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SUMMARY

The microbes that live in the gut, also known as the gut microbiota, play an important role
in the well-being of the host. In the last years, the development of metagenomics and
metabolomics have helped to better understand the vital role of the gut microbiome in
human health and disease; however, the mechanisms and its implication are still not fully
clarified. Therefore, more research and improved pipelines, protocols, and tools are needed
to investigate gut microbiome in more depth and understand its connection with host health.

This dissertation aimed to develop and implement bioinformatic and statistical
analyses to improve our understanding of the role of the gut microbiome in non-alcoholic
fatty liver disease (NAFLD) pathogenesis. In addition, during my Ph.D. 1 focused on
investigating novel microbiome-based therapeutic strategies.

NAFLD is the hepatic manifestation of a metabolic syndrome, and its prevalence
has reached epidemic proportions with a global prevalence of about 32.4%. Previous works
have demonstrated a link between gut microbiome dysbiosis and NAFLD progression. In
this dissertation, three different projects have focused on investigating the role of the gut
microbiome in NAFLD (manuscripts I, III, and IV). Due to the lack of pharmaceutical
treatment for NAFLD, new strategies are being studied. In manuscript I, the effect of 4-
month resistant starch (RS) supplementation as one type of microbiome-directed food was
investigated in a cohort of NAFLD individuals. We showed that 4-month RS intervention
ameliorates NAFLD, and multi-omics profiling provided an integrated understanding of
how RS and associated alterations in the gut microbiota or metabolites contributed to
NAFLD improvement. In addition, whole microbiota changes, the potential RS-targeted
single species, and microbial metabolites were validated in vivo and in vitro for causal
insights. The study has been accepted for publication in the journal Cell Metabolism, and
will be published as the cover article of the journal.

In manuscript IV, the potential value of the gut microbiome in NAFLD prognosis
was investigated, where differences in the microbiome signature and metabolic shifts in
subjects that will develop NAFLD compared to controls were shown. In this project,
potential microbial markers for NAFLD prognosis were identified and a machine learning
model able to predict the development of NAFLD was developed. The study was published
in the journal Science Translational Medicine.

Concerning the mycobiome, very little is known about how the fungal composition
contributes to NAFLD progression. In manuscript I1I, a possible antifungal immunity and
potential mycobiome dysbiosis were explored to investigate how intestinal fungi contribute
to NAFLD development. Our results showed that NAFLD patients harboring a genetic
variation in their IL-17A gene also presented increased Candida CTG species levels, and
these two factors predispose to disease progression up to steatohepatitis (NASH) and
advanced fibrosis. All these three projects together provide a more comprehensive
understanding of the connection of the gut bacteriome, mycobiome, and metabolome
changes with NAFLD development. Furthermore, novel microbiome-based therapeutic
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techniques for NAFLD were explored, including a microbiota-directed food intervention
and a NAFLD prognostic assessment tool.

Lastly, the utilization of lifestyle interventions targeting the gut microbiome to
improve host health is a commonly used practice nowadays. A fourth study in this
dissertation aimed to explore the gut microbiome dynamics in response to lifestyle
microbiome-targeted therapies. In manuscript II, robust and generalizable biomarkers
within the gut microbial communities that are associated with resistance to gut microbial
community change were identified. Moreover, a machine learning model able to predict the
gut microbiome resistance to change in response to lifestyle interventions using the baseline
microbiome composition was developed. The study was published in the journal
Microbiome.

In conclusion, in this dissertation, I have shown that the human body and its
microbiome form a unity of life or holobiont that is indispensable for the well-functioning
of the organism. The different bioinformatic analyses performed during my Ph.D. have
highlighted the important role of the gut microbiome in human health and disease, especially
giving new insights in relation to NAFLD pathogenesis and management. In addition, I have
explored different microbiome-based strategies showing the high potential of the gut
microbiome in the development of new therapies. Therefore, the use of microbiome-related
information for patient therapeutics needs to be further explored and applied to improve and
develop new and more personalized treatments.

II



Humans as holobionts: Systems-level approaches for disease prevention and therapy

ZUSAMMENFASSUNG

Die im Darm lebenden Mikroben, auch bekannt als Darmmikrobiota, spielen eine wichtige
Rolle fiir das Wohlbefinden des Wirts. In den letzten Jahren hat die Entwicklung der
Metagenomik und der Metabolomik dazu beigetragen, die wichtige Rolle des
Darmmikrobioms fiir die menschliche Gesundheit und Krankheit besser zu verstehen.
Dennoch sind die Mechanismen und ihre Auswirkungen noch nicht vollstindig geklart.
Daher sind weitere Forschungsarbeiten und verbesserte Pipelines, Protokolle und
Instrumente erforderlich, um das Darmmikrobiom eingehender zu untersuchen und seinen
Zusammenhang mit der Gesundheit des Wirts zu verstehen.

Ziel dieser Dissertation war es, bioinformatische und statistische Analysen zu
entwickeln und zu implementieren, um unser Verstindnis der Rolle des Darmmikrobioms
bei der Pathogenese der nichtalkoholischen Fettlebererkrankung (NAFLD aus dem
Englischen) zu verbessern. Darliber hinaus konzentrierte ich mich wihrend meiner
Doktorarbeit auf die Erforschung neuer mikrobiombasierter therapeutischer Strategien.

Die NAFLD ist die hepatische Manifestation eines metabolischen Syndroms und hat
mit einer weltweiten Prévalenz von etwa 32,4 % epidemische Ausmale erreicht. Friihere
Arbeiten haben einen Zusammenhang zwischen einer Dysbiose des Darmmikrobioms und
dem Fortschreiten der NAFLD nachgewiesen. In dieser Dissertation wurde in drei
verschiedenen Projekten die Rolle des Darmmikrobioms bei NAFLD untersucht
(Manuskripte I, ITII und IV). Da es keine pharmazeutische Behandlung fiir NAFLD gibt,
werden neue Strategien untersucht. In Manuskript I wurde die Wirkung einer 4-monatigen
Supplementierung mit resistenter Stirke (RS) (eine Art mikrobiomgesteuerter
Nahrungsmittel) in einer Kohorte von Personen mit NAFLD untersucht. Wir konnten
zeigen, dass eine 4-monatige RS-Intervention die NAFLD verbessert, und die Multi-omics-
Profilierung lieferte ein integriertes Verstindnis dafiir, wie RS und die damit verbundenen
Verianderungen in der Darmmikrobiota oder den Metaboliten zur Verbesserung der NAFLD
beitragen. Dariiber hinaus wurden die Verdnderungen der gesamten Mikrobiota, die
potenziell auf RS abzielenden einzelnen Spezies und die mikrobiellen
Stoffwechselprodukte in vivo und in vitro validiert, um kausale Erkenntnisse zu gewinnen.
Die Studie ist zur Veroffentlichung in der Zeitschrift Cell Metabolism angenommen
worden, und wird als Titelartikel in der Zeitschrift veréffentlicht.

In Manuskript IV wurde der potenzielle Wert des Darmmikrobioms fiir die
NAFLD-Prognose untersucht, indem Unterschiede in der Mikrobiomsignatur und
Stoffwechselverschiebungen bei Betroffenen, die NAFLD entwickeln werden, im
Vergleich zu Kontrollen aufgezeigt wurden. Potenzielle mikrobielle Marker fiir die
NAFLD-Prognose wurden im Rahmen dieses Projekt identifiziert und ein maschinelles
Lernmodell vorgestellt, das die Entwicklung von NAFLD vorhersagen kann. Die Studie
wurde in der Zeitschrift Science Translational Medicine ver6ffentlicht.

In Bezug auf das Mykobiom ist nur sehr wenig dariiber bekannt, wie die
Pilzzusammensetzung zum Fortschreiten der NAFLD beitrégt. In Manuskript III wurden
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eine mogliche antimykotische Immunitit und eine mogliche Mykobiom-Dysbiose
untersucht, um herauszufinden, wie Darmpilze zur Entwicklung der NAFLD beitragen.
Unsere Ergebnisse zeigten, dass NAFLD-Patienten mit einer genetischen Variation in ihrem
IL-17A-Gen auch erhohte Werte von Candida-CTG-Speziesaufweisen, und diese beiden
Faktoren pradisponieren fiir ein Fortschreiten der Krankheit bis hin zu Steatohepatitis
(NASH) und fortgeschrittener Fibrose. Unsere Ergebnisse zeigten, dass NAFLD-Patienten
mit einer genetischen Variation in ihrem IL-17A-Gen auch erhohte Candida-CTG-Spezies-
Spiegel aufwiesen, und diese beiden Faktoren préadisponieren fiir ein Fortschreiten der
Krankheit bis hin zu Steatohepatitis (NASH) und fortgeschrittener Fibrose. Alle drei
Projekte zusammen ermdglichen ein umfassenderes Verstindnis des Zusammenhangs
zwischen dem Darmbakteriom, dem Mykobiom und den Verdanderungen des Metaboloms
mit der Entwicklung der NAFLD. AufBlerdem wurden neuartige mikrobiombasierte
therapeutische Verfahren fiir die NAFLD erforscht, darunter eine auf das Mikrobiom
ausgerichtete Erndhrungsintervention und ein Instrument zur prognostischen Bewertung der
NAFLD.

SchlieBlich ist der Einsatz von auf das Darmmikrobiom abzielenden
Lebensstilinterventionen heutzutage eine verbreitete angewandte Praxis zur Verbesserung
der Gesundheit des Wirts. Eine vierte Studie in dieser Dissertation zielte darauf ab, die
Dynamik des Darmmikrobioms als Reaktion auf mikrobiomorientierte Lifestyle-Therapien
zu untersuchen. In Manuskript II wurden robuste und verallgemeinerbare Biomarker
innerhalb der Darmmikrobiota identifiziert, die mit der Resistenz gegen Verdnderungen der
mikrobiellen Darmgemeinschaft in Verbindung gebracht wurden. Dariiber hinaus wurde ein
maschinelles Lernmodell entwickelt, das die Resistenz des Darmmikrobioms gegen
Veranderungen als Reaktion auf LebensstilmaBBnahmen anhand der Zusammensetzung des
Ausgangsmikrobioms vorhersagen kann. Die Studie wurde in der Zeitschrift Microbiome
verdffentlicht.

AbschlieBend habe ich in dieser Dissertation gezeigt, dass der menschliche Korper
und sein Mikrobiom eine Lebenseinheit oder einen Holobionten bilden, der fiir das gute
Funktionieren des Organismus unerldsslich ist. Die verschiedenen bioinformatischen
Analysen, die ich wihrend meiner Doktorarbeit durchgefiihrt habe, haben die wichtige
Rolle des Darmmikrobioms fiir die menschliche Gesundheit und Krankheit hervorgehoben
und insbesondere neue Erkenntnisse in Bezug auf die Pathogenese und das Management
der NAFLD geliefert. Dariiber hinaus habe ich verschiedene mikrobiombasierte Strategien
erforscht, die das groBe Potenzial des Darmmikrobioms fiir die Entwicklung neuer
Therapien aufzeigen. Daher muss die Nutzung mikrobiombezogener Informationen fiir
Patiententherapien weiter erforscht und angewendet werden, um neue und stéirker
personalisierte Behandlungen zu verbessern und zu entwickeln.
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INTRODUCTION

1. The human microbiome

Microbes are microscopic organisms that are found in almost every environment and are
essential to life. In the popular imaginary, they are generally linked with disease, however,
most microbes are beneficial. They modulate key ecosystem processes and participate in
functions such as plant growth, marine biogeochemical cycles, or food digestion (Malla et
al. 2019). The human body is colonized by trillions of commensal, symbiotic, and
pathogenic microorganisms that constitute the human microbiota, and the collection of
genomes of an organism is known as the microbiome. The assembled of the host organism
together with its microbiota is known as “holobiont” (Greek, from holos, whole; bios, life;
-ont, to be; whole unit of life) a concept that was proposed by Lynn Margulis in 1991
(Thomas et al. 2017). Investigating the holobiont by exploring the interactions between the
hosts and their associated microbial communities is crucial as it has been shown that the
microbiota and the host mutually affect each other, being involved in health and disease
development (Postler and Ghosh 2017). Therefore, the microbiome has an important role in
regulating human health and functioning. This complex community is composed of bacteria
(bacteriome), archaea (archaeome), fungi (mycobiome), and viruses (virome) (Lloyd-Price
et al. 2016). However, to date, most of the studies have focused on the composition of the
bacterial microbiota and their implication for human health, leaving the mycobiome,
archaeome, and virome poorly understood (Matijasi¢ et al. 2020).

Some of the large-scale international projects that strongly impacted microbiome
research are the Human Microbiome Project (HMP) launched in 2007 and the EU FP7
METAgenomics of the Human Intestinal Tract (MetaHIT) project launched in 2008,
financed by the National Institutes of Health (NIH) and the European Commission,
respectively (Turnbaugh et al. 2007; Ehrlich 2011). Both projects helped to characterize the
human-associated microbial communities and their alterations in different human
pathologies. The HMP initially aimed to characterize the ‘healthy’ human microbiome, as
well as the characterization of the microbiome of the different sites of the human body such
as the skin, oral cavity, respiratory tract, gastrointestinal tract, urinary tract, etc (Nash et al.
2017). Since then, many studies have focused on investigating these two objectives.
Numerous studies have shown that the different sites in the human body differ greatly in
terms of their microbiome composition and functions (Lloyd-Price et al. 2016; Ward et al.
2018; Dekaboruah et al. 2020). In addition, characterizing the healthy microbiome and
investigating the link between disease and the imbalance in the composition and function of
microbial taxa, also known as dysbiosis, is crucial to determine the role of the microbiome
in contributing to health and disease (Lloyd-Price et al. 2016; Koh and Kim 2017).
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1.1 The gut bacteriome and mycobiome

The human gastrointestinal tract is a diverse and abundant microbial community made up
of more than 100 trillion microorganisms, being the colon one of the most densely populated
microbial habitats known on Earth (Rinninella et al. 2019). These digestive tract-associated
microbes are known as the gut microbiome, and it is predominantly composed of bacteria.
The mycobiome has been considered a minor component of the gut microbiota representing
approximately less than 0.1% of the microbial community in the gut (Fotis et al. 2022).
However, in the last years, the mycobiome has gained recognition as a fundamental part of
the gut microbiome community (Zhang et al. 2021).

Due to its essential role in human health, the microbial community in the
gastrointestinal tract has been widely studied as it is involved in host metabolism, immune
system education and regulation, maintenance of structural integrity of the gut mucosal
barrier, and protection against pathogen invasion (Jandhyala et al. 2015).

Several factors are involved in shaping the gut microbiota composition. For
example, age has been proven to be a major contributor to differences in gut microbiota
(Bosco and Noti 2021). Diet and the use of medication (e.g., antibiotics) are also considered
to be key modulators of the gut microbial community (Valdes et al. 2018). The use of active
microorganisms that colonize the human intestines and change the composition of the flora
in particular parts of the host, also called probiotics, have been proven to play important
roles in the gut microbiota community. Probiotics inhibit the colonization of pathogenic
bacteria in the intestine, help the host to build a healthy intestinal mucosa protective layer,
and enhance the host's immune system (Wang et al. 2021). In early stages of life,
environmental factors such as the delivery mode or breastfeeding seem to have important
effects on the microbial colonization of infants (Arrieta et al. 2014; Zhuang et al. 2019;
Korpela 2021; Henderickx et al. 2022), and previous studies suggest that aberrant early
microbial exposures have long-term immunological and metabolic consequences in the
future development of the newborns (Yao et al. 2021).

2. The role of gut bacteria and fungi in metabolic diseases

In the last decades, the prevalence of metabolic disorders such as disturbed glucose
metabolism, general and abdominal obesity, elevated blood pressure, dyslipidemia, insulin
resistance, hyperglycemia, and hyperuricemia; has dramatically increased. These conditions
are all risk factors for numerous serious diseases such as type 2 diabetes mellitus (T2D),
non-alcoholic fatty liver disease (NAFLD), and inflammatory bowel disease (IBD), among
others. The abnormally elevated levels of lipids in the blood or hyperlipidemia is also
considered a high-risk factor and a key indicator of many metabolic diseases, and it has been
reported to play a vital role in regulating host lipid metabolism (Jia et al. 2021). Therefore,
in the last years, metabolic disorders have become a growing worldwide health challenge
(Stephens et al. 2020).
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The gut microbiota plays a role in regulating the host metabolism, and alteration of
the gut microbiota's taxonomic composition and functions are associated with metabolic
disorders (Magro et al. 2019; Glassner et al. 2020; Li et al. 2020; He et al. 2021). Microbiota
changes including a decrease in diversity have been found in IBD subjects over time. A
decrease in Firmicutes species and an increase in Proteobacteria species were seen in
association with IBD (Glassner et al. 2020). In relation to fungal composition, Candia
species were found to increase in IBD individuals compared to controls, whereas
Saccharomyces cerevisiae levels decreased (Glassner et al. 2020). In subjects with Crohn’s
disease, a type of IBD, a lower microbial diversity compared to controls was also found
(Magro et al. 2019). Furthermore, greater abundance in the Proteobacteria phylum and a
reduction in Akkermansia and Oscillospira bacterial genera and Saccharomyces cerevisiae
fungal species was identified in subjects with Crohn’s disease (Magro et al. 2019). Obesity
has also been associated with gut bacteriome and mycobiome dysbiosis (Rodriguez et al.
2015; Pinart et al. 2022). Lower relative proportions of Bifidobacterium and Eggerthella,
and higher Acidaminococcus, Dialister, Dorea, Prevotella, and Roseburia were found in
obese versus non-obese adults (Pinart et al. 2022). Concerning the fungal composition, an
increased presence of the phylum Ascomycota and families Dipodascaceae and
Saccharomycetaceae as well as an increase in the relative abundance of fungi belonging to
the class Tremellomycetes were found in obese compared with non-obese subjects
(Rodriguez et al. 2015). Along with bacteria and fungi, microbial communities like the
virome are also altered in metabolic disorders including hypertension and T2D (Ma et al.
2018; Han et al. 2018). Therefore, investigating the complex interactions between different
gut microbial communities may enhance our comprehension of disease development and
progression.

Studies combining metabolomics and metagenomics are being used to elucidate the
link between gut microbiota dysbiosis and metabolic disturbances, becoming a key focus of
study in the characterization and progression of metabolic diseases (Agus et al. 2021).
Specific kinds of microbiota-derived metabolites, such as short-chain fatty acids (SCFAs),
branched-chain amino acids (BCAAs), aromatic amino acids (AAAs), or tryptophan have
been implicated in the pathogenesis of metabolic disorders (Schnabl and Brenner 2014;
Lavelle and Sokol 2020; Xiao et al. 2021). Ejtahed et al. found that the gut microbiota of
obese individuals compared with lean controls may have a higher capacity for production
of some SCFAs, branched-chain fatty acids (BCFAs), and AAAs, known as risk factors for
some metabolic-related diseases (Ejtahed et al. 2020). Plasma concentrations of BCAAs are
also frequently elevated in obesity and T2D (Cuomo et al. 2022). In addition, BCAAs
(valine, isoleucine, and leucine) concentrations in plasma and urine were found to be
associated with insulin resistance (Cuomo et al. 2022).

2.1 Non-alcoholic fatty liver disease and gut dysbiosis

Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of a combination of
metabolic dysfunctions mainly characterized by insulin resistance, dyslipidemia, impaired
glucose tolerance, abdominal adiposity, and hypertension, collectively known as
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cardiometabolic syndrome (Younossi 2019). The main liver condition that characterizes
NAFLD, as the name indicates, consists of too much fat stored in the liver cells in
individuals who drink very little or no alcohol. NAFLD can evolve into non-alcoholic
steatohepatitis (NASH), characterized by inflammation and fibrosis in the liver, and
progressively lead to liver cirrhosis and hepatocellular carcinoma (Figure 1) (Younossi
2019). NAFLD is the leading cause of liver-related morbidity and mortality, being the most
prevalent liver disease with an estimated global prevalence of up to 32.4% (Riazi et al.
2022). In addition, awareness about the disease among the general population is very low,
and NAFLD is creating an extraordinary burden of clinical- and economic-related factors
(Lazarus et al. 2022).

NAFLD progression

Reversible Reversible

Healthy liver NAFLD NASH Cirrhosis Hepatocellular
Steatosis: Fat Steatosis Fibrotic scarring carcinoma
accumulation Inflammation Presence of
in the liver Fibrosis Senee

Ballooning v )

Liver transplant or death

Figure 1 | NAFLD liver progression. Figure created with Biorender.

Even though the pathogenesis of NAFLD is not fully clarified, it is thought that
dysbiosis, diet, genetics, and changes in intestinal permeability are risk factors that drive the
progression from simple steatosis to NAFLD (Dongiovanni and Valenti 2017;
Kolodziejczyk et al. 2019; Hu et al. 2020). Evidence has shown that the gut microbiome is
closely related to the pathogenesis of NAFLD and contributes to the development of the
disease via the gut-liver axis (Tripathi et al. 2018; Bauer et al. 2022). Boursier et al.
investigated the changes in the microbiota in subjects with and without NASH and found
that the bacterial genera Bacteroides and Ruminococcus were substantially increased, and
Prevotella was reduced in patients with NASH (stage 2 fibrosis or higher) (16S) (Boursier
et al. 2016). Loomba et al. studied the gut microbiota in patients with NAFLD with and
without advanced fibrosis (stages 3 and 4) and showed an increased abundance of
Escherichia coli and Bacteroides vulgatus in patients with advanced fibrosis (Loomba et al.
2017). Studies characterizing the intestinal microbiome in NAFLD have mostly focused on
bacteria. Only one recently published study investigated the fungal community in the
progression of NAFLD suggesting the mycobiome as a novel and relevant modulator of the
development of the disease (Demir et al. 2022). In this study, Demir et al. identified that
advanced NAFLD severity in non-obese subjects was associated with distinct fecal
mycobiome signatures. In addition, there was an increased systemic immune response to
Candida albicans in patients with NAFLD and advanced fibrosis. In manuscript III we
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investigated the fungal changes and genetic variations in antifungal immunity in a NAFLD
cohort, whereas in manuscripts I and IV bacterial changes together with metabolome shifts
were evaluated in two different NAFLD cohorts.

Evidence of hepatic steatosis is needed in order to diagnose NAFLD. Histology
(liver biopsy) and no-histology techniques (e.g., magnetic resonance spectroscopy,
computed tomography, and ultrasonography) can be used to identify hepatic steatosis in the
liver. Liver biopsy is considered the gold standard for NAFLD diagnosis; however, it can
cause severe complications due to its invasive nature, and it is also prone to sampling error
due to the unevenly distributed histological lesions (Herrema and Niess 2020). Some of the
image-based diagnostic tools currently in use are magnetic resonance spectroscopy (MRS),
computed tomography (CT), and ultrasonography. These techniques also have limitations
such as high cost, radiation exposure, or limited accuracy. Among them, MRS has been
considered the non-invasive standard method due to its highly accurate and reproducible
diagnostic performance for evaluating NAFLD, and the no exposure to radiation (Lee 2017).
However, the high cost and low availability make MRS remain primarily as a research tool
not commonly used for clinical practice (Kechagias et al. 2022). Transient elastography
(TE, FibroScan®) is an ultrasound-based technique to assess the liver stiffness (Piazzolla
and Mangia 2020). TE with controlled attenuation parameter (CAP) simultaneously
measures liver stiffness and fibrosis (Piazzolla and Mangia 2020). TE has been shown to
have the best performance for the diagnosis and exclusion of advanced fibrosis when
compared to liver fibrosis (Tovo et al. 2019).

New tools for NAFLD diagnosis combining non-invasive biomarkers are under
investigation, as these seem to be the most promising cost-effective strategy. Numerous
studies have explored non-invasive diagnostic approaches using clinically relevant
biomarkers including non-invasive fibrosis models (e.g., fibrosis-4 index, NAFLD fibrosis
score or stiffness, and AST/ALT ratio), clinical parameters (e.g., age, diabetes, and BMI),
blood-based biomarkers (e.g., PRO-C3 and platelet count), and omics approaches
(biomarkers that stem from genomics, transcriptomics, epigenomics, proteomics,
lipidomics, and metabolomics). These emerging biomarkers can potentially be used in
clinical practice and serve to develop novel diagnostic tools (Piazzolla and Mangia 2020;
Hernandez Roman and Siddiqui 2020; Masoodi et al. 2021). Manuscript IV aimed to
identify potential microbial biomarkers for early NAFLD detection and to develop a
machine learning model that predicts the development of NAFLD 4 years before integrating
metagenomics, metabolomics, and clinical data.

Regarding NAFLD medical strategies, there have been clinical trials investigating
the effects of some drugs to treat NAFLD; however, to date there is no approved
pharmacological treatment. Therefore, NAFLD pharmacological treatment used nowadays
focuses on associated diseases such as diabetes, obesity, or lipid disorders to control patient
glycemic status, liver injury, and lipid profiles (Jeznach-Steinhagen et al. 2019). Lifestyle
interventions are currently the most effective strategy for managing NAFLD (Jeznach-
Steinhagen et al. 2019). The importance of lifestyle has been recognized, and while potential
pharmacological treatments are being tested in clinical trials, finding new strategies to stop
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or slow down the progression of NAFLD is crucial. In manuscript I, a potential dietary
intervention treatment was investigated in a cohort of NAFLD subjects.

3. Gut microbiome modulation

Given the significant contribution of the gut microbiome to a wide range of diseases, the
human gut microbiota has become an attractive target for novel therapeutics, and the
mechanisms shaping the gut microbiome are being studied. Determining cause-effect
relationships and designing microbiome-based therapies that can produce specific outcomes
on the microbial community and host health, are some of the biggest challenges in
microbiome research (Wong and Levy 2019).

Different mechanisms may modulate the gut microbiota including clinical
treatments (antibiotics, fecal microbiome transplant, probiotics, and pharmabiotics) and
lifestyle interventions (exercise and diet) (Quigley and Gajula 2020).

Infections caused by pathogenic bacterial species are treated with antibiotics.
Unfortunately, the current generation of antibiotics is broad-spectrum, which has a
devastating impact on the commensal microbiota (Avis et al. 2021). Some of the major
effects caused by antibiotics on the gut microbiota are the reduction of the species diversity,
the alteration of the metabolic activity, and the development of bacterial antibiotic resistance
(Ramirez et al. 2020). A meta-analysis of randomized controlled trials in children performed
by McDonnell et al. showed that antibiotic exposure was associated with reduced
microbiome diversity and richness, and with changes in bacterial abundance (McDonnell et
al. 2021). Palleja et al. showed that 4 days of antibiotic treatment induced large shifts in
bacterial abundances in adults (Palleja et al. 2018). Rashidi et al. demonstrated that specific
microbiota signatures at baseline determine personalized microbiota responses to antibiotic
perturbations in humans (Rashidi et al. 2021). In relation to the mycobiome, little is known
about the effect of antibiotics on the fungal community. Antibiotic treatment has been
shown to eliminate bacterial species that promote resistance against fungal colonization
during homeostasis, leading to yeast overgrowth and fungal dysbiosis (Li et al. 2018). The
overgrowth of Candida albicans species has also been linked to antibiotic intake (Shankar
et al. 2015; Fan et al. 2015; Gutierrez et al. 2020). Interestingly, changes produced by
antibiotics were found to be recovered in the bacterial community mostly over three months,
while alterations in the fungal community were long-lasting (Seelbinder et al. 2020).

Fecal microbiome transplant (FMT) is a therapeutic strategy that involves
administering specially prepared stool material from a donor into the intestinal tract of a
recipient, aiming to alter the gut microbiota composition and improve the individual’s health
(Gupta et al. 2016). FMT has been used successfully as a treatment option in recurrent
Clostridium difficile infection (Rohlke and Stollman 2012). Recently, the U.S. Food and
Drug Administration (FDA) approved the first orally administered fecal microbiota product
for the prevention of recurrence of C. difficile infection in individuals 18 years old and older
(Carvalho 2023). The use of FMT in other microbiota-associated conditions that also
experience gut microbiota dysbiosis such as NAFLD, diabetes, obesity, or IBD seems to be
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a promising therapy but needs to be further investigated (Smits et al. 2013; Gupta et al.
2016; Napolitano and Covasa 2020).

Besides invasive solutions, exercise and microbiota-directed food interventions
(MDFs) are the major gut microbial-modulation strategies that are been investigated for the
treatment of a variety of human diseases associated with gut microbiome dysbiosis (Conlon
and Bird 2015). In relation to exercise activity, Ni et al. showed that exercise in subjects
with prediabetes was associated with differential gut microbiota changes, and these
alterations were found to be linked with improvements in glucose homeostasis and insulin
sensitivity. In addition, subjects that responded to the exercise intervention were found to
have an enhanced capacity for generating SCFAs and an increased breakdown of BCAAs,
whereas an increased production of metabolically detrimental compounds was associated
with the microbiome of non-responders subjects (Liu et al. 2020). A different study in obese
children showed that exercise training modulates positively the gut microbiota profile and
produces changes reducing inflammatory signaling pathways induced by obesity (Quiroga
et al. 2020). A recent investigation in subjects with NAFLD and prediabetes who underwent
aerobic exercise combined with dietary intervention found that hepatic liver fat decreased
in the intervention groups while increased in the control group; even more, the authors
identified changes in the microbial alpha diversity and changes in the gut microbiota co-
occurrence network (Cheng et al. 2022).

Regarding diet, microbiota-directed foods are known as aliments that aim to alter
the structure or function of the gut microbiome and promote the growth of beneficial
microbes associated with good health (Barratt et al. 2017). Numerous strategies making use
of MDFs are being explored, for example, high fiber diet or low carbohydrate diet among
others. Mardinoglu et al. found that the use of an isocaloric low-carbohydrate diet with
increased protein promotes multiple metabolic benefits in obese humans with NAFLD
(Mardinoglu et al. 2018). High-fiber diet intervention promoted the growth of SCFA-
producing organisms in diabetic humans and induced changes in the microbiome
community correlated with elevated levels of glucagon-like peptide-1, reduction in
acetylated hemoglobin levels, and improved blood-glucose regulation (Zhao et al. 2018). A
combination of low-fat/high-fiber diet was shown to improve the overall quality of life and
decrease the inflammatory markers and dysbiosis in patients with ulcerative colitis (Fritsch
etal. 2021).

3.1 Resistant starch as microbiota-directed food intervention

Non-digestible carbohydrates (NDCs) are fibers that are fermented by the gut microbes into
SCFAs (Dobranowski and Stintzi 2021). Resistant starch (RS) is a type of NDCs that
escapes digestion and survives passage through the stomach and small intestine to reach the
colon where it is fermented by microorganisms (DeMartino and Cockburn 2020).
Depending on their source and processing procedure, resistant starches are classified into
five types (RS1-RS5). RS1 is physically unreachable starch, such as whole grains; RS2 is
native granular starches, such as raw potatoes, green bananas, or high-amylose maize; RS3
is retrograded amylose starch or crystallized starch, such as cooked and cooled starchy
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foods; RS4 is chemically modified starch; and RSS5 is amylose-lipid complex (Zhu et al.
2022).

The use of resistant starch as microbiota-directed foods (MDFs) has become one of
the focuses of non-digestible carbohydrate therapies for the prevention and treatment of
obesity and related diseases (Zhang et al. 2015). The regulatory effects of RS
supplementation on NAFLD mainly occur in the gut, where RS contributes to the restoration
of the gut microbiota structure, the increase in SCFAs release, and the enhancement of the
gut barrier integrity (Zhu et al. 2022). A recent meta-study showed that especially for
diabetic overweight or obese subjects, RS supplementation can improve fasting glucose,
fasting insulin, insulin resistance, and insulin sensitivity (Wang et al. 2019). RS
supplementation showed improvements in clinical remission in patients with IBD (Montroy
et al. 2020). Animal studies in mice also demonstrated RS to decrease adiposity, reduce
insulin levels, and exert metabolic benefits (Higgins et al. 2011; Polakof et al. 2013; Rosado
et al. 2020; Zhang et al. 2020; Montroy et al. 2020). Nevertheless, up to now, no clinical
study has explored RS as a potential therapeutic treatment for NAFLD. In manuscript I the
effects of RS2 from high-amylose maize in NAFLD subjects were investigated.

4. Resistance and resilience of the human gut microbiome

Gut microbiome responses to microbiome-targeted interventions are highly individual-
specific (Olsson et al. 2022). This highlights the importance of investigating gut microbiome
dynamics to better understand the mechanisms causing the microbiome to remain unaltered
after the same perturbation and to determine whether is a microbial signature and specific
taxa that are important contributors that contribute to the overall stability of the community
(Risely 2020). Microbial stability is known as the property of maintaining a state of
equilibrium and resist to perturbations to the community (Fassarella et al. 2021).

The use of metabolic engineering and synthetic biology will allow us to develop
personalized therapies that target the gut microbiota. Identifying when a microbiome is not
going to be affected by a microbiome-targeted therapy is crucial to develop personalized
therapies to first alter the gut microbiome stability, so that it is sufficiently plastic to conduct
a well-defined microbiome modulation treatment afterward. In addition, characterizing gut
microbiome signatures associated with microbiome dynamics will also help to develop
more precise patient stratification strategies combining host phenotype and microbiome
stratification.

The gut microbiome is constantly fluctuating and trying to maintain a dynamic
equilibrium over time while being exposed to external perturbations such as diet,
medications, and the environment; that can disrupt the stability of the gut microbial
ecosystem (Fassarella et al. 2021). However, to date, it is not clear how an individual
microbial community responds to perturbations. External perturbations can lead to a
transient dysbiotic state that will recover over time, but it can also lead to a stable dysbiotic
state with negative implications for the host (Fassarella et al. 2021). To understand the
response to perturbations in the gut as a complex ecosystem, it is important to distinguish
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two concepts: resilience, which is the property of how fast or to what extent an ecosystem
will recover its initial state after a perturbation; and resistance, that is the ability to remain
unchanged during a perturbation (Sommer et al. 2017). An appropriate equilibrium state of
resilience and resistance of the healthy gut microbiota protects us from dysbiotic-associated
diseases (Sommer et al. 2017).

Even though the abundance of specific bacteria fluctuates over time, it has been
shown that the gut microbial community in healthy subjects can be stable for years (Faith
et al. 2013). In addition, gut microbial communities with higher diversity at the baseline
showed more microbial stability over time (Chen et al. 2021). Chen et al. also observed that
the genetic stability of gut microbes varies substantially across different species, and some
species including Ruminococcus torques, Streptococcus parasanguinis, and
Faecalibacterium prausnitzii were identified to be genetically unstable over time. A recent
study in a Swedish healthy cohort showed that the gut microbiota functional potential is
more stable than the species profile, and they identified that intra-individual compositional
variability was negatively associated with the abundance of Faecalibacterium prausnitzii
and two Bifidobacterium species (Olsson et al. 2022). Concerning diet, the stability of the
microbiome composition was found to be correlated to dietary diversity, and food-
microbiome interactions were identified to be highly personalized (Johnson et al. 2019).
Hutchison et al. investigated the effect of a fermentable fiber diet in mice with different
microbial communities, and their findings suggest that the effectiveness of a fermentable
fiber diet in protecting against atherosclerosis is different for each animal and influenced by
the composition of the gut microbiome (Hutchison et al. 2023). However, even though much
research has been done on the effects of lifestyle interventions on the gut microbiome and
human health, very little is known about how these lifestyle perturbations impact the
stability, resistance, and resilience of the gut microbial community.

In manuscript II we explored the microbiome response to antibiotics and lifestyle
treatments in order to characterize signatures associated with the gut microbial dynamics.
We also developed a machine learning model that predicts the microbiome responsiveness
in response to lifestyle interventions.

5. Bioinformatics approaches for studying the microbiome

The fast development of next-generation sequencing (NGS) technologies in the last decades
has facilitated the rapid expansion of the microbiome field. Omics analyses including
metatranscriptomics, metagenomics, proteomics, and metabolomics are some of the
bioinformatic fields that have helped to understand and elucidate the role of the human
microbiome in health and disease.

Metagenomic approaches allow the identification of microorganisms present in a
sample. Thanks to the advances in NGS technologies, numerous metagenomic approaches
are nowadays available to identify the composition of microbial populations. Amplicon
sequencing and whole-genome shotgun (WGS) metagenomics are the two major
methodologies for researching the microbiome utilizing high-throughput sequencing
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(Figure 2) (Agus et al. 2021). In addition, the development of analyzing tools and resources,
and the creation and curation of metagenome databases have widely increased in the last
decade. Nowadays, a combination of different omics disciplines such as metagenomics and
metabolomics has been suggested as a promising approach to study host-microbiome
interactions (Turnbaugh and Gordon 2008), with a high potential to investigate metabolic-
related disorders.

Amplicon sequencing
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Figure 2 | Amplicon sequencing and whole-genome-shotgun sequencing (WGS) overview
showing some of the most used tools and databases for each sequencing strategy. Figure
created with Biorender.

5.1 Amplicon sequencing

To identify the microbial composition of a sample using sequencing strategies, it is not
needed to sequence the full metagenome. A common practice, called amplicon sequencing,
is to target a fragment of the genome. Amplicon sequencing uses generic primers designed
to amplify a particular gene or gene fragment from all genomes present in a sample, and
then the resulting product is sequenced. The rRNA regions commonly amplified for
amplicon sequencing profiling are the 16S rRNA gene for bacteria/archaea, the 18S rRNA
gene for eukaryotes, and the internal transcribed spacer regions 1 or 2 (ITS1/ITS2) of the
fungal ribosome for fungi. This strategy generally involves four steps: DNA extraction,
amplification of the marker gene through polymerase chain reaction (PCR) using target
primers, barcoding of the amplicons of each sample with a short “barcode” sequence unique
to each sample, and high throughput “multiplexed” sequencing of the combined amplicons
from all samples in a single sequencing run (Dong et al. 2017).

Some of the generally used open-source amplicon analysis tools are QIIME?2,
DADAZ2, Mothur, and PIPITS. QIIME2 is a frequently used bioinformatics pipeline for
performing microbiome analysis from raw sequencing data including demultiplexing and
quality filtering, OTU picking, taxonomic assignment, phylogenetic reconstruction,
diversity analysis, and visualizations (Bolyen et al. 2019). DADA?2 is an R package that
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implements the full amplicon workflow such as filtering, dereplication, chimera
identification, and merging of paired-end reads (Callahan et al. 2016). Mothur is a software
package for bioinformatics data processing that includes pre-processing, OTU picking, join
reads, contig screening, taxonomic assignment, sequence filtering, chimera removal, etc
(Schloss et al. 2009). Lastly, PIPITS is a stand-alone suite of software specifically for ITS
data for automated processing of [llumina MiSeq sequences for fungal community analysis
(Gweon et al. 2015). In order to perform the taxonomic assignment, it is essential the
availability of reference databases. Some of the most used public reference databases for
amplicon taxonomy assignment are SILVA for 16S/18S rRNA data (Quast et al. 2013),
Greengenes for 16S rRNA data (DeSantis et al. 2006), and UNITE for ITS data (Nilsson et
al. 2019).

In manuscript III, I used the PIPITS pipeline and UNITE database to process
[llumina ITS1 sequencing data, and 16S sequencing data from manuscript III were
processed using DADA2, QIIME2, and SILVA databases.

