink single-user massive MIMO OFDM communication system.

where Hℓ(t) ∈ CMBS×MUE denotes the ℓth multipath channel matrix, τℓ ∈ [0,DS] represents the corre-
sponding delay with the maximum delay DS, and δ(·) is the Dirac function.

The frequency-domain channel response can be obtained by applying the Fourier transform as

H(f, t) =
L∑
ℓ=1

Hℓ(t) · e−j2πfτℓ ∈ CMBS×MUE . (2.2)

Assuming that Tsym is the OFDM symbol period, then the discrete-time representation of (2.2) on
the kth sub-carrier and during the nth symbol period can be written as

Hk[n] = H(k∆f, nTsym) =
L∑
ℓ=1

e−j2π(k∆f)τℓ ·Hℓ[n] ∈ CMBS×MUE , (2.3)

where Hℓ[n] = Hℓ(nTsym) ∈ CMBS×MUE represents the discrete-time representation of the ℓth multipath
channel matrix.

2.2.3. Signal Model

We assume a block-fading channel model as shown in Fig. 2.2, where the channel coherence time TC is
divided into TBS · TUE transmission time intervals (TTIs), i.e., TC = TBS · TUE, where every block has TUE

snapshots. The analog combining matrix at the ith block at the BS is denoted as Āi ∈ CMBS×NBS , which
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Figure 2.2: The transmission time interval (TTI) division for uplink transmission.

has a block-diagonal structure given as 2

Āi =


Āi,1 · · · 0
...

. . .
...

0 · · · Āi,G

 = blkdiag[Āi,1, · · · , Āi,G] ∈ CMBS×NBS , (2.4)

where Āi,g ∈ CM̊BS×N̊BS is the gth block-matrix with constant modulus entries, i.e., |[Āi,g][r,c]| = 1√
M̊BS

,

where [Āi,g][r,c] is the (r, c)th entry of Āi,g .

The received signal by the BS in the (i, j)th TTI over the kth sub-carrier, with i ∈ {1, · · · , TBS},
j ∈ {1, · · · , TUE}, and k ∈ {1, · · · ,K}, can be expressed as

ȳk,i,j = ĀH
iHkfk,jsk,j + ĀH

i n̄k,i,j ∈ CNBS , (2.5)

where sk,j ∈ C is the training symbol, fk,j ∈ CMUE is the (k, j)th precoding vector, n̄k,i,j ∈ CMBS is
the BS AWGN with zero-mean and variance σ2

n, and Hk ∈ CMBS×MUE is the kth sub-carrier frequency-
domain MIMO channel matrix. Initially, we collect the measurement vectors {ȳk,i,j}TUE

j=1 next to each
other as

Ȳk,i = [ȳk,i,1, ȳk,i,2, · · · , ȳk,i,TUE ], (2.6)

which can be written as

Ȳk,i = ĀH
iHkFk + ĀH

i N̄k,i ∈ CNBS×TUE , (2.7)

where Fk = [fk,1sk,1, · · · ,fk,TUEsk,TUE ] ∈ CMUE×TUE and N̄k,i = [n̄k,i,1, · · · , n̄k,i,TUE ] ∈ CMBS×TUE . We

2Note that if the number of groups G = 1, the above analog structure coincides with the fully connected (FC) analog structure,
where every RF chain is connected to every antenna element. On the other hand, if G = NBS, the above analog structure coincides
with the partially connected (PC) analog structure, where every RF chain is connected to a unique subset of antenna elements
[Ard+18].
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assume that the Fk,∀k, are designed with orthogonal rows, i.e., FkF H
k = IMUE ,∀k, and TUE ≥ MUE.

After applying the right filtering to (2.7) we obtain

Yk,i = Ȳk,iF
H
k = ĀH

iHk +Nk,i ∈ CNBS×MUE , (2.8)

whereNk,i = ĀH
i N̄k,iF

H
k . Next, we collect the measurement matrices {Yk,i}TBS

i=1 on the top of each other
as

Yk = [Y T
k,1, · · · ,Y T

k,TBS
]T, (2.9)

which can be written as

Yk = AHk +Nk ∈ CI×MUE , (2.10)

where I = TBSNBS, A = [Ā1, · · · , ĀTBS ]H ∈ CI×MBS , and Nk = [NT
k,1, · · · ,NT

k,TBS
]T ∈ CI×MUE . After that,

we collect the measurement matrices {Yk}Kk=1 next to each other as

Y = [Y1, · · · ,YK ], (2.11)

which can be expressed as

Y = AH +N ∈ CI×KMUE , (2.12)

where N = [N1, · · · ,NK ] and H = [H1, · · · ,HK ] ∈ CMBS×KMUE is the total MIMO OFDM channel
matrix. In the following, our aim is to estimate the channel matrixH from the measurements in (2.12).

2.3. Algorithms

2.3.1. The Baseline LS-based Channel Estimation Algorithm

Given the measurement matrix in (2.12), a LS-based method can be used to obtain an estimate of the
total MIMO channel matrix as [BG06]

ĤLS = A+Y = [Ĥ1, · · · , ĤK ] ∈ CMBS×KMUE , (2.13)

whereA+ = (AHA)−1AH is the Moore-Penrose pseudo-inverse ofA. Note that, due to the left filtering,
the LS-based method requires that I ≥ MBS, i.e., TBS ≥ MBS

NBS
to provide an accurate channel estimate,

which becomes impractical for massive MIMO systems.

2.3.2. The Baseline LMMSE-based Channel Estimation Algorithm

The LMMSE estimator ofH can be written as [BG06]

ĤLMMSE = RHA
H(ARHA

H + σ2
nII)−1Y (2.14)
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where RH = E{HHH} is the statistical channel correlation matrix of H [AIU06; UV18], where H is
the concatenation ofHk over all sub-carriers.

2.3.3. The Proposed SALSA Channel Estimation Algorithm

To obtain a more accurate channel estimate while reducing the training overhead, we propose here a
novel channel estimation method called SALSA, which is derived by exploiting a hidden tensor struc-
ture in the measurement matrix in (2.12). The tensor representation not only contributes to a more
accurate channel estimation but also helps to reduce the training overhead. Before showing the SALSA
approach, we first recall the following propositions from [VP93; Wu+16; GMN18].

Proposition 2.3.1. LetX ∈ CQ×P be a matrix given as

X = X1 ⊗X2 =


X1,1 · · · X1,P1

...
. . .

...

XQ1,1 · · · XQ1,P1

 ∈ CQ×P , (2.15)

where X1 ∈ CQ1×P1 , X2 ∈ CQ2×P2 , Q = Q1Q2, P = P1P2, and Xa,b = [X1][a,b]X2 is the (a, b)th block-
matrix ofX . LetK ∈ CQ1P1×Q2P2 be a rank-one matrix given as

K =



xT
1,1

· · ·
xT
Q1,1

· · ·
xT

1,P1

· · ·
xT
Q1,P1


= x1x

T
2 , (2.16)

where xa,b = vec{Xa,b} = [X1][a,b]vec{X2},x1 = vec{X1} ∈ CQ1P1 , and x2 = vec{X2} ∈ CQ2P2 . Since
K is rank-one, its SVD can be written as

K = σuvH (2.17)

where u ∈ CQ1P1 and v ∈ CQ2P2 are the left singular vector and the right singular vector of K, respectively,
associated with only the non-zero singular value σ. Then, an optimal solution to

minimize
X1,X2

∥X − (X1 ⊗X2)∥2
F (2.18)

can be obtained as

X1 =
√
σ·unvecQ1×P1{u} ∈ CQ1×P1 (2.19)

X2 =
√
σ·unvecQ2×P2{v∗} ∈ CQ2×P2 . (2.20)

Proof: For more details, please refer to [Wu+16].

Proposition 2.3.2. For any given Q × P matrix X , it can be approximately written as a summation of R ≥ 1
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factor matrices as

X ≈
R∑
r=1

Xr=
R∑
r=1

X1,r ⊗X2,r, (2.21)

whereXr = X1,r ⊗X2,r,X1,r ∈ CQ1×P1 , andX2,r ∈ CQ2×P2 with Q = Q1Q2 and P = P1P2.

Proof: The proof follows directly by applying Proposition 2.3.1 sequentially [GMN18]. In Algo-
rithm 2.1, we summarize how to find the corresponding factor matrices X1 and X2 as described in
[GMN18].

Algorithm 2.1 Sequential Kronecker Factorization

1: Input: A matrixX ∈ CQ×P

2: Select R, Q1, P1, Q2, P2 such that Q = Q1Q2 and P = P1P2
3: for r = 1 to R do
4: GetXr = X −∑r−1

r′=1X1,r′ ⊗X2,r′

5: GivenXr, getX1,r andX2,r using (2.19) and (2.20), respectively
6: end for
7: Output: X̂ =

∑R
r=1X1,r ⊗X2,r ∈ CQ×P

Next, we turn our attention back to estimating the MIMO OFDM channel. Let Q = MBS and P =
KMUE. Then, from Proposition 2.3.2, the total frequency-domain massive MIMO channel matrix H ∈
CQ×P in (2.12) can be approximately written as

H ≈
R∑
r=1

Cr ⊗Br ∈ CQ×P (2.22)

where Br ∈ CQ1×P1 , Cr ∈ CQ2×P2 , Q = Q1Q2, and P = P1P2. The exact choice of the parameters, i.e.,
P1, P2, Q1, Q2, and R, will be discussed later in Section 2.4. Let I = TBSNBS. Then, by substituting (2.22)
into (2.12) and assuming that R is sufficiently large, we can write

Y = A
( R∑
r=1

Cr ⊗Br

)
+N =

R∑
r=1

A(Cr ⊗Br) +N =
R∑
r=1

Yr +N ∈ CI×P , (2.23)

where Yr = A(Cr ⊗Br) ∈ CI×P . Note that Yr can be seen as the 1-mode unfolding of a 3-way Tucker
tensor given as

Yr = S ×1 A×2 B
T
r ×3 C

T
r ∈ CI×P1×P2 , (2.24)

where S ∈ ZQ×Q1×Q2 denotes the core-tensor with the 1-mode unfolding given as [S](1)
def= IQ. The

ℓ-mode unfoldings of Yr, ℓ = {1, 2, 3}, can be written as

[Yr](1) = A[S](1)(Cr ⊗Br) ∈ CI×P , (2.25)

[Yr](2) = BT
r [S](2)(Cr ⊗AT) ∈ CP1×IP2 , (2.26)

[Yr](3) = CT
r [S](3)(Br ⊗AT) ∈ CP2×IP1 . (2.27)
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2. Channel Estimation

From (2.24), the 3-way Tucker tensor form of (2.23) can be expressed as

Y =
R∑
r=1

Yr + N ∈ CI×P1×P2 , (2.28)

where N denotes the 3-way tensor representation of the noise matrix N . This latter formulation sug-
gests that the factor matrices {Br,Cr}Rr=1 can be estimated sequentially as follows. Let Yr be the tensor
obtained at the rth sequential step as

Yr = Y −
r−1∑
r′=1

Yr′ ∈ CI×P1×P2 . (2.29)

Then, by exploiting the 2-mode and the 3-mode unfoldings of Yr, the rth factor matricesBr andCr
can be obtained sequentially using, e.g., the ALS method [CLA09], where one factor matrix is assumed
to be fixed when solving for the other. Remember that A represents the beamforming at the BS which
is known, thenBr and Cr can be obtained as

BT
r = [Yr](2)Ψ+

2 = [Yr](2)ΨH
2 (Ψ2ΨH

2 )−1 (2.30)

CT
r = [Yr](3)Ψ+

3 = [Yr](3)ΨH
3 (Ψ3ΨH

3 )−1, (2.31)

where Ψ2 and Ψ3 are given as

Ψ2 = [S](2)(Cr ⊗AT) ∈ CQ1×IP2 (2.32)

Ψ3 = [S](3)(Br ⊗AT) ∈ CQ2×IP1 . (2.33)

A summary of the proposed SALSA method for estimating the total massive MIMO channel ma-
trix H ∈ CQ×P is given in Algorithm 2.2. In the next Section 2.4, we show some simulation results
evaluating the convergence behavior of Algorithm 2.2.

Algorithm 2.2 SALSA For MIMO-OFDM Channel Estimation.

1: Input: Measurement matrix Y ∈ CI×P as in (2.12)
2: Select R ≥ 1, Nmax-iter ≥ 1, Q1, Q2, P1, and P2 such that Q = Q1Q2 = MBS and P = P1P2 = MUEK
3: Obtain the 3-way Tucker tensor Y in (2.28) from Y
4: for r = 1 to R do
5: Get Yr = Y −∑r−1

r′=1 Ŷr′

6: Initialize C(0)
r ∈ CQ2×P2 , e.g., randomly

7: for n = 1 to Nmax-iter do
8: GetB(n)

r using (2.30) for given C(n−1)
r

9: Get C(n)
r using (2.31) for givenB(n)

r

10: end for
11: Set B̂r = B

(Nmax-iter)
r and Ĉr = C

(Nmax-iter)
r

12: Get Ŷr = S ×1 A×2 B̂
T
r ×3 Ĉ

T
r , go back to Step (5)

13: end for
14: Output: ĤSALSA =

∑R
r=1 Ĉr ⊗ B̂r ∈ CQ×P
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2.4. Simulation Results

Note that, due to the right filtering in (2.30) and (2.31), the SALSA method in Algorithm 2.2 requires
that (C1) Q1 ≤ IP2 and (C2) Q2 ≤ IP1, where I = TBSNBS, i.e., TBS ≥ min{ Q1

NBSP2
, Q2
NBSP1

} to provide
an accurate channel estimation. Therefore, under practical settings, the SALSA method in Algorithm
2.2 requires less training overhead than the LS method in (2.13). On the other hand, assuming that
the complexity of calculating the Moore-Penrose pseudo-inverse of an a × b matrix is on the order of
O(min{a, b}3), where O denotes the Big O notation, then the complexity of the LS method in (2.13) is
on the order of O(min{I, P}3), while for the SALSA method in Algorithm 2.2 the complexity is on the
order ofO(R ·Nmax-iter ·Q3

1 ·Q3
2), assuming that the conditions (C1) and (C2) are satisfied. Moreover, for

LMMSE in (2.14), the complexity is on the order of O(I3), assuming that the complexity of calculating
the inverse of an a× a matrix is on the order of O(a3).

2.4. Simulation Results

Table 2.1: System Parameters to generate CDL channel tensor H ∈ CMBS×MUE×Ntaps .

System Parameter Value

Scenario UMi

Cell radius 100 m

BS height 10 m

UE height 1.5 m

Carrier frequency fc 4 GHz

Sampling frequency fs 30.72 MHz

No. of sub-carriers K 1 or 16

No. of antennas at BS MBS 16 or 64 (Mv
BS ×Mh

BS)

No. of antennas at UE MUE 4 or 64 (Mv
UE ×Mh

UE)

Polarization Single

Performance of the Sequential Kronecker Factorization in Algorithm 2.1
Initially, we show simulation results in Fig. 2.3 analyzing the performance and the convergence

behavior of the Sequential Kronecker Factorization in Algorithm 2.1. This analysis in Fig. 2.3 and the
observations are important to understand and explain the obtained results of the proposed SALSA
method in Algorithm 2.2. As it is discussed in Section 2.3, the total MIMO channel matrix H ∈ CQ×P
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2. Channel Estimation

can be approximated using the sum of the Kronecker products as given in (2.22). To gain more insights,
we consider different cases, where in each case we assume that the total MIMO channel matrix H ∈
CQ×P is modeled differently as described in the sequel.

• Case 1 (Random): In this case, the total MIMO channel matrixH ∈ CQ×P with Q = P = 64 is gen-
erated randomly from a circularly-symmetric complex Gaussian distribution with unit-variance
and zero-mean, i.e.,H[n,m] ∼ CN (0, 1),∀n,m.

• Case 2 (DFT): Here, the total MIMO channel matrix H ∈ CQ×P with Q = P = 64 is simply given
by the normalized [64 × 64] DFT matrix, i.e., H =

(
ωmn
√

64

)
,m, n ∈ {0, . . . 63}, ω = e−2πj/Q, and

j2 = −1.

• Case 3 (A multi-subcarrier 3GPP CDL channel model with URAs): In this case, the total MIMO
channel matrix H ∈ CQ×P is generated according to the 3GPP clustered delay line (CDL) chan-
nel model described in TR 38.901, which is given in the Subsection 2.2.2. More details on the
step-by-step instructions, as well as the Matlab scripts for channel generation, are available in
[3GP20a]. Specifically, in our simulation, we first generate a time-domain channel tensor H ∈
CMBS×MUE×Ntaps , where Ntaps represents the number of time-domain channel taps calculated ac-
cording to [RDT22] and using the system parameters shown in Table 2.1. For this case, we
assume MBS = 64 and MUE = 4 both with uniform rectangular arrays (URAs), i.e, Mv

BS = 8
and Mh

BS = 8 such that MBS = Mv
BSM

h
BS, Mv

UE = 2 and Mh
UE = 2 such that MUE = Mv

UEM
h
UE.

Then, we perform a K-point FFT operation, with K = 16 in this case, along the third dimen-
sion for each receive-transmit antenna pair to obtain the frequency-domain channel tensor H ∈
CMBS×MUE×K , where the kth slice matrix, i.e., Hk = [H][:,:,k] ∈ CMBS×MUE represents the kth sub-
carrier frequency-domain MIMO channel matrix. Eventually, the total MIMO channel matrix
H ∈ CQ×P is constructed by stacking the kth slice matrices of Hk ∈ CMBS×MUE next to each
other asH = [H1, · · · ,HK ] = [H](1) ∈ CMBS×MUEK , i.e., Q = MBS = 64 and P = MUEK = 64.

• Case 4 (A single-subcarrier 3GPP CDL channel model with URAs): In this case, the total MIMO chan-
nel matrixH ∈ CQ×P is generated as described in Case 3, but assuming MUE = 64 with Mv

UE = 8,
Mh

UE = 8, K = 1, and the other parameters are the same (i.e., a single-subcarrier channel with
Q = MBS = 64, P = MUE = 64).

• Case 5 (A multi-subcarrier 3GPP CDL channel model with ULAs): In this case, the total MIMO channel
matrix H ∈ CP×Q is generated as described in Case 3, but assuming Mv

BS = 1, Mh
BS = 64, and the

other parameters are the same (i.e., the BS has a ULA).

In Fig. 2.3, the performance of the Kronecker factorization method with each of the above cases is

evaluated in terms of the mean squared error (MSE) that is defined as MSE = E
{
∥H −

R∑
r=1

Cr ⊗Br∥2
F

}
.

From Fig. 2.3, we have the following observations.

• Observation 1: The Sequential Kronecker Factorization in Algorithm 2.1 can approximate any
channel matrix and the approximation becomes tighter as the number of channel factor matrices
R increases.

• Observation 2: The optimal number of Kronecker products, denoted in the figure byRopt, required
to approximate a channel matrix depends on the selected scenario of Q1, Q2, P1, and P2, where
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2.4. Simulation Results

Ropt ≈ min{P1Q1, P2Q2}. In other words, reducing the dimensions of one of the channel factor
matrices, i.e.,Br ∈ CQ1×P1 or Cr ∈ CQ2×P2 , reduces the value of Ropt.

• Observation 3: For Case 3 and Case 4, the convergence behavior as a function of the Kronecker
products R (i.e., the convergence rate or slope) of Algorithm 2.1 depends on the dimensionality
of the factor matricesBr ∈ CQ1×P1 and Cr ∈ CQ2×P2 . Specifically, when the factor matrices Cr have
a smaller dimensionality than the factor matrices Br, Algorithm 2.1 requires less Kronecker products
R and converges with a faster rate. However, this is not true for Case 1 and Case 2, where the di-
mensionality of the factor matricesBr andCr can be swapped without affecting the convergence
behavior of Algorithm 2.1. To illustrate this, consider, for example, the blue-colored solid and
dashed lines, where solid lines represent the scenario [Q1, Q2, P1, P2] = [8, 8, 64, 1], i.e.,Br ∈ C8×64

and Cr ∈ C8×1,∀r, and dashed lines represent the scenario [Q1, Q2, P1, P2] = [8, 8, 1, 64], i.e.,
Br ∈ C8×1 and Cr ∈ C8×64,∀r. For Case 1 and Case 2, both solid and dashed blue-colored lines
have the same convergence behavior. However, for Case 3 and Case 4, the solid blue-colored
lines converge faster than that of the dashed blue-colored lines. Note that this is also true for the
green-colored and the black-colored scenarios.

• Observation 4: The convergence behavior as a function of the Kronecker products R (i.e., the
convergence rate or slope) of Algorithm 2.1 depends on the input channel matrix characteristics.
For example, for Case 1 and Case 2 (i.e., in case of a Random and DFT-based channel model),
we can see that MSE stays constant as R increases until it reaches Ropt, after which the MSE
approaches almost zero. However, in case of the other 3GPP CDL-based channel models (i.e.,
Case 3 to Case 5), we can see that MSE becomes smaller as R increases before it reaches Ropt. To
illustrate this, we plot in Fig. 2.4 the singular values of the channel matrices used in Case 1, Case
2, and Case 3. From Fig. 2.4, we can see that for Case 1 (Random-based channel case), most of
the singular values of the input channel matrices are above 1, i.e., most of the singular values
are significant and contribute highly to the channel matrix. This is also true for Case 2 (DFT-
based channel case), where all the 64 singular values of the 64 × 64 DFT matrix are equal to one.
With these two cases, Algorithm 2.1 requires R to be almost equal to Ropt to have an accurate
Kronecker factorization approximation. On the other hand, for Case 3 (3GPP CDL-based channel
model), we can see that most of the singular values of the input channel matrices are below 1,
except for the first 10 singular values, and the singular values decrease almost exponentially. This
is different from the singular values in Case 1, where they decrease almost linearly. Therefore, for
Case 3, Algorithm 2.1 requires less Kronecker products R to approximate the channel matrices to
an acceptable accuracy such that the MSE is below 10−5.

• Observation 5: The convergence behavior of Algorithm 2.1 depends, as well, on the antenna array
structure. This can be seen by comparing, for example, Case 3 and Case 5, where the only differ-
ence between these two cases is that in Case 3 the BS has a URA composed ofMv

BS = 8 andMh
BS = 8

elements, while in Case 5, the BS has a ULA composed ofMv
BS = 1 andMh

BS = 64 elements. Clearly,
the above observations in Case 3 for the parameters [Q1, Q2, P1, P2] = [8, 8, 64, 1] (Br ∈ C8×64 and
Cr ∈ C8×1) are reversed in Case 5 for the parameters [Q1, Q2, P1, P2] = [8, 8, 1, 64] (Br ∈ C8×1

and Cr ∈ C8×64), i.e., in Case 5, Algorithm 2.1 requires the sum of less Kronecker products R and
converges with a faster rate when the factor matrices Br have a smaller dimensionality than the factor
matrices Cr.
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Figure 2.3: MSE vs. the sum of Kronecker products R.

From the above observations, we can expect that the performance of the proposed SALSA method
depends not only on the dimension of the factor matrices, i.e., Q1, Q2, P1, P2, and the number of the
Kronecker products R, but also on the considered channel model and the antenna array structure. Un-
fortunately, the 3GPP CDL channel model described in TR 38.901 [3GP20a] is too complex to investigate
a clear reason for the above listed observations. This, however, might be possible with a more simplified
channel model, which we leave for future work.

In the remainder of this section, we study the performance of the proposed SALSA method com-
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Figure 2.4: Average singular values of Case 1, Case 2, and Case 3 channel matrices.

pared to the LS and LMMSE methods assuming that the total MIMO channel is generated as illus-
trated in Case 3 above, unless stated otherwise. In all simulation scenarios, we set MUE = 4, K = 16,
TUE = MUE, NBS = 4, G = 2. The analog decoding matrix A ∈ CTBSNBS×MBS is assumed to be generated
randomly, where every non-zero entry is obtained as a = 1/

√
M̊BS · ejϕ, where ϕ ∈ U(0, 2π) and U de-

notes the uniform distribution from 0 to 2π. We show the simulation results in terms of the normalized
mean squared error (NMSE) that is defined as

NMSE = E{∥H − ĤX∥2
F}

E{∥H∥2
F}

, (2.34)

where X ∈ {LS,LMMSE, SALSA}. Moreover, the SNR is defined as

SNR = E{∥Y −N ∥2
F}

E{∥N ∥2
F}

. (2.35)

For the LMMSE method, we assume that the statistical channel correlation matrix, i.e., RH, is ob-
tained as

RH = Rtrue
H + β ·Rnoise

H ∈ CMBS×MBS , (2.36)

whereRtrue
H is the true statistical channel correlation matrix obtained as an average of Γ = 1000 channel

realizations, i.e.,

Rtrue
H = 1

Γ

Γ=1000∑
γ=1

HγH
H
γ ∈ CMBS×MBS , (2.37)

with Hγ = [Hγ,1, · · · ,Hγ,K ] ∈ CMBS×MUEK being the γth channel realization. Moreover, Rnoise
H is an

additive-noise covariance matrix and β is a noise power scaling parameter obtained such that

β = ∥RH −Rtrue
H ∥2

F

∥Rtrue
H ∥2

F
. (2.38)
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Figure 2.5: Convergence of the SALSA method in Algorithm 2.2.

Note that, β = 0 can be considered as the ideal scenario, which is used in [AIU06] as a baseline ap-
proach for someRH estimation methods. On the other hand, for scenarios with β > 0, we demonstrate
the impact of the estimation accuracy ofRH on the estimation accuracy of the LMMSE method.

Convergence Behavior of Proposed SALSA Method in Algorithm 2.2

As can be seen from Algorithm 2.2, SALSA estimates a MIMO channel matrix H ∈ CQ×P sequen-
tially from an input measurement tensor Y in (2.28) by decomposing it into the sum of R Kronecker
products. To this end, we need to run a maximum of R sequential steps. In the rth step, the factor
matrices Br ∈ CQ1×P1 and Cr ∈ CQ2×P2 are estimated using a bi-linear ALS method, which is de-
signed to run up to a maximum ofNmax-iter iterations, which we choose asNmax-iter = 100. In Fig. 2.5, we
show simulation results investigating the convergence behavior of Algorithm 2.2. We define the model
fit functions cy and ch at the rth step as

cy(r) =
∥[Y ](1) −A

r∑
r′=1

(Cr′ ⊗Br′)∥2
F

∥[Y ](1)∥2
F

, (2.39)

ch(r) =
∥H −

r∑
r′=1

(Cr′ ⊗Br′)∥2
F

∥H∥2
F

. (2.40)

From the left hand side of Fig. 2.5, we can see that Algorithm 2.2 seems to converge monotonically to
at least a local optimal solution. Our observations show that these results hold true for all other choices
of the dimension variables Q1, Q2, P1, and P2. Note that, Algorithm 2.2 has a faster convergence rate
with Scenario 1 than it has with Scenario 2, which is, in fact, expected from our listed observations of
Fig. 2.3. Moreover, it is worth mentioning that in a different implementation of Algorithm 2.2, the model
fit function cy can be used as a convergence criterion, e.g., if cy(r) or |cy(r) − cy(r − 1)| becomes below
a certain threshold. On the other hand, we can see that the model fit function ch does not necessarily
have a monotonically decreasing behavior. In fact, we can observe that the optimal or best R depends on
the SNR level, which increases by increasing the SNR level. This observation will be discussed in more
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details in conjunction with Fig. 2.10 next.

Table 2.2: Dimension of the factor matrices in the Kronecker product Q1, Q2, P1, and P2 for Q = Q1Q2
and P = P1P2.

Scenario No. Q1 and Q2 values P1 and P2 values

Scenario 1
[Q1, Q2] = [64, 1]

[P1, P2] = [64, 1]

...
...

Scenario 7 [P1, P2] = [1, 64]

...
...

...

Scenario 43
[Q1, Q2] = [1, 64]

[P1, P2] = [64, 1]

...
...

Scenario 49 [P1, P2] = [1, 64]

Effect of Q and P Division Scenarios
Here, we show simulation results investigating the best parameter setting for Q and P with the

constraints of Q = Q1Q2, P = P1P2, Qx ≥ 1, Px ≥ 1, and Qx, Px are natural numbers, where x ∈ {1, 2}.
Recall that Q = MBS and P = MUEK. Therefore, we have Q = P = 64 and the candidate numbers of Qx
and Px are 1, 2, 4, 8, 16, 32, and 64. Therefore, we have in total 49 possible scenarios as illustrated in Table
2.2, e.g., Scenario 1: {[Q1, Q2, P1, P2] = [64, 1, 64, 1]} and Scenario 2: {[Q1, Q2, P1, P2] = [64, 1, 32, 2]}. We
have simulated the SALSA algorithm using all the 49 possible scenarios. In Figs. 2.6 and 2.7, we show
the NMSE versus SNR results for the different Q and P division scenarios as illustrated in Table 2.2.

