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Abstract: In wounded Arabidopsis thaliana leaves, four 13S-lipoxygenases (AtLOX2, AtLOX3, AtLOX4,
AtLOX6) act in a hierarchical manner to contribute to the jasmonate burst. This leads to defense
responses with LOX2 playing an important role in plant resistance against caterpillar herb-ivory.
In this study, we sought to characterize the impact of AtLOX2 on wound-induced phytohormonal
and transcriptional responses to foliar mechanical damage using wildtype (WT) and lox2 mutant
plants. Compared with WT, the lox2 mutant had higher constitutive levels of the phytohormone
salicylic acid (SA) and enhanced expression of SA-responsive genes. This suggests that AtLOX2 may
be involved in the biosynthesis of jasmonates that are involved in the antagonism of SA biosynthesis.
As expected, the jasmonate burst in response to wounding was dampened in lox2 plants. Generally,
1 h after wounding, genes linked to jasmonate biosynthesis, jasmonate signaling attenuation and
abscisic acid-responsive genes, which are primarily involved in wound sealing and healing, were
differentially regulated between WT and lox2 mutants. Twelve h after wounding, WT plants showed
stronger expression of genes associated with plant protection against insect herbivory. This study
highlights the dynamic nature of jasmonate-responsive gene expression and the contribution of
AtLOX2 to this pathway and plant resistance against insects.

Keywords: AtLOX2; jasmonate; 13S-lipoxygenase; transcriptome; wounding

1. Introduction

In addition to their roles in plant development, such as root elongation and pollen
development [1,2], jasmonates are most recognized for their critical role in induced plant re-
sistance to necrotrophic pathogens and chewing insect herbivores [3]. In Arabidopsis thaliana
(arabidopsis), jasmonate biosynthesis is initiated from chloroplast membrane-derived galac-
tolipids generating α-linolenic acid (18:3) upon wounding or recognition of pathogen or
insect attack [1,4,5]. A stromal 13S-lipoxygenase (LOX) then catalyzes the oxygenation of
α-linolenic acid at the 13C position, producing (13S)-hydroperoxyoctadecatrienoic acid
(HPOA). Through sequential reactions catalyzed by allene oxide synthase (AOS) and
allene oxide cyclase (AOC), HPOA is converted to the active phytohormone (9S,13S)-
12-oxo-phytodienoic acid (OPDA), which is transported from the chloroplast by JASSY
transporters [6–8]. Through the CTS/PXA1 transporters [9], OPDA is transported from
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the chloroplast to the peroxisome and converted to jasmonic acid (JA) through reduction
followed by β-oxidation. JA is exported to the cytosol, possibly through the transporter
AtJAT2 [10], where it is conjugated to isoleucine, a step catalyzed by jasmonate-resistant 1
(JAR1) [11], to form the bioactive (+)-7-iso-jasmonoyl-isoleucine (JA-Ile) [12]. The resultant
JA-Ile enters the nucleus via AtJAT1 to bridge jasmonate-ZIM domain (JAZ) transcriptional
repressors to the SCFCOI1 complex that ubiquitinates the JAZ protein, targeting them for
degradation by the 26S-proteosome [13–15]. Removal of JAZ proteins releases MYC tran-
scription factors from the JAZ-NINJA-TOPLESS repressor complex, allowing MED25 to
interact with the MYC transcription factors and jasmonate-responsive transcript expression
to occur, leading to gene expression involved in plant defenses [16,17].

In arabidopsis, jasmonate signaling leads increased foliar levels of glucosinolates
(GSLs), S- and N-rich specialized metabolites that contribute protection against insects and
pathogens [18–20]. In the leaves, GSLs are spatially separated from their activating en-
zyme, myrosinase [21]. Herbivore damage disrupting foliar tissue allows contact between
the myrosinases and GSLs, resulting in the hydrolysis of the thioester bond and releas-
ing an unstable compound that undergoes rearrangement to produce toxic compounds
such as isothiocyanates, thiocyanates and nitriles [18]. Though both aliphatic and indolic
GSLs may negatively affect insect herbivores, in general, aliphatic GSLs have a stronger
negative impact on generalist caterpillar herbivores while indolic GSLs negatively affect
aphids [22–26].

Given the increase in jasmonates within seconds after wounding [27,28], jasmonate
biosynthetic enzymes are thought to be constitutively present and regulated both tran-
scriptionally and post-translationally in response to stress [29,30]. Indeed, an enzyme that
catalyzes an early step in jasmonate biosynthesis, AtLOX2, is constitutively phosphorylated
at Ser600 and dephosphorylated in wounded plants [31]. In vitro studies using phosphovari-
ants confirmed that phosphorylation of AtLOX2 at Ser600 may affect enzyme activity with
lower activity observed in the phosphomimics (Ser600-to-Asp, Ser600-to-Met) compared
with the unphosphorylated WT (Ser600) or phosphonull variants (Ser600-to-Ala) [32]. This
is likely due to the fact that Ser600 phosphorylation interferes with the positioning of the
substrate on the enzyme active site.

13S-LOXs, such as AtLOX2, catalyze the addition of oxygen to the 13-position of a
chloroplast membrane-derived polyunsaturated fatty acid, typically α-linolenic acid. In
arabidopsis, there are four functional 13S-LOXs, AtLOX2, AtLOX3, AtLOX4 and AtLOX6,
that contribute to the jasmonate burst. A hierarchy is noted where LOX2 and LOX6
activity results in jasmonate production that leads to the expression of AtLOX2, AtLOX3
and AtLOX4 [33]. Thus, AtLOX2 contributes to the early foliar jasmonate burst, as does
AtLOX6, and is primarily associated with mesophyll and bundle sheath cells and important
in local signaling [27,28,33]. In contrast, AtLOX6 is localized near the vasculature and
likely plays an important role in long-range jasmonate signals. AtLOX3 and AtLOX4 are
associated with the xylem and phloem, respectively, and are responsible for later (4 h after
wounding) jasmonate biosynthesis, along with AtLOX2.

Even though these four functional AtLOXs contribute to jasmonate biosynthesis in
response to plant stress, AtLOX2 is thought to be the most important for plant resistance
against caterpillar herbivory [28,33]. Generalist caterpillars of the Egyptian cotton leafworm,
Spodoptera littoralis, gained nearly twice the biomass when reared on the lox2 mutant
compared with WT or lox3/4/6 plants [33]. As well, LOX2 activity results in singlet oxygen
(1O2) production in wounded leaf tissue, which may affect transcriptional responses [34,35].

In this study, we seek to dissect the role of AtLOX2 in plant defense further by compar-
ing wound-induced responses after foliar wounding of Col-0 and the loss-of-function lox2
mutant. We combined bioinformatic analyses of transcriptomics data with phytohormone
and GSL analyses focusing on phytohormone signaling and 1O2-responsive gene expres-
sion as well as GSL metabolism. Our results show that constitutive AtLOX2-associated
jasmonate biosynthesis may be involved in antagonizing salicylic acid (SA) levels. In
wounded arabidopsis, AtLOX2 exerts a high degree of control on the plants’ response to
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damage. In particular, the mechanically damage-associated jasmonate burst was lower in
the lox2 mutant, which is reflected in the reduced expression of late wound-induced genes.

2. Results

Arabidopsis has four functional 13S-LOXs involved in the biosynthesis of jasmonates
in response to wounding or biotic stresses, such as insect herbivory or pathogens, making it
complex to tease out the role of individual enzymes in plant resistance [36]. In wounded ara-
bidopsis leaves, these proteins work in a hierarchical arrangement with AtLOX2, primarily
contributing to plant resistance against caterpillar herbivory [33]. Using a lox2 mutant [28],
we conducted a time course transcriptomic experiment to understand the role of AtLOX2
in the plant response to wounding, particularly in connection to plant protection.

