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Abstract: This study introduces a compact Raman spectrometer with a 1064 nm excitation laser
coupled with a fiber probe and an inexpensive motorized stage, offering a promising alternative
to widely used Raman imaging instruments with 785 nm excitation lasers. The benefits of 1064 nm
excitation for biomedical applications include further suppression of fluorescence background and
deeper tissue penetration. The performance of the 1064 nm instrument in detecting cancer in
human bladder resectates is demonstrated. Raman images with 1064 nm excitation were collected
ex vivo from 10 human tumor and non-tumor bladder specimens, and the results are compared to
previously published Raman images with 785 nm excitation. K-Means cluster (KMC) analysis is
used after pre-processing to identify Raman signatures of control, tumor, necrosis, and lipid-rich
tissues. Hierarchical cluster analysis (HCA) groups the KMC centroids of all specimens as input. The
tools for data processing and hyperspectral analysis were compiled in an open-source Python library
called SpectraMap (SpMap). In spite of lower spectral resolution, the 1064 nm Raman instrument
can differentiate between tumor and non-tumor bladder tissues in a similar way to 785 nm Raman
spectroscopy. These findings hold promise for future clinical hyperspectral Raman imaging, in
particular for specimens with intense fluorescence background, e.g., kidney stones that are discussed
as another widespread urological application.

Keywords: bladder tumor; Raman imaging; 1064 nm; cluster analysis; Python toolbox

1. Introduction

Optical and spectral technologies offer many opportunities in intraoperative histopath-
ology [1]. Among the techniques that are already approved or close to being applied in
standard clinical practice for in vivo and ex vivo monitoring are Raman-based methods [2].
Raman spectroscopy probes inherent molecular vibrations without markers by inelastic
scattering of monochromatic laser light. The general advantages are no or minimal sam-
ple preparation, no need for extrinsic markers, and high specificity of the spectrum of
Raman-active vibrations. The main limitation of spontaneous Raman spectroscopy as
a biomedical tool is due to the weak scattering cross-sections of biomolecules and the
fluorescence emission of chromophores that overlap or obscure the Raman signals even
in trace amounts. Several Raman variants were developed in the past decade to over-
come this limitation, including (i) coherent Raman scattering [3,4], (ii) time-gated Raman
scattering [5], and (iii) shifted excitation Raman difference spectroscopy [6,7] that are all
experimentally complex, (iv) surface-enhanced Raman scattering [8,9] which requires com-
plex preparation protocols involving nanostructured surfaces or particles, and (v) data
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processing procedures [10,11] that require expert knowledge in data science. An alternative
approach that was developed more than two decades ago is spontaneous Raman spec-
troscopy with 1064 nm laser excitation. As this excitation wavelength is not absorbed by
most chromophores, the acquired Raman spectra are minimally affected by the fluorescence
background. The first technical realization used the Fourier transformation (FT) principle
with a liquid nitrogen-cooled germanium-based detector for the registration of Raman
spectra [12]. With the advent of dispersive spectrometers with holographic transmissive
gratings and indium gallium arsenide (InGaAs) based array detectors, a new generation of
versatile Raman instruments was developed that are compact, less expensive, and more sen-
sitive than FT–Raman systems [13,14]. In this work, a laser and spectrometer for 1064 nm
Raman spectroscopy are coupled with a fiber-optic Raman probe, an inexpensive motorized
stage, and a digital camera. As a first biomedical application, Raman images are collected
from bladder tissue specimens for tumor identification.