From Fig. 2.6, when TBS = 12, i.e., I = TBSNBS = 48 < MBS, the analog training matrix A ∈ CI×MBS ,
i.e., the first factor matrix of the measurement tensor in (2.24), is left non-invertible, i.e., A+A ̸= IMBS .
Therefore, the LS-based algorithm has a very bad channel estimation accuracy. Differently, we can see
that the LMMSE method provides the best channel estimation accuracy, thanks to the prior knowledge
of the statistical channel correlation matrix RH and the noise variance σ2

n. On the other hand, we
can see that the best NMSE of the SALSA method is achieved when Q1 = 8, Q2 = 8, P1 = 64, and
P2 = 1, i.e., when Br ∈ C8×64 and Cr ∈ C8×1, ∀r. The main reason is that by dividing Q = 64 equally
between Q1 and Q2, i.e., Q1 = Q2 = 8, SALSA reduces the impact of the non-invertibility of A by
distributing it between the second (i.e., Br) and the third (i.e., Cr) factor matrices of the measurement
tensor, which leads to a better channel estimation accuracy. Furthermore, by setting P1 = 64 and
P2 = 1, the required number of channel factor matrices R reduces as compared to the other division
scenarios, as we have illustrated in Fig. 2.3 and the listed observations. Specifically, as we have noted in
Observation 3, when the factor matrices Cr have a smaller P than the factor matrices Br, i.e., P2 < P1,
less Kronecker productsR are required in the sum to obtain an acceptable approximation accuracy with
a faster convergence rate. Given that the best dimension of Q1 and Q2 is 8, i.e., Q1 = 8, Q2 = 8, then
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Figure 2.6: NMSE vs. SNR for different Q and P division scenarios, with TBS = 12.

37



2.4. Simulation Results

0 5 10 15 20 25 30
10−3

10−2

10−1

100

Q1 = 64, Q2 = 1TBS = 16

R = 10

SNR [dB]

N
M
S
E

SALSA [P1 = 64, P2 = 1]

SALSA [P1 = 32, P2 = 2]

SALSA [P1 = 16, P2 = 4]

SALSA [P1 = 8, P2 = 8]

SALSA [P1 = 4, P2 = 16]

SALSA [P1 = 2, P2 = 32]

SALSA [P1 = 1, P2 = 64]

LS

LMMSE [β = 0]

0 5 10 15 20 25 30
10−3

10−2

10−1

100

Q1 = 32, Q2 = 2TBS = 16

R = 10

SNR [dB]

N
M
S
E

0 5 10 15 20 25 30
10−3

10−2

10−1

100

Q1 = 16, Q2 = 4TBS = 16

R = 10

SNR [dB]

N
M
S
E

0 5 10 15 20 25 30
10−3

10−2

10−1

100

Q1 = 8, Q2 = 8TBS = 16

R = 10

SNR [dB]

N
M
S
E

0 5 10 15 20 25 30
10−3

10−2

10−1

100

Q1 = 4, Q2 = 16

SNR [dB]

N
M
S
E

0 5 10 15 20 25 30
10−3

10−2

10−1

100

Q1 = 2, Q2 = 32TBS = 16

R = 10

SNR [dB]

N
M
S
E

0 5 10 15 20 25 30
10−3

10−2

10−1

100

Q1 = 1, Q2 = 64TBS = 16

R = 10

SNR [dB]

N
M
S
E

Figure 2.7: NMSE vs. SNR for different Q and P division scenarios, with TBS = 16.

38



2. Channel Estimation

Figure 2.8: Decision making procedure in SALSA to select the dimensions of the factor matricesBr and
Cr depending on the training beamforming matrixA.

the best dimensions of P1 and P2 are P1 = 64, and P2 = 1. Therefore, the Cr become column vectors,
i.e., Cr ∈ C8×1, and the blocks Br are as largest as possible, i.e., Br ∈ C8×64. Please refer to the
blue-colored lines of Case 3 in Fig. 2.3.

Differently, in Fig 2.7, when TBS = 16, i.e., I = MBS, the analog training matrixA is left-invertible, i.e.,
A+A = IMBS . Therefore, the LS-based method has a high channel estimation accuracy. Moreover, we
can see that the LMMSE-based method maintains its superiority, providing the best channel estimation
accuracy. For SALSA, we have noticed that the best channel estimation accuracy is obtained with the
scenario of [Q1, Q2, P1, P2] = [1, 64, 64, 1], i.e., when Br ∈ C1×64 and Cr ∈ C64×1 or with scenario of
[Q1, Q2, P1, P2] = [64, 1, 1, 64], i.e., when Br ∈ C64×1 and Cr ∈ C1×64. With both of these scenarios, the
channel matrix H ∈ C64×64 in (2.22) is decomposed into a summation of R factor matrices Cr ⊗Br ∈
C64×64, each having rank-one, i.e.,

rank{Cr ⊗Br} = rank{Cr} · rank{Br} = 1,∀r,

according to (1.13), which leads to a better estimation accuracy and approaches the LMMSE-based
method. The summary of the decision making procedure in SALSA by selecting the dimensional of the
factor matricesBr and Cr are illustrated in Fig. 2.8.

Next, in Fig. 2.9, we show the simulation results of the NMSE and the SNR to evaluate the SALSA
performance considering different antenna array structures. In particular, we compare the performance
of SALSA when the entire MIMO channel matrix is generated as explained in Case 3 and Case 5, where
BS has a URA and a ULA, respectively. We see that when the BS has a ULA (case 5), SALSA performs
best by assigning the factor matrices Br a lower dimensionality than the factor matrices Cr. This was
expected from Observation 5, since a smaller number of factor matrices R is required to approximate
the channel matrix and the algorithm 2.1 has a faster convergence rate. However, if the BS is a URA
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Figure 2.9: NMSE vs. SNR for different Q and P division scenarios and antenna array structures, with
TBS = 12.

(case 3), the best dimensionality mapping is reversed, i.e., the factor matrices Cr should have a smaller
dimension than the factor matricesBr. Fig. 2.9 clearly shows that SALSA performs comparably in both
cases, but with opposite dimensions for P1 and P2 variables.
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Figure 2.10: NMSE vs. SNR for different R and β.

Effect of the Number of Factor Matrices

In Fig. 2.10, we show the NMSE versus SNR results obtained by varying the number of channel
factor matrices R and the noise power scaling parameter ofRH , i.e., β. Clearly, Fig. 2.10 shows that the
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Figure 2.11: NMSE vs. SNR for different MBS.

channel estimation accuracy of LMMSE decreases as β increases, since an increasing β imitates a de-
crease of the estimation accuracy ofRH . On the other hand, Fig. 2.10 shows that the channel estimation
accuracy of SALSA increases with an increasing R in the high SNR region (i.e., SNR ≥ 15 dB) while it
decreases with an increasingR in the low SNR region (i.e., SNR< 15 dB). The main reason is that, in the
high SNR region, where the impact of the noise is minimal, by increasing R we successively estimate
more factor matrices belonging to the subspace of the true channel matrix. This leads to a better chan-
nel estimation accuracy, as we have illustrated in Fig. 2.3 for noiseless channel matrices. On the other
hand, the channel measurement tensor is noise-limited in the low SNR region. Therefore, the sequen-
tially estimated channel factor matrices become very noisy above a certain R as they mainly belong to
the noise subspace. In other words, in this case, as R increases, the influence of the noise increases and
the overall estimation accuracy decreases. Clearly, for every SNR level, there is an optimal R value (i.e.,
Ropt) wherein the channel estimation accuracy is maximized. We conjecture that Ropt is a function of
the noise variance σ2

n.

Effect of the Number of Antennas
Finally, in Fig. 2.11, we show the NMSE versus SNR simulation results by varying the number of

antenna elements at the BS, i.e., MBS. For a fair comparison, we adjust the number of training blocks
TBS so that both considered scenarios have the same ratio of I

MBS
= 0.75 (recall that I = TBSNBS). From

Fig. 2.11, we can observe that the SALSA method has a similar behavior for both MBS scenarios. In
the low SNR region, the SALSA method has a better channel estimation accuracy than LMMSE, while
LMMSE has a better channel estimation accuracy than SALSA in the high SNR region. However, the
main difference is that with the smaller MBS value (i.e., MBS = 16 in the figure), the SALSA method,
with fixedR value, maintains its estimation accuracy superiority over LMMSE for a higher SNR level as
compared to the scenario with the larger MBS value (i.e., MBS = 64 in the figure). This can be explained
with reference to Fig. 2.3, which shows that the optimalR value (i.e., Ropt) is smaller with smaller factor
matrices (i.e., when MBS = 16, we have [Q1, Q2] = [4, 4] and, therefore, Ropt ≈ 4, while when MBS = 64,
we have [Q1, Q2] = [8, 8] and, therefore, Ropt ≈ 8. Note that [P1, P2] = [64, 1] for both scenarios). It
should be remembered that the performance of SALSA in the high SNR region can be further improved
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by increasing R, as it is also shown in Fig. 2.11.

2.5. Chapter Conclusion
In this chapter, we have proposed a novel channel estimation method for MIMO-OFDM sub-6 GHz
wireless communication systems called SALSA. We have shown that an accurate channel estimation
can be obtained with a small training overhead by exploiting a hidden tensor structure in the received
measurement matrix, which estimates the channel matrix sequentially using an ALS-based method.
Our results show that the SALSA method outperforms the conventional LS-based method, especially
in the low training overhead. Moreover, it is shown that SALSA, under some settings, outperforms
LMMSE-based methods with an ideal knowledge of the statistical channel correlation matrix, in the
low SNR region, while it approaches it in the high SNR region. Given that SALSA does not require the
prior knowledge of the statistical channel correlation matrix, as compared to LMMSE, renders it more
appealing for practical implementations.
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Chapter 3

Hybrid Beamforming Design

3.1. Introduction and State of the Art
Precoding/beamforming is a ubiquitous and essential technique to reap the full potential of massive
MIMO systems by focusing the radiated energy in a specific direction to maximize the SNR of the de-
sired signal while reducing the inter-user and inter-beam interference. More antennas means the beam
will be narrower, the beamforming gain will be greater, and the interference will be smaller. However,
the conventional fully digital beamforming architectures, where one RF chain (ADC/DAC, data con-
verters, mixers, etc.) is dedicated per antenna, becomes impractical due to their high hardware cost
and energy-consumption [AKS17]. Therefore, other beamforming architectures have been proposed
for massive MIMO systems such as analog and HAD beamforming architectures. On the one hand,
analog beamforming is a very simple and cost-effective architecture, where the digital output of the
RF chain is mapped to a large number of antennas via a network of PSs or switches [Wan+09; BBS13;
Hur+13; Son+15]. However, the main idea of MIMO systems, i.e., spatial multiplexing, cannot be real-
ized. To overcome this issue, HAD beamforming architectures have gained more interest, which split
the beamforming operations between the analog and the digital domains to reduce the number of RF
chains as compared to the number of antenna elements [GAH20; Aya+14; Ard+18; HMP20]. The HAD
architectures are motivated by the fact that the number of RF chains is lower bounded by the number of
transmitted data streams, while the beamforming gain and the diversity order depend on the number
of antennas, considering a suitable RF beamforming design [ZMK05; Pal+06]. Depending on the map-
ping from the RF chains to the antenna elements, the hybrid beamforming architectures are categorized
into mainly two types, (i) fully connected (FC) and (ii) partially connected (PC), where the mapping
can be achieved using a network of PSs and/or switches [GAH20; Ard+18]. Specifically, in FC HAD ar-
chitectures, each RF chain is connected to all antenna elements. Differently, each RF chain is connected
to a subset of antenna elements in PC HAD architectures. Compared to the FC, PC HAD architectures
sacrifice beamforming gain for less cost, size, complexity, and energy-consumption.

In [SY16], it is shown that if the number of RF chains is twice the number of data streams, the FC
HAD architectures can provide the exact same performance of any fully digital beamforming scheme.
Therefore, the objective of any hybrid beamforming architecture is to reduce the number of RF chains,
e.g., to be equal to the number of data streams, while providing a performance that is close to the
fully digital beamforming counterpart. However, the HAD beamforming design is a non-convex opti-
mization problem and, in general, more complicated than the fully digital counterparts. This is mainly
because of the joint design of the digital and analog beamforming matrices and the constant modu-
lus and/or binary constraints owing to the use of PSs and/or switches in the analog domain [Aya+14;
Ard+18]. Therefore, sub-optimal and approximate solutions have been widely adopted in the litera-
ture, e.g., by decoupling the optimization of the analog and digital parts and treating them separately
[Aya+12; ZMK05; Ard+20a; LXD14; ND16; SY16; WLY18; Mén+16; Zha+18; Ard+18; Aya+14; SY16].

A widely used sub-optimal approach is the matrix factorization, where a known or a pre-computed
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fully digital beamforming matrix is factorized into a hybrid analog and a digital matrix, e.g., by mini-
mizing the Euclidean distance between them as proposed in [Aya+14; ZMK05]. However, this solution
approach increases the computational complexity as it requires the calculation of the fully digital beam-
forming matrix beforehand. Another solution approach is a codebook-based analog beamforming de-
sign [SR15; KKS13], where the analog beamforming vectors are selected from a known codebook. Such
an approach simplifies the analog beamforming design, since the codebook candidate vectors can be
selected or designed while satisfying the analog domain hardware constraints, e.g., the constant mod-
ulus constraints. For example, the array response vectors of the MIMO channel matrix [Yu+16; LL14;
KL15] or the DFT matrix [BBS13; Rus+15] can be considered for the codebook design, since they satisfy
the constant modulus constraints. While the codebook-based approach simplifies the analog beam-
forming design, a trade-off between design complexity and the achievable performance arises, since
increasing the number of candidate vectors not only improves the performance and the beamforming
gain, but also increases the complexity of the selection of analog vectors. Finally, an alternating opti-
mization technique is another widely used sub-optimal approach for HAD beamforming design, where
the analog beamforming matrix is designed assuming that the digital beamforming matrix is fixed, and
vice-versa, as proposed in [ZMK05; Ard+20a; LXD14; ND16; SY16; WLY18; Mén+16; Zha+18; Ard+18;
Aya+14; SY16]. In general, a number of iterations, which is required to fine tune the HAD beamformers,
increases the computational complexity.

Most of the initial works on HAD beamforming, e.g., [Aya+12; LXD14; ND16; SY16; WLY18; Mén+16;
Zha+18] consider narowband frequency-flat single-carrier massive MIMO systems, where their exten-
sion to wideband frequency-selective massive MIMO OFDM systems with multiple carriers is gener-
ally not straightforward, especially for PC architectures. For example, in [Ard+18], a unified analog
beamforming design algorithm is proposed that is valid for both PS-based and switch-based architec-
tures, which updates the analog matrices such that the equivalent channel’s capacity is maximized.
On the other hand, classical beamforming design methods like block diagonalization (BD) and ZF, for
the multi-user scenarios, and maximum ratio transmission (MRT), for the single-user scenarios, are
used to compute the digital part considering the resulting equivalent channels. Later on, the HAD
beamforming design considering massive MIMO OFDM systems was considered in [KHY15; Gen+13;
LW20; Zha+19; ZWH16; KCS17; SY17]. For example, in [LW20], a downlink multi-user multiple-input
single-output (MISO) system was assumed, where the baseband beamforming matrix is designed using
the classical ZF method, while the analog beamforming matrix is designed such that the approximated
upper-bound of the system’s SE is maximized. The solution proposed in [LW20] is mainly intended for
FC architectures, while its simple adaptation to the PC architecture leads to a high-performance loss.
In contrast, the authors in [Zha+19] propose an HAD beamforming design approach considering a FC
downlink multi-user MIMO OFDM system, where the analog beamforming matrices are designed us-
ing a subspace matching approach exploiting the tensor structure of the propagation channels, while
the baseband beamforming matrices are designed afterward as a solution to a signal-to-leakage-plus-
noise ratio optimization problem. In [Dai+15], an alternating optimization-based HAD beamforming
design approach called successive interference cancellation (SIC) is proposed, assuming a PC architec-
ture. The baseband precoding matrix has a diagonal structure, with each diagonal element representing
the power associated with the corresponding data stream. The main drawback of the proposed solu-
tions in [Dai+15; Han+15a] is that the analog beamformer is mainly contributing to the beamforming
gain, neglecting the inter-beam interference, which is obviously a sub-optimal strategy.
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3.1.1. Chapter Contributions

In this chapter, we consider a frequency-selective downlink multi-user massive MIMO OFDM system.
We propose a HAD beamforming design approach that is applicable to both FC and PC architectures. To
this end, we assume that the baseband precoding matrices are designed using the classical ZF technique,
while the baseband decoding matrices are designed using the MMSE approach [Chr+08]. Moreover,
we derive an approximation of system’s SE upper bound, which is used as the objective function of
the analog precoding matrix optimization. To obtain a solution, we divide the problem into a series
of convex sub-problems that are updated iteratively until convergence is obtained. The content of this
chapter has been published in [GAH20].

3.1.2. Chapter Organization

We begin this chapter with a brief introduction of the system model of the downlink multi-user massive
MIMO OFDM system and the problem formulation in Section 3.2. Then, we discuss the HAD beam-
forming design in Section 3.3, which is divided into two subsections. In Subsection 3.3.1, we focus on
the design of baseband beamforming matrices. Assuming that the baseband beamforming matrices are
designed as described in Subsection 3.3.1, we propose an analog beamforming design suitable for any
HAD beamforming architecture in Subsection 3.3.2. Moreover, we explain in detail a baseline method
for analog beamforming design in Subsection 3.3.2.1. The performance of the proposed beamforming
algorithm is provided in Section 3.4. In the end, we provide a conclusion in Section 3.5.

3.2. System Model
We consider a downlink multi-user massive MIMO OFDM system, where a single BS communicates
with U UEs. The BS is equipped with MBS antennas and NBS ≤ MBS RF chains, while each UE is
equipped with MUE antennas, NUE ≤ MUE RF chains, and receives Ns data streams. In contrast to the
previous chapter, we have HAD beamforming on both sides. A cyclic-prefix OFDM-based multi-carrier
modulation scheme with K sub-carriers is applied to combat the multipath effect. Assuming that the
cyclic-prefix length has the same length as the maximum excess delay of the channel, such that the ISI
is avoided, the received signal on the kth sub-carrier, k ∈ {1, · · · ,K}, at the uth UE, u ∈ {1, · · · , U}, is
given as

ŝu,k = W H
u,kHu,kFu,ksu,k +W H

u,kHu,k

U∑
u′=1,u′ ̸=u

Fu′,ksu′,k +W H
u,knu,k ∈ CNs , (3.1)

Where Hu,k ∈ CMUE×MBS is the massive MIMO frequency domain channel, Fu,k ∈ CMBS×Ns denotes
the precoding matrix, Wu,k ∈ CMUE×Ns is the decoding matrix, su,k ∈ CNs is the data vector with
E{su,ksH

u,k} = INs , and nu,k ∼ CN (0Ns , σ
2
nINs) is the AWGN vector with variance σ2

n. We con-

sider a HAD beamforming architecture at the BS and each UE such that Fu,k
def= F RFF BB

u,k and Wu,k
def=

W RF
u W

BB
u,k, respectively. Here, F RF ∈ CMBS×NBS and W RF

u ∈ CMUE×NUE represent the anlog beamform-
ing matrices, while F BB

u,k ∈ CNBS×Ns and W BB
u,k ∈ CNUE×Ns denote the baseband beamforming matrices.

Without loss of generality, we study the two extreme cases of the generalized HAD beamforming ar-
chitectures, which are the FC and the PC architectures, which are illustrated in Fig. 3.1. In the FC
architecture, each RF chain is connected to all antennas using a networks of PSs. Therefore, F RF =
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Figure 3.1: The FC and the PC HAD architectures at the BS.

[fRF
1 , · · · ,fRF

NBS
],fRF

a = [F RF][:,a] ∈ CMBS , |[fRF
a ][b]| = 1√

MBS
, W RF

u = [wRF
u,1, · · · ,wRF

u,NUE
],wRF

u,a = [W RF
u ][:,a] ∈

CMUE , and |[wRF
u,a][b]| = 1√

MUE
. In the PC architecture, each RF chain is connected to a subset of the an-

tennas using a network of PSs. Therefore, F RF = blkdiag{fRF
1 , · · · ,fRF

NBS
},fRF

a ∈ CM̊BS , |[fRF
a ][b]| = 1√

M̊BS

with M̊BS = MBS
NBS

, W RF
u = blkdiag{wRF

u,1, · · · ,wRF
u,NUE

},wRF
u,a ∈ CM̊UE , and |[wRF

u,a][b]| = 1√
M̊UE

with M̊UE =
MUE
NUE

. The achievable SE at the uth UE on the kth sub-carrier can be expressed as

SEu,k = log2 |INs
+ Φ−1

u,kW
H
u,kHu,kFu,kF

H
u,kH

H
u,kWu,k|, (3.2)

where Φu,k = W H
u,k

(
Hu,k

( U∑
u′=1,u′ ̸=u

Fu′,kF
H
u′,k

)
HH
u′,k + σ2

nIMUE

)
Wu,k is the covariance matrix of the

multi-user interference plus noise. Let Fk = [F1,k, · · · ,FU,k] ∈ CMBS×UMUE . Then, we enforce ∥Fk∥2
F =

Pk, where Pk
def= P

K and P is the total transmit power.

Assuming that perfect and instantaneous CSI is available at both the BS and every uth UE on the
kth sub-carrier, the objective is to design the HAD beamforming matrices Fu,k and Wu,k to maximize
the total SE of the system, i.e.,

max
{Fu,k,Wu,k}

SE =
U∑
u=1

K∑
k=1

SEu,k

s.t. ∥Fk∥2
F = Pk,∀k,F RF ∈ F ,W RF

u ∈ W,∀u, (3.3)

where F and W represent the sets of analog beamforming matrices satisfying the constraints that are
associated with each architecture as specified above.

3.3. Beamforming Design
The joint design of the analog and baseband beamforming matrices on the one hand and the non-convex
constraints in W RF

u ∈ W,∀u, and F RF ∈ F , on the other hand, make (3.3) a non-convex optimization
problem. Therefore, a sub-optimal strategy of decoupling the beamforming design has been widely
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used in the literature, where the analog and baseband beamforming matrices are designed separately.
We show how to obtain the baseband beamforming matrices based on an equivalent channel matrix
formed by fixing the analog beamforming matrices together with the channel matrix in Subsection 3.3.1.
In Subsection 3.3.2, we address the design of the analog beamforming subproblems to obtain F RF and
W RF

u . The steps of designing the beamforming matrices are as follows

• Analog decoding matrixW RF
u (as described in Subsection 3.3.2)

• Analog precoding matrix F RF (as described in Subsection 3.3.2)

• Baseband precoding matrix F BB
u,k using ZF (as described in Subsection 3.3.1)

• Baseband decoding matrixW BB
u,k using MMSE (as described in Subsection 3.3.1)

Note that the analog beamforming matrices F RF and W RF
u are identical for all sub-carriers while the

baseband beamforming matrices F BB
u,k and W BB

u,k have to be optimized for different sub-carriers k in
broadband systems.

3.3.1. Baseband Beamforming Design

For given and fixed analog beamforming matrices F RF and W RF
u ,∀u,, the BS designs its transmit base-

band beamforming matrices using the conventional linear ZF scheme to eliminate the multi-user in-
terference. We assume that UE u uses a digital noise whitening filter after applying its receive analog
beamformingW RF

u , i.e.,

Υu =
((
W RF

u

)H
W RF

u

)− 1
2 ∈ CNUE×NUE , (3.4)

Let H̊u,k
def= ΥH

u(W RF
u )HHu,k ∈ CNUE×MBS , H̊k

def= [H̊T
1,k, · · · , H̊T

U,k]T ∈ CUNUE×MBS , and H̄k
def= H̊kF

RF ∈
CUNUE×NBS for the kth sub-carrier. Let us define F̄ BB

k at the kth sub-carrier as

F̄ BB
k

def= [F̄ BB
1,k, · · · , F̄ BB

U,k] ∈ CNBS×UNs , (3.5)

where F̄ BB
u,k ∈ CNBS×Ns is the uth sub-matrix of F̄ BB

k related to the uth UE. The un-normalized ZF pre-
coding matrix for the kth sub-carrier can be obtained as

F̄ BB
k = H̄H

k (H̄kH̄
H
k )−1, (3.6)

which is normalized as given below

F BB
k =

√
Pk(F̄ BB

k /∥F RFF̄ BB
k ∥F) ∈ CNBS×UNs . (3.7)

where F BB
k

def= [F BB
1,k, · · · ,F BB

U,k]. On the other hand, the baseband decoding matrix of the uth UE on
the kth sub-carrier, W BB

u,k ∈ CNUE×Ns ,∀k,∀u, is computed such that the MSE of the received signal is
minimized. In other words, it is calculated using the MMSE scheme as

W BB
u,k = min

W BB
u,k

,∀u,∀k
E{∥ŝu,k − su,k∥2}, (3.8)
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where its solution is given by [ASC17]

W BB
u,k = Ω−1

u,k(W RF
u )HHu,kFu,k, (3.9)

where

Ωu,k = Su,u,kS
H
u,u,k +

U∑
u′=1,u̸=u′

Su,u′,kS
H
u,u′,k + σ2

nΥH
u(W RF

u )HW RF
u Υu ∈ CNUE×NUE , (3.10)

where Su,x,k = ΥH
u(W RF

u )HHu,kFx,k and F BB
x,k, x ∈ {u, u′} are calculated as in (3.7). Note that the first

term in (3.10) represents the desired signal covariance matrix, the second term denotes the inter-user
interference covariance matrix, and the third term is the whitened decoded noise covariance matrix.
Due to the ZF at the BS and applying the noise whitening filter Υu, i.e., σ2

nΥH
u(W RF

u )HW RF
u Υu = σ2

nINUE ,
we can simplify (3.10) as

Ωu,k = Su,u,kS
H
u,u,k + σ2

nINUE . (3.11)

3.3.2. Analog Beamforming Design

Since the baseband beamforming matrices are designed using the ZF method at the BS, the multi-user
interference can be neglected during the design of the analog beamforming matrices, where the problem
can be formulated such that the capacity of each effective channel that takes into account the analog
beamforming matrices, i.e.,

Heff
u,k

def= (W RF
u )HHu,kF

RF, (3.12)

is maximized. In the following, we decouple the analog beamforming matrices design between W RF
u

and F RF by treating them independently. First, we design the analog decoding matrix W RF
u for the uth

UE using the following approach

max
W RF

u ∈W
ηu =

K∑
k=1

log2 |INUE + (W RF
u )HHu,kH

H
u,kW

RF
u |, (3.13)

where we use the approximation F RF(F RF)H ≈ IMBS , which is valid for large antenna arrays [SY16]. To
obtain a solution of problem (3.13), we first rewrite its objective function in terms of its upper-bound as

ηu < log2 |INUE + (W RF
u )H

K∑
k=1

Hu,kH
H
u,kW

RF
u |, (3.14)

which follows from Jensen’s inequality as described in Appendix A.2 and Du =
K∑
k=1

Hu,kH
H
u,k ∈

CMUE×MUE . Therefore, the upper-bound of (3.13) reduces to

max
W RF

u ∈W
log2 |INUE + (W RF

u )HDuW
RF
u |. (3.15)

Problem (3.15) has been addressed in [Gao+16] considering a PC analog beamforming architecture.
Meanwhile, the authors in [Ard+18] proposed a unifying design approach for the flat-fading case that
is applicable for both analog beamforming architectures, i.e., the FC and the PC ones. Here, we assume
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3. Hybrid Beamforming Design

that the analog decoding matrices W RF
u ,∀u, are updated using the proposed method in [Ard+18] as

described in Appendix A.3.

Assuming that F BB
u,k and W BB

u,k,∀u, k, are computed by (3.7) and (3.9), respectively. Then, due to the
noise whitening filter and the ZF filter at the BS, Φ−1

u,k = 1
σ2

n
INs

, which simplifies (3.2) to [Chr+08]

SEu,k = log2 |INs
+ 1
σ2
n

(F BB
u,k)H(F RF)HH̊H

u,kH̊u,kF
RFF BB

u,k|. (3.16)

Therefore, the objective function of (3.3) simplifies to

SE =
U∑
u=1

K∑
k=1

SEu,k =
K∑
k=1

log2 |IUNs
+ 1
σ2
n

(F BB
k )HH̄H

k H̄kF
BB
k |, (3.17)

which can be upper-bounded as

SE ≤ UNs log2

(
1 + Pk

σ2
n(UNUE)2 trace[(F RF)HDF RF]

)
, (3.18)

where

D =
K∑
k=1

H̊H
k H̊k ∈ CMBS×MBS . (3.19)

The derivation of the upper-bound in (3.18) is provided in Appendix A.4. Therefore, F RF can be
designed so that (3.18) is maximized, i.e.,

max
F RF∈CMBS×NBS

trace[(F RF)HDF RF] s.t. F RF ∈ F , rank(F RF)=NBS. (3.20)

3.3.2.1 Baseline Method

For FC architectures, a direct solution of (3.20) can be calculated by applying the eigenvalue decompo-
sition technique on the equivalent channel covariance matrixD given in (3.19), as

D = QΛQH, (3.21)

where Q ∈ CMBS×MBS contains the eigenvectors of D in its columns, while Λ = diag{λ} ∈ RMBS×MBS

holds the associated eigenvalues on its diagonal elements withλ = [λ1, · · · , λMUE ]T and λ1 ≥ · · · ≥ λMBS .
We take the phase-angles of the eigenvectors corresponding to the NBS largest eigenvalues as

F RF = 1√
MUE

ej∠Q̄ ∈ CMBS×NBS , (3.22)

where Q̄ = [Q][:,1:NBS] ∈ CMBS×NBS and ∠(·) is a function that extracts the phase angles.