2.1. Transcriptome Profiling and Mapping onto the Arabidopsis Genome

After processing to remove the adaptor and poor-quality reads, RNA-Seq produced
an average of 39.7 million 100 bp reads per sample, all with a Pfred score at or above 20.
The high-quality reads were aligned with the arabidopsis TAIR10 genome with an average
mapping efficiency of 97.8% uniquely mapped reads (Supplemental Table S4).

2.2. Constitutive Phytohormone and Gene Expression Levels

Constitutively, gene expression was highly conserved between the two genotypes
(~20,469 genes) (Figure 1A); less than 1% were differentially expressed between WT and
lox2 at any time point. In WT plants compared with lox2 mutants, there was an increase
in specialized metabolism, glutathione metabolism and phenylpropanoid biosynthesis
(Figure 1B,C). However, some pathogen resistance-related genes had higher expression
levels in lox2 plants compared with WT plants, which may reflect the increased SA levels
in these plants (Figure 2). These transcripts included genes that encode enzymes in SA
biosynthesis (i.e., AtICS1, AtCM3, AtAIM1 [37]) and SA-responsive genes (i.e., AtPR1,
AtNIMIN1, AtNIMIN2, AtGRXS13 [38]). In contrast, constitutive levels of the jasmonate
phytohormone OPDA and JA were higher in WT plants compared with the lox2 mutant
(Figure 3A,B).
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Figure 1. Foliar constitutive gene expression. (A): Venn diagram of constitutive genes differentially 
expressed between wildtype (WT) and lox2 Arabidopsis thaliana plants at two time points (1 and 12 
h). Differentially expressed genes between the different treatments and times were determined by 
DESeq2 (p-value (padj) ≤ 0.05 and log2 fold change ≥2 or ≤−2). (B): Gene set enrichment analysis 
(GSEA) and ridgeline plot highlighting constitutive metabolic pathways differentially expressed be-
tween WT and lox2 plants at 1 h. (C): GSEA and ridgeline plot highlighting constitutive metabolic 
pathways differentially expressed between WT and lox2 plants at 12 h. The ridgeline plot visualizes 
the distribution of differential enrichment categories identified by GSEA. Significantly differentially 
expressed pathways in ridgeline plots are indicated in green. 
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Figure 1. Foliar constitutive gene expression. (A): Venn diagram of constitutive genes differentially
expressed between wildtype (WT) and lox2 Arabidopsis thaliana plants at two time points (1 and
12 h). Differentially expressed genes between the different treatments and times were determined by
DESeq2 (p-value (padj) ≤ 0.05 and log2 fold change ≥2 or ≤−2). (B): Gene set enrichment analysis
(GSEA) and ridgeline plot highlighting constitutive metabolic pathways differentially expressed
between WT and lox2 plants at 1 h. (C): GSEA and ridgeline plot highlighting constitutive metabolic
pathways differentially expressed between WT and lox2 plants at 12 h. The ridgeline plot visualizes
the distribution of differential enrichment categories identified by GSEA. Significantly differentially
expressed pathways in ridgeline plots are indicated in green.

2.3. Arabidopsis Responses to Foliar Damage

After wounding, the levels of JA and JA-Ile rose in damaged rosette leaves in both or
only WT genotypes, respectively (Figure 3B,C). As expected, levels of these phytohormones
were ~7.5 times higher in WT than the lox2 mutant. Jasmonate signaling is dynamic
with the early expression of genes encoding biosynthetic enzymes and positive regulators
(Figure 3D) [39–41]. In addition, the jasmonate burst is tempered either by catabolizing
jasmonates to a less active form or by the activity of JAZ proteins that bind to and repress
MYC2/3/4 transcription factors [42,43].

In WT plants, 324 genes were differentially expressed in response to wounding, with
252, 58 and 14 expressed early, late or at both time points, respectively. At 1 h after
wounding, a strong increase in the expression of transcripts that encode proteins involved
in α-linolenic and linoleic acid biosynthesis, phytohormone and MAPK signaling, terpenoid
biosynthesis and wound healing (cutin, suberin and wax biosynthesis) as well as redox
metabolism (glutathione metabolism) was observed (Figure 4A,B,E,F). Though most of the
processes observed 1 h post-damage were also observed later, there was also an increase in
primary metabolic pathways 12 h after wounding. In contrast, though the same general
pathways were upregulated in the lox2 mutant (Figure 4C,D), fewer genes were strongly
expressed (Figure 4G,H).
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Figure 2. Foliar salicylic acid (SA) levels and SA-related gene expression. Four-week-old Arabidopsis
thaliana wildtype (WT) or lox2 plants were left undamaged (U) or wounded (W) with a hole punch on
each fully expanded rosette leaf and harvested 1 or 12 h post-damage. (A): Foliar salicylic acid (SA)
levels. (B): Constitutive expression of genes involved in SA biosynthesis and SA-responsive gene
expression. Phytohormone levels are represented by the mean ± SE. Differences in phytohormone
levels were determined by two-factor analysis of variance (2-factor ANOVA) (factors: genotype, treat-
ment) followed by Tukey HSD (Supplemental Table S2). A hashtag (#) indicates genotype differences.
Heatmaps visualize constitutive gene expression (wildtype—1 h (WT-1), wildtype—12 h (WT-12),
lox2—1 h (lox2-1), lox2—12 h (lox2-12)). Genes: ICS1/SID2/EDS16 (At1g74710), EDS5 (At4g39030),
PBS3 (At5g13320), EPS1 (At5g67160), CM1 (At3g29200), CM3 (At1g69370), PAL1 (At2g37040), PAL2
(At3g53260), PAL4 (At3g10340), AIM1 (At4g29010), NIMIN1 (At1g02450), NIMIN2 (At3g25882),
WRKY38 (At5g22570), LLP (At5g03350), PR1 (At2g14610), GRX480/ROXY19 (At1g28480), GRXS13
(At1g03850), OPR1 (At1g76680), UGT74F1 (At2g43840), UGT76B1 (At3g11340), BSMT1 (At3g11480).
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Figure 3. Foliar jasmonate levels and jasmonate-related gene expression. Four-week-old Arabidopsis
thaliana wildtype (WT) or lox2 plants were left undamaged (U) or wounded (W) with a hole punch
on each fully expanded rosette leaf and harvested 1 or 12 h post-damage. Jasmonate levels 1 h after
wounding: (A): 12-oxo-phytodienoic acid (OPDA), (B): jasmonic acid and (C): 7-jasmonyl-isoleucine
(JA-Ile). (D): Foliar wound-induced jasmonate-related gene expression (1 and 12 h). Phytohormone
levels are represented by the mean ± SE. Differences in phytohormone levels were determined by
two-factor analysis of variance (2-factor ANOVA) (Factors: genotype, treatment) followed by Tukey
HSD (Supplemental Table S2). An asterisk (*) indicates wound-induced phytohormone levels and
a hashtag (#) represents genotype differences. Wound-induced genes were determined by DESeq2
(p-value (padj) ≤ 0.05 and log2 fold change ≥2 or ≤−2). Heatmaps visualize wound-induced gene
expression (wildtype—1 h (WT-1), wildtype—12 h (WT-12), lox2—1 h (lox2-1), lox2—12 h (lox2-
12)). Genes: LOX2 (AT3g45140), LOX3 (At1g17420), LOX4 (At1g72520), AOC1 (At3g25760), AOC3
(At3g25780), OPR3 (At2g06050), OPCL1 (At1g20510), At1g20490, FBS1 (At1g61340), MYC2 (At1g32640),
JAZ1 (At1g19180), JAZ5 (At1g17380), JAZ7 (At2g34600), JAZ8 (At1g30135), JAZ10 (At5g13220), JAZ13
(At3g22275), JOX2 (At5g05600), JOX3 (At3g55970), JOX4 (At2638240), CYP94B1 (At5g63450), CYP94B3
(At3g48520), CYP94C1 (At2g27690), ST2A (At5g07010), JID1 (At1g06620), ORA47 (At1g74930), ORA59
(At1g6160), VSP1 (At5g24780), THI2.1 (At1g72260), GRX480/ROXY19 (At1g28480).
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Figure 4. Wound-induced foliar gene expression. Four-week-old Arabidopsis thaliana wildtype (WT)
or lox2 plants were wounded with a hole punch on each fully expanded rosette leaf and harvested at
1 and 12 h. Gene set enrichment analyses (GSEA) and ridgeline plots of WT (1 h) (A,E), WT (12 h)
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(B,F), lox2 (1 h) (C,G) and lox2 (12 h) (D,H). Wound-induced differentially expressed genes (DEGs)
were determined by DESeq2 (p-value (padj) ≤ 0.05 and log2 fold change ≥2 or ≤−2). The ridgeline
plot visualizes the distribution of differential enrichment categories identified by GSEA. Significantly
differentially expressed pathways in ridgeline plots are indicated in green.