Bladder cancer is the 10th most frequently diagnosed cancer worldwide (source:
World Cancer Research Fund International [15]). Cystoscopy is the standard diagnostic
method followed by excision of surgical biopsies and pathological inspection [16]. Raman
spectroscopic-based techniques have been suggested as a complementary diagnostic tool
to assess bladder tissues ex vivo in thin sections or biopsies and in vivo during cystoscopy.
Raman papers in the context of bladder cancer between 2005 and 2022 have recently been
summarized [17]. Of particular relevance for the current work was the characterization of
bladder tissue using probe-based Raman spectroscopy [18]. As most Raman spectra in this
study were affected by an intense background, a data processing workflow was presented
to suppress the background. Subsequently, machine learning models distinguished tumor
from non-tumor with sensitivity and specificity of 92% and 93%, respectively, and low-
grade from high-grade tumor tissues with sensitivity and specificity of 85% and 83%,
respectively. More recent work demonstrated the combination of a 2D spectrogram along
with a convolutional neural network for the diagnosis of bladder cancer with an even
higher accuracy of 99.2% [19]. Here, upscaling techniques were used to transform 1D
Raman spectral data into a variety of 2D spectrograms. In addition, a weighted feature
fusion network was constructed which was employed to evaluate multiple spectrograms.
A translational approach introduced the combined use of in vivo Raman spectroscopy and
in vivo cryoablation to detect and remove the residual bladder tumor during transurethral
resection of bladder tumor (TURBT) [20]. First, reference Raman spectra were collected
from a group of 74 bladder cancer patients, and a machine learning model was trained
for classification. Then, an independent group of 26 patients accepted traditional TURBT,
whereas another group of 27 patients accepted TURBT, followed by Raman scanning
and cryoablation if Raman detected the existence of residual tumor. Interestingly, 2 in
27 patients had cancer recurrence in the Raman–Cryoablation group, while 8 in 26 patients
had cancer recurrence in the traditional TURBT group during follow-up. This shows how
the combined use of Raman and cryoablation can serve as adjuvant therapy to improve
therapeutic effects and reduce recurrence rates.

The current work applies for the first time an in-house developed dispersive 1064 nm
Raman instrument to collect Raman images from bladder tissue. The reduced background is
expected to simplify the data processing and to contribute to improved tumor identification.
The sample cohort consists of non-tumor and tumor specimens that were prepared from ten
human bladder resectates. The samples were already studied by 785 nm Raman microscopic
imaging [17] and the previous results are compared with the new results. As most bladder
specimens showed an unusually low background in the 785 nm Raman study, the Raman
analysis of four kidney stones were included in the discussion section. Two of them did
not give usable Raman spectra at 785 nm excitation, whereas high quality spectra were
acquired with the 1064 nm Raman system.
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2. Materials and Methods
2.1. Dispersive Raman Instrument with 1064 nm Excitation Laser

A schematic of the dispersive Raman instrument with a 1064 nm excitation laser is
depicted in Figure 1A. The compact spectrometer (Wasatch Photonics, Logan, UT, USA)
offered a spectral range of 250–1850 cm−1 using a holographic transmissive grating. The
spectral resolution was 10 cm−1 at a slit size of 50 µm. The spectrometer featured a
512-pixel InGaAs array detector (Hamamatsu G9214-512S, Hamamatsu, Japan, pixel size
25 × 500 nm), which was thermoelectrically cooled to −15 ◦C. A 1064 nm laser with a
linewidth < 0.1 nm corresponding to <0.9 cm−1 (Innovative Photonics Solution, Plainsboro
Township, NJ, USA) was coupled via a 105 µm multimode fiber to a Raman probe with a
focusing lens of numerical aperture 0.3, offering a working distance of 12 mm (Wasatch
Photonics, Logan, UT, USA). The Raman probe focused the laser to a spot diameter of
roughly 200 µm. A collection fiber with a 600 µm core diameter guided the Raman scattered
signal to the spectrometer. Raman images were acquired using an inexpensive three-
dimensional stage (SainSmart Genmitsu CNC 3018-PRO, Shanghai, China). A USB-coupled
full HD digital microscope camera (Facamword, Chicago, IL, USA) was installed next to
the fiber probe, and the offset between the microscope and Raman probe was calibrated to
define the region of interest. In-house LabVIEW (National Instruments, Austin, TX, USA)
routines were developed to control the components and spectra acquisition. Raman images
were acquired from bladder tissue samples with an exposure time of 10 s, laser power of
450 mW, and 400 to 500 µm step size.
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Figure 1. Dispersive Raman instrument with 1064 excitation laser (A) with fiber probe, microscope,
and motorized stage, and (B) hyperspectral processing algorithm provided by SpMap.