For the PC architecture, the authors in [LW20] divide the analog beamforming design into NBS sub-
problems. Let D̃c ∈ CM̊BS×M̊BS be the channel covariance matrix of all antennas connected to the cth
RF chain with M̊BS = MBS

NBS
and c ∈ {1, · · · , NBS}, i.e., D = blkdiag{D̃1, · · · , D̃NBS}. The eigenvalue

decomposition of D̃c is given as
D̃c = QcΛcQ

H
c , (3.23)

where Qc ∈ CM̊BS×M̊BS contains the eigenvectors of the covariance matrix Dc in its columns, while
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3.3. Beamforming Design

Λc = diag{λc} ∈ RM̊BS×M̊BS holds the associated eigenvalues on its diagonal elements with λc =
[λ1,c, · · · , λM̊BS,c

]T and λ1,c ≥ · · · ≥ λM̊BS,c
. Then, fRF

c can be designed by taking the phase-angles of
the eigenvector corresponding to the dominant eigenvalue of D̃c as

fRF
c = 1√

M̊UE

ej∠q̄c ∈ CM̊BS , (3.24)

where q̄c = [Qc][:,1] ∈ CM̊BS denotes the eigenvector associated with the largest eigenvalue, i.e., λ1,c.

Although the method proposed in [LW20] is very simple to implement for the PC architecture, it has
a poor performance because it ignores the interference between the columns of F RF.

3.3.2.2 Proposed Analog Beamforming Design

Here, we want to present our proposed solution, which is not only suitable for the FC architecture but
also for the PC architecture. To this end, by taking a closer look at the structure of (F RF)HDF RF, which
can be written as

(F RF)HDF RF =


(fRF

1 )HDfRF
1 (fRF

1 )HDfRF
2 · · · (fRF

1 )HDfRF
NBS

(fRF
2 )HDfRF

1 (fRF
2 )HDfRF

2 · · · (fRF
2 )HDfRF

NBS

...
...

. . .
...

(fRF
NBS

)HDfRF
1 (fRF

NBS
)HDfRF

2 · · · (fRF
NBS

)HDfRF
NBS

 ∈ CNBS×NBS , (3.25)

where fRF
c ∈ CMBS is the cth column of F RF ∈ CMBS×NBS with c ∈ {1, · · · , NBS} and D is given in (3.19).

From (3.25), the objective function of (3.20), i.e., trace[(F RF)HDF RF], can be expressed as

trace[(F RF)HDF RF] = (fRF
1 )HDfRF

1 + · · ·+ (fRF
NBS

)HDfRF
NBS

=
NBS∑
c=1

(fRF
c )HDfRF

c . (3.26)

Accordingly, (3.20) can be equivalently written as

max
f RF

c

NBS∑
c=1

(fRF
c )HDfRF

c s.t. fRF
c ∈ F ,∀c, rank(F RF)=NBS. (3.27)

Note that (3.27) is non-convex optimization problem. To obtain a solution, we propose to approach
(3.27) heuristically by optimizing

max
f RF

c

NBS∑
c=1

(
(fRF
c )HDfRF

c −Υc

)
s.t. fRF

c ∈ F ,∀c, (3.28)

where Υc =
NBS∑

b=1,b̸=c
|(fRF

b )HDfRF
c |2, which represents the total interference-leakage caused by fRF

c . We

conjecture that the subtraction of Υc may ensure that the resulting matrix F RF has linearly independent
columns. This might be explained by noting that the best solution of (3.28) is achieved when Υc is
minimized, while the first term, i.e., (fRF

c )HDfRF
c , is maximized. Therefore, the best solution can only

be achieved when the columns of F RF are linearly independent. Note that the quadratic form is used
for Υc so that the objective function in (3.28) falls into a classical format as in [Par+13]. In the following,
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3. Hybrid Beamforming Design

Algorithm 3.3 Proposed Analog Beamforming Design

Input: D =
∑K
k=1 H̊

H
k H̊k ∈ CMBS×MBS and F RF[0] ∈ F (random matrix)

1: Compute dc[0] def= DfRF
c [0] ∈ CMBS ,∀c, and set iteration index p = 1

2: while not converged do
3: for c = 1 to NBS do
4: Compute fRF

c,opt using (3.31)
5: Set fRF

c [p] = 1/
√
XBSe

j∠(fc,opt⊙ϕc)

6: Set dc[p]
def= DfRF

c [p] ∈ CMBS

7: end for
8: p = p+ 1
9: end while

Output: F RF[p]

we propose a solution to (3.28) in an alternating fashion. Let dc
def= DfRF

c ∈ CMBS , c ∈ {1, · · · , NBS}.
Then, (3.28) can be rewritten as

max
f RF

c

NBS∑
c=1

(
dH
c f

RF
c −

NBS∑
b=1,b̸=c

|dH
b f

RF
c |2

)
s.t. fRF

c ∈ F ,∀c. (3.29)

Problem (3.29) is non-convex, due to the constant modulus constrains. Note that when fRF
c ∈ F ,

then ∥fRF
c ∥2 = 1. Therefore, we propose to relax (3.29) and write it as

max
f RF

c

NBS∑
c=1

(
dH
c f

RF
c −

NBS∑
b=1,b̸=c

|dH
b f

RF
c |2

)
s.t. ∥fRF

c ∥2 = 1,∀c, (3.30)

which is a convex optimization problem. The optimal solution to fRF
c satisfying the Karush-Kuhn-

Tucker (KKT) conditions is given by Proposition 3.3.1.

Proposition 3.3.1. The optimal solution to (3.30) with respect to fRF
c is given as

fRF
c,opt = µc

( NBS∑
b=1,b ̸=c

dbd
H
b + IMBS

)−1
dc, (3.31)

where µc = 1/∥
( NBS∑
b=1,b ̸=c

dbd
H
b + I−1

MBS

)
dc∥.

Proof: Please refer to Appendix A.5.

A summary of the proposed analog beamforming approach for updating F RF can be found in Algo-
rithm 3.3, where the entries of F RF[0] have random phases and amplitude one and in step 5, we enforce
the constant modulus constraints of fc,opt ∈ F . Here, ϕc ∈ BMBS is a binary vector. For a FC architecture,

XBS
def= MBS and ϕc

def= 1MBS ,∀c, i.e., an all ones vector. For a PC architecture, XBS
def= M̊BS = MBS/NBS
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and ϕc contains ones at indices [(c− 1)M̊BS + 1, · · · , cM̊BS] and zeros elsewhere as shown below.

ϕc =
[

0T · · · 0T︸ ︷︷ ︸
(c−1)M̊BS

1T
M̊BS

0T · · · 0T︸ ︷︷ ︸
(1−c)M̊BS

]T
. (3.32)

Note that Algorithm 3.3 updates F RF until reaching a convergence threshold by checking the stop
criterion given as

|c(p)− c(p− 1)| < ϵ, (3.33)

where ϵ is the convergence threshold and c(p) is defined as

c(p) = log2 |(F RF[p])HDF RF[p]|. (3.34)

3.4. Simulation Results
Here, we evaluate the performance of the proposed algorithm by means of numerical results. We gen-
erate the MIMO OFDM channel matrices according to the 3GPP CDL channel model given in Subsec-
tion 2.2.2. We define the SNR as SNR = 10 log10

P
σ2

n
dB. Remember that the FC architecture has G = 1

group, while the PC architecture at the BS (UE) has G = NBS (G = NUE) groups. For comparison, we
show simulation results of the proposed HAD methods in [Gao+16]1 and [Zha+19]2, and the fully digi-
tal ZF-based approach3.

Convergence Behavior of Proposed Analog Beamforming Design Method in Algorithm 3.3

As explained above, Algorithm 3.3 updates the analog beamforming matrix F RF iteratively un-
til reaching a convergence threshold by checking the stop criterion given in (3.33). In Fig. 3.2, we
show some simulation results evaluating the convergence behavior of Algorithm 3.3. We assume that
MBS = 64, MUE = 8, U = 4, Ns = 2, NUE = Ns, NBS = UNs, and K = 16. From Fig. 3.2, we notice
that Algorithm 3.3 always converges to a point where the cost function stops increasing or decreasing,
although not monotonically. Moreover, we notice that Algorithm 3.3 has a fast convergence rate, re-
quiring approximately 5 to 10 iterations to reach an acceptable convergence threshold of ϵ = 10−5.

Sum Rate Performance

Here, we want to evaluate the performance of the proposed hybrid beamforming design in terms
of the SE. We assume that MBS = 64, MUE = 8, U = 4, Ns = 2, NUE = Ns, NBS = UNs, and K = 16.
From Fig. 3.3, we can see that all the HAD algorithms using the FC architecture achieve a compara-
ble performance to each other with some performance gap compared to the fully digital architecture.

1In [Gao+16], the authors consider the PC architecture. Its extension to a FC architecture coincides with the proposed method
in [LW20].

2In [Zha+19], the authors proposed a hybrid beamforming design for a FC architecture. Analogous to [LW20], the proposed
solution can be simply extended to the PC architecture by updating the cth block of the analog beamforming matrix considering
the unfolding of the channel tensor of all antennas connected to the cth RF chain.

3To have a fair comparison, we assume that the fully digital ZF transmit precoding matrix is calculated using (3.7), while
assuming that F RF = IMBS and W RF

u = Uu ∈ CMUE×NUE , where Uu consists of the NUE dominant eigenvectors of the channel
covariance matrixDu given by (3.14).
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Figure 3.2: Convergence of Algorithm 3.3.

Clearly, the PC architecture has a large performance loss compared to the FC and the fully digital coun-
terparts due to the smaller number of antennas connected to each RF chain. Nonetheless, we can see
that our proposed PC HAD approach outperforms the other PC HAD methods in [Gao+16; Zha+19].
The proposed PC HAD beamforming method in [Zha+19] simplifies the analog beamforming design
by completely decoupling the optimization between the analog beamforming blocks. This results in a
significant performance degradation of the system. Differently, the proposed PC HAD beamforming
method in [Gao+16] partially decouples the optimization between the analog beamforming blocks by
sequentially updating them, where in each step, the previously designed blocks are taken into account
when designing the current block. On the other hand, the proposed method in this work updates the
analog beamforming matrix sequentially and iteratively with the aim of finding a good balance be-
tween maximizing the received signal in each block and minimizing the interference leakage into the
other blocks.

Effect of Number of Transmit Antennas on SE

Next, we investigate the effect of the number of transmit antennas on the SE for a fixed SNR, i.e.,
SNR = 15 dB. We assume that MBS = [16, 32, 64, 128, 256] and the rest of the simulation parameters
remain the same as above. As expected, increasing the number of antennas at the BS improves the SE of
the system. From Fig. 3.4, we can see that the FC HAD architectures achieve a comparable performance
to each other with some performance gap compared to the fully digital architecture. Moreover, we can
see that our proposed PC HAD beamforming architecture outperforms the other PC HAD beamform-
ing algorithms in [Zha+19] and [Gao+16].
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Figure 3.3: System SE versus SNR for MBS = 64, MUE = 8, U = 4, NUE = 2, NBS = 8, and K = 16.

Effect of Number of Sub-carriers on SE

In Fig. 3.5, we investigate the effect of the number of sub-carriers K on the SE for a fixed SNR, i.e.,
SNR = 15 dB. We assume that K = [1, 4, 8, 16, 32, 64] and the rest of the simulation parameters remain
the same as in Fig. 3.3. We can see from Fig. 3.5 that the SE per sub-carrier per UE decreases when
the number of sub-carriers K increases. This can be explained by the following two reasons. The first
reason is due to the assumed power allocation approach (recall that Pk

def= P
K ). Therefore, when K in-

creases, the power allocation per sub-carrier Pk decreases. The second reason, and more importantly,
is that the capacity of every equivalent channel Heff

u,k decreases when K increases. This is due to the
fact that the common analog precoding matrix F RF is computed from D that is given by (3.18). There-
fore, when K increases, F RF will span a larger subspace that is formed by the average of K covariance
matrices, which results in a capacity reduction of each Heff

u,k,∀u,∀k. Note that the un-normalized SE
increases with increasing K, which can be checked by multiplying each point in Fig. 3.5 by U = 4 and
the respective value of K.

Different Beamforming Architecture

As already explained in Chapter 2, the hybrid beamforming architecture can be described by a gen-
eralized PC formulation. Therefore, we want to check the performance of the proposed algorithm con-
sidering different hybrid beamforming architectures. To this end, we assume that the number of groups
can vary from G = 1 up to G = 8. The other simulation parameters remain the same as in Fig. 3.3. In
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Figure 3.4: System SE versus number of antennas at the BS MBS for MUE = 8, U = 4, NUE = 2, NBS = 8,
and K = 16.

Fig. 3.6, the SE versus G for a fixed SNR, i.e., SNR = 15 dB, is illustrated. As a reminder, G = 1 and
G = 8 correspond to the FC and the PC architecture, respectively. As expected, the SE of the system
decreases as the number of groups increases. It can be seen that the generalized PC formulation offers
more freedom to assign the antennas and the RF chains to each other than the extreme cases of the FC
and PC architectures. Therefore, a trade-off between system complexity and system performance can
be taken into account.

3.5. Chapter Conclusion
In this chapter, a new HAD design method is proposed for multi-user massive MIMO OFDM mmWave
systems, which updates the analog beamforming matrices sequentially and iteratively with the aim
of finding a good balance between maximizing the received signal in each block and minimizing the
interference leakage to the other blocks. Simulation results reveal that the proposed method has a com-
parable performance with the benchmark methods in the FC HAD architectures, while it significantly
outperforms them in the PC and other generalized PC cases.
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Part II

RIS-Aided Wireless Communication
Systems
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This part of the thesis is devoted to reconfigurable intelligent surface (RIS)-aided mmWave MIMO
wireless communication systems. We consider both the channel estimation problem and the design
of the reflection coefficients. In particular, in Chapter 4, we consider Single RIS (S-RIS)-aided MIMO
systems. First, we propose a novel channel estimation algorithm called Two-stage RIS-aided Channel
Estimation (TRICE), which exploits the low-rank characteristics of the channel in the mmWave band.
Our second proposed channel estimation method is called Tensor-based RIS Channel Estimation (Ten-
RICE) with the aim of improving the channel estimation performance in terms of the training overhead
and the channel estimation accuracy by exploiting the tensor structure of the measurement signals.
Moreover, we propose a heuristic non-iterative two-step solution to obtain the RIS reflection vector in
a closed-form termed as Frobenius-Norm Maximization (FroMax). In Chapter 5, we turn our focus to
Double RIS (D-RIS)-aided systems. We show that the channel estimation in D-RIS-aided systems can
outperform the S-RIS-aided one in terms of training overhead and channel estimation accuracy by care-
fully distributing the reflection elements between RIS-1 and RIS-2. Moreover, we propose two channel
estimation methods by showing that the received signal admits a nested PARAFAC model and can
be written as a 4-way tensor. The effectiveness of the proposed channel estimation and beamforming
algorithm is illustrated by the numerical results.



Chapter 4

Single-RIS-Aided Systems

4.1. Introduction and State of the Art
The wireless communication channel between a transmitter and a receiver has generally been regarded
as uncontrollable in past wireless communication systems. Needless to say, having a favorable wireless
propagation channel between the communicating ends, e.g., a strong LoS would provide a high com-
munication performance, e.g., a higher SE and a lower transmit power. With every generation, several
wireless communication technologies and solutions have been proposed to increase the probability of
having a favorable wireless propagation channel. For example, heterogeneous networks (HetNets) or
network densification technologies [Rom+15] have been proposed, in which a number of low-power
nodes, e.g., pico nodes, are deployed within the coverage area of a high-power node, e.g., a macro
node, to further improve system capacity and efficiency to overcome the coverage holes. In other
words, HetNets densify the area of interest by activating several serving network nodes, which can
ultimately increase the probability of having a favorable LoS wireless propagation channel. Wireless
relaying techniques, e.g., using either amplify-and-forward (AF) or decode-and-forward (DF) schemes
were also proposed [GAH21; BÖL20; Yil+21; Wan+22], which can be used to extend the wireless com-
munication range, especially when the direct communication channel between the communicating ends
have unfavorable or weak channel conditions. Although these technologies are valuable solutions and
can improve the performance of wireless communications, they come with a high cost, complexity, and
energy consumption, which is contrary to the goals of future 6G wireless communication systems that
require more affordable and energy-friendly wireless communication networks.

As a solution to the above issues, RISs, also know as reconfigurable metasurfaces [Ren+19], intelli-
gent reflecting surfaces (IRSs), software-controlled metasurfaces (SCMs), and large intelligent surfaces
(LISs) [Wu+21; Lia+18a], have been proposed recently for future 6G wireless communication networks
[Wu+21; Lia+18a; Lia+18c]. The RISs have a potential not only for overcoming the unfavorable channel
conditions, but also for enabling unprecedented system performance while reducing the energy con-
sumption. Generally speaking, an RIS is a 2D surface equipped with a large number of tunable units
that can be realized using, e.g., inexpensive reflected arrays, software-defined metamaterials such as
graphene and liquid crystals, or varactor diodes [AZY20; CTY16; Jia+22; Lia+18a]. Programmable elec-
tronic circuits can be integrated into planar structures fabricated using lithography and nano-printing
methods [Jia+22]. It is worth noting that reflecting surfaces are already a known technology and have
been used in different applications, e.g., radar systems, remote sensing, and satellite or deep-space com-
munications. However, traditional reflecting surfaces are equipped with passive and fixed PSs, which
make them unsuitable for dynamic mobile wireless communication networks.

Thanks to the recent developments in RF micro electromechanical systems (MEMS) and metama-
terials, the reconfigurability and controllability of an RIS unit in real-time become possible [Cui+14].
Moreover, most of the RIS implementation architectures are made of passive, inexpensive, and thin
electromagnetic materials, which make them easy to deploy on environment structures such as build-
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ing facades and indoor walls. Due to their unique characteristics, RIS technologies have found a wide
range of applications and use cases [Hon23; Wu+21; Lia+18c; CTY16], as shown in Fig. 1.4. For example,
by deploying an RIS between a transmitter and a receiver, the phase, amplitude, and/or polarization
of the RIS units can be adjusted in real-time to reflect the impinging signals to meet a desired objective,
e.g., to add constructively at the intended receiver and/or to add destructively at unintended receivers.
In addition to the reflection, there are other operation modes for RISs such as transmission, sensing,
absorption, and simultaneous transmission and reflection [Jia+22].

Moreover, from a hardware implementation point of view, the RISs can be divided into two major
groups, i.e., passive and semi-passive RISs. In contrast to passive RISs, semi-passive RISs include a
few active elements that are connected with RF chains [AV20]. Clearly, the active elements increase
the cost and power consumption of semi-passive RISs. However, these active elements can be used to
improve the performance of RIS-aided systems and enable pilot-based channel estimation methods, as
described in [AV20]. Note that the general idea of RIS technology resembles, to some extent, the AF-
based relays [GAH21; BÖL20; Yil+21; Wan+22]. For example, both technologies can be used to extend
the wireless communication range by deploying an RIS or a relay node between a transmitter and a
receiver. However, RISs have some unique features that renders them more appealing for future 6G
wireless networks, e.g.,

(i) They have low power consumption, cost, and complexity.

(ii) They are able to operate in the more spectrally efficient full-duplex (FD) mode, unlike AF relays
that usually operates in half-duplex (HD) mode.

(iii) They are easy to deploy on environment structures such as building facades and indoor walls,
due to their thin structure.

In the following, we give a brief overview and summarize some achievements in the state-of-the-art.

4.1.1. Fundamental Performance Metrics

In the earlier works on RIS-aided systems, some fundamental performance metrics have been derived,
showing their potential in achieving the promising gains mentioned above [Yan+20c; Yan+20a; BA20;
Fer+20]. In [Yan+20c], the secrecy outage probability of an RIS-aided system in the presence of a LoS and
an eavesdropper was derived using the central limit theorem, making the results valid only for a large
number of reflecting elements. In [Yan+20a], accurate approximations for the channel distributions and
other performance metrics of RIS-aided system were derived for Rayleigh fading channels. Following
the same system assumptions as in [Yan+20a], the authors in [BA20] presented closed-form expressions
for the outage probability, symbol error rate, and ergodic capacity. A closed-form expression for the bit
error rate is provided in [Fer+20] for BPSK and M -QAM modulation techniques. In [Yan+21], the exact
analysis of the outage probability and a closed-form expression for the asymptotic sum rate is derived,
which shows that the capacity scaling law in multi-RIS-aided systems depends strongly on the number
of RISs as well as the number of reflecting elements.

4.1.2. Channel Estimation

The channel acquisition in RIS-aided systems faces several challenges. For instance, assuming a passive
RIS implementation to reduce the RIS cost and complexity, the propagation channel can only be sensed
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and estimated at the receiver. Furthermore, the large number of channel coefficients to be estimated
limits the feasibility of CSI acquisition within a practical coherence time, since an RIS is expected to
have a massive number of passive reflecting elements. Therefore, efficient channel estimation methods
for RIS-aided systems are required to guarantee successful communications and reap the RIS potentials.
Recently, channel estimation methods for RIS-aided systems have been proposed, e.g., using LS-based
methods as in [MJ19; JD20; ZZ20b; AA20], or MMSE-based methods as in [Nad+20]. An overview of
the LS and the MMSE estimator for full illumination is provided in [JGU22]. In [MJ19; Yan+20d], the
authors propose an on-off-based channel estimation technique for single-user RIS-aided systems where
only one reflecting element is turned on at a time. However, the sub-optimality of the on-off method
was shown in [JD20]. On the other hand, a DFT-based channel estimation method is considered in
[ZZ20b; JD20], where an LS-based channel estimation is proposed. Despite the same training overhead
of the DFT-based and on-off methods, the DFT-based method outperforms the on-off method since all
RIS elements are always on. The optimization of discrete phase shifts in [YZZ20] and joint pilot and
phase optimization are investigated in [Kan20]. In [NYS22], the authors proposed training signal design
considering the MSE of the channel estimation and approaching it using CRB. They have shown that in
mmWave channels, the channel parameters, i.e., path gains and path angles, can be derived in a closed-
form by exploiting the sparsity of the channel under the following assumptions (i) Bayesian parameter,
where the path gain and path angles are modeled randomly, and (ii) hybrid parameter, where the path
gains are modeled as random parameters and the path angles are assumed to be unknown determin-
istic parameters. From their simulation results, it was shown that less number of training symbols are
required in mmWave RIS-aided channels than the number of reflecting elements in the RIS. In [PD21],
the authors proposed a channel estimation method to reduce the training overhead by considering the
correlation of the channels between the adjacent elements of RIS. In [HY20], the authors formulated
a single-user channel estimation problem as a combined sparse matrix factorization and matrix com-
pletion problem and used a CS-based technique to solve it. A multi-user scenario was considered in
[WLC20], where it was pointed out that the training overhead can be reduced since the channel be-
tween the BS and the RIS is common for all users. However, most of these works require the number of
training sub-frames to be, at least, equal to the number of RISs reflecting elements, which increases the
training overhead and complexity.

Considering the low-rank structure of the mmWave channels, the channel training overhead and
complexity can be reduced significantly, as it has been shown in [TAA21; WGA20; He+20a; Che+23;
Wan+20]. In these works, every channel matrix is modeled as a summation of L paths, where L is much
smaller than the number of transmit and receive antennas, and every path is completely characterized
by a DoD, a DoA, and a complex path gain. Therefore, the channel estimation is formulated as a sparse
recovery problem, for which CS techniques [Don06] can be used to efficiently recover the channel pa-
rameters using a small training overhead. In [TAA21], the above problem is facilitated by assuming
that the RIS has a few active elements, which, however, increases the deployment cost and the energy
consumption of RIS-aided systems. In [WGA20], the authors assumed that the BS-to-RIS channel is
perfectly known, while in [He+20a], the cascade channel matrix is assumed to have a single path, i.e.,
L = 1. Differently, the authors in [Wan+20] proposed a general sparse recovery formulation for L ≥ 1
scenarios. In most of these works, however, the channel parameters are assumed to fall perfectly on
a grid, which may never be true in practice. Therefore, there exists a trade-off between the estima-
tion accuracy and the complexity, where both increase as a function of the grid resolution. Due to the
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multi-dimensionality of the cascaded channel, a 4D sensing matrix is required by the method proposed
in [Wan+20], which makes it computationally prohibitive even with low grid resolutions. In [Wan+20;
JD20], the authors provide a sparse representation of the cascaded channel in mmWave RIS-aided MISO
systems. In [Fan+16], an iterative refinement method was proposed to estimate the channel parameter
under the assumption that all available channels have only LoS links. A codebook-based scheme is
studied in [He+20b] to design the beamforming and reflection matrices jointly without estimating the
MIMO channel parameters. In [HWJ21], the atomic norm minimization is used to estimate the channel
parameters sequentially. In [Che+23], a two-step multi-user joint channel estimation is proposed for an
RIS-aided MISO system, where it is assumed that the channel between the BS and the RIS is common
among all users. In [WSD21], motivated by the assumption that the angular cascaded channels associ-
ated with different users enjoy completely common non-zero rows and partially non-zero columns, the
authors proposed a double-structured OMP channel estimation method. There exist some other strate-
gies to reduce the pilot overhead, e.g., an element grouping strategy [Yan+20d], a two-stage channel
estimation method exploiting correlations in the cascaded channel [Zho+22].

On the other hand, tensor-based signal modeling and processing methods offer essential benefits
over their bi-linear (matrix) counterparts, since they can improve the parameter identifiability owing
to the strong uniqueness features of tensor decomposition [FA14]. In [AAB21], it is demonstrated that
the received signals in RIS-aided MIMO wireless communication systems can be expressed as a 3-way
tensor admitting a CPD. However, the proposed method in [AAB21] assumes sub-6 GHz systems and,
therefore, needs a large number of training sub-frames, similarly to [MJ19; JD20; Nad+20; Zha+20].

4.1.3. RIS Beamforming Design

Beamforming is a fundamental technique in MIMO systems, which enhances the possibility of the sig-
nal reception at users and increases the system capacity by making the transmitted signals more direc-
tional instead of radiating randomly. This is achieved by adjusting the phase and amplitude of every
transmit antenna. An RIS node can be regarded, to some extend, as a MIMO node, where the phase and
amplitude of every RIS element can be adjusted to create a desired beam shape and direction, which is
the key guarantee for RISs to improve the system performance. In contrast to the conventional system
in which beamforming is done only at the transmitter and/or receiver, in RIS-aided communication sys-
tems, we jointly optimize the active beamforming at the transmitter and/or receiver and the reflection
coefficients at the RIS, providing a new degree of freedom to improve the communication performance.
However, the involved optimization problem is, in general, non-convex, due to its joint optimization
and some additional non-convex constraints, e.g., constant modulus constraints imposed due to the
RIS hardware requirements. Moreover, RISs are expected to have a large number of reflecting elements,
which calls for low-complexity RIS beamforming/reflection design methods to make RIS-aided sys-
tems practically possible. Therefore, relaxation and alternating optimization techniques are commonly
used in the literature to obtain, at least, a locally optimal solution.

Several works have been established for improving the transmission rate by using RIS-aided wire-
less systems [ZZ20a]. RIS reflection design, in particular, has been extensively investigated under var-
ious setups and objectives [ZZ20a; WZ18; WZ19; Nad+19]. It was shown in [WZ19; WZ18] that an
RIS-aided system with N reflecting elements asymptotically increases the received signal power or
SNR on the order of O(M2

S ) when MS is large enough. Such a squared power gain compared to the
constant power gain in massive MIMO systems without RISs [NLM13] is the result of combining both
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received and transmit arrays for energy harvesting and reflect beamforming. Moreover, it was shown
in [WZ19] that a UE located in the coverage region of the RIS can tolerate more interference compared
to the one outside that region. The authors in [ZZ20a] considered the capacity maximization and pro-
posed an alternating optimization approach to find a locally optimal solution by iteratively optimizing
the transmit covariance matrix and one of the RIS reflection coefficients at a time. However, such an ap-
proach increases the computational complexity and becomes a limiting factor in practice, especially in
a massive RIS setup. In [JS19], the authors proposed an alternating difference-of-convex programming
algorithm to solve the non-convex bi-quadratic problem for over-the-air communication scenarios. In
[Nad+19], the reflection elements are obtained for rank-one MIMO channels. In [WZ18; WZ19], the
authors proposed a semidefinite relaxation (SDR) approach to overcome the unit modulus constraints
of RIS elements. However, the proposed algorithms obtain an approximate solution with no guarantee
of optimality. A simple phase extraction approach is proposed in [Han+19] obtained from an approxi-
mation of the ergodic capacity.