5.2 Whole-genome shotgun sequencing

In contrast to amplicon sequencing, shotgun metagenomics allows the sequencing of all
accessible genomic DNA present in a given sample. WGS commonly consists of five stages:
DNA extraction, random fragmentation of genomic DNA, genomic library preparation,
paired-end sequencing, and genome assembly (Fuentes-Pardo and Ruzzante 2017). This
strategy is a good taxonomic classification option due to the alignment of the whole genome
and allows functional annotation providing an integrated understanding of the community
structure, genetic population heterogeneity, and potential metabolism pathways (Niu et al.
2018).

Two popular tools for metagenomic taxonomic profiling are MetaPhlAn (Beghini et
al. 2021) and Kraken (Wood and Salzberg 2014). Both tools are open source and include
their curated database. MetaPhlAn uses clade-specific marker genes to study the
microbiome taxonomic composition, while Kraken uses a K-mer based searching algorithm
to assign taxonomic labels to the reads.

Functional profiling to identify the presence/expression of bacterial genes in the
microbial community is also possible when analyzing shotgun sequencing data. HUMAnN
(Beghini et al. 2021) is one of the most used tools for analyzing bacterial gene expression
profiles. It allows to access different levels of information, being the reads first assigned to
bacterial taxa and then searched against the protein databases for gene assignments. UnifRef
database (Suzek et al. 2007) is used to identify gene families that then are mapped to
different systems using the specific databases including MetaCyc reactions (Caspi et al.
2014), KEGG Orthologs (KOs) (Kanehisa et al. 2016), Pfam domains (Mistry et al. 2021),
and Gene Ontology (GO) (The Gene Ontology Consortium 2021).

Whole-genome sequencing data were analyzed in manuscripts I, I, and IV. This
allowed the taxonomical characterization of the microbial community as well as the
functional profile. MetaPhlAn (versions 2 and 3) and HUMAnNN (versions 2 and 3) tools
were used to perform the taxonomic and functional profiling respectively.
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5.3 Metabolomics

Metabolites are the intermediates or end products of multiple enzymatic reactions and
therefore are the most informative proxies of the biochemical activity of an organism
(Alonso et al. 2015). Metabolomics, known as the study of the metabolite composition
within cells, biofluids, tissues, or organisms; has become an emerging technology in the last
decades (Newgard 2017). There are two different metabolomic approaches: targeted and
untargeted metabolomics, also known as validation-based or discovery-based, respectively
(Schrimpe-Rutledge et al. 2016). Untargeted metabolomics focuses on global detection and
relative quantitation of small molecules in a sample. In contrast, targeted metabolomics aims
to measure quantitatively specific groups of metabolites; for this reason, prior knowledge
of metabolites of interest and known compounds is needed (Schrimpe-Rutledge et al. 2016).
Therefore, to perform targeted metabolomics analysis it is required to have a previously
developed analytical method to measure the concentration of the specific metabolite in the
sample (Shulaev 2006). Numerous metabolites cannot be identified with the currently
available analytical techniques and purification standards, so targeted metabolomics cannot
be used for novel metabolic markers identification (Shulaev 2006). Thus, targeted
metabolomics is more quantitative, whereas untargeted often provides more information
(Zhang et al. 2016).

Metabolomics has a wide range of applications being involved in numerous research
areas including plant biotechnology, food technology, human diseases, and toxicology,
among others (Gomez-Casati et al. 2013). One of the most growing areas is the biomedical
field and the research of the metabolome in the development of human diseases, especially
in metabolic-related disorders (Alonso et al. 2015). Metabolomics is facilitating the
discovery of metabolite-disease biomarkers and in practice, it will enhance diagnosis,
prognosis, surveillance, and personalized drug treatments (Gonzalez-Covarrubias et al.
2022). Albeit knowledge about the metabolites is crucial, integration of metabolomics with
different omics disciplines may be a better approach to understanding many as yet
undetermined disease mechanisms (Cambiaghi et al. 2017).

In this dissertation, targeted metabolomics data were analyzed in manuscripts I and
IV from the two different NAFLD cohorts. Metabolomics changes and signatures were
investigated, and metabolome-microbiome integration analyses were performed for better
insights.

6. Statistical and machine learning techniques in metagenomics

Statistical analyses and machine learning workflows in this dissertation were performed
using R programming language (R Core Team 2022) and R studio software (RStudio Team
2022). R is a very popular open-source programming language and environment, commonly
used in statistical computing, data analytics, and scientific research, supported by the R Core
Team and the R Foundation for Statistical Computing. RStudio is an open-source integrated
development environment for the R programming language. It includes a console, syntax-
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highlighting editor that supports direct code execution, as well as tools for plotting, history,
debugging, and workspace management.

In order to perform comprehensive analyses and to have a full understanding of the
different microbial communities analyzed in this dissertation, numerous bioinformatics data
analysis techniques were applied to investigate and elucidate the different project objectives.
Some of the main data analysis approaches that I applied during my Ph.D. are described
below.

6.1 Methods for abundance comparisons

Identifying differentially abundant features such as bacteria, functions, or fungi is a common
goal of metagenomics studies. New methods have been developed to identify changes in
microbial abundances between different comparisons or conditions. Some of the commonly
used tests or tools for differential abundance analysis are Wilcoxon test, generalized linear
models (GLM), and metagenomeSeq.

Wilcoxon test is a non-parametric alternative to a t-test, appropriate when working
with microbial data as commonly are non-normalized. Wilcoxon rank-sum test is used to
compare two independent samples, while Wilcoxon signed-rank test is used to compare two
related samples, matched samples, or to conduct a paired difference test of repeated
measurements on a single sample (Schwaid 2017). Wilcoxon test can be performed in R
using the function wilcoxon.test from the R package stats. Generalized linear model (GLM)
is an advanced statistical modeling technique and is a basic method for advanced testing of
differential abundance in sequencing data. GLM can model a mean response under non-
linear, non-symmetric, and non-gaussian association conditions, where discrete and
continuous data distributions can be fitted (Lu et al. 2019). The function g/m from R package
stats is used to fit generalized linear models. metagenomeSeq is a tool that was developed
specifically for microbial datasets (Paulson et al. 2013) and was designed to determine
microbial features that are differentially abundant between two or more groups of multiple
samples. metagenomeSeq addresses the effects of both normalization and under-sampling
of microbial communities on disease association detection and the testing of feature
correlations. It is available in metagenomeSeq R package.

In addition, some of these methods allow accounting for covariates. It is known that
the gut microbiome undergoes significant changes through age (Bosco and Noti 2021), and
adjusting for age has been shown to improve the identification of gut microbial alterations
(Ghosh et al. 2020). Other confounders affecting the microbiome composition that are
commonly used when studying gut microbial changes are gender, ethnicity, or smoking
among others (Chua et al., 2017; Jian et al., 2022; Loftfield et al., 2020; Si et al., 2021). The
importance of considering covariates in microbiome studies will be addressed in the
discussion section. From the previously mentioned methods, GLM and metagenomeSeq can
perform differentially abundant analysis adjusting for covariates.
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6.2 Methods for correlation analysis

Correlation is a statistical method used to study a possible linear association, connection, or
relationship between two continuous variables. The statistic is called correlation coefficient,
and it measures the strength and the direction of the relationship (Mukaka 2012). It ranges
from—1 to 1, with +1 indicating a perfect direct association, —1, a perfect inverse association,
and 0, no relationship between the two variables, respectively (Mukaka 2012).

Three frequently wused correlation methods in biostatistics are Pearson
correlation, Kendall rank correlation, and Spearman correlation. These methods can detect
linear or non-linear monotonic (strictly increasing or strictly decreasing function)
relationships (Santos et al. 2014). We use Pearson correlation when both variables are
normally distributed. For example, when we want to know if two clinical variables that are
normally distributed have a linear association, we can perform a Pearson correlation
between both variables. Pearson's correlation coefficient 7 is calculated as the covariance of
the two variables divided by the product of their standard deviations. Unlike Pearson’s
correlation coefficient, Spearman’s correlation rho (p) and Kendall's tau (t) do not require
the assumption of normality of the variables. Thus, these two correlation methods are more
used when working with metagenomics data, as microbial data are rarely normally
distributed. Spearman’s correlation is a non-parametric test that does not carry any
assumptions about the distribution of the data and is the appropriate correlation analysis
when the variables are measured on a scale that is at least ordinal. It measures the degree of
association between two variables. This method is simply the application of Pearson’s
correlation in the data converted to ranks before calculating the coefficient. Kendall’s tau
(7) is another non-parametric test that measures the strength of dependence between two
variables. In R, the function cor.test from the R package stats (R Core Team 2022)
computes the Pearson’s, Spearman’s, or Kendall’s correlation of two variables provided to
the function.

In addition, it is also possible to compute correlation analysis between variables
eliminating the effect of other covariates using the partial correlation approach. Partial
correlation is defined as the association between two random variables after eliminating the
effect of one or more other random variables. In R, the function pcor from the R
package ppcor (Kim 2015) calculates the partial correlations of all pairs of two random
variables of a matrix or a data frame for the different correlation methods previously
described (Pearson’s, Spearman’s, and Kendall’s).

6.3 Methods for network analysis

Network-based approaches are commonly used to explore -omics data. In metagenomics,
microbiome network analyses allow us to understand community dynamics and explore the
interactions and dependencies between the different members of the gut microbial
community (Matchado et al. 2021). The complex interactions between thousands of
individual taxa or functions and between different communities (e.g., bacteria, fungi, and
metabolites), suggest network analysis as a powerful method in the microbiome field

14



Humans as holobionts: Systems-level approaches for disease prevention and therapy

(Matchado et al. 2021). Taxa and functions are common components modeled when
performing gut microbial network analysis. These components in the network are known as
nodes. When incorporating other types of data, nodes can also be host features, metabolites,
genes, or proteins. The presence of an edge means that two nodes are connected, indicating
an association between the two nodes. Correlation-based approaches, including Pearson or
Spearman correlation previously described, are popular methods for studying these
interactions (Jiang et al. 2019). However, in order to account for the compositionality of the
microbial data, more specific tools such as SparCC and SPIEC-EASI have been developed
to explore co-occurrence microbial networks. SparCC (Sparse Correlations for
Compositional data) is one widely used method to build microbial community networks
(Friedman and Alm 2012). This method was developed for estimating correlation values
from compositional data. SparCC estimates the linear Pearson correlations between
abundances in microbiome data accounting for their inherent sparsity and compositionality.
It uses the centered log-ratio transformation to address data compositionality (Friedman and
Alm 2012). SparCC was developed as a Python module, but there is also a reimplementation
of the SparCC algorithm available using the R function sparcc. Another method developed
to explore microbial networks is SPIEC-EASI (SParse InversE Covariance Estimation for
Ecological Association Inference) (Kurtz et al. 2015). This method infers an ecological
network (inverse covariance matrix) from compositional data using the log-ratio
transformation and performs neighborhood selection and sparse inverse covariance
selection (Kurtz et al. 2015). SPIEC-EASI pipeline was developed in R and can be run using
the R function spiec.easi from the SpiecEasi package.

Once the microbial community network is built, we can explore the different
characteristics of the network topology to investigate the connectivity and structure of the
microbial ecosystem. Network metrics, such as degree centrality, betweenness centrality,
closeness centrality, and hub score can be used to quantitatively describe these communities
and identify the most important nodes (i.e., taxa) of a given community (Zamkovaya et al.
2021). Degree centrality measures the number of connections of a node (i.e., taxa or
metabolite), and determines the level of co-occurance of a node. Betweenness centrality is
a measure based on the shortest paths and computes the extent to which a node lies on paths
between others (Zamkovaya et al. 2021). Closeness centrality measures how far a node is
from all other nodes and can be used to find the most central taxa of a given community
network (Zamkovaya et al. 2021). Nodes with high degree and betweenness centrality are
typically the most connected taxa within the community and are also known as “hubs”
(Zamkovaya et al. 2021). These network characteristics provide essential insights into how
specific features may contribute to ecosystem functioning.

Lastly, network clustering analysis allows the identification of densely connected
nodes that form network subcommunities (or clusters) and reveals relationships among
nodes in the community network. Clusters are powerful topological features to reflect
network differences (Pan et al. 2021). Some clustering algorithms available in the R package
igraph are Louvain, Walktrap, and Greedy clustering.
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6.4 Machine learning

Machine learning (ML) is a branch of artificial intelligence that develops, analyzes, and
implements predictive methods through the use of dynamic algorithms capable of data-
driven decisions (El Bouchefry and de Souza 2020).

There are two main types of ML algorithms commonly applied to microbial datasets:
supervised and unsupervised learning. In supervised learning algorithms, the output has
been given a priori labels or the learner has some prior knowledge of the data, while in
unsupervised learning algorithms, hidden patterns are identified in unlabeled data
(Auslander et al. 2021). Some commonly used unsupervised algorithms include k-means
clustering, hierarchical clustering, and principal component analysis. In the case of
supervised learning, some examples of algorithms are random forest, support vector
machines, and gradient boosting machines.

The development of a machine learning pipeline can be summarized in four main
steps: data handling, model training, evaluation, and development (De Souza Nascimento
etal. 2019). The data handling step includes different approaches such as data preprocessing
and feature selection. Due to the importance of data quality in the model performance, it is
crucial to implement an appropriate data handling approach when building a model. Feature
selection is a key step to obtain an optimal and non-redundant subset of the initial features
due to the extremely large number of features when working with microbiome data (e.g.,
species, genes, metabolites, etc.). Moreover, to evaluate and test the performance of a
machine learning model, a resampling method called cross-validation is usually applied.
Cross-validation uses different portions of the data to test and train a model on different
iterations. Cross-validation together with feature selection are useful techniques that help to
prevent one of the main problems when building a model, namely overfitting (when the
model cannot generalize and fits too closely to the training dataset instead). To evaluate the
performance of a machine learning model, different measurements are frequently computed
including confusion matrix, accuracy, precision, specificity, sensitivity, receiver operating
characteristic (ROC), and area under ROC curve (AUC).

The application of ML in the microbiome field is relatively new but it has shown a
lot of potential for sophisticated analyses and generating new knowledge from the vast
amount of omics data produced. Clinical data and gut microbial profiles from multi-omics
analyses are used to develop ML models with different applications including phenotypic
prediction, patient stratification, biomarker discovery, treatment outcome evaluation, and
personalized treatment and nutrition (Li et al. 2022a). For instance, Franzosa et al.
developed a machine-learning model using gut microbiome and metabolic profiles to
classify subjects according to IBD phenotype (Franzosa et al. 2019). Zeevi et al. showed the
power of the microbiome in personalized medicine and found that dietary, clinical, and
anthropometric information together with microbial profiles can successfully predict
postprandial glucose responses using a gradient boosting model (Zeevi et al. 2015). A recent
study showed the potential of the combination of conventional risk factors and gut
microbiome data for early risk stratification for liver disease (Liu et al. 2022). In this study,
Liu et al. developed a gradient-boosting model able to predict liver disease 15 years before.
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In this dissertation, caret R package has been used to implement machine learning
pipelines. Caret is a powerful machine learning package that provides methods for common
ML steps, such as preprocessing, training, tuning, and evaluating predictive models.
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OBJECTIVES

This dissertation aimed to implement bioinformatic analyses making use of multi-omics
techniques to expand the knowledge about the human gut microbiome and mycobiome and
its implication for human health and disease. Complete study designs were set up for the
different projects included in this dissertation to establish and perform meticulous analyses
making use of state-of-the-art bioinformatics and statistical approaches to achieve the
research objectives. During my research, I focused on investigating the role and connection
of the gut microbiome and mycobiome in non-alcoholic fatty liver disease (NAFLD), and
the effect of lifestyle interventions on the gut microbiome composition and dynamics.

Three research projects of this dissertation aimed to study the gut microbiome,
mycobiome, and metabolome in NAFLD, and to evaluate different novel microbiome-based
strategies for NAFLD. Using shotgun metagenomics (microbiome), ITS sequencing
(mycobiome), and metabolomics; the characterization of the microbiome, mycobiome, and
metabolome signatures in NAFLD progression was investigated. These projects served to
ask the questions mentioned below:

1. Is resistant starch (RS) a beneficial microbiome-directed food intervention to treat
NAFLD?

2. How the metabolome and gut microbiome of patients with NAFLD are altered after
4-month RS intervention?

3. Are there potential RS-targeted species or RS-targeted microbial metabolites?

4. In healthy people, is there a microbiome-metabolome signature able to predict the
development of NAFLD and microbial biomarkers that serve as early detectors of
NAFLD development?

5. How do intestinal fungi contribute to NAFLD progression?

A fourth study focused on investigating the resistance potential of an individual
microbial ecosystem to lifestyle interventions. We performed a large-scale meta-analysis of
metagenomic samples to better understand gut microbial dynamics and to identify potential
microbial biomarkers associated with the microbiome resistance to lifestyle interventions.
This project aimed to shed light on the following research questions:

1. How does the stability of the microbial community or the stability of the specific
species respond to different antibiotic or lifestyle interventions?

2. Are there microbial biomarkers of community response that characterize the stability
of the microbial composition of an individual?

3. Isit possible to predict the resistance of a microbiome community to be changed in
response to a lifestyle intervention using the baseline gut microbial composition?
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RESEARCH PUBLICATIONS

This cumulative dissertation consists of four research publications. Three first-author
publications of which one is published in the journal Microbiome (manuscript II), another
one is accepted for publication and will be the cover article in the issue of September of Cell
Metabolism journal, and a third publication in preparation (manuscript III). Lastly, one co-
author publication is published in the journal Science Translational Medicine (manuscript
IV). Supplemental information of all published manuscripts can be downloaded from the
websites of the respective publishers. Additionally, copies of these files are also included in
the digital version of this dissertation. This dissertation comprises the following
manuscripts:

» Manuscript I:
[co-first author] Ni Y, Qian L, Siliceo SL, Long X, Nychas E, Liu Y, Ismaiah MJ,
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in preparation].
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W, and Panagiotou G. (2022) Risk assessment with gut microbiome and
metabolite markers in NAFLD development. Science translational
medicine, 14(648):eabk0855. https://doi.org/10.1126/scitranslmed.abk0855
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Manuscript I

Resistant starch decreases intrahepatic triglycerides in patients with

NAFLD via gut microbiome alterations

Yuegiong Ni**!!| Lingling Qian'!!, Sara Leal Siliceo™'!, Xiaoxue Long'!!, Emmanouil

Nychas?, Yan Liu**, Marsena Jasiel Ismaiah>, Howell Leung?, Lei Zhang', Qiongmei Gao',

Qian Wu'!, Ying Zhang', Xi Jia*#, Shuangbo Liu’, Rui Yuan’, Lina Zhou®, Xiaolin Wang®, Qi

Li®, Yueliang Zhao, Hani El-Nezami*¢, Aimin Xu**?, Guowang Xu®", Huating Li"", Gianni

Panagiotou®*'%", Weiping Jia'!>*

Overview

In manuscript I, we aimed to elucidate the effect of a resistant starch (RS) supplementation
as one type of microbiome-directed foods (MDFs) to treat NAFLD and characterize the
changes in the gut microbiome and metabolome during the intervention. Therefore, we
conducted a randomized, double-blinded, placebo-controlled clinical trial of 4-month RS
supplementation in individuals with NAFLD. Multi-omics profiling was used to provide an
integrated understanding of how RS and associated alterations in the gut microbiota or
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SUMMARY

Non-alcoholic fatty liver disease (NAFLD) is a hepatic manifestation of metabolic
dysfunctions for which effective interventions are lacking. To investigate the effects of
resistant starch (RS) as a microbiota-directed dietary supplement for NAFLD treatment, we
coupled a 4-month randomized placebo-controlled clinical trial in individuals with NAFLD
(ChiCTR-IOR-15007519), with metagenomics and metabolomics analysis. Relative to the
control (n=97), the RS intervention (n=99) resulted in a 9.08% absolute reduction of
intrahepatic triglyceride content (IHTC), which was 5.89% after adjusting for weight loss.
Serum branched chain amino acids (BCAAs) and gut microbial species, in particular
Bacteroides stercoris, significantly correlated with IHTC and liver enzymes, and were
reduced by RS. Multi-omics integrative analyses revealed the interplay among gut
microbiota changes, BCAA availability, and hepatic steatosis, with causality supported by
fecal microbiota transplantation and monocolonization in mice. Thus, RS dietary
supplementation might be a strategy for managing NAFLD by altering gut microbiota
composition and functionality.

Keywords: non-alcoholic fatty liver disease; gut microbiota; resistant starch; microbiota-
directed foods; microbiota transplantation; BCAAs

INTRODUCTION

An estimated 30% of the world’s population currently has nonalcoholic fatty liver disease
(NAFLD), which has reached epidemic proportions globally ', It is a multisystem disease
that may not only develop into severe chronic hepatic diseases but also contribute to
extrahepatic diseases such as type 2 diabetes, cardiovascular disease, and chronic kidney
disease, causing a tremendous clinical and economic burden **. A recent large nationwide
cohort study with long-term follow-up showed significantly increased overall mortality with
all NAFLD histological stages including steatosis °, thus it is suggested that steatosis can no
longer be ignored as ‘benign and an incidental finding’ 6. Although there have been clinical
trials exploring drug candidates, no pharmacological treatments have been approved for
NAFLD so far 7. Hence, effective intervention strategies are urgently needed to delay or halt
its progression to related hepatic and extrahepatic diseases.

Accumulating evidence suggests that NAFLD is a disease closely related to gut
microbiota via the gut-liver axis ®°, which stimulates the efforts to explore therapeutic
interventions to improve NAFLD by modulating the gut microbiota '°. The safety and
persistence needed for microbiota-targeted intervention in humans highlights the
importance of exploring microbiota-directed foods (MDFs), which by definition can elicit
a targeted metabolic response in specific indigenous microbiota that confer a health benefit
on the host ', Prebiotics and synbiotics like oligofructose and yogurt, which can manipulate
gut microbiota, were found to reduce insulin resistance, intrahepatic lipids, liver enzymes,
and histologically confirmed steatosis in patients with NAFLD/NASH '*!4. Despite the
promise of MDFs in patients with NAFLD, such studies are in an early stage '°. According
to the NAFLD practice guidance from the American Association for the Study of Liver
Diseases, rigorous, prospective, longer-term trials are required before making
recommendations about specific diets '°. The complexity and heterogeneity of the NAFLD
pathogenesis calls for deep and extensive phenotyping to evaluate the multiple effects of an
intervention on NAFLD and their molecular mediators !”. Furthermore, subsequent causal
investigations are needed to verify the specific microbial signatures identified in clinical
studies and their metabolites, which represent the highest levels in the chain of evidence in
microbiome-linked disease '®.

In line with the above we performed here a randomized, double-blinded, placebo-
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controlled clinical trial in individuals with NAFLD that lasted for 4 months to enable a
relatively long-term observation. We used as MDF resistant starch (RS), a prebiotic of
nondigestible fibers that are fermented in the large intestine !°, which has been shown to
reduce adiposity and exert metabolic benefits in previous animal studies 2°2*, however so
far, no clinical study has investigated the therapeutic effect of RS on NAFLD.
Comprehensive clinical measurements were conducted to evaluate the changes in metabolic
phenotypes of NAFLD during the intervention. Multi-omics profiling was used to provide
an integrated understanding on how RS and associated alterations in the gut microbiota or
metabolites contributed to NAFLD improvement. In addition, the potential RS-targeted gut
species and microbial metabolites revealed by multi-omics analysis were validated in mice
and cell lines for causal insights.

RESULTS

Four-month RS intervention alleviates NAFLD in Chinese adults

To investigate the effects of RS on NAFLD, we conducted a randomized, double-blinded,
placebo-controlled clinical trial in Shanghai, China from 2016-March to 2017-October
(ChiCTR-IOR-15007519). A total of 200 participants with NAFLD (145 male and 55
female) were recruited and randomized with a 1:1 allocation to the 4-month administration
of RS type 2 from high-amylose maize (HAM-RS2, 40 g/day) or control starch (CS) with
equal energy supply (Figures 1A and S1A). The average age of all the participants receiving
randomization was 39.1 £ 9.1 years (mean + SD), while the average intrahepatic triglyceride
content (IHTC) was 24.12% + 14.64% (mean + SD). Both groups were counseled to manage
their diet following the standard menu designed by nutritionists. We measured the IHTC by
magnetic resonance spectroscopy (MRS) during interventions along with anthropometric
parameters and biochemical indexes. Four participants (3 in the CS group and 1 in the RS
group) did not receive the corresponding intervention after randomization and were
therefore excluded from the primary analysis (Figure S1A). Baseline anthropometric and
clinical characteristics of participants were balanced between the two groups (Table 1).
During the 4-month (120-day) intervention, the mean (= SD) percentage of the meals for
which participants adhered to starch intake was 84.0 = 16.1% in CS and 83.8 = 12.6% in
the RS group, with no significant difference (Figure S1B). Similarly, no significant
difference was found in the adherence to diet (Figure S1C, Table S1). Dietary intake of
energy and macronutrients except fiber were not significantly different between the two
groups (Table S1).

After the 4-month intervention, the primary outcome IHTC was significantly
decreased in the RS group compared to the CS group (-13.29% vs. -6.32%, P < 0.0001)
(Figure 1B). The net absolute and relative change of IHTC in the RS group relative to the
CS group was -9.08% (95% CI: -11.91% to -6.26%) and -39.42% (95% CI: -56.13% to -
22.72%), respectively (Table 1). Together with the alleviation of steatosis, we observed
significant reduction of body weight and BMI in the RS group compared to the CS group
(Figure 1C). The waist circumference, hip circumference, and waist-hip ratio (WHR) in the
RS group were all lower compared to the CS group. Regarding the body composition, the
reduction of fat percentage (FAT%) and fat mass (FM) were all significantly higher in the
RS group compared with the CS group (Table 1). The reduction of visceral fat areas (VFA)
and subcutaneous fat areas (SFA) evaluated by abdominal magnetic resonance imaging
(MRI) were significantly higher after RS consumption compared to CS consumption
(Figures 1D and 1E).

Furthermore, we observed significant reductions in alanine aminotransferase (ALT),
aspartate aminotransferase (AST), and gamma-glutamyl transpeptidase (GGT) after RS
intervention (Figures 1F-1H; Table 1), which indicate the improvements of liver injury.
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The dyslipidemia was also alleviated by the RS intervention as shown in the improvement
of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C),
and high-density lipoprotein cholesterol (HDL-C), which was absent after CS intervention
(Table 1). Notably, fibroblast growth factor 21 (FGF21), a generally acknowledged NAFLD
biomarker 2, was reduced after RS consumption (Figure 1I). The level of CK18 M65ED,
which correlates with hepatocyte apoptosis and independently predicts the presence of
NASH 24, was also significantly lower after RS compared to CS consumption (Table 1). In
addition, the circulating levels of lipopolysaccharides (LPS) and other inflammatory
markers including MCP-1, IL-1B and TNFa, were all significantly reduced after RS
intervention in comparison to CS intervention (Figure 1J-1M).

While the fasting blood glucose level was reduced in both groups after the 4-month
intervention, neither fasting nor postprandial glucose levels during the meal tolerance test
demonstrated significant difference between the RS and CS intervention. Both the fasting
and postprandial insulin levels were significantly decreased in the RS compared to CS group,
as well as the insulin resistance evaluated by homeostasis model assessment (HOMA-IR)
and insulin resistance index of adipose tissue (Adipo-IR) (Table 1). Besides, the 4-month
RS consumption also resulted in cardiovascular improvements as the blood pressure was
significantly decreased compared to the CS consumption (Table 1). Due to dietary
management, significant reductions of adiposity and several metabolic parameters were also
observed in the CS group, albeit significantly smaller than the RS group.

We also performed a secondary analysis to adjust for the effect of weight loss. The net
absolute change of IHTC in the RS group relative to CS group after adjusting for weight
loss was -5.89% (95% CI: -8.87% to -2.91%)), corresponding to a relative change of -24.30%
(95% CI: -42.42% to -6.18%), and remained statistically significant (P =0.0001) (Table 1).
A regression analysis associating absolute change of IHTC with weight loss showed an R?
of 23%, suggesting only a small part of the RS effect was mediated by weight loss. While
some clinical parameters showed weight loss-dependent changes, the changes of other
parameters related to adiposity (VFA), glucose metabolism (insulin levels, HOMA-IR,
Adipo-IR), lipid metabolism (TG, TC, HDL-C, LDL-C), hypertension (SBP, DBP), and
ALT all remained significant (Table 1). Moreover, we included all randomized participants
including four participants who did not receive the corresponding intervention in our
sensitivity analysis, and the conclusion remains the same (Table S2). Collectively, a 4-
month RS intervention reduced IHTC and improved liver injury and related metabolic
disorders in patients with NAFLD, even after adjusting for weight loss.

RS intervention alters both fecal and serum metabolites in patients with NAFLD

To investigate how the 4-month RS intervention affected the metabolism of the human host
and the commensal intestinal microbiota, we performed targeted metabolomics on serum
and fecal samples of participants in both the RS and CS groups before and after the
intervention. In total, we measured 30 amino acids (AAs) and 26 bile acids (BAs) in serum,
and 10 short chain fatty acids (SCFAs) and 18 BAs in feces. The RS and CS interventions
had different effects on the overall changes in measured metabolites (P < 0.05,
PERMANOVA) (Figure 2A). Examination of the different categories of metabolites
showed a small but significant change in both serum and fecal BA profiles (P < 0.05,
PERMANOVA).

At the level of individual metabolites, 13 metabolites among fecal BAs, serum BAs
and serum AAs were significantly changed (P < 0.05, Wilcoxon signed-rank test) by the RS
intervention but not the CS intervention (Figure 2B). No differences were observed in fecal
SCFA metabolites. All serum AAs with significant changes showed different directions of
change between the RS and CS groups. Interestingly, the serum levels of all three branched-
chain amino acids (BCAAs) (valine, leucine and isoleucine) decreased after the RS
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intervention. The glutamate—serine—glycine (GSG) index, a possible marker of liver disease
severity that is independent of BMI ?°, was also significantly reduced after the RS
intervention. In addition, we found 10 metabolites showing no differences at baseline to be
significantly different between the RS and CS groups at the end of the intervention (P <
0.05, Wilcoxon rank-sum test), including valine, phenylalanine, and alpha-aminobutyric
acid.

Spearman’s correlation analyses showed multiple strong, significant correlations
between the identified significant metabolites and patients’ clinical parameters (Figure
S2A). To identify key metabolites and their possible relationships with NAFLD that were
independent of body weight, we repeated the correlation analyses, adjusting for clinical
parameters related to obesity, including BMI, waist circumference, VFA, SFA and body fat
percentage. This revealed multiple metabolites that significantly positively (alanine, valine,
leucine, and tyrosine) or negatively (aminobutyric acid) correlated with levels of human
IHTC (false discovery rate [FDR]-corrected q < 0.1) (Figure 2C). BCAAs and some BAs
including serum taurocholic acid (TCA) and serum glycocholic acid (GCA) were
significantly correlated with three NAFLD-relevant liver enzymes ALT, AST and GGT
(FDR-corrected q < 0.1). The serum levels of alanine, a-aminobutyric acid and valine
(P=0.062) also correlated with serum triglycerides (Figure 2C). Furthermore, the
correlations between BCAAs and IHTC, the primary outcome in our trial, remained
significant after controlling for obesity-related measures and insulin resistance (HOMA-
IR).

In summary, the RS intervention may exert its beneficial effects on patients with
NAFLD by altering the levels of microbial metabolic products, specifically the AAs pool
and BCAA levels available for the human host.

The changes of gut microbiota upon RS intervention are associated with NAFLD
alleviation

To investigate changes in the gut microbiota, we performed shotgun metagenomic
sequencing on fecal samples before and after the 4-month intervention for 50 participants
randomly selected from each group (matched with the full analysis set), generating 6.1 Gbp
of sequencing data on average (s.d. 1.3 Gbp per sample). While similar at baseline in alpha
(richness, Simpson index, and Faith's phylogenetic diversity) and beta diversity (weighted
or generalized UniFrac) based on MetaPhlAn2 taxonomic profiling, significant differences
between the RS and CS groups were observed after the 4-month intervention (P < 0.05,
Wilcoxon rank-sum test for alpha and PERMANOVA for beta diversity) (Figures 3A and
3B). This result suggested different effects of RS on the overall gut microbiota community
compared to CS. Specifically, the RS group had lower alpha diversity than the CS group
after the intervention. This is consistent with many human and animal studies into the effects
of RS2 consumption, as reviewed before 2°. Bendiks ef al. also suggested the enrichment of
particular taxa, which can efficiently metabolize RS and its degradation products, as the
possible reason of decreased alpha diversity. In addition to the MetaPhlAn2 profiling, we
used an approach relying on co-abundance gene groups (CAGs) to quantify the gut
microbiota composition. This led to the same findings for comparisons of microbiota alpha
and beta diversity (Figure S2B and S2C).

To uncover the bacterial species that were potentially associated with the beneficial
effects of the RS intervention, we adopted two approaches: a non-parametric Wilcoxon test
and generalized linear models. We focused on species that either significantly changed their
abundance after the RS treatment (but did not change after CS intervention) (Figure 3C) or
became significantly different in abundance between the two groups after the intervention
(with no differences at baseline). The non-parametric test revealed that the relative
abundances of 31 species significantly changed compared to the baseline or control group
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(P < 0.05, Wilcoxon signed-rank test or Wilcoxon rank-sum test). The generalized linear
model found microbiota species that were significantly associated with the intervention,
while controlling for the effect of obesity-related measures. This analysis led to the
identification of species including Bacteroides stercoris, whose abundance was
significantly lower after the RS compared to the CS intervention (FDR-corrected q < 0.2)
(Figures 3C and Table S3). We correlated the abundances of all significant bacterial
species with a panel of clinical parameters, adjusting for obesity-related measurements, to
pinpoint the key species that were relevant to NAFLD (Figure 3C). We focused on the
bacteria that significantly correlated with important clinical features in NAFLD (IHTC,
ALT, AST, GGT and FGF21), and found Bacteroides stercoris correlated positively with
IHTC, ALT and AST. Significance remained (except P = 0.054 for AST) after further
adjusting for insulin resistance (HOMA-IR).

We next sought a deeper understanding of the bacterial-phenotype associations by
integrating them with the metabolomic profiles. We observed significant correlations
between the gut microbial community and the overall fecal BA and fecal SCFA profiles, as
well as the serum AA profile (P < 0.05, Mantel test). Moreover, significant associations
were found between microbiota composition and serum levels of valine, isoleucine and
leucine (P < 0.01, PERMANOVA). To further disentangle the interplay between gut
microbiota taxonomy and serum or fecal metabolite pools, we used Spearman’s correlations
to link microbial species and metabolites with significantly differential abundances.
Parabacteroides merdae, whose abundance was significantly lower in RS than CS group
after intervention, had the highest number of significant correlations (mostly positive) with
multiple metabolites (Figure 3D). The RS-depleted intestinal microbe B. stercoris
correlated positively with serum valine level (P < 0.05, Spearman’s correlation), which also
showed significant positive correlations with IHTC, ALT, AST, GGT and TG (Figure 2C).

Transplantation of RS-altered gut microbiota alleviates NAFLD in mice

To investigate the potential causality between RS-induced broad gut microbiota alteration
and reduction of hepatic steatosis, we performed fecal microbiota transplantation (FMT)
(Figure 4A) into conventional antibiotics-treated mice fed with high-fat high-cholesterol
(HFHC) diet, using samples from human donors after RS or CS intervention (whose changes
in IHTC after the intervention were close to the corresponding group average; n = 2 per
group). Compared to CS donors, FMT from RS donors led to significant reduction of the
body weight and liver weight (Figures S3A-S3C). Serum level of FGF21 was significantly
lower in the RS group, which was accompanied by the increased expression of FGF21
receptor, co-receptor, and adiponectin in the adipose tissue (Figures S3D-S3F).
Improvement of glucose metabolism, especially a significant increased insulin sensitivity,
was also observed in mice receiving fecal microbiota from RS donors (Figures S3G and
S3H). Histological assessments demonstrated significant decrease in hepatic steatosis,
ballooning, inflammation and NAFLD activity score after FMT from RS donors (Figure
4B and 4C). Moreover, the RS group had lower levels of liver enzymes ALT and AST,
hepatic TG, and total cholesterol in the liver (Figure 4D-4G). At the molecular level, FMT
from RS donors reduced the expression of marker genes in liver related to inflammation,
macrophage, and neutrophil recruitment (Figure 4H). It also reduced gene expression in
liver for lipogenesis and promoted the expression of genes related to lipolysis (Figures 41
and 4J). Moreover, we also observed the improvement of gut barrier integrity as reflected
by the increased expression of genes encoding tight junction proteins (Figure 4K), together
with a significant reduction of serum LPS suggesting a possible alleviation of systemic
inflammation (Figure 4L). The levels of BCAAs in the colon content were also significantly
reduced in mice receiving FMT from RS donors than from CS donors (Figure 4M).
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In addition to the wild-type mice, we also performed the experiment using a genetic
model of NAFLD, where ApoE”" mice were fed with HFHC diet followed by the same FMT
procedure. The causal effect of RS-mediated microbiome changes was successfully
replicated in the ApoE™" mice, including changes in body weight, liver weight, histological
scores, liver enzymes and serum FGF21 (Figures S4A-S4H). Consistent with the wild-type
mice, the ApoE”" mice receiving FMT from RS donors had decreased expression of
lipogenesis-related genes and increased expression of lipolysis-related genes in the liver, as
well as lower levels of colonic BCAAs (Figures S4I-S4K). Moreover, serum LPS was also
significantly reduced in the RS compared to the CS group, coupled by increased expression
of genes related to gut barrier integrity in the ileum (Figures S4L. and S4M). In line with
the histological changes in inflammation, expression of inflammation-related genes in the
liver were effectively reduced (Figure S4N).

Multi-omics integration analysis identifies key species associated with NAFLD
alleviation

We profiled the functional potential of the gut microbiota and examined functional
differences in the RS and CS intervention groups. We found using the MetaCyc database
the relative abundances of 8 pathways to be significantly altered after the RS intervention
(P < 0.05, Wilcoxon signed-rank test) (Figure S5A). The microbiota functional potential
for starch degradation (MetaCyc PWY-6731) significantly increased after the RS
intervention (P = 0.038, Wilcoxon signed-rank test), but not in the CS group (Figure S5B).
In a particular category of gene families responsible for carbohydrate metabolism, we found
that 14 CAZy families were significantly altered after both the RS (Figure 5A) and CS
(Figure S5C) interventions (P < 0.05, Wilcoxon signed-rank test), with no common families
between RS and CS. Interestingly, a significant decrease was observed only after the RS
intervention in the abundances of the KEGG functional modules MO00060
(lipopolysaccharide [LPS] biosynthesis, KDO2-lipid A, P = 0.024) and M00320 (LPS
export system, P = 0.012, Wilcoxon signed-rank tests) (Figure 5SB). Another two LPS-
biosynthesis-related KEGG modules (M00063 and M00064) had significantly increased
abundances only after the CS intervention (P =0.017 and P = 0.023, respectively, Wilcoxon
signed-rank test). As a proinflammatory bacterial compound, LPS can reduce intestinal
barrier function and increase translocation, and is demonstrated to accelerate hepatic
steatosis in NAFLD development 2’. Moreover, B. stercoris-specific LPS biosynthesis
potential (M00060) was also significantly lower in RS than CS group after intervention (P
=0.012, Wilcoxon rank-sum test).