In general, WT and lox2 plants showed similar wound-induced responses (Figure 5A,D).
One hour post-damage, out of the 249 wound-induced genes observed in WT plants,
81% were also induced in damaged lox2 (Figure 5A,B). A stronger difference in wound-
induced gene expression between WT and lox2 plants was observed 12 h after wounding
(Figure 5D,E). At this time point, only 76 wound-induced genes were identified in WT and
shared 31% gene expression with damaged lox2.
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Figure 5. Wound-induced foliar gene expression: Patterns. Four-week-old Arabidopsis thaliana
wildtype (WT) or lox2 plants were wounded with a hole punch on each fully expanded rosette leaf
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and harvested at 1 and 12 h. Wound-induced genes fell into six general expression patterns visualized
by heatmaps. Early gene expression (peak at 1 h): (A) general-both genotypes, (B) WT and (C) lox2.
Later gene expression (peak 12 h): (D) general-both genotypes, (E) WT and (F) lox2. Wound-
induced genes were determined by DESeq2 (p-value (padj) ≤ 0.05 and log2 fold change ≥2 or ≤−2)
(Supplemental Table S5). Heatmaps visualize gene expression (undamaged-U, wound-W, 1 h-1,
12 h-12).

Based on this, wound-induced gene expression patterns were divided into six dis-
tinct groups as follows: Pattern 1—general early (1 h) wound-induced gene expression
(Figure 5A), Pattern 2—early (1 h) wound-induced gene expression with higher expression
in WT plants (Figure 5B), Pattern 3—early (1 h) wound-induced gene expression with
higher expression in lox2 plants (Figure 5C), Pattern 4—general late (12 h) wound-induced
gene expression (Figure 5D), Pattern 5—late (12 h) wound-induced gene expression with
higher expression in WT plants (Figure 5E) and Pattern 6—late (12 h) wound-induced gene
expression with higher expression in lox2 plants (Figure 5F).

2.4. Pattern 1: General Early Wound-Induced Gene Expression

In this group, wound-induced gene expression is higher at 1 h and typically returned to
near-basal levels at 12 h in both genotypes (Figure 5A, Supplemental Table S5A). One hour
post-damage, the expression of genes encoding proteins involved in jasmonate biosyn-
thesis and signaling were strongly upregulated in both genotypes (i.e., AtLOX3, AtLOX4,
AtLOX6, AtAOC1, AtAOC3, AtOPR3, AtOPCL1 and AtORA47 [39–41]) (Figure 3D). In
addition, genes encoding proteins involved in jasmonate anabolism (i.e., AtJOX2, AtJOX4,
AtCYP94B1, AtCYP94B3, AtILL6 and AtJID1 [44–48]) and JAZ proteins (AtJAZ1, AtJAZ2,
AtJAZ5, AtJAZ7, AtJAZ8, AtJAZ10, AtJAZ13 [42,43]) were also induced.

In line with this, jasmonate-responsive genes were among the early responding genes
including those that encode enzymes in volatile biosynthesis (i.e., AtTPS04/GES, At-
CYP82G1 [49,50]), enzymes involved in sealing damaged tissue (i.e., AtPP2-A5 [51]), tran-
scription factors (i.e., AtRRTF1, AtWRKY40, AtRAP2.6 [52–56]) and proteins involved in
plant defense against pathogens or insects (i.e., AtTI6, AtMAPKKK21 [57,58]).

Gene expression associated with other phytohormones and their signaling pathways
that may be involved in crosstalk were also observed. Wound-induced expression of
AtGA2OX6 and AtGA2OX8, encoding enzymes that oxidize gibberellins lowering their
availability [59], as well as the negative growth regulator DELLA protein AtRGAL3 [60,61],
may reflect the shift from growth to defense [62]. Even though abscisic acid (ABA) lev-
els were not affected by wounding (Supplemental Figure S1), a number of ABA-related
genes were induced 1 h after wounding. The expression of the ABA receptor AtPYL6 and
ABA-responsive genes (i.e., AtRAS1, AtERD7, AtOSCA1.4, AtERD10, AtCOR78 [63–67])
were upregulated early after foliar damage. ABA-related responses help minimize wa-
ter loss from damaged leaves as well as enhance plant defense responses [68–70]. In
response to wounding, synergistic defensive responses between jasmonates and ethy-
lene are often observed [71]; genes encoding ethylene biosynthetic enzymes (i.e., AtCSP2
and AtACS8) and ethylene responses (i.e., AtERF2 and AtRAP2.6) were noted in early
wound-induced responses.

LOX2 has been implicated in wound-associated, chloroplastic generation of 1O2 [34,35].
Comparing transcript expression of 66 1O2-responsive genes in our damaged foliar tis-
sues 1 h post-wounding [72,73], a genotype-difference in wound-induced 1O2-responsive
transcript expression was not observed (Supplemental Figure S2).

2.5. Pattern 2: Early Wound-Induced Gene Expression in WT Plants

In general, genes in this group were often wound-induced in both WT and lox2 but
showed earlier, higher expression levels in WT plants (Figure 5B, Supplemental Table
S5B). These early damage-induced genes include transcriptional regulators of jasmonate
responses (i.e., AtORA59 [74]) as well as jasmonate- and wound/insect-responsive genes
(i.e., AtTHI2.1, AtTPS03, AtCYP81D11 [75–78]).
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2.6. Pattern 3: Early Wound-Induced Gene Expression in lox2 Plants

Likely reflecting elevated SA levels (Figure 2, Supplemental Table S5C), SA-responsive
genes (AtAIG1, AtCRK13 [79,80]) were expressed at higher levels in wounded lox2 mutants
compared with WT plants (Figure 5C).

2.7. Pattern 4: General Late Wound-Induced Gene Expression

Pattern 4 shows wound-induced genes in both genotypes that were more highly
expressed 12 h after mechanical damage (Figure 5D, Supplemental Table S5D). Late
wound-induced genes in both plant genotypes include AtPDFL2.1, AtNATA1, AtRD20,
AtPRN1, AtPPTE/AtCRSH and AtRNS1. Genes encoding enzymes in lignin biosynthe-
sis (i.e., AtCAD8, AtPRX52) may also contribute to wound-induced lignin deposition
(Figure 6) [81,82].
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Figure 6. Wound-induced genes involved in polyphenol biosynthesis. Four-week-old Arabidopsis
thaliana wildtype (WT) or lox2 plants were wounded with a hole punch on each fully expanded
rosette leaf and harvested at 1 or 12 h. (A) Transcriptional regulators and (B) biosynthetic genes.
Wound-induced genes were determined by DESeq2 (p-value (padj) ≤ 0.05 and log2 fold change ≥2 or
≤−2). Heatmaps visualize wound-induced gene expression (wildtype—1 h (WT-1), wildtype—12 h
(WT-12), lox2—1 h (lox2-1), lox2—12 h (lox2-12)). Genes: TTG2 (At2g37260), TT8 (At4g09820),
GL3 (At5g41315), PAP1 (At1g56650), MYB113 (At1g66379), 4CL (At1g20490), TT7 (At5g07990), DFR
(At5g42800), LDOX (At4g22880), UF3GT (At5g54060), At4g14090, 3AT1 (At1g03840), 3AT2 (At1g03495),
GSTF12 (At5g17220), 5MAT (At3g29590), MYB15 (At3g23250), CAD8 (At4g37990), PRX52 (At5g05340),
SST/SCPL9 (At2g23010).
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2.8. Pattern 5: Late Wound-Induced Gene Expression in WT Plants