A joint design of the precoding matrix at the transmitter and the reflecting elements at the RIS is
proposed in [WZ19]. According to the simulation results of [WZ19], the RIS-aided system achieves a
significantly larger transmission rate than its counterpart without RIS. In [Hua+18b], an extension of
[WZ19] for multi-user scenarios is studied. The performance of the RIS-aided systems is studied in
[Hua+19; Hua+18a] in terms of their energy efficiency. It was shown that the RIS-aided system has
300% more energy efficiency compared to a regular multi-antenna AF relaying system. In [WZ18], the
reflecting matrix is designed to maximize the total received power at the UE in single-user RIS-aided
MISO system. In [Hua+19], two computationally efficient algorithms based on alternating maximiza-
tion are proposed to assign the transmit power at the BS and the reflector values of the RIS such that
the energy efficiency of the system is maximized. Similarly, the authors in [Hua+18a] proposed design
methods for power allocation and induced phases to either maximize the energy efficiency or SE of the
system in multi-user MISO systems. However, the proposed designs are impractical due to the require-
ment of the availability of global CSI, i.e., from all UEs, at the RIS, which makes the signal exchange
overhead enormously high. The authors in [Nad+19] proposed a precoding and beamforming design-
ing technique for multi-user MISO systems, where the channel between the BS and the RIS is LoS and
the channel between the RIS and the UEs are Rayleigh correlated channels. Then, the proposed beam-
forming and precoding matrices are designed considering the impact of both the rank structure of the
LoS channel matrix and the spatial correlation between the reflection elements at the RIS.

Furthermore, a beamforming design for MIMO systems with a maximization of the minimum SINR
criterion was proposed in [ZZ20a]. In [ZZ20a], the authors derived the channel capacities of the RIS-
aided MIMO channel in the asymptotically low and high SNR region. In addition, an algorithm to
design beamforming matrices so that the transmission rate is maximized was proposed in [ZZ20a].
According to the simulation results, it was shown that the transmission rate of the system is signifi-
cantly improved in systems with RISs compared to the ones without RISs. Apart from the above works,
numerous other works have been reported to improve the performance of wireless communication net-
works via RISs by not only designing proper passive beamforming but also transmitting information,
which is called passive beamforming and information transfer (PBIT) [YYK20]. The main idea of PBIT
is to enable RISs to transmit their private data to the receiver. The private data of an RIS can be its
environmental monitoring data, the wireless control link, etc. Another application is to enhance the
secrecy rate of the RIS-aided system by designing the precoding and reflecting beamforming such that
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the signal is directed to the legitimate UE while degrading its reception at the eavesdroppers [GWZ20;
CZZ19; She+19; YXS19].

4.1.4. Chapter Contribution

In this thesis, we consider the channel estimation problem in a single-user S-RIS-aided mmWave MIMO
communication system, similarly to [Wan+20], where the RIS has passive reflecting elements and the di-
rect link between the transmitter and the receiver is assumed to be blocked or pre-estimated by turning
the RIS elements off, as in [MJ19] and illustrated in Fig. 4.1.

First, we propose a Two-stage RIS-aided Channel Estimation (TRICE) framework using a structured
channel training procedure. In the first stage, the DoDs of the transmitter-to-RIS channel and the DoAs
of the RIS-to-receiver channel are estimated. In the second stage, by using the estimated channel pa-
rameters in the first stage, the effective azimuth and elevation angles of the cascaded transmitter-to-RIS-
to-receiver channel at the RIS are estimated, one-by-one, including the effective complex path gains. In
both stages, we show that the parameter estimation can be carried out via a multi-dimensional DoA
estimation scheme, for which several solutions exist as in [ZH17a; ZH17b; SPP18; AAH19a; MRM16;
Cao+18], among many others. Then, we extend our TRICE framework and propose a CP tensor de-
composition method, termed Tensor-based RIS Channel Estimation (TenRICE), by jointly exploiting the
tensor structure of the received signals and the low-rank nature of mmWave channels. Using the Ten-
RICE method, the transmitter-to-RIS and the RIS-to-receiver channels can be estimated separately, up
to a trivial scaling factor.

After that, we formulate the beamforming and the RIS reflection design as a SE maximization prob-
lem. Due to its non-convexity, we propose a heuristic non-iterative two-step solution, where the RIS
reflection vector is obtained, in contrast to [ZZ20a], in a closed-form using a Frobenius-norm Maximiza-
tion strategy, termed FroMax. The content of this chapter has been published in [Ard+21; Ghe+21].

4.1.5. Chapter Organization

In Section 4.2, we describe first the system model with two main phases, e.g., the channel estimation
phase and the data transmission phase. In the last part of Section 4.2, we give a brief introduction to the
classical Saleh-Valenzula channel model [SV87]. Then, our proposed channel estimation approaches
are presented in Section 4.3, where we first explain the proposed TRICE method and then the improved
TenRICE method. In Section 4.4, we propose our FroMax beamforming algorithm. In Section 4.5, we
discuss the performance of our proposed algorithms in terms of identifiability conditions and compu-
tational complexity. The numerical results are provided in Section 4.6 to evaluate the performance of
the proposed algorithms. Finally, we provide the conclusion in Section 4.7.

4.2. System Configuration

4.2.1. System Model

We consider a single-user mmWave MIMO communication system as depicted in Fig. 4.1, where a
transmitter with MT antennas is communicating with a receiver with MR antennas via an RIS-aided
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MIMO channel. It is assumed that the direct channel between the transmitter and the receiver is poor
or unavailable due to blockage.

The RIS is composed of MS inexpensive reflecting elements arranged uniformly with an inter-
element spacing of a half-wavelength on a rectangular surface with Mv

S vertical and Mh
S horizontal

elements such that MS = Mv
S ·Mh

S .

Figure 4.1: An RIS-aided mmWave MIMO communication system.

LetHT ∈ CMS×MT be the transmitter-to-RIS channel andHR ∈ CMR×MS be the RIS-to-receiver chan-
nel with E{∥HT∥2

F} = MSMT and E{∥HR∥2
F} = MSMR, as illustrated in Fig. 4.2. We assume a block-

fading channel scenario, whereHT andHR remain constant during every channel coherence block and
change from block to block. We assume that every block is divided into two sub-blocks, i.e., one for
channel estimation and another for data transmission, see Fig. 4.2.

Figure 4.2: One channel coherence block.
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Channel Estimation Phase:

As shown in Fig. 4.2, we conduct a channel training procedure at the beginning of each block, which
comprises TCE frames divided into TT · TS sub-frames, i.e., TCE = TT · TS, where TT denotes the number
of training beams at the transmitter and TS represents the number of training beams at the RIS. The
received signal at the receiver in the (s, t)th sub-frame is given as

ys,t = W HHRdiag{ϕs}HTf̃tst +W Hns,t ∈ CNR , (4.1)

where W ∈ CMR×NR is a fixed training decoding matrix with NR beams, f̃t ∈ CMT is the tth training
vector of the transmitter with ∥f̃t∥2

2 = 1, t ∈ {1, · · · , TT}, ϕs ∈ CMS is the sth training vector of the RIS
with |[ϕs][i]| = 1√

MS
,∀i, s ∈ {1, · · · , TS}, st ∈ C is the pilot symbol, and ns,t ∈ CMR is the AWGN vector

having zero-mean circularly symmetric complex-valued entries with variance σ2
n. Note that a single

training vector in each sub-frame means that for the transmitter with a HAD beamforming architecture,
a single RF chain can be used during the channel training to reduce the energy consumption.

By stacking the measurement vectors {ys,t}TT
t=1 next to each other as

Ys = [ys,1, · · · ,ys,TT ] ∈ CNR×TT . (4.2)

Applying (1.20), we vectorize Ys as

ys = (F THT
T ⋄W HHR)ϕs + ns ∈ CNRTT , (4.3)

where ns = [(W Hns,1)T, · · · , (W Hns,TT)T]T and F = [f̃1s1, · · · , f̃TTsTT ] ∈ CMT×TT . Then, we write the
measurement matrix Y ∈ CNRTT×TS by stacking {ys}TS

s=1 next to each other and applying (1.11) as

Y = [y1, · · · ,yTS ] (4.4)

which can be written as

Y = (F THT
T ⋄W HHR)Φ +N

= (F T ⊗W H)(HT
T ⋄HR)Φ +N

= (F T ⊗W H)HcΦ +N , (4.5)

where
Hc = HT

T ⋄HR ∈ CMTMR×MS (4.6)

denotes the cascaded channel matrix, Φ = [ϕ1, · · · ,ϕTS ] ∈ CMS×TS holds the TS phase shift vectors of
the RIS, andN = [n1, · · · ,nTS ].

Data Transmission Phase:

Given the estimated channels HT and HR, the transmitter first designs the precoding matrix P ∈
CMT×Ns , the RIS reflection vectorω ∈ CMS with |[ω][i]| = 1√

MS
,∀i, and the decoding matrixQ ∈ CMR×Ns

to transmit the data vector s ∈ CNs of Ns data symbols with E{ssH} = INs
to the receiver. Therefore,
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the received signal vector at the receiver is given as

ŝ = QHHRdiag{ω}HTPs+QHn ∈ CNs , (4.7)

where n ∈ CMR denotes the AWGN with E{nnH} = σ2
nIMR . The system SE can be expressed as

SE = log2 |INs +R−1QHHRdiag{ω}HTPP
HHH

T diag{ω∗}HH
RQ|, (4.8)

where
R = σ2

nQ
HQ ∈ CNs×Ns (4.9)

is the noise covariance matrix. The objective is to design the beamforming matrices P and Q and the
RIS reflection vector ω such that it maximizes the achievable SE of the system, which can be expressed
as

max
P ,Q,ω

log2 |INs
+R−1QHHRdiag{ω}HTPP

HHH
T diag{ω∗}HH

RQ|

s.t. ∥P ∥2
F ≤ Pmax and |[ω][i]| =

1√
MS

,∀i, (4.10)

where Pmax is the transmit power at the transmitter.

4.2.2. Channel Model

Here, we consider mmWave MIMO wireless communication systems [SV87]. We assume that the trans-
mitter and the receiver employ uniform linear arrays (ULAs)1. It is assumed that there are LT and LR

paths for HT and HR, respectively. In the mmWave bands, it has been observed that the number of
paths is much smaller compared to the number of antennas, i.e., rank{HT} ≤ LT and rank{HR} ≤ LR.
Similarly to [Wan+20],HT andHR are modeled according to the Saleh-Valenzuela model [SV87] as

HT =
LT∑
l=1

gT,l ν2D(µv
T,l, µ

h
T,l) ν1D(ψT,l)T (4.11)

HR =
LR∑
l=1

gR,l ν1D(ψR,l) ν2D(µv
R,l, µ

h
R,l)T, (4.12)

where gX,l ∼ CN (0, 1), X ∈ {T,R}, denotes the lth path gain, ψT,l ∈ [0, 2π] is the lth DoD spatial
frequency at the transmitter, ψR,l ∈ [0, 2π] is the lth DoA spatial frequency at the receiver, µh

T,l ∈ [0, 2π]
and µv

T,l ∈ [0, π] are the lth horizontal and vertical DoD spatial frequencies and µh
R,l ∈ [0, 2π] and

µv
R,l ∈ [0, π] are the lth horizontal and vertical DoA spatial frequencies at the RIS. Let ∆ denote the

antenna spacing and λ be the signal wavelength. Then, the spatial frequencies are defined as

ψX,l =2π∆
λ

cos(θX,l) (4.13)

µv
X,l =2π ∆

λ
cos(θh

X,l)sin(θv
X,l) (4.14)

1The extension of the proposed channel estimation frameworks to scenarios where the transmitter and/or the receiver are
equipped with uniform rectangular arrays (URAs) is straightforward.
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Figure 4.3: Definition of azimuth (θh
T,l) and co-elevation (θv

T,l) angles of an impinging planar wavefront
on an RIS with URA structure.

µh
X,l =2π ∆

λ
sin(θh

X,l) sin(θv
X,l) (4.15)

where θX,l ∈ [−180◦, 180◦] is the lth path angle in the angular domain, while θh
X,l ∈ [−180◦, 180◦] and

θv
X,l ∈ [−90◦, 90◦] are the lth path azimuth and elevation angle at the RIS in the angular domain, respec-

tively, with X ∈ {T,R} as illustrated in 4.3. The 2D array steering vector ν2D(µv
X,l, µ

h
X,l) can be expressed

as a function of the 1D array steering vectors, ν1D(µv
X,l) and ν1D(µh

X,l), as

ν2D(µv
X,l, µ

h
X,l) = ν1D(µv

X,l) ⋄ ν1D(µh
X,l). (4.16)

with X ∈ {T,R}. For a given spatial frequency α, the steering vector ν1D(α) is given as

ν1D(α) = [1, ejα, · · · , ej(M−1)α]T ∈ CM . (4.17)

Then, the channel matricesHT andHR in (4.11) and (4.12) can be written in a compact form as

HT =BTGTA
T
T = (Bv

T ⋄Bh
T)GTA

T
T (4.18)

HR =ARGRB
T
R = ARGR(Bv

R ⋄Bh
R)T, (4.19)

where AX and By
X denote the transmit/receive array steering matrices and GX contains the path gains,
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which are given as

AX = [ν1D(ψX,1), · · · ,ν1D(ψX,LX)] ∈ CMX×LX (4.20)

B
y
X = [ν1D(µy

X,1), · · · ,ν1D(µy
X,LX

)] ∈ CM
y
S ×LX (4.21)

GX = diag{gX,1, · · · , gX,LX}, (4.22)

for X ∈ {T,R} and y ∈ {v,h}.

4.3. Algorithms for Channel Estimation Phase

4.3.1. Baseline Channel Estimation Algorithm

One direct solution is to use the LS-based method. By applying (1.18), the vectorized form of (4.5) can
be written as

y = vec{Y } = Υhc + n, (4.23)

where Υ = ΦT⊗F T⊗W H ∈ CTSTTNR×MSMTMR , hc = vec{Hc} ∈ CMTMRMS , andn = vec{N}. Therefore,
an estimate to the channel vector hc can be obtained as

ĥc, LS = Υ+y. (4.24)

In spite of the simplicity of the LS scheme, accurate channel estimation can only be achieved if
TCE = TTTS ≥ MTMRMS

NR
. In massive MIMO systems, the LS-based scheme becomes impractical since

it requires a large number of training sub-frames TCE and a long channel coherence time. In the LS
estimation the composite channel matrix is explicitly estimated, i.e., each entry of Hc instead of only a
few model parameters according to (4.5). Therefore, we propose two channel estimation methods that
exploit the channel structures and directly estimate the channel matricesHT andHR.

4.3.2. Proposed TRICE Algorithm

We are interested in estimating the channel matrices HT and HR by exploiting their structures. From
(4.18) and (4.19), the cascaded channel matrixHc can be written as

Hc = (ATGTB
T
T ⋄ARGRB

T
R ) (a)= (AT ⊗AR)GB, (4.25)

where G = (GT ⊗GR) ∈ CL×L, B = (BT
T ⋄BT

R ) ∈ CL×MS , L = LTLR, and
(a)= is obtained from (1.11).

Inserting (4.25) into (4.5) yields

Y =(F T ⊗W H)(AT ⊗AR)GBΦ +N
(b)=(F TAT ⊗W HAR)GBΦ +N , (4.26)

where (b) is obtained from (1.10). Defining A = (F TAT ⊗W HAR) ∈ CTTNR×LTLR and X = GBΦ ∈
CLTLR×TS , the measurement matrix Y can be expressed as

Y = AX +N ∈ CNRTT×TS . (4.27)
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Observing (4.27), we can see that A is completely characterized by the frequency vectors at the trans-
mitter and receiver defined as

ψT =[ψT,1, · · · , ψT,LT ]T, (4.28)

ψR =[ψR,1, · · · , ψR,LR ]T. (4.29)

Therefore, estimating ψT and ψR from (4.27) is, in fact, a 2D DoA estimation problem, where several
methods exist in the literature, such as in [ZH17a; ZH17b; SPP18; AAH19a; MRM16; Cao+18], among
many others. For instance, the DFT-beamspace ESPRIT methods of [ZH17a; ZH17b; ZRH21] can be
readily applied to estimate ψT and ψR in a closed-form with guaranteed automatic pairing [HN98].
While subspace-based methods preform asymptotically optimal, they suffer from a performance degra-
dation in the case of difficult scenarios, such as high noise power and small number of measurement
vectors. Alternatively, CS techniques [SPP18; AAH19a; MRM16; Cao+18] have been shown to provide
an attractive alternative to subspace-based methods, yielding a good estimation performance even in
difficult scenarios. To show this, we note that (4.27) can be written in a sparse form as

Y ≈ (F TĀT ⊗W HĀR)X̄ +N ∈ CNRTT×TS , (4.30)

where ĀT ∈ CMT×L̄T and ĀR ∈ CMR×L̄R represent two dictionary matrices, in which L̄T ≫ LT and
L̄R ≫ LR define the number of grid points or, in other words, the grid resolution, while X̄ ∈ CL̄TL̄R×TS

is an L row-sparse matrix [SPP18]. Here, (4.30) can be written with equality if, and only if, the true
angles ψT and ψR fall perfectly on the grid points. In this latter case, the lth non-zero row of X̄ is equal
to the lth row of X . Note that (4.30) corresponds to a sparse recovery problem. Therefore, known CS
techniques, e.g., [SPP18; AAH19a; MRM16; Cao+18], including the OMP method [SC12] can readily be
applied to estimate X̄ , as well as, ψT and ψR, with automatic pairing.2

To proceed, let ψ̂T and ψ̂R denote the estimated frequency vectors of ψT and ψR. Then, we construct
ÂT, ÂR, and Â = (F TÂT ⊗W HÂR). Therefore, to estimate Hc in (4.25), an estimate of G and B is
required. Let us assume that ψT and ψR are estimated perfectly and that the rank{Â} ≥ L. Then,
multiplying (4.27) by Â+ from the left-hand-side we get

Ỹ = Â+Y = GBΦ + Ñ ∈ CL×TS , (4.31)

where Ñ = Â+N ∈ CL×TS is the filtered noise. Since G = GT, due to its diagonal structure, we can
write Ỹ T as

Ỹ T = ΦTBTG+ ÑT ∈ CTS×L. (4.32)

Note that,BT ∈ CMS×L can be written as

BT =[(bT
T,1 ⋄ bT

R,1)T, · · · , (bT
T,1 ⋄ bT

R,LR
)T, · · · , (bT

T,LT
⋄ bT

R,LR
)T]

=[(bT,1 ⊙ bR,1), · · · , (bT,1 ⊙ bR,LR), · · · , (bT,LT ⊙ bR,LR)], (4.33)

where bT,l = ν1D(µv
T,l)⋄ν1D(µh

T,l) and bR,l′ = ν1D(µv
R,l′)⋄ν1D(µh

R,l′) are the lth and the l′th column vectors

2Note that the recoverability guarantee of X̄ in (4.30) can be improved by designing the sensing matrix Ā = (FTĀT⊗WHĀR),
as in [Ard+20b; APH19], which is out of the scope of this thesis.
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ofBT andBR, respectively, l ∈ {1, · · · , LT}, l′ ∈ {1, · · · , LR}, i.e.,

bT,l =


1 · ν1D(µh

T,l)
ejµ

v
T,l · ν1D(µh

T,l)
...

ej(M
v
S −1)µv

T,l · ν1D(µh
T,l)

∈ CMS , (4.34)

bR,l′ =


1 · ν1D(µh

R,l′)
ejµ

v
R,l′ · ν1D(µh

R,l′)
...

ej(M
v
S −1)µv

R,l′ · ν1D(µh
R,l′)

∈ CMS . (4.35)

Therefore, the cth column ofBT, i.e., bc = (bT,l ⊙ bR,l′) has a Khatri-Rao structure given as

bc =


1 · ν1D(µh

T,l + µh
R,l′)

ej(µ
v
T,l+µv

R,l′ ) · ν1D(µh
T,l + µh

R,l′)
...

ej(M
v
S −1)(µv

T,l+µv
R,l′ ) · ν1D(µh

T,l + µh
R,l′)

 , (4.36)

where c = (l − 1) · LR + l′ ∈ {1, · · · , L}. Let µv
c = µv

T,l + µv
R,l′ and µh

c = µh
T,l + µh

R,l′ . Then, we have

bc = ν1D(µv
c) ⋄ ν1D(µh

c) ∈ CMS , (4.37)

where ν1D(µv
c) ∈ CMv

S and ν1D(µh
c) ∈ CMh

S . Accordingly,BT = (Bv ⋄Bh), in which

Bv = [ν1D(µv
1), · · · ,ν1D(µv

L)], (4.38)

Bh = [ν1D(µh
1), · · · ,ν1D(µh

L)]. (4.39)

Assuming a Kronecker structure of the RIS, the reflection coefficients matrix Φ can be expressed as

Φ = Φv ⊗Φh ∈ CMS×TS , (4.40)

where Φv ∈ CMv
S ×T v

S and Φh ∈ CMh
S ×T h

S , and TS = T v
S · T h

S . We rewrite (4.32) as

Ỹ T (c)= (ΦT
vB

v ⋄ΦT
hB

h)G+ ÑT ∈ CTS×L, (4.41)

where
(c)= is obtained by utilizing the structure of Φ in (4.40) and (1.11). Let µv and µh be the frequency

vectors, which are given as
µv = [µv

1, · · · , µv
L] (4.42)

and
µh = [µh

1, · · · , µh
L]. (4.43)

Similarly to (4.30), the first term on the right-hand-side of (4.41) is completely characterized by µv
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Algorithm 4.4 Two-Stage RIS-Aided MIMO Channel Estimation (TRICE)

Input: Measurement matrix Y in (4.30)
1: Stage 1: Get ψ̂T, ψ̂R using, e.g., OMP or method in [ZH17a]
2: Stage 2: Assuming knowledge of ψ̂T and ψ̂R do
3: Get Ỹ T = [ỹ1, · · · , ỹL] ∈ CMS×L from (4.31)
4: for c = 1 to L do
5: Get µ̂h

c and µ̂v
c using, e.g., OMP or method in [ZH17a]

6: Get cth diagonal entry of Ĝ, i.e., ĝc using (4.45)
7: end for
8: Construct Ĥ = (ÂT ⊗ ÂR)ĜB̂ (according to (4.25))
9: Estimate ĤT, and ĤR from Ĥ using [AA20]

and µh. Therefore, µv and µh can be estimated using the same methods discussed above. However, it
should be noted that the joint estimation ofµv andµh does not guarantee the automatic pairing with the
pre-estimated frequency vectors ψT and ψR. To overcome this issue, we utilize the diagonal structure
of the G matrix in (4.41) and propose to estimate µv and µh sequentially, where the cth entries µv

c and
µh
c can be jointly estimated from the cth column vector of Ỹ T in (4.41), i.e., ỹc that is given as

ỹc = (ΦT
v ν1D(µv

c) ⋄ΦT
h ν1D(µh

c))gc + ñc ∈ CTS , (4.44)

where gc is the cth diagonal entry of G and ñc is the cth column vector of ÑT. Note that, due to the
Kronecker structure of Φ in (4.40), it is possible to apply the DFT-beamspace ESPRIT method of [ZH17b]
on (4.44) to obtain a closed-form estimates of µv

c and µv
c . Next, for given µ̂v

c and µ̂v
c , the cth path gain gc

can be estimated from (4.44) using LS as

ĝc = (ΦT
v ν1D(µ̂v

c) ⋄ΦT
h ν1D(µ̂h

c))+ỹc. (4.45)

Finally, the B matrix in (4.25) can be reconstructed as B̂ = (B̂v ⋄ B̂h)T ∈ CL×MS . In summary, the
proposed TRICE framework is given by Algorithm 4.4, where in Step 9, an estimate of HT and HR,
up to trivial scaling factors, can be obtained from Hc using the LS Khatri-Rao Factorization (LSKRF)
algorithm proposed in [RH10]. Please note that Algorithm 4.4 is very general in the sense that any
other efficient 2D parameter estimation method can be readily used in Step 1 and 5, e.g., the methods
proposed in [SPP18; AAH19a; MRM16; Cao+18].

4.3.3. Proposed TenRICE Algorithm

In Subsection 4.3.2, by exploiting the low-rank nature of the mmWave channels, we have proposed
the TRICE framework, which formulates the channel estimation in RIS-aided mmWave MIMO systems
as a two-stage multi-dimensional sparse-recovery problem. Here, we extend our TRICE framework
and propose a CP Tensor decomposition method for RIS-aided channel estimation in mmWave MIMO
systems, termed TenRICE, by jointly exploiting the tensor structure of received signals and the low-
rank nature of mmWave channels. To this end, we rewrite the measurement matrix Y given in (4.26) by

72



4. Single-RIS-Aided Systems

considering the Khatri-Rao structure ofB as

Y = (F TAT ⊗W HAR)G(Bv ⋄Bh)TΦ +N . (4.46)

The vectorized form of Y , i.e., y = vec{Y } ∈ CNRTTTS , can be written as

y
(d)= vec{(F TATΩT ⋄W HARΩR)G(Bv ⋄Bh)TΦ}+ n
(e)= (ΦT

vB
v ⋄ΦT

hB
h ⋄ F TATΩT ⋄W HARΩR)g + n, (4.47)

where n = vec{N}, g = undiag{G}, and Φv and Φh are given in (4.40). Moreover,
(d)= is obtained by

using (1.26) to enable writing the received signal utilizing the CPD model, where ΩT
def= ILT ⊗ 1T

LR
and

ΩR
def= 1T

LT
⊗ ILR , and

(e)= is obtained by applying (1.18). From (4.47), we observe that y is the vectorized
form of the transposed 4-mode unfolding of a 4-way tensor Y ∈ CNR×TT×T h

S ×T v
S , i.e., y = vec{[Y ]T(4)}3

that admits a constrained CP decomposition as [FA14; AFM08]

Y = I4,L ×1 ARΩR ×2 ATΩT ×3 B
h ×4 B

v + N , (4.50)

where N is the noise tensor, I4,L ∈ ZL×L×L×L is a super-diagonal tensor with ones on the super-
diagonal, and

AR = W HAR = W H[ν1D(ψR,1), · · · ,ν1D(ψR,LR)] ∈ CNR×L, (4.51)

AT = F TAT = F T[ν1D(ψT,1), · · · ,ν1D(ψT,LT)] ∈ CTT×L, (4.52)

Bh = ΦT
hB

h = ΦT
h [ν1D(µh

1), · · · ,ν1D(µh
L)] ∈ CT

h
S ×L, (4.53)

Bv = ΦT
vB

vG = ΦT
v [ν1D(µv

1), · · · ,ν1D(µv
L)]G ∈ CT

v
S ×L. (4.54)

The n-mode unfolding of the tensor Y , for n ∈ {1, 2, 3, 4} can be expressed as

[Y ](1) =ARΩR(Bv ⋄Bh ⋄ATΩT)T + [N ](1) ∈ CNR×TTT
h
S T

v
S , (4.55)

[Y ](2) =ATΩT(Bv ⋄Bh ⋄ARΩR)T + [N ](2) ∈ CTT×NRT
h
S T

v
S , (4.56)

[Y ](3) =Bh(Bv ⋄ATΩT ⋄ARΩR)T + [N ](3) ∈ CT
h
S ×NRTTT

v
S , (4.57)

[Y ](4) =Bv(Bh ⋄ATΩT ⋄ARΩR)T + [N ](4) ∈ CT
v
S ×NRTTT

h
S . (4.58)

Given Y , the channel estimation boils down to first estimating the tensor factor matrices. Several
techniques have been proposed to achieve this end, e.g., in [RSH12; De 06; AAH19b]. One of these
techniques is ALS [CLA09], which alternatively minimizes the data fitting error with respect to one of
the factor matrices, with the other three being fixed. For example, to estimate AR, assuming that AT,

3We substituteBv = ΦT
vB

vG in (4.58) and its transpose can be written as

[Y]T(4) = (Bh ⋄ATΩT ⋄ARΩR)G(ΦT
vB

v)T + [N ]T(4), (4.48)

whereGT = G sinceG is a diagonal matrix. Using (1.20), we can vectorize (4.48) as

vec{[Y]T(4)} = (ΦT
vB

v ⋄Bh ⋄ATΩT ⋄ARΩR)g + vec{[N ]T(4)}. (4.49)
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Bh, andBv are fixed, the problem can be formulated as

AR = argmin
AR

∥[Y ](1) −ARΩR(Bv ⋄Bh ⋄ATΩT)T∥2
F, (4.59)

which is a convex problem and can be solved using the LS method. Similarly, we can formulate the
problem to estimate the other three matrices as

AT = argmin
AT

∥[Y ](2) −ATΩT(Bv ⋄Bh ⋄ARΩR)T∥2
F, (4.60)

Bh = argmin
Bh

∥[Y ](3) −Bh(Bv ⋄ATΩT ⋄ARΩR)T∥2
F, (4.61)

Bv = argmin
Bv

∥[Y ](4) −Bv(Bh ⋄ATΩT ⋄ARΩR)T∥2
F, (4.62)

the solutions of (4.59), (4.60), (4.61), and (4.62) are given, respectively, as

ÂR = [Y ](1)

[
ΩR(Bv ⋄Bh ⋄ATΩT)T

]+
, (4.63)

ÂT = [Y ](2)

[
ΩT(Bv ⋄Bh ⋄ARΩR)T

]+
, (4.64)

B̂
h = [Y ](3)

[
(Bv ⋄ATΩT ⋄ARΩR)T

]+
, (4.65)

B̂
v = [Y ](4)

[
(Bh ⋄ATΩT ⋄ARΩR)T

]+
. (4.66)

The estimation of these factor matrices using the ALS method is summarized in Algorithm 4.5 (from
Step 5 to Step 8), which is guaranteed to converge monotonically to a local optimum point [CLA09].