2.2. Data Analysis

The Python package SpMap performed all spectral processing [21]. The data process-
ing workflow is shown in Figure 1B. SpMap provides several pre-processing tools, such as
dark noise subtraction, wavelength and intensity calibration, cosmic ray correction, and fil-
tering of spectra below an intensity threshold. To suppress detector and probe background
noise, a dark spectrum (laser off) and probe background (laser on) without samples were
collected. Then, the fingerprint region from 500 to 1800 cm−1 was selected. An advanced
airPLS baseline correction [22] was applied to remove the remaining tissue and microscope
system backgrounds. Finally, all spectra were smoothed with a Savitzky-Golay filter [23]
and vector normalized.

After preprocessing, the first step involved the use of k-means cluster analysis (KMC)
in the spectral range 600–1800 cm−1 to identify the main spectral signatures in each sample,
such as control, tumor, necrosis, and lipid-rich tissues. KMC was also employed to reduce
the size of data to a few clusters and increase the signal-to-noise ratios because each cluster
centroid represents the mean of the cluster. These cluster centroids were then labeled
based on the sample origin, i.e., whether they originated from a non-tumor or a tumor
specimen. Hierarchical cluster analysis (HCA) was then performed in the spectral range
800–1150 cm−1 to arrange the KMC centroids found in the bladder tissue into the four
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categories, thereby reducing the computational cost. As the distance matrix in HCA can
become large and calculation of the dendrogram can become time-consuming for large
data sets, similar strategies have been applied before [24].

2.3. Study Population

The study used both non-tumor and tumor samples from ten human bladder resections
obtained from the tissue bank of the Comprehensive Cancer Centre Freiburg (Freiburg im
Breisgau, Germany). The samples were shipped on dry ice to Jena and stored at −80 ◦C
until 785 nm Raman experiments. After finishing the 785 nm data collection, the samples
were stored again in the −80 ◦C freezer until the 1064 nm Raman experiments. The size
of each sample was approximately 10 × 10 mm2, and measurements were performed in a
closed sample chamber without any sample preparation as described previously [17].

3. Results
3.1. K-Means Cluster Analysis of Tumor 3 and Control 5 Specimens

Figure 2 shows photomicrographs and KMC membership maps of control bladder
sample 5 (Figure 2A,B) and tumor bladder sample 3 (Figure 2C,D). The spectral results
followed the processing workflow shown in Figure 1B. Lipid-rich tissue can be found
both inside and around the tissue sample (Figure 2B). Control tissue is most abundant
in control specimen 5 (Figure 2B), and tumor tissue is most abundant throughout tumor
specimen 3 (Figure 2D). Figure 2E–G shows cluster centroid spectra in the fingerprint
region (600–1800 cm−1) of the control bladder, bladder tumor, and lipid-rich tissue, re-
spectively. The tumor and control signatures show bands at 1003/1004, 1250–1308, and
1653/1661 cm−1, which are characteristic of phenylalanine, amide III, and amide I vibra-
tions, respectively. Further bands at 858/859 and 930/939 cm−1 are assigned to collagen
triple helices of fibrous proteins that are more intense in control than in tumor bladder. Be-
sides the depleted collagen contributions, the band at 1076 cm−1 shifts toward 1091 cm−1,
which points to elevated DNA contributions in tumor tissue. The bands around 1655 cm−1

are broader for control and tumor bladder than for lipids because the amide I band, which
is a marker for protein secondary structures, has a larger width than the C=C band of
lipids. Spectra of lipid-rich tissue has strong signatures at 1077 cm−1 for C–C vibrations, at
1304 and 1446 cm−1, which are characteristic of CH2 bending vibrations, and at 1269 and
1663 cm−1, that are characteristic of C=CH and C=C vibrations, respectively, in unsaturated
lipids. Further spectral contributions in lipid-rich tissues are due to phosphate groups at
1077 cm−1 and C=O groups at 1746 cm−1, typical for phospholipids.