Most late-induced genes showed higher expression in WT plants compared with
lox2 plants 12 h post-damage (Figure 5E, Supplemental Table S5E). This likely reflects the
expression of genes encoding enzymes in jasmonate biosynthesis (AtLOX2, At4CL8) and
signaling (AtMYC2) that were more highly expressed in wounded WT compared with lox2
plants [4]. Jasmonate-responsive genes involved in plant resistance to insect herbivory, such
as AtHPL/AtCYP74B2, which encodes an enzyme involved in volatile biosynthesis [83],
AtCLH1, AtKTI3, AtTI1, AtARGAH2 and AtMAPKKK17, reflect this pattern [58,84–86].
Genes involved in antioxidant pathways are upregulated in wounded WT plants, including
those that encode proteins involved in the ascorbate/glutathione cycle (i.e., AtDHAR1 [87])
and anthocyanin biosynthesis (i.e., AtPAP1, AtTT8, AtGL3, AtTTG2, At4CL, AtTT7, AtDFR,
AtLDOX, AtUF3GT, At1g14090, At3AT1, At3AT2, AtGSTF12, At5MAT [88–90]) (Figure 6).
Of note, AtTTG1 and AtGL3 also regulate trichome development [91].

2.9. Pattern 6: Late Wound-Induced Gene Expression in lox2 Plants

Only a few genes showed lox2-specific late wound-induced expression (Figure 5F,
Supplemental Table S5F). Expression of the SA-responsive gene AtPRLIP2 was observed in
wounded lox2 mutants [92,93].

2.10. Glucosinolates

Constitutively or 12 h post-wounding, the foliar GSL profile did not differ between
the two genotypes, reflecting the gene expression profile of GSL biosynthetic enzymes
(Figure 7A). However, genes encoding GSL transcriptional regulators and biosynthetic
enzymes show a strong diurnal cycle with stronger expression in the light phase, particu-
larly for genes involved in aliphatic GSL biosynthesis (Figure 7B). Genes encoding indole
GSL methyltransferase1 (AtIGMT1), the GSL transporter AtNPF2.10 and lectin JAL23 (a
polymerization factor and putative activator of the myrosinase PYK10 [94]) showed strong
wound-induction in WT plants.
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expanded rosette leaf and harvested at 1 and 12 h. (A) Foliar aliphatic and indolic GSL levels in
undamaged (U) and wounded (W) WT and lox2 plants taken 12 h after mechanical damage. (B) GSL
pathway illustrating transcriptional activators, biosynthetic enzymes and other GSL-related pro-
teins. Gene expression in (C) undamaged and (D) mechanically damaged arabidopsis rosettes.
Glucosinolate levels are represented by the mean ± SE. Differences in GSL levels were deter-
mined by a two-factor analysis of variance (2-factor ANOVA) (factors: genotype (WT or lox2),
treatment) followed by Tukey HSD (Supplemental Table S3). Heatmaps visualize gene expres-
sion (for C: wildtype—1 h (WT-1), wildtype—12 h (WT-12), lox2—1 h (lox2-1), lox2—12 h (lox2-
12); for D: wildtype undamaged—WT-U, wildtype wounded—WT-W, lox2 undamaged—lox2-U,
lox2 wounded—lox2-W)). Genes: BCAT4 (At3g19710), MAM1 (At5g23010), MAM3 (At5g23020),
CYP79F1 (At1g16410), CYP79F2 (At1g16400), CYP83A1 (At4g13770), SUR1 (At2g20610), UGT74B1
(At1g24100), UGT14C1 (At2g31790), SOT18 (At1g74090), SOT17 (At1g18590), FMOGS-OX1 (At1g65860),
FMOGS-OX5 (At1g12140), APO2 (At5g57930), MYB28 (At5g61420), MYB29 (At5g07690), MYB76
(At5g07700), NPF2.10 (At3g47960), JAL23 (At2g39330), CYP79B2 (At4g39950), CYP79B3 (At2g22330),
CYP83B1 (At4g31500), UGT74B1 (At1g24100), SOT16 (At1g74100), CYP81F4 (At4g37410), CYP81F1
(At4g37430), CYP81F2 (At5g57220), CYP81F3 (At4g37400), IGMT1 (At1g21100), MYB34 (At5g60890),
MYB51 (At1g18570).

3. Discussion

Our results highlight the transcriptional dynamics of wound-induced jasmonate
biosynthesis and the importance of AtLOX2 in sustained jasmonate signaling leading
to plant resistance against insect herbivores.

3.1. The Dynamic Jasmonate Burst

Early wound-induced genes in both genotypes include enzymes in the jasmonate
biosynthetic pathway (i.e., AtLOX3, AtLOX4, AtAOC1, AtAOC3, AtOPR3, AtOPCL1 [4])
and transcriptional regulators (i.e AtORA47) (Pattern 1, Figure 5A). ORA47 coordinates the
expression of genes that encode jasmonate and ABA biosynthetic enzymes as well as in the
general jasmonate-responsive stress network [41,95,96]. The expression of later genes that
encode jasmonate biosynthetic enzymes (i.e., AtLOX2, At4CL8, At1g20490 (putative) [4,97])
were generally higher in WT compared with lox2 plants (Pattern 5, Figure 5E). This was
reflected in the expression of jasmonate-responsive gene expression, particularly in late
wound-induced genes (Figure 5).

The wound-induced jasmonate burst is dynamic, and the initial strong jasmonate
wave is dampened over time. Indeed, early wound-induced transcriptional expression
included genes encoding proteins that attenuate the jasmonate-mediated signaling response,
in particular, enzymes that metabolize jasmonates to their inactive form (i.e., AtST2A,
AtJOX2, AtJOX4, AtCYP94B1, AtCYP94B3, AtILL6, AtJID1) and JAZ proteins (i.e., AtJAZ1,
AtJAZ5, AtJAZ7, AtJAZ8, AtJAZ10, AtJAZ13) (Pattern 1, Figure 5A). JAZ proteins are
negative regulators that bind to jasmonate signaling MYC2, MYC3 and MYC4 transcription
factors [42,43]. Early wound-induced JAZ transcripts encode AtJAZ1, AtAtJAZ5, AtJAZ8,
AtJAZ10 and AtJAZ13, which interact with AtMYC2 or AtMYC3, as well as AtJAZ7, which
interacts with AtMYC2 [98–100].

In addition, early wound-induced genes include a number of enzymes that convert jas-
monates into an potentially inactive forms (Pattern 1, Figure 5A). 2-oxo-glutarate-dependent
dioxygenase genes jasmonate-induced oxidase2 (AtJOX2) and AtJOX4 as well as the amino-
hydrolase AtILL6 are expressed early after wounding, while AtJOX3 is expressed later
(Figure 3); these genes encode enzymes that hydroxylate JA to a biologically inactive
form [45–47]. Subsequently, the hydroxylated JA can be further metabolized by sulfo-
transferase 2A (ST2A) to the sulfated form [101]. Furthermore, the early wound-induced
cytochrome P450 genes encoding AtCYP94B1, AtCYP94C1 and AtCYP94B3 potentially
work in sequence to catalyze the formation of 12-OH-JA-Ile and 12-COOH-JA-Ile, re-
spectively [44,102–104]. JID1 is a cytosolic enzyme thought to be involved in OPDA
anabolism [48].
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Often working synergistically, ethylene and jasmonate signaling leads to increased
plant resistance [105]. Early genes encoding enzymes in ethylene biosynthesis, AtACS2,
AtACS8 and AtACS4, as well as the transcription factors AtRAP2.6, AtERF2 and AtERF114,
were wound-induced in WT or both genotypes 1 h post-damage (Figure 5A,C).