The analyses above revealed several potential intestinal species/functions markers,
and signature metabolites related to NAFLD improvement after the RS intervention. To
uncover potential mechanistic links between changes in gut microbiota and NAFLD
alleviation, we applied a recently developed computational framework to integrate various
data types %. Initially, we used a three-tiered analysis to screen out microbiota functions
(KEGG modules) that were significantly correlated with metabolites and important
phenotypes (IHTC, ALT, AST, GGT, and FGF21), while adjusting for obesity-related
parameters. These functions may serve as a bridge between the gut microbiota and host
metabolism and thus could be potentially related to NAFLD progression, such as the
biosynthesis and transport of various amino acids (tryptophan, histidine, lysine), cobalamin
(vitamin B12) and lipopolysaccharide (Figure S6). In the functional modules significantly
correlated with IHTC (P < 0.05, Spearman’s correlation coefficient >0.2) in the RS group,
we identified four KEGG modules related to BCAA biosynthesis (Figures SC and 5D),
emphasizing the strong relevance of BCAAs in NAFLD pathogenesis. Subsequently, gut
microbiota driver species analysis was performed to determine which species were the main
contributors of the function-phenotype associations. Overall, many more potential KEGG
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modules (correlated to FGF21 or IHTC) and driver species were observed in the RS than in
the CS group, adding evidence that RS shaped the gut microbiome composition and activity
in a directed way (Table S4). In particular, we found three highly contributing driver species
involved in the correlations between the four BCAAs modules and IHTC (Figure 5D). B.
stercoris, the abundance of which was correlated with IHTC, ALT, AST and serum valine,
had the strongest driving effect on average of the four modules, especially M00019 for
valine/isoleucine biosynthesis.

To validate the positive association between B. stercoris and NAFLD, we re-
analyzed the metagenomic data from two published cohorts involving NAFLD (see
Methods). In a Chinese cohort 2%, the abundance of B. stercoris was significantly higher in
patients with NAFLD than in NAFLD-free participants (Figure SE). In a European cohort,
patients diagnosed by liver biopsy *° with moderate or severe steatosis also had higher levels
of B. stercoris compared to mild steatosis or control (Figure 5F).

B. stercoris promotes NAFLD progression partially through LPS and BCAA
production

To examine a potential causal effect of B. stercoris on NAFLD progression, mice were
given a HFHC diet for 8 weeks to induce NAFLD, together with daily oral gavage of live
or heat-killed B. stercoris at 5x10° cfu/day along with the HFHC feeding (Figure 6A). Real-
time PCR showed a significantly increased amount of B. stercoris in the feces of the live
bacteria group compared with mice on the HFHC diet only (Figure 6B). B. stercoris
treatment showed no obvious effects on body weight or fat mass percentage (Figures S7A-
S7B), but significantly increased the liver weight percentage compared to control (Figure
S7C). Despite no obvious effects on either glucose or insulin levels in both fasting and fed
status, B. stercoris intervention for 8 weeks led to an impaired ability of the mice to dispose
glucose and decreased insulin sensitivity (Figures S7D-S7G). The serum level of ALT
increased 1.8-fold in mice gavaged with live B. stercoris while AST did not change
significantly (Figure 6C and 6D). By histological assessment, hepatic lipid accumulation,
inflammatory cell infiltration and fibrogenesis were all markedly enhanced in mice gavaged
with live B. stercoris (Figures 6E-6J) compared to mice only fed with HFHC. Consistent
with the histological observations, the level of hepatic TG was more than 2-fold higher in
mice gavaged with live B. stercoris (Figure 6K). Serum level of LPS was also significantly
increased after 8-week oral gavage (Figure 6L). To determine the specific impact of B.
stercoris at the molecular level, we explored the transcription of inflammatory and
fibrogenesis markers in liver tissues. In line with the higher histological scores, genes
involved in pro-inflammatory response, inflammatory cell infiltration, and collagen
formation were significantly higher in mice gavaged with live B. stercoris (Figures 6M and
6N). Collectively, these findings suggest that increased abundance of B. stercoris
contributed to NAFLD progression.

Besides live B. stercoris, heat-killed B. stercoris also showed ability to aggravate
NAFLD and elicited similar effects on inflammation, as reflected in the histological score,
ALT, serum LPS, and expression of genes involved in inflammation activation (Figure 6C,
6H, 6L-6M). Yet, the content of hepatic TG in mice with heat-killed B. stercoris showed
the trend to be lower than that in the live group (P=0.054) (Figure 6K).

Given the strong driving effect of B. stercoris in the correlations between gut
microbial BCAA biosynthesis and IHTC (Figures SC and 5D), we then measured the fecal
levels of BCAAs in mice. We found the 8-week oral administration of live B. stercoris
significantly increased levels of fecal valine and isoleucine (Figure 60). Unlike live B.
stercoris, mice daily gavaged with heat-killed B. stercoris showed only a minimal effect on
accumulation of fecal BCAAs, with similar pattern as steatosis score and hepatic TG
(Figure 6F and 6K). To further demonstrate a direct metabolic production of BCAA by B.
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stercoris, we performed various cell cultures, with and without B. stercoris for different
time periods, followed by targeted metabolomics analysis of the cultured supernatant.
Compared with other groups, the cultured supernatant of live B. stercoris showed a
remarkable accumulation of BCAAs in a time-dependent manner, especially for valine
(Figures 6P and S7H).

The significant correlation identified in our clinical study between valine and IHTC
after controlling for obesity-related measures and HOMA-IR suggested a possible direct
influence of valine on liver fat accumulation and thus NAFLD pathogenesis. We therefore
investigated the direct in vitro effect of valine, which can be derived from NAFLD-
promoting B. stercoris, on lipid metabolism in HepG2 cells. Compared with incubation with
only fatty acid (FA), we observed a significant increase in intracellular TG content (Figure
S71), and a dose-dependent increase in expression of the transcription factor SREBP1 and
lipogenic genes following incubation with valine (Figure S7J). Expression of FA
transporters and their corresponding transcription factors demonstrated similar dose-
dependent increases (Figure S7K). CPT1A, a gene involved in beta oxidation and lipid
catabolism, had lower expression following incubation with valine (Figure S7K).

DISCUSSION

The vital role of gut microbiota in liver diseases has been demonstrated by studies involving
FMT 3! or single species such as Roseburia intestinalis ** and Klebsiella pneumoniae 3.
Such bidirectional relationship between the gut (and its resident microbiota) and the liver,
1.e., the gut-liver axis, has gained attention in the last several years with the hope of
developing microbiome-based strategies for diagnosis, prognosis and therapeutics of liver
diseases %%, However, the efficacy of most of the potential therapeutics for NAFLD needs
confirmation in well-designed human studies '°. Previous clinical trials have demonstrated
the ability of MDFs to modulate human immune status ¢ and to contribute to healthier
metabolic and growth profiles of undernourished children 3’. In our randomized clinical
trial, we evaluated the effects of RS as a MDF for NAFLD treatment. To quantify changes
in liver fat content, we used MRI, a highly reproducible and the most accurate non-invasive
approach to detect hepatic steatosis 2**%. Several studies have also confirmed the superiority
of MRI over liver histology in assessing liver fat >>#°, It is more sensitive than histological
grading in detecting changes in liver fat over time *!. Four-month intervention with this
MDF was effective in reducing IHTC in patients with NAFLD by an absolute reduction of
-5.89% and a relative reduction of -24.30% after adjusting for weight loss. Such effect was
partly mediated by altered composition and metabolic profile of gut microbiota. Indeed,
transfer of fecal microbiota from human donors receiving 4-month RS into mice fed with
HFHC diet reduced hepatic steatosis, lobular inflammation, and expression of lipogenesis-
and inflammation-related genes, suggesting a causal role of gut microbiota in alleviating
NAFLD. Moreover, expression of genes related to gut barrier integrity were enhanced while
the level of serum LPS was reduced in mice receiving FMT from RS donors. This is
consistent with decreased circulating level of LPS and the lower microbiota functional
potential for LPS biosynthesis in human participants after RS intake.

Amino acids were also identified as possible molecular mediators of the RS
beneficial effects. Perturbation in AA metabolism, especially aromatic amino acids (AAAs),
GSG index and BCAAs, has been shown to be involved in NAFLD and NASH pathogenesis
2330 Serum levels of two AAAs, phenylalanine and tyrosine, were significantly lower after
RS than CS intervention; serum glutamic acid for GSG index calculation was significantly
reduced after RS intake (Figure 2B). Serum BCAAs has been associated with gut
microbiome alteration and insulin resistance “*, which represents a NAFLD
pathophysiology. Here we observed consistent correlations between BCAAs and insulin
resistance, and the 4-month RS intervention in humans could significantly reduce the serum
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levels of BCAAs. Furthermore, serum BCAAs were positively correlated with IHTC, ALT,
AST, and GGT. Importantly, the correlations between BCAAs and the primary outcome
IHTC remain significant after adjusting for obesity-related parameters and insulin
resistance, suggesting a direct influence of BCAAs on hepatic steatosis and thus NAFLD
pathogenesis. In the FMT experiment where transfer of RS-altered microbiota into mice
alleviated NAFLD, the colonic levels of BCAAs were also decreased, suggesting that the
change of gut microbiota caused by RS led to the change in BCAAs. The role of BCAAs in
hepatic steatosis was also supported by in vitro experiments investigating the direct effect
of valine on intracellular TG levels, through modulation of lipogenic transcription factors,
increased lipogenesis and decreased FA oxidation. Amino acids may modulate lipogenic
transcription factors through participating in the processing of enzymes and transcriptional
regulators as well as acting as substrates for lipid synthesis *“**. Elevated hepatic
lipogenesis is intimately involved in pathological consequences *°.

Apart from the causality between RS-induced broad gut microbiota alteration and
reduction of hepatic steatosis, we also attempted to pinpoint specific microbial species
involved in NAFLD development though multi-omics integration analysis. Among them,
we found RS reduced the abundance in the gut of B. stercoris, which is one of the species
highly correlated with IHTC, ALT and AST. These positive correlations remained
significant after controlling for obesity-related parameters and HOMA-IR, suggesting a
body weight- and insulin resistance-independent effect of B. stercoris on NAFLD
aggravation. The positive association of B. stercoris in the gut with NAFLD was further
validated in two independent external case-control cohorts from Asia and Europe (Figures
SE and SF). In addition, B. stercoris was selected as a feature in a metagenome-based model
for predicting advanced fibrosis in US patients with NAFLD “¢. Furthermore, we conducted
a monocolonization study to confirm the NAFLD-promoting effect of B. stercoris and to
explore the possible mechanisms involved. Oral gavage of both live and heat-killed B.
stercoris into mice could lead to increased lobular inflammation and enhanced expression
of genes involved in inflammation activation, which might be explained by the increased
serum level of LPS in both groups. On the other hand, considerably higher hepatic lipid
accumulation was only observed in the mice gavaged with live B. stercoris, which was
accompanied by the significantly higher levels of fecal BCAAs. Notably, the abundance of
B. stercoris in human participants was also found to positively correlate with BCAAs
(statistically significant for valine), and targeted measures of BCAAs in the monoculture
supernatant of live B. stercoris substantiated its BCAA-releasing activity. Altogether, it
suggests that B. stercoris can promote NAFLD progression, at least partially through LPS
and BCAA production.

The serum level of FGF21 was found to be significantly reduced after the 4-month
RS intervention. A number of preclinical and clinical studies demonstrate the robust effects
of FGF21 on alleviation of dyslipidemia and NAFLD #’*%. Contrary to the multiple
metabolic benefits of FGF21, circulating FGF21 is paradoxically elevated in individuals
with NAFLD %> The concept of ‘FGF21 resistance’ was proposed to explain the
paradoxical changes of plasma FGF21 levels, in analogy to obesity-associated insulin and
leptin resistance °'. Based on animal studies, aberrant FGF21 signaling has been suggested
as a key pathological step in the development and progression of NAFLD 2. Notably, both
circulating and hepatic levels of FGF21 in obese mice were markedly reduced by exercise
training, where the FGF21 sensitivity in adipose tissue was enhanced >*. Besides engineered
human FGF21 analogues, the sensitization of the actions of FGF21 may represent an
alternative strategy for treatment of metabolic disorders *®. In line with this, here we
observed decreased serum level of FGF21 in participants after RS intervention and in mice
receiving feces from RS-fed donors, as well as increased expression of its receptor complex
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and downstream effector in adipose tissue. Our findings suggested that RS-induced
microbiome changes might also lead to the sensitization of FGF21 actions.

Altogether, our study provides evidence that RS could be a novel, relatively simple
and inexpensive microbiota-targeted therapeutic option for NAFLD, which can reduce
IHTC by 5.89% in a weight loss-independent manner and decrease the liver enzymes
indicative of liver injury and markers for systemic inflammation. The change of gut
microbiota composition and functionality is an important mediator of the beneficial effect
of RS on NAFLD amelioration, including one gut microbe B. stercoris that aggravates
NAFLD at least partially through LPS and BCAA production. Our findings might contribute
to further understanding of NAFLD pathogenesis and the development of innovative
microbiome-based therapeutics or MDFs.

Limitations of the study

First, due to the lack of liver biopsy, we could not evaluate whether there were beneficial
histological changes in the liver, such as biopsy-proven steatosis, NASH or fibrosis.
However, our primary outcome was the change of liver fat content (hepatic steatosis) and
IHTC is considered to be more sensitive than the histological steatosis grades in quantifying
such changes, which has been recommended for clinical trial usage >* and adopted by other
NAFLD intervention studies °>%. Notably, the limitations of liver biopsy, including
invasiveness, sampling error, poor acceptability, and only moderate reproducibility, also
constrain its use as a repeat measurement to investigate histological changes in intervention
studies >’. Therefore, liver biopsy is not suitable for widespread use to assess disease stage
or determine progression or response to therapy *%. Second, in our randomized clinical trial,
dietary guidelines were offered to the enrolled patients and information on their dietary
intake was collected through questionnaires and further compared between the two
intervention groups. Similar studies in the future may use a standard identical diet to directly
control for the effect of diet as a potential confounding factor. Further research may reveal
other possible molecular mechanisms by which the RS-altered metabolites or gut microbes
lead to the accumulation or reduction of liver fat, the change of inflammation and fibrosis
in the liver.
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Figure 1: Resistant starch (RS) intervention for 4 months alleviates nonalcoholic fatty
liver disease (NAFLD). (A) Overall study flow. RS intervention significantly reduced (B)
intrahepatic triglyceride content (IHTC), (C) body mass index (BMI), and changed
abdominal fat distribution during the study, including (D) subcutaneous fat area (SFA) and
(E) visceral fat area (VFA). (F-I) liver enzymes (ALT, alanine aminotransferase; AST,
aspartate aminotransferase; GGT, gamma-glutamyl transpeptidase) and the serum NAFLD
biomarker FGF21 changed during the intervention. (J-M) The reduction of serum levels of
lipopolysaccharides (LPS) and other inflammatory markers including MCP-1, IL-1p and
TNFa, after RS intervention in comparison to CS intervention. Analysis of covariance
adjusted by baseline value was used for comparison between RS and CS at each visit. Red:
control starch (CS) group; blue: RS group. Data are mean + 95%CI. * P <0.05, ** P <0.01,
*#% P <0.001 RS vs. CS.

See also Figure S1 and Table S1-S2.
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Figure 2: Fecal and serum metabolomic changes after 4 months of resistant starch
(RS) and control starch (CS) interventions. (A) Difference in overall changes of
measured metabolome between RS and CS. Log2-transformed fold-change profiles for all
individual metabolites (serum and fecal) were used in partial least-squares discriminant
analysis (PLSDA) and used to derive a Euclidean distance for statistical comparison
between RS and CS with PERMANOVA. (B) Significantly changed fecal bile acids, serum
bile acids and serum amino acids after the RS intervention (without significant changes after
CS intervention) are shown. P < 0.05, Wilcoxon signed-rank test. X-axis represents z scores
derived from Wilcoxon signed-rank test, for which positive and negative values indicate
higher and lower abundance after the intervention, respectively. (C) Partial Spearman's
correlation analyses between significant metabolites and patient clinical measures, adjusting
for obesity-related clinical data (body mass index, waist circumference, visceral fat areas,
subcutaneous fat areas, and fat percentage). Only serum metabolites significantly different
between RS and CS groups at intervention end with no differences at baseline and with at
least one significant correlation are shown. #, FDR-corrected q < 0.1 for individual
metabolites. Circles, P < 0.05; solids dots, FDR-corrected q < 0.1. BA; bile acids; AA,
amino acids; GLCA, glycolithocholic acid; GCA, glycocholic acid; DCA, deoxycholic acid;
TUDCA, tauroursodeoxycholic acid; TCDCS, sulfated taurochenodeoxycholic acid;
GUDCA, glycoursodeoxycholic acid; FINS: fasting insulin; FCP: fasting C-peptide.

See also Figure S2.
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changes of gut microbiota after resistant starch (RS)

intervention are associated with improvements in clinical phenotypes. Comparison of
microbiota (A) alpha (richness, Simpson index, and Faith's phylogenetic diversity) and (B)
beta diversity (weighted UniFrac distance) based on MetaPhlAn2-derived taxonomic
profiles. *, P <0.05; **, P <0.01. Wilcoxon signed-rank or rank-sum test was used for alpha
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diversity comparisons; PERMANOV A was used to assess the statistical significance of beta
diversity comparisons. V1: visit 1 or baseline; V5: visit 5 or after 4-month intervention. (C)
Circos plot showing significant species in a phylogenetic tree and correlations with liver-
related parameters or biomarker. Significant species (solids dots, P < 0.05) refer to (i)
microbial species with significantly changed abundances after 4-month RS intervention but
not control starch (CS) (P < 0.05, Wilcoxon signed-rank test); or (ii) significantly different
species after 4-month RS intervention, controlling for effects of obesity-related measures
(BMI, waist circumference, visceral fat areas, subcutaneous fat areas, and fat percentage),
using generalized linear models. Partial Spearman's correlations were calculated between
significant species and patient clinical measures, adjusting for obesity-related clinical
measures. Surrounding boxplots show the abundances after RS and CS intervention, for
species with at least one significant correlation. (D) Spearman’s rank-based correlations
between significant metabolites (from Figure 2C) and significant species (from Figure 3C).
After-intervention (V5) samples from both groups were used for correlation calculations.
Metabolites and species enriched in RS or CS groups are respectively, dark red or green.
Circles, P < 0.05; solids dots, FDR-corrected q < 0.1. Boxplots in (A) and (C) show median
(centerlines), lower/upper quartiles (box limits) and whiskers (the last data points 1.5 times
interquartile range (IQR) from the lower or upper quartiles). BA; bile acids; AA, amino
acids.

See also Figure S2 and Table S3.
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Figure 4: Transplant of RS-altered gut microbiota into mice alleviates diet-induced
NAFLD. (A) Schematic diagram showing the study design for fecal microbiome
transplantation from human donors to mice. (B) Representative images of liver sections
stained with H&E (scale bar, 100 um). (C) Quantification of histological scores. (D-G)
Quantification of serum levels of AST, ALT, hepatic cholesterol, and hepatic triglyceride.
(H-J) Expression levels of genes involved in inflammation, lipogenesis, and lipolysis in the
liver. (K) Expression levels of genes related to tight junction protein in ileum. (L) Serum
level of LPS. (M) Levels of valine, isoleucine, and leucine in colon content. Data are mean
+ SEM. For C-G and L-M, n = 8 biological replicates for each group; For H-K, n = 2
technical replicates from 8 biological replicates for each group. *P < 0.05, **P < 0.01 and
*#*P < 0.001, two-tailed Student’s unpaired ¢ test (normally distributed) or non-parametric
Wilcoxon rank-sum test (non-normally distributed) was used for statistical comparison. RS,
resistant starch; CS, control starch; AST, aspartate aminotransferase; ALT, alanine
aminotransferase; LPS, lipopolysaccharide.

See also Figure S3-S4 and Table S5.
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Figure 5: Gut microbiota functional changes after resistant starch (RS) intervention
and driver species analysis linking microbiota function and phenotype alteration. (A)
RS intervention for 4 months significantly altered the abundances of 14 CAZy families that
did not change significantly with CS intervention. P < 0.05, Wilcoxon signed-rank test. (B)
Abundance changes of KEGG functional modules related to lipopolysaccharide
biosynthesis (M00060, M00063 and M00064) or export (M00320) in RS and CS groups.
Significant changes in RS: M00060 and M00320; in CS: M00063 and M00064. P < 0.05,
Wilcoxon signed-rank test. Boxplots in (A) and (B) show median (centerlines), lower/upper
quartiles (box limits) and whiskers (the last data points 1.5 times interquartile range (IQR)
from the lower or upper quartiles). (C) Correlations between gut microbiota functional
modules and key clinical parameters or biomarkers of NAFLD. KEGG modules shown have
strong correlations (absolute Spearman's correlation coefficients >0.2) with intrahepatic
triglyceride content (IHTC) in the RS group. Red and blue indicate, respective, significantly
(P <0.05) positive and negative correlations. *, FDR-corrected q < 0.1. (D) Driver species
for correlations between BCAA-related microbiota functions and IHTC. Species with
contributions higher than 10% effect towards function-IHTC correlations when removed in
leave-one-species-out analysis (pctSCCeffect.bgadj > 10%) were considered driver species.
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Only top contributing species for BCAA module-IHTC correlations are shown with their
driving effects illustrated in the Sankey plot. (E) Comparison of B. stercoris abundance in
a published Chinese cohort. (F) Comparison of B. stercoris abundance in a published
European cohort with liver biopsy. Data in (E) and (F) are log2-transformed bacterial
relative abundances and compared with generalized linear model. Boxplots show median
(centerlines), lower/upper quartiles (box limits) and whiskers (the last data points 1.5 times
interquartile range (IQR) from the lower or upper quartiles).

See also Figure S5-S6 and Table S4.
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Figure 6: Supplementation with Bacteroides stercoris promotes NAFLD progression in
mice partially through BCAA production. (A) Schematic diagram showing the study
design for B. stercoris intervention. (B) Abundance of B. stercoris quantified by qPCR with
specific primers to determine fecal content for groups. Bacterial abundances are relative to
control group. (C, D) Serum levels of ALT and AST. (E) Representative images of liver
sections stained with H&E (scale bar, 200 pm), Oil Red O (scale bar, 100 pm) and Sirius
Red (scale bar, 100 pm). Arrows indicate inflammatory foci. (F-J) Quantification of
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histological scores. (K) Quantification of hepatic triglycerides. (L) Serum level of LPS. (M,
N) Expression levels of genes involved in inflammation (M) and fibrogenesis (N) in the
liver. (O) Fecal levels of valine, isoleucine, and leucine by group. (P) Targeted
quantification of BCAAs by UPLC-MS/MS in culture supernatants of live or heat-killed B.
stercoris or culture media at different time points. For mice, data are mean = SEM. For B
and M-N, n = 2 technical replicates from 8 biological replicates for each group; For C-L
and O, n = 8 biological replicates for each group; for P, n = 3 biological replicates for each
group. *P < 0.05, **P < 0.01 and ***P < 0.001, based on one-way ANOVA (normally
distributed) followed by Tukey’s post hoc test, or Kruskal-Wallis test (non-normally
distributed) followed by Dunn’s test. In (P), * indicates the comparison between live and
control while # (#P < 0.05, ##P < 0.01 and ###P < 0.001) indicates the comparison between
live and heat-killed group. HFHC, high-fat, high cholesterol; BS, Bacteroides stercoris; HK,
heat-killed; AST, aspartate aminotransferase; ALT, alanine aminotransferase; LPS,
lipopolysaccharide.

See also Figure S7 and Table S5.
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695

Table 1. Summary of clinical characteristics of the CS group and RS group.

CS group (n=97)

RS group (n=99)

P value® P value® P value!

Variables
day 0 day 120 P value? day 0 day 120 P value®
NAFLD severity and biomarkers
IHTC (%) 23.51 (20.49, 26.52) 21.44 (18.26,24.62)  0.0780 24.99 (22.07, 27.91) 13.14(11.16,15.13)  <0.0001 04823  <0.0001  0.0001
CK18 M65ED (U/L)  362.20 (268.05,456.35) 187.03 (141.26,232.80) <0.0001  304.77 (234.10,375.45)  118.23 (61.01, 175.46)  <0.0001 03341 00071  0.2009
FGF21 (pg/ml) 232.64 (205.46,259.83)  237.27 (210.17,264.36) 0.8761  238.96 (210.69, 267.23) 162.56 (142.68,182.43) <0.0001 07497  <0.0001  <0.0001
Pro-C3 (pg/ml) 11.42 (10.49, 12.22) 10.2 (9.02, 13.66) 0.3292 10.96 (9.55, 12.29) 10.15 (9.27, 12.2) 0.401 0.1662  0.8646  0.6837
Anthropometric parameters
Age (years) 38.91 (37.00, 40.82) 38.91 (37.00, 40.82) - 39.20 (37.50, 40.90) 39.20 (37.50, 40.90) - 0.8189 - -
Female, No. (%) 28 (28.87) 28 (28.87) - 26 (26.26) 26 (26.26) - 0.6834
Weight (kg) 84.24 (81.22, 87.27) 83.29(80.13,86.46)  <0.0001  83.52(80.67, 86.38) 78.05 (75.40,80.70)  <0.0001 0.7307  <0.0001 -
BMI (kg/m?) 28.74 (27.96, 29.52) 28.41(27.61,29.22)  <0.0001 28.31(27.55, 29.07) 26.51(25.82,27.20)  <0.0001 04306  <0.0001 -
Waist Ci'('zlr:;‘fere“ce 97.80 (95.89, 99.71) 95.54 (93.45,97.62)  <0.0001  97.43(95.55,99.31) 90.48 (88.81,92.15)  <0.0001 07813  <0.0001  0.0095
Hip drc(:m;erence 105.19 (103.74, 106.64)  104.56 (103.18,105.95) <0.0001  104.42 (103.01, 105.83) 101.95 (100.66, 103.25) <0.0001 04528  0.0046  0.5009
Waist-to-hip ratio 0.93(0.92, 0.94) 0.91(0.90, 0.92) <0.0001 0.93 (0.92, 0.94) 0.89 (0.88, 0.90) <0.0001 0.6906  <0.0001  0.0063
Fat percentage 30.36 (28.92, 31.80) 29.08 (27.45,30.72)  <0.0001 29.73 (28.20, 31.25) 26.56 (25.04,28.07)  <0.0001 0.5478  <0.0001  0.0803
FM (kg) 25.65 (24.05, 27.25) 24.18(22.51,25.85)  <0.0001 24.96 (23.29, 26.64) 20.83(19.33,22.32)  <0.0001 05558  <0.0001  0.1012
FFM (kg) 58.30 (55.97, 60.62) 58.68 (56.26,61.10)  0.8691 58.56 (56.40, 60.73) 57.23(55.12,59.35)  <0.0001 08681  0.0320  0.6661
TBW (kg) 40.94 (39.49, 42.39) 41.25(39.72,42.78)  0.8528 40.95 (39.53, 42.37) 40.16 (38.72,41.60)  <0.0001 09907  0.0067  0.5086
VFA (cm?) 105.51(96.49, 114.54)  99.49 (91.35,107.63)  0.0022  106.14(97.80,114.49)  79.75(71.97,87.52)  <0.0001 09192  <0.0001  <0.0001
SFA (cm?) 259.90 (241.68,278.13)  256.59 (236.46,276.73)  0.0114  251.53 (231.61,271.46) 216.19 (198.13,234.26) <0.0001 05397 <0.0001  0.1276
SBP (mmHg) 120.82 (118.79,122.86) 117.25(115.09,119.41) <0.0001  120.23(118.29,122.17) 113.32(111.51,115.12) <0.0001 06760  0.0007  0.0127
DBP (mmHg) 80.30 (78.83, 81.76) 79.04 (77.53,80.54)  0.0977 81.01 (79.63, 82.39) 76.24 (74.96,77.51)  <0.0001 04837  <0.0001  0.0002
Liver enzymes and renal function
ALT (U/L) 41.43 (35.02, 47.85) 37.00 (31.45,42.55)  0.1183 35.37 (30.56, 40.19) 24.41(21.03,27.80)  <0.0001 0.1354  0.0002  0.0021
AST (U/L) 26.54 (23.97, 29.10) 25.10(23.07,27.12)  0.4042 25.08 (23.17, 26.99) 20.28(18.74,21.83)  <0.0001 03675  0.0098  0.1296
GGT (U/L) 42.32 (36.35, 48.30) 38.70 (33.64,43.75) 00320 40.65 (35.75, 45.56) 34.51(29.98,30.03) 00001 0.6680  0.0156  0.1851
TBIL (umol/L) 12.39 (11.38, 13.40) 12.08(11.01,13.16)  0.5535 12.13 (11.21, 13.05) 13.11(12.11,14.11)  0.0429 07105  0.1435  0.5291
DBIL (pmol/L) 4.11 (3.80, 4.41) 4.05 (3.71, 4.39) 0.6838 3.99 (3.69, 4.29) 4.50 (4.17, 4.83) <0.0001 05982  0.0300  0.2540
TBA (umol/L) 3.52(3.01, 4.02) 3.65 (3.12, 4.17) 0.6297 3.06 (2.59, 3.53) 3.02 (2.61,3.43) 0.9908 01901 02527  0.5754
BUN (mmol/L) 4.74(4.51, 4.97) 4.82 (4.55, 5.09) 0.0087 4.77 (4.55, 5.00) 4.62 (4.44, 4.79) 0.0002 08526  0.0634  0.2451
Cr (umol/L) 70.61 (67.57, 73.65) 71.98 (68.61,75.34)  0.1074 71.04 (68.06, 74.02) 71.42 (68.34,74.51)  0.4352 0.8404 09393  0.8814
UA (umol/L) 407.29 (388.70, 425.89)  405.07 (383.95,426.20)  0.2524  399.40 (383.45,415.35) 383.93 (366.81, 401.06)  0.0581 05222 05753  0.6491
RBP (mg/L) 51.18 (49.51, 52.84) 51.95 (50.05,53.85)  0.1339 50.83 (49.35, 52.31) 51.48 (49.65,53.31)  0.8875 07572 03742  0.7447
Lipid profiles
TC (mmol/L) 5.09 (4.93, 5.25) 5.09 (4.90, 5.28) 0.4252 5.08 (4.91, 5.25) 4.87 (4.70, 5.05) <0.0001 09513  <0.0001  0.0008
TG (mmol/L) 1.88(1.69, 2.07) 1.97 (1.78, 2.17) 0.0232 2.01(1.74, 2.28) 1.56 (1.40, 1.71) <0.0001 04571  <0.0001  0.0011
HDL-C (mmol/L) 1.13(1.08, 1.17) 1.13 (1.08, 1.18) 0.1136 1.13(1.09, 1.17) 120 (1.15, 1.24) 0.0152 08337  0.0071  0.0029
LDL-C (mmol/L) 3.23(3.08,3.37) 3.17 (2.99, 3.34) 0.1224 3.13(2.97,3.29) 3.00 (2.85,3.15) 0.0017 03682  0.0174  0.0399
NEFA (uEq/L) 616.30 (576.05, 656.56)  580.57 (544.00, 617.15) <0.0001  649.22 (600.71,697.73) 582.37 (549.31, 615.43) <0.0001 03013  0.6823  0.4019
Glucose parameters during MTT
PG Omin (mmol/L) 5.24 (5.14, 5.34) 5.00 (4.86, 5.15) 0.0029 5.12 (5.00, 5.25) 4.96 (4.85, 5.06) <0.0001 0.1432  0.8178  0.4890
PG 30min (mmol/L) 8.02 (7.76, 8.28) 7.89 (7.60, 8.18) 0.4375 8.08 (7.77, 8.40) 7.87(7.61,8.13) 0.1334 07691 02909  0.3043
PG 60min (mmol/L) 8.26 (7.95, 8.58) 8.24 (7.90, 8.58) 0.4134 8.32(8.02, 8.62) 8.22(7.96, 8.47) 0.7323 0.8076 03217  0.5207
PG 120min (mmol/L) 7.32(7.08, 7.56) 7.16 (6.87, 7.45) 0.1923 7.51(7.26,7.77) 7.13 (6.86, 7.40) 0.0114 02806  0.6327  0.8167
AUC (min*mmol/L)  911.44(885.80,937.07) 886.82(857.88,915.76) 0.1888  903.40 (878.75,928.05) 881.03 (859.41,902.64) 0.1910 0.6565  0.4098  0.7397
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Insulin Omin (uU/mI) 19.95 (17.82, 22.07) 18.37 (16.43, 20.31) 0.0031 17.99 (16.33, 19.65) 13.38 (12.26, 14.51) <0.0001 0.1503 <0.0001 0.0184
InSl;:iE}l:](:)min 100.79 (87.71, 113.86) 92.89 (80.78, 105.00) 0.2019 105.21 (90.07, 120.35) 79.30(70.21, 88.40) <0.0001 0.6618 0.0039 0.0257
C-pt’i:)‘tgi;i:‘:;min 3.27 (3.06, 3.48) 3.25(3.01, 3.48) 0.3882 3.17(2.99, 3.36) 2.69 (2.56, 2.82) <0.0001 0.4952 <0.0001 0.0007

c-pe'}:‘i:/enl;lz)omin 10.97 (9.88, 12.07) 10.60 (9.89, 11.32) 0.4786 11.17 (9.75, 12.60) 11.66 (8.43, 14.90) 0.4691 0.8242 0.6878 0.5418
HOMA-IR 4.70 (4.16, 5.23) 4.17 (3.67, 4.68) 0.0137 4.17 (3.73, 4.61) 2.96 (2.70, 3.23) <0.0001 0.1302  <0.0001  0.0330
Adipo-IR 12.15 (10.63, 13.67) 10.76 (9.38, 12.13) <.0001 11.27(10.04, 12.51) 7.78(7.00, 8.57) <0.0001 0.3759 0.0001 0.0089
Inflammation-related factors
LPS (EU/ml) 0.52(0.51, 0.53) 0.52 (0.51, 0.53) 0.2953 0.52 (0.51, 0.53) 0.49 (0.48, 0.50) 0.0002 0.9284 0.0007 0.0028
MCP-1 (pg/ml) 405.61 (369.52, 441.71)  405.84 (366.19, 445.49)  0.4606 402.50 (368.60, 436.40)  373.75 (347.40, 400.10)  0.0086 0.9008 0.0068 0.0410
IL-18 (pg/ml) 0.28(0.21, 0.35) 0.29 (0.22, 0.36) 0.9013 0.27 (0.22,0.31) 0.21(0.18,0.23) 0.025 0.7718 0.0143 0.0405
TNFa (pg/ml) 1.70 (1.12, 2.27) 1.69 (1.02, 2.36) 0.2162 1.74 (1.14, 2.35) 1.39(0.89, 1.89) 0.0398 0.9119 0.0168 0.0248
IL-6 (pg/ml) 1.48 (1.08, 1.88) 1.72 (1.23,2.20) 0.2521 1.14 (0.83, 1.45) 1.17 (0.92, 1.41) 0.9643 0.1823  0.1070  0.4047
696  Data are presented as mean (95%CIs). Four participants (3 in the CS group and 1 in the RS group) did
697  not receive the corresponding intervention after randomization and were therefore excluded from
698  analysis.
699 CS, control starch; RS, resistant starch; IHTC, intra-hepatic triglyceride content; CK 18, Cytokeratin 18;
700 FGF21, fibroblast growth factor 21; BMI, body mass index; FM, fat mass; FFM, free fat mass; TBW,
701 total body water; VFA, visceral fat area; SFA, subcutaneous fat area; SBP, systolic blood pressure; DBP,
702 diastolic blood pressure; ALT, alanine transaminase; AST, aspartate transaminase; GGT, gamma-
703 glutamyl transferase; TBIL, total bilirubin; DBIL, direct bilirubin; TBA, total bile acid.; BUN, blood urea
704 nitrogen,; Cr, creatinine; UA, uric acid; RBP, retinol binding protein; TC, total cholesterol; TG,
705  triglycerides; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol;
706 NEFA, non-esterified fatty acid; MTT, meal tolerance test; PG, plasma glucose; AUC, area under curve;
707 HOMA, homeostasis model assessment; Adipo-IR, adipose tissue insulin resistance index; LPS,
708  lipopolysaccharide; MCP-1, monocyte chemoattractant protein-1; IL, interleukin; TNFa, tumor necrosis
709  factor alpha.
710
711 P value®: Within-group differences were assessed using a linear mixed model.
712 P value®: Differences in baseline variables between the RS and CS groups were assessed using Student’s
713 unpaired t-test.
714 P value®: Differences in outcomes between the RS and CS groups were assessed using a linear mixed model.
715 P value®: Differences in outcomes between the RS and CS group were assessed using a linear mixed model
716 adjusted by weight loss and the baseline values of the variable assessed.
717
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STAR x METHODS

RESOURCE AVAILABILITY
Lead Contact

e Further information and requests for resources and reagents should be directed to
the Lead Contact, Weiping Jia (wpjia@sjtu.edu.cn).

Materials Availability

e This study did not generate new unique reagents.

Data and Code Availability

e The raw metagenomic sequencing data for all samples have been deposited into
NCBI Sequencing Read Archive under accession number PRINA703757.

e Computational analyses were performed using the bioBakery suite of tools including
MetaPhlAn2 (https://github.com/biobakery/MetaPhlAn; Methods) for microbiota
taxonomic profiling and HUMANN2 (https://github.com/biobakery/humann;
Methods) for profiling of functional potential (ECs, pathways and modules).

e Source values used to create figures in the manuscript are available as Data S1.

e Any additional information required to reanalyze the data reported in this paper is
available from the lead contact upon request.

EXPERIMENTAL MODEL AND PARTICIPANT DETAILS
Study participants

A total of 200 individuals who met all the following eligibility criteria were recruited in the
Shanghai Jiao Tong University Affiliated Sixth People's Hospital. Inclusion criteria were:
(1) ethnic Chinese, (ii) liver steatosis diagnosed by ultrasonography, (iii) aged 18-70 years
old, and (iv) written informed consent obtained.

Exclusion criteria were: (i) participants with diabetes mellitus; (ii) alcohol
consumption history of more than 20 g per day for men and more than 10 g per day for
women; (iii) acute or chronic gastrointestinal diseases (including diarrhea, gastrointestinal
infection, inflammatory bowel disease), malignant tumor or severe renal dysfunction; (iv)
pregnancy, breastfeeding or planning to get pregnant; (v) consuming antibiotics within the
last 3 weeks or during the study; (vi) viral hepatitis, drug-induced liver disease, total
parenteral nutrition, Wilson's disease, autoimmune liver disease or other specific diseases
that can lead to fatty liver; (vii) routine use of prescription medicines or adjuvant Chinese
and Western medicines (except regular contraceptives); (viii) expected poor compliance;
(ix) use of weight loss medication or participation in weight-loss program in the past 3
months; (x) mental disorder preventing cooperation; or (xi) wearing pacemaker or metallic
implants, claustrophobia or other conditions that would be unable to undergo magnetic
resonance examinations.