The 785 nm excited Raman spectra from the same specimens are included in
Figure 2E–G for comparison [17]. The overall signature and band positions agree well. The
main deviation near 1660 cm−1 is observed for the tumor (Figure 2F), which is tentatively
assigned to lower spectral contributions of water near 1640 cm−1 in the 1064 nm Raman
spectrum. Other deviations are related to the lower spectral resolution of the 1064 nm
instrument than the 785 nm instrument. The resolution of the 1064 nm data is further
affected by Savitzy–Golay smoothing, as indicated in Figure 1B. The lower resolution
broadens the bands, which is particularly evident for the phenylalanine band at 1004 cm−1.
Careful inspection of 785 nm Raman spectra resolves more bands of aromatic amino acids
at 621, 643, 756, 1031, 1209, 1548, 1584, 1606, and 1620 cm−1 (see also Table S1 in the Supple-
mentary Materials and spectra in the main text of Krafft et al. [17]). Another fine structure is
better resolved in 785 nm Raman spectra of lipids at 1065 (C–C vibration), 1082 (phosphate
vibration), and 1122 (C–C vibration) cm−1, which gives a broad envelope at 1077 cm−1

in 1064 nm Raman spectra. Such band overlap can be resolved by calculating the second
derivative of spectra. A previous Raman study of cell classification using spectra of spectral
resolution between 8 and 48 cm−1 demonstrated that the spectral information is not lost
but conserved in lower-resolution spectra [25]. Consistent with similar cell classification for
low- and high-resolution spectra in [25,26], tissue types could be distinguished by 1064 nm
and 785 nm Raman spectroscopy at lower and higher spectral resolution, respectively.
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Figure 2. K-means cluster analysis of Raman images: photomicrographs and cluster membership
maps of control bladder sample 5 (A,B) and tumor bladder sample 3 (C,D), and cluster centroid
spectra of control—C (E), tumor—T (F), and lipid-rich—L (G) tissues. Labels refer to 1064 nm
Raman spectra (red traces) that are overlaid with 785 nm Raman spectra (blue traces) from the same
specimens for comparison.

3.2. Overview of the Clustering Results of the Specimens

Table 1 summarizes the results of an HCA for which the KMC centroids of non-tumor
and tumor samples served as input. The dendrogram of the HCA in Figure 3 arranges the
centroids of 23 clusters into four groups, namely lipids—L, necrosis—N, tumor—T, and
control—C. Non-tumor and tumor samples 8 and tumor sample 4 did not give usable data
because of their carbon-like appearance, probably due to cauterization during surgery. It is
evident from Table 1 and Figure 3 that non-tumor specimens contain beside control and
lipid-rich tissue also tumor in 1 and 2, and vice versa, tumor specimens contain beside
tumor and necrosis also control tissue in 7 and 10. This is consistent with the previous
study and will be discussed in Section 4.

Table 1. Assignment of cluster membership of centroid Raman spectra: control (C), necrosis (N),
tumor (T), and lipid-rich tissue (L). Shaded entries are from previous work [17].