In comparison, SA and jasmonates often have an antagonistic relationship that acts to
shape the plant defense response [106]. In general, the lox2 mutant expressed higher consti-
tutive expression of genes involved in SA biosynthesis (i.e., AtICS, AtEDS5, AtPBS3, AtCM3,
AtAIMI [37,107]) that translated into higher SA levels and SA-responsive gene expression
(i.e., AtGRX480/AtROXY19, AtCRXS13, AtOPR1, AtNIMIN1, AtNIMIN2, AtWRKY38, AtLLP,
AtPR1) (Figure 2). Of these, AtNIMIN1, AtNIMIN2 and AtWRKY38, which encode neg-
ative regulators of basal immunity [108–110], were expressed in the light (9 am), which
may reflect the diurnal rhythm of SA, which is lower in the morning [111]. In wounded
plants, SA-responsive AtCRK13, AtAIG1 and AtPRLIP2 were more highly expressed in lox2
compared with WT plants (Pattern 3, Figure 5C; Pattern 6, Figure 5F) [79,80,92,93].

3.2. Plant Resistance against Insect Herbivory
3.2.1. Response to Egg Deposition

In some species, plants respond to insect eggs by eliciting an SA-dependent “hypersensitive-
like response” that results in necrotrophic tissue forming under the eggs, often leading to
egg desiccation and plant resistance [112]. Treatment of leaves by spider mite egg extract re-
sulted in the induction of genes encoding enzymes in the jasmonate biosynthesis and signal-
ing pathway (i.e., AtAOC1, AtAOC3, AtLOX2, AtMYC2, AtJAZ9, AtST2A, AtJOX2, AtJOX3,
AtJOX4, AtILL6, AtCYP82G1, AtMDHAR, AtFAMT, AtNATA1, AtZAT10/STZ, AtBSMT1,
RNS1 At3g23350 and AtCORI3), which were also seen in our study (Figures 3D and 5) [113].

3.2.2. Signal Transduction

In this and other studies, AtMAPKKK17, induced late in response to wounding in WT
plants (Pattern 5, Figure 5E), activates the MKK3-MPK1/2/7 module [114,115]. In plants
challenged with the two-spotted spider mite, Tetranchus urtica, plants with higher constitu-
tive AtMAPKKK17 expression had higher resistance against mite herbivory, exhibiting less
leaf damage with mites having lower fecundity [58]. AtMAPKKK21 is expressed early after
wounding in both genotypes (Pattern 1, Figure 5A). In contrast to MAPKKK17, this kinase
was found to be a negative regulator of plant resistance to mites [58].

3.2.3. Physical Defense

Foliar trichomes create a mechanical defense against insect herbivores and, as well,
may be a site for the production of chemical defenses [116]. Even though arabidopsis
trichomes are non-glandular, volatile organic compounds as well as aliphatic and indolic
GSLs may be biosynthesized in these cells [21,50,117]. In addition, arabidopsis trichomes
may serve as mechanosensors, possibly leading to specialized metabolite production
when triggered [118,119]. AtGL3, a late wound-induced gene that shows higher stress-
associated expression in WT compared with lox2 plants (Pattern 5, Figure 5E), encodes
a bHLH transcription factor that regulates trichome initiation as well as anthocyanin
biosynthesis [120,121]. Constitutively, this transcription factor interacts with JAZ proteins,
specifically, JAZ1, JAZ2, JAZ8 and JAZ11, leading to its repression [122]. In response to
wounding, the resultant degradation of JAZ proteins coupled to increased AtGL3 expression
supports observations of a wound-associated increase in arabidopsis foliar trichomes [123].

3.2.4. Chemical Defense

GSLs and flavonoids are important defensive compounds in the Brassicaceae [18,124,125].
A wound-induced difference in foliar GSL levels was not observed (Figure 7). However,
in both genotypes, a strong expression of GSL biosynthetic genes was observed late after
wounding, which corresponds to the light phase in our experiment. This supports previous
observations of a possible role of circadian rhythms in foliar GSL biosynthesis [21].
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In contrast, a genotype difference in wound-induced genes associated with flavonoid
biosynthesis was identified in this study, with genes expressed more highly in WT plants
(Pattern 5, Figure 6). Flavonoids can act as feeding or oviposition deterrents or toxins against
insect herbivores [124,125]. Even though AtRNS1, a jasmonate-independent, wound-
induced gene that encodes a ribonuclease that is a negative regulator of anthocyanin
biosynthesis [126], is expressed in both genotypes (Pattern 4, Figure 5D), the late wound-
induced expression of genes that encode transcriptional regulators or flavonoid biosynthetic
enzymes was observed in WT plants (Pattern 5, Figure 5E). Thus, particularly in WT plants,
there is a strong upregulation of genes involved in flavonoid biosynthesis, particularly
anthocyanins, that may act as antioxidants or be involved in plant resistance against insect
herbivory [125,127].

3.2.5. Indirect Chemical Defense

Wounding of arabidopsis leaves results in the biosynthesis and release of volatile
organic compounds (VOCs) that are involved in numerous ecological roles, including
intra-plant stress signaling and tritrophic interactions, such as attracting parasitoids or
predators of the herbivore [128,129]. From the diterpenoid precursor geranylgeranyl diphos-
phate, AtTPS04, which is expressed in arabidopsis non-glandular trichomes [50], catalyzes
the production of (E,E)-geranyllinalool, which is converted by AtCYP82G1 into volatile
4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT) [49], an important attractant in tritrophic
interactions for beneficial parasitoid and predatory arthropods [130]. AtTPS04 is induced in
response to herbivory by caterpillars of the specialist diamond backmoth, Plutella xylostella,
or the generalist African cotton leafworm, Spodoptera littoralis [131–134]. In our study,
both AtTPS04 and AtCYP82G1 show early wound-induced gene expression (Pattern 1,
Figure 5A). AtCYP82G1 is also induced in response to the treatment of arabidopsis leaves
with spider mite egg extract [113].

The expression of AtTPS03 and AtCYP81D11 is predominant in wounded WT plants
(Pattern 2, Figure 5B). AtTPS03 encodes a terpene synthase that produces (E,E)-α-farnesene,
an important component in highly attractive volatile blends attractive to parasitic wasps
such as Microplitis croceipes, Apanteles taragamae, Anaphes iole and Gonatocerus ashmeadi,
as well as acting as a deterrent to soybean cyst nematodes [135–139]. AtCYP81D11 also
contributes to the volatile profile responsible for the attraction of parasitoid wasps, such as
Cotesia plutellae, to wounded plants [140].

AtHPL had higher late wound-induced expression in WT compared with lox2 plants
(Pattern 5, Figure 5E). This jasmonate-responsive gene is also induced in response to
herbivory by P. rapae or S. littoralis caterpillars [141]. Cytosolic AtHPL competes with the
jasmonate biosynthetic pathway for 13-hydroxyperoxide precursors to generate alkenals,
which are converted into C6 volatiles [83]. The AtHPL in the arabidopsis Col-0 ecotype
(which was also used in this study) has a deletion resulting in a truncated protein that is
unable to use 13-hydroperoxide linolenic acid as a precursor but uses 13-hydroperoxide
linoleic acid to produce hexenals [142].

AtBSMT1 was also more highly wound-induced in WT plants (Pattern 2, Figure 5B).
This methyltransferase, involved in volatile methyl salicylate biosynthesis, is induced in
response to P. rapae and Pieris brassicae herbivory [143,144]. The resultant methyl salicylate
is an attractant for female parasitic Diadegma semiclausum wasps and also deters oviposition
by female P. brassicae butterflies, thus decreasing herbivore damage [144,145].