The study was approved by the Ethics Committee of Shanghai Jiao Tong University
Affiliated Sixth People's Hospital, following the principles of the declaration of Helsinki.
All relevant ethical regulations were followed during the study. Written informed consent
was obtained from all participants. Complete clinical trial registration is deposited in the
WHO International Clinical Trials Registry Platform and Chinese Clinical Trial Registry
(http://www.chictr.org.cn/showproj.aspx?proj=12353;  ChiCTR-IOR-15007519).  The
primary indication was change in intrahepatic triglyceride content (IHTC), with changes in
anthropometric indicators, body composition, glycemic control and insulin sensitivity, liver
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and renal function, lipid profiles, cytokines, multi-omic parameters, Single nucleotide
polymorphisms (SNPs), NAFLD remission rate, and percent change in intrahepatic
triglyceride content as secondary outcomes.

Animal model

All mice were housed in a specific-pathogen-free facility with a 12-h/12-h light/dark cycle
and given free access to food and water. All protocols for mouse experiments were approved
by the Committee on the Use of Live Animals for Teaching and Research of the University
of Hong Kong (CULATR No. 4361-17). All relevant ethical regulations were complied.
Mice involved in all experiments were given a HFHC diet (D12079B, Research Diets, New
Brunswick, NJ, USA) to induce NAFLD. For FMT experiments, 5-week-old male
C57BL/6J wild-type mice and 6-week-old male C57BL/6J ApoE”~ mice were purchased
from GemPharmatech (Nanjing, China). Mice were randomly divided into two groups: RS
group and CS group (n =8 per group in the dietary model; n=6 per group in the genetic
model). Both were fed the HFHC diet for 11 weeks before fecal microbiota transplantation
(diet, water, and bedding were all sterilized). For B. stercoris gavage, eight-week-old male
C57BL/6J mice were randomly divided into three groups: HFHC with PBS group, HFHC
with live B. stercoris group, and HFHC with heat-killed B. stercoris group, and were treated
for 8 weeks. Body composition was assessed with a Minispec LF90 body composition
analyzer (Bruker, Billerica, MA, USA) after 8 weeks of feeding. Glucose and insulin levels
in both fasting and fed status, intraperitoneal glucose tolerance test, and insulin tolerance
tests were performed after 8 weeks of daily gavage *°.

Culture and administration of B. stercoris

B. stercoris (catalog No. 19555, DSMZ-German Collection of Microorganisms and Cell
Cultures GmbH, Germany) was cultured in chopped meat medium (Hardy Diagnostics,
USA) at 37 °C in an anaerobic workstation (Gene Science AG300, China) with a gas mix
containing 10% hydrogen, 10% carbon dioxide and 80% nitrogen. The concentration of
bacteria was calculated by measuring the absorbance at the wavelength of 600nm. A fresh
culture containing 5x10° cfu of B. stercoris in 200pL PBS was orally gavaged daily to
C57BL/6J mice, with sterile PBS as control. For one experimental group, B. stercoris was
heat killed at 121°C under 225-kPa pressure for 15 min.

Cell culture and treatment with valine
Human hepatocellular carcinoma cells from the HepG2 cell line (ATCC, Manassas, VA,
USA) were cultured in Dulbecco’s Modified Eagle Medium (Gibco, NY, USA) with 10%
fetal bovine serum (Gibco, NY, USA). This cell model demonstrated comparable results to
primary human hepatocytes in terms of lipid accumulation *°, which was the scope of our
in vitro study. Cells were kept in a 37°C incubator with 5% COz. Culture medium was
replaced every 2—-3 days, and cells were sub-cultured upon reaching 80% confluence.
L-valine (TCI Chemicals, Portland, OR, USA) was dissolved in Milli-Q water to
form a stock solution and diluted with serum-free medium to working concentration (30-
750 uM). The concentration range for cell experiments was determined by the serum
concentration range from human clinical samples and preliminary cytotoxicity assays.
Sodium oleate (Sigma-Aldrich, St. Louis, MO, USA) was dissolved in water and sodium
palmitate (Sigma-Aldrich, St. Louis, MO, USA) in methanol for stock solutions. The stock
solution was further diluted with serum-free medium supplemented with 1% FA-free bovine
serum albumin (Gibco, NY, USA) to working concentration 1000 uM. FA-BSA complex
was prepared fresh before treatment.
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For experiments, cells were plated on 6-well plates at 1 x 10° cells/well and allowed
to adhere overnight. Cells were incubated with valine for 24 hours followed by fatty acid
incubation for another 24 hours. Cells were then collected for further assays.

METHOD DETAILS
Study design

The study procedure has been detailed in the study protocol (Methods S1). Briefly, the
study was a randomized, double-blinded, placebo-controlled trial conducted at Shanghai
Jiao Tong University Affiliated Sixth People's Hospital from 2016-March to 2017-October.
Participants were randomized into two groups with an allocation ratio of 1:1 and consumed
either HAM-RS2 (Ingredion Inc., Bridgewater, NJ, USA) at 255.4 kcal/day (2.8 kcal/g, 91.2
g, containing 40 g RS) or matched CS (Ingredion Inc., USA) at 255.6 kcal/day (3.55 kcal/g,
72 g, containing 0 g RS) for 4 months (120 days). RS and CS were packaged in sealed bags
that were identical in appearance. During the entire trial, participants received dietary and
lifestyle counselling. All were engaged in light physical labor or had a sedentary lifestyle,
and were advised to keep their usual physical activity habits. Dietary counseling was
conducted by a trained dietitian. Standard menus with targeted dietary caloric restrictions
and macronutrient intake designed by the dietitian from the Department of Clinical
Nutrition, Shanghai Jiao Tong University Affiliated Sixth People's Hospital were provided
to participants, as well as the oilcan and scale. Participants were asked to fill in three
consecutive 24-hour dietary records (2 weekdays and 1 weekend day) at each visit period
and were encouraged to weigh foods to ensure they accurately reported their caloric intake.
In each visit, participants were met with a nutritionist individually for assessment of their
adherence to both the diet and the starches (adherence to diet was evaluated as whether the
total energy intake according to the 24-h dietary recalls met the requirement of diet
management; adherence to starch was evaluated by counting the empty packaging bags of
starch participants returned at each visit).

At each visit, participants came to the Department of Endocrinology and Metabolism
in the morning for collection of blood, urine and stool samples, and for the measurement of
anthropometric and biochemical indexes. Abdominal magnetic resonance imaging (MRI)
scan and MRS were conducted at V1 and V5, whereas meal tolerance tests were conducted
at V1, V3 and V5. The primary outcome was the change in IHTC evaluated by MRS.
Secondary outcomes were changes in anthropometric indexes, body composition, body fat
analysis by MRI, glycemic control, insulin sensitivity, liver and renal function, lipid
profiles, measurement of serum biomarkers, and other tests.

We recorded the combined medication during the follow-up visits and no
gastrointestinal drugs such as antacid were used. No serious adverse events were reported
throughout the study. Other potential intervention-related adverse events, including
constipation (8 participants in RS and 15 participants in CS, P = 0.108) and flatulence (20
participants in RS and 19 participants in CS, P = 0.914), were equally distributed between
the two groups, except the intestinal exhaust (35 participants in RS compared with 8 in CS,
P <0.001).

Anthropometric and biochemical measurements

Blood pressure, body weight, height, waist circumference, and biomedical indices were
measured according to the study protocol (Methods S1). BMI (weight [kg]/ height? [m?])
was also calculated. Blood samples were collected from participants after an overnight fast
of at least 10 hours and were used to measure serum ALT, AST, GGT, TG, TC, HDL-C,
LDL-C, and non-esterified FA (NEFA). To assess the glucose metabolism, serial blood
samples were taken in a fasting state and at postprandial time points for laboratory tests of
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plasma glucose, insulin and c-peptide after a standardized meal tolerance test (85 g of non-
fried instant noodles without soup: 376.98 kcal including 68.6 g carbohydrate, 9.4 g protein
and 6.8 g fat) (China Oil & Foodstuffs Corporation, China). Insulin resistance indexes were
calculated as follows: HOMA-IR = FPG (mmol/L) x FINS (mU/L)/22.5; Adipo-IR = fasted
insulin (mmol/L) x fasted NEFA (pmol/L).

MRS examination

Participants underwent liver MRS using the 3.0-T Philips Ingenia medical system (Philips
Healthcare, The Netherlands). Sagittal, coronal, and axial slices through the right lobe of
the liver were acquired, and regions of interest were selected by an experienced radiologist,
who avoided visible blood vessels and bile ducts. IHTC was measured in a single voxel (2
x 2 x 2 cm?) and calculated by dividing the integral of the methylene groups in fatty acid
chains of the hepatic triglyceride by the sum of methylene groups and water. The
experienced radiologists who performed the test were blinded to the clinical data.

MRI examination

Levels of SFA and VFA were determined by MRI using a 3.0-T Philips Ingenia medical
system (Philips Healthcare, The Netherlands) with spin echo sequences: 500/20 (TR/TE)
and matrix size =256 x 25,659. Scan time was approximately 180 seconds. MRI scans were
obtained at the abdominal level between L4 and L5 vertebrae in the prone position. Analysis
of images was performed on a workstation provided by the manufacturer. MRI was
performed by experienced radiologists who were blinded to clinical presentation and
laboratory findings. Acquired images underwent measurement of SFA and VFA using a
semiautomated segmentation method. According to the signal intensity of adipose tissue,
SFA and VFA outlines were manually traced with a graphic user interface. The area inside
the outline was automatically labelled and calculated by the software SliceOmatic (Version
5.0, TomoVision, Canada).

Diagnostic criteria for NAFLD

We followed guidelines for the assessment and management of NAFLD in the Asia-Pacific
region. For all participants, NAFLD was diagnosed by B ultrasonography (detailed in study
protocol), ruling out secondary causes of hepatic fat accumulation including acute infectious
disease, biliary obstructive diseases, alcohol abuse (more than 20 g per day for men and
more than 10 g per day for women), acute or chronic cholecystitis, acute or chronic viral
hepatitis.

Measurement of FGF21 and cytokeratin 18 M65SED

Concentration of FGF21 in human serum was quantified using an enzyme-linked
immunosorbent assay (ELISA) kit from Antibody and Immunoassay Services, the
University of Hong Kong (AIS, HKU, China). Human serum cytokeratin 18 (CK18)
M65ED concentration was quantified with the M65 EpiDeath ELISA kit (Peviva AB,
Bromma, Sweden). Intra-assay variations for the measurement of FGF21 and CK18 M65ED
were 1.89% and 0.77%, respectively, and for inter-assay variations, these values were
4.08% and 8.23%.

Measurement of LPS and pro-inflammatory factors

Human serum LPS was measured by the Limulus Amebocyte Lysate assay (Hycult Biotech,
The Netherlands). Concentration of pro-inflammatory factors including IL6, IL1p, TNFa,
and MCP1 were quantified with ELISA kit (Invitrogen, USA). Intra-assay variations and
inter-assay variations for the measurements were all below 10%.

49



915
916

917

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963

Humans as holobionts: Systems-level approaches for disease prevention and therapy

Targeted metabolomics analysis of human fecal bile acids, serum bile acids and amino
acids

Sample pre-treatment

For fecal samples, about 20-30 mg freeze-dried sample was added to 2 mL Eppendorf tubes.
One mL ethanol solution containing internal standards (CA-d5 0.3 pg/mL, CDCA-d4 0.9
ug/mL, GCA-d5 0.6 pg/mL, GCDCA-d4 0.6 pg/mL, TCA-d5 0.3 pg/mL, TDCA-d5 0.3
ng/mL) was added and vortexed. Subsequently, samples were ground with zirconia beads
(30 Hz, 1 min). After centrifugation (14,000 x g, 4°C for 10 min), 800 pL supernatant was
transferred for freeze-drying. Samples were then dissolved in 800 pL aqueous solution
containing 25% acetonitrile and filtered through a 0.22 pum filter membrane. For serum
samples, 50 uL sample was fully mixed with 200 uL acetonitrile solution containing internal
standards (CA-d5 0.1 pg/mL, CDCA-d4 0.3 pg/mL, GCA-d5 0.2 pg/mL, GCDCA-d4 0.2
ug/mL, GCDCS-d5 0.2 pg/mL, TCA-d5 0.1 pg/mL, TCDCA-dS 0.1 ug/mL, TDCA-d5 0.1
ng/mL, alanine-d3 3 ug/mL, phe-d5 3 ug/mL, histine-'3Cs 1 ug/mL) for protein precipitation
and metabolite extraction. Supernatants were pipetted for freeze-drying. Finally, the powder
was dissolved in 70 uL. aqueous solution containing 25% acetonitrile at 70 pL and 50 puL
redissolved solution was transferred into sample bottles. Another 10 uLL was used for freeze-
drying for AA analysis.

Using the above 10 pL freeze-dried sample, derivative reactions were performed
with AccQTag derivatization kits (Waters, USA) before AA liquid chromatography (LC)-
MS analysis. Derivative reactions were performed according to the protocol and briefly
described as follows: 70 uL AccQ-Tag ™ ultra-borate buffer (pH 8.8) was added to freeze-
dried samples and mixed for 30 seconds and 20 uL AccQ-Tag ™ derivative reagent was
added after 10 seconds of vortex. The mixture was kept at room temperature for 1 min and
heated for 10 min at 55°C for derivatization reaction.

LC-MS analysis

For both BA and AA profiling, a high-performance liquid chromatograph Nexera X2
(Shimadzu, Japan) and triple quadrupole mass spectrometer (MS) 8050 (Shimadzu, Japan)
system equipped with electron spray ionization (ESI) ion source was employed. The main
MS parameters were: nebulizing gas flow at 3 L/min, heating gas flow at 10 L/min, interface
temperature at 300°C, DL temperature at 250°C, heat block temperature at 400°C, drying
gas flow at 10 L/min. Multiple reaction monitoring (MRM) was used to detect BAs and
AAs. ACQUITY UPLC C18 columns (100 mm X 2.1 mm, 1.7 pum) were used for
chromatograph separation.

Elution conditions for BA analysis were: Mobile phase A was 10 mM ammonium
bicarbonate aqueous solution and mobile phase B was pure acetonitrile. The gradient started
from 25% B and was maintained for 0.5 minutes, then linearly increased to 40% B in 12.5
minutes and 90% B in another 1 minute. The gradient was maintained at 90% B for 3
minutes, returning to 25% B in 0.5 minutes. The initial pre-equilibrium time was 2.5
minutes. Column temperature was 35°C. Flow rate was 0.35 mL/min. Injection volume was
5 uL.

Elution conditions for AA analysis were: The gradient started from 1% B, was
maintained for 1.08 min, and increased to 9.1% B in 10.4 min. At 16.3 min, the gradient
was linearly increased to 21.2% B, then quickly to 59.6% B in 0.6 min, and maintained for
1.2 min. The gradient was returned to 1% B in 0.18 min and maintained for 3.72 min for
initial pre-equilibrium. Column temperature was 55°C. Flow rate was 0.35 mL/min.
Injection volume was 0.1 pL.
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Targeted metabolomics analysis of fecal SCFAs

Sample processing

About 20 mg feces sample and 200 pL 50% acetonitrile/Milli Q water were mixed in an
Eppendorf tube. Samples were ground twice with zirconia bead (30 Hz for 1 min). After
centrifugation (14,000 x g, 4°C for 10 min), supernatants were collected and filtered, and an
aliquot of 40 puL was transferred into 1.5 mL Eppendorf tubes following addition of 10 pL
hexanoic acid -d11 (50 pg/mL in 50% acetonitrile/MilliQ water). After vortexing, 20 puL 3-
nitrophenyl hydrazine (200 mM in 50% acetonitrile/MilliQ water) and 20 uL. EDC (120
mM in 50% acetonitrile/MilliQ water containing 6% pyridine) were added. Tubes were
incubated in a water bath (40°C) for 30 min and placed on ice for 1 min to stop derivative
reactions. Before LC-MS analysis, 910 uL 10% acetonitrile/MilliQ water was used for
dilution.

LC-MS analysis

Quantitative analysis used an AB SCIEX ExionLC AD UPLC coupled with AB SCIEX
triplequadrupole 6500 plus MS (AB SCIEX, Framingham, US). An ESI ion source was
used. MRM scan was operated in negative ionization mode. lon source parameters were
capillary temperature 325°C, capillary voltage 49V and sheath gas 40 arb. An ACQUITY
UPLC C18 column (100 mm x 2.1 mm, 1.7 pm) was used for separation. Mobile phase A
was 0.1% formic acid in MilliQ water. Mobile phase B was 0.1% formic acid in acetonitrile.
The total run time was 11 min per sample. The gradient started from 15% B and was
increased to 27% B in 4 min, then to 42% B in 4 min, then 100% B in 0.5 min, maintained
for 1 min before returning to 15% B in 0.5 min and maintained for 1 min. Column
temperature was 40°C. Flow rate was 0.35 mL/min. Injection volume was 5 pL.

Fecal sample collection and DNA extraction

Fecal samples were collected using a commercial tube with DNA stabilizer (STRATEC
Molecular, Berlin, Germany) and stored at -80°C. Stool DNA was extracted using PSP Spin
Stool DNA Kits (STRATEC Molecular, Berlin, Germany) according to the manufacturer’s
instructions. Fecal DNA extracts were used to construct shotgun metagenomic libraries
using the KAPA soil kit following the standard protocol. The Novaseq 6000 platform was
used for 150 bp paired-end sequencing at Novogene, China.

Quality control and taxonomic profiling

For quality control of raw reads, human DNA contamination was removed using BWA mem
version 0.7.4 ®! against human reference genome ucsc.hg19 and adaptors, low quality reads,
bases or PCR duplicates were filtered as previously described *°. High-quality reads were
taxonomically profiled at different taxonomic levels using MetaPhlAn2 2 version 2.7.7 with
default settings, generating taxonomic relative abundances (total sum scaling
normalization). For the CAGs-based approach, genes obtained from HUMANN2
(“Functional profiling” below) were clustered into CAGs and then metagenomic species
(MGS, referring to CAGs with >700 genes) as described before ¢ using default algorithm
options. MGS were assigned a species-level annotation if more than 50% of genes were
assigned the same species level taxonomy and if the second-most assigned taxonomy was
<10% or unclassified.

Microbial community diversity analysis

The alpha diversity was calculated using the R package vegan * and picante. Statistical
comparisons of alpha diversity between groups were by Wilcoxon rank-sum test or signed-
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rank test using R package stats. Beta diversity (Bray-Curtis dissimilarity, weighted UniFrac
and generalized UniFrac) was calculated with the R packages phyloseq and GUniFrac.
Statistical comparison between groups was by the function adonis to perform a
permutational multivariate analysis using R package vegan with 999 permutations. P <0.05
was considered significant.

Functional profiling

Microbial gene families and pathway abundances were determined using HUMANN2
software % version 0.11.2 and the UniRef90 and MetaCyc databases. Gene families were
mapped to Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology database
included in HUMAnNN2 to obtain KEGG modules and KEGG pathway abundances. Gene
families were also mapped to level-4 enzyme commission (EC) categories using the EC
database included in HUMANN?2. Carbohydrate-Active enZYmes (CAZy) % were obtained
by annotating ECs to the CAZy database. Tables of pathway and gene family abundance
obtained using HUMANN2 were normalized to copies per million, including unmapped and
unintegrated reads.

Integrating microbiome, metabolome and phenotypes

The omics computational framework described before 2® was used to perform a three-way
analysis to screen potential KEGG modules that significantly correlated with metabolites
and phenotypes, and leave-one-species-out analysis to determine the driver species of
KEGG modules and important phenotypes. In the three-way analysis, correlations between
the functional potential and phenotypes were by partial Spearman’s correlation adjusting
for obesity-related parameters. In cases of correlations between microbiota functional
potential and metabolites, Spearman’s correlation was used. In the leave-one-species-out
analysis, we checked for KEGG modules with strong correlations (absolute Spearman’s
correlation > 0.2) with IHTC or FGF21. Species with > 10% effect on the correlation after
removal were deemed driver species.

Validation of B. stercoris in external cohorts

Two independent external cohorts of different ethnicity were used. The Chinese cohort
included 100 patients with NAFLD (diagnosed with ultrasonography) and 90 NAFLD-free
control ?°. The European cohort had different degrees of steatosis confirmed by liver biopsy
controls *°, including 32 participants with no or mild steatosis and 24 participants with
moderate or severe steatosis. The metagenomic data were processed with the above pipeline
for quality control and taxonomic profiling.

FMT Experiment

Mice were treated with antibiotics cocktail (ampicillin 1g/l, neomycin 1g/I, metronidazole
1g/l, vancomycin 0.5g/1) for 7 days for microbiota depletion, followed by a 4-day wash-out
period to eliminate antibiotics before fecal microbial transplantation as described previously
3067 Two human donors from RS or CS group who were close to the average change of
IHTC within RS and CS intervention were selected for fecal microbial transplantations.
Approximately 500 mg fresh human stools from each donor were collected in the anaerobic
workstation and suspended in 5 ml PBS buffer containing 0.2 g/l NazS and 0.5 g/ cysteine.
The mixture was homogenized and centrifuged, and the supernatant was collected under a
stream of nitrogen. Stool samples from participants were not pooled, and fecal slurry from
each donor was transferred into 4 conventional antibiotic-treated mice housed in one cage.
The mice were colonized by oral gavage with 200 ul of RS or CS fecal slurry. Mice were
treated once daily for three consecutive days by gavage in the first week of colonization,

52



1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114

Humans as holobionts: Systems-level approaches for disease prevention and therapy

then fecal slurries were introduced every other day to reinforce colonization during the
remaining days of the 3 weeks.

Histological examination

Mouse liver samples were resected and fixed with 10% formaldehyde phosphate-buffered
saline (pH 7.4), embedded in paraffin, sectioned, stained with hematoxylin/eosin (H&E,
Sigma, USA) for morphology and Sirius Red (Abcam, UK) for fibrosis, followed by
analysis with a Nikon DS-Ri2 microscope (Nikon Instruments Inc., Melville, USA). For
detection of neutral lipids, liver cryosections embedded in OCT were stained with Oil Red
O (Sigma, USA). Histology was evaluated by two independent researchers who were
blinded to the experimental design and treatment groups according to the NAFLD scoring
system as previously reported . In brief, 4 histological features were evaluated semi-
quantitatively including steatosis (0-3), lobular inflammation (0-3), hepatocellular
ballooning (0-2), and fibrosis (0-4). The unweighted sum of first three features was defined
as NAFLD activity score (NAS).

Biochemical assays in mice

Serum levels of AST, ALT, TC, TG, and glucose in mice were measured with commercial
kits from Stanbio Laboratory (Boerne, TX, USA) or Nanjing Jiancheng Bioengineering
Institute (Nanjing, China). Serum lipopolysaccharide (LPS) was measured by the Limulus
Amebocyte Lysate assay (Hycult Biotech, The Netherlands). Insulin level was determined
by immunoassay from Immunodiagnostics (AIS, HKU, China). Serum FGF21 in mice were
measured by ELISA (AIS, HKU, China).

Quantification of mice hepatic lipids

TG content of livers was determined by a modified Folch method %. Briefly, 50 mg of liver
tissue was homogenized in chloroform/methanol (2/1; v/v). After extraction at room
temperature overnight, the organic phase was used to measure hepatic TG with commercial
kits from Stanbio Laboratory (Boerne, TX, USA) or Nanjing Jiancheng Bioengineering
Institute (Nanjing, China).

RNA preparation and real-time quantitative polymerase chain reaction

Total RNA from livers or ileum was extracted with TRIzol reagent (Invitrogen, CA, USA),
and total RNA from cells was extracted by RNAIso Plus reagent (Takara, Japan) according
to the manufacturer’s manual. RNA concentration was determined using a NanoDrop ND-
1000 Spectrophotometer (Nano-Drop Technologies, Wilmington, DE, USA) and RNA
quality was determined by the A260/A280 ratio of 1.8-2.1. RNA integrity was also checked
by 1% agarose gel electrophoresis to ensure 2 intact bands of 28S and 18S RNA. Genomic
DNA digestion and reverse transcription yielded cDNA from 1 pg RNA template using the
HiScript RT SuperMix for qPCR kit (Vazyme Biotech, Nanjing, China) or PrimeScript™
RT reagent Kit (Takara, Japan) according to the manufacturer’s manual. Quantitative real-
time PCR was performed using SYBR Green master mix on StepOnePlus Real-Time PCR
system (Applied Biosystems, Foster City, CA, USA) or Light Cycler 480 system (Roche,
USA). The mouse glyceraldehyde-3-phosphate dehydrogenase gene and human beta-actin
gene were the reference for tests in mice or cell line, respectively. Relative changes in gene
expression were calculated using the 2°2ACT method. Primers used for PCR are listed in
Table SS.

In vitro testing of B. stercoris for valine releasing activity
B. stercoris was grown in the same culture medium as mentioned above to stationary phase
and was inoculated to fresh medium that had been sterilized by an autoclave. Then the
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mixture was aliquoted and incubated under anaerobic conditions for 3, 5, 8, 12, 24 hours,
respectively. At each time point, an aliquot was removed for centrifuging at 4500rpm (4°C
for 15 min) to obtain culture supernatants. Following filtration (pore size 0.22 um;
Millipore, USA), the samples were stored at -80 °C until use. In parallel, fresh medium was
aliquoted and incubated under the same conditions for the same period of time as blank
control. At each time point, the supernatant was obtained from aliquot centrifuged at
4500rpm (4°C for 15 min) as control.

Experiments seeking to test whether heat-killed B. stercoris could produce valine
were carried out by first incubating B. stercoris in medium at 37 °C under anaerobic
conditions to stationary phase. Stationary phase culture was then treated at 121°C under
pressure of 225 kPa for 15 minutes. And the culture was added to fresh medium. The
mixture was incubated under anaerobic condition for 8h (logarithmic phase of growth of
live B. stercoris) and then centrifuged to obtain culture supernatants.

All cultures in each condition were performed in triplicate. An ultraperformance
liquid chromatography coupled to tandem mass-spectrometry (UPLC-MS/MS) system
(ACQUITY UPLC-Xevo TQ-S, Waters, USA) was used to quantitate all targeted
metabolites by Metabo-Profile Biotechnology Co., Ltd 7°.

Intracellular TG assays

Intracellular TG assays were performed using Triglyceride Colorimetric Assay Kits
(Cayman Chemicals, Ann Arbor, MI, USA) according to the manufacturer’s manual.
Intracellular TG content was normalized to cellular protein quantified using Bradford
Protein Assay (Bio-Rad, Hercules, CA, USA).

Data visualization

Circos plots were made using interactive Tree of Life (https://itol.embl.de/). All other
figures were generated by R software 3.6.3, using ggplot2 and ComplexHeatmap packages,
or by GraphPad Prism 9.0.

QUANTIFICATION AND STATISTICAL ANALYSIS

Clinical and experimental data
For clinical data, analyses were performed with SPSS 25.0 (Chicago, IL, USA) and SAS
version 9.4 (SAS Institute, Cary, NC, USA) as 2-sided with a significance level of o= 0.05.
Analyses were performed mainly in the full analysis set, which included all randomized
patients who received at least one dose of study medication and had at least one post-
intervention assessment of effectiveness. Numerical variables were expressed as mean (95%
ClIs). Categorical variables were expressed as percentages. Student’s unpaired t-tests and
chi-square tests were used for comparison between two groups at baseline. Linear mixed
model was used to assess within-group differences. Comparison between the RS and CS
groups at each visit was through analysis of covariance with treatment group as a factor and
baseline value as a covariate. Differences in outcomes between the RS and CS groups were
assessed using a linear mixed model. Fixed effects included baseline values of the assessed
variable; treatment group (RS vs. CS as a categorical variable); categorical time points
represented by 5 visits at days 0, 30, 60, 90, 120; and the interaction term of visit x treatment
group. Repeated measures were added as a random effect. Weight loss was used as an
additional fixed effect when the weight loss-independent effect was assessed.

For animal and cell line experiments, all analyses were performed with GraphPad
Prism 9.0 (GraphPad Prism, USA). Data were shown as mean + SEM. Two-tailed Student’s
unpaired ¢ test (normally distributed) or non-parametric Wilcoxon rank-sum test (non-
normally distributed) was used for comparisons between two groups. Comparisons among
more than two groups were performed using one-way ANOVA (normally distributed)
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followed by Tukey’s post hoc test, or Kruskal-Wallis test (non-normally distributed)
followed by Dunn’s test.

Metabolomics and metagenomics data

We performed partial least squares discriminant analysis using metabolite fold-change
(log2-transformed) profiles with the R package mixOmics '. Statistical comparison between
groups was based on Bray Curtis dissimilarity using the function “adonis” in R package
vegan with 999 permutations. Taxonomic and metabolite variations were further calculated
as the ratio between microbial relative abundance or metabolite abundance at week 16
against abundance at baseline. Log2 transformation was applied to fold-changes. For
taxonomic variation, before deriving fold-changes, zero values were additively smoothed
by minimal nonzero abundance among all observed measurements. Differentially abundant
species, functions and metabolites were identified by two-sided Wilcoxon rank-sum test or
Wilcoxon signed-rank test, when appropriate, using R package stats. Z scores for
metabolites variation were calculated using R package rcompanion. Generalized linear
models were used to obtain differentially abundant species after adjusting for obesity-
related parameters (species ~ group + VFA + SFA + BMI + Waist circumference + FAT%)
with g/lm function from R package stats. To determine if metabolome and microbiome were
associated, a mantel test was performed using the mantel function from the R package
vegan. Bray-Curtis dissimilarity matrices based on the species and metabolite abundance
tables were computed to perform this test.

Spearman's correlation analysis was performed using R package stats. Partial
Spearman correlation adjusting for obesity-related parameters (VFA + SFA + Waist
circumference + BMI + FAT%) was performed between metabolites/species and clinical
data using the R package ppcor. All statistical analyses were performed with R software
3.6.3 and P <0.05 was deemed significant unless otherwise stated. P values were adjusted
by an FDR method "% using R package stats.

Data S1. Source data underlying the display items in the manuscript, related to Figures 2—
6, S2-S5, and S7.

Table S4. Species contributions to correlations between microbiota functional modules and
intracellular hepatic triglyceride content (IHTC) or fibroblast growth factor 21 (FGF21) in
resistant starch (RS) and control starch (CS) groups, related to Figure 5.

Methods S1: Study Protocol and statistical analysis plan, related to Figures 1-3, S1-2, and
STAR Methods.
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Overview

In manuscript II, we aimed to investigate gut microbiome dynamics in response to lifestyle
microbiome-targeted therapies and to identify robust and generalized biomarkers among the
gut microbial communities associated with the resistance to change of the gut microbial
community. Therefore, we performed longitudinal shotgun metagenomic analysis from a
wide range of lifestyle interventions and defined a criterion to classify individuals based on
the microbiome response using as a point of departure the natural fluctuation of a healthy
microbiome without any intervention. We identified microbial biomarkers of microbiota’s
resistance to structural changes, and we found amino acid biosynthesis as an important
regulator of microbiome dynamics. Lastly, we developed a machine learning model able to
predict the gut microbiome resistance to change in response to lifestyle interventions using
the baseline microbiome composition.
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Abstract

Background A growing body of evidence suggests that the gut microbiota is strongly linked to general human
health. Microbiome-directed interventions, such as diet and exercise, are acknowledged as a viable and achiev-

able strategy for preventing disorders and improving human health. However, due to the significant inter-individual
diversity of the gut microbiota between subjects, lifestyle recommendations are expected to have distinct and highly
variable impacts to the microbiome structure.

Results Here, through a large-scale meta-analysis including 1448 shotgun metagenomics samples obtained longi-
tudinally from 396 individuals during lifestyle studies, we revealed Bacteroides stercoris, Prevotella copri, and Bacteroides
vulgatus as biomarkers of microbiota’s resistance to structural changes, and aromatic and non-aromatic amino acid
biosynthesis as important regulator of microbiome dynamics. We established criteria for distinguishing between sig-
nificant compositional changes from normal microbiota fluctuation and classified individuals based on their level

of response. We further developed a machine learning model for predicting “responders” and “non-responders”
independently of the type of intervention with an area under the curve of up to 0.86 in external validation cohorts

of different ethnicities.

Conclusions We propose here that microbiome-based stratification is possible for identifying individuals with highly
plastic or highly resistant microbial structures. Identifying subjects that will not respond to generalized lifestyle
therapeutic interventions targeting the restructuring of gut microbiota is important to ensure that primary end-points
of clinical studies are reached.

Keywords Gut microbiome, Microbiome dynamics, Resistance, Lifestyle intervention, Machine learning
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Background

The human gut microbiome is a complex ecosystem
made up of trillions of bacteria, viruses, archaea, and
eukaryotic microbes contributing to essential functions
in the host. Emerging studies have shown the close con-
nection between the gut microbiome and human health
and disease [1], such as influencing host nutrition and
metabolism, training and modulating immune function,
and contributing to patterns of brain development and
behavior. Gut microbiota dysbiosis has been associated
with several highly prevalent chronic diseases including
gastrointestinal and neurological [2—-4] disorders, meta-
bolic diseases, as well as cardiovascular and respiratory
illnesses [5-7]. Therefore, targeting the gut microbiome
seems to be a promising strategy for restoring balance in
the gut in order to improve the host’s health. However,
unhealthy gut microbiota states can result in a recurring
susceptibility to chronic illnesses and resistance to treat-
ment efficacy [8].

Lifestyle interventions targeting the gut microbi-
ota have been explored as a therapeutic treatment for
numerous diseases. For example, prebiotic consumption,
diet, and exercise have been associated with alterations in
the gut microbiota structure and a positive impact on the
host’s phenotype [9-11]. In most trials, large inter-indi-
vidual differences in the treatment response have been
observed [8], and some of these differences may depend
on subject-specific microbiome response to the perturba-
tion. In most cases, the microbiome response is currently
unpredicted. Consequently, gut microbiota stability, resil-
ience, and resistance are crucial ecological features [12].
Therefore, it is urgent to understand the potential mech-
anisms involved in gut microbiome resistance that may
govern the response to perturbations and to determine
whether lifestyle interventions can shape gut microbiota
composition towards resilient healthy states.

In order to shed light on the resistance potential pre-
sented by an individual gut microbial ecosystem, we
performed a large-scale meta-analysis of metagenomics
samples obtained from longitudinal lifestyle interven-
tions and compared the responses with no-intervention
and antibiotic treatment studies. Groups of “respond-
ers” and “non-responders” were defined by their mag-
nitude of taxonomic changes to a diverse set of lifestyle
interventions and characterized by distinct gut micro-
biota compositions and functional profiles. From a clini-
cal and translational perspective, the ability to predict
microbiome resistance to perturbation offers significant
advantages to further optimize disease therapies through
microbiome-informed patients’ stratification and pos-
sibly restore plasticity in patients with resilient dysbiosis
microbiomes.
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Results

The extent of microbiome compositional changes

depends on the environmental stimuli and varies

between individuals

In order to elucidate the compositional and functional
characteristics of the gut microbiome that may predict
the personalized responses of the microbial communities
to lifestyle, we collected metagenomic shotgun sequenc-
ing data from 10 studies covering 467 subjects sampled
longitudinally (1590 total in total) (Table 1).

These included 1118 samples from subjects that
did not undergo intervention. This allowed us to set a
“response threshold” to differentiate between microbi-
ome changes that could simply be considered as natu-
ral fluctuation, and significant alterations following
various interventions. We also retrieved five cohorts
with lifestyle-based treatment (165 subjects, 330 sam-
ples), including a low-carbohydrate diet with increased
protein content (I_LCD); a high-fiber diet (I_HFD); a
highly resistant starch type II (HRS); a multidisciplinary
weight-loss program (I_MWP); and an exercise training
program (I_ETP) (Table 1). Moreover, the dataset con-
tains four cohorts with different antibiotic treatments
(71 subjects, 142 samples): a cocktail of meropenem,
gentamicin, and vancomycin (referred to from now on
as A_MER-GEN-VAN); cefprozil (A_CEF); ciprofloxa-
cin (A_CIP); and cotrimoxazole (A_COT). Taxonomic
and functional profiling was performed with all sam-
ples from different cohorts simultaneously after passing
through the quality control. Intraclass correlation coef-
ficient (ICC) is a measure of reliability or reproducibility
that can be used to quantify the biological variability of
the microbiome structure, previously used by Sinha et al.
[22] to compute the microbiome temporal stability. The
genus-level ICC was calculated for different estimates of
alpha (Shannon, Simpson, and Chaol Index) and beta
diversity (using the top principal coordinates analysis
(PCoA) scores based on Bray—Curtis dissimilarity, and
unweighted or weighted UniFrac distances) for every
cohort in our study (Table S1). ICCs range from 0 (no
stability) to 1 (perfect stability), where values below 0.5
indicate poor microbiome stability and above 0.5, high
microbiome stability [23].

We observed significantly higher mean ICCs values
of Shannon and Simpson diversities for the two no-
intervention cohorts (that did not include any inter-
vention) compared to the four cohorts treated with
antibiotics as well as the five cohorts with lifestyle
interventions (Student ¢ test, p<0.05, Fig. 1a). The
average ICC values of the two no-intervention cohorts
remained high (>0.50) for all diversity indexes, sug-
gesting a stable gut microbiome alpha diversity in the
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Table 1 Description of the study cohorts used in the meta-analysis
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Study Disease Intervention Intervention information Duration (days) Number
subjects/
samples

Mehta et al,, 2018 [13] Healthy No intervention - 140/560

Poyet et al, 2019 [14] Healthy Na intervention 91/558

Palleja et al., 2018 [15] Healthy Antibiotics Meropenem, Gentamicin, and Yancomycin 4 12/24

Raymond et al., 2015 [16] Healthy Antibiotics Cefprozil 7 18/36

Willmann et al, 2019 [17] Hematological- Antibiotics Ciprofloxacin 6 20/40

Oncological disease Cotrimoxazole 21/42

Louis et al, 2016 [18] Obesity Exercise/Dietary  Multidisciplinary weight-loss program (OPTI- 84 14/28

FAST® 52, Nestlé Inc.): psychology, medicine,
dietetics (very low-calorie diet), and exercise

Mardinoglu et al, 2018 [19]  Obesity with NAFLD  Dietary Low-carbohydrate diet with increased protein =~ 14 10/20

content

Zhao et al,, 2018 [20] T2D Dietary High fiber diet composed of whole grains, tradi- 84 71/142

tional Chinese medicinal foods, and prebiotics

Ni et al,, (in press) [21] NAFLD Dietary Diet with high resistant starch type Il content 120 50/100

Liu et al,, 2020 [9] Prediabetes Exercise Exercise activity 3 days/week as a combined 84 20/40

aerobic and strength training program

absence of external disturbances. Interestingly, there
is no significant difference in mean ICCs values of any
alpha diversity index when comparing the four cohorts
treated with antibiotics and the five cohorts under-
going lifestyle interventions (Student ¢ test, p=0.14,
0.240, 0.052 for Shannon index, Simpson index, and
Chaol index, respectively, Fig. la). Moreover, despite
a clear trend of decreased ICCs for all beta diversity
indexes in the 4 antibiotics cohorts compared to the
two no-intervention cohorts, the result was not sta-
tistically significant (Student ¢ test, p>0.05) except
PCoAl of Weighted Unifrac index and the average
ICC value of PCoAl-5 of Unweighted Unifrac index.
These results are probably due to the high variability
observed between antibiotic types and personalized
responses to each antibiotic. Nevertheless, the over-
all diversity ICC values of the cohort treated with a
combination of meropenem, gentamicin, and vanco-
mycin (A_MER-GEN-VAN) were extremely low with
an average of 0.183, indicating a severe disturbance
of the microbiome structure (Fig. la), while the ICC
values of cohorts treated with cefprozil or cotrimoxa-
zole were significantly higher than those of A_MER-
GEN-VAN (paired ¢-test, adjusted p<0.1) with an
average of 0.453 and 0.368, respectively. On the con-
trary, the differences in the ICC values for beta diver-
sity between no and lifestyle interventions were less
obvious and again they were characterized by high
variability among different types of intervention and
of participants’ responses in each study group (Fig. 1a).