Specimen 1 2 3 4 5 6 7 8 9 10

Non-tumor L, T L, T L, N C L, C L. C C - L, C C
Non-tumor L, T T L, T L, C L, C L, C C C L, C L, C

Tumor N T T - N T C - T C
Tumor N T, L, N T T, L T, L, N T T - T, L L, N

The dendrogram arranges lipid-rich tissues of non-tumor specimens 1, 2, 3, 5, 6, and
9 in a well-separated group. Necrotic tissues are identified in non-tumor specimen 3 and
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tumor specimens 1 and 5. Tumor tissues are found in four tumor and two non-tumor
specimens and control tissue in six non-tumor and two tumor specimens.
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Figure 3. Dendrogram of hierarchical cluster analysis with k-means cluster centroids of Raman
spectra as input: tumor (red), lipid (orange), necrosis (green), and control (purple) in the spectral
region 800–1150 cm−1. The samples are labeled as non-tumor (N) and tumor (T) according to Table 1.

3.3. Variations of Raman Spectra of Tumor and Control Tissue

Figure 4 compares the four tumor-assigned clusters in tumor specimens and six control-
assigned clusters in non-tumor specimens. Control tissues tend to show more intense
collagen bands near 850 and 935 cm−1 relative to the phenylalanine band at 1006 cm−1

than tumor tissue. Therefore, HCA was performed in the spectral range 800–1150 cm−1.
Unspecific variations were evident for band positions and intensities in the spectral range
from 1150 to 1400 cm−1. Similarly, main bands near 1450 and 1660 cm−1 did not change
significantly, and the observed changes did not improve the separation of tissue classes.
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4. Discussion

Although the experimental parameters and data processing differed between 1064 nm
and 785 nm Raman instruments, the main spectral findings were consistent, as shown
by the summarized assignments in Table 1. Lipid and control tissues were detected
in non-tumor specimen 5, and tumor was detected in tumor specimen 3, both in this
work using the 1064 nm Raman probe system and in the previous work using a 785 nm
Raman microscope [17]. Overall, the results from both instruments agree better for non-
tumor specimens, according to Table 1, whereas discrepancies are more prevalent in tumor
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specimens. A difference in non-tumor 3 is the detection of necrosis at 1064 nm excitation
and tumor at 785 nm. Differences in tumor 5 are related to the detection of necrosis at
1064 nm excitation and tumor, lipid, and necrosis at 785 nm, and differences in tumor 7 are
the detection of control at 1064 nm and tumor at 785 nm. The discrepancies may originate
from variations in sample orientations and heterogeneities, which occurred when the
sample was returned to the vial after 785 nm experiments, frozen, thawed, and remounted
again into the holder for the 1064 nm experiments. During intraoperative frozen section
analysis, ink spots are commonly employed to mark the sample’s orientation within the
resection area, minimizing ambiguities. However, the spectral contributions of the ink may
interfere with the Raman results.

As a main difference between results from 1064 nm and 785 nm instruments, more
tissue types are identified at 785 nm excitation. For simplicity, in Table 1, epithelial tissue,
plastic, and pigment particles were not included, and they were detected at 785 nm excita-
tion but not at 1064 nm excitation. Possible explanations are the better spectral resolution of
4 cm−1 at 785 nm (instead of 10 cm−1 here), better lateral resolution at a step size of 250 µm
(instead of 400 to 500 µm here), and the vertex component analysis (VCA) algorithm. The
superior discriminatory power of VCA was already demonstrated to visualize individual
cell nuclei in Raman images of lung tissue [27] and 3D cell cultures [28]. KMC that was
applied here failed to resolve cell nuclei in the same data sets. Another factor for the
reduced discrimination ability could be the ca. twofold deeper penetration of 1064 nm
light than 785 nm light that was recently quantitatively assessed [29]. Whereas deeper light
penetration is beneficial for higher Raman intensities, signal detection from deeper tissue
layers may result in “spectral dilution”. This term was introduced in the context of infrared
imaging, where lower-resolved images failed to resolve spectral features [30]. Here, the
deeper penetration of 1064 nm light tends to probe more lipids in control tissue, as evident
from more intense lipid bands near 1076 and 1452 cm−1 (Figure 2E), and vice versa, more
proteins in lipid-rich tissue, as evident from more intense collagen bands near 860, 928,
1269 in amide III region, and 1655 cm−1 in amide I region (Figure 2G).