In addition to the role that these VOCs play in attracting natural enemies of the herbi-
vore [146], these volatiles can also act on the plant itself, leading to systemic upregulation of
plant defense responses [147,148]. Recently, the importance of these volatiles as conspecific
signals has been recognized [149]. Thus, volatiles may serve as systemic signals resulting
in the induction of plant defense responses.
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3.2.6. Interference with Insect Nutrition or Physiology

Obtaining sufficient nitrogen to maintain development and fitness is a key challenge
for phytophagous insects [150]. Thus, plants have numerous strategies to interfere with a
herbivore’s ability to obtain sufficient nitrogen to limit herbivore success.

In herbivorous insects, serine proteinases, such as trypsin and chymotrypsin, initiate
protein digestion [151]; However, plants produce inhibitors of these enzymes, known as
proteinase inhibitors [152]. Overexpression of a soybean trypsin inhibitor in arabidopsis
negatively affected the larval biomass of corn earworm, Helicoverpa zea, caterpillars [153].
In our study, we identified the expression of three wound-induced trypsin inhibitors. AtTI1
is induced early in both genotypes and has previously been found to be induced by aphid
attack (Pattern 1, Figure 5A) [154]. AtKTI3 and AtTI6 are more highly expressed in WT
plants late after wounding (Pattern 5, Figure 5E).

Another late wound-induced gene identified in our transcriptomic study that interferes
with nitrogen resources for the insect encodes arginase (AtARGAH2) (Pattern 5, Figure 5E).
This enzyme catabolizes nitrogen-rich arginine to produce urea and ornithine. Direct
feeding of Manduca sexta caterpillars on tomato plants overexpressing arginase resulted in
smaller insects, presumably because of the decreased availability of the essential amino
acid arginine [86]. However, this may also reflect the potential toxicity of arginase products,
where ornithine may be converted by AtNATA1, a late pattern 4 gene (Figure 5D), to
Nd-acetylornithine [155]. This derivative negatively affects the fecundity of the green peach
aphid, Myzus persicae. It is of interest that the pH optimum of plant arginase is alkaline [86],
which likely allows it to be most active in its native cellular location, the mitochondrial
matrix [156], and also in the alkaline midgut of caterpillars [157]. In addition to these
activities, ARGAH2 activity may affect nitric oxide (NO) production [158]. Though this has
been shown in the marine green algae Ostreococcus tauri [159], in higher plants, NOS-like
activity is controversial; however, NO has been proposed to be released from arginine upon
its conversion to citrulline [160,161]. Consistent with this, AtARGAH2 knockout plants had
increased NO accumulation [158]. Differences in NO, or its more biologically stable form S-
nitrosoglutathione (GSNO), can impact protein S-nitrosation and S-glutathionylation status
of regulatory proteins involved in plant defense [162–165]. Manduca sexta caterpillars grew
larger on plants silenced in their ability to produce GSNO. Methyl jasmonate-induced levels
of proteinase inhibitors and some defensive specialized metabolites (caffeoylputrescine,
diterpene glycosides) were lower in these plants [162]. Therefore, AtARGAH2 may affect
caterpillar nutrition or plant defense.

The phloem-associated protein AtPP2-A5 has two domains, a PP2 (lectin activity)
domain at the C-terminus and a Toll/Interleukin-1 receptor domain at the N-terminus [166].
Though this protein plays a major role in sealing wounded sieve elements (Pattern 1,
Figure 5A), AtPP2-A5 overexpression or knockout lines show modified transcriptional
patterns to spider mite herbivory, suggesting that the receptor portion of this protein recog-
nizes an herbivore-specific effector to remodel gene expression [166]. The knockout line
was more susceptible to spider mite damage, and the arthropods had higher mortality
on the overexpression lines. This likely reflects direct interactions with the insect, poten-
tially by binding to the arthropod gut epithelial [167]. Feeding aphids a diet spiked with
recombinant AtPP2-A5 did not affect mortality but did negatively affect the weight gain
of two different aphid species, the pea aphid Acythosiphon pisum (~30% smaller) and the
green peach aphid Myzus persicae (10–20% smaller) [168]. Aphids reared on AtPP2-A5
overexpression lines had lower colonization and spent less time feeding on the phloem
compared with WT plants [169].

Chlorophyllase, AtCHL1, catalyzes the hydrolysis of chlorophyll to chlorophyllide.
Under stress conditions, this enzyme may be involved in chlorophyll degradation to
minimize chlorophyll-associated ROS generation [170,171]. However, as this protein is
associated with the endoplasmic reticulum or tonoplast, only upon cell disruption, such as
that incurred by herbivory, does the enzyme come into contact with its substrate, chloro-
phyll. The product of this reaction, chlorophyllide, is toxic to S. littoralis caterpillars and
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binds to the midgut of Bombyx mori caterpillars, potentially impairing digestion [172].
However, other studies suggest that chlorophyllide may have roles that benefit the insect
herbivore [173]. In our study, AtChl1 was induced late after wounding and showed higher
expression in WT plants (Pattern 5, Figure 5E).

4. Materials and Methods
4.1. Plant Maintenance

Arabidopsis thaliana wildtype (WT) Columbia (Col-0) seeds were obtained from the
Arabidopsis Biological Resource Center. Seeds of the lox2-1 mutant line, which has a
mutation in the tryptophan amino acid at position 630 to produce a stop codon resulting
in a truncated non-functional protein, were generously provided by Dr. E. E. Farmer [28].
The seeds were surface-sterilized in 70% (v/v) ethanol for one min, then 0.6% (v/v) bleach
(NaOCl) for 3 min, followed by five successive washes in sterile ddH2O. Between these
treatments, the seeds were recovered by centrifugation, and the liquid was removed. The
seeds were then placed in Petri dishes containing Murashige and Skoog salts, pH 5.8, in 0.8%
agar, followed by stratification in the dark at 4 ◦C to promote synchronized germination.
After 2 days, the Petri dishes were transferred to a growth cabinet with 14 h of light with
an intensity of 250 µmol m−2 s−1 followed by 10 h darkness. The temperature of the
light–dark cycle was 23:20 ◦C. After one week, the germinated seedlings were transplanted
into pots (12 cm diameter × 11 cm height) containing Fafard Agromix G6 potting medium
and grown under the same conditions. Plants were bottom-watered 3 times per week
with 20:20:20 NPK fertilizer (0.14 g/L distilled water) and used for experimentation at the
vegetative 3.9 stage [174].

4.2. Experimental Design

Two days prior to the wounding experiment, a plexiglass sheet was placed between
randomly chosen plants that were to remain unwounded or mechanically damaged to
separate the treatments and avoid volatile signaling between these groups. At 9 PM (time
0; dark phase), arabidopsis lines were either mechanically damaged, whereby each leaf
of the rosette was wounded once by a hole punch, without harming the mid-vein, or left
unwounded. Whole rosettes were collected for phytohormones (1 h; dark phase), GSLs
(12 h; light phase) or transcriptomics (1 h and 12 h, dark and light phase, respectively)
post-damage, flash-frozen in liquid nitrogen and stored at −80 ◦C until analysis. The
experiment was repeated temporally three times to collect samples for transcriptomics and
five times for phytohormone and GSL analyses. At each temporal replicate, one sample
was taken for the different analyses (RNA-Seq or metabolite analysis) of transcriptomics
(n = 3), phytohormones (n = 5) and GSLs (n = 5).