By comparing the differences in the ICC values among
the lifestyle intervention cohorts, we found that the
I_MWP study, which used a multidisciplinary weight-
loss program combining psychology, medicine, dietet-
ics, and exercise, had average ICC values of 0.173 and
0.237, for alpha and beta diversity, respectively, signifi-
cantly lower compared to all other single interventions
(either dietetics or exercise) (paired ¢-test, adjusted
p<0.1). The comparisons among other cohorts in the
lifestyle intervention category showed no significant
differences (paired ¢-test, adjusted p > 0.1). We further
compared the beta diversity ICC values of the I_MWP
with the four antibiotic-treated cohorts and interest-
ingly, we found that its impact on microbial stabil-
ity was higher than the A_CEF and A_COT studies
(paired ¢-test, adjusted p <0.1).

In summary, we generally observed that the microbial
stability estimated as ICCs of alpha and beta diversity
is disturbed by antibiotics and lifestyle interventions,
but the extent depends on the specifics of each envi-
ronmental stressor. Furthermore, the insignificance of
beta dissimilarity between interventions and no inter-
vention, which may be due to the variability of respon-
siveness among individuals, supports the notion that
generic approaches to altering the microbiome struc-
ture in an unbalanced state may not bring the desired
structural changes. The baseline microbiome could
potentially define the magnitude of the response of the
community structure to external stimuli, something
that we further explored below.
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Lifestyle interventions could have a comparable impact
with antibiotics on individual species’ stability

Looking at the ICCs of the 309 individual species anno-
tated in our metagenomics dataset, we observed a clear
stratification among the no-intervention cohorts and the
other two study groups (Fig. 1b). In the no-intervention
cohorts, 79.6% of the detected species were regarded as
stable (mean ICCs>0.5), while this percentage dropped
to an average of 27.3 and 43.6% for antibiotics and lifestyle
intervention cohorts, respectively. When looking into the
individual studies, we observed a similar tendency for the
species stability as for the community diversity. The ICCs
of 99% of the species in the A_MER-GEN-VAN study
were < 0.5 indicating that almost all bacteria present in
the microbial community were affected. The percentage
of species having ICCs<0.5 was high for all antibiotics
(78.4, 62.3, and 50.3% for A_CIP, A_COT, and A_CEF,
respectively). Interestingly, three of the lifestyle interven-
tions had a similar or even higher impact than the admin-
istration of single antibiotics on the stability of individual
species. The I_MWP intervention resulted in the highest
percentage of species with ICCs<0.5, affecting 71.6% of
the community members. The studies using a high-fiber
diet (I_HFD) and a high-resistant starch diet (I_HRS)
were also characterized by a high percentage of species
with ICCs < 0.5 (68.6 and 61.1%, respectively).

Looking for global taxonomic patterns in the life-
style intervention cohorts, the statistical comparisons
among the major phylum showed that the ICCs of Bac-
teroidetes species were significantly higher compared to
Firmicutes and Proteobacteria species (Student ¢ test,
p<0.05). Using the lifestyle intervention cohorts, we also
examined whether the stability of species is correlated
with their relative abundance at baseline. However, only
16 out of 309 species showed a significant correlation
(Spearman correlation, adjusted p<0.05) between the
ICC and relative abundance. By extracting information
from the Disbiome Database, we were able to retrieve
disease associations for 162 species annotated in our
metagenomics datasets. The stability of 115 out of the
162 disease-associated species could be influenced by at
least one of the lifestyle interventions. The I_HFD study
resulted in ICC values < 0.5 for 83 species associated with
a wide range of metabolic diseases (obesity, type 2 diabe-
tes, and hypertension) confirming the potential of a high-
fiber diet as a way to target dysbiotic microbiome states.
Disease-associated species, whose stability was uniquely
influenced by particular lifestyle interventions, were also
found. The I_HFD showed specificity towards 12 disease-
associated species, whereas I_LCD, I MWP, and I_HRS
showed specificity towards 8, 6, and 3 species, respec-
tively (Table S2).
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In order to perform a comparative analysis among all
interventions, we extracted 65 species with valid ICCs
(not NULL value of ICCs) in every individual study.
Out of the 65 species, 47 were stable (ICCs>0.5) in the
no-intervention cohorts; however, all of them lost their
highly stable status in at least one study of either anti-
biotic treatment or lifestyle intervention. Interestingly,
among these 47 species, we found 5 species, Bacteroides
massiliensis, Bacteroides stercoris, Barnesiella intestini-
hominis, Parabacteroides merdae, and Parasutterella
excrementihominis, that remained stable in all the life-
style interventions (ICCs>0.5). These 5 species further
showed resistance (ICCs>0.5) to two of the antibiotic
treatments, cefprozil (A_CEF) and cotrimoxazole (A_
COT), suggesting that these species are highly stable. The
aforementioned 5 species have a conditional effect on
human metabolic diseases, playing either beneficial (non-
alcoholic fatty liver disease, cirrhosis, multiple sclerosis,
etc.) or detrimental (autism, Parkinson’s disease, colon
polyps, etc.) roles (Fig. 1b) [24]. We further explored the
relative abundance of these 5 species across all samples
and observed that they were all low-abundant species
(<0.92%), further confirming that stability and abun-
dance are not correlated. Alistipes indistinctus, a species
that has been associated with hypertension and autism,
also showed an interesting stability pattern. A. indistinc-
tus had a high prevalence of 32% but a low abundance
of 0.25% on average. A. indistinctus showed high stabil-
ity (ICC>0.5) not only in the no-intervention cohorts
but also in the cohorts with antibiotic treatments (except
where the subjects were administered a cocktail dose of
antibiotics, A_MER-GEN-VAN). Interestingly, a low-
carbohydrate diet (I_LCD) and exercise (I_ETP) could
result in an ICC<0.5 for A. indistinctus, suggesting the
potential of using specific lifestyle interventions to target
highly stable and disease-associated species.

In summary, by evaluating the ICC value of each spe-
cies across studies, we have identified both species that
are highly resistant to any lifestyle and antibiotics inter-
vention and species whose stability pattern can only be
affected by specific lifestyle interventions. Interestingly,
we also observed that lifestyle interventions can reach
similar or even higher capability to impact the stability
of microbial species as single antibiotics administration,
questioning the broad characterization of antibiotics
treatment as a more intense intervention compared to
lifestyle interventions.

Identification of species associated with microbiome
responsiveness

By calculating the day-to-day Bray—Curtis dissimilarities
of each subject from the two longitudinal no-intervention
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cohorts, we established the criteria to differentiate effec-
tive response to a microbiome-targeted intervention
from normal fluctuation of the microbial community
composition. We used the mean+SD (68% population)
and mean+2*SD (95% population) of the Bray—Cur-
tis dissimilarity (see “Methods” for details) as the two
cutoffs to distinguish individual responses and formed
the following groups for downstream analysis: (i) non-
responders (<mean+ SD), (ii) partial-responders ([mean
+ SD, mean+ 2SD]), and (iii) responders (> mean+ 25D)
as shown in Fig. 2a. By evaluating the dissimilarity
before and after intervention of each subject among the
five lifestyle intervention cohorts, 47.3% of individuals
were classified as responders, while 24.2% were partial-
responders, and the remaining 28.5% were grouped as
non-responders. We calculated the species ICCs before
and after intervention in each study and compared them
based on the responder classification. The species ICCs
were significantly lower in the responders compared to
the non-responders (paired ¢t test, p<0.05), confirming
the grouping.

We subsequently used the baseline microbiome
samples of each subject to perform a principal coor-
dinates analysis (PCoA) based on the Bray—Curtis dis-
similarities. The microbiome composition of the subjects
grouped by the newly constructed classification from
non-responder to responder was significantly different
(PERMANOVA, p<0.05, R*=0.05, Fig. 2b). By compar-
ing the species abundances between the non-responder,
partial-responder, and responder groups, we found 41
species with significant differences among the groups
(ordinal logistic regression, adjusted p <0.2, Fig. 2c, Table
S6). Interestingly, 37 out of the 41 species from the ordi-
nal regression are highly stable species in the absence of
interventions (ICCs>0.5 in the no-intervention cohort),
an important property for serving as biomarkers of com-
munity response. Among these 37 species, only 3 spe-
cies were significantly enriched in the non-responder
group, namely Bacteroides stercoris, Prevotella copri,
and Bacteroides vulgatus. These 3 species remained sig-
nificantly enriched in the non-responders group even
when the lifestyle grouped subjects were combined with

(See figure on next page.)
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non-responders, partial-responders, and responders
from the antibiotics cohorts. Similarly, 17 out of the 37
species were found significantly enriched in the respond-
ers group even when combining the lifestyle with the
antibiotics cohorts, including Collinsella aerofaciens,
Gordonibacter pamelaeae, Ruthenibacterium lactatifor-
mans, Turicibacter sanguini, Fusicatenibacter sacchariv-
orans, Dorea longicatena, and Eubacterium hallii, which
were highly stable species (ICCs>0.5).

Biosynthesis of amino acids and their taxonomic contributors
as mediators of microbiome dynamic responses
Subsequently, we compared the MetaCyc pathway abun-
dances among the three response groups using their
baseline samples and found 116 pathways with signifi-
cantly different abundances (Ordinal regression, adjusted
p<0.1), indicating a clear baseline stratification also at
the functional level. Among the 116 pathways, enrich-
ment of 34 was associated with non-responders and 82
with responders (Fig. S1). As observed with the species
biomarkers of responsiveness, 97 out of the 116 path-
ways from the ordinal regression were highly stable in
the absence of interventions (ICCs>0.5 in the no-inter-
vention cohort). We then investigated the contributions
of the 41 significant species (Fig. 2¢) to the 116 signifi-
cant pathways using the stratified output of HUMAnN3.
At least one of B. stercoris, P. copri, and B. vulgatus, the
3 species significantly enriched in non-responders,
was taxonomically linked to 33 out of the 34 pathways
enriched in non-responders, and all 3 species were con-
tributing to the abundances of 24 pathways enriched in
non-responders. Interestingly, when exploring the 82
pathways enriched in responders, we found only 4 path-
ways to have contributions from these non-responders
associated species. Similarly, the 38 species enriched in
responders were found to contribute to 51 out of the 82
pathways enriched in this response group.

In order to further investigate the relationship
between species, pathways, and microbiome response,
we performed Spearman correlation analysis between
the 41 significant species and the 84 significant path-
ways that they contributed to (Fig. 3a). A consistent

Fig. 2 Microbiome compositional differences of responders, partial-responders, and non-respenders to lifestyle interventions. a Bray-Curtis
dissimilarity of longitudinal samples in subjects from no and lifestyle interventions. The two longitudinal no-intervention cohorts were combined

in the first box. Bray—Curtis indexes dot colors indicate the microbiome response classification group by coral, blue, and green for non-responders,
partial-responders, and responders, respectively. The two red dash lines represent the mean +SD and mean + 2*SD of the Bray-Curtis dissimilarities
in the no-intervention cohorts as cutoffs to differentiate significant microbiome compositional changes from normal microbiome fluctuation. (CTL:
study with no intervention; I_MWP: intervention study with multidisciplinary weight-loss program; I_LCD: intervention study with low-carbohydrate
diet; I_HFD: intervention study with high-fiber diet; |_HRS: intervention study with high-resistant starch; |_ETP: intervention study with exercise
training program). b Principal coordinate analysis of Bray-Curtis dissimilarity In non-responders, partial-responders, and responders to lifestyle
interventions. ¢ Relative abundances of the significant species using ordinal regression among non-responders, partial-responders, and responders

groups (p <0.05)
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biosynthesis, and its precursors (Fig. 3a). On the contrary,
a significantly larger and consistent pattern of positive

pattern between the 3 species enriched in non-respond-

ers and specific functional groups was not observed,

associations between species and pathways was observed

besides the significant positive correlations (Spearman,

adjusted p<0.1) with fucofuranose biosynthesis, flavin in the responders’ enriched taxonomic and functional
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signatures. Some of the strongest positive correlations
were observed between the responders’ enriched species,
including C. aerofaciens, E saccharivorans, E. hallii, Gem-
miger formicilis, and G. pamelaeae, and several pathways
related to the biosynthesis of amino acids, e.g., arginine,
isoleucine, and ornithine biosynthesis, among others
(Fig. 3a). Metabolic cross-feeding of the aforementioned
biosynthetically costly amino acids has been shown to
promote stronger cooperative microbial interactions and
drastically impact the community dynamics [25].

We subsequently performed differential abundance
comparisons between responders and non-responders
for the 2768 detected KEGG Orthology (KOs) and found
395 as significantly different (Wilcoxon rank sum test,
adjusted p<0.1). Among them, only 11 were more abun-
dant in non-responders, whereas the remaining 384 KOs
were highly abundant in responders (Fig. 3b). By mapping
the significant KOs to the KEGG pathway database, the
biosynthesis of secondary metabolites and biosynthesis
of amino acids were two of the pathways with the high-
est KO contribution in responders, while very limited
results were obtained for the non-responders (Fig. 3b). A
significant enrichment of KOs related to the biosynthesis
of amino acids in the responders compared to the non-
responders was also observed (chi-square test, p<0.01)
with 43 KOs found to be significantly higher in respond-
ers, whereas none were higher in non-responders. More-
over, we investigated the species contributions to these
amino acid-related KOs that were significantly enriched
in the responders. We pinpointed 10 species that were
top contributors to multiple significant KOs including
Faecalibacterium prausnitzii, Bacteroides cellulosilyticus,
Fusicatenibacter saccharivorans, Eubacterium ramulus,
and Eubacterium hallii (Fig. 3c).

We subsequently built species co-abundance networks
for responders and non-responders using the baseline
samples, in order to further investigate the mechanisms
by which responders’ enriched species regulate micro-
bial community structural changes. We explored two
commonly used centrality measures that reflect the flow

(See figure on next page.)
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of information in the network, the degree and closeness
centrality. Responders have a more interconnected com-
munity network (Student ¢ test, P<0.001; Fig. 3d) and
higher closeness centrality compared to non-responders
(Student ¢ test, P<0.001; Fig. 3d). When the responder
network was investigated in detail, we observed that 11
out of the 15 amino acid auxotroph (AAA) species iden-
tified recently in the study of Yu et al. [26] were present
in the community network. These 11 AAA species had
positive interactions with 30 species found from the
ordinal regression to be highly abundant in responders
(Fig. S2). Lastly, by integrating the species co-abundance
network with the amino acid KO profile, we identified 6
significantly enriched species in responders (C. symbio-
sum, B. cellulosilyticus, G. formicilis, F. saccharivorans, E.
ramulus, D. longicatena, and E. hallii) contributing to 22
amino acid-related KOs, which were further positively
correlated with 6 AAA species (R. gnavus, B. wadswor-
thia, B. adolescentis, D. formicigenerans, C. aerofaciens,
and E. eligens) (Fig. 3e).

In summary, our analysis revealed signature spe-
cies in responders and non-responders that could serve
as biomarkers of microbiome’s resistance to lifestyle
interventions. Furthermore, the functional capacity of
enriched species in responders suggest that amino acid
biosynthesis is playing an important role in regulating
microbiome dynamics.

Development of a machine learning model to predict
microbiome responsiveness

We then explored whether a machine learning (ML)
model can be developed for predicting the degree of
responsiveness of a microbiome community to lifestyle
interventions. We used the abundance of bacterial spe-
cies, genera, and pathways from the baseline samples
among the cohorts with lifestyle intervention as fea-
tures for training the model. We used the baseline sam-
ples of subjects classified above as responders (N=78)
and non-responders (N=47, Table S8). We built a total
of four different gradient boosting machine (gbm)

Fig. 3 Microbiome functional differences of responders, partial-responders, and non-responders to lifestyle interventions. a Heatmap

showing Spearman’s rank-based correlations between species and pathways with significantly different abundance (using ordinal regression
among non-responders, partial-responders, and responders groups; adjusted p < 0.1). Only pathways with contributions from at least one

of the species enriched in the same condition are shown. FDR-corrected p < 0.1 was deemed significant. The condition where the species

or pathways are enriched is shown in coral and green for non-responders and responders, respectively. b Barplots showing the number

of significant KOs mapped to each enriched pathway in responder and non-responder in green and coral, respectively. ¢ Volcano plot

of differentially abundant KOs based on the comparison between responders and non-responders. The log2 fold change and the log10 p values
adjusted for multiple testing are plotted for each of the KOs. The dots marked with green represent significant KOs and the dots marked with red
represent significant KOs involved in the biosynthesis of amino acids. The significant species which contributed to these KOs were annotated

in the plot. d Comparison of the degree and closeness centrality between responders (R) and non-responders (NR) SparCC networks (Student t
test, ***: p<0.001). e Co-abundance network among species enriched in responders, the amino acid-related KOs, and amino acids (AA) auxotroph
species (only significant correlations are considered, p < 0.05). Color intensity of the edges refers to the correlation value. The green, blue, and red
color of the nodes represents species enriched in responders, the amino acid-related KOs, and AA auxotroph species, respectively
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models depending on the input data to classify patients
as responders or non-responders: a species, a genus, a
taxonomic (with genus and species), and a hybrid model
using pathways and taxa (Table S3).

We found that the species-based model classified the
responders vs non-responders correctly, with an AUC
of 0.75+0.10. Eight species were selected in more than
70% of the 100 gbm species-based models, and B copri
(a significantly enriched species in non-responders)
was selected in all the models. The classification perfor-
mance was slightly increased in the genus-based model
with an AUC of 0.79+0.09. In the case of the genus-
based model, 16 genera were consistently selected (>70%
of the 100 gbm models), and 2 were selected in all the
models (Bacteroides and Prevotella). Similar classifica-
tion performance was obtained when combining species
and genus together (0.78 +0.08 AUC) or combining spe-
cies with pathways (AUC of 0.74+0.10). We built a final
taxonomic-based model (see “Methods” for details) and
obtained an AUC of 0.81 for the training set (sensitiv-
ity=0.81 and specificity=0.78, Fig. 4a). Recursive feature
elimination was performed to reduce the dimensionality
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of the dataset to select the most important taxa for the
classification of the responsiveness of the microbiome
community. Figure 4b shows the feature importance of
each of the selected features, or in other words, a score
that measures how powerful is each feature in classify-
ing the microbiome responsiveness. The final model
consisted of 18 species and 12 genera as the top fea-
tures, including 13 species and 6 genera that were sig-
nificantly associated with responsiveness in the ordinal
regression analysis (Fig. 4B, Table S4). The final model
was then validated in two different external cohorts. The
first cohort of subjects with inflammatory bowel disease
(IBD) underwent an IBD-anti-inflammatory diet (IBD-
AID, consumption of prebiotics, probiotics, and benefi-
cial foods) for a period of 8 weeks, and the second cohort
underwent a whole grain-rich diet (WGD) intervention
for 8 weeks and consisted of overweight subjects. A
total of 6 responders and 6 non-responders were identi-
fied in the IBD cohort, and 14 responders and 25 non-
responders in the overweight cohort based on the same
criteria established. The predictive power of the model in
the external cohorts remained high with an AUC of 0.86
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Fig. 4 Performance of the machine learning model to classify individuals as responders and non-responders based on the degree of microbiome
response. a Receiver operating characteristic curves (ROC) for the final model and external validation. Confusion matrix of the training model

and external validation cohorts. IBD-AID: Inflammatory bowel disease-anti-inflammatory diet; WGD: whole grain diet. b Variance importance

of the top 20 features selected by the final model. Significantly different in abundance species using ordinal regression are marked with * The

importance score of each feature is indicated inside the blue circles
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(sensitivity =0.83 and specificity=0.83) for the IBD-AID
intervention and an AUC of 0.73 (sensitivity=0.79 and
specificity =0.68) for the WGD intervention (Fig. 4A).

In summary, a gradient boosting model based on taxo-
nomic data was developed achieving a good prediction of
the microbiome response in two external cohorts includ-
ing individuals from different ethnic backgrounds with
metabolic and non-metabolic diseases that underwent
lifestyle interventions.

Discussion

From metabolic to immune to neurological disorders, the
microbiome influences the development, progression,
and therapeutic outcomes of diseases [27-30]. A novel
treatment approach for both disease control and dis-
ease prevention involves altering host-microbiota inter-
actions through tailored lifestyle interventions. Unlike
antibiotics usage, which is broadly reported to have a
negative impact on healthy host by significantly decreas-
ing the overall gut microbiome diversity, lifestyle inter-
ventions are regarded as a beneficial strategy to improve
the metabolic performance by modulating the host-gut
microbiome. Changes in the composition of the bacterial
consortia in the gut from a disease-associated to a more
homeostatic state are one of the desired effects of lifestyle
interventions. Furthermore, comparing with the dramati-
cal dysregulation of gut microbiome after receiving high
doses of antibiotics [15], although the response to life-
style interventions may have a common signature within
the population, heterogeneous and highly personalized
shifts in the human microbiota have been confirmed in
several studies [31-35].

Here we attempted to identify robust and generalizable
biomarkers among the gut microbial communities associ-
ated with the degree of change in the microbiome struc-
ture. We performed longitudinal shotgun metagenomics
analysis from a wide range of lifestyle interventions, and
established criteria to classify individuals as respond-
ers and non-responders based on their gut microbiome
restructuring, using as a point of departure the natu-
ral fluctuation of a healthy gut microbiome without any
intervention. We identified P copri, B. stercoris, and B.
vulgatus to be highly abundant in the baseline microbi-
omes of individuals in whom lifestyle interventions had
only a minor impact on the microbial community’s struc-
ture. Similarly, we found these 3 species enriched in the
microbiome of individuals that were resistant to antibi-
otics treatment in line with recent evidence [36] from a
16S rRNA-based analysis in which the response to anti-
biotics in humans is determined by specific genera in the
pre-treatment microbiota. Interestingly, 2 copri, B. ster-
coris, and B. vulgatus are highly stable in the absence of
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interventions (ICCs>0.5) suggesting their potential as
biomarkers for microbiome stratification.

In contrast to the low number of species found
enriched in the resistant microbiomes, we found 38 spe-
cies to be highly abundant in the microbiomes that were
significantly re-structured in response to lifestyle inter-
ventions. Interestingly, almost all species enriched in
responders were positively correlated with at least one
amino acid biosynthesis pathway. The interchange of
vital metabolites, also known as metabolic cross-feeding,
is a crucial process that controls the development and
composition of microbial communities. Case-by-case
explanations of the significance of amino acids in natural
interkingdom and interspecies exchange networks have
been provided by entomological investigations [37, 38].
Furthermore, a considerable proportion of all bacteria,
according to comparative analysis of microbial genomes,
lack crucial pathways for amino acid production [39].
Therefore, amino acid auxotrophy may promote coop-
erative interactions between different bacteria in the
microbiome [25]. Our findings here suggest that micro-
biomes with a high abundance of amino acid biosynthe-
sis pathways are also more likely to respond to different
lifestyle interventions including both dietary and exercise
interventions, targeting the restructuring of gut micro-
bial communities. This finding is consistent with previ-
ous studies that amino acid biosynthesis is enriched in
elite athletes [40] and decreased with high-fat diet treat-
ment [41], highlighting the inner correlation between
exercise and diet interventions. Therefore, supplemen-
tation with F prausnitzii, F. saccharivorans, E. ramulus,
and E. hallii, or other species both enriched and identi-
fied here as major taxonomic drivers of amino acid bio-
synthesis in the responder group, should be explored as
a way to restore the metabolic flexibility required prior to
microbiome-targeted lifestyle interventions. Importantly,
among these potentially beneficial species, F praus-
nitzii, F. saccharivorans, and E. hallii were reported to be
enriched after exercise and diet intervention across mul-
tiple studies [42-47].

Similar to personalized medicine, personalized life-
style approaches look for critical microbiome charac-
teristics that can predict how an individual will react to
specific lifestyle components. This information can then
be used to help design a lifestyle that will have positive
effects. Identifying the interactions between the host, the
microbiome, and lifestyle exposures that influence life-
style responses is the fundamental difficulty in realizing
the potential of a microbiome-informed customized life-
style. Whereas previous studies have demonstrated that
the microbiome composition can be used to classify indi-
viduals into responders and non-responders on the basis
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of the health improvements from lifestyle interventions
[48, 49], predictive models of personalized microbiota
response have not yet been developed. We demonstrated
here that it is possible to develop a generic ML model
covering diverse lifestyle exposures that predicts the scale
of microbiome change using only the baseline microbi-
ome composition. Our model, which achieved AUCs up
to 0.86 in external validation cohorts, can potentially be
used for individual microbiome-based stratification, as
an intermediate step towards personalized recommenda-
tions for improving the success rates of certain lifestyle
interventions.

Our study has limitations. Even though several com-
parative analyses among studies have been performed
using the ICC values [22], it is possible that ICCs may be
affected by the general setup of each study, including the
storage and sampling procedures, which may influence
the outcome of the comparative analysis. Nevertheless,
previous studies suggested a relatively stable bacterial
community evaluated by ICCs with limited impact by
the processing speed and storage duration [50, 51]. Fur-
thermore, DNA extraction methods have been shown
to influence the microbiome community results [52],
and remained inconsistent across different cohorts in
our study. Nevertheless, the impact of DNA extraction
methods on metagenomic shotgun sequencing analysis
of stool samples was reported to be the lowest compared
to other tissue [53]. Lastly, following a strict filtering cri-
terion, only two large-scale studies, both with Cauca-
sian subjects, were selected to represent the healthy gut
microbiome with high confidence of disease absence.
Analysis of a larger cohort, well-balanced in gender and
ethnicity, would allow to establish a more generalized
baseline of microbiome variation in healthy individuals.
The number of studies with dense longitudinal charac-
terization of the microbiome upon lifestyle interventions
is also limited and in most cases the clinical and bio-
chemical data of the subjects are not available. Larger,
more complete, and balanced datasets would allow to
increase the statistical power of the data analysis and use
of advanced algorithms, like deep learning, to investigate
the correlation between microbiome and host response
to lifestyle interventions. Nevertheless, our study offered
novel insight into the microbial species and functions
that may determine microbiome dynamics in response to
lifestyle interventions.

Conclusions

Human gut microbiome serves as a therapeutic target for
multiple diseases through lifestyle interventions. How-
ever, subjects may have different treatment efficacy which
may be due to the response of gut microbiota towards
the interventions. In this study, we observe individuals
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with either highly plastic or resistant microbial composi-
tion with the stress of lifestyle interventions. We further
identify key species and functions such as Bacteroides
stercoris, Prevotella copri, and amino acid biosynthesis
regulating the responsiveness of the gut microbiota. Last
but not least, we demonstrate with our machine learning
model that it is possible to predict microbiome resist-
ance to change in response to lifestyle interventions using
the baseline microbiome composition. In summary, this
study shows that the composition and function of the gut
microbiome are important to determine their response
to lifestyle interventions and this knowledge may help to
improve the design of personalized lifestyle approaches.

Methods

Data collection and availability

In this study, we collected shotgun metagenomic
sequencing data from 10 publicly open available micro-
biome projects. These projects included (i) 2 longitudi-
nal cohorts of healthy subjects (N=231); (ii) 4 antibiotic
intervention cohorts (N=71); and (iii) 5 lifestyle inter-
vention cohorts (N=165) with metabolically diseased
subjects that underwent dietary and/or exercise inter-
ventions (Table 1 and Table S5). The 2 longitudinal stud-
ies of healthy subjects with no intervention applied,
abbreviated as CTL_1 and CTL_2, respectively, served
as controls of normal gut microbiota fluctuation. In
both studies, the selected subjects were not asked to
follow diet or lifestyle recommendations and they fol-
lowed their own lifestyle habits. From CTL_1, two pairs
of samples taken 6 months apart from 140 subjects were
used. In CTL_2, we used data from 78 subjects with one
pair of samples and 4 subjects with a dense long-term
time series. We used pair samples with a time interval
between pairs of 2-3 months. We also selected samples
that were taken 4 days apart (12 such pair samples were
included). For the antibiotic intervention cohorts, the
study of Palleja et al. [15] provides a cohort of healthy
subjects that underwent a 4-day intervention with a
cocktail of 3 last-resort antibiotics: meropenem, gen-
tamicin, and vancomycin (A_MER-GEN-VAN). The
Raymond et al. [54] cohort is composed of healthy par-
ticipants that were treated twice a day with an oral dose
of cefprozil for 7 days (A_CEF). The Willmann et al. [17]
study provides two different cohorts of hematological
patients receiving prophylactic antibiotics during a mean
period of 6 days. One cohort was treated with ciprofloxa-
cin (A_CIP) and the other with cotrimoxazole (A_COT).
Regarding the lifestyle intervention cohorts, the first
cohort was obtained from the study of Louis et al. [18] in
which obese patients were involved in a multidisciplinary
weight-loss program for 3 months (I_MWP). In Mardino-
glu et al. [19], Non-alcoholic fatty liver disease (NAFLD)
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obese subjects underwent a low-carbohydrate diet with
increased protein content during a 2-week period (I_
LCD). The cohort of Zhao et al. [20] is composed of par-
ticipants diagnosed with type 2 diabetes (T2D) that were
administered a high-fiber diet for 3 months (I_HFD). The
Ni et al. study provides data from NAFLD patients that
were involved in a diet with high-resistant starch type
II content for 4 months (I_HRS). The last cohort, from
Liu et al. [9], is composed of prediabetes patients that
enrolled in an exercise training program 3 days/week
for a period of 3 months (I_ETP). More information and
the number of samples used in each cohort are shown in
Table 1 and Table S5. The Olendzki et al. [11] cohort was
used as external validation of the machine learning pre-
dictive final model of response to lifestyle interventions.
It is an IBD-anti-inflammatory dietary intervention (IBD-
AID) for 8 weeks in a total of 15 subjects with inflamma-
tory bowel disease. A second external validation cohort
from Nielsen et al. [55] composed of 50 overweight sub-
jects that underwent a whole grain dietary intervention
for 8 weeks was used.

Quality control and taxonomic profiling

For the quality control of the raw reads, human DNA
contaminations were removed using bwa mem against
the human reference genome ucsc.hgl9, and adaptors,
low-quality reads, bases, or PCR duplicates were filtered
as previously described [56]. The high-quality reads were
taxonomically profiled at different taxonomic levels using
MetaPhlAn 3.0 [57]. Default settings were used to gen-
erate taxonomic relative abundances (total sum scaling
normalization).

Functional profiling

Microbial gene family abundances in metagenomic DNA
reads were estimated using HUMAnNN 3.0 [58]. Gene
families were further mapped to the MetaCyc metabolic
pathway database included in HUMARNN3 to obtain the
MetaCyc pathway abundances. KOs with the species
contribution were obtained in HUMAnN3 by KEGG
database. Tables of pathway and gene family abundance
obtained using HUMARN3 were normalized to copies
per million (CPM), including unmapped and uninte-
grated read mass.

Microbiome diversity measurements

Microbiome diversity was calculated based on the spe-
cies, phylum, and KO gene abundance profiles, respec-
tively. For taxonomic diversity, 3 alpha diversity indexes
(including Shannon diversity, Simpson diversity, Chaol
diversity) and 3 beta diversity indexes (including Bray—
Curtis dissimilarity, Weighted and Unweighted UniFrac
distance) were analyzed by the vegan package [59] and
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phyloseq package [60] in R, respectively. For functional
diversity, the 3 mentioned alpha diversity indexes and
Bray—Curtis dissimilarity were calculated. Principal coor-
dinate analysis (PCoA) based on the beta diversity was
performed, and the top 5 axes were included for follow-
up analyses.

ICCs of microbiome measurements

The intraclass correlation coefficient (ICC) that ranges
from 0 tol was used to represent the microbial stabil-
ity (and resistance to perturbations) from totally unsta-
ble (ICC=0) to perfectly stable (ICC=1). We evaluated
the ICC value for each diversity measurement described
above and for the species, genus and MetaCyc path-
way profiles using relative abundances to investigate the
microbial stability within individuals of the no-interven-
tion cohort and the resistance to perturbations within
individuals from intervention cohorts. Diversity indexes
were transformed into Gaussian distribution with best-
Normalize package in R and the arcsine square-root
transformation was implemented to the relative abun-
dances of taxonomic and functional profiles as proposed
previously [61]. After the metric transformation, ICC
estimates and their 95% confident intervals were calcu-
lated using the rptR [62] package in R based on a mean-
rating, absolute-agreement, 2-way random-effects model
with 1000 bootstraps. The statistical comparisons of ICC
values among cohort types were performed with Student
t test. False discovery rate (FDR) correction was imple-
mented to adjust p value for multiple comparisons.

Defining degree of response to perturbation

We first calculated the Bray—Curtis dissimilarity of
the microbiome composition between samples within
1-2 days for each individual from the longitudinal
cohorts with no intervention, which we used to esti-
mate the daily fluctuation of the microbiome without
disturbance. We then evaluated the degree of response
towards lifestyle (and antibiotic) interventions of each
subject by calculating the Bray—Curtis dissimilarity
between baseline and each time point after the inter-
vention and selected the time point with the first peak
value of Bray—Curtis distance to baseline. The informa-
tion of the selected time point for each subject among
studies are shown in Table S7. The mean+SD and the
mean+25D of the Bray—Curtis dissimilarity calculated
from the control cohorts (no-intervention) were further
used as the two cut-offs in the lifestyle interventions
for distinguishing between responders (>mean+2SD),
partial-responders ([mean+SD, mean + 25SD]) and non-
responders (<mean+SD). PERMANOVA tests were
performed among responders, partial-responders, and
non-responders of the lifestyle interventions using the
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Bray—Curtis dissimilarity of baseline microbiome, and
an ordinal regression model was used to find statistically
significant taxonomic and functional differences among
the three groups by applying the ordinal package in R.
FDR correction was implemented to adjust p value for
multiple comparisons.

Network analysis

In order to investigate the differences and the role of spe-
cific taxa in the microbiome community between the
subjects with different responses, network analyses were
performed using taxonomic data of the baseline samples.
To build SparCC correlation networks for the responder
and non-responder subjects, FastSpar R package was
used. Only significant correlations between species were
considered (adjusted p <0.1). Cytoscape version 3.9.0 [63]
was used to analyze the networks. Statistical comparisons
between the degree and closeness centrality of the taxo-
nomic networks of responders and non-responders were
performed using the t.test function from R package stats.
Furthermore, the Spearman correlation among species
significantly enriched in responders, their contributed
KOs which were related to the biosynthesis of amino acid
and AA auxotroph species were performed in R. Only sig-
nificant correlations were considered (adjusted p <0.1).

Development of machine learning models

The Caret [64] R package was used to build a gradi-
ent boosting machine (gbm) model to train and classify
responders and non-responders based on the baseline
microbiome. We built 4 different models depending on
the input data provided: a species model, a genus model,
a taxonomic model using species and genus data, and a
hybrid model using species, genus, and pathways data.
To obtain a learning model with good interpretability
and generalizability, we built a final model that included
not only internal validation but also external validations,
as it is critical to developing quality machine learning
models [65]. The following approach was applied to build
the model which included the following steps: (1) loaded
the specific data (depending on the model species, gen-
era, or pathways); (2) used the createdatapartition func-
tion from caret package to select 80% of the samples as
training set; (3) performed feature selection in the train-
ing set selecting the top 30 features by applying recursive
feature elimination using the rfe R function; (4) trained
the model after centering, scaling the data, and remov-
ing variables with near-zero variance, using leave-one-
out cross-validation (LOOCV) as a resampling method.
Leave-one-out cross-validation (LOOCV) is a special
case of K-fold cross-validation, where K equals the num-
ber of observations in the dataset [66]. Cross-validation
techniques are used for evaluating ML models protecting
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the model against overfitting or selection bias and giving
insights on how the model will generalize when an inde-
pendent dataset is provided to the model. GBM was used
as a machine learning model method and grid search to
tune the hyperparameters. “Interaction.depth’, “n.trees’,
“shrinkage’, and “n.minobsinnode” were applied by the
expand.grid R function; (5) tested the training model in
the 20% of the data. Doing only one partition may pro-
vide biased results depending on the data split (“lucky”
or “unlucky” split) [67]. Therefore, in order to perform
a robust interpretation of the model’s performance, the
machine learning algorithm was applied 100 times using
different random training-test splits; (6) steps 2—5 were
repeated 99 times to obtain the overall testing perfor-
mances. Model performance was assessed using the
evalm function from Mleval R package, and receiver
operating characteristic curve (ROC) was obtained
using the R package pROGC; (7) then applied steps 3—4
to the entire dataset to obtain the final machine learning
model; (8) evaluated the model’s performance in external
cohorts (information about the external cohorts is found
in the “Supplementary Information” section).

Data visualization

The circos plot was made using iTOL (interactive Tree of
Life) v6 [68]. Network visualizations were made by using
the software Cytoscape version 3.9.0 [63]. All the other
figures were generated by R software 3.6.3, using ggplot2,
ggcorrplot, and pROC packages.

Supplementary Information

The online version contains supplementary material available at https://doi.
org/10.1186/540168-023-01604-z.

Additional file 1: Figure $1. Related to Figure 3. Relative abundances of
the significant pathways using ordinal regression among non-responders,
partly-responders and responders groups (p < 0.05). Figure S2. Related
to Figure 3. Correlation network of responders showing the positive cor-
relations between enriched in responders species and auxotroph species
(only significant correlations are considered, p < 0.05). Width and color
intensity or the edges refers to the correlation value. Blue nodes are spe-
cies significantly enriched in responders, yellow nodes are AA auxotroph
species and orange nodes are AA auxotroph and significantly enriched in
respanders species. Table S1. Related to Figure 1. Detailed ICCs value of
different diversity indexes for each cohort. Table $2. Related to Figure 4.
Statistics of the ICCs value of each species. Uniquely influenced disease
related species of each cohort. Table $3. Related to Figure 4. Model per-
formance results of the 100 different splits. Mean and standard deviation
of sensitivity, specificity, and AUC for the 100 models. Table $4. Related
to Figure 4. Species and genus selected by the final model. Significance
from the ordinal regression comparing response groups. No: non-signif-
icant, Enriched R: significant and enriched in responders, Enriched NR:
significant and enriched in non-responders. Table S5. Related to Table 1.
Summary of sequencing and microbiome information of the studies used
in the meta-analysis. Table S6. Related to Figure 2. Significant species
between responder and non-responder from ordinal regression. Table $7.
Related to Table 1. Information of the time point selected for each subject
for responsiveness classification. Table $8. Related to Figure 4. Count of
each category among discovery and validation cohorts.
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Overview

In manuscript III, we aimed to investigate how intestinal fungi contribute to NAFLD
development by looking into a possible antifungal immunity and a potential mycobiome
dysbiosis. Therefore, we characterized the fecal mycobiome of a NAFLD cohort to elucidate
if potential alterations in Th-17 (T-helper cells that produce interleukin-17) signaling are
accompanied by mycobiome dysbiosis. In addition, we further investigated how the
combination of genetic variation in Th-17 signaling and mycobiome dysbiosis contributes
to inflammation in steatohepatitis (NASH). These results showed that NAFLD patients
harboring a genetic variation in their IL-17A gene concomitantly present increased levels
of Candida CTG species, and these factors predispose to develop disease progression up to
NASH and advanced fibrosis.
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ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease in
Western countries. In non-alcoholic steatohepatitis (NASH), fat accumulation triggers
inflammatory processes with a central role of Th17 responses. We show that the /L-174
rs2275913 minor allele variant is associated with fibrosis progression in NAFLD patients,
indicating a genetic pre-disposition to NASH-associated inflammatory processes. Fungal
gut commensals including Candida albicans are potent activators of Th17 responses. To
investigate if alterations in Th17 signaling are accompanied by mycobiome dysbiosis, we
characterized the fecal mycobiome in our NAFLD cohort. In NAFLD patients with
advanced fibrosis, we observed an increased abundance of Candida CTG-clade species. In
addition, T cells from donors carrying the minor allele variant secreted significantly higher
IL-17A levels in response to stimulation with Candida CTG-clade species. This
combination of increased IL-17A release and mycobiome dysbiosis may thus result in
enhanced inflammation, revealing a significant role of intestinal fungi in NAFLD.