The dendrograms of the HCA show for 1064 and 785 nm data that tumor forms a
separate group and lipid-rich tissues are well separated from necrosis, tumor, and control.
Necrosis was arranged between the tumor and lipids here, whereas necrosis overlaps with
the control at 785 nm excitation. This can be explained by the selected spectral range
from 800 to 1150 cm−1 here and from 800 to 1380 cm−1 in reference [17]. Tumor tissue
is characterized by lower spectral contributions of collagenous proteins relative to non-
collagenous proteins, which is detectable in both spectral ranges. A smaller spectral range
was chosen due to unspecific variations that will be further studied in upcoming work.

In the urological context, Raman-based techniques also offer potential applications
in kidney diseases [31]. Raman spectroscopy of urinary calculi was already reviewed in
1997 [32], and progress in the analysis and classification of kidney stones has recently been
reported [33]. Raman spectra were used to identify cystine-type kidney stones [34], calcium-
oxalate-type kidney stones [35], and phosphate-type kidney stones [36]. Kidney stones are
known for their intense autofluorescence, which has even been used for experimental eval-
uation of human kidney stone fluorescence spectra [37]. Chemical bleaching of renal stones
was one approach to reduce fluorescence in Raman spectra at 532 nm laser excitation [38].
Other approaches analyzed human urinary stones by FT–Raman [39,40] and a portable
dispersive Raman system [14], both at 1064 nm excitation to suppress unwanted fluores-
cence background. Raman chemical imaging using a confocal Raman microspectrometer
generated maps of the constituents’ distribution in a case study of structural analysis of
kidney stones [41]. It was concluded that (i) a huge autofluorescence background interferes
with the detection of low-concentrated and poor Raman scatterers, and (ii) this analysis
is time-consuming. The Raman imaging spectrometer described here allows a faster and
more sensitive way to map kidney stones due to the larger laser diameter and absence of
fluorescence background. Furthermore, the lower confocality of our fiber probe instrument
would facilitate the mapping of uneven stone surfaces.
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Preliminary experiments in Figure 5 compare the quality of 1064 nm excited Raman
spectra of four kidney stones with 785 nm excited Raman spectra that were collected with
a state-of-the-art instrument (RNX1 microprobe, Kaiser Optical System, Ann Arbor, MI,
USA) used in a previous study [17]. A quantitative analysis of the signal-to-noise ratios is
complicated considering the quantum efficiency and the dark noise of InGaAs versus CCD
detectors, the exposure time, the laser intensity, and the wavelength−4 dependent light
scattering. According to this law, the scattered band intensities are expected to decrease by
a factor of 0.3 = 1064−4/785−4. Qualitative comparisons are given instead. With the same
exposure time of 5 s, the better signal-to-noise ratio with the 1064 nm instrument is due to
the higher laser power and enables to assign stone #1 to Ca2+ hydrogen phosphate. The
intensity of the 987 cm−1 band at 450 mW of the 1064 nm laser is estimated as 8000 counts
above a 2000 counts background, whereas the intensity of this band at 100 mW of the
785 nm laser (maximum power determined at the sample plane) is reduced to 2000 counts
above an elevated 10,000 counts background. To avoid detector saturation, the 785 nm
laser power was reduced to 25 mW, and the acquisition time was set to three exposures
of 2 s for stones #2 and #3 and six exposures of 1 s for stone #4, totaling 6 s. Despite the
reduced laser power, the background increases to 15,000, 100,000, and 200,000 counts for
stones #2, #3, and #4, respectively. The most intense bands in stone #2 at 1649, 1037, and
628 cm−1 show ca. 3000 counts above the background, and virtually no bands are resolved
in stones #3 and #4 with a darker appearance. At unchanged 1064 nm laser power and
5 s exposure time, acceptable background between 1000 and 10,000 counts and maximum
band intensities between 5000 and 20,000 counts enable to assign stone #3 to Ca2+ oxalate
monohydrate and stones #2 and #4 to cystine types. This clearly demonstrated the benefits
of 1064 nm Raman spectroscopy, and more data will be collected in the future.
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Figure 5. Photomicrographs and Raman spectra of kidney stones at 785 nm (blue traces) and 1064 nm
excitation (red traces). Unprocessed spectra are displayed at an appropriate intensity scale for
comparison. The scale of a ruler in mm units in #4 is also valid for #1 to #3.