Let ÂR, ÂT, B̂
h
, and B̂

v
denote the estimated factor matrices at the convergence of the iterative

steps of Algorithm 4.5. Then, the parameters associated with each factor matrix can be recovered, e.g.,
via a simple correlation-based scheme, which can be optimized to solve the following problems

ψ̂R,c = argmax
ψR,c∈[0,2π]

|âH
R,cW

Hν1D(ψR,c)|
∥âR,c∥∥W Hν1D(ψR,c)∥

, (4.67)

ψ̂T,c = argmax
ψT,c∈[0,2π]

|âH
T,cF

Tν1D(ψT,c)|
∥âT,c∥∥F Tν1D(ψT,c)∥

, (4.68)

µ̂h
c = argmax

µh
c∈[0,2π]

|(b̂h
c)HΦT

hν1D(µh
c)|

∥b̂h
c∥∥ΦT

hν1D(µh)∥
, (4.69)

µ̂v
c = argmax

µv
c∈[0,π]

|(b̂v
c)HΦT

vν1D(µv
c)|

∥b̂v
c∥∥ΦT

vν1D(µv
c)∥

, (4.70)

where the cth entry of ψX and µy, i.e., ψX,c and µ
y
c , are associated with the cth column vector of ÂX

and B̂
y
, i.e., âX,c and b̂

y
c , respectively, with X ∈ {R,T} and y ∈ {h,v}. The optimal solutions to (4.67),

(4.68), (4.69), and (4.70) can be efficiently implemented using exhaustive search by first employing a
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coarse grid and then gradually refining it around the possible grid points. Alternatively, (4.67), (4.68),
(4.69), and (4.70) can be interpreted as off-grid sparse recovery problems, where efficient methods like,
Newtonized OMP (NOMP) [MRM16] and Gradient OMP [AH21] can be readily applied to recover ψ̂R,c,
ψ̂T,c, µ̂h

c , and µ̂v
c with high accuracy and low complexity.

Algorithm 4.5 Tensor-based RIS-aided CE (TenRICE)

1: Input: Measurement tensor Y ∈ CNR×TT×T h
S ×T v

S , training matricesW ,F ,Φh, and Φv, and Imax
2: Output: Estimated channels ĤT and ĤR

3: Initialization: (B̂v)(0), (B̂h)(0), and Â
(0)
T , e.g., randomly

4: while not converged or i < Imax do

5: Â
(i)
R = [Y ](1)[ΩR((B̂v)(i−1) ⋄ (B̂h)(i−1) ⋄ Â(i−1)

T ΩT)T]+

6: Â
(i)
T = [Y ](2)[ΩT((B̂v)(i−1) ⋄ (B̂h)(i−1) ⋄ Â(i)

R ΩR)T]+

7: (B̂h)(i) = [Y ](3)[((B̂
v)(i−1) ⋄ Â(i)

T ΩT ⋄ Â
(i)
R ΩR)T]+

8: (B̂v)(i) = [Y ](4)[((B̂
h)(i) ⋄ Â(i)

T ΩT ⋄ Â
(i)
R ΩR)T]+

9: end while
10: Recover ψ̂R, ψ̂T, µ̂h, µ̂v using (4.67), (4.68), (4.69), and (4.70) or NOMP [MRM16]

11: Compute ĝ =
[
ΦT

v B̂
v ⋄ΦT

h B̂
h ⋄ F TÂTΩT ⋄W HÂRΩR

]+
y

12: Reconstruct Ĥc = (ÂR ⊗ ÂT)diag{ĝ}(B̂v ⋄ B̂h)T

13: Estimate ĤT and ĤR from Ĥ using [AA20]

Next, using the estimated vectors ψ̂R, ψ̂T, µ̂h, and µ̂v, given in (4.29), (4.28), (4.43), and (4.43), respec-
tively, in Step 10, we reconstruct ÂR, ÂT, B̂

h
, and B̂

v
. Then, the path gain vector g can be estimated

from (4.47) (or [Y ]T(4)) using a LS method as shown by Step 11. Finally, the cascaded channel matrix
Ĥc in (4.6) can be reconstructed as in Step 12, which can be used to estimate ĤT and ĤR, up to trivial
scaling factors, using the LSKRF method [AA20].

4.4. Algorithms for Data Transmission Phase

Here, we assume that the channel matrices HT and HR are known and we design the transmit and
the receive beamforming matrices as well as the RIS reflection vector. Note that (4.10) is non-convex,
since the objective function is non-concave overω and the constant modulus constraints are non-convex
functions. Moreover, P ,Q, and ω are coupled together, which makes (4.10) a difficult problem to solve.
In the following, we propose a non-iterative solution to (4.10), which has a comparable performance to
that of [ZZ20a], but with a much lower complexity.

4.4.1. Beamforming Design

Given the estimated channels ĤT and ĤR, we define the effective channel matrix as

Ĥe = ĤRdiag{ω}ĤT ∈ CMR×MT . (4.71)
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Then, we can rewrite (4.10) as

max
P ,Q

log2 |INs
+R−1QHĤePP

HĤH
e Q|

s.t. ∥P ∥2
F ≤ Pmax, (4.72)

where R is the noise covariance matrix and given in (4.9). Initially, it is not hard to see that for any
given ω, (4.72) reduces to a single-user multi-stream MIMO communication system. The SVD4 of the
effective channelHe is given by

Ĥe = UĤe
ΣĤe

V H
Ĥe
. (4.73)

Then, the optimal fully digital5 solutions to P andQ, for fixed ω, are given as

P = Vsdiag{√p1, · · · ,
√
pNs} and Q = Us, (4.74)

where Us = [UĤe
][:,1:Ns] ∈ CMR×Ns , Vs = [VĤe

][:,1:Ns] ∈ CMT×Ns , and {pi}Ns
i=1 are the power allocations

found using the water-filling method [PF05] such that
Ns∑
i=1

pi = Pmax. Let

Σs = UH
s ĤRdiag{ω}ĤTVs

=


[Us]H[:,1]ĤRdiag{ω}ĤT[Vs][:,1] . . . [Us]H[:,1]ĤRdiag{ω}ĤT[Vs][:,Ns]

... . . .
...

[Us]H[:,Ns]ĤRdiag{ω}ĤT[Vs][:,1] . . . [Us]H[:,Ns]ĤRdiag{ω}ĤT[Vs][:,Ns]


(f)=


[Us]H[:,1]ĤRdiag{ω}ĤT[Vs][:,1] . . . 0

... . . .
...

0 . . . [Us]H[:,Ns]ĤRdiag{ω}ĤT[Vs][:,Ns]


(g)=


(
[Vs]T[:,1]Ĥ

T
T ⋄ [Us]H[:,1]ĤR

)
ω . . . 0

... . . .
...

0 . . .
(
[Vs]T[:,Ns]Ĥ

T
T ⋄ [Us]H[:,Ns]ĤR

)
ω


= diag{α1, · · · , αNs

} ∈ CNs×Ns , (4.75)

where αi = [Us]H[:,i]ĤRdiag{ω}ĤT[Vs][:,i] =
(
[Vs]T[:,i]ĤT

T ⋄ [Us]H[:,i]ĤR
)
ω. Note that, the third equality,

i.e,
(f)= is obtained from (4.71) and (4.73) since [Us]H[:,i]ĤRdiag{ω}ĤT[Vs][:,j] = 0,∀i ̸= j, while the forth

equality, i.e.,
(g)= is obtained using property (1.20). Note that Σs contains the dominant singular values

of Ĥe, i.e., Σs = [ΣĤe
][1:Ns,1:Ns]. Consequently, the SE expression in (4.72) simplifies to

SE = log2 |INs
+ 1
σ2
n

QHĤePP
HĤH

e Q|

= log2 |INs + 1
σ2
n

UH
s ĤeVsdiag{p1, · · · , pNs}V H

s Ĥ
H
e Us|

4Throughout this thesis, we assume that the singular values of a given diagonal matrix are arranged in a decreasing order.
5Although the HAD beamforming architecture is generally assumed for mmWave-based wireless communication systems

[GAH20; Ard+20a; Ard+18], we assume fully digital beamforming architectures here at the transmitter and the receiver, to sim-
plify the exposition.
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= log2 |INs + 1
σ2
n

Σsdiag{p1, · · · , pNs}Σs|

=
Ns∑
i=1

log2(1 + 1
σ2
n

α2
i pi), (4.76)

where αi is the ith dominant singular value in ΣĤe
.

4.4.2. Reflection Matrix Design

In the following, we turn our attention to the RIS reflection design and propose two non-iterative solu-
tions for ω based on a Frobenius-Norm Maximization (FroMax) design strategy.

4.4.2.1 FroMax-1

As a baseline method, we consider the Frobenius norm of the channel, which is motivated by the fact
that the maximization Frobenius norm of the channel in a point-to-point MIMO system yields the SNR-
optimal strategy dominant eigenmode transmission (DET), as shown in [PNG08]. Therefore, the RIS
reflection vector is found as a solution to

ω = argmax
ω

∥ĤRdiag{ω}ĤT∥2
F = argmax

ω

∥Kω∥2
2

s.t. |[ω][i]| =
1√
MS

,∀i, (4.77)

where K def= ĤT
T ⋄ ĤR∈ CMTMR×MS obtained by applying (1.18). Note that (4.77) is non-convex due

to the constant modulus constraints. Therefore, we first seek a solution to the following relaxed and
convex version of (4.77) given as

ω̊ = argmax
ω̊

∥Kω̊∥2
2, s.t. ∥ω̊∥2 = 1. (4.78)

The SVD ofK is given as
K = UKΣKV

H
K . (4.79)

Then, the optimal solution to (4.78) is given as

ω̊ = [VK ][:,1] (4.80)

To satisfy the constant modulus constraints of (4.77), we use a simple projection function, where the
ith entry of ω is given as

[ωFroMax-1][i] = 1√
MS
·
(
[ω̊][i]/|[ω̊][i]|

)
,∀i. (4.81)

4.4.2.2 FroMax-2

Norm maximization, used as the objective function for FroMax-1 in (4.77), is designed to the concentrate
energy mainly on the dominant eigenmode of the effective channel matrix Ĥe, resulting in a rank-one
matrix Ĥe in most cases. This makes FroMax-1 undesirable in multi-stream scenarios, where the goal is
to transmit as many data streams as possible to get a larger SE. To this end, we turn our attention back
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4.4. Algorithms for Data Transmission Phase

to (4.76). From (4.76), we can clearly see that ω should be designed so that the singular values αi are
maximized. Thus, we propose to modify (4.77) and find ω as a solution to

ω = argmax
ω

∥diag{Σs}∥2
2 = argmax

ω

∥Dω∥2
2

s.t. |[ω][i]| =
1√
MS

,∀i, (4.82)

where Σs is given in (4.75) andD is a matrix defined as

D
def=


[Vs]T[:,1]Ĥ

T
T ⋄ [Us]H[:,1]ĤR

...

[Vs]T[:,Ns]Ĥ
T
T ⋄ [Us]H[:,Ns]ĤR

 ∈ CNs×MS , (4.83)

which is obtained from the forth equality, i.e.,
(g)= of (4.75). Similarly to (4.78), (4.83) can be relaxed to a

convex form as
ω̄ = argmax

ω̄

∥Dω̄∥2
2, s.t. ∥ω̄∥2 = 1. (4.84)

Let us define the SVD ofD as
D = UDΣDV

H
D . (4.85)

Similarly to FroMax-1, the optimal solution to (4.84) can be obtained from the right singular vector
that corresponds to the dominant singular value of D. However, to overcome the limitation of such
a solution, which concentrates the energy mainly on the dominant eigenmode of D, we propose in
the following a heuristic solution to (4.84) by taking the contributions of the Ns right singular vectors
corresponding to the dominant Ns singular values ofD as

ω̄ =
[VD][:,1] + · · ·+ [VD][:,Ns]

∥[VD][:,1] + · · ·+ [VD][:,Ns]∥2
. (4.86)

Using ω̄, the RIS reflection vector ω is obtained as

[ωFroMax-2][i] = 1√
MS
·
(
[ω̄][i]/|[ω̄][i]|

)
,∀i. (4.87)

Both proposed algorithms, FroMax-1 and FroMax-2, are summarized in Algorithm 4.6.
Remark 1: From (4.83), it is clear that the unitary matrices Us and Vs are required to construct

D. However, since Us and Vs are coupled with ω, an iterative two-step algorithm will be required,
where we update Us and Vs in one step and ω in the other step. However, we found that if Us and
Vs are appropriately initialized, then one iteration of such an algorithm is sufficient to have a near SE
performance to that obtained by the iterative method of [ZZ20a]. Here, we propose to initialize Us and
Vs as follows. Let ĤR = UĤR

ΣĤR
V H

ĤR
and ĤT = UĤT

ΣĤT
V H

ĤT
be the SVD of ĤR and ĤT, respectively.

Then, we assume that Us and Vs in (4.83) are given as Us = [UĤR
][:,1:Ns] and Vs = [VĤT

][:,1:Ns].
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4. Single-RIS-Aided Systems

Algorithm 4.6 FroMax-based methods for RIS reflection design.

1: Input: HT,HR, and Pmax
2: if FroMax-1 based method then
3: ConstructK as in (4.77) and get ω̊ from VK

4: Obtain ω⋆ ← ωFroMax-1 using (4.81)
5: else if FroMax-2 based method then
6: Initialize Us and Vs as Us = [UHR ][:,1:Ns] and Vs = [VHT ][:,1:Ns]
7: ConstructD as in (4.83) and get ω̄ from VD

8: Obtain ω⋆ ← ωFroMax-2 using (4.86)
9: end if

10: For given ω⋆, obtainQ and P as in (4.74)

4.5. Discussion

4.5.1. Uniqueness and Identifiability Conditions

Here, we discuss the range of parameter settings required to ensure the uniqueness and identifiability of
the algorithms. In Subsection 4.3.1, the LS-based algorithm is considered where TCE = TTTS ≥ MTMRMS

NR
.

The required training overhead for TRICE varies depending on the 2D parameter estimation method
used. If TRICE is used in conjunction with ESPRIT, which we call TRICE-ESP, it requires TS ≥ L ≥
4, NR ≥ LR + 1, TT ≥ LT + 1, (TT − 1)NR ≥ L, (NR − 1)TT ≥ L, while the training overhead for TRICE
is used in conjunction with CS, which we call TRICE-CS, by taking into account the low-rank nature
of mmWave channels requires NRTT ≈ O

(
Llog(L̄RL̄T/L)

)
≪ MRMT, TS ≈ O

(
log(L̄v

SL̄
h
S)
)

[Reb+16].
Moreover, we compare our proposed TRICE method in [Ard+21] with the algorithm in [Wan+20]. The
proposed method in [Wan+20] estimates the channel parameter jointly using two different CS tech-
niques, i.e., OMP and generalized approximate message passing (GAMP) [VS13]. Therefore, we call it
Joint-CS, which requires NRTTTS ≈ O

(
Llog(L̄v

SL̄
h
SL̄RL̄T/L)

)
.

Regarding our second proposed channel estimation method, i.e., the TenRICE method [Ghe+21], it
is well known that the CP decomposition is unique up to scaling and permutation ambiguities under
mild conditions [CLA09; Zho+17]. In general, the uniqueness of a CP decomposition is guaranteed by
Kruskal’s condition [Kru77]. However, due to the definitions of ΩR and ΩT, the first two factor matrices,
i.e., ARΩR = ÅR and ATΩT = ÅT contain repeated columns, where every column of ÅR is repeated
LT times and every column of ÅT is repeated LR times. This implies that the k-rank of ÅR and ÅT is
equal to one. Therefore, the sufficient condition of [KB09] fails [SA10]. As for Algorithm 4.5, which is
an ALS-based algorithm, the identifiability in the LS sense requires that each of the following matrices

CR =ΩR(Bv ⋄Bh ⋄ATΩT)T ∈ CLR×JR (4.88)

CT =ΩT(Bv ⋄Bh ⋄ARΩR)T ∈ CLT×JT (4.89)

Ch =(Bv ⋄ATΩT ⋄ARΩR)T ∈ CL×Jh
S (4.90)

Cv =(Bh ⋄ATΩT ⋄ARΩR)T ∈ CL×Jv
S (4.91)

must have a unique right Moore-Penrose inverse, i.e., full row-rank, where JR = TTTS, JT = NRTS,
Jh

S = NRTTT
v
S , Jv

S = NRTTT
h
S . This requires that JR ≥ LR, JT ≥ LT, Jh

S ≥ L, and Jv
S ≥ L, where
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4.5. Discussion

L = LR · LT. Since LR and LT are practically very small, i.e., max{LR, LT} ≈ 3 [Rap+17], the above
conditions are easily satisfied. For example, assuming that the transmitter has a LoS with the RIS, we
have thatLT = 1, as it has been assumed in [Nad+20]. The order of the training overhead of the different
algorithms is summarized in Table 4.1.

Table 4.1: Training overhead analysis

Method Training overhead

TRICE-ESP TS ≥ L ≥ 4, NR ≥ LR + 1, TT ≥ LT + 1, (TT − 1)NR ≥ L, (NR − 1)TT ≥ L
TRICE-CS NRTT ≈ O(Llog(L̄RL̄T/L)), TS ≈ O(log(L̄v

SL̄
h
S))

Joint-CS NRTTTS ≈ O
(
Llog(L̄RL̄T/L)

)
, TS ≈ O

(
log(L̄v

SL̄
h
S)
)

TenRICE JR ≥ LR, JT ≥ LT, Jh
S ≥ L, and Jv

S ≥ L

4.5.2. Computational Complexity

Channel estimation phase: Here, we derive the computational complexity of the algorithms in terms of
Floating-Point Operations Per Second (FLOPS). The proposed TRICE-ESP method has a computational
complexity on the order of O

(
(NRTT)2TS + T 3

S + 3L3 + L
)
. Moreover, the computational complexity of

TRICE-CS is on the order of O
(
L(NRTT(L̄TL̄R + L + L2)) + 2L3 + LTSL̄

v
SL̄

h
S

)
, while the computational

complexity of the benchmark Joint-CS method is on the order of O
(
L(NRTTTS(L̄v

SL̄
h
SL̄TL̄R + L+ L2)) +

L3). Note that the major difference between TRICE-CS and Joint-CS is that the former decouples the
channel parameter estimation into two stages, while the latter jointly estimates them. Therefore, TRICE-
CS requires a 2D dictionary in every stage, while Joint-CS requires a single 4D dictionary.

For the proposed TenRICE method, we assume that the complexity of calculating the Moore-Penrose
inverse of a n×m matrix is on the order ofO(min{n,m}3) [Med04; Pen55]. Then, the complexity of the
ALS steps in Algorithm 4.5 is on the order of O

(
Imax(L3

R + L3
T + 2L3)

)
, where Imax denotes the number

of ALS iterations. Moreover, assuming that the NOMP method from [MRM16] is used in Step 10 of
Algorithm 4.5, then the complexity of recovering the channel parameters is on the order of L̄(LR +
LT + 2L), where L̄ denotes the number of grid points used by NOMP in the sparse-coding stage, i.e.,
L̄ = L̄TL̄R and L̄ = L̄v

SL̄
h
S . Clearly, TenRICE has a much lower complexity than TRICE and joint-CS.

The main reason is that TRICE and Joint-CS require multi-dimensional (xD) dictionaries (2D for TRICE
and 4D for Joint-CS), compared to the 1D dictionary required by TenRICE. Moreover, TRICE and Joint-
CS require a dictionary orthogonalization operation during the parameter recovery [SC12], which is
very complex, especially with large dictionaries. This complex operation is not required by TenRICE
thanks to its ALS stage, which decouples the recovery process between the channel parameters. The
computational complexity of the simulated algorithms is summarized in Table 4.2.

Data transmission phase: We know that the complexity of calculating the SVD of a n ×m matrix
can be reduced by using the Power Iteration method [HMT11]. However, to simplify the analysis we
assume that the SVD is calculated using the bi-diagonalization and the QR algorithm with a complexity
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4. Single-RIS-Aided Systems

Table 4.2: Computational complexity analysis

Method Computational complexity

TRICE-ESP O
(
(NRTT)2TS + T 3

S + 3L3 + L
)

TRICE-CS O
(
L(NRTT(L̄TL̄R + L+ L2)) + 2L3 + LTSL̄

v
SL̄

h
S

)
Joint-CS O

(
L(NRTTTS(L̄v

SL̄
h
SL̄TL̄R + L+ L2)) + L3)

TenRICE O
(
Imax(L3

R + L3
T + 2L3)

)
+O(L̄(LR + LT + 2L))

on the order of O(nm2) [CD13]. Then, the complexity of Algorithm 4.6 Steps 3, 6, 7, and 10 is on the
order of O(MRMTM

2
S ), O(MRM

2
S + MSM

2
T ), O(NsM2

S ), and O(MRM
2
T ), respectively. Accordingly, the

complexity of FroMax-1 is on the order of O(MRMTM
2
S + MRM

2
T ) and of FroMax-2 is on the order of

O(MRM
2
S +MSM

2
T +NsM

2
S +MRM

2
T ). In comparison, the complexity of the alternating maximization

(AltMax) method of [ZZ20a] is on the order of O
(
Jmax(MS(3M3

R + 2M2
RMT + M2

T ) + MRM
2
T )
)
, where

Jmax is the maximum number of iterations.

4.6. Simulation Results

In this section, we evaluate the effectiveness of the proposed methods by means of simulation. We
define the SNR as SNR = E{∥Y −N ∥2

F}/E{∥N ∥2
F} and assume that gc ∼ CN (0, 1).
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Figure 4.4: Compare proposed methods in terms of NMSE vs. SNR.
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4.6. Simulation Results

4.6.1. Channel Estimation Phase

Here, we show the simulation results to evaluate the effectiveness of the proposed methods, i.e., TRICE
and TenRICE. In all simulation results, we assume that MT = 32,MR = 16,MS = 256 [16× 16], NR = 8,
and TT = 8. The experiment is repeated with 1000 randomly generated noise realizations and Monte-
Carlo averaging over the analytical expansions. We assume that the TRICE framework employs at
both stages (i) the 2D DFT-beamspace ESPRIT method from [ZH17a] termed as TRICE-ESP, and (ii) the
on-grid CS method, denoted as TRICE-CS. For TRICE-CS, the first stage 2D dictionary is formed by
using βTMT × βRMR grid points (L̄T = βTMT, L̄R = βRMR), while the second stage 2D dictionary is
formed by using βv

SM
v
S ×βh

SM
h
S grid points (L̄v

S = βv
SM

v
S , L̄

h
S = βh

SM
h
S ), where {βT, βR, β

v
S , β

h
S} are integer

numbers that denote the ratio of the number of grid points to the number of reflecting elements. The
estimation for the TRICE-CS method is performed using the classical OMP technique [SC12] assuming
a 2D dictionary in both stages.

In Figs. 4.4 and 4.5, we show simulation results to evaluate the channel estimation accuracy of
the above discussed methods, assuming that LT = 1, LR = 2. For TRICE-CS, the grid resolu-
tion is defined as (C.1) {βT, βR, β

v
S , β

h
S} = {2, 1, 4, 4}. To comply with the requirements of the DFT-

beamspace ESPRIT method as discussed in [ZH17a], i.e., the spatial frequencies of the channel should
fall within a sector-of-interest, we assume that ψR,ℓ ∼ U(0, 2π(NR−1)/MR), ψT,ℓ ∼ U(0, 2π(TT−1)/MT),
µh
ℓ ∼ U(0, 2π(T h

S − 1)/Mh
S ), µv

ℓ ∼ U(0, 2π(T v
S − 1)/Mv

S ), where U(a, b) denotes the uniform distribu-
tion from a to b. Moreover, for all methods, the training matrices are chosen as W H = [UMR ][1:NR,:],
F T = [UMT ][1:TT,:], ΦT

h = [UMh
S
][1:T h

S ,:]
, ΦT

v = [UMv
S
][1:T v

S ,:], where UM denotes the normalized M ×M
DFT-matrix.

In Fig. 4.4, we show simulation results evaluating the impact of the training overhead TS on the
channel estimation accuracy. Clearly, Fig. 4.4 shows that increasing TS improves the channel estimation
accuracy for all methods. For TRICE-CS, we can see that it has a good estimation performance in the
low and middle SNR region while its performance does not improve in the high SNR region due to the
fixed grid resolution. Differently, TRICE-ESP has a good estimation performance in the medium and
high SNR region. On the other hand, TenRICE provides a significantly more accurate channel estima-
tion compared to TRICE-ESP and TRICE-CS. To illustrate this, we show in Fig. 4.5 the corresponding
MSE versus SNR results of the TS = 16 case of Fig. 4.4. From Fig. 4.5, we can see that the TenRICE
method provides much more accurate parameter estimates, compared to the TRICE-CS and TRICE-ESP,
approaching the CRB as the SNR increases. The main reason is that TenRICE does not only exploit the
low-rank nature of mmWave channels but also the tensor structure of the measurement signals when
estimating the channel parameters. Moreover, TenRICE employs a high-resolution parameter recovery
method in NOMP, while the TRICE-CS suffers from quantization errors, due to the on-grid assumption.
These advantages enable TenRICE to provide a more accurate channel estimates than TRICE-ESP and
TRICE-CS.

Despite the good performance of the TRICE-ESP method, finding the sector of interest is still a
difficult task in practical scenarios. Therefore, in Figs. 4.6 and 4.7, we turn our focus only on the TRICE-
CS and TenRICE methods. The training matrices, i.e., W , F , Φh, and Φv, are generated randomly
such that the (a, b)th entry of W is given as [W ][a,b] = 1√

MR
ejθa,b , θa,b∼ U(0, 2π), where F , Φh, and

Φv are generated in a similar manner. Moreover, we assume that the channel spatial frequencies are
all distributed between 0 and 2π, i.e., ψR,ℓ, ψT,ℓ, µ

h
ℓ , µ

v
ℓ ∼ U(0, 2π). In Fig. 4.6, we show the effect of

the selection of {βT, βR, β
v
S , β

h
S} on the TRICE-CS estimation performance, assuming that LT = 1, LR =
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Figure 4.5: Compare proposed methods in terms of MSE vs. SNR.

2, and TS = 16, i.e., T h
S = T v

S = 4. Clearly, Fig. 4.6 shows that increasing the grid resolution from
(C.1) to (C.2), i.e., from {βT, βR, β

v
S , β

h
S} = {2, 1, 4, 4} to {βT, βR, β

v
S , β

h
S} = {8, 4, 16, 16}, improves the

channel estimation accuracy of the TRICE-CS method as a result of decreasing the impact of on-grid
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Figure 4.7: Effect of the number of multi path on the channel estimation accuracy.

quantization error. In Fig. 4.7, we show simulation results investigating the effect of the number of
paths, i.e., the sparsity level of the channel, on the channel estimation accuracy. It is assumed that
TS = 16, i.e., T h

S = T v
S = 4. We can see that by increasing the number of paths, the channel estimation

accuracy degrades. Obviously, the best performance can be obtained in the case of very sparse channels,
i.e., L = 2. From Figs. 4.6 and 4.7, we can observe that TenRICE provides the best channel estimation
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accuracy.
As can be seen from Algorithm 4.5, TenRICE estimates the factor matrices AR, AT, Bh, and Bv

using a bi-linear ALS method, which is designed to run up to a maximum of Imax iterations, which we
choose as Imax = 100. In Fig. 4.8, we show simulation results investigating the convergence behavior of
Algorithm 4.5. We define the model fit function cTenRICE at the ith iteration as

cTenRICE(i) =
∥[Y ](1) −A(i)

R ΩR
(
(Bv)(i) ⋄ (Bh)(i) ⋄A(i)

T ΩT
)T∥2

F

∥[Y ](1)∥2
F

. (4.92)

From Fig. 4.8, we can see that Algorithm 4.5 seems to converge monotonically to at least a local
optimal solution. Note that, Algorithm 4.5 has a faster convergence rate with a low SNR value (e.g.,
SNR = 5 dB), as compared to a high SNR values (e.g., SNR = 15 dB). This is also true for the case with a
smaller TS value (i.e., TS = 16) as compared to a larger TS value (i.e., TS = 64) or in case of smaller LT and
LR values (i.e., LT = 1 and LR = 2) as compared to larger LT and LR values (i.e., LT = 2 and LR = 2). It is
worth mentioning that in a different implementation of Algorithm 4.5, the model fit function cTenRICE(i)
can be used as a convergence criterion, e.g., we stop the iterations if |cTenRICE(i) − cTenRICE(i − 1)| < ϵ

with ϵ < 10−15.
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Figure 4.8: Convergence of the TenRICE method in Algorithm 4.5.