Keywords: Mycobiome, Intestinal Fungi, Th17 Signaling, IL-17A, NAFLD, NASH,
Candida, liver fibrosis, liver inflammation

MAIN

Non-alcoholic fatty liver disease (NAFLD) has emerged as the major cause of chronic liver
disease in recent years, reaching a global prevalence of around 25%'. The accumulation of
excess fat in the liver in the absence of relevant alcohol consumption is functionally linked
to obesity and risk factors like type 2 diabetes and metabolic syndrome?. Fat accumulation
in hepatocytes is the main driver of NAFLD pathogenesis and constitutes a non-alcoholic
fatty liver (NAFL)®. Ongoing fat accumulation and emerging lipotoxicity trigger the onset
of inflammation, characterizing non-alcoholic steatohepatitis (NASH). Inflammatory
processes eventually lead to the development of fibrosis which could ultimately result in a
cirrhotic liver*. It is unclear why some patients progress to NASH and others do not, but
there is some indication that Th17 responses are associated with progression to NASH>’.
The liver receives approximately 75% of its blood supply via the portal vein and is
thus closely connected to the human intestinal tract, which is massively colonized by
microorganisms — bacteria, viruses, fungi — collectively known as the microbiome®.
Importantly, gut microbiota dysbiosis has been repeatedly observed in obesity and type 2
diabetes mellitus®!® and recent data provide clear evidence that the composition of gut
microbiota also has a direct impact on the pathogenesis of NAFLD!'"'4, A previous study
characterized a significantly higher abundance of short chain fatty acid (SCFA)-producing
bacteria such as Fusobacteriaceae, Prevotellaceae, and Ruminococcaceae in the gut of
patients with advanced NAFLD'®. In contrast to the gut bacteriome, the composition of
intestinal fungi is less well characterized and mycobiome studies are hampered by non-
standardized protocols, technical difficulties and incomplete reference databases'®:!’.
Although no “core gut mycobiome” has been defined so far, some species like Candida
albicans have been identified as key colonizers and are known for their multiple
interactions with the human host in health and disease!'®!”. Recent work identified C.
albicans as the major direct inducer of human antifungal Th17 cell responses®. Recognition
of fungal B-1,3-glucan by dectin-1 receptors can promote Th17 signaling?!. Downstream
signaling of this pattern recognition receptor involves the formation of a complex of
CARDO, Bcll0 & MALTI, which ultimately leads to Th17 cell differentiation and IL-17
secretion®?. Thus, immune activation induced by this single component of the mycobiome
could be a central mechanism for systemic induction of human Th17 responses that have a
broad impact upon the human body?’. Recently, Demir et al. characterized a distinct fecal
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mycobiome signature in non-obese NAFLD patients to be associated with liver disease
severity. The abundance of e.g. Malassezia sp. was increased in NAFL patients, whereas
C. albicans and Penicillium spp. abundance were increased in NASH patients. Increased
intestinal C. albicans numbers were mirrored by increased levels of systemic antibodies
against C. albicans in NAFLD patients with advanced fibrosis?*. Interestingly, intestinal C.
albicans has also been linked to the pathogenesis of alcoholic liver disease via its exotoxin
candidalysin?*?°. In both cases however, a link between Th17 activation and intestinal fungi
has not been addressed.

The aim of our study was to clarify how associations between genetic variations in
antifungal immunity and the resident intestinal mycobiome contribute to NAFLD
pathogenesis. We have identified a novel risk variant in /L-/74 and show that intestinal
colonization with C. albicans and related species (Candida CTG-clade) might contribute to
enhanced inflammation in the presence of this risk genotype.

RESULTS
Study population

A total of 482 European subjects were recruited for this study including 230 histology-
proven NAFLD patients (89 NAFL and 141 NASH). Figure 1 illustrates the clinical and
histological phenotypes of the study participants in a flow diagram. Stool samples were
collected from a sub-cohort of subjects (42 NAFL, 79 NASH, 100 NAFLD). Due to the
high frequency and often diverse nature of NAFLD we mainly aimed for comparisons
within the disease group. However, as an additional control a group of healthy individuals
(HC) was included. Patients with 6 months antibiotic-free intervals were analyzed
separately.

Genetic variation in IL-17A predisposes patients to develop fibrotic NAFLD

Th17 responses and IL-17A signaling have been shown to be an important part of
inflammatory activation in NASH’. In an extensive dbSNP database search for genetic
variants in Th17 signaling associated genes linked to gastrointestinal disease with
inflammatory properties, we identified the rs2275913 IL-174 SNP as one suitable
candidate®®. TagMan SNP genotyping of our 451-patient NAFLD cohort identified 175 G/G
(homozygous for major allele variant, 38.8%), 55 A/A (homozygous for minor allele
variant, 12.2%), and 221 A/G (heterozygous, 49%) genotypes (Fig. 2a). Thus, genotype
frequencies are in Hardy-Weinberg equilibrium and selection for specific genotypes was
excluded (Extended Data Fig. 1). The calculated minor allele frequency (MAF) of 36.7%
was just slightly elevated in comparison to the published ALFA European cohort MAF of
34.85%. Statistical analysis of genotyping data revealed an association between the /L-174
rs2275913 genotype and fibroscan liver stiffness values (Pkruskal-wallis=0.368; Pgim=0.029;
GLM adjusted; Fig. 2¢). Patients carrying the SNPs minor allele variant (A/A & A/G) had
more severe fibrosis than homozygous major allele variant carriers (G/G; Pgim=0.0292,
GLM adjusted). Due to its potential as a major genetic risk factor for NAFLD?, we
validated the association of available PNPLA3 rs738409 genotyping data from a previous
study?® to fibroscan stiffness values of patients in this cohort ( PkruskaWallis=0.105;
Pgim=0.028; GLM adjusted; Fig. 2b) and adjusted all SNP-based generalized linear model
(glm) calculations for the PNPLA3 rs738409 risk genotype. We also analyzed the
rs16910526 SNP in the CLEC7A4 gene (coding for Dectin-1) and the rs4077515 SNP in the
CARDY gene, both also related to Th17 response, but did not find an association with
NAFLD disease parameters (Extended Data Fig. 2).
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Alpha diversity of patients with NASH, but not NAFL, is affected by prior use of
antibiotics

Intestinal colonization by Candida is a major inducer of Th17 responses®. Thus, we built
ITSI libraries for 145 subjects from our study cohort to estimate the fungal genus and
species abundance and explore the possible role of fungi in NAFLD progression and liver
damage. On average, we generated 15,500 high-quality, non-chimeric reads per sample
while fungal annotation identified 29 genera and 223 species in total. Investigating genus-
level fungal profiles showed that Saccharomyces, Penicillium, and Candida CTG-clade
were the top most abundant fungi among our study participants, at 16.7%, 16.1%, and
12.5%, respectively. We used the Candida CTG-clade for genus clustering as Candida is a
polyphyletic genus comprising a large variety of phylogenetically distant species. To
account for this, we clustered only Candida spp. characterized by an alternative decoding
of the CTG codon leading to a serine amino acid instead of leucine?’. Members of the CTG-
clade are pathogenic C. albicans, Candida tropicalis, Candida dubliniensis, Candida
parapsilosis and non-pathogenic D. hansenii. Although still commonly referred to as
Candida, other species are only distantly related to Candida CTG. Important examples
include Candida glabrata, Kluyveromyces marxianus (formerly Candida kefyr) and Pichia
kudriavzevii (formerly Candida krusei)*-°.

In total, 76 NAFL, NASH, and NAFLD subjects in our cohort reported antibiotic
use 6 months before the stool collection. A recent study showed that antibiotics might have
a longterm influence on the human gut mycobiome?®!. Therefore, we investigated whether
antibiotics had a noticeable impact on the mycobiome profiles of the different disease
groups. We found that the mycobiome alpha-diversity measured by the Shannon and
Simpson index at genus level was significantly increased in NASH subjects who used
antibiotics compared to the antibiotic-free subjects (Wilcoxon rank-sum test, P=0.028 and
P=0.025, Shannon and Simpson respectively; Extended Data Fig. 3). However, no
differences were found in the NAFL and NAFLD groups between antibiotic and antibiotic-
free subjects. Using Aitchison distance to compute beta-diversity, no differences were
found between the antibiotic and antibiotic-free subjects in any of the disease groups
(PERMANOVA adjusted for age, gender and obesity-related parameters, P>0.05).
Nevertheless, to avoid a possible impact of antibiotics on the downstream analysis, two
approaches were used for the mycobiome comparisons. For all the main results, unless
specified, a dataset with only the long-term antibiotic-free samples was used. Alternatively,
mycobiome analysis was performed using all samples, adjusting for antibiotic intake when
appropriate (see Methods for details).

A distinct mycobiome structure characterizes NASH patients

To study the mycobiome changes related to NAFLD progression, we first performed
pairwise comparisons between NAFL, NASH, NAFLD and HC in alpha diversity measured
by the Shannon and Simpson index and we found no significant differences between the
four diagnosed groups (Wilcoxon rank-sum test, P>0.05 for all pair group comparisons for
Shannon and Simpson index). Beta diversity analysis using Aitchison distance to assess the
overall mycobiome community differences showed that the fungal composition was
significantly different between NASH and HC subjects (PERMANOVA adjusted for age,
gender and obesity-related parameters, P=0.01, Fig. 3a), but no significant differences were
found in any other pairwise comparison (PERMANOVA adjusted, P>0.05).

We then explored the fungal abundance differences between the diseased groups
(NAFL, N=31; NASH, N=64; NAFLD, N=50) and healthy controls (HC, N=25). Again,
fungi were grouped according to genus, except for the Candida CTG clade. The most
abundant genus in the HC group was Penicillium (22.2%), followed by Saccharomyces
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(20.9%), and the Candida CTG-clade (12.2%) (Fig. 3b) and a similar abundance pattern
was observed for the NAFL and NAFLD groups (Fig. 3b). However, in NASH, the most
abundant genus was the Candida CTG-clade (17.8%), followed by Saccharomyces (14.1%)
and Penicillium (12.5%) (Fig. 3b). From the most abundant genera, we found
Saccharomyces significantly decreased in abundance in NAFL and NASH in comparison
to HC (Wilcoxon rank-sum test, PucvsnarL=0.026, Pucvsnasn=0.027, Fig. 3c). Penicillium
was also found significantly decreased in abundance in all disease stages in comparison to
HC even though it did not reach statistical significance in comparison to NAFL (Wilcoxon
rank-sum test, Pucvsnasu=0.038, PucvsnarLp=0.023, Pucvsnar=0.051, Fig. 3¢). However,
the statistical significance was lost for both genera when accounting for age, gender, and
obesity-related parameters (Generalized Linear Model (GLM) adjusted, P>0.05, Fig. 3c),
suggesting a potential confounding effect in the abundances of the two genera by these
factors.

We subsequently repeated all the analytical steps using the full cohort and not only
the antibiotics-free subjects and confirmed the significant differences in beta diversity
between the NASH and HC groups (PERMANOVA adjusted, P=0.034, Extended Data Fig.
4a) and the significant decrease in abundance of Penicillium in the NAFLD and NASH
groups compared to HC (Pucvsnasa=0.03, PucvsnarLp=0.02, Wilcoxon rank-sum test;
Prcvsnasua=0.007, PacvsnarLp=0.42, GLM adjusted). Even though it did not reach statistical
significance as it did when using the antibiotic-free set of samples, the same trend was
observed for Saccharomyces, having lower abundance in the NASH and NAFLD groups
compared to HC (Wilcoxon rank-sum test, Pucvsnasa and PacvsnarLp < 0.1).

We then used 16S data from our cohort in order to build a microbial community
network to identify possible associations between fungal and bacterial genera and NAFLD
progression. Using all cohort samples, we built a community network using FastSpar®2, and
identified a total of 5,848 significant correlations (SparCC, P<0.05) from which 4,017
remained significant after multiple testing correction (FDR correction, q<0.1). Using
greedy modularity optimization, a total of 4 subcommunities were identified in the full
network (Fig. 3d). We then studied the associations between these subcommunity modules
and NAFLD and identified one module that consists of 2 fungal (Candida CTG-clade and
Saccharomyces) and 9 bacterial genera (including Ruminococcus, Dialister, and
Parasutterella amongst others) that were significantly associated with NAFLD-related
parameters (fibroscan, AST, ALT, and GGT) (Fisher’s Exact test, P=0.049, odds
ratio=3.580), suggesting the interplay of the two microbial kingdoms and NAFLD.

High levels of the Candida CTG-clade in advanced fibrosis patients

In order to investigate whether changes in the mycobiome composition may be associated
with liver fibrosis progression in more advanced stages of the disease, we classified the
subjects into early- or advanced- fibrosis groups using a cutoff fibroscan value of 9.7kPa*.
We performed diversity analyses and found no significant differences (Wilcoxon rank-sum
test, P>0.05) in alpha diversity (Shannon and Simpson index) at the genus level. Beta
diversity analysis using Aitchison distance showed that the mycobiome composition at the
genus level between early and advanced fibrosis groups was significantly different
(PERMANOVA adjusted for age, gender, and obesity-related parameters, P=0.007, Fig.
4a). We explored further the mycobiome composition profiles (Fig. 4b) and discovered that
the Candida CTG-clade was significantly increased in the advanced compared to the early
fibrosis group even when accounting for age, gender, and obesity-related parameters
(Pwilcoxon=0.0009, Wilcoxon rank-sum test; Pgim=0.002, GLM adjusted, Fig. 4c). The trend
of increasing Candida CTG-clade abundance was also visible grouped by fibrosis stage as
obtained by histology (Extended Data Fig. 5). However, for fibrosis stage F3 and F4 the
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sample size was relatively small for biopsied patients and thus this trend was not significant
(Kruskal-Wallis, P=0.07 for the antibiotic-free sample set and P=0.086 for the full cohort).

We calculated the beta diversity (Aitchison distance) of early and advanced fibrosis
groups using all subjects and not only the antibiotic-free subjects, and significant
differences were again identified (PERMANOVA adjusted, P=0.007, Extended Data Fig.
4b). A significant increase in Candida CTG-clade abundance was also found in advanced-
compared to early fibrosis (Wilcoxon rank-sum test, Pwilcoxon=0.0007; GLM adjusted,
Pgim=0.002) when analyzing the full cohort (Extended Data Fig. 4c). Our findings suggest
that in both, antibiotic-free and total study cohorts, Candida CTG-clade abundance is
significantly higher in the advanced fibrosis group, suggesting that this clade may
contribute to the progression of the disease.

We further explored the Candida CTG-clade imbalance in an advanced fibrosis
stage in the antibiotic-free set of samples and found an association between the
presence/absence of the Candida CTG-clade and the fibrosis stage (Fisher’s Exact test,
P=0.006, odds ratio=3.097). We then performed regression analysis between the fibroscan
stiffness values and Candida CTG-clade abundance and found a significant association
(GLM adjusted for age, gender, and obesity-related parameters, P=0.001, estimate=0.22).
Correlation analysis also showed a positive significant correlation between fibroscan values
and Candida CTG-clade abundances (Spearman’s correlation adjusted, P=0.026, p=0.23).
We then evaluated this association for the complete cohort of samples and the same results
were obtained (presence/absence of Candida CTG-clade associated with the fibrosis stage,
P=0.002, odds ratio=2.73, Fisher’s Exact test; Candida CTG-clade abundances and
fibroscan, significant positive correlation, Spearman’s correlation adjusted, P=0.01, p=0.20
and GLM adjusted, P=0.002, estimate=0.23, accounting for age, gender, obesity-related
parameters and antibiotic use).

The IL-17A rs2275913 SNP influences IL-17 production in response to CTG-Candida

To determine whether the /L-174 rs2275913 SNP has functional relevance in responses to
the highly abundant Candida CTG-clade representatives and may be involved in NAFLD
pathogenesis, we stimulated freshly isolated T cells from rs2275913-genotyped healthy
donors with fungal lysates and measured the resulting IL-17A secretion. To ensure that
differences in T cell proportions among PBMCs of individual donors did not influence IL-
17A levels, we first isolated T cells and then used equal numbers of T cells in the stimulation
assays. An age-dependent influence on CD4" T cell frequency was excluded due to similar
mean age of donors in genotype groups. T cells were stimulated with fungal lysates of
pathogenic (C. albicans) and non-pathogenic (D. hansenii) representatives of the Candida
CTG-clade**? as well as with PepTivator® C. albicans, a peptide pool of the major T cell
antigen MP65 of C. albicans (Extended Data Fig. 6b). IL-17A secretion was measured by
ELISA and calculated with a 4parameter standard fit curve (Extended Data Fig. 7). Both
fungal lysates induced IL-17A production, with T cells from individuals with the rs2275913
A/A genotype having significantly increased IL-17A levels in comparison to those with the
rs2275913 G/G and heterozygous genotypes (C. albicans: Pkruskal-wallis=0.022, Pgim=0.088;
D. hansenii: Pxruskal-wallis=0.025; Pgim=0.040, Fig. 5a-b). Thus, the IL-17A rs2275913
genotype modifies the amount of IL-17A produced in response to the Candida CTG-clade
species. Together with the elevated Candida CTG-clade abundance in NAFLD patients,
this suggests a combinatory effect of dysregulated antifungal immunity and imbalance in
Candida CTG-clade species on fibrosis development in patients with NASH.

DISCUSSION
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In this study we investigated genetic variation in IL-17A and its interaction with the
intestinal mycobiome as a potential risk factor in NAFLD. Previous data from our group
indicate that the NAFL to NASH progression is marked by an increased frequency of IL-
17 producing cells among intrahepatic CD4" T cells and higher Th17/resting regulatory T
cells (rTreg) ratio in peripheral blood’. Genotyping of our NAFLD cohort revealed a
significant association between the IL-174 rs2275913 variant and fibrosis severity. IL-17
is known as a profibrotic cytokine especially for liver fibrosis*®, and our data clearly suggest
that this may play a role in the pathogenesis of NASH. These data provide additional insight
into genetic risk factors that promote inflammation and fibrosis in NAFLD.

C. albicans is a potent trigger of Th17 responses. Increased intestinal C. albicans
abundance was positively correlated to systemic levels of fungal-specific Thl7
inflammation measured by IL-17 producing CD4" T cells. In this context, C. albicans
commensal gut colonization triggers a host defense that is cross-reactive against other
pathogens®’. Our results suggest that in combination with the IL-17A risk genotype,
increased C. albicans abundance could contribute to inflammation-driven liver fibrosis.

Intestinal mycobiome analysis additionally identified other Candida CTG-clade
species to be highly abundant in advanced fibrosis with similarly decreased Saccharomyces
abundance in these NAFLD patients. Importantly, a genus base taxon analysis should not
be used for polyphyletic genera such as Candida®®. Our results confirm recent mycobiome
analysis data generated by ITS2 sequencing but extend these with the taxonomically
relevant Candida CTG-clade grouping®. Primer bias does not seem to have influenced
overall highly abundant fungal species but in our case ITS1 sequencing might have led to
missing e.g., Malassezia species detection®. In the context of the overall intestinal
microbiome, microbial communities rather than single species can contribute to NAFLD
development as shown by our interaction analysis where we identified a subcommunity
module that includes Candida CTG-clade together with one more fungal genus and nine
bacterial genera that are jointly associated with NAFLD progression. In addition to
mycobiome dysbiosis in NASH patients, the composition of intestinal bacteria is altered in
NAFLD, suggesting the interaction of multiple components of the intestinal microbiome.
Future work should focus on characterization of possible interaction mechanisms to further
elucidate the role of intestinal fungi in NAFLD pathogenesis in relation to the multifactorial
nature of this disease. However due to the high intestinal mycobiome variability,
longitudinal and well-monitored studies are essential to exclude possible diet, antibiotic or
environmental-mediated effects and identify only causal intestinal mycobiome changes
associated with NAFLD pathogenesis.

Gastrointestinal or liver disease-associated mycobiome studies commonly involve
members of the Candida CTG-clade. Studies investigating alcohol-associated liver disease
(ALD) identified elevated abundance of C. albicans and Debaryomyces sp. in alcohol use
disorder patients in comparison to healthy controls. Interestingly, this fecal mycobiome
dysbiosis was improved by two weeks of abstinence*’. The C. albicans-derived exotoxin
candidalysin has been associated with the severity of liver disease in ALD patients**, and a
recent study revealed that C. albicans strain diversity regulates the immune response in
inflammatory bowel disease*! indicating a crucial role for highly-abundant C. albicans in
other liver and gastrointestinal diseases. In mouse models of disease associated with
mycobiome dysbiosis, amphotericin B was identified as a promising treatment as it
counteracted mycobiome dysbiosis involving elevated abundance of C. albicans and D.
hansenii. In fecalmicrobiome humanized gnotobiotic mice, amphotericin treatment led to
decreased intestinal C. albicans abundance and improved diet-induced liver fibrosis and
steatohepatitis>*. In mice with Crohn’s disease, D. hansenii was isolated in high abundance
directly from mucosal wound tissue and amphotericin B treatment not only reduced D.
hansenii abundance but also reversed the impaired crypt regeneration after injury.
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Mycobiome dysbiosis involving increased intestinal abundance of D. hansenii is of
particular interest, as the food-borne D. hansenii is often found on cheese as well as
processed meat in Western-style diet and is therefore often seen as a transient mycobiome
component. Although the possible probiotic properties of D. hansenii have been studied
intensively®, its functional role in the context of human disease is still unknown and needs
to be characterized. However, it seems to possess Th17-stimulating potential, as our ex vivo
T cell stimulation assay demonstrated elevated IL-17A levels in response to D. hansenii in
rs2275913 minor allele variant carriers, similar to the increased IL-17A levels after C.
albicans stimulation. Therefore, our results suggest a combinatory effect of risk variant-
driven increased antifungal IL-17A response and elevated intestinal Candida CTG-clade
species abundance that may promote fibrosis in NASH patients and thereby further
elucidate the role of intestinal fungi in inflammatory-driven liver disease.

METHODS
Patients (NAFLD cohort)

In this prospective study, 451 NAFLD patients were enrolled between 2016-2019 in the
division of hepatology of the department of Medicine II, University Hospital Wiirzburg,
Germany. All study participants were >18 years old and diagnosed with NAFLD either by
histology (n=230) or clinically by transient elastography (TE; fibroscan & controlled
attenuation parameter (CAP) (n= 350). We included all clinically characterized NAFLD
subjects in our cohort irrespective of histological characterization to investigate
associations between genetic variations in antifungal immunity and gut mycobiome
imbalance with the largest possible sample size. Although liver histology is considered the
gold standard of NAFLD diagnosis, the more easily accessible TE is a widely used and
validated technique that has shown a high performance for the diagnosis and exclusion of
advanced fibrosis when compared to liver biopsy**. Additionally, it reduces the imminent
risk of sampling error due to heterogeneous distribution of fibrosis when assessing liver
biopsy specimens®.

Clinical and anthropometric characteristics of the study cohort are shown in Table
1. A cutoff for daily alcohol consumption was set (<20g/d for female and <30g/d for male
subjects) and further underlying liver disease (e.g. autoimmune liver disease or chronic viral
hepatitis) was excluded. Information on patients’ last antibiotic treatment was documented.
Fecal, serum and whole blood samples were immediately snap-frozen and stored in the local
biobank.

Ethics approval & consent to participate

This study, involving the NAFLD patient cohort (University of Wiirzburg: EK 96/12,
05.09.2012; EK 188/17, 13.01.2020) and healthy volunteers (University of Wiirzburg: EK
191/21, 16.08.2021) was approved by the local ethics committee and conforms to the ethical
guidelines of the 1975 Declaration of Helsinki. We obtained written informed consent from
all patients and healthy volunteers included in this study.

DNA extraction from blood and PBMCs and TagMan SNP Genotyping

DNA was extracted from frozen blood or PBMC samples using the Roche High Pure PCR
Template Preparation Kit (Sigma Aldrich, #11796828001) according to the manufacturer’s
instructions. Isolated DNA was then used in TagMan SNP Genotyping Assays
(ThermoFisher, CN #4351376; CARD9 (ID: C_ 25956930 20), CLEC7A (ID:
C_ 33748481 10), IL-17A 1s2275913 (ID: C_ 15879983 10) according to
manufacturer’s instructions. Assays were conducted with the qTower® (Analytik Jena) and
analyzed with the qPCRsoft 3.4 software (Analytik Jena). The functionality of TagMan
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SNP Genotyping was confirmed by additional sequencing of 5% samples and validating
the obtained genotypes. For sequencing, a 414 bp part of interest in the IL-17A gene
was amplified (5" ATATGATGGGAACTTGAGTAGTTTCCG, 3"
CTCCTTCTGTGGTCACTTACGTGG) with 2x QS5 polymerase master mix according to
the manufacturer’s instructions (NEB, #M0492L). PCR samples were purified with the
PCR & Gel Clean-Up Kit (Macherey-Nagel, #740609.50) according to the manufacturer’s
instructions and sent to LGC genomics for sequencing with the 5" primer. DNA sequences
were evaluated with ApE (v.3.0.8).

PBMC and T cell isolation

Freshly drawn blood from healthy volunteers was diluted 1:1 in PBS / 1 mM EDTA
(Invitrogen, ThermoFisher Scientific: #AM9260G) containing 1% inactivated human AB
serum (Sigma Aldrich, #H4522-100ML) and separated via Biocoll density gradient
medium (Bio&SELL, #BS.L 6115) in SepMate tubes (Stemcell Technologies, #85460)
according to the manufacturer’s instructions. Afterwards, PBMCs were washed 3 times
with PBS-EDTA-human serum mix. As T cell proportions vary strongly between individual
PMBC donors, we additionally isolated T cells before stimulation and IL-17A secretion
measurement.

T cells were isolated from freshly isolated PBMCs by negative selection with the
human Pan T Cell Isolation Kit (Miltenyi, #130-096-535) according to manufacturer’s
instructions and the purity of >90% was assessed by flow cytometry (Miltenyi MACSQuant
®).

PBMC and T cell number and cell viability were measured directly after isolation
with the LUNA automated cell counter (Logos Biosystems) and the viability was in each
case >99%.

Preparation of fungal lysates

50ml inoculated YPD medium (20g/L glucose, 20g/L peptone, 10g/L yeast extract) was
cultured overnight at 25°C (D. hansenii CBS767) and 37°C (C. albicans SC5314). The
overnight culture was diluted 1:50 in 50ml YPD medium and thereafter cultured for 5h.
Cells were harvested by centrifugation at 4.000g for 10min and the cell pellet was
resuspended in lysis buffer (50mM Tris-HCIL, 150mM NaCl, 0.1% Triton X-100, ImM
DTT, 10% glycerol) with freshly adjusted proteinase inhibitor (Sigma, #S8820-20TAB).
For lysis, 500ul glass beads were added per tube and five Imin vortexing steps were
followed by five 1min cooling steps on ice. After centrifugation at 20000g for Smin the
supernatant was transferred to a fresh reaction tube and stored in aliquots at -80°C. The
protein concentration was measured with the Qubit protein assay kit (Invitrogen,
ThermoFisher Scientific: #Q33211).

T cell stimulation and measurement of IL-17A

Freshly isolated T cells were plated at 2*10° cells/well in 48-well plates and stimulated with
40pug/ml C. albicans SC5314 lysate, 40ug/ml D. hansenii CBS767 lysate, 1ug/ml
PepTivator® C. albicans mp65 peptide pool mix (Miltenyi, #130-096-776), or medium as
anegative control, in a final volume of 500ul. For the positive control, wells were precoated
with 1pg/ml antihuman CD3 antibody (Miltenyi, #130-093-387) at 37°C for 2h. All wells
were supplemented with 1pg/ml anti-human CD28 antibody (Miltenyi, #130-093-375). The
plates were incubated for 48h at 37°C with 5% CO2. All samples were prepared in
duplicates. After incubation, supernatants were frozen at -80°C until IL-17A measurement.
Antigen-specific IL-17A levels were measured in thawed supernatants in duplicate using
the IL-17A ELISA kit (Invitrogen, ThermoFisher Scientific: #BMS2017) according to the
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manufacturer’s instructions. The standard curve was calculated from blank-curated mean
standard values with a 4-parameter curve fit (R package drdpl, v2.0.0). All sample values
were blank-curated before concentration calculation via the standard curve formula.

Fecal DNA extraction, internal transcribed spacer 1 and 16S rRNA sequencing

Microbial DNA was extracted from stool samples using the DNeasy PowerSoil Kit
(Qiagen, #12888-100) according to the manufacturer’s instructions. We divided the sample
into 4 subsamples to increase efficiency of the beat-beating step.

The Illumina platform Miseq V3 with paired-end reads of 300 bp was used for all
samples. For the ITS sequencing samples were processed by LGC Genomics GmbH. The
ITS1 region was amplified using ITSIF/ITS2R primers. The total read count was on
average 54,000 reads/sample. From the 246 total 16S rRNA sequencing samples, 149 16S
rRNA sequencing samples that had not been previously analyzed were processed by LGC
Genomics GmbH using sequencing primers 341F-785R, targeting the V3-V4 region. The
total read count was on average 56,000 reads/sample. 97 16S rRNA sequencing samples
from a previous study were processed as described in Rau et al'>.

Taxonomic profiling

Taxonomic annotation of fungal Internal Transcribed Spacer (ITS) was performed using
the PIPITS pipeline*® version 2.4, with default parameters including quality filtering, read-
pair merging, ITS1 extraction and chimera removal. Remaining reads were binned based
on 97% similarity as operational taxonomic units (OTUs) and aligned with QIIME*’ to the
UNITE fungi database®® using mothur classifier. Samples were then normalized by
cumulative sum scaling using the R package metagenomeSeq. Due to the complex fungal
taxonomy, we grouped fungi according to genus but used the CTG-clade to characterize the
Candida genus.

For the 16S rRNA sequencing data, quality control to remove low-quality reads and
taxonomic annotation was performed using QIIME*’. Raw reads were joined and trimmed
with cutadapt to remove the primer sequences. Deblur workflow was used for filtering and
denoising the joined reads. Assigning taxonomic information to each amplicon sequence
variant (ASV) was performed using a Naive Bayes classifier with 99% similarity in QIIME.
The classifier was fitted to the appropriate rRNA gene region (V3-V4) with the SILVA 132
database®.

Diversity analysis

Alpha diversity indices detailing mycobiome community composition within samples were
calculated using the R package vegan. Testing for significant differences in alpha diversity
was performed using Wilcoxon rank-sum test. For estimating beta diversity reflecting
community dissimilarities, cmultRepl function from R package zCompositions was first
used to perform Bayesian-Multiplicative replacement of count zeros to the raw OTU table.
Aitchison distances were calculated using aDist function from the R package
robCompositions. We performed Partial Least Squares Discriminant Analysis (PLS-DA)
using the mycobiome Aitchison distance matrix with the R package mixOmics. To test for
significant differences in the mycobiome composition, permutational multivariate analysis
of variance (PERMANOVA) as implemented in the function adonis from R package vegan
adjusting for age, gender, obesityrelated parameters (age, gender, BMI, DM, aHT and
hyperlipidemia) was used. Mycobiome community and clinical data (age, gender, height,
weight, BMI, AST and ALT) were fit onto the ordination using the function envfit from
vegan R package.
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Statistics

Associations between the SNP genotypes and fibroscan values or grouped fibrosis (cutoff
9,7kPa) were investigated with generalized linear models adjusting for age, BMI, gender
and PNPLA3 rs738409 with the g/m function of the R package stats. Due to its potential as
a genetic risk factor for NAFLD?’, we additionally adjusted for the PNPLA3 rs738409
genotype in all SNP-based generalized linear model (glm) calculations. The PNPLA3
rs738409 genotyping data was available for samples of our NAFLD patient cohort data but
were generated in a previous study?®. Statistical analysis of this data with the g/m function
confirmed primary findings from this study (Fig. 2c¢).

Correlations between mycobiome and clinical data were assessed by Spearman’s
correlation adjusting for age, gender, and obesity-related parameters (age, sex, BMI, DM,
aHT and hyperlipidemia) using the function pcor.test from R package ppcor. Differentially
abundant genera were identified by the Wilcoxon rank-sum test using R package stats, and
by a generalized linear model adjusting for previously mentioned parameters (genus ~
fibroscan.group + age + gender + BMI + DM + aHT + hyperlipidemia), with glm function
from R package stats. Association between the presence or absence of Candida CTG-clade
and the fibrosis state was calculated by the Fisher test, using the fisher.test function from R
package stats. A generalized linear model adjusting for previously mentioned parameters
was used to study the association between Candida CTG-clade and fibroscan value (genus
~ fibroscan + age + gender + BMI + DM + aHT + hyperlipidemia), with g/m function from
R package stats. When exploring all data, the antibiotic intake was included for adjustment
when appropriate.

Microbiome community network analysis

In order to explore the associations between microbial genera and NAFLD progression, we
built a correlation network using mycobiome and bacteriome data. To build the correlation
network, the correlate fastspar function from R was used. The SparCC method was used
to calculate the interactions between pairs of co-abundant taxa. The significance threshold
for correlations was set to 0.05. Clustering of the network taxa was performed using
cluster fast greedy function from igraph R package. Correlations between taxa and clinical
variables (fibroscan, weight, AST, ALT and GGT) were calculated using pcor.test adjusting
for age, gender and obesity-related parameters. To explore the association between clusters
and NAFLD, the fisher.test function from R package stats was used. A fungal/bacterial
genus was considered to be correlated with NAFLD progression if there was at least one
significant correlation with fibroscan, AST, ALT or GGT.

Data visualization
Figures were generated by R software 3.6.3, using ggplot2 package.
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Raw sequences from ITS1 gene sequencing were registered at NCBI under BioProject
PRINAS34619.
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Fig. 1| Flow diagram with the overview of the study participants.
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Fig. 2| The IL-17A rs2275913 genotype is associated with liver stiffness in NAFLD. a,
Allelic discrimination Plot after TagMan SNP Genotyping. b, Violin Plot for visualization
of genotype association with fibrosis as assessed by fibroscan. Statistical comparison was
performed using Kruskal-Wallis Test (Pkruskal-wallis) and generalized linear models adjusted
for age, gender, BMI, PNPLA3 rs738409 genotype (Pgim). ¢, Violin Plot for visualization
of known PNPLA3 risk variant rs738409 association with fibrosis as assessed by fibroscan.
Statistical comparison was performed using Kruskal-Wallis Test (Pxruskal-waliis) and
generalized linear models adjusted for age, gender and BMI (Pgim).
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Fig. 3| Mycobiome changes in the different diagnosed groups and healthy controls and
microbial community network. a, Beta diversity. PLS-DA of Aitchison distance of the
mycobiome composition by diagnosis. b, Overview of mycobiome composition at genus
level in NAFLD, NAFL, NASH, and HC groups. ¢, Boxplot of Saccharomyces and
Penicillium abundances. Statistical comparison between groups (HC, NAFL, NASH, and
NAFLD) was performed using Wilcoxon rank-sum test (Pwilcoxon) and generalized linear
models adjusting for age, gender and obesity-related parameters (Pglm). d, Microbial
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community network showing the 4 subcommunity modules. Significant negative
correlations are shown in blue and positive in red. The module significantly associated with
NAFLD-related parameters is shown with red nodes and significant correlations between

the genera and fibroscan, AST, ALT, and GGT are shown in green.
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(cut-off </>9.7 kPa). ¢, Boxplot of Candida CTG-clade abundances. Statistical comparison
between early and advanced fibrosis was performed using Wilcoxon rank-sum test
(Pwilcoxon) and generalized linear models adjusting for age, gender and obesity-related
parameters (Pgim).
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Fig. 5| Impaired IL-17A production in T cells from subjects homozygous for the
rs2275913 minor allele variant. T cells were stimulated with fungal lysates and IL-17A
concentrations in samples were measured by ELISA and calculated with a 4-parameter
standard fit curve. 19 subjects were included in this assay (G/G: n=8, A/G: n=7, A/A: n=4).
a, IL-17A secretion after stimulation with C. albicans lysate. b, IL-17A secretion after
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597  stimulation with D. hansenii lysate. Statistical comparisons for a and b were performed
598  using Kruskal-Wallis Test (PkruskaiWallis) and generalized linear models (Pgim).
599
600 TABLES WITH TITLES AND LEGENDS
601  Table 1| NAFLD patient cohort characteristics. Values are shown as means and range.
NAFLD patients healthy controls
(n=451) (n=31)
general information
n male 166 (37.5%) 15 (48.4%)
n female 277 (62.5%) 16 (51.6%)
age (yvears) 46.5 (18-73), n=451 27.3 (23-37), n=31
BMI (kg/m°) 46.2 (21.6-78.2), n=450 | 21.4 (17.5-30), n=31
underweight: (<18.5), n (%) 0 4 (12.9%)
normal: (18.5-24.9), n (%) 9 (2%) 23 (74.2%)
overweight: (25-29.9), n (%) 45 (10%) 3(9.7%)
obese — type I: (30-34.9), n (%) 31 (7%) 1 (3.2%)
obese —type II:  (35-39.9), n (%) 29 (6.5%) 0
obese — type Ill:  (>40), n (%) 336 (74.5%) 0
liver function tests
AST (U/L) 36.8 (11-249), n=450 20.5(11.6-45.6), n=27
ALT (U/L) 49.4 (5.8-469.7), n=451 | 18.5 (10-46.6), n=28
y-GT (U/L) 65.2 (7.6-914), n=450 | NA
AP (U/L) 77.2 (0-222), n=450 NA
AST/ALT ratio 0.9 (0.2-3.7), n=450 1.2 (0.6-1.6), n=27
glucose (mg/dl) 111.2 (70-444), n=430 | NA
lipid metabolism
cholesterol (mg/di) 187.5 (22-342), n=419 | NA
triglyceride (mg/dl) 166.8 (31-1188), n=419 | NA
elastography
fibroscan (kPa) 11.6 (1.8-75), n=350 NA
CAP (dB/m) 346.5 (40-400), n=258 | NA
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EXTENDED DATA

Extended Data Fig. 1| Ternary Plot of IL-17A data. IL-17A data are in Hardy-
Weinberg equilibrium and thereby selection for specific genotypes was excluded.
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Extended Data Fig. 2| TagMan SNP genotyping data for CARDO rs4077515 & CLEC7A
rs16910526. Allelic discrimination plots after genotyping for CARD9 rs4077515 a, and
CLECT7A 1516910526 b, Ternary Plot for evaluation of Hardy-Weinberg equilibrium for
CARD9 154077515 ¢, and CLEC7A rs16910526 d, Violin Plot for visualization of genotype
association for CARD9 rs4077515 e, and CLEC7A rs16910526 f, to fibroscan values.
Statistical comparisons were performed using generalized linear models adjusted for age,
gender, BMI, PNPLA3 rs738409 genotype but were not significant (Pgim (rs4077515)=0.3,
Pgim(rs16910526=0.5).
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Extended Data Fig. 3| Comparison of Shannon and Simpson indexes between antibiotic-
free subjects (No) and subjects that used antibiotics more than six months before the sample
collection (Yes) in NAFL, NASH and NAFLD groups.
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Extended Data Fig. 4| Mycobiome changes using the full cohort of samples. a, Beta
diversity. PLS-DA of Aitchison distance of the mycobiome composition by diagnosis. b,
Beta diversity. PLS-DA of Aitchison distance of the mycobiome composition by fibrosis
stage group. ¢, Boxplot of Candida CTG-clade abundances. Statistical comparison between
early and advanced fibrosis was performed using: Wilcoxon rank-sum test (Pwilcoxon) and
generalized linear models adjusting for age, gender and obesity-related parameters and
antibiotic intake (Pgim).
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Extended Data Fig. 5| Boxplot of Candida CTG-clade abundances. a, Antibiotic-free set
of samples. b, Full cohort. Statistical comparison between fibrosis stages (obtained by
biopsy) were performed using Kruskal-Wallis test.
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Extended Data Fig. 6| IL-17A production in T cells after stimulation with control samples.
IL17A concentrations in samples were measured by ELISA and calculated with a 4-
parameter standard fit curve (Extended Data Fig. 7). 19 subjects were included in this assay
(G/G: n=8, A/G: n=7, A/A: n=4). a, IL-17A secretion without any additional stimulus
(medium control). b, IL-17A secretion after stimulation with PepTivator® C. Dalbicans
mp65 peptide pool mix. Statistical comparisons for a and b were performed using Kruskal-
Wallis Test (Pxruskal-wallis) and generalized linear models (Pgim).
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Extended Data Fig. 7| Standard curve for calculation of IL-17A secretion using 4-
parameter curve fit. The standard curve was calculated with drdpl R package and
parameters were used to calculate the secreted IL-17A levels (y= ((122,9292*(((0,0124-
2,4283)/(x-2,4283))1))"(1/1,1346))*2).
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Overview

In manuscript IV, we aimed to explore the potential value of the gut microbiome in the
development of NAFLD and to build a machine learning model able to predict individuals
at risk to develop NAFLD four years later. We demonstrated differences in the microbiome
signature and metabolic shifts in subjects that will develop NAFLD compared to controls.
In addition, we presented a machine learning model able to predict the progression to
NAFLD with an auROC of 0.80. These results showed the biological relevance of the gut
microbiome and potential microbial markers for early NAFLD diagnosis.
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Risk assessment with gut microbiome and metabolite
markers in NAFLD development
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A growing body of evidence suggests interplay between the gut microbiota and the pathogenesis of nonalcoholic
fatty liver disease (NAFLD). However, the role of the gut microbiome in early detection of NAFLD is unclear. Pro-
spective studies are necessary for identifying reliable, microbiome markers for early NAFLD. We evaluated 2487
individuals in a community-based cohort who were followed up 4.6 years after initial clinical examination and
biospecimen sampling. Metagenomic and metabolomic characterizations using stool and serum samples taken at
baseline were performed for 90 participants who progressed to NAFLD and 90 controls who remained NAFLD free
at the follow-up visit. Cases and controls were matched for gender, age, body mass index (BMI) at baseline and
follow-up, and 4-year BMI change. Machine learning models integrating baseline microbial signatures (14 features)
correctly classified participants (auROCs of 0.72 to 0.80) based on their NAFLD status and liver fat accumulation at
the 4-year follow up, outperforming other prognostic clinical models (auROCs of 0.58 to 0.60). We confirmed the
biological relevance of the microbiome features by testing their diagnostic ability in four external NAFLD case-control
cohorts examined by biopsy or magnetic resonance spectroscopy, from Asia, Europe, and the United States. Our
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findings raise the possibility of using gut microbiota for early clinical warning of NAFLD development.