The energy deposit of inelastic light scattering in Raman spectroscopy depends on
the wavelength and the absorption properties of the sample. The laser threshold, which
is allowed during endoscopy to excite Raman spectra without harming tissue, is under
debate [42]. An in vivo Raman study with 785 nm excitation to study atherosclerotic plaque
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depositions in blood vessels of a rabbit model used a fiber optic probe with a 100 µm
core diameter and 100 mW laser power without a focusing element and good Raman
spectra were acquired without noticeable photo-induced degradation [43]. The intensity
per area using a 200 µm focus diameter and 450 mW power of a 1064 nm laser is almost
equal to these conditions as the fourfold power is distributed over a four times larger area.
Considering the weaker absorption of 1064 nm than 785 nm light, the risk of phototoxic
effects is lower, and potential endoscopic applications are expected to be suitable with
dedicated fiber probes using 450 mW power at 1064 nm excitation.

5. Conclusions

A Raman system with a 1064 nm excitation laser was coupled to a fiber probe, a digital
microscope, and a motorized stage. The near-infrared excitation wavelength (λ) enabled
light penetration down to several hundred micrometers. The detection by a lens with NA
0.3 in combination with a 600 µm fiber core gave poor confocality but offered extracting
volumetric information from deeper tissue layers, which partly compensates for the lower
scattering intensity of factor 0.3 due to the λ−4 Rayleigh law. As a consequence of the
focus diameter near 200 µm, a high-precision motorized stage was not required, and an
inexpensive model was selected instead with a large scan range of 200 × 300 mm. Overall,
such a compact and versatile Raman instrument shows great potential for applied sciences,
in particular for samples with a high fluorescent background.

The performance of the 1064 nm Raman instrument was demonstrated for non-tumor
and tumor specimens of resected human bladders. Radical cystectomy is performed in
patients with high-grade, muscle-invasive tumor diseases. Due to previous treatments
such as endoscopic resection of non-muscle-invasive tumors and photodynamic therapy,
necrosis is often present beside lipid-rich, control, and tumor tissue. Preprocessing of
1064 nm Raman images by baseline correction, smoothing, and normalization followed
by processing with KMC and HCA revealed four clusters that were assigned to necrosis,
lipid-rich, control, and tumor tissue. The findings agreed well with Raman images at
785 nm of these specimens. Deviations between 1064 nm and 785 nm Raman data sets
might be due to different sample orientations. Proper correlation with the histopathological
gold standard of parallel hematoxylin and eosin-stained tissue sections is also impaired
by different orientations. Resected tissue can be stained by inks to label the orientation,
e.g., to assess the tumor margin. However, these inks give intense Raman signals and/or
high backgrounds that interfere with the spectral fingerprint of tissue. The 1064 nm option
would be interesting for Raman imaging of intraoperative specimens with ink labels because
inks do not contribute to 1064 nm excited Raman spectra. Another interesting urological
application of a portable dispersive 1064 nm fiber probe Raman imaging spectrometer
is the assessment of kidney stones whose Raman spectra are often affected by intense
fluorescence at visible excitation wavelengths. It was shown that the identification of the
stone type failed in two cases with the 785 nm Raman instrument and was successful in all
cases with the 1064 nm instrument.
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