4.6.2. Data Transmission Phase

Next, we show simulation results to illustrate the efficiency of the proposed RIS reflection design
method, FroMax. For comparison, we include results when the RIS reflection vector ω is designed
according to the AltMax method in [ZZ20a] and a Random method, i.e., when the entries of ω are ran-
domly generated such that the mth entry is given as [ω][m] = 1√

MS
ejωm , ωm ∼ U(0, 2π). We define the

SNR as SNR = Pmax/σ
2.

In Fig. 4.9, we show SE versus SNR results assuming LT = LR = 2 MT = 64,MR = 16, and
MS = 256 [16 × 16]. All simulation points are averaged over 1000 channel realization. We evaluate
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the performance of the beamforming algorithms considering two scenarios, (i) perfect CSI (i.e., where
the channel matrix is known perfectly) and (ii) estimated CSI (i.e., the channel matrix is estimated using
our proposed TenRICE considering NR = TT = T h

S = T v
S = 8). From Fig. 4.9, we can see that the Fro-

Max-1 has an equal performance to that of FroMax-2 and the AltMax whenNs = 1. However, FroMax-1
experiences a performance loss when Ns = 2, since it mainly maximizes the dominant singular value,
as can be seen from Fig. 4.10 for one particular channel realization. Differently, AltMax and FroMax-2
optimize the dominant Ns singular values of the effective channel in a way that maximizes the system
SE. Note that, in the low SNR region below 5 dB, all the simulated methods experience a very low SE
performance in case of estimated CSI, due to the channel estimation errors. Therefore, a preprocessing
denoising step will be required to improve the channel estimation accuracy.
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Figure 4.9: SE vs. SNR.
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Figure 4.10: Dominant singular values of a perfect effective channelHe = HRdiag{ω}HT.
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4.7. Chapter Conclusion
In this chapter, we have considered the channel estimation and the RIS reflection design problems
in point-to-point S-RIS-aided mmWave MIMO communication systems. First, we have proposed the
TRICE framework, which is a two-stage channel parameter estimation scheme. By exploiting the low-
rank nature of mmWave channels and by decoupling the channel parameter estimation problem into
two stages, we have shown that TRICE not only has a high estimation performance, but only requires a
low training overhead and has a low computational complexity, which makes it appealing in practical
applications.

Then, we have proposed a CPD tensor-based channel estimation method termed TenRICE, which
estimates the transmitter to RIS and the RIS to receiver channels separately, up to a trivial scaling factor.
We have shown that by jointly exploiting the low-rank nature of mmWave channels and the tensor
structure of received signals, not only the estimation accuracy can be improved, but also the training
overhead and the complexity can be reduced. At the end of the chapter, we formulate the beamforming
and the RIS reflection design as a SE maximization problem. The proposed non-iterative RIS reflection
design method based on a Frobenius-norm maximization (FroMax) design strategy has a comparable
performance to a benchmark method but with significantly lower complexity.
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Chapter 5

Double RIS-Aided Systems

5.1. Introduction and State of the Art

In Chapter 4, we have considered S-RIS-aided systems, where a transmitter communicates with one
receiver via a single RIS-aided channel. However, in some application scenarios, such as in urban areas
or satellite-to-indoor communications, the transmitter might need a multi-RIS-aided channel to have
a successful communication with a receiver. Moreover, it was shown in [BS20] that the RIS in S-RIS-
aided systems should be either deployed closer to the transmitter or closer to the receiver to achieve
the best performance gain. This fundamental result gives rise to multi-RIS-aided systems, where a
transmitter communicates with one or more receivers via multi-RIS-aided channels, which we consider
in this chapter.

Among the multi-RIS-aided systems, Double RIS (D-RIS)-aided systems have received considerable
attention [Han+20; Han+21; TS21; ZYZ21a]. In [Han+20], the authors have shown that the passive
beamforming gain with D-RIS-aided systems is much higher than that with S-RIS-aided systems, i.e.,
O(MS

4) versus O(MS
2), where MS denotes the total number of reflecting elements in both systems.

Initial works on D-RIS-aided systems considered reflection design such as [Han+21; TS21; ZYZ21a].
However, the potentials of D-RIS-aided communication systems can only be realized if accurate chan-
nel estimation is available. Nonetheless, the channel estimation in D-RIS-aided systems is more prob-
lematic compared to S-RIS-aided systems, since the cascaded channel in D-RIS-aided systems contains
three parts and not only two parts as in S-RIS-aided systems.

Recently, several channel estimation methods for D-RIS-aided systems have been proposed, such
as in [YZZ21; Han+20; ZYZ21c; BX22]. In [Han+20], the authors facilitated the channel estimation
task in D-RIS-aided systems by assuming that the two RISs are equipped with receive RF chains, i.e.,
active RISs. This can be used to enable a sensing capability for the RISs to estimate their channels at
the transmitter and receiver, separately. On the other hand, channel estimation in D-RIS-aided systems
with fully passive RISs was investigated in [YZZ21], considering only the double-reflection links and
ignoring the single-reflection links that are assumed to be too weak. To fulfill this gap, the authors in
[ZYZ21c] proposed a decoupled channel estimation scheme for D-RIS-aided systems, where the single-
reflection channels are estimated successively using an ON-OFF method (i.e., by turning one RIS ON at
a time, while keeping the other OFF) and then the double-reflection channel is estimated in a decoupled
manner, with the signals canceled over the two estimated single-reflection channels. Furthermore, in
[BX22], the authors considered D-RIS-aided single-input multiple-output (SIMO) systems and proposed
an LMMSE-based channel estimation approach, where the RISs’ training design is optimized via an
alternating optimization and projected gradient descent framework with the objective of minimizing
the channel estimation sum MSE. Notably, the provided simulation results in [BX22] showed that the
proposed RISs for the training design approach provides a better channel estimation accuracy compared
to a DFT-based RIS training design approach.
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5.1.1. Chapter Contribution

In this chapter, a D-RIS-aided MIMO system is investigated with two different training overhead as-
sumptions. We assume that the communication between the transmitter and receiver is only possible
via the double reflection link. The summary of the proposed channel estimation algorithms for each
training overhead case is summarized as follows.

• In the first channel estimation approach, we assume that both RISs have the same amount of
training overhead, which is called channel estimation for joint training (CEJOINT). We show that
the received measurement signals in flat-fading D-RIS-aided MIMO systems can be arranged in
a 3-way tensor that admits a Tucker2 decomposition [KB09]. Then, an ALS-based method is pro-
posed to estimate the transmitter-to-RIS-1, the RIS-1-to-RIS-2, and the RIS-2-to-receiver channels
separately, up to trivial scaling factors.

• In the second channel estimation approach, we assume that the training overhead assigned to each
RIS in D-RIS-aided MIMO systems can be adjusted separately. Consequently, we show that the
received signals in flat-fading D-RIS-aided MIMO systems can be represented as a 4-way tensor
that satisfies a nested PARAFAC decomposition model [AF13; RH09]. Exploiting such a structure,
we propose a non-iterative three-step channel estimation method, where one of the three channel
matrices in each step can be determined in closed-form using a low-complexity least squares KRF
technique [XFA16]. We call it KRF-based for separate training (KRF-SEPT). To further enhance
the channel estimation accuracy, we propose an ALS-based channel estimation method where
we estimate one channel matrix assuming that the other two are fixed. We call it ALS-based for
separate training (ALS-SEPT). The ALS-SEPT method has more relaxed constraints on the training
overhead than the closed-form KRF-SEPT method. Differently from our proposed CEJOINT, we
propose to initialize two channel matrices using the KRF-SEPT-based method.

The content of this chapter has been published in [Ard+22] and [Ghe+23].

5.1.2. Chapter Organization

We organize this chapter as follows. We start by presenting the system model in Section 5.2. The pro-
posed channel estimation approaches are presented in Section 5.3 for two types of training overhead
scenarios. In Section 5.4, a short overview of the benchmark S-RIS-aided system is given with further
discussion on the performance of algorithms in terms of their computational complexities and identi-
fiability conditions. The numerical results to evaluate the performance of the proposed algorithms are
given in Section 5.5. Finally, a conclusion is provided in Section 5.6.

5.2. System Model
We consider a D-RIS-aided MIMO communication system as illustrated in Fig. 5.1, where a transmitter
with MT antennas is communicating with a receiver with MR antennas via a D-RIS-aided channel. As
depicted in Fig. 5.1, RIS-1 is assumed to be close to the transmitter and has MS1 reflecting elements,
while RIS-2 is assumed to be close to the receiver and has MS2 reflecting elements. We assume that
the other propagation channels, i.e., transmitter-to-receiver, transmitter-to-RIS-2, RIS-1-to-receiver, are
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5. Double RIS-Aided Systems

unavailable due to blockage or too weak due to high path loss, which is a valid assumption in some
scenarios such as in a tunnel.

Figure 5.1: A D-RIS aided MIMO Communication System.

Let HT ∈ CMS1×MT be the transmitter-to-RIS-1 channel, HS ∈ CMS2×MS1 be the RIS-1-to-RIS-2 chan-
nel, and HR ∈ CMR×MS2 be the RIS-2-to-receiver channel. We assume that we send Q symbols during
the training phase, whereQ is divided into three transmission blocks asQ = I ·J ·P . The received signal
at the (i, j, p)th transmission time, i ∈ {1, · · · , I}, j ∈ {1, · · · , J}, p = {1, · · · , P}, can be expressed as

ȳi,j,p = HRΨiHSΦjHTfpsp + n̄i,j,p ∈ CMR , (5.1)

where fp ∈ CMT is the pth training vector at the transmitter with ∥fp∥ = 1, Φj = diag{ϕj} ∈ CMS1×MS1

denotes the jth diagonal training matrix of RIS-1, withϕj ∈ CMS1 and |[ϕj ]|[a] = 1√
MS1

, Ψi = diag{ψi} ∈
CMS2×MS2 is the ith diagonal training matrix of RIS-2, with ψi ∈ CMS2 and |[ψi]|[a] = 1√

MS2
, sp ∈ C is

the pth unit-norm training symbol, and n̄i,j,p ∈ CMR is the AWGN vector having zero-mean circularly
symmetric complex-valued entries with variance σ2

n.

Let Ψ = [ψ1, · · · ,ψI ] ∈ CMS2×I , Φ = [ϕ1, · · · ,ϕJ ] ∈ CMS1×J , and F = [f1s1, · · · ,fP sP ] ∈ CMT×P .
Then, by stacking the received measurement signals {ȳi,j,p,∀p} next to each other as

Ȳi,j = [ȳi,j,1, · · · , ȳi,j,P ], (5.2)

we obtain a measurement matrix Ȳi,j , which can be expressed as

Ȳi,j = HRΨiHSΦjHTF + N̄i,j ∈ CMR×P , (5.3)

where N̄i,j ∈ CMR×P is defined similarly to Ȳi,j . We assume that the training matrix F is designed with
orthonormal rows, i.e., FF H = IMT , which implies that P ≥ MT. Then, the right filtered measurement
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Figure 5.2: Transmission blocks for joint channel training of RISs.

matrix Yi,j = Ȳi,jF
H, can be written as

Yi,j = HRΨiHSΦjHT +Ni,j ∈ CMR×MT , (5.4)

whereNi,j = N̄i,jF
H.

5.3. Algorithms

Here, we discuss different training assumptions for RISs and propose the corresponding channel es-
timation techniques to estimate the channel matrices HT, HS, HR from the measurement matrices
Yi,j ,∀i,∀j, given in (5.4).

5.3.1. Joint Channel Training of RISs

Assuming that the training RIS matrices Ψ and Φ have the same number of training vectors S, i.e.,
S = I = J and we vary them together, therefore Q is reduced from Q = S2 · P to Q = S · P , as shown
in Fig. 5.2. Accordingly, the right filtered measurement matrix in (5.4) can be rewritten as

Ys = HRΨsHSΦsHT +Ns ∈ CMR×MT , (5.5)

where s ∈ {1, . . . , S}. By concatenating Y1, . . . ,YS in (5.5) behind each other (in the 3-mode), a 3-way
tensor can be obtained as

Y = [Y1,⊔3, . . . ,⊔3,YS ] ∈ CMR×MT×S , (5.6)

where Ys represents its sth frontal slice. Here, we note that the tensor Y has a Tucker2 representation
given as

Y = S ×1 HR ×2 H
T
T + N ∈ CMR×MT×S , (5.7)
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5. Double RIS-Aided Systems

where N is the noise tensor and S ∈ CMS2×MS1×S is the core tensor formed by concatenating ΨsHSΦs, s ∈
{1, . . . , S}, behind each other in the 3-mode as

S = [Ψ1HSΦ1,⊔3, . . . ,⊔3,ΨSHSΦS ] ∈ CMS2×MS1×S . (5.8)

Note that, the vectorized form of the sth frontal slice of the tensor S, i.e., ΨsHSΦs can be written as

vec{ΨsHSΦs} = (ΦT
s ⊗Ψs)hS

(h)= (Φs ⊗Ψs)hS

(i)= diag{(ϕs ⊗ψs)}hS

= diag{hS}(ϕs ⊗ψs), (5.9)

where hS = vec{HS},
(h)= is obtained due to the diagonal structure of Φs, i.e., Φs = ΦT

s , and
(i)= is

obtained due to the diagonal structures of Φs and Ψs, i.e., Φs = diag{ϕs} and Ψs = diag{ψs} and
therefore (Φs ⊗Ψs) = (diag{ϕs} ⊗ diag{ψs}) = diag{(ϕs ⊗ψs)}. From (5.9), we define a matrix S̄ as

S̄ = [diag{hS}(ϕ1 ⊗ψ1), . . . ,diag{hS}(ϕS ⊗ψS)]

= diag{hS}[(ϕ1 ⊗ψ1), . . . , (ϕS ⊗ψS)]
(j)= diag{hS}(Φ ⋄Ψ) ∈ CMS2MS1×S , (5.10)

where
(j)= is obtained from (1.2). Here, S̄ in (5.10) can be seen as the transposed version of the 3-mode

unfolding of the tensor S given in (5.8), i.e., [S](3)

[S](3) = (Φ ⋄Ψ)Tdiag{hS} ∈ CS×MS2MS1 , (5.11)

and the n-mode unfolding, n = {1, 2} of the tensor S can be expressed as

[S](1) = (ΨT ⋄HT
S )Tdiag{vec{Φ}} ∈ CMS2×MS1S , (5.12)

[S](2) = (ΦT ⋄HS)Tdiag{vec{Ψ}} ∈ CMS1×MS2S . (5.13)

From (5.7), the channel estimation problem can be formulated as

{ĤT, ĤS, ĤR} = argmin
HT,HS,HR

∥Y − S ×1 HR ×2 H
T
T ∥2

F, (5.14)

which is non-convex due to its trilinear structure. To obtain a solution, we resort to an alternating
minimization approach, where we solve (5.14) for one variable assuming the other two are fixed. To
achieve this end, we exploit the n-mode unfolding of Y , i.e., [Y ](n), n ∈ {1, 2, 3}, expressed as [KB09;
CLA09]

[Y ](1) =HRZR(HT,HS) + [N ](1) ∈ CMR×MTS (5.15)

[Y ](2) =HT
TZT(HR,HS) + [N ](2) ∈ CMT×MRS (5.16)
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[Y ](3) =[S](3)(HT
T ⊗HR)T + [N ](3) ∈ CS×MTMR , (5.17)

where

ZR(HT,HS) = [S](1)(IS ⊗HT
T )T ∈ CMS2×SMT , (5.18)

ZT(HR,HS) = [S](2)(IS ⊗HR)T ∈ CMS1×SMR . (5.19)

Substituting [S](3) given in (5.11) into [Y ](3) given in (5.17), we can rewrite it as

[Y ](3) = (Φ ⋄Ψ)Tdiag{hS}(HT
T ⊗HR)T + [N ](3). (5.20)

Therefore, the vectorized form of [Y ](3) using (1.20), i.e, y(3) = vec{[Y ](3)} can be expressed as

y(3) = ZS(HT,HR)hS + n(3) ∈ CSMTMR , (5.21)

where
ZS(HT,HR) =

[
(HT

T ⊗HR) ⋄ (Φ ⋄Ψ)T] ∈ CSMTMR×MS1MS2 , (5.22)

and n(3) = vec{[N ](3)}. By exploiting (5.15), (5.16), and (5.21), estimates of HR, HT, and hS can be
obtained sequentially as

ĤR =argmin
HR

∥[Y ](1) −HRZR(HT,HS)∥2
F (5.23)

ĤT =argmin
HT

∥[Y ](2) −HT
TZT(HR,HS)∥2

F (5.24)

ĥS =argmin
hS

∥y(3) −ZS(HT,HR)hS∥2
2. (5.25)

The above problems are convex and can be solved using the ALS method. A summary of the pro-
posed channel estimation for joint training (CEJOINT) is given in Algorithm 5.7.

Algorithm 5.7 Channel estimation for joint training (CEJOINT).

1: Input: Measurement tensor Y ∈ CMR×MT×S as in (5.7)
2: Initialize: H(0)

T andH(0)
S and select Nmax-itr, i.e., the maximum number of iterations.

3: for n = 1 to Nmax-itr do
4: H

(n)
R = [Y ](1){ZR(H(n−1)

T ,H
(n−1)
S )}+

5: H
(n)
T =

(
[Y ](2){ZT(H(n)

R ,H
(n−1)
S )}+)T

6: H
(n)
S = unvecMS2×MS1

{
{ZS(H(n)

T ,H
(n)
R )}+y(3)

}
7: end for
8: Output: ĤR, ĤT, and ĤS
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Figure 5.3: Graphical 3D representation of the 4-way tensor Y .

5.3.2. Separate Channel Training of RISs

Here, we consider a more general scenario in which the training overhead assigned to each RIS in a
D-RIS-aided MIMO system can be adjusted separately, i.e., Q = I · J · P , as shown in Fig. 5.4. Let Ȳj

be a 3-way tensor constructed by concatenating the jth block measurement matrices Y1,j ,Y2,j , . . . ,YI,j

given in (5.4) along the second dimension, where we consider the rows of the matrices as the 1-mode
and the columns of the matrices as 3-mode, as

Ȳj = [Y1,j ,⊔2,Y2,j , . . . ,⊔2,YI,j ] ∈ CMR×I×MT , (5.26)

where ⊔n denotes the concatenation along the nth dimension. Moreover, let Y be a 4-way tensor con-
structed by concatenating the measurement tensors Ȳ1, Ȳ2, · · · , ȲJ along the forth dimension as

Y = [Ȳ1,⊔4, Ȳ2, . . . ,⊔4, ȲJ ] ∈ CMR×I×MT×J . (5.27)

Here, we observe that the 4-way tensor Y can be interpreted as a nested PARAFAC decomposition
[AF13], as shown in Fig. 5.3. Please refer to Appendix A.7 for more details. Specifically, let Φ̄ = ΦT ∈
CJ×MS1 , Ψ̄ = ΨT ∈ CI×MS2 , and define the following two 3-way PARAFAC tensors A and B as

A = I3,MS1 ×1 H
T
T ×2 Φ̄×3 HS ∈ CMT×J×MS2 , (5.28)

B = I3,MS2 ×1 HR ×2 Ψ̄×3 H
T
S ∈ CMR×I×MS1 . (5.29)

Then, it can be easily shown that the n-mode unfoldings of the 4-way tensor Y , n = {1, 2, 3, 4}, can
be expressed as

[Y ](1) =HR([A]T(3) ⋄ Ψ̄)T + [N ](1) ∈ CMR×JMTI , (5.30)

[Y ](2) = Ψ̄([A]T(3) ⋄HR)T + [N ](2) ∈ CI×MRMTJ , (5.31)

[Y ](3) =HT
T (Φ̄ ⋄ [B]T(3))T + [N ](3) ∈ CMT×JMRI , (5.32)

[Y ](4) = Φ̄(HT
T ⋄ [B]T(3))T + [N ](4) ∈ CJ×MRIMT , (5.33)

where [A](3) and [B](3) are the 3-mode unfolding of A and B, respectively, which can be expressed as

[A](3) = HS(Φ̄ ⋄HT
T )T ∈ CMS2×JMT , (5.34)
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Figure 5.4: Transmission blocks for separate channel training of RISs.

[B](3) = HT
S (Ψ̄ ⋄HR)T ∈ CMS1×IMR . (5.35)

In the following, by exploiting the above tensor structure, we propose two solutions for estimating
HT,HS, andHR: one is a closed-form solution called KRF-based for separate training (KRF-SEPT) and
the other is an iterative solution called ALS-based for separate training (ALS-SEPT).

5.3.2.1 KRF-SEPT Algorithm

Assume that the training matrices Φ̄ and Ψ̄ are designed with orthonormal columns, i.e., Φ̄HΦ̄ = IJ

and Ψ̄HΨ̄ = II . Then, the left-filtered 2-mode and 4-mode unfolding matrices are given as

[Ỹ ](2) = Ψ̄H[Y ](2) = ([A]T(3) ⋄HR)T + Ψ̄H[N ](2), (5.36)

[Ỹ ](4) = Φ̄H[Y ](4) = (HT
T ⋄ [B]T(3))T + Φ̄H[N ](4). (5.37)

Given [Ỹ ](2) and [Ỹ ](4) as above, the channel matricesHT andHR can be obtained as a solution to

ĤR = argmin
HR

∥[Ỹ ]T(2) − ([A]T(3) ⋄HR)∥2
F (5.38)

ĤT = argmin
HT

∥[Ỹ ]T(4) − (HT
T ⋄ [B]T(3))∥2

F. (5.39)

Clearly, both problems have a similar structure given as

[L,R] = argmin
L,R

∥E − (L ⋄R)∥2
F, (5.40)

assuming thatE = (L⋄R) ∈ CA×B ,L ∈ CA1×B ,R ∈ CA2×B , andA = A1A2. A closed-form solution to
(5.40) can be obtained using the LS Khatri-Rao Factorization (LSKRF) technique [RH09], as summarized
in Algorithm 5.8 1.

1Note that Eb = [R][:,b][L]T[:,b] ∈ CA2×A1 in Algorithm 5.8 is a rank one matrix. Its SVD can be efficiently calculated using
the Power Iteration method, which has a low computational complexity.
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Algorithm 5.8 Khatri-Rao Factorization (KRF).

1: Input: E ∈ CA×B

2: for b = 1 to B do
3: Get Eb = unvecA2×A1{[E][:,b]} ∈ CA2×A1

4: Compute SVD of Eb as Eb = ubσbv
H
b ∈ CA2×A1

5: Set [R̂][:,b] = √σbub and [L̂][:,b] = √σbv∗
b

6: end for
7: Output: L̂ ∈ CA1×B and R̂ ∈ CA2×B

Algorithm 5.9 KRF-based for separate training (KRF-SEPT).

1: Input: Measurement tensor Y ∈ CMR×I×MT×J as in (5.27)
2: Get ĤR as a solution to (5.38) via Algorithm 5.8
3: Get ĤT as a solution to (5.39) via Algorithm 5.8
4: Given ĤR and ĤT, get ĤS using (5.44)
5: Output: ĤR, ĤT, and ĤS

On the other hand, to estimate HS, we exploit the observation that each n-mode unfolding [Y ](n)

of the 4-way tensor Y can be seen as a 1-mode unfolding of a 3-way tensor. For instance, the 3-mode
unfolding [Y ](3) is equal to the 1-mode unfolding of a 3-way tensor Z ∈ CMT×IMR×J given as

Z = I3,MS1 ×1 H
T
T ×2 [B]T(3) ×3 Φ̄ + Q, (5.41)

where Q ∈ CMT×IMR×J is the 3-way noise tensor representation of the 4-way noise tensor N ∈ CMR×I×MT×J .
Clearly, [Z](1) = [Y ](3). The 2-mode unfolding of Z is given as

[Z](2) = [B]T(3)(Φ̄ ⋄HT
T )T

= (Ψ̄ ⋄HR)HS (Φ̄ ⋄HT
T )T ∈ CIMR×JMT . (5.42)

Let z2 = vec{[Z](2)}, which yields

z(2) = [(Φ̄ ⋄HT
T )⊗ (Ψ̄ ⋄HR)]hS = VShS, (5.43)

where VS = [(Φ̄ ⋄HT
T )⊗ (Ψ̄ ⋄HR)] ∈ CJIMTMR×MS1MS2 . Then,HS can be estimated as

ĤS = unvecMS2×MS1

{
(VS)+z(2)

}
. (5.44)

The summary of the proposed closed-form KRF-SEPT method is given in Algorithm 5.9.

5.3.2.2 ALS-SEPT Algorithm

An ALS-based method can also be used to estimate the channel matrices HT, HS, and HR. Specifically,
given [Y ](1) and [Y ](3) in (5.30) and (5.32), respectively, an estimate forHR andHT can be obtained as

ĤR = [Y ](1)
(
([A]T(3) ⋄ Ψ̄)T)+ = [Y ](1)

(
VR
)+ (5.45)
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Algorithm 5.10 ALS-based for separate training (ALS-SEPT).

1: Input: Measurement tensor Y ∈ CMRx×J×MTx×I as in (5.27)
2: InitializeH(0)

R andH(0)
T , e.g., Randomly or as solution to (5.38) and (5.39), respectively.

3: Select Nmax-itr ≥ 1
4: for n = 1 to Nmax-itr do
5: GivenH(n−1)

R andH(n−1)
T , get Ĥ(n)

S using (5.44)
6: GivenH(n−1)

T andH(n)
S , get Ĥ(n)

R using (5.45)
7: GivenH(n)

R andH(n)
S , get Ĥ(n)

T using (5.46)
8: end for
9: Output: ĤR, ĤT, and ĤS

ĤT
T = [Y ](3)

(
(Φ̄ ⋄ [B]T(3))T)+ = [Y ](3)

(
VT
)+
, (5.46)

where [A](3) and [B](3) are given by (5.34) and (5.35), respectively, while VR ∈ CMS2×JIMT and VT ∈
CMS1×JIMR are defined as

VR = ([A]T(3) ⋄ Ψ̄)T ∈ CMS2×JIMT (5.47)

VT = (Φ̄ ⋄ [B]T(3))T ∈ CMS1×JIMR . (5.48)

Then, using (5.44), (5.45), and (5.46), an ALS-based method can be used to estimateHS,HR, andHT,
respectively, as summarized in Algorithm 5.10. However, it is known that the convergence rate of ALS-
based methods depends on the initialization, where a good initialization strategy generally leads to a
fast convergence rate, and therefore a reduced computational complexity. Motivated by the closed-form
KRF-SEPT, we propose to initializeHR andHT using (5.38) and (5.39), respectively.

5.4. Discussion

5.4.1. Comparison with S-RIS-aided systems

We compare the proposed CEJOINT method for D-RIS systems to the ALS-based approach for S-RIS
systems proposed in [AA20; AAB21] in terms of the minimum training overhead and the estimation
accuracy. In S-RIS-aided system, the communication between the transmitter and the receiver with MT

and MR antennas, respectively, is aided via a single RIS with MS reflecting elements, as depicted in
Fig. 4.1. Let GT ∈ CMS×MT be the transmitter-to-RIS channel and GR ∈ CMR×MS be the RIS-to-receiver
channel. Then, it was shown in [AA20; AAB21] that the received signals at the receiver can be arranged
in a 3-way tensor admitting the CP decomposition given as

X = I3,N ×1 GR ×2 G
T
T ×3 ΩT + E ∈ CMR×MT×Q, (5.49)

where I3,N ∈ ZMS×MS×MS is a super-diagonal tensor, E is the noise tensor, Ω = [ω1, · · · ,ωQ] ∈ CMS×Q

is the RIS training matrix with Q training beams and |[ωq][c]| = 1/
√
MS. The n-mode unfolding of X ,
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n ∈ {1, 2} can be expressed as

[X ](1) =GRTR(GT) + [E](1) ∈ CMR×QMT (5.50)

[X ](2) =GT
TTT(GR) + [E](2) ∈ CMT×QMR (5.51)

where TR(GT) = (ΩT ⋄ GT
T )T ∈ CMS×QMT and TT(GR) = (ΩT ⋄ GR)T ∈ CMS×QMR . Therefore, an

ALS-based method, similarly to CEJOINT in Algorithm 5.7, has been proposed in [AAB21] to obtain an
estimate ofGT andGR, as summarized in Algorithm 5.11.

Algorithm 5.11 ALS method for channel estimation in S-RIS MIMO systems [AAB21].