INTRODUCTION

Since the 1980s, the prevalence of obesity, insulin resistance, type 2
diabetes mellitus, and obesity-associated nonalcoholic fatty liver
disease (NAFLD) has grown worldwide (1-3). The occurrence of
these interconnected diseases is partly driven by consumption of
high-energy food and a sedentary lifestyle, and these diseases are
considered critical global health and socioeconomic problems (4).
Apart from associations with liver-related diseases, epidemiological
studies have associated NAFLD with increased risk of developing
extrahepatic chronic diseases, such as type 2 diabetes, cardiovascu-
lar disease, and chronic kidney disease (5, 6). A recent cohort study
showed that overall mortality risk increases progressively with
worsening NAFLD histology, and even simple steatosis increases
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mortality risk by 71% (7), thus simple steatosis can no longer be
considered as benign as previously thought (8). Although NAFLD
affects about 25% of the world’s population (9) and has a high dis-
ease burden, awareness of NAFLD is low. In a cross-sectional anal-
ysis (n = 2788) in four U.S. cities, NAFLD prevalence was 23.9%,
whereas awareness of NAFLD was 2.4% in study participants with
computed tomography (CT)-defined NAFLD (10). One important
reason for low awareness is that most patients with NAFLD are
largely asymptomatic in the disease course, where disease is mainly
detected through an incidental finding of fatty liver on ultrasound
or an imagining modality or routine laboratory testing (11, 12). Diag-
nosis by liver biopsy or imaging is reliable but difficult for large-scale
screening and monitoring. Thus, the need to identify individuals
who are at high risk of developing NAFLD or are at an early stage of
the disease is urgent, as lifestyle interventions can reverse the dis-
ease when it is in the first stages (13). According to one study (14),
weight loss and healthy diet might be sufficient to reverse simple
steatosis, whereas intensified lifestyle intervention coupled with
pharmacological treatment might be necessary for more advanced
stages of liver diseases. Exercise programs (15), low-carbohydrate
diet (16), and various types of gut microbiota-targeted treatments
(17) have demonstrated their ability to prevent steatosis develop-
ment and improve NAFLD outcomes in human or preclinical mod-
els. Early diagnosis and interventions to prevent NAFLD progression
can also greatly reduce future health care cost, as most economic
costs associated with NAFLD are incurred in advanced stages (18).
Currently available methods (19-21) for early prediction of NAFLD
are limited and use only a few clinical parameters or biomarkers
that may not reflect the heterogeneity and complexity of NAFLD
(22, 23). Thus, more convenient noninvasive alternatives are needed.

In the last 10 years, the gut microbiome has emerged as a major
regulator of host energy homeostasis and substrate metabolism
(24-26). The human gastrointestinal tract is colonized with 4644
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bacterial species encoding 171 million genes (27). Therefore, it is not
unexpected that abnormalities in gut microbiome structure and es-
pecially function might affect the brain, adipose tissue, muscle, and
liver metabolism. Microbial components or metabolites such as lipo-
polysaccharides, secondary bile acids, dimethyl- and trimethyl-amines,
and compounds derived from carbohydrate and protein fermenta-
tion appear to be strongly involved in the gut host-microbiome meta-
bolic axis and the occurrence of metabolic diseases (28-31).
Human cross-sectional studies have delineated the role of gut
bacteria in the development of NAFLD. An increased ratio of Bac-
teroidetes to Firmicutes phyla and a decrease in butyrate-producing
Ruminococcaceae are suggested to be involved in NAFLD progres-
sion; however, the data are not always consistent (32-35). Further-
more, whether NAFLD causes taxonomic and functional changes in
the microbiome or the observed dysbiosis in patients with NAFLD
leads to progression of the disease is not clear. For a possible causal
role in NAFLD development, gut microbiota alteration should take
place long before disease is diagnosed, which would suggest prog-
nostic value in evaluating the gut microbiome in individuals with a
high risk of developing NAFLD. To assess this potential value, we
conducted a 4-year prospective study in a community-based cohort of
2487 Chinese individuals. We profiled 180 matched case-control indi-
viduals who were NAFLD free at baseline using well-documented
clinical information and comprehensive metagenomic and metabo-
lomic analysis. We developed machine learning models integrating
baseline microbial signatures to classify individuals based on their
NAFLD status 4 years after baseline (either remaining disease free
or diagnosed with the disease). We also examined whether the se-
lected features in the model were biologically relevant to NAFLD
development by exploring the diagnostic power of the model in sev-
eral case-control cohorts from Asia, the United States, and Europe.

Study design Data collection

B B> 1.

RESULTS

Characterization of the study cohort

To develop a microbiome-based prognostic model for long-term
development of NAFLD, we designed a nested case-control study
within a community-based prospective cohort study of Chinese
adults. About 2500 participants were screened in 2014 with ultra-
sonography, which is recommended as the first-line diagnostic test
for NAFLD (36); 1216 participants were determined as NAFLD free
using criteria proposed by the Asian Pacific Association for the Study
of the Liver (37). Participant enrolment is outlined in fig. S1. Stool
and serum samples were obtained from participants at baseline. At
the follow-up visit in 2018, after a strict exclusion process, 90 partic-
ipants (38 males and 52 females) were identified as having NAFLD
(NAFLD™*) (Fig. 1). The participants in the NAFLD™* group were
matched with 90 controls who did not have NAFLD at baseline or
at the follow-up visit (NAFLD "), The two groups were matched in
gender, age, and body mass index (BMI) at both the baseline and
follow-up visits and 4-year change in BMI. There were no differences
between the two groups in the prevalence of type 2 diabetes, hyper-
tensive disease, metabolic syndrome, and medication usage at both
baseline and follow-up in the cohort, a/part from a significantly higher
metabolic syndrome ratio in NAFLD ™" at follow-up as expected (chi-
square test, P < 0.05; table S1).

Detailed baseline anthropometric parameters, glucose homeo-
stasis parameters, serum liver enzymes and renal function, lipid pro-
files, and cytokines are shown in Table 1. No significant differences
(t test, P> 0.05) were seen for most clinical parameters between the
NAFLD " and NAFLD ™"~ groups at baseline. Fasting insulin (FINS),
homeostasis model assessment for insulin resistance (HOMA-IR),
triglycerides (TGs), and high-sensitivity C-reactive protein (hs-CRP) in
the NAFLD™* group were slightly higher than in the NAFLD™" group

Data generation Data analysis and modeling

Medical records ¥ J.

49 clinical parameters

4.6 years b
! =]
2018 ==
— ' * 524 Stool sample
from 2014
Follow-up

* Exclude participants who had:
© Used antibiotics in recent 2 weeks
= Taken probiotics or eaten yogurt in
recent 1 week
= Had chronic or acute gastrointestinal
disease in recent 1 month
* NAFLD diagnosis by:

o Ultrasound —_
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\
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pra

'33 *52

Non-NAFLD
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Taxonomic profiling
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Fig. 1. Overview of the prospective study design. A graphical representation summarizing the study design, data collection, and the methodologies of data generation
and analysis. Further details of the study design can be found in fig. 51.
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Table 1. Baseline characteristics of participants in NAFLD '* and NAFLD™~ groups. Data are expressed as means + SD or median (lower quartile and upper
quartile) for continuous variables, and n represents percentage for categorical variables. BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood
pressure; FBG, fasting blood glucose; hs-CRP, high-sensitivity C-reactive protein; TC, total cholesterol; TG, triglycerides; HDL-C, high-density lipoprotein
cholesterol; FGF-21, fibroblast growth factor 21; HbA1c, hemoglobin A1C; HOMA-IR, homeostasis model assessment insulin resistance; apo, apolipoprotein;
PG30, 30-min postprandial plasma glucose; PG120, 120-min postprandial plasma glucose; INS30, 30-min postprandial insulin; INS120, 120-min postprandial
insulin; FINS, fasting insulin; Cr, creatinine; UAIb/Ucr, urinary albumin to creatinine ratio; UA, uric acid; FFA, free fatty acid; TBIL, total bilirubin; GA, glycated
albumin; AST, aspartate aminotransferase; ALT, alanine aminotransferase; GGT, gamma-glutamyl transferase.

Characteristic Total (n=180) NAFLD ™~ (n=90) NAFLD™* (n=90) P value* Pvalue’
Anthropometric parameters
ng{male] 75(4212%; 33(4222%)33(42_22%) S
Age (years) 62.51£3.81 6203x£3.78 62.99£3.81 0.0921 0.1481
Weight (kg) 62824807 6247i 753 : 63.16+86 05688 a 03617 ]
BMI {kg.fmz) 2455213 2435%2 2475+225 0.2059 0.0681
5Bp(mmag)‘ pe SR 130(120140) 1 30(‘ 10140) N 130(120140) S 92354 0_3353
DBP (mmHg)* 80 (80, 86) 80 (80, 84) 80 (80, 86) 0.7579 0.7304
Glucose homeostasis parameters
FBG (mM)‘ 5.93 (5.57,6.36) 5.86(5.54,6.33) 6.02 (5.67,6.39) 0.2866 0.8033
PG30 (mM)* ) 10.29 (9.3, 11.45) o 10.12 (9. 9‘,“1“1‘.‘1“6] 10.34(9.37, 'I 1.78) 02219 - 04460 .
PG120 (mM)* 7.72(6.63,93) 7.49(6.17,8.96) 7.85(7.12,9.58) 0.0612 0.2829
FINS (uU/ml)* 5.2(4.03,7.11) 5.06 (3.99, 6.06) 5.42(4.11,8.08) 0.0266 0.8033
INS30 (uU/mi)* 38.82(26.11, 57.25) 36.25(25.73, 50.64) 40.39 (26.77,60.31) 0.2956 0.5751
INS120 (uU/mi)* 37.62(25.13,57.42) 34.59(21.78, 53.46) 41.86 (29.18, 60.03) 0.0562 0.3623
GA (%) 0.61(0.57,0.67) 0.62(0.57, 0.68) 0.61(0.57,0.67) 0.6013 0.1853
HbA1c (%)* 5.5(5.2,5.9) 54(52,57) 56(53,6) 0.0604 0.2707
HOMA-IR 1.35(1.05,1.99) 1.33(1.02,1.69) 1.5(1.09,2.21) 0.0266 -
HOMA—B‘ 40.23 (31.6,545) 37.68(31,52.44) 42.13 (32.76, 56.04) 0.1038 0.8752
Serum liver enzymes and renal function indexes
ALT (IU/liter)* 15(12,18) 15(12,17) 15(13,18) 0.2112 0.2477
AST (1U/liten)* 21(19,23) 21(19,23) 21(19,23) 0.9994 0.8621
GGT (IU/liter)* 18 (15, 25) 17 (14, 22) 20(16,27) 0.2764 O.Zdéi;‘ 77777
TBIL (M)’ 10.7 (9, 14.4) 10.9(9, 14) 10.7(9,145) 09518 07712
Cr My 64(56,73) 64(57,73) 64(55,76) 0.8085 04501
UAIb/Ucr* 6.79(5.12,12.29) 6.62(5.16, 13.03) 6.84(5.02,11.91) 0.5568 0.4701
UA () 205(249,341) 28950(243,334) 302(258,342) Cole1s ooen3
Lipid profiles
TG (mM)* 120(086,166) 10? (0.80, 1.53) 1.34(0.90, 1.80) 00193 777777
TC (mM]' 4.97 (4.44,5.58) 4.80(4.41,5.57) 5.01 (4.46,5.58) 4 0.7310

497 (377, 666) ""-497.5 (37],688) ) 497(395,650) 0.5783

LDL-C (mM)

30(1.09, 1.48]

3.17+0.69
apoA-1 (g/liter) 1.46:0.24
apoB (g/liter)

Cytokines
FGF21 (pgp'ml)* 302.06 (180.19, 429.52) 268.84(171.83,389.11) 332.27 (236.74,452.81) 0.9538 0.9304
hs-CRP (ug/mi)* 0.63 (035,1.17) 0.53(0.28,1.17) 0.72(0.43,1.16) 0.0351 0.0758

=P value denotes differences between NAFLD™* and NAFLD™~ analyzed by t test without adjustment.
NAFLD ™ analyzed by analysis of covariance with HOMA-IR adjusted.
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1P value denotes differences between NAFLD™* and
$Log-transformed before analysis.
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(f test, P < 0.05); however, their mean or median values were with-
in reference ranges in both groups (FINS: 5.1 to 11.2 uU/ml,
HOMA-IR < 2.5, TG < 1.70 mM, and hs-CRP < I pg/ml) (38-41). Only
TGs remained significantly different after adjusting for HOMA-IR
(1.55 £ 0.90 mM versus 1.23 + 0.61 mM; Table 1).

Modest but distinguishable differences in baseline gut
microbiome between NAFLD ™" and NAFLD ™ individuals
We assessed the gut microbiome structure of the NAFLD™* and
NAFLD ™" groups at baseline via shotgun metagenomic sequencing,
generating 1128 gigabase pairs of high-quality reads with an average
of 41,786,187 reads per sample (Fig. 1). Taxonomic profiling with
MetaPhlAn2 (42) led to the identification of 405 species. Commu-
nity alpha diversity measured as richness, and Shannon and Simpson
indexes showed no significant differences (Wilcoxon rank-sum test,
P> 0.05) at the species, genus, or family levels between the two groups
(fig. S2A). Bray-Curtis, unweighted UniFrac, and weighted UniFrac
distance comparisons indicated that the NAFLD™* and NAFLD ™~
groups did not have significant community dissimilarities [per-
mutational multivariate analysis of variance (PERMANOVA), P >
0.05; fig. S2, B and C]. The same patterns were observed when using
a metagenomic species approach (43) for the taxonomic annotation
(table S2).

In addition, we sequenced the baseline gut microbiota from 66 partic-
ipants who were diagnosed as NAFLD in both 2014 and 2018 (NAFLD**)
and 34 participants who were diagnosed as NAFLD in 2014 but not
in 2018 (NAFLD'"). These two groups were also matched with the
other two groups described above by age, gender, BMI, and 4-year
change in BMIL A thorough comparison of microbiota alpha and
beta diversity among the four groups at baseline indicated that the
two non-NAFLD groups were distinguishable from the two NAFLD
groups (P < 0.05, Wilcoxon rank-sum test for alpha diversity compari-
sons and PERMANOVA for beta diversity comparisons using Bray-
Curtis distances) (fig. $3). Moreover, the gut microbiota of NAFLD™*
subjects was different from that of NAFLD*"* and NAFLD"'" indi-
viduals. This argues that the NAFLD™* group was not already diseased at
the baseline because they clustered with NAFLD ™~ subjects at base-
line. Because our focus was to identify gut microbiota signatures in
disease-free individuals suggestive of NAFLD predisposition, only
the NAFLD ™~ and NAFLD '* groups were further analyzed.

A compositional analysis found that several of the 10 most abun-
dant genera and species (Fig. 2A) were significantly associated
(envfit from R package vegan, P < 0.05) with observed variation in the
taxonomic profile of the study participants (fig. $2, B and C). How-
ever, their relative abundances were not significantly different (zero-
inflated Gaussian mixture model, P > 0.05) between NAFLD " and
NAFLD ™" groups. Nevertheless, the relative abundances of 8 and
21 less-abundant genera and species, respectively, were significantly
different (zero-inflated Gaussian mixture model, P < 0.05) between
the two groups (fig. S2D). Methanobrevibacter [false discovery rate
(FDR) = 0.01] was decreased in NAFLD™* compared to NAFLD ™~
(a reduction in Phascolarctobacterium was insignificant at FDR = 0.2).
Lower abundances of these two genera have been observed in cohort
studies in obese individuals compared to lean individuals (44, 45). Slackia
has been reported to be more abundant in individuals with moderate-
to-severe fibrosis than in individuals with absent-to-mild fibrosis
(46), and this genus was increased in the NAFLD™* compared to
the NAFLD ™~ group (FDR = 0.06). The relative abundance of Dorea
formicigenerans, a species that is highly abundant in people with obesity
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(47), was higherin the NAFLD ™ than the NAFLD ™~ group (FDR = 0.17).
Differences in the relative abundances of Methanobrevibacter,
Phascolarctobacterium, Slackia, and D. formicigenerans between the
two study groups remained significant even after adjusting for age,
gender, BMI, and HOMA-IR (zero-inflated Gaussian mixture model,
P <0.05). Because the NAFLD " and NAFLD ™~ groups had no differ-
ence in BMI and in the aforementioned cohort studies, the liver sta-
tus of the obese individuals was not evaluated, and our prospective
design suggested that Methanobrevibacter, Phascolarctobacterium,
Slackia, and D. formicigenerans could be signatures of NAFLD risk
in addition to being obesity-related signatures.

We used HUMANN2 (48) for functional profiling of the microbial
communities and identified 458 pathways. Likewise, the taxonomic
profile and the microbiota functional potential could not differentiate
between NAFLD " and NAFLD ™'~ groups by alpha and beta diver-
sity (fig. S4, A and B). Four of the most abundant pathways detected,
uridine monophosphate biosynthesis I, uridine diphosphate-N-
acetylmuramoyl-pentapeptide biosynthesis I and II, and peptido-
glycan biosynthesis I (Fig. 2A), were significantly associated with
observed variation in the functional profiles of study participants
(envfit from R package vegan, P < 0.05; fig. $4B). These pathways were
proposed to be discriminatory for NAFLD cirrhosis against control
groups in a recent U.S. cohort study (49); however, their relative abun-
dances were not significantly different (zero-inflated Gaussian mix-
ture model, P > 0.05) between the NAFLD™* and NAFLD ™"~ groups in
our prospective study. Nevertheless, we found 19 biosynthetic path-
ways significantly different in relative abundance between the two
groups (zero-inflated Gaussian mixture model, P < 0.05) (fig. $4C).
We observed a significantly higher relative abundance of geranyl-
geranyl diphosphate biosynthesis and the mevalonate pathway in
the NAFLD ™ group. These pathways are dysregulated in mice and
humans with nonalcoholic steatohepatitis (NASH) (50). Two genes
encoding enzymes involved in these pathways, hydroxymethyglutaryl-
coenzyme A (CoA) reductase (EC 1.1.1.34) and mevalonate kinase
(EC 2.7.1.36), were significantly enriched in the NAFLD ™"~ group
(zero-inflated Gaussian mixture model, P < 0.05; table S3). Methano-
brevibacter smithii was the major contributor of gene expression abun-
dance of hydroxymethyglutaryl-CoA reductase (95%) and mevalonate
kinase (40%). In contrast, the NAFLD ™" group had a higher relative
abundance of phosphatidate metabolism and cholic acid degrada-
tion. Cholic acid is a primary bile acid that decreases substantially in
rats on a Western diet and is proposed as an early marker of NAFLD
development (51). Genes encoding phospholipase D (EC 3.1.4.4) and
bile-acid-7-alpha-dehydratase (EC 4.2.1.106) were also significantly
enriched in the NAFLD™* group (zero-inflated Gaussian mixture model,
P < 0.05, table $3). The four significant pathways above (geranylgeranyl
diphosphate biosynthesis, mevalonate pathway, phosphatidate me-
tabolism, and cholic acid degradation) remained significantly dif-
ferent (zero-inflated Gaussian mixture model, P < 0.05) between the
two groups after adjusting for age, gender, BMI, and HOMA-IR,
except for cholic acid degradation that was marginally significant
(P = 0.050).

Metabolite enrichment and metabolic shifts in NAFLD™*
versus NAFLD ™~ groups

We next performed targeted metabolomic analysis of serum samples
collected at baseline to interrogate whether differences in species
and pathway abundance of gut microbiota led to distinct profiles of
microbial metabolites in the NAFLD™* and NAFLD ™"~ groups. We
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Fig. 2. Global characteristics of gut microbiome and serum metabolome. (A) Relative abundance of the 10 most abundant genera, species, and pathways for the 180
participants at baseline, grouped by NAFLD status at the follow-up visit. Anthropometric characteristics of the participants at baseline are also shown. Abundance values
are normalized to the range of 0 and 1. (B) Changes of metabolites (uM) in metabolite classes containing at least 10 metabolites. Each point represents a metabolite and
its z score from Wilcoxen rank-sum test comparing the two groups (negative indicates higher abundance in NAFLD™; positive indicates higher abundance in NAFLD ™).
Dotted lines at —1.96 and 1.96 denote the significance threshold. Colors indicate comparisons between z scores of metabolites in a metabolite class against the z scores
of metabolites in all other classes. Box plots show median, lower/upper quartiles, and whiskers (the last data points 1.5 times interquartile range from the lower or upper
quartiles). (C) Principal coordinates analysis for 180 participants based on Bray-Curtis distances using baseline serum concentrations of 123 metabolites. For each metab-
olite class, the top 3 (or fewer) metabolites that were significantly associated with the metabolome variation in the study cohort are shown. PC, principal coordinates.

detected 123 metabolites grouped into nine metabolite classes (Fig. 2B).
We performed enrichment analysis to identify metabolite classes that
were signiﬁcantljy overabundant or underabundant in the NAFLD™*
or the NAFLD ™" group, and found amino acids were significantly
elevated in the NAFLD * group (Wilcoxon rank-sum test, P < 0.05;
table S4). We further analyzed the untargeted metabolomic data of
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a European case-control cohort (MICROBARIA) involving 52 obese
women including 26 with biopsy-confirmed NAFLD and 26 non-
NAFLD (52). Two amino acids positively correlated with NAFLD-
related liver enzymes, including the branched-chain amino acid
valine with alanine transaminase (ALT) (P < 0.05, Spearman correla-
tion) and the aromatic amino acid tyrosine with aspartate transaminase
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(AST) (P < 0.05, Spearman correlation). Our findings in the Asian
prospective and European cohort-based datasets are further sup-
ported by recent metabolomic-based studies, suggesting that per-
turbations in amino acid metabolism are involved in NAFLD and
NASH pathogenesis (53-55).

Ofthe 15 significantly different metabolites between the NAFLD
and NAFLD™" groups at baseline (generalized linear model, P <
0.05; fig. S5A) and the metabolites that were significantly associated
with the observed metabolomic variation (envfit from R package vegan,
P < 0.05; Fig. 2C), several are reported to be involved in NAFLD in case-
control human or animal studies. For example, 3-chlorotyrosine, ara-
chidonic acid, and oxoglutaric acid are markers, respectively, of
liver damage and NAFLD development in mouse (56) and rat (57)
models and a human NAFLD study (58). Tryptophan was also sig-
nificantly associated with the metabolome variation (envfit from R
package vegan, P < 0.05; Fig. 2C) in our cohort, and aromatic amino
acids have been associated with NAFLD (54). These metabolites were
higher in the NAFLD™"* group than the NAFLD ™" group. Concentra-
tion of a gut microbiota-regulated fatty acid, 8,11,14-eicosatrienoic
acid, linked to obesity and insulin resistance (59, 60), was also sig-
nificantly higher (generalized linear model, P < 0.05; fig. S5A) in
the NAFLD ™" group in our prospective study. Phenyllactic acid,
produced by lactic acid bacteria and suggested to reduce reactive
oxygen species production in rodents (61), was significantly higher
in the NAFLD ™" group (generalized linear model, P < 0.05; fig. S5A).
On the contrary, the direction of concentration differences in the
two study groups for isovaleric and docosahexaenoic acids (both
higher in NAFLD ™) (generalized linear model, P < 0.05; fig. $5A)
was inconsistent with proposals in the literature from case-control
NAFLD studies about the possible roles of these compounds (62-64).
These agreements and discrepancies in metabolite abundances in
our prospective study with case-control cohort and mouse studies
in the literature should help to narrow the metabolic marker possi-
bilities for NAFLD progression. The concentrations of additional
fatty acids were significantly different between the NAFLD™'* and
NAFLD ™" groups (fig. S5A), but the functional significance of these
metabolites in NAFLD is relatively unknown. Last, the concentra-
tions of measured serum metabolites such as 3-chlorotyrosine and
phenyllactic acid were significantly associated with gut microbiota
species composition (Mantel test, P < 0.05; fig. S5B and table S85).

~I+

A machine learning prospective model to detect early
signatures of NAFLD

We built a noninvasive risk assessment model (random forest algo-
rithm) to classify healthy subjects based on their NAFLD status af-
ter 4.6 years, using a combination of baseline metagenomic and
metabolomic features. A leave-one-out iterative approach was ap-
plied to build and evaluate our model due to the relatively small
cohort size (n = 180). We built a prospective model using 14 taxo-
nomic, functional, and metabolomic features of the study partici-
pants at baseline that enabled classification based on their NAFLD
status 4.6 years later with an area under the receiver operating char-
acteristic curve (auROC) of 0.72 (Fig. 3A). The performance of the
model was significantly improved to an auROC of 0.79 (DeLong test,
P value for difference < 0.05) with the addition of only two more
noninvasive clinical features (Fig. 3B). We then slightly improved
our model by also including the most accessible anthropometric
parameters, BMI and age, to obtain our final model (auROC, 0.80;
Fig. 3C and fig. $6).
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We evaluated the biological relevance of the selected features by
testing the diagnostic ability of components of our model to distin-
guish between healthy individuals and patients with NAFLD in two
publicly available independent external Asian case-control cohorts;
one cohort was diagnosed by biopsy and the other was diagnosed by
magnetic resonance spectroscopy (MRS). This allowed us to further
explore whether the patient diagnosis method had an impact on the
model performance. We built a new prospective model using only
nine features from the final model that were available in these exter-
nal cohorts (fig. $6). The new model derived based on our study
cohort discriminated healthy and NAFLD groups in the two exter-
nal cohorts with auROCs of 0.78 and 0.72 (Fig. 3, D and E), show-
casing that the features we identified were closely related to NAFLD
development or pathophysiology. Besides the Asian cohorts, we fur-
ther validated our prospective model in other case-control cohorts
of different ethnicity. In the European cohort FLORINASH (54), the
model (with the same nine features as in the Asian cohorts) reached
an auROC of 0.76 (Fig. 3F), whereas in a U.S. cohort (49), the valida-
tion auROC (with seven available features) was 0.78 (Fig. 3G). Taking
into consideration that only no more than half of features in our orig-
inal prospective model were available in the external cohorts, we
expect that the true accuracy may be higher.

Previous clinical prospective NAFLD studies demonstrated that
fibroblast growth factor 21 and BMI (FGF21 + BMI), fatty liver index
(FLI), and TG and glucose index (TyG) predict NAFLD develop-
ment from 3 up to 9 years before diagnosis (auROCs of 0.71 to 0.82)
(19-21). We compared the performance of our prospective model
with FGF21 + BML, FLI, and TyG to predict NAFLD occurrence in
our cohort with matched baseline characteristics. The performance
of our final model (auROC, 0.80) was significantly better than all three
clinical models (auROCs of 0.58 to 0.60, P values for difference < 0.01;
Fig. 3, Hto ]). To confirm the importance of metagenomic and me-
tabolomic information in prospective NAFLD prediction, we added
metagenomic and metabolomic features from our final prospective
model to the clinical models (fig. $6) and observed significant improve-
ments in all (auROCs of 0.73 to 0.75, P values for difference < 0.05;
Fig. 3, H to ]); however, none of the models reached the auROCs of
our final model.

In total, 18 features were used in the final model: two genera,
three pathways, nine metabolites, and four anthropometric and
clinical parameters (Fig. 4, A and B). Our analysis revealed that the
most important feature of our risk assessment model was phenyl-
lactic acid (Fig. 4A). By analyzing the untargeted metabolomic data
from the European MICROBARIA cohort (52), we found that
phenyllactic acid negatively correlated with ALT, AST, and gamma-
glutamyl transferase (correlation coefficients = —0.35, -0.45, and —0.45;
P = 0.004, 0.14, and 0.053; Pearson’s correlation adjusted for age,
BM], fasting glucose, and insulin).

SHapley Additive exPlanations (SHAP) (65) analysis also re-
vealed that Methanobrevibacter was associated with NAFLD ™, and
Slackia was associated with NAFLD™"* (Fig. 4, A and B). These genera
were differentially abundant in our two study groups (fig. $2D). Fur-
thermore, 8,11,14-eicosatrienoic acid, hydrocinnamic acid, and
oxoglutaric acid are associated with type 2 diabetes, obesity, insulin
resistance, and NAFLD (58, 60, 61, 66), and our model revealed
similar trends (Fig. 4, A and B).

The feature set contribution was also computed by summing the
SHAP values per category. Metabolites were the most important in
the model, contributing 44.6% to model performance, followed by
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Fig. 3. Predictive performance of machine learning models in the study cohort and diagnostic performance of the final model in external cohorts. (A to C, in blue)
Performance of leave-one-out iterative machine learning models discriminating between NAFLD™* and NAFLD ™'~ groups using features of the following: (A) metagenomics +
metabolome, (B) metagenomics + metabolome + 2 clinical parameters (HDL and fasting insulin), and (C) metagenomics + metabolome + 2 clinical parameters (HDL and
fasting insulin) + anthropometrics (BMI and age). (D to G, in purple) Diagnostic performances of a model built based on subsets of the selected features to discriminate
between participants who were healthy or had NAFLD in four external cohorts: (D) a Chinese cohort in which NAFLD diagnosis was determined with biopsy, (E) a Chinese
cohort in which NAFLD diagnosis was based on MRS, (F) a biopsy-diagnosed European NAFLD cohort, and (G) a biopsy-diagnosed U.S. cirrhosis cohort. (H to J, in peach) Leave-
one-out iterative machine learning performance to discriminate between NAFLD™* and NAFLD ™'~ groups in models of: (H) FGF21 + BMI clinical model, with and without
metagenomics + metabolome features; (I} FLI clinical model, with and without metagenomics + metabolome features; and (J) TyG clinical model, with and without
metagenomics + metabolome features. (H to J) Models without metagenomics and metabolome features were trained by logistic regression (dotted lines); models including
metagenomics and metabolome features were trained by random forest (solid lines). Confusion matrices in (F) to (H) are from models with metagenomics and metabolome
features. The figure colors represent the purpose of the model: blue, model construction; purple, external validation in cohorts of different ethnicity; peach, testing per-
formance of previous clinical models in our cohort. Further details of the overall machine learning analysis framework can be found in fig. 56. auROC, area under the re-
ceiver operating characteristics curve; auPRC, area under the precision-recall curve; TPR, true-positive rate; FPR, false-positive rate.

the microbiome and nonmicrobiome features, with contributions
of 31.2 and 24.1%, respectively (Fig. 4C).

Dependence plots were built to reveal the nonlinear correlations
of features and risk of NAFLD. The optimal thresholds of each fea-
ture were identified (fig. S7). We found that high-density lipopro-
tein (HDL) was associated with NAFLD occurrence after 4.6 years
when <1.39 mM, which is close to the diagnostic criteria for meta-
bolic syndrome when HDL was <1.0 mM (male) or <1.3 mM (female)
(67). We also examined the dependence plots of microbial metabo-
lite phenyllactic acid, hydrocinnamic acid, and 8,11,14-eicostrienoic

of 8,11,14-eicosatrienoic acid increased the risk of NAFLD at >51.5 uM,
and hydrocinnamic acid was associated with NAFLD at a concen-
tration of <0.39 uM. Visual inspection of the dependence plots did
not indicate any differences by sex. We converted the features into bi-
nary variables (= or < thresholds) according to their optimal thresh-
old and found that 12 of 18 features showed significant association
with NAFLD progression (chi-square test, P < 0.05; table $6). These
results demonstrated the importance of including an interpretable
machine learning framework, such as SHAP, to provide insights when
analyzing microbiome data.

We further examined whether the features of our risk assessment

acid (Fig. 4, D to F). Phenyllactic acid was associated with protection
model could be used to classify subjects of the NAFLD™"* group based

against NAFLD at a concentration of >0.25 pM. The concentration
8 June 2022
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Fig. 4. SHAP-based model interpretation. (A) Bar plot of selected features and their contribution in the NAFLD prediction model. Features are in descending order by
contribution (also known as importance) in the model. Blue bar, higher value of the feature for association with NAFLD/"; red bar, higher value of the feature for associ-
ation with NAFLD™*. Details of associations are shown in (B) a bee swarm plot in which each point represents a participant (n=180). Color indicates the value of the
feature, with red higher and blue lower. Negative SHAP value indicates the feature attribution for prediction of NAFLD™""; Positive SHAP value indicates the feature attri-
bution for prediction of NAFLD™*. (C) Feature category contribution calculated by summing the SHAP values per set. (D to F) Examples of SHAP dependence plots,
showing the effect the feature has on model prediction. Each point represents a participant (n = 180). Color indicates sex with blue for male and red for female. X axis is
the feature value, and y axis is the SHAP value for the feature. The optimal thresholds for features are indicated by the vertical dotted lines.
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on different degrees of steatosis. We initially divided the NAFLD™*
group based on their liver fat percentage at the time of diagnosis
(4.6 years after enrolment). Subsequently, using the values of the 18
features at baseline, we built a model classifying mild and severe
steatosis cases. This new random forest model had an auROC of
0.78 (fig. S8A). Similarly as above, we attempted to confirm the bi-
ological relevance of the selected features by testing the diagnostic
power of our prospective model in an independent external case-
control cohort from the United States (49). Despite the lack of absolute
quantification of metabolomic data, our model showed an accuracy
of 71.4% to correctly identify severe steatosis cases with only gut
microbial and clinical features.

Previous work has demonstrated the value of gut microbiome-
based diagnostic tests for advanced fibrosis (68). The participants in
our cohort were unlikely to develop advanced fibrosis after 4 years,
starting as NAFLD free at baseline. Nevertheless, the prospective
design of our study enabled us to explore whether the baseline mi-
crobiota is associated with the change or deterioration of fibrosis.
Grouping our NAFLD™* participants by the change of fibrosis 4
(FIB-4) index from 2014 to 2018, we built a new risk assessment
model using five gut microbiota functional pathways, classifying sub-
jects by the fibrosis deterioration with an auROC of 0.72 (fig. S8B). In
a U.S. case-control cohort (49), the pathway with the highest impor-
tance in our model, phosphopantothenate biosynthesis, was signifi-
cantly higher (zero-inflated Gaussian mixture model, P < 0.05) in the
cirrhosis group than in non-NAFLD controls. Methanobrevibacter,
which was the top taxonomic feature in the prospective model, was
also significantly lower (zero-inflated Gaussian mixture model, P <
0.05) in patients with cirrhosis.