4.3. Phytohormone Analysis

Following the protocol described in Martinez Henao et al. [175], plant samples were
finely ground and extracted in ethyl acetate containing isotopically labeled standards (D6-
JA, D6-JA-Ile and D4-SA (OlChemim, s.r.o)). The samples were vigorously vortexed and
centrifuged (19,000× g, 10 min, 4 ◦C), and the supernatant was transferred to a new tube.
The extraction was repeated, and the supernatants were pooled. Following evaporation
using a vacuum concentrator at room temperature, the resulting pellet was resuspended
in 70% (v/v) methanol (HPLC-MS grade). A final centrifugation step was performed as
above to ensure the removal of all non-soluble debris. Metabolites were separated by
ultrahigh performance liquid chromatography (UHPLC) followed by detection on a triple
quadrupole mass spectrometer (EVOQ-TQ-MS, Bruker, Hamburg, Germany). Reverse
phase UHPLC was performed using a Zorbax Extend-C18 column (4.6 × 50 mm, 1.8 µm,
Agilent Technologies, Santa Clara, CA, USA). The mobile phase began with 5% (v/v)
acetonitrile (ACN), 0.05% (v/v) formic acid for 30 s and then increased to 50% (v/v) ACN,
0.05% (v/v) formic acid over 2 min. After separation, the compounds were nebulized
by electron spray ionization and detected using the EVOQ-TQ-MS. Phytohormones were



Int. J. Mol. Sci. 2024, 25, 5898 20 of 31

identified based on their retention time, in comparison with known standards, as well as
their m/z.

4.4. Glucosinolate Analysis

GSLs were extracted from lyophilized leaf tissue and analyzed by high-performance
liquid chromatography (HPLC)-pulsed amperometric detection following Grosser and
van Dam [176]. Briefly, 70% MeOH was added to the finely ground tissues and incubated
at 90 ◦C for 6 min to inactivate myrosinases followed by sonication for 15 min. After
centrifugation (2975× g for 10 min), the supernatant was transferred to a clean tube, and
the pellet was re-extracted. Pooled supernatants were passed through a diethylaminoethyl
Sephadex A-25 ion exchange column preconditioned with ddH2O. After washing (2 × 1 mL
70% MeOH, 2 × 1 mL ddH2O, 1 × 1 mL 20 mM sodium acetate buffer, pH 5.5), the column
was treated with 10 U of arylsulfatase and incubated for 12 h at RT. Desulfated GSLs were
eluted in sterile MilliQ H2O (2× 0.75 mL) and lyophilized.

GSLs were separated by reverse-phase chromatography on a C18 column (Alltima
C18, 150× 4.6 mm, 3 µm, Alltech, Lexington, USA) using a mobile gradient from 2%
acetonitrile (ACN) to 35% ACN in 30 min at a flow rate of 0.75 mL min−1. GSLs were iden-
tified based on retention time to known standards (glucoiberin (3-methylsulfenylpropyl
GSL), glucoerucin (4-methylthiobutyl GSL), progoitrin (2-hydroxy-3-butenyl GSL), sinigrin
(2-propenyl GSL), gluconapin (3-butenyl GSL), glucobrassicanapin (4-pentenyl GSL), gluco-
brassicin (indol-3-ylmethyl GSL), sinalbin (4-hydoxybenzyl GSL), glucotropaeolin (benzyl
GSL) and gluconasturtiin (2-phenylethyl GSL); Phytoplan, Heidelberg, Germany)) and UV
spectra. GSL concentrations were calculated from a sinigrin standard curve according to
Grosser and van Dam [176].

4.5. RNA Extraction, Library Preparation and Transcriptomics

Total RNA was extracted from flash-frozen pulverized plant rosettes (~100 mg) using
the RNeasy Plant Mini Kit (Qiagen, Venlo, The Netherlands) following the manufacturer’s
protocol with an additional on-column DNase digestion step to avoid genomic DNA con-
tamination. The 2100 Bioanalyzer instrument (Agilent Technologies) was used to determine
RNA quality using an RNA integrity number (RIN) of 8.7 as a minimum threshold. Total
RNA samples were processed by Genome Québec Innovation Centre for library preparation
and next-generation RNA sequencing (RNA-Seq). Libraries were generated from 250 ng of
total RNA as follows: mRNA enrichment and ribosomal RNA removal were performed
using the Next Poly(A) Magnetic Isolation following the manufacturer’s instructions (New
England BioLabs, Ipswich, USA). cDNA synthesis was performed with Next RNA First
Strand Synthesis and Next Ultra Directional RNA Second Strand Synthesis kits (New
England BioLabs). The remaining steps of library preparation were performed using the
Next Ultra II DNA Library Prep Kit for Illumina (New England BioLabs). Adapters and
PCR primers were purchased from New England BioLabs.

The libraries were normalized, pooled and denatured in 0.02 N NaOH, followed by
neutralization using HT1 hybridization buffer. Twenty-four strand-specific mRNA libraries
were generated and sequenced by loading 200 pM on the NovaSeq 6000 S4 (Illumina) using
the Xp protocol as per the manufacturer’s recommendations, with paired-end (PE) mode for
2 × 100 base pairs (bp) resulting in >25 million reads in each direction. The Illumina phiX
control v3 library was used as a control and mixed with libraries at a 1% level. Base calling
was performed using Real-Time Analysis (RTA) v3 software. The program bcl2fastq2 v2.20
was used to demultiplex samples and generate fastq reads.

4.6. Quality Check, Clipping and Mapping

Raw read quality was examined by performing FastQC 0.11.9 on “.fastq.gz” file [177].
FastQC produces a control statistic and evaluates every metric using a classification sys-
tem of pass, warn or fail. The adapter clipping and bad end quality trimming were
performed by subjecting the raw reads to fastp tool version 0.20.1 to remove adapters,
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low-quality bases with a Phred score less than 20 and reads shorter than 25 bp from the
tail (3’ end) from further analysis [178]. This preprocessing was followed by another
quality check with FastQC. Read mapping was conducted using a splice-aware align-
ment tool STAR v2.7.9a to align the trimmed reads against the arabidopsis reference
genome downloaded from The Arabidopsis Information Resource (TAIR, assembly ID:
TAIR10, https://www.arabidopsis.org/download_files/Genes/TAIR10_genome_release/
TAIR10_gff3/TAIR10_GFF3_genes.gff (accessed on 9 December 2022)) [179].

4.7. Differential Gene Expression

Strand-specific transcript abundance was calculated using featureCounts (a tool in-
cluded in the subread package 2.0.3) on mapped and sorted BAM files. The resulting read
counts per transcript values were imported into the web-based tool NetworkAnalyst 3.0
for data filtering, Log2 normalization and differential analysis [180]. The statistical method
DESeq2 with a negative binomial (Gamma–Poisson) distribution was used to identify dif-
ferentially expressed genes using the log2-fold change (logFC) calculation [181,182]. Genes
with a False Discovery Rate (FDR)-corrected p-value (padj) ≤ 0.05 and log2 fold change ≥ 2
or ≤−2 were deemed significant. The transcriptomic data generated by this study are
available in the Supplementary Materials of this article (Supplemental Table S1) and the
raw read data (FASTQ) were deposited in the NCBI Sequence Read Archive (Bioproject
ID #PRJNA1077722).

Transcriptomic visualization (ridgeplots, heatmaps, principal component analysis
(PCA)) was performed using MetaboAnalyst 5.0 and ExpressAnalyst [183,184]. For visual-
ization, the data were normalized by log10 transformation.

4.8. Statistics

For phytohormone and GSL analyses, a two-factor analysis of variance (ANOVA)
(factors: genotype and treatment) was conducted using the statistical program SPSS vers.
29 (Supplemental Tables S2 and S3).

5. Conclusions

By comparing early (1 h) and late (12 h) constitutive and wound responses between
arabidopsis WT and lox2 mutants, we identified gene expression differences related to
the regulation of jasmonate biosynthesis and, in mechanically damaged plants, resistance
to insect herbivores. Both constitutively and in wounded plants, SA levels are higher in
lox2, which is reflected in the expression of SA-responsive genes. Since jasmonate and SA
pathways are mutually antagonistic [106], this suggests that AtLOX2 may be involved in
the constitutive biosynthesis of jasmonates that modulate SA levels.