1: Input: Measurement tensor X ∈ CMR×MT×Q as in (5.49)
2: Initialize: G(0)

T and select Nmax-itr.
3: for n = 1 to Nmax-itr do
4: G(n)

R = [X ](1){TR(G(n−1)
T )}+

5: G(n)
T =

(
[X ](2){TT(G(n)

R )}+)T

6: end for
7: Output: ĜR, ĜT

5.4.2. Uniqueness and Identifiability Conditions

Here, we discuss the range of parameter settings required to ensure the uniqueness and identifiability
of the algorithms. First, recall (5.50) and (5.51) for S-RIS-aided systems. The identifiability, in the LS
sense, can be obtained by noting that TR and TT must have full column-rank, i.e., QMT ≥ MS and
QMR ≥ MS. Similarly, the CEJOINT method in D-RIS-aided systems needs to have full column-rank
for ZR in (5.15) and ZT in (5.16), i.e., SMT ≥ MS2 and SMR ≥ MS1, respectively, while ZS needs to
have full row-rank, i.e., SMRMT ≥ MS1MS2 [CLA09]. In the proposed ALS-SEPT method, VR and VT

must have full column-rank and VS must have full row-rank. On the other hand, the KRF-SEPT method
requires that the constraints (C1) I ≥ MS2 and (C2) J ≥ MS1 are satisfied. In Table 5.1, a summary of
the identifiability conditions of all methods is given.

5.4.3. Computational Complexity

Here, we derive the computational complexity of the algorithms in terms of FLOPS. Considering a
matrix A ∈ Ca×b, we know that the computational complexity of its Moore-Penrose inverse is on the
order of O(min{a, b}3) [Med04; Pen55]. Moreover, the computation of its dominant singular value and
singular vectors is on the order of O(l · (a2b + b2a)), where l is the number of iterations of the power
method as shown in [Sun+19]. Since the matrixE in the equivalent KRF formulation in (5.40) is a rank-
one matrix, its SVD can be efficiently calculated with a low complexity. Using the above information,
we summarize the computational complexity of the algorithms in Table 5.2.
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Table 5.1: Identifiability condition of algorithms.

Algorithm Identifiability Condition

ALS for S-RIS in 5.4.1 Q ≥ max{⌈MS
MT
⌉, ⌈MS

MR
⌉}

CEJOINT S ≥ max{⌈MS2
MT
⌉, ⌈MS1

MR
⌉, ⌈MS1MS2

MRMT
⌉}

KRF-SEPT I ≥MS2, J ≥MS1, and IJ ≥ MS1MS2
MRMT

ALS-SEPT IJ ≥ max{⌈MS2
MT
⌉, ⌈MS1

MR
⌉, ⌈MS1MS2

MRMT
⌉}

5.4.4. Scaling Ambiguity

Assuming that the identifiability conditions of all algorithms given in Table 5.1 are satisfied, the MIMO
channel matrices estimated by Algorithm 5.7 for D-RIS (CEJOINT) and Algorithm 5.11 for S-RIS from
[AAB21] are unique up to scalar ambiguities. In particular, the estimated channels are related to the
perfect (true) channels in the proposed CEJOINT method as

ĤR ≈HR∆R, (5.52)

ĤT ≈∆THT, (5.53)

ĤS ≈∆−1
R HS∆−1

T , (5.54)

where ∆X,X ∈ {T,R} is a diagonal matrix holding the scaling ambiguities per column. Similarly, we
can write the relation between the estimated MIMO channel matrices and the true ones estimated by
Algorithm 5.11 for S-RIS as

ĜR ≈GRΛ, (5.55)

ĜT ≈Λ−1GT, (5.56)

where Λ is a diagonal matrix holding the scaling ambiguities. However, these ambiguities disappear
when reconstructing an estimate of the effective end-to-end channels, i.e.,

Ĥe =ĤRĤSĤT, (5.57)

Ĝe =ĜRĜT. (5.58)

Moreover, note that, due to the knowledge of the RIS reflection matrices Ψ, Φ for D-RIS, and Ω for
S-RIS at the receiver, the permutation ambiguities do not exist [AAB21].

Similarly, we can write the ambiguities of the channels estimated by KRF-SEPT and ALS-SEPT as
given in (5.52), (5.53), and (5.54) assuming that the conditions in Table 5.1 are satisfied. Note that
these scalar ambiguities have no impact on the active and passive RIS reflection design of ΦD and
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Table 5.2: Order of the computational Complexity of algorithms.

Algorithm Computational Complexity

ALS for S-RIS in 5.4.1 O(Nmax-itr · 2M3
S )

CEJOINT O
(
Nmax-itr · (M3

S2 +M3
S1 + (MS1MS2)3)

KRF-SEPT O
(
M2

S1 +M2
S2 + (MS1MS2)3)

ALS-SEPT O
(
Nmax-itr · (M3

S2 +M3
S1 + (MS1MS2)3)

ΨD, which denote the reflection beamforming matrices of RIS-1 and RIS-2 in the data transmission
phase, respectively. Let Ĥcascaded = ĤRΨDĤSΦDĤT ∈ CMR×MT be the cascaded channel. Substituting
the estimated channels given in (5.52), (5.53), and (5.54) into the cascaded channel Ĥcascaded, it can be
seen that the diagonal ambiguity matrices ∆T and ∆R commute and they cancel with their inverses.
Therefore, the performance of the system in terms of the SE does not depend on the knowledge of each
channelHT,HS, andHR separately but only on the cascaded channel [ZYZ21a].

5.5. Simulation Results

In this section, we evaluate the performance of the proposed algorithms using numerical simulation
results. For this purpose, we divide this section into two main parts. In the first part, the D-RIS-
aided system with joint channel training overhead for both RISs, i.e., CEJOINT, is compared with the
S-RIS-aided system. In the second part, we evaluate the performance of the proposed algorithms, i.e.,
KRF-SEPT and ALS-SEPT, for the D-RIS system with separate channel training overheads for both RISs.

We assume that the entries of all channel matrices HT, HS, HR, GT, and GR follow a Rayleigh
fading distribution, i.e., they are independent and identically distributed complex Gaussian random
variables with zero mean and circular symmetry. The results are shown in terms of the NMSE of the
effective channels defined as NMSE = E{∥He − Ĥe∥2

F}/{∥He∥2
F}, for the D-RIS-aided system, and

NMSE = E{∥Ge − Ĝe∥2
F}/{∥Ge∥2

F}, for the S-RIS-aided system, where the effective channels Ĥe and
Ĝe are given in (5.57) and (5.58), respectively. The SNR in D-RIS-aided and S-RIS-aided systems are
defined as SNR = E{∥Y − N ∥2

F}/{∥N ∥2
F} and SNR = E{∥X − E∥2

F}/{∥E∥2
F}, where Y and X are

given in (5.7)/(5.27) and (5.49), respectively. Moreover, assuming that S ≤MS1MS2 in the joint channel
training for D-RIS and Q ≤MS for S-RIS-aided systems, the training matrices Φ, Ψ, and Ω are updated
using a DFT-based approach as: Ψ = [WMS2 ⊗ 1T

S̄2
][:,1:S], Φ = [1T

S̄1
⊗WMS1 ][:,1:S], and Ω = [WMS ][:,1:Q],

where S̄1 = ⌈ S
MS1
⌉, S̄2 = ⌈ S

MS2
⌉, and Wa is the normalized a × a DFT matrix such that ΩHΩ = IQ, and

ΥHΥ = IS , where Υ def= Φ ⋄Ψ. However, assuming that J ≤MS1 and I ≤MS2, the training matrices Φ
and Ψ for the D-RIS-aided system with separate channel training are designed by randomly selecting
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Figure 5.5: Number of channel coefficients (ℓX-RIS) with X ∈ {S,D}with MS = 40 and MS2 = MS −MS1.

J and I rows from normalized MS1-DFT and MS2-DFT matrices, respectively.

5.5.1. D-RIS-aided System versus S-RIS-aided System

Number of Channel Coefficients and Training Overhead

Here, we compare D-RIS-aided systems, i.e., the proposed CEJOINT method, i.e., Algorithm 5.7, to the
S-RIS-aided systems, i.e., Algorithm 5.11, according to their required number of channel coefficients
that need to be estimated. Let ℓD-RIS and ℓS-RIS denote the total number of channel coefficients in the
D-RIS and S-RIS communication scenarios, respectively, which are given as

ℓD-RIS =MTMS1 +MS1MS2 +MRMS2 (5.59)

ℓS-RIS =MTMS +MRMS. (5.60)

Let us assume that the S-RIS elements MS are distributed between RIS-1 and RIS-2 in the D-RIS
scenario such that MS = MS1 + MS2. In Fig. 5.5, we plot the results of (5.59) and (5.60). In Fig. 5.6,
we plot the identifiability conditions for S-RIS-aided systems, i.e., Algorithm 5.11, and CEJOINT, i.e.,
Algorithm 5.7, given in Table 5.1. In Fig. 5.5 and Fig. 5.6, we plot the results for different MT and MR

values assuming MS = 40. Note that along the x-axis we vary MS1 so that MS2 = MS −MS1. From
Fig. 5.5 and Fig. 5.6, we have the following remarks:

Remark 1: If MS ≫ max{MR,MT} and MR ≈MT, then the S-RIS requires less training overhead compared
to the D-RIS, i.e., Algorithm 5.7 (CEJOINT), in most of the MS1 and MS2 distribution scenarios. This comes
from the fact that the number of channel coefficients that the D-RIS needs to estimate, i.e., ℓD-RIS, is much larger
than that of the S-RIS, i.e., ℓS-RIS.
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Figure 5.6: Minimum training overhead (S and Q) with MS = 40 and MS2 = MS −MS1.

Remark 2: If MS ≈ max{MR,MT}, then the D-RIS requires less training overhead compared to the S-RIS
for the same reason mentioned in Remark 1, i.e., ℓD-RIS < ℓS-RIS.

Remark 3: In D-RIS systems, the careful distribution of theMS elements between RIS-1 and RIS-2 (i.e., MS1

and MS2) can reduce the training overhead of Algorithm 5.7 (CEJOINT). From Fig. 5.5, we can note that the
best distribution depends on the MR and MT values as: if MR > MT, then it is more beneficial to allocate more
elements to RIS-1 than RIS-2, i.e., MS1 > MS2. This observation is reversed if MR < MT, i.e., more elements
should be allocated to RIS-2 than RIS-1 as MS1 < MS2.

Channel Estimation Accuracy

Here, we want to compare the performance of the D-RIS-aided systems, i.e., proposed CEJOINT method
in Algorithm 5.7, to the S-RIS-aided systems, i.e., Algorithm 5.11, considering the channel estimation
accuracy in terms of the NMSE versus SNR. In Fig. 5.7, we fix MT to 2 and vary the other system
parameters. From the left-side figure for MR = 8, we can see that when MR = 8, CEJOINT has a worse
NMSE performance compared to the S-RIS, i.e., Algorithm 5.11, especially with the [MS1,MS2] = [10, 30]
configuration. This can be explained from Fig. 5.5 and Fig. 5.6 and Remark 1 and Remark 3. Note that
in a such system setting, the D-RIS has a larger number of channel coefficients ℓD-RIS = 560 compared
to the S-RIS, i.e., ℓS-RIS = 400. Moreover, as we have highlighted in Remark 3, we can see that the
[MS1,MS2] = [30, 10] configuration has a better NMSE performance than [MS1,MS2] = [10, 30], since
MT < MR. On the other hand, when MR = 32, we can see that the D-RIS system has a much better
NMSE performance compared to the S-RIS, especially with the [MS1,MS2] = [30, 10] configuration. This
can be explained in the same way from Fig. 5.5 and Fig. 5.6 and Remarks 2 and 3. From the figure on
the right hand side, we can see that the same observations hold true when we increase MS from 40 to
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Figure 5.7: NMSE versus SNR comparing D-RIS against the S-RIS systems.

80 or when we increase the training overhead S and Q from 40 to 80.

5.5.2. D-RIS-aided System with Separable Training Overheads

Here, we want to evaluate the performance of the proposed KRF-SEPT and ALS-SEPT channel estima-
tion methods for D-RIS systems in Subsection 5.3.2. In all simulation results, we assume that MT = 2,
MR = 4, and P = MT. From the above simulation results, since MT < MR, we assign more reflective
elements to RIS-1 than RIS-2, i.e., [MS1,MS2] = [30, 20].

Compare KRF-SEPT and ALS-SEPT

In Fig. 5.8, we show the NMSE versus the SNR results comparing the KRF-SEPT and ALS-SEPT meth-
ods. From Fig. 5.8, we can see that when J and I are selected such that J = MS1 and I = MS2, both
methods achieve the best performance. However, the estimation accuracy of KRF-SEPT degrades sig-
nificantly if J < MS1 and I < MS2, since the identifiability constraints for KRF-SEPT are not satisfied.
However, ALS-SEPT can still achieve a good performance only after Nmax-itr = 10 iterations, at the
expense of a higher complexity.

Effect of Initialization on the Performance of ALS-SEPT

Here, we want to check the effect of the initialization on the convergence of the proposed ALS-SEPT
method. It is known that the convergence rate of ALS-based methods depend on the initialization,
where a good initialization strategy generally leads to a fast convergence rate, and therefore a reduced
computational complexity. Motivated by the closed-form KRF-SEPT method, we propose to initialize
HR and HT using (5.45) and (5.46) by using the KRF in (5.38) and (5.39), respectively. In Fig. 5.9 and
Fig. 5.10, we show the NMSE versus the SNR results comparing the proposed ALS-SEPT method with
KRF-SEPT and the ALS-SEPT with random initialization. As it can be seen, ALS-SEPT initialized with
KRF-SEPT does not only enjoy a faster convergence rate as compared to ALS-SEPT with random initial-
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Figure 5.8: NMSE versus SNR for different training overhead (MS1 = 30 and MS1 = 20) .
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Figure 5.10: Effect of initialization on ALS-SEPT for I = 15, J = 25 (MS1 = 30 and MS1 = 20) .

ization, but also achieves a better channel estimation accuracy, especially with a low training overhead
as in Fig. 5.9. If we assume that the transmitter in this work represents a BS in a practical scenario, then
the required training overhead can be further reduced. The reason is that due to the fixed positions
of the BS, RIS-1, and RIS-2, HT and HS are slowly fading channel matrices, which do not need to be
estimated frequently. Since the aforementioned observation is not exploited in this work, the provided
results can be seen as the worst-case, i.e., upper-bound, of the channel estimation accuracy.

5.6. Chapter Conclusion

In this chapter, we have considered the channel estimation in the D-RIS MIMO systems. First, we
proposed CEJOINT channel estimation method in which both RISs have the same training overhead.
We have shown that D-RIS MIMO systems can be used to reduce the training overhead and to improve
the channel estimation accuracy compared to S-RIS-aided systems. This comes from the observation
that if the RIS elements in the S-RIS system are distributed carefully between the two RISs in the D-
RIS system, the number of channel coefficients in the D-RIS system that needs to be estimated reduces
significantly compared to the S-RIS system. Therefore, D-RIS systems can be seen as an appealing
approach to further increase the coverage, capacity, and efficiency of wireless networks compared to
S-RIS systems.

Then, we have proposed a generalized channel estimation technique for D-RIS-aided MIMO sys-
tems where the training overhead for each RIS can be selected separately. We have shown that an ac-
curate channel estimation can be obtained with a small training overhead by capitalizing on the nested
PARAFAC model of the received training signal. Our results show that we can achieve a good per-
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formance with ALS-SEPT channel estimation especially in scenarios with a small training overhead by
using the closed-form KRF-SEPT method as an initialization strategy.

Last but not least, both proposed channel estimation methods, i.e., KRF-SEPT and ALS-SEPT, can be
extended to multi-user scenarios, where the channel estimation can be performed separately for each
user with orthogonal training sequences in the time, frequency, and/or space domains without any
multi-user interference. In the case of non-orthogonal pilot sequences, the block PARATUCK model
can be used [AAB21], where the associated factor matrices are block matrices. The number of matrix
blocks is equal to the number of users. The complexity of the channel estimator would be higher in this
case, since we estimate the channels of all users simultaneously.
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Chapter 6

Conclusions and Future Works

6.1. Conclusions
In this thesis, we have explored advanced algebraic concepts with the objective of finding efficient
solutions for future wireless communication systems. The thesis content is organized into two parts,
which they can be read independently of each other. In the following, we present the main research
findings and contributions of this theses followed by some future works.

The first part of the thesis is devoted to the channel estimation and beamforming design problems
in massive MIMO HAD multi-user wireless communication systems. For the channel estimation prob-
lem, the objective is to find an efficient channel estimation method for sub-6 GHz systems with a small
training overhead, wherein the channel matrix is characterized not only by its high-dimensionality, but
also by high-rank nature, unlike the channel characteristics in mmWave-based systems. To overcome
these issues while meeting the required objectives, we have turned into multi-dimensional tensor al-
gebra and propose an efficient and general channel estimation method called SALSA, which is, unlike
the state-of-the-art methods, derived by exploiting a hidden tensor structure in the frequency-selective
measurement matrix without relying on any channel and antenna-array structures or a pre-estimated
channel covariance matrix. Specifically, by showing and proving that any MIMO channel matrix can be
approximately decomposed into a summation of R factor matrices each having a Kronecker structure,
the channel measurement or training matrix can be reshaped into a 3-way tensor admitting a Tucker
decomposition. By exploiting such a tensor representation, the SALSA method estimates the MIMO
channel matrix with R sequential steps, wherein a bi-linear ALS method is used to estimate the rth
Kronecker factor matrices. Detailed simulation results using a realistic 3GPP CDL channel modeling
have shown that the proposed SALSA method has not only a higher channel estimation accuracy, but
also a lower training overhead as compared to the well-known benchmark methods LS and LMMSE.

For the HAD beamforming design problem, the objective was to find an efficient design method
for generalized PC beamforming architectures with a low computational complexity. Due to the non-
convexity of the formulated problem, we have proposed a two-stage design approach by decoupling the
beamforming optimization procedure between the analog and the digital domains. We design the trans-
mit baseband beamforming matrices using the classical ZF method and the receive baseband beam-
forming matrices using the LMMSE approach. Considering these particular design of the baseband
beamforming matrices, we have shown that an approximation of the system’s multi-carrier SE upper-
bound can be derived and used as the objective function of the transmit analog beamforming matrix
optimization. To obtain a solution, we have divided the problem into a series of convex sub-problems
that are updated iteratively until a convergence is obtained. For each sub-problem, the objective is to
maximize the transmit signal power in each block while minimizing the interference leakage into the
other blocks. We have demonstrated numerically that the proposed method has a comparable perfor-
mance with the benchmark methods in the FC architectures, while it significantly outperforms them in
the generalized PC case.
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The second part of the thesis is devoted to channel estimation and RIS reflection design problems
in RIS-aided mmWave wireless communication systems. First, we have considered a Single RIS (S-
RIS)-aided scenarios, wherein a single RIS is deployed between a transmitter and a receiver. For such
scenarios, we have proposed two channel estimation methods, TRICE and TenRICE, and an RIS reflec-
tion design method FroMax. Specifically, the TRICE method is derived by exploiting the sparse nature
(or more accurately, the low-rank nature) of mmWave channels. In every stage, we have shown that the
channel parameter estimation can be carried out via a multi-dimensional DoA estimation scheme, for
which several solutions exist in the literature, such as DFT-beamspace ESPRIT-based methods [ZH17a;
ZH17b; ZRH21], CS-based methods [AH21], among many others. To further improve the channel esti-
mation accuracy and to reduce the training overhead, we have proposed the TenRICE method, which
not only exploits the low-rank nature of mmWave channels, but also the multi-dimensional tensor struc-
ture of the received measurement matrix, which is shown to admit a CP model. Moreover, we derived
the Cramér Rao lower Bound (CRB) of the TenRICE method. Detailed simulation results have shown
that both TRICE and TenRICE require a smaller training overhead and have a smaller computational
complexity as compared to the benchmark methods. Moreover, the TenRICE method outperforms the
TRICE method in terms of the channel estimation accuracy, since it takes the advantage of the tensor
structure of the measurement matrix.

After that, we have turned our attention to the active beamforming and RIS reflection design prob-
lem for SE maximization in S-RIS-aided scenarios. However, the formulated problem is non-convex
because of its joint optimization and constant modulus constraints imposed on the RIS reflection ma-
trix. In this case, we have proposed a non-iterative two-stage design method by decoupling the design
problem between active beamformers of the transmitter and the receiver and the RIS reflection matrix.
Here, we have noted that, for any given RIS reflection matrix, the design of the active beamformers
can be simplified to the classical single-user MIMO scenario, for which the optimal design is given by
the SVD of the effective channel and water-filling-based power allocation. However, for given active
beamformers, the RIS reflection matrix design is still non-convex, due to the constant modulus con-
straints. To obtain a low-complexity solution, we have proposed heuristic solutions called FroMax-1
and FroMax-2, wherein the problem is formulated as a Frobenius-norm maximization. Specifically, the
FroMax-1 strategy designs the RIS reflection matrix by focusing the reflected energy on the dominant
eigenmode of the channel, which is only applicable in single-stream cases. To overcome this limitation,
the FroMax-2 strategy designs the RIS reflection matrix while taking into account the several dominant
eigenmodes selected by the transmitter and, therefore, improves the system’s SE. Simulation results
have shown that the FroMax-2 strategy has a comparable performance to the benchmark methods but
with a significantly lower computational complexity.

Lastly, we have considered the channel estimation problem in D-RIS-aided scenarios, wherein two
RISs are deployed between a transmitter and a receiver, which can be used to further extend the cov-
erage of mmWave-based wireless communication systems. For such scenarios, we have proposed two
channel estimation methods. In the first method called CEJOINT, we have assumed that the system
(or the node controlling the RISs) trains the two RISs jointly, i.e., at the same time. In this case, we
have shown that the measurement matrix can be reformulated into a 3-way tensor structure admit-
ting a Tucker2 model, which is then used to derive an ALS-based channel estimation method. On the
other hand, in the second method, we have assumed that the system trains each RIS separately, i.e.,
on different time scales, and have shown that the measurement matrix can be written as a 4-way ten-
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sor admitting a nested PARAFAC model, which is then used to derive a closed-form KRF-SEPT and
an iterative ALS-SEPT channel estimation technique. Using simulation results, we have shown that
by carefully distributing the reflection elements between the two RISs, a more accurate channel esti-
mation with less training overhead can be achieved in the D-RIS-aided scenarios as compared to the
S-RIS-aided case. Moreover, we have demonstrated that the ALS-SEPT channel estimation method can
achieve a good performance especially in scenarios with a small training overhead by carefully selecting
the initialization strategy.

6.2. Future Works
The content of this thesis can be extended in many directions. Some of the possible future directions of
our work are listed below.

• The proposed SALSA method in Chapter 2 is derived by approximately decomposing the fre-
quency selective MIMO channel matrix into a summation of R factor matrices each having a
Kronecker structure. In the simulation results, we have investigated in detail the effect of the
number of factor matrices R on the channel estimation accuracy. It is shown that, for every SNR
region/level, there is an optimal R value, where the best channel estimation accuracy is achieved.
Therefore, a more profound theoretical understanding of how to select R depending on the SNR
could lead to more robust and accurate solutions.

Exploiting the multi-dimensionality of the communication channel in time, frequency, and space
becomes more important in massive MIMO systems to obtain a higher channel estimation ac-
curacy with less pilot overhead [Ara+19; Wan+21; Qia+18]. As an example, we can exploit the
antenna array structure at the transmitter and receiver as well as the antenna polarization, the
channel in the time and frequency domain, which results in a multi-dimensional tensor (up to
7 dimensions). Such high dimensional representation of the signals helps to i) exploit the cor-
relation among multiple dimensions, and ii) mitigate severe error propagation among different
dimensions. Therefore, further enhancement of the data structure is an interesting future work to
present the signal as a tensor with larger dimensions.

• In Chapter 3, we have proposed a low-complexity HAD beamforming design for frequency-
selective downlink multi-user MIMO systems. From the simulation results, we have observed
that the Algorithm 3.3 always converges to a point where the cost function stops increasing or
decreasing, although not monotonically. Therefore, it is interesting to prove the convergence of
the Algorithm 3.3, which can be carried out by interpreting the problem (3.29) from a game theory
view-point [NX16; BL17], where the proof can be accomplished by showing its convergence to a
Nash equilibrium point.

Moreover, our proposed HAD beamforming algorithm, or any comparable state-of-the-art method
for that matter, is only valid for a certain size of the antenna arrays and bandwidth. In other words,
extremely large MIMO scenarios cannot be treated only as an enlarged version of a conventional
MIMO system. This can be explained by the fact that, in physical reality, if the physical size of
the antenna array traveled by the propagation wave exceeds a certain level, then the propaga-
tion delay across the array becomes comparable to the symbol period, therefore, the narrowband
condition is not anymore true. In this case, the antennas receive different amplitudes and phases
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of the same symbol or even distinct symbols at the same sampling time. This effect is already
known from radar signal processing and is called spatial-wideband effect [LW10]. In contrast to
narrowband signaling with a fixed beam over the antenna manifold, the antenna radiation pat-
tern varies slightly as a function of frequency for the wideband signals. This effect is known as
beam squint [Cai+16], which is derived from the spatial-wideband effect. Therefore, pointing
the beams toward the same direction for different frequencies is not straightforward anymore
[Dup+19b]. Moreover, the reciprocity of the estimated uplink channel is difficult to use to extract
the channel parameters in TDD networks [Wan+18]. These effects become more significant with
extremely large antenna arrays and much wider bandwidths, for example THz systems. There-
fore, it is important to develop an effective HAD beamforming algorithm that considers the beam
squint effect and suppresses or exploits it.

• In Chapter 4, we have proposed a beamforming and RIS reflection matrix design method for S-
RIS-aided MIMO systems. The numerical results in terms of the SE were illustrated considering
perfect and estimated CSI. From these results, we have observed that, in the low SNR region, e.g.,
below 5 dB, all the simulated methods using the estimated CSI experience a very low SE perfor-
mance, due to a significant channel estimation error. Therefore, it is interesting to investigate a
channel estimation denoising step to improve the channel estimation accuracy in the low SNR
region. Moreover, the proposed design method considers only single-user frequency-flat case,
wherein the extension to frequency-selective multi-user downlink and uplink scenarios is also an
interesting future research topic.

• In Chapter 5, we have shown that the required training overhead in D-RIS-aided systems can
be decreased significantly compared to the S-RIS-aided one if the reflecting elements are prop-
erly distributed between the RISs. Since the system SE is inversely proportional to the length
of the training overhead, we conjecture that there is an optimal distribution of the RIS elements
that strike an optimal trade-off between the training overhead and the achievable performance.
Further investigation to find a mathematical expression for the exact assignment of the reflecting
elements to the RISs is required.

Moreover, we have assumed that the single reflected channels transmitter-to-RIS-1-to-receiver and
transmitter-to-RIS-2-to-receiver do not exist. However, in realistic implementations, they could
exist and cause significant interference. Therefore, in order to achieve the maximum beamforming
gain of D-RIS-aided system, not only the double-reflection link, e.g., transmitter-to-RIS-1-to-RIS-
2-to-receiver, must be estimated but also the two single reflection links. The already proposed
channel estimation methods in [ZYZ21b; BX22] assumed a multi-user MISO scenario. Therefore,
a channel estimation algorithm considering double- and single-reflection links for multi-user D-
RIS-aided MIMO system needs to be developed.

Here, a flat-fading narrowband RIS-aided MIMO system is considered. However, in the future, we
are interested in wideband multi-carrier RIS-aided MIMO communication systems. It is already
shown in [Mao+22] that the amplitude and the phases of the reflecting elements in the RISs are
not completely independent in the wideband scenarios. Moreover, in [BS21], it is also shown that
depending on the distance of the adjacent reflecting elements to each other, they might experience
spatial correlation. Therefore, a channel estimation algorithm for wideband multi-carrier RIS-
aided MIMO systems should be developed. Furthermore, beamforming and RIS reflection matrix
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design methods for D-RIS-aided MIMO systems were not considered in this thesis, which are an
important topic for future research.
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Appendix A

Appendices

A.1. Proof of (1.26)
Using (1.11), we can show that

A1Ω1 ⋄A2Ω2 = (A1 ⊗A2)(Ω1 ⋄Ω2) = (A1 ⊗A2). (A.1)

where

Ω1 = (IL1 ⊗ 1T
L2

) =


1T
L2

0T
L2
· · · 0T

L2

0T
L2

1T
L2
· · · 0T

L2
...

...
. . .

...

0T
L2

0T
L2
· · · 1T

L2

 ∈ CL1×L1L2 , (A.2)

and

Ω2 = (1T
L1
⊗ IL2) =

[
IL2 IL2 · · · IL2

]
∈ CL2×L1L2 , (A.3)

where 0Q is all zeros column vector of dimension Q× 1. First, we show that the right hand side of (A.1)
is equal to its left hand side as

A1Ω1 ⋄A2Ω2 =


[A1][1,1]1T

L2
[A1][1,2]1T

L2
· · · [A1][1,L1]1T

L2

[A1][2,1]1T
L2

[A1][2,2]1T
L2

· · · [A1][2,L1]1T
L2

...
...

. . .
...

[A1][J1,1]1T
L2

[A1][J1,2]1T
L2
· · · [A1][J1,L1]1T

L2

 ⋄
[
A2 A2 · · · A2

]

=
[
[A1][:,1] ⊗ [A2][:,1] · · · [A1][:,1] ⊗ [A2][:,L2] [A1][:,2] ⊗ [A2][:,1] · · · [A1][:,L1] ⊗ [A2][:,L2]

]

=


[A1][1,1]A2 [A1][1,2]A2 · · · [A1][1,L1]A2

[A1][2,1]A2 [A1][2,2]A2 · · · [A1][2,L1]A2
...