As expected, the wound-associated jasmonate burst is dampened in lox2 compared
with WT plants. In the early response to wounding, genes are similarly expressed in both
genotypes with few genotype-specific differences. In contrast, in the later transcriptional
responses, higher expression of numerous genes involved in insect resistance is observed
in WT plants compared to lox2, highlighting the role of AtLOX2 in arabidopsis resistance
to insects (Figure 8).

https://www.arabidopsis.org/download_files/Genes/TAIR10_genome_release/TAIR10_gff3/TAIR10_GFF3_genes.gff
https://www.arabidopsis.org/download_files/Genes/TAIR10_genome_release/TAIR10_gff3/TAIR10_GFF3_genes.gff
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mutants. Foliar gene expression in wounded lox2 mutants, which has a truncated non-functional 
enzyme, was compared to WT plants. Proteins encoded by early genes (1 h) are shown in blue, 
whereas later transcript expression (12 h) is depicted in brown. (A). General wound-induced 
responses found in both genotypes. Jasmonate biosynthesis begins in the chloroplast from 18C 
membrane lipid-derived precursors, typically α-linolenic acid, to finally form one of the biologically 
active jasmonates, jasmonoyl-isoleucine (JA-Ile). Numerous genes encoding enzymes in the 

Figure 8. Wound-induced genes involved in plant–insect interactions in arabidopsis WT and lox2
mutants. Foliar gene expression in wounded lox2 mutants, which has a truncated non-functional en-
zyme, was compared to WT plants. Proteins encoded by early genes (1 h) are shown in blue, whereas
later transcript expression (12 h) is depicted in brown. (A). General wound-induced responses found
in both genotypes. Jasmonate biosynthesis begins in the chloroplast from 18C membrane lipid-
derived precursors, typically α-linolenic acid, to finally form one of the biologically active jasmonates,
jasmonoyl-isoleucine (JA-Ile). Numerous genes encoding enzymes in the jasmonate biosynthetic
pathway are upregulated in wounded plants. JA-Ile enters the nucleus and forms a bridge between
the SCFCOI1 and jasmonate ZIM domain (JAZ) repressors, leading to their degradation through the
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proteasome. The degradation of JAZ proteins releases MYC2/3/4 transcription factors, leading to
jasmonate-responsive gene expression. The abscisic acid (ABA)-PYL6 receptor complex positively
interacts with MYC2. Genes encoding JAZ-negative regulators as well as those further metabolizing
jasmonic acid (JA) (i.e., JOX, ST2A) to inactive derivatives are also wound-induced. Gibberellin (GA)
bound to its receptor GID1 activates a pathway that leads to the proteasome-mediated degradation of
negative DELLA growth regulators, such as RGL3. In wounded leaves, the increase in RGL3 expres-
sion and genes that encode GA2OX6 and GA2OX8, involved in gibberellin metabolism to inactive
products, results in the suppression of plant growth. Numerous genes involved in oxidative stress are
wound-induced. For example, the oxidative stress-associated transcription factor RRTF1 and MDAR3,
which are part of the Foyer–Halliwell–Asada cycle, a series of interconnected enzymatic reactions to
detoxify the reactive oxygen species hydrogen peroxide (H2O2). Wound-induced MYB15 leads to the
expression of ELI3/CAD8 and PRX52, which contribute to lignin biosynthesis. TPS04 and CYP82G1
are involved in the biosynthesis of volatiles, such as 4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT),
that are attractive to natural enemies of the herbivorous insect. TI1 and NATA1 contribute to plant
resistance against arthropods, whereas MAPKKK21 is a negative regulator of arthropod resistance.
(B). LOX2-specific responses. Wound-induced genes expressed at higher levels in WT compared
with lox2 plants. Wound-induced expression of genes that encode LOX2 and MYC2 involved in
jasmonate biosynthesis and signaling, respectively, is noted. CORI3 is a cysteine lyase involved
in cysteine biosynthesis that produces precursors for ethylene, aliphatic glucosinolates (GSLs) and
reduced glutathione (GSH) involved in the Foyer–Halliwell–Asada cycle. Also, the expression of the
gene encoding DHAR1 in this pathway is wound-induced. Other cellular antioxidants whose biosyn-
thetic pathway is positively regulated in these plants are anthocyanins. Indirect defenses involved
in volatile biosynthesis are wound-induced. An increase the genes that encode proteins involved
in antinutritive defenses, such as CLH1, ARGAH2 and TIs, as well as MAPKKK17, an important
signaling kinase involved in arthropod resistance, is also seen. Abbreviations: ABA: abscisic acid,
AOC: allene oxide cyclase, AOS: allene oxide synthase, DHAR1: dehydroascorbate reductase1, GA:
gibberellin, GSH: reduced glutathione, GSL: glucosinolate, GSSG: oxidized glutathione, JA: jasmonic
acid, JA-Ile: jasmonoyl-isoleucine, JAZ: jasmonate-Zim domain, JOX: jasmonate oxidase, LOX: lipoxy-
genase, OPDA: 12-oxo-phytodienoic acid, OPR: oxo-phytodienoate reductase, OPCL: OPC-8-CoA
ligase, PUFA: polyunsaturated fatty acid, TF: transcription factor, TMTT: 4,8,12-trimethyltrideca-
1,3,7,11-tetraene.
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154. Kuśnierczyk, A.; Winge, P.; Midelfart, H.; Armbruster, W.S.; Rossiter, J.T.; Bones, A.M. Transcriptional responses of Arabidopsis
thaliana ecotypes with different glucosinolate profiles after attack by polyphagous Myzus persicae and oligophagous Brevicoryne
brassicae. J. Exp. Bot. 2007, 58, 2537–2552. [CrossRef]

155. Adio, A.M.; Casteel, C.L.; De Vos, M.; Kim, J.H.; Joshi, V.; Li, B.; Juery, C.; Daron, J.; Kliebenstein, D.J.; Jander, G. Biosynthesis and
defensive function of N δ-acetylornithine, a jasmonate-induced Arabidopsis metabolite. Plant Cell 2011, 23, 3303–3318. [CrossRef]

156. Taylor, N.L.; Howell, K.A.; Heazlewood, J.L.; Tan, T.Y.W.; Narsai, R.; Huang, S.; Whelan, J.; Millar, A.H. Analysis of the rice
mitochondrial carrier family reveals anaerobic accumulation of a basic amino acid carrier involved in arginine metabolism during
seed germination. Plant Physiol. 2010, 154, 691–704. [CrossRef]

157. Dow, J.A. pH gradients in lepidopteran midgut. J. Exp. Biol. 1992, 172, 355–375. [CrossRef]
158. Flores, T.; Todd, C.D.; Tovar-Mendez, A.; Dhanoa, P.K.; Correa-Aragunde, N.; Hoyos, M.E.; Brownfield, D.M.; Mullen, R.T.;

Lamattina, L.; Polacco, J.C. Arginase-negative mutants of Arabidopsis exhibit increased nitric oxide signaling in root development.
Plant Physiol. 2008, 147, 1936–1946. [CrossRef] [PubMed]

159. Foresci, N.; Correa-Aragunde, N.; Parisi, G.; Caló, G.; Salerno, G.; Lamattina, L. Characterization of a nitric oxide synthase from
the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent. Plant
Cell 2010, 22, 381603830. [CrossRef] [PubMed]

160. Winter, G.; Todd, C.D.; Trovato, M.; Forlani, G.; Funck, D. Physiological implications of arginine metabolism in plants. Front.
Plant Sci. 2015, 6, 534. [CrossRef] [PubMed]

161. Kolbert, Z.; Barroso, J.B.; Brouquisse, R.; Corpas, F.J.; Gupta, K.J.; Lindermayr, C.; Loake, G.J.; Palma, J.M.; Petřivalský, M.;
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