. . .
...

[A1][J1,1]A2 [A1][J1,2]A2 · · · [A1][J1,L1]A2


=A1 ⊗A2. (A.4)

In the following, we want to prove that for Ω1 and Ω2 given in (A.2) and (A.3), respectively, we have

Ω1 ⋄Ω2 = (IL1 ⊗ 1T
L2

) ⋄ (1T
L1
⊗ IL2) = IL1L2 , (A.5)

which can be directly seen by taking the Khatri-Rao product of (A.2) and (A.3). In [MN17; HS81], it was
proven that for any givenA ∈ CM×R,B ∈ CN×S ,C ∈ CP×R andD ∈ CQ×S matrices with appropriate
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dimensions, the property

(A⊗B) ⋄ (C ⊗D) = P [(A ⋄C)⊗ (B ⋄D)] (A.6)

holds true, where P ∈ CMNPQ×MNPQ is a permutation matrix that depends only on the dimensions
of A,B,C and D and not on their elements. The proof was obtained due to fact that the Kronecker
product is associative but not commutative, and therefore

([A][:,r] ⊗ [B][:,s]) = P̄ ([B][:,s] ⊗ [A][:,r]), (A.7)

where [A][:,r] and [B][:,s] are the rth and the sth columns ofA andB, respectively, and P̄ is the permu-
tation matrix. However, for our defined matrices, wherein A = IL1 ,B = 1T

L2
,C = 1T

L1
and D = IL2 ,

the permutation matrix P is in fact an identity matrix, i.e., P = IL1L2 , with appropriate dimension,
since

([IL1 ][:,i] ⊗ [1T
L2

]j) = ([1T
L2

]j ⊗ [IL1 ][:,i]) = [IL1 ][:,i], (A.8)

where [IL1 ][:,i] is the ith column of IL1 and [1T
L2

]j is the jth entry of 1T
L2

, where the latter is always equal
to 1, i.e., [1T

L2
]j = 1,∀j. From the above, we have that

Ω1 ⋄Ω2 = (IL1 ⊗ 1T
L2

) ⋄ (1T
L1
⊗ IL2) (A.9)

= (IL1 ⋄ 1T
L1

)⊗ (1T
L2
⋄ IL2) (A.10)

= IL1 ⊗ IL2 (A.11)

= IL1L2 , (A.12)

where (A.10) is obtained from (A.6) and (A.8), while (A.11) is obtained since IL1 ⋄ 1T
L1

= IL1 and
1T
L2
⋄ IL2 = IL2 , which follow directly from the Khatri-Rao Product definition. This completes the

proof.
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A.2. Jensen’s Inequality

Figure A.1: Using Jensen’s inequality for a secant line of a convex function

The danish mathematician Johan Jensen showed the relation between the value of a convex function
of an integral to the integral of the convex function, which is also known as Jensen’s inequality. For a
better understanding, consider the convex function f(x) as illustrated in Fig. A.1. From Fig. A.1, it can
be seen that for any t ∈ [0, 1], the secant line of a convex function lies above it, i.e.,

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2). (A.13)

In a finite form, Jensen’s inequality for any real convex function f(·) can be expressed as [Rud87;
Kra99]

f

( I∑
i=1

aixi∑
i=1

ai

)
≤

I∑
i=1

aif(xi)∑
i=1

ai
, (A.14)

where xi are numbers in the function f(·) domain and ai are positive weights with i ∈ {1, · · · , I}. For
any real concave function f(·), the inequality is reversed, i.e.,

f

( I∑
i=1

aixi∑
i=1

ai

)
≥

I∑
i=1

aif(xi)∑
i=1

ai
. (A.15)

Note that the equality holds in either of the following two scenarios,

(1) x1 = x2 = · · · = xI

(2) f(·) is a linear function in the domain containing xi,∀i.
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Particularly, if ais are all equal, (A.14) and (A.15) can be simplified as

f

( I∑
i=1

xi

I

)
≤

I∑
i=1

f(xi)

I
, (A.16)

f

( I∑
i=1

xi

I

)
≥

I∑
i=1

f(xi)

I
. (A.17)

The Jensen’s inequality is very general and appears in many forms depending on the context such as
the log sum inequality in information theory [CS04]. Knowing that log(·) is a concave function, then by
substituting f(·) = log(·) in (A.17), we have

log2

( I∑
i=1

xi

I

)
≥

I∑
i=1

log2(xi)

I
. (A.18)
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A.3. Design of Analog Decoding Matrix in Chapter 3

The proposed iterative algorithm in [Ard+18] is outlined in this appendix, which is used in Chapter 3
to obtain the analog decoding matrices W RF

u at the uth UE. It was shown that (3.15) can be written
equivalently as

max
W RF

u ∈W
log2 |Ec|+ log2 |wH

cGcwc|, (A.19)

where wc = [W RF
u ][:,c] , with c ∈ {1, · · · , NUE}, and Ec andGc are defined as

Ec =(W̄c)HDuW̄c ∈ C(NUE−1)×(NUE−1) (A.20)

Gc =Du −DuW̄cEu(W̄c)HDu ∈ CMUE×MUE , (A.21)

in which Du is defines as Du =
K∑
k=1

Hu,kH
H
u,k ∈ CMUE×MUE and W̄c is the sub-matrix of Wu with the

cth column removed, i.e.,

W̄c = [w1, · · · ,wc−1,wc+1, · · · ,wNUE ] ∈ CMUE×(NUE−1). (A.22)

From (A.20), it can be seen that the left hand side of (A.19) does not depend onwc. Therefore, (A.19)
reduces to

max
wc∈W

log2 |wH
cGcwc|. (A.23)

Then, the objective term of problem (A.23) is exploited such that the impact of the ith element of
vector wc, i.e., [wc][i] is explicitly exposed as

wH
cGcwc =

NUE∑
m=1,m̸=i

NUE∑
n=1,n̸=i

([wc][m])∗[Gc][m,n][wc][n]

+ 2Re
(

([wc][i])∗
NUE∑

n=1,n̸=i
[Gc][i,n][wc][n]

)
+ ([wc][i])∗[Gc][i,i][wc][i]. (A.24)

It can be seen that the ith element ofwc only apears in the last two terms of the right hand side part
of (A.24). Then, the optimal value of [wc][i] can be obtained as

[wc][i] = ∠

(
NUE∑
n=1

[Gc][i,n][wc][n]

)
. (A.25)

The summary of the proposed iterative algorithm in [Ard+18] is given in Algorithm 1.12.
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Algorithm 1.12 Proposed algorithm in [Ard+18].

Input: Hu,k,∀u,∀k.
1: for u = 1 to U do
2: Compute Du =

∑K
k=1Hu,kH

H
u,k, initialize W RF

u [0] ∈ W randomly, and set initialization index
p = 1

3: while not converged do
4: for cth column ofW RF

u [p], i.e., wc, c[p] ∈ {1, · · · , NUE} do
5: Compute Ec[p] andGc[p] as given in (A.20) and (A.21), respectively
6: for ith element of wc[p], i ∈ {1, · · · , M̊UE} do
7: Update [wc][i][p] as described in (A.25)
8: end for
9: end for

10: p = p+ 1
11: end while
12: end for
Output: W RF

u [p]
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A.4. Derivation of Upper-bound in (3.18)
This appendix contains the derivation of the upper-bound given in (3.18) in Subsection 3.3.2. The dif-
ficulty by designing the analog precoding matrix F RF is that it has to be common for all UEs and all
sub-carriers. In Subsection 3.3.2, we assume that the baseband beamforming matrices F BB

k ,∀k, are cal-
culated using the well-known ZF method, which leads to the fact that

(F BB
k )HH̄H

k H̄kF
BB
k = IUNs

. (A.26)

From (A.26) and by inserting the digital precoding matrix F̄ BB
k from (3.6) into the SE in (3.17), the

total SE of the system can be rewritten as

SE =
K∑
k=1

log2 |IUNs
+ 1
σ2
n

(F BB
k )HH̄H

k H̄kF
BB
k |

=
K∑
k=1

log2 |IUNs + 1
σ2
n

Pk

∥F RFF̄ BB∥2
F

(F̄ BB
k )HH̄H

k H̄kF̄
BB
k |

=UNs
K∑
k=1

log2

(
1 + Pk

σ2
n∥F RFF̄ BB

k ∥2
F

)
. (A.27)

Next, we define the term in the denominator of (A.27) as ζk
def= ∥F RFF̄ BB

k ∥2
F. Then, we rewrite F̄ BB

k in
the ZF sense as F̄ BB

k = H̄H
k (H̄kH̄

H
k )−1 and substitute it in ζk as

ζk = trace[(H̄kH̄
H
k )−1H̄k(F RF)HF RFH̄H

k (H̄kH̄
H
k )−1]

≈ trace[(H̄kH̄
H
k )−1], (A.28)

where the approximation follows from the observation that (F RF)HF RF can be approximated as (F RF)HF RF ≈
INBS , especially when MBS is large [SY16]. From (A.28), we can approximate (A.27) as

SE ≈ UNs
K∑
k=1

log2

(
1 + Pk

σ2
ntrace[(H̊kF RF(F RF)HH̊H

k )−1]

)
,

(a)
≤ UNs log2

(
1 + Pk

σ2
n

K∑
k=1

1
trace[(H̊kF RF(F RF)HH̊H

k )−1]

)
(b)
≤ UNs log2

(
1 + Pk

σ2
n(UNUE)2

K∑
k=1

trace[H̊kF
RF(F RF)HH̊H

k ]
)

= UNs log2

(
1 + Pk

σ2
n(UNUE)2 trace[(F RF)HDF RF]

)
, (A.29)

where H̊k = [HT
1,k, · · · ,HT

U,k]T ∈ CUNUE×MBS , D =
K∑
k=1

H̊H
k H̊k, (a) follows from Jensen’s inequality as

described in Appendix A.2, and (b) follows from the fact that for any positive definite matrixX ∈ Ca×a,
we have trace[X−1] ≥ a2/trace[X] [Yan00].
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A.5. Proof of Proposition 3.3.1
This Appendix contains the proof of Proposition 3.3.1 in Chapter 3. Define the Lagrangian multiplier of
(3.30) as

L(fRF
c , λc) =−

NBS∑
c=1

(
dH
c f

RF
c −

NBS∑
q=1,q ̸=c

|dH
q f

RF
c |2

)
+ λc

(
∥fRF

c ∥2 − 1
)

=−
NBS∑
c=1

(
(fRF
c )HDfRF

c −
NBS∑

q=1,q ̸=c
|(fRF

q )HDfRF
c |2

)
+ λc

(
∥fRF

c ∥2 − 1
)

=−
NBS∑
c=1

(
(fRF
c )HDfRF

c −
NBS∑

q=1,q ̸=c
(fRF
c )HDfRF

q (fRF
q )HDfRF

c

)
+ λc

(
(fRF
c )HfRF

c − 1
)

(A.30)

where λc denotes the Lagrangian multiplier associated with problem (3.30). Taking the (complex) gra-
dient of the Lagrangian L(fRF

c , λc) with respect to (fRF
c )∗ as

∇(f RF
c )∗L(fRF

c , λc) =−DfRF
c +

NBS∑
q=1,q ̸=c

DfRF
q (fRF

q )HDHfRF
c + λ∗

cf
RF
c

=− dc +
NBS∑

q=1,q ̸=c
dqd

H
q f

RF
c + λ∗

cf
RF
c , (A.31)

where∇(f RF
c )∗ denotes the conjugate Wirtinger gradient. By setting (A.31) equal to zero and solving for

fRF
c , we get

fRF
c,opt =

( NBS∑
q=1,q ̸=c

dqd
H
q + λ∗

cIMBS

)−1
dc. (A.32)

We can simplify update fRF
c considering that ∥fRF

c ∥2 = 1 as

fRF
c,opt = µc

( NBS∑
q=1,q ̸=c

dqd
H
c + IMBS

)−1
dc, (A.33)

where µc = 1/∥
( NBS∑
q=1,q ̸=c

dqd
H
q + IMBS

)−1
dc∥.

122



A. Appendices

A.6. Derivation of CRB to 4-way CP Tensor in (4.50)

The following is a straightforward extension of the Cramér Rao lower Bound (CRB) derivation in
[Zho+17] for a 3-way tensor to our 4-way tensor. Due to brevity, we only provide here the final re-
sults. For more details, we advise the readers to refer to [Zho+17].

Let Y ∈ CNT×TT×T h
S ×T v

S be the 4-way tensor given by (4.50), where its four factor matrices are given
by (4.55) - (4.58) while ψ̃R

def= [ψR,1, · · · , ψR,L]T, ψ̃T
def= [ψT,1, · · · , ψT,L]T, µ̃h def= [µh

1, · · · , µh
L]T, and µ̃v def=

[µv
1, · · · , µv

L]T are their unknown spatial frequency vectors, respectively. Let η def= [ψ̃T
R ψ̃

T
T (µ̃h)T(µ̃v)Tα̃T]T.

Let L(η) define the log-likelihood function of η, which is given as [Zho+17]

L(η) = f(Y ;AR,AT,B
h,Bv), (A.34)

where

f(Y ;AR,AT,B
h,Bv) =c− 1

σ2 ∥[Y ]T(1) −CRA
T
R∥2

F

=c− 1
σ2 ∥[Y ]T(2) −CTA

T
T∥2

F

=c− 1
σ2 ∥[Y ]T(3) −Ch(Bh)T∥2

F

=c− 1
σ2 ∥[Y ]T(4) −Cv(Bv)T∥2

F

where c = −NRTTT
h
S T

v
S ln(πσ2) and

CR =(Bv ⋄Bh ⋄AT) ∈ CTTT
h
S T

v
S ×L (A.35)

CT =(Bv ⋄Bh ⋄AR) ∈ CNRT
h
S T

v
S ×L (A.36)

Ch =(Bv ⋄AT ⋄AR) ∈ CNRTTT
v
S ×L (A.37)

Cv =(Bh ⋄AT ⋄AR) ∈ CNRTTT
h
S ×L. (A.38)

Assuming that N entries are zero mean circular symmetric Gaussian random variables with vari-
ance σ2, i.e.,

E{[N ][d1,d2,d3,d4][N ]∗[d1,d2,d3,d4]} =
{σ2 if di = ki,∀i,

0 otherwise.
(A.39)

Then, the CRB for parameters η can be calculated as

CRB(η) = D(η)−1, (A.40)

where D(η) is the complex Fisher information matrix (FIM) for η, which is given by

D(η) = E

{(
∂L(η)
∂η

)H(
∂L(η)
∂η

)}
. (A.41)

Note that, D(η) is a 5L× 5L matrix, which has a block structure, where each block has a dimension
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of L× L. The entries of D(η) in its main block diagonal are calculated as

E

{(
∂L(η)
∂ψR,p

)∗(
∂L(η)
∂ψR,q

)}
=2R{[RR,R][m,n]}, (A.42)

E

{(
∂L(η)
∂ψT,p

)∗(
∂L(η)
∂ψT,q

)}
=2R{[RT,T][m,n]}, (A.43)

E

{(
∂L(η)
∂µh

p

)∗(
∂L(η)
∂µh

q

)}
=2R{[Rh,h][m,n]}, (A.44)

E

{(
∂L(η)
∂µv

p

)∗(
∂L(η)
∂µv

q

)}
=2R{[Rh,h][m,n]}, (A.45)

E

{(
∂L(η)
∂αp

)∗(
∂L(η)
∂αq

)}
=[Rα,α]∗[m,n], (A.46)

where p, q ∈ {1, · · · , L},m = (p− 1)L+ p, n = (q − 1)L+ q,

RR,R = 1
σ2

(
Å

T
RÅ

∗
R ⊗CT

RC
∗
R
)
∈ CL

2×L2
(A.47)

RT,T = 1
σ2

(
Å

T
TÅ

∗
T ⊗CT

TC
∗
T
)
∈ CL

2×L2
(A.48)

Rh,h = 1
σ2

(
(B̊h)T(B̊h)∗ ⊗ (Ch)T(Ch)∗) ∈ CL

2×L2
(A.49)

Rv,v = 1
σ2

(
(B̊v)T(B̊v)∗ ⊗ (Cv)T(Cv)∗) ∈ CL

2×L2
(A.50)

Rα,α = 1
σ2

(
(Q̊v)T(Q̊v)∗ ⊗ (Cv)T(Cv)∗) ∈ CL×L (A.51)

where ÅR = [̊aR,1, · · · , åR,L] ∈ CNR×L, ÅT = [̊aT,1, · · · , åT,L] ∈ CTT×L, B̊
h = [̊bh

1, · · · , b̊
h
L] ∈ CT h

S ×L,
B̊

v = [̊bv
1, · · · , b̊

v
L] ∈ CT v

S ×L, and Q̊v = ΦT
vB

v ∈ CT v
S ×L, while åR,ℓ = jW HDMRa1D(ψR,ℓ), åR,ℓ =

jF TDMTa1D(ψT,ℓ), b̊
h
ℓ = jΦT

hD
h
MS
b1D(µh

ℓ ), b̊
v
ℓ = jΦT

vD
v
MS
b1D(µv

ℓ), andDM = diag{[0, · · · , (M − 1)]}.

Moreover, the entries of D(η) in its off block diagonals are calculated as

E

{(
∂L(η)
∂ψR,p

)∗(
∂L(η)
∂ψT,q

)}
=2R{[RR,T][m,n]}, (A.52)

E

{(
∂L(η)
∂ψR,p

)∗(
∂L(η)
∂µh

q

)}
=2R{[RR,h][m,n]}, (A.53)

E

{(
∂L(η)
∂ψR,p

)∗(
∂L(η)
∂µv

q

)}
=2R{[RR,v][m,n]}, (A.54)

E

{(
∂L(η)
∂ψR,p

)∗(
∂L(η)
∂αq

)}
=[RR,α]∗[m,n], (A.55)

E

{(
∂L(η)
∂ψT,p

)∗(
∂L(η)
∂µh

q

)}
=2R{[RT,h][m,n]}, (A.56)

E

{(
∂L(η)
∂ψT,p

)∗(
∂L(η)
∂µv

q

)}
=2R{[RT,v][m,n]}, (A.57)
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E

{(
∂L(η)
∂ψT,p

)∗(
∂L(η)
∂αq

)}
=[RT,α]∗[m,n], (A.58)

E

{(
∂L(η)
∂µh

p

)∗(
∂L(η)
∂µv

q

)}
=2R{[Rh,v]∗[m,n]}, (A.59)

E

{(
∂L(η)
∂µh

p

)∗(
∂L(η)
∂αq

)}
=[Rh,α]∗[m,n], (A.60)

E

{(
∂L(η)
∂µv

p

)∗(
∂L(η)
∂αq

)}
=[Rv,α]∗[m,n], (A.61)

where

RR,T = 1
σ4 (ÅT

R ⊗CT
R )Rn1,n2(Å∗

T ⊗C∗
T) ∈ CL

2×L2
(A.62)

RR,h = 1
σ4 (ÅT

R ⊗CT
R )Rn1,n3((B̊h)∗ ⊗ (Ch)∗) ∈ CL

2×L2
(A.63)

RR,v = 1
σ4 (ÅT

R ⊗CT
R )Rn1,n4((B̊v)∗ ⊗ (Cv)∗) ∈ CL

2×L2
(A.64)

RR,α = 1
σ4 (ÅT

R ⊗CT
R )Rn1,n4((Q̊v)∗ ⊗ (Cv)∗) ∈ CL

2×L2
(A.65)

RT,h = 1
σ4 (ÅT

T ⊗CT
T )Rn2,n3((B̊h)∗ ⊗ (Ch)∗) ∈ CL

2×L2
(A.66)

RT,v = 1
σ4 (ÅT

T ⊗CT
T )Rn2,n4((B̊v)∗ ⊗ (Cv)∗) ∈ CL

2×L2
(A.67)

RT,α = 1
σ4 (ÅT

T ⊗CT
T )Rn2,n4((Q̊v)∗ ⊗ (Cv)∗) ∈ CL

2×L2
(A.68)

Rh,v = 1
σ4 ((B̊h)T ⊗ (Ch)T)Rn3,n4((B̊v)∗ ⊗ (Cv)∗) ∈ CL

2×L2
(A.69)

Rh,α = 1
σ4 ((B̊h)T ⊗ (Ch)T)Rn3,n4((Q̊v)∗ ⊗ (Cv)∗) ∈ CL

2×L2
(A.70)

Rv,α = 1
σ2 ((B̊v)T ⊗ (Cv)T)((Q̊v)∗ ⊗ (Cv)∗) ∈ CL

2×L2
(A.71)

where Rna,nb
= E{nanH

b } and nb = vec{[N ](b)} ∈ CNRTTT
h
S T

v
S . Since e assume that N entries are in-

dependent and identically distributed zero mean and circularly symmetric Gaussian random variables
with variance σ2, everyRnanb

, a ̸= b, containsNRTTT
h
S T

v
S nonzero entries. Note that, the [d1, d2, d3, d4]th

entry of N ∈ CNR×TT×T h
S ×T v

S , i.e., [N ][d1,d2,d3,d4] equals to

[N ][d1,d2,d3,d4] =
[
[N ](1)

]
[d1,d2+(d3−1)TT+(d4−1)TTT h

S ]

=
[
[N ](2)

]
[d2,d1+(d3−1)NR+(d4−1)NRT h

S ]

=
[
[N ](3)

]
[d3,d1+(d2−1)NR+(d4−1)NRTT]

=
[
[N ](4)

]
[d4,d1+(d2−1)NR+(d3−1)NRTT]

=
[
[n(1)

]∗
[d2+(d3−1)TT+(d4−1)TTT h

S +(d1−1)TTT h
S T

v
S ]

=
[
[n(2)

]∗
[d1+(d3−1)NR+(d4−1)NRT h

S +(d2−1)NRT h
S T

v
S ]

=
[
[n(3)

]∗
[d1+(d2−1)NR+(d4−1)NRTT+(d3−1)NRTTT v

S ]

=
[
[n(4)

]∗
[d1+(d2−1)NR+(d3−1)NRTT+(d4−1)NRTTT h

S ] (A.72)
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A.6. Derivation of CRB to 4-way CP Tensor in (4.50)

Therefore, the corresponding indexes r1 and r2 such that [Rn1,n2 ][r1,r2] ̸= 0 are given as

r1 =d2 + (d3 − 1)TT + (d4 − 1)TTT
h
S + (d1 − 1)TTT

h
S T

v
S (A.73)

r2 =d1 + (d3 − 1)NR + (d4 − 1)NRT
h
S + (d1 − 1)NRT

h
S T

v
S . (A.74)

Similarly, the corresponding indexes r1 and r2 such that [Rn1,n3 ][r1,r2] ̸= 0, [Rn1,n4 ][r1,r2] ̸= 0,
[Rn2,n3 ][r1,r2] ̸= 0, [Rn2,n4 ][r1,r2] ̸= 0, [Rn3,n4 ][r1,r2] ̸= 0 can be obtained from (A.72).
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A.7. Nested PARAFAC Models
In this Appendix, we show how 4-way tensor Y defined in Subsection 5.3.2 can be illustrated as nested
PARAFAC decomposition as illustrated in Fig. 5.3. Let the 4-way measurement tensor Y to be given as

Y = X + N , (A.75)

where N is the 4-way noise tensor. Consider the 4-way tensor X ∈ CI1×J1×I2×J2

xi1,j1,i2,j2 =
R1∑
r1=1

R2∑
r2=1

a
(1)
i1,r1
· b(1)
j1,r1
· a(2)
i2,r2
· b(2)
j2,r2
· gr1,r2 . (A.76)

where xi1,j1,i2,j2 is the (i1, j1, i2, j2)th entry of the 4-way tensor X . As shown in [AF13], the above tensor
model can be seen as two nested 3-way tensors admitting PARAFAC models with shared G ∈ CR1×R2

as a common factor matrix. To show this, consider the following two 3-way tensors Z(1) ∈ CI1×J1×R2

and Z(2) ∈ CI2×J2×R1 defined as

z
(1)
i1,j1,r2

=
R1∑
r1=1

a
(1)
i1,r1
· b(1)
j1,r1
· gr1,r2 (A.77)

z
(2)
i2,j2,r1

=
R2∑
r2=1

a
(1)
i2,r1
· b(1)
j2,r2
· gr1,r2 . (A.78)

which correspond to PARAFAC decompositions of the Z(1) and Z(2) tensors with factor matrices
{A(1),B(1),GT} and {A(2),B(2),G}, respectively. We defineD(1) andD(2) as

D(1) = (A(1) ⋄B(1))G ∈ CK1×R2 , (A.79)

D(2) = (A(2) ⋄B(2))GT ∈ CK2×R1 , (A.80)

where Kn = InJn. Note that the matrix representations of Z(1) and Z(2) correspond to a contraction of
D(1) andD(2). Define the following quantities

d
(1)
k1,r2

= z
(1)
i1,j1,r2

, (A.81)

d
(2)
k2,r1

= z
(2)
i2,j2,r1

, (A.82)

where kn = (in − 1)Jn + jn, while d(1)
k1,r2

and d(2)
k2,r1

are (k1, r2)th and (k2, r1)th entries ofD(1) andD(2),
respectively. Therefore, the 3-way tensors Z(1) and Z(2) can be expressed as the matrices D(1) and
D(2), respectively. Then, we can rewrite (A.76) as two nested PARAFAC models as

xi1,j1,k2 =
R1∑
r1=1

a
(1)
i1,r1
· b(1)
j1,r1
· d(2)
k2,r1

(A.83)

xi2,j2,k1 =
R2∑
r2=1

a
(2)
i2,r2
· b(2)
j2,r2
· d(1)
k1,r2

, (A.84)

with corresponding factor matrices given as {A(1),B(1),D(2)} and {A(2),B(2),D(1)}, respectively.
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A.8. Symbols and Notations
j Imaginary unit (

√
−1)

e Euler number
π Pi

B Set of binary numbers, i.e., zero and one
R Set of real numbers
C Set of complex numbers

a, b, c Scalars
a, b, c Column vectors
A,B, C Matrices
A, B, C Tensors

[a][i] The ith element of the column vector a ∈ CI

[A][i,j] The (i, j)th element of the matrixA ∈ CI×J

[A][i,j,q] The (i, j, q)th element of the 3-way tensor A ∈ CI×J×Q

1P Column vector of ones of size P × 1
0P×Q Matrix of zeros of size P ×Q
1P×Q Matrix of ones of size P ×Q
IP Identity matrix of size P × P
ID,P Super-diagonal tensor of the order D and the super-diagonal are ones

and the rest of the elements is zero

∠(z) Argument (phase) of a complex variable z
diag(·) Transforms a vector to a square diagonal matrix.
undiag(·) Extracts the main diagonal of a square matrix and writes its elements

to a vector
blkdiag{X1, · · · ,XN} Transforms the matricesA1, · · · ,AN into a block diagonal matrix as

blkdiag{A1, · · · ,AN} =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...

0 0 · · · AN


vec{·} Transforms a matrix or a tensor to a column vector.
unvecP×Q{·} is the inverse operation of vec{·}, which transforms a vector into a matrix

of the size P ×Q.
rank(·) Rank of a matrix or a tensor
d-rank(·) d− rank(·) (multi-linear rank) of a tensor
k-rank(·) Kruskal rank of a matrix
E{·} Expected value
| · | Determinant of a matrix or absolute value of a scalar
⌈x⌉ Ceiling function

128



A. Appendices

⊔n Concatenation along the nth dimension

∥ · ∥2 Euclidean norm
∥ · ∥F Frobenius norm
∥ · ∥H Higher-order norm

z∗ Complex conjugate of z
(A)T Matrix transpose
(A)H Matrix conjugate transpose
(A)−1 Matrix inverse
(A)+ Moore-Penrose pseudo-inverse of matrix
(A) 1

2 Square root of matrixA can be computed via its SVD. LetA = UΣV H be the SVD ofA,
then (A) 1

2 = U(Σ) 1
2V H. Note that Matlab uses the algorithm in [DHR12] which is based on

blocked Schur decomoposition to improve the computation speed.

≈ Approximate

U(a, b) Uniform distribution from a to b
N (µ, σ2) Normal or Gaussian distribution for real valued random variable with mean µ and variance σ2

CN (µ,R) Complex Gaussian distribution with mean µ and covariance matrixR

A⊗B Kronecker product betweenA ∈ CN×M andB ∈ CP×Q (see Subsection 1.3)
A ⋄B Khatri-Rao product betweenA ∈ CN×M andB ∈ CP×M (see Subsection 1.3)
A⊙B Hadamard product betweenA ∈ CN×M andB ∈ CN×M (see Subsection 1.3)

A×nX n-mode product between A and a matrixX (see Subsection 1.3)
[A](n) n-mode unfolding of tensor A (see Subsection 1.3)

Big O Mathematical notation used to approximate the complexity of a given
function or an algorithm
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