DISCUSSION

NAFLD prevalence has rapidly increased over a short time, espe-
cially in China (69). China is projected to have the largest number
of liver-related deaths among the most economically developed
countries by 2030 (70). Accumulating evidence suggests that the gut
microbiome may emerge as an active player in NAFLD develop-
ment (71). Human studies demonstrated different gut microbiota
profiles among individuals with NAFLD and those without, as well
as in individuals at different stages of NAFLD (68, 72). In the re-
cently proposed concept of metabolic-associated fatty liver disease
(MAFLD) that extends beyond NAFLD (23), gut microbiota is sug-
gested to be a major factor related to the heterogeneous phenotype
of MAFLD. In both NAFLD and MAFLD, the disease complexity
and heterogeneity may be better resolved by the inclusion of omics
technologies that integrate patient clinical phenotypes and molecu-
lar phenomics and gut microbial features. This approach has shown
its potential in the classification of hepatic (73) and, more recently,
extrahepatic diseases including ischemic heart disease (74) and cor-
onary artery disease (75). Both studies of cardiovascular diseases
suggested that major alterations of the gut microbiome and metab-
olome might occur earlier than clinical onset of disease, suggesting
the utility of gut microbiota-based risk assessment. A recent pro-
spective study extended cross-sectional evidence and demonstrated
that gut microbiota composition is predictive of incident type 2 di-
abetes after 15.8 years (76). Our study comprehensively character-
ized the gut microbiome of Chinese participants using stool samples
taken 4.6 years before the NAFLD diagnosis and matched controls.
We assessed the ability of metagenomic and metabolomic features

Leung et al., Sci. Transl. Med. 14, eabk0855 (2022) 8 June 2022

as a risk assessment tool of NAFLD occurrence within 4.6 years and
developed a random forest machine learning model that distin-
guished individuals at risk for NAFLD from controls with a perfor-
mance of 0.80 auROC. The final model consisted of 18 features of
mainly bacterial genera, pathways, and metabolites, with two clini-
cal and two anthropometric parameters. Using subsets of those fea-
tures available in external case-control cohorts also showed good
ability (auROC of 0.73 to 0.78) to classify individuals with and with-
out NAFLD, including in cohorts with the biopsy-confirmed present/
absence of NAFLD and of different ethnicities, supporting the bio-
logical relevance and generalizability of our prospective model.
Diagnosis of NAFLD requires evidence of hepatic steatosis, either
by histology or imaging. Liver biopsies have a risk of severe compli-
cations, and the sampling procedure may leave some people with
NAFLD undiagnosed if they have unevenly distributed histological
lesions (13). Steatosis evaluation based on imaging such as MRS,
CT, or ultrasonography has limitations in clinical practice such as
high price, radiation exposure, and limited sensitivity. Numerous
research efforts have searched for other reliable, cost-effective, non-
invasive diagnostic approaches, including using features that are
clinical (age, gender, diabetes, and BMI), biochemical (aminotrans-
ferases, bilirubin, and ferritin), metabolic (glycated hemoglobin,
insulin, and HOMA-IR), or lipid (TG and cholesterol) parameters
or other markers such as FGF21 and adiponectin (77-79). A few
prospective studies have also attempted to predict the development
of NAFLD over the long term (19-21). However, the predictive power
of these models was evaluated in study groups with unmatched base-
line characteristics, which may have led to overestimation of model
performance. In our community-based prospective study, these
models showed limited performance (auROC in the range of 0.58 to
0.60) when our nested case-control design included matching for
gender, age, BMI, and 4-year BMI change. This matching is partic-
ularly important for removing confounding effects and to uncover
microbiome-related risk factors for NAFLD development, given that
obesity is a major risk factor for NAFLD. Our microbiome-based
model demonstrated a good performance (auROC of 0.72) for pre-
dicting the NAFLD status of NAFLD-free individuals after 4.6 years.
Our study has limitations. The classification of patients into two
groups was not based on liver biopsy, which remains the gold stan-
dard for NAFLD diagnosis. However, this method is impractical in
a community study with thousands of participants, as in our study,
and is unethical for participants who do not show any sign of the
disease (matched controls). Moreover, according to guidelines from
the European Association for the Study of the Liver, European As-
sociation for the Study of Diabetes, and European Association for
the Study of Obesity, ultrasound is the first-line diagnostic test for
NAFLD (36), especially for large-scale screening studies. This diag-
nostic criterion has been extensively used in previous studies, such as
the Rotterdam cohort (80), the Golestan cohort (81), and the Kangbuk
Samsung Health Study (82). We note that our cohort is of high quali-
ty, with relatively comprehensive indexes acquired in a large popu-
lation. For example, in the measurement of glucose metabolism, oral
glucose tolerance tests were conducted for all participants. This test is
usually replaced by fasting glucose or FINS tests in many population-
based studies. Second, we could not predict the development of more
severe outcomes such as fibrosis because of their low incidence. This
was mainly due to the nature of our community-based epidemiological
investigation. However, using baseline microbiota, we were able to
classify subjects by fibrosis deterioration with an auROC of 0.72.
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Furthermore, serum ferritin was not measured in our study, al-
though several studies have indicated its relevance in NAFLD (83-85).
Therefore adding ferritin in our prospective model could poten-
tially enhance performance. The predictive power of our prospective
model (auROC of 0.80) was an advance compared to existing clinical
models (auROCs of 0.58 to 0.60). However, further improvements,
for example, integrating additional biochemical parameters, will
be necessary for clinical applications. Our metabolic signatures
and their taxonomic drivers revealed by our prospective model
imply but do not prove causality; thus, additional studies are re-
quired to clarify the molecular mechanisms involved in NAFLD
development.

Integrating bacterial species and functions in machine learning
models for predicting host response to treatment or lifestyle inter-
ventions and disease progression has shown great potential (86-89).
For NAFLD and its complications, gut microbiota changes can in-
dependently predict the risk of short-term hospitalizations (90 days)
in patients with cirrhosis with an auROC of 0.83 (90). Elucidating
the importance of the gut microbiome as a long-term risk assessment
tool in NAFLD is important because of the current limited thera-
peutic landscape for NAFLD and findings that early detection can
substantially improve outcomes for patients with NAFLD (91, 92).
Our proof-of-concept study identified a microbiome signature in
participants at risk of developing NAFLD in the next 4 years and points
to the potential of noninvasive diagnostic tests to complement existing
clinical screening tools for NAFLD. Moreover, identifying microbi-
ome signatures also opens a window of opportunities for microbiome-
based prophylactic and therapeutic interventions such as the utility
of propionic acid as a potent immunomodulatory supplement to
multiple sclerosis drugs (93), which is not offered by a clinical predic-
tive model built upon only a few clinical parameters or other features.
Evaluation and further improvement of our NAFLD risk assess-
ment model using larger prospective studies that are heterogeneous
for ethnicity and lifestyle patterns will increase the model’s general-
izability and obtain more refined estimations of its accuracy.

MATERIALS AND METHODS

Study design

The aim of this study was to identify potential predictive signatures
for early clinical warning of NAFLD and to develop a prognostic
risk assessment model for long-term NAFLD development. For this
purpose, we conducted a nested case-control study within a 4.6-year
prospective study in 2487 Chinese individuals, and we profiled 180
individuals from 1216 NAFLD-free participants at baseline, including
90 that were diagnosed with NAFLD in the follow-up visit (NAFLD ™),
which were matched with 90 controls without NAFLD (NAFLD ™)
by gender, age, BMI, and 4.6-year BMI change. We performed com-
prehensive metagenomic and metabolomic analyses using stool and
serum samples taken at baseline, including taxonomic diversity and
profiles at family, genus and species levels, microbial enzymes, met-
abolic pathways, and metabolites. An interpretable machine learn-
ing model integrating baseline microbial signatures was built to
predict NAFLD development after 4 years. The biological relevance
of selected features in the model to NAFLD development was fur-
ther validated in external cohorts, including three cohorts with the
biopsy-confirmed presence/absence of NAFLD. New models were
built for validation, given that some features were not available in the
external cohorts. All validation models were trained on our cohort
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and tested in the external cohorts. Further materials and methods
details are available in the Supplementary Materials.

Study participants

All participants were from the Nicheng Diabetes Screening Project
(also called the Shanghai Nicheng Cohort Study) previously de-
scribed (94, 95). This population-based, prospective study was de-
signed to assess the prevalence, incidence, and factors related to
cardiometabolic diseases among adults in Nicheng County, a sub-
urb of Shanghai, China. On the basis of the project, we designed a
nested case-control study to explore the potential causal role of the
gut microbiome in NAFLD in three randomly selected Nicheng
communities (involving 2487 participants). Figure S1 outlines study
enrolment. Of 2487 participants, 1216 were identified as not having
NAFLD at baseline; among them, 524 completed a follow-up visit
4.6 years after baseline and were screened by ultrasonography. Inci-
dent cases of NAFLD (n = 146) were identified at the 4.6-year follow-up
visit, of which 90 participants were eligible for this study involving
gut microbiota, according to the following criteria to exclude par-
ticipants: existed fatty liver, acute infectious disease, biliary obstruc-
tive diseases, alcohol abuse (more than 140 g of ethanol/week for men
or 70 g of ethanol/week for women), acute or chronic cholecystitis,
acute or chronic viral hepatitis, cirrhosis, diarrhea, known hyper-
thyroidism or hypothyroidism, chronic renal insufficiency, heart fail-
ure, presence of cancer, pregnancy, stroke in acute phase, receipt of
any antibiotic treatment within 2 weeks or receipt of any probiotic
or prebiotic within 1 week before sample collection, and suffering
from chronic or acute gastrointestinal diseases (including diarrhea,
gastrointestinal infection, and inflammatory bowel disease) in recent
1 month before sample collection. Controls (n = 90 for a case-control
ratio of 1:1) were chosen from the remaining participants who did
not develop NAFLD by the follow-up visit. To control for the risk
profiles in patients who developed NAFLD and those who did not,
controls were matched for age (+3 years), sex (male and female),
BMI (+3 kg/m?) at both baseline and follow-up, and BMI change
(0.5 kg/m”). The study was approved by the ethics committee of the
Shanghai Sixth People’s Hospital (approval no: 2014-27), following
the principles of the Declaration of Helsinki. Written informed con-
sent was obtained from all participants.

Evaluating the diagnostic ability of the model

in external cohorts

To our knowledge, no similar studies have conducted long-term
follow-up of NAFLD development in healthy individuals using a
combination of gut metagenome, metabolome, and clinical features
as a risk assessment tool. Thus, we were unable to test our prospec-
tive model directly in an external cohort. Instead, we used external
case-control cohorts to examine the ability of our final prognostic
model to classify correctly NAFLD and healthy participants. Four
cohorts were used, including two cohorts of Chinese: (i) 78 patients
with NAFLD and 10 controls without NAFLD, as diagnosed with
biopsy (BioProject ID: PRINA732131), and (ii) 111 MRS-diagnosed
NAFLD patients and 8 controls (BioProject IDs: PRINA703757 and
PRINA414688); and two biopsy-diagnosed cohorts of other ethnicity:
(iii) a European cohort of 46 patients with NAFLD and 10 controls
(54) and (iv) a U.S. cohort of 26 cirrhosis patients and 54 controls
(49). For further additional data (e.g., anthropometric and/or avail-
able clinical data) for the two Chinese validation cohorts besides
grouping information, please contact the corresponding author.
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Because some selected features included in the final model were
not available in the external cohorts, we were unable to test our
model directly. Instead, we built a new prognostic model based on
the NAFLD ™" and NAFLD ™'~ groups using a subset of the 18 selected
features that were available in the external cohorts. In the model for
the two Chinese cohorts and the European cohort, 9 of the 18 selected
features were used: two genera, three pathways, two anthropomet-
ric parameters, and two noninvasive clinical metadata; whereas 7 of
the 18 selected features were used in the model for the U.S. cohort:
two genera, one pathway, two anthropometric parameters, and two
noninvasive clinical metadata. Performances of models, including
ROC curves, precision-recall curves, and confusion matrices (gen-
erated with the optimal probability cutoff of the ROC curve), were
produced by applying the model to the unseen external cohort data.

Statistical analysis

Statistical analyses of clinical data were performed with SAS version
9.4 (SAS Institute Inc.). Normally distributed data were expressed
as means *+ SD. Data that were not normally distributed, as deter-
mined using the Kolmogorov-Smirnov test, were logarithmically
transformed before analysis and expressed as median with lower
and upper quartiles. Student’s ¢ test and chi-square tests were used
to assess differences between two groups for continuous and cate-
gorical variables, respectively. In addition, analysis of covariance
was used for continuous variables to assess the difference between
the two groups after adjusting for HOMA-IR.

Metagenomic data, including taxonomy and functional data, and
metabolomic data were analyzed in R software version 3.6.3. Metage-
nomic data were analyzed with the zero-inflated Gaussian mixture model,
using the function fitZig from R package metagenomeSeq (96) with
the default settings; metabolomic data were analyzed using the gen-
eralized linear model with inverse gamma distribution. Wilcoxon
rank-sum tests were used to test for significant differences in alpha
diversity. PERMANOVA was used to analyze beta diversity with
adonis function from R package vegan. A Mantel test, implemented
in mantel from R package vegan, using Spearman’s correlation co-
efficient was used to analyze the associations between microbiome
and metabolites. Bray-Curtis dissimilarity matrices based on taxo-
nomic relative abundance and Euclidean dissimilarity matrix for each
metabolite were computed to perform this test. The auROCs of dif-
ferent models were compared with the DeLong test, using the roc.
test function from R package pROC (97). Data were considered statis-
tically significant at P value < 0.05. The Benjamini-Hochberg proce-
dure was applied to calculate the FDR to adjust P values for multiple
hypothesis testing.
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DISCUSSION

The gut microbiome is considered a key element contributing to the regulation of human
health and disease, being associated with the development and severity of numerous highly
prevalent and chronic diseases (Thomas et al. 2017). Through the different manuscripts of
this thesis, I have provided evidence that the human body together with its microbiome
forms a unity of life or holobiont indispensable for the well-functioning of the organism.
During my Ph.D., I have applied state-of-the-art bioinformatics and statistical
analyses to better understand and to give new insights into the human gut bacteriome and
mycobiome and their implication in non-alcoholic fatty liver disease (NAFLD) progression.
In addition, the potential of the gut microbiome to develop new clinical tools was also
explored by applying novel machine learning approaches to metagenomic data. In this
section I am going to further discuss the following five topics:
» Importance of confounders in microbiome-based data analyses (manuscripts I, I1,
II1, and IV)
» Using metagenomics and metabolomics analyses to investigate potential therapies
and diagnostic strategies for NAFLD (manuscripts I, I, and IV)
» Bioinformatic and machine learning approaches allowed the development of a
microbiome-based stratification model (manuscript II)
» Limitations in mycobiome analyses (manuscript III)
» Synthesis of the four studies comprising this dissertation (manuscripts I, II, III,
and IV)

Table 1| Summary table of the manuscripts that comprise this dissertation.

Manuscript  Title

Resistant starch decreases intrahepatic triglycerides in patients with

I . . . .
NAFLD via gut microbiome alterations
1 Identification of robust and generalizable biomarkers for microbiome-
based stratification in lifestyle interventions
1 Genetic variation in IL-17A regulation and mycobiome dysbiosis
contribute to non-alcoholic fatty liver disease
v Risk assessment with gut microbiome and metabolite markers in

NAFLD development
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1. Importance of confounders in microbiome-based data
analyses

The gut microbiome is a complex ecosystem exposed to numerous covariates and
confounding variables (e.g., age, gender, BMI, antibiotics, diet, geography, etc.) (Hasan and
Yang 2019). Therefore, the use of analytic approaches to address confounding is needed to
obtain more reliable statistical associations to better evaluate the relationship between gut
microbiome and disease.

Previous investigations have shown age to affect the gut microbial composition
(Odamaki et al. 2016; Ghosh et al. 2020; Wilmanski et al. 2021). Elderly subjects have been
found to have distinct gut microbial community characteristics compared to young/middle-
aged individuals (Ghosh et al. 2020). In addition, gender has also been mentioned as an
important variable affecting the gut microbiome, and it has been suggested that dysbiosis
may drive sex differences in the progression of some diseases (Haro et al. 2016; Ahmed and
Spence 2021). Haro et al. found that gender differences in the gut microbiome may be
influenced by the grade of obesity. Ethnicity is another important variable to consider in
microbiome analyses. Different investigations have explored the influence of ethnicity on
the gut microbiota, and differences in the diversity of the microbial composition and in the
abundances of some gut microbes have been shown between different ethnicities
(Deschasaux et al. 2018; Dwiyanto et al. 2021; Boulund et al. 2022). Diet is also an
important factor to take into account in microbiome studies as some foods may produce
significant alterations in the gut microbial community (Johnson et al. 2019). In addition,
medication is also a major confounder when analyzing the gut microbiome, as some
medications including antibiotics and non-antibiotics drugs may alter the microbial
community in the gut (Weersma et al. 2020). For example, commonly used drugs such
as proton pump inhibitors (drugs used to treat acid-related disorders), laxatives (drugs to
treat constipation), and metformin (oral blood glucose-lowering compound used in the
treatment of T2D) have been shown to influence gut microbiome composition and function
(Weersma et al. 2020). Antibiotics also have a drastic effect on the gut microbiota
community (Taur et al. 2018; Palleja et al. 2018; Gutierrez et al. 2020; Seelbinder et al.
2020; Ramirez et al. 2020). Availability of the medication patient history during and some
months before the clinical trial allows us to determine, when designing the analysis strategy,
the most appropriate statistical analysis accounting for these drugs when convenient.
Therefore, considering and accounting for these confounders in microbiome-based analyses
has become a recommended practice in the last years (Gao et al. 2018; Zhong et al. 2019;
Jie et al. 2021; Zuo et al. 2022).

In different projects that comprise this dissertation (manuscripts I, III, and IV), |
made use of statistical approaches that allowed accounting for gut microbiome influential
variables such as age, gender, and BMI, as they influence the statistical results when
analyzing the gut microbiome community (Ghosh et al. 2020; Tierney et al. 2022). For each
manuscript, apart from the main variables of age, gender, and BMI; the most appropriate
confounders were chosen depending on the cohort, research question, and objectives of each
project. In manuscript III, where we investigated changes in the fungal community in
NAFLD subjects, our NAFLD cohort was free of antibiotic intake for at least 6 months
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before the sample collection. A recent study showed that antibiotics might have a long-term
influence on the human mycobiome compared to the bacterial community (Seelbinder et al.
2020). Therefore, I investigated if antibiotics had a noticeable long-term effect in the fungal
community of our cohort and I found a significant impact in alpha diversity between
antibiotic-free and the individuals that took antibiotics more than six months before the
sample collection in the NASH group. Knowing this, in the analyses performed with the full
cohort, the antibiotic intake was considered as a confounder. This allowed me to keep the
full cohort of samples to perform the analyses, without removing samples considering the
antibiotic intake. In addition, analyses were also performed in the sub-cohort of antibiotic-
free samples and the same results were found providing confident and reliable conclusions.

On the other side, accounting for specific confounders may be useful when
investigating a certain disease in order to adjust for the major confounders linked to some
conditions that may affect the analyses. To determine the major confounders that are of
interest to be included, it is important to understand the disease pathogenesis and its
implication with other complications. NAFLD 1is associated with metabolic and
cardiovascular disorders such as T2D, obesity, and hypertension (Kolodziejczyk et al.
2019). Therefore, in the NAFLD-related projects of this dissertation (manuscripts I, ITI,
and IV) differential abundance and correlation analyses were performed accounting for
obesity- and diabetes- related parameters (e.g., BMI, VFA, SFA, adipo-IR or HOMA-IR)
when appropriate. Adjusting for obesity- and diabetes-related variables allowed us to obtain
conclusions linked directly with NAFLD progression and not to these conditions. In
addition, in manuscript I where we explored RS supplementation as a potential microbiota-
directed food intervention, we accounted for weight loss when we investigated the clinical
changes that underwent the RS intervention group compared to the control group. We found
that the amelioration of the disease progression in the RS intervention group, showed by a
reduction of intrahepatic triglyceride content (IHTC, our primary outcome) and an
improvement in liver injury and related metabolic disorders, was independent of the weight
loss. One limitation when performing these types of analyses adjusting for confounders, is
the possibility of having numerous missing values in the confounder variables. Missing or
incomplete data on the confounding factors may lead to a result bias (Lin and Chen 2014).
In addition, the available functions and tools to adjust for confounding do not usually allow
to provide the factors for the adjustment with missing values. Therefore, missing samples
need to be removed or methods for data imputation should be used to perform the analyses.

Another fact that I considered during my research to have more generalizable and
confident conclusions is the validation of the results in different population cohorts when
convenient, and for example in cohorts from different ethnicities. Nowadays, this task has
become easier to put into practice thanks to the large amount of openly available data. In
manuscripts I and IV, we investigated the role of the gut microbiome in two Chinese
NAFLD cohorts. In manuscript I, I also explored the abundance of the identified
detrimental species B. stercoris in two external cohorts, one Chinese and one European,
confirming our results in different population cohorts including different ethnicities. In
manuscript IV, we developed an early NAFLD detection machine learning model and the
performance of the final model was also validated in several external case-control cohorts
from Asia, the United States, and Europe. Apart from the non-invasive risk assessment
model for NAFLD development, a model to classify different degrees of steatosis and a
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model to predict the fibrosis-4 (FIB-4) index change four years later were built and validated
in the external cohorts. Lastly, in manuscript II, different cohorts with Asian and Caucasian
ethnicities were used to build the microbiome-based stratification model for lifestyle
interventions, and the final model was validated in two external cohorts with Caucasian and
American ethnicities. Therefore, the microbiome-based machine learning models developed
in manuscripts II and IV were validated in different cohorts including different ethnicities
obtaining a good model performance supporting the biological relevance and
generalizability of the models and the biomarkers identified.

In conclusion, the different manuscripts that comprise this dissertation have shown
the importance of the covariates in microbiome-related data analysis to obtain generalizable
and more comprehensive conclusions. Taking into consideration microbiome-related
cofounder factors and including statistical approaches that allow accounting for confounders
in microbiome-based studies, helps and improves the identification of disease-specific
microbiome alterations, and it is encouraged to be applied for further microbiome-based
studies. In addition, validation of the results in different population cohorts, when possible,
1s suggested to obtain more confident and generalizable results.

2. Using metagenomics and metabolomics analyses to investigate
potential therapies and diagnostic strategies for NAFLD

Previous research has investigated the beneficial effects of resistant starch (RS)
supplementation on host health (Zhu et al. 2022). One of the advantages of RS is that it is a
relatively simple and inexpensive dietary strategy. RS has been found to decrease fat
accumulation by improving insulin sensitivity and maintaining lipid metabolic homeostasis
(Zhang et al. 2015; Maier et al. 2017). In a previous study, RS significantly improved insulin
and low-density lipoprotein (LDL) in obese individuals (Eshghi et al. 2019). RS also
showed a significant reduction of liver steatosis and in the serum levels of ALT, TG, and
HOMA-IR in NAFLD mice (Shou et al. 2021). However, RS supplementation has never
been explored in a clinical study on NAFLD patients. Therefore, in manuscript I, I made
use of bioinformatic and statistical techniques in order to investigate RS supplementation
as a potential microbiota-directed foods (MDFs) therapy to treat NAFLD. We performed a
randomized clinical trial where we identified RS as having a beneficial effect with a
reduction of the IHTC independently of weight loss in the intervention group. RS also
reduced body weight, body fat, abdominal fat, liver enzymes, liver profiles, fasting insulin,
insulin resistance, and serum fibroblast growth factor (FGF21). Combining shotgun
metagenomics sequencing and targeted metabolomic profiling we discovered that
improvements produced by RS intervention may lead to beneficial changes in the gut
microbiota composition and the metabolic profile. We found decreased levels of microbial
metabolic products, especially the AAs pool and BCAAs levels. Previous studies have
demonstrated an increase in the circulating levels of BCAAs (leucine, isoleucine, and
valine) in NAFLD and NASH (Kalhan et al. 2011; Goffredo et al. 2017; Gaggini et al.
2018). Correlation analysis showed BCAAs levels to be significantly positively correlated

with IHTC, ALT, AST, and GGT. In addition, the correlation with IHTC was found to be
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independent of body weight and insulin resistance, suggesting a direct influence on BCAAs
with NAFLD pathogenesis. We deeper investigated the effect of RS on the microbial
composition, and we identified a significantly reduced abundance of Bacteroides stercoris,
a species that was also correlated with IHTC, ALT, and AST levels when controlling for
age, gender, HOMA-IR, and obesity-related parameters. This finding suggested that the
effect of B. stercoris on NAFLD aggravation was independent of body weight and insulin
resistance.

The availability of WGS data allowed us to profile the functional potential of the gut
microbiota community. We found that the phenotypic alleviation of NAFLD may be
potentially linked to a reduction in the intervention group of lipopolysaccharide (LPS)
biosynthesis and export. Previous studies have associated an increase in LPS production
with NAFLD and the progression of hepatic steatosis (Soares et al. 2010; Fukunishi et al.
2014; Carpino et al. 2020).

In manuscript I, a sophisticated computational framework was applied to integrate
microbial species, functions, and host phenotypes. From this comprehensive analysis, B.
stercoris was 1dentified to contribute to the correlations of several BCAAs biosynthesis
modules and the clinical phenotypes IHTC and FGF21. To date, no research has been done
investigating the effect of B. stercoris on the aggravation of diseases. In this project, we
validated the positive association of B. stercoris with NAFLD in mice by conducting a
monocolonization study to confirm the NAFLD-promoting effect of B. stercoris and to
explore the possible mechanisms involved.

Bioinformatic analyses performed suggested B. stercoris as a good candidate to
investigate its role in NAFLD aggravation and it was validated in different experimental
studies by our collaborators. Of note, experiments were carried out using a specific B.
stercoris strain, despite the fact that the taxonomic profiling only reached the species level.
In some cases, subtle genetic differences between strains within a single bacterial species
can have profound impacts to induce different behaviors (Ghazi et al. 2022). For example,
Escherichia coli strains have been shown to be commensal, pathogenic, host-associated, or
environmental (Leimbach et al. 2013). Yet methods for strain-level assignment are
insufficient, therefore numerous efforts are being done to improve and develop tools for
more precise strain-level analyses. Especially, the main challenges consist of dealing with
reference databases including highly similar reference strain genomes and the possibility of
having multiple strains under one species in a sample (Liao et al. 2022). Advances in
metagenomic strain-level population genomics will allow researchers to perform more
accurate and high-resolution microbiome analyses.

The results presented up to here demonstrate the role of a single species, namely B.
stercoris, in facilitating the progression of NAFLD through BCAA production. These
results have helped to understand some mechanisms involved in the disease pathology.
However, NAFLD is a complex disease caused by multiple mechanisms and not by a single
species, but rather by, most probably, broad microbiome changes. To provide evidence
about the causal role of whole microbiota changes in NAFLD, in manuscript I we
performed FMT in mice fed with a Western diet. Previous mice studies have also explored
gut microbiota's role in NAFLD through FMT (Garcia-Lezana et al. 2018; Xue et al. 2019;
Shou et al. 2021). Our study showed that FMT of RS-altered microbiota profile alleviates
NAFLD by, among other findings, reducing hepatic steatosis, improving gut barrier
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integrity, promoting the expression of lipolysis, and reducing inflammation-related genes,
suggesting a causal role of gut microbiota in attenuating NAFLD.

To help to understand the implication of not only bacteria but also the fungal
community in NAFLD pathogenesis, in manuscript III we performed genotyping and
mycobiome analyses in a NAFLD cohort and investigated associations between genetic
variations in antifungal immunity and fungal changes in NAFLD. A previous study showed
an increase in the frequency of IL-17-producing cells among intrahepatic CD4" T cells and
a higher Thl7/resting regulatory T cells (rTreg) ratio in peripheral blood in NAFLD
progression to NASH (Rau et al. 2016). From the genotyping and bioinformatics analyses,
we identified an association between the IL-17A rs2275913 variant and fibrosis severity
that is accompanied by mycobiome dysbiosis, where we found increased abundances of the
Candida CTG-clade in patients with advanced fibrosis. Previous studies have found an
increase of Candida CTG-clade species such as Candida albicans and Debaryomyces
hansenii, that were found higher in liver- and gastrointestinal-related diseases (Jain et al.
2021; Hartmann et al. 2021; Li et al. 2022b). In manuscript III, ex vivo T-cell stimulation
assay performed by our collaborators demonstrated elevated IL-17A levels in response to
D. hansenii and C. albicans lysates in rs2275913 minor allele variant, suggesting a Th17-
stimulating potential. Together with the elevated Candida CTG-clade abundance in NAFLD
patients identified from the bioinformatic analyses, our results suggest a combinatory effect
of dysregulated antifungal immunity and an imbalance in Candida CTG-clade species on
fibrosis development in patients with NASH. After investigating the fungal changes in our
NAFLD cohort, I performed community network analysis that allowed the integration of
bacterial and fungal genera and the identification of one subcommunity module containing
Candida CTG-clade together with one more fungal and nine bacterial genera, that was found
to be associated with NAFLD progression, suggesting multiple microbial factors
contributing to NAFLD.

Trying to address the current challenge of finding new clinically reliable and cost-
effective strategies for diagnosis and early detection of NAFLD mentioned in the
introduction section 2.1, in manuscript IV, the potential value of the gut microbiome in
NAFLD diagnosis was explored. The use of shotgun metagenomics and targeted
metabolomics combined with clinical information allowed the development of a machine
learning model able to early predict NAFLD development. A recent study has shown the
predictive capacity of the gut microbiome for incident liver diseases (Liu et al. 2022). Liu
et al. showed that adding microbiome information to conventional risk factors improved the
model performance that successfully predicted the development of liver disease 15 years
later. In relation to NAFLD, up to now, some studies have built predictive models for early
detection of NAFLD using clinical biomarkers such as fatty liver index (FLI), FGF21, BMI,
or TG, and glucose index (TyG) (Li et al. 2013; Zheng et al. 2018; Motamed et al. 2020).
In manuscript IV, we characterized the gut microbiome of the cohort and we found at the
baseline differences in the microbiome signature and metabolic shifts in subjects that will
develop NAFLD compared to controls. Novel machine learning approaches were used to
build a non-invasive risk assessment model to predict NAFLD progression and to identify
microbial signatures in participants at risk of developing NAFLD in the next four and a half
years. Feature selection approaches identified 18 features including bacterial genera,
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pathways, metabolites, and clinical parameters; as potential early NAFLD biomarkers
having a relevant role in early NAFLD detection. In addition, incorporating the final model
microbiome features into previous clinical models (Li et al. 2013; Zheng et al. 2018;
Motamed et al. 2020), produced significant improvements demonstrating the potential of
the microbial community for early NAFLD detection. Finally, to further explore the
relevance of the selected features, a new model to classify mild or severe steatosis was built
using the 18 selected features obtaining a good model performance.

In conclusion, the metagenomic and metabolomic approaches used in this thesis
have allowed a better understanding of the implication of the gut microbiome in NAFLD
development and progression. Comprehensive analyses and application of bioinformatic
pipelines have helped to identify microbial biomarkers and to validate the vital role of the
bacteriome, mycobiome, and metabolome in NAFLD pathogenesis. These new findings
may direct the development of new microbiome-based therapies and diagnostic strategies
for NAFLD, that will help to improve the population’s quality of life and to reduce the
healthcare cost for NAFLD management.

3. Bioinformatic and machine learning approaches allowed the
development of a microbiome-based stratification model

In the last years, the application of machine learning approaches in microbiome-related
studies has been widely applied. Machine learning has become a powerful tool to identify
microbiome signatures and microbial biomarkers. It is also employed in model development
for diagnostics, biotherapeutic selection, patient stratification, and early disease detection
(Richens et al. 2020; Spiga et al. 2021; Huang et al. 2021). In this thesis, machine learning
approaches were applied in manuscripts II and IV to develop models for microbiome-
based stratification and early NAFLD detection respectively. In this section, I am going to
focus on manuscript II where I applied machine learning approaches to build a
microbiome-based patient stratification model.

Nowadays novel microbiome-targeted interventions that aim to target and alter the
gut microbial community to improve the host health are widely investigated and applied
(e.g., manuscript I). However, clinical trials have demonstrated that there are large
interindividual differences in the treatment response and some of these differences may
depend on subject-specific gut microbial composition (Cotillard et al. 2013; Korpela et al.
2014; Tap et al. 2015). The gut microbiota is resistant to changes and some microbiome-
targeted interventions are not going to affect the microbial composition of some individuals.
Knowing in advance if a microbiome community will react to specific lifestyle components
may help to optimize personalized lifestyle approaches. Therefore, in manuscript II, we
aimed to identify microbial biomarkers among the gut microbial community associated with
the degree of change in the microbiome structure and develop a machine learning model
able to predict microbial responsiveness.

In order to build the stratification model, we first applied bioinformatic analyses to
investigate the resistance potential of the gut microbial ecosystem of an individual using a
stability metric called intraclass correlation coefficient (ICC), and established a criterion for
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distinguishing significant changes from natural fluctuations of the gut microbiota
community. Differentially abundant analysis was performed to identify highly abundant
species in the individuals that showed minor impact on the microbial’s community structure
also named as non-responders, and in the individuals that showed significant changes in the
microbial community in response to lifestyle interventions or responders. From the
differentially abundant and microbiome stability analyses we identified 3 species,
Prevotella copri, Bacteroides stercoris, and Bacteroides vulgatus, to be potential
biomarkers of microbiome resistance. We also explored the species highly abundant in
responders and a total of 38 species were identified. Interestingly, most of these species
were correlated with at least one amino acid biosynthesis pathway. We further investigated
amino acid biosynthesis-related pathways and explored the top species that contributed to
these functions. Network analysis performed showed differences between responders’ and
non-responders’ community networks. We identified in the responders network that amino
acid auxotroph species suggested by Yu et al. study (Yu et al. 2022) were also correlated
with amino acid-related KOs when integrating the functional profile into the network.
Previous studies have shown that metabolic cross-feeding is a crucial process involved in
the development and composition of the microbial community (Henriques et al. 2020;
Lopez and Wingreen 2021). In addition, Mee et al. observed that microbial genomes for
amino acid biosynthesis are absent in a substantial proportion of all bacteria (Mee and Wang
2012), therefore, amino acid auxotrophy may have an important role in promoting
cooperative interactions between different bacteria in the microbiome (Mee et al. 2014).

The different analyses performed in the first part of the study suggested that amino
acid biosynthesis has an important role in microbiome dynamics; plus, comprehensive
analyses identified signature species in responders’ and non-responders’ microbial profiles
that may serve as potential microbial biomarkers of the microbiome’s resistance to lifestyle
interventions. These differences found at the baseline microbial community between
responders and non-responders suggested that machine learning approaches may be able to
successfully predict the gut microbiome responsiveness to a lifestyle intervention using the
gut microbial profile before starting the intervention.

Previous studies have developed machine learning models that predict host
phenotype changes such as insulin resistance (Liu et al. 2020), fat change (Jian et al. 2022),
or significant weight loss (Dong et al. 2021) in response to lifestyle interventions using the
microbial community at the baseline. However, few studies have focused on investigating
microbiome resistance in response to lifestyle interventions, with only one recent study that
proposed a method for preliminary assessment of the microbiome response using amplicon
data (Klimenko et al. 2022).

In manuscript II, I made use of gradient boosting, a widely used method for
regression and classification, to build a model that predicts the microbiome resistance to
lifestyle interventions using the microbial composition of the individuals before they start
the intervention. Gradient boosting is a popular machine learning algorithm that has been
used across different domains including metagenomics (Ryan et al. 2020; Liu et al. 2022).
In this project, I investigated how different microbiome-related data (species, genera, and
pathways) were able to predict the microbiome resistance to change after lifestyle
interventions. A final taxonomic-based model was built achieving a good performance with
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an AUC up to 0.86 in two validation population cohorts from different ethnicities. Recursive
feature elimination was used as a feature selection method to subset the top 30 features used
by the model. A total of 12 genera and 18 species contributing to the prediction of
microbiome resistance to interventions were selected from which 19 were identified in
previous analyses of the study as associated with microbiome responsiveness, confirming
the relevance of these taxa in the microbiome dynamics in response to lifestyle
interventions. Therefore, the predictive model built may potentially serve as an initial step
to personalized lifestyle intervention therapies by applying a microbiome-based
stratification strategy.

Despite our promising results, we are aware that a larger number of samples would
allow us to perform more advanced machine learning algorithms, such as deep learning. In
this sense, the availability of more longitudinal cohorts with clinical and biochemical
characterization would be beneficial for future studies. In addition, the integration of clinical
and biochemical profiles may help to build more precise and personalized models.

In conclusion, this study demonstrated that there are differences in the baseline
microbial community signatures that characterize the microbiome’s resistance to lifestyle
interventions, and we present a machine learning model that predicts the microbiome
resistance to interventions using the baseline microbiome composition. The application of
machine learning approaches is helping to improve the design of personalized lifestyle
approaches and to develop new models for therapeutic strategies. Future approaches
combining stratification by host phenotype and by gut microbial characterization will
optimize the intervention response of individual patients, achieving a greater success in
treating patients.

4. Limitations in mycobiome analyses

Even though the mycobiome constitutes only a small proportion of the microbes living in
the gastrointestinal tract, the potential role of the fungal community in the gut is increasingly
recognized (Huseyin et al. 2017). Yet, the gut mycobiome remains underinvestigated, being
bacteria the main focus of study in the last decades. Therefore, mycobiome data analyses
are still limited remaining one step behind compared to bacteriome analyses (Thielemann
et al. 2022). Apart from challenges in the sample collection, sample processing, and storage;
several limitations still arise concerning the bioinformatic analyses including the lack of
reference databases, standardization procedures, and analysis pipelines or tools.

The availability of well-curated and high-quality databases is needed for
comprehensive and more robust taxonomic classification, and fungal databases are often
being updated (Liicking et al. 2020). The choice of the database has been shown to clearly
impact the study results with considerable differences in the community compositions
(Huseyin et al. 2017; Thielemann et al. 2022). The curation of databases and fungal profiling
tools need to deal with the complexity of the fungal taxonomy and the sparse databases.
Due to the complex fungal taxonomy, in manuscript I1I, fungi were grouped according to
genus except for the characterization of Candida. Candida is a polyphyletic genus
comprising a large variety of phylogenetically distant species, and to account for this, we
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grouped it in the Candida CTG-clade. This clade belongs to the order Saccharomycetales
and clusters the Candida spp. characterized by an alternative decoding of the CTG codon
leading to a serine amino acid instead of the canonical leucine (Miihlhausen and Kollmar
2014). Some of the species belonging to this clade are C. albicans, C. tropicalis, C.
parapsilosis, and Debaryomyces hansenii (formerly known as C. famata). However, other
species are distantly related to Candida CTG-clade and were partially renamed and
regrouped in other genera, for example, Nakaseomyces glabrata (commonly known as
Candida glabrata) and Kluyveromyces marxianus (formerly Candida kefyr) (Borman and
Johnson 2020).

The choice of the profiling strategy and the primer may influence the analysis results.
Nuclear ribosomal DNA internal transcribed spacer (ITS) has been consensually selected as
the formal barcode to assess the fungal composition as this region can amplify the fungal
rDNA from the majority of the species (Huseyin et al. 2017). High throughput sequencing
strategies focused on two different ITS subloci that are separated by the conserved 5.8S
region, the ITS1 and ITS2 regions, however, it is still not clear which of them has the best
taxonomic resolution (Yang et al. 2018). In addition, the amplicon strategy used may
influence the study outcome due to different fungal taxonomic identification (Monard et al.
2013; Yang et al. 2018; Frau et al. 2019). In manuscript I1I, ITS1 data was used to access
the fungal profile of our NAFLD cohort. Even though ITS2 may have slightly different
taxonomic identification, our results go in line with the only previous NAFLD mycobiome
study where they used a different primer strategy (ITS2). Therefore, primer bias seems not
to have a major influence on the results for overall highly abundant fungal species, despite
the fact that previous research has reported ITS1 probably lead to missing species detection
from Basidiomycetes phylum (i.e. Malassezia and Cryptococcus) (Frau et al. 2019). In
addition, amplicon sequencing strategies remain to be improved. A study investigating the
identification of Basidiomycota species using different primer strategies showed
that, neither the complete ITS region nor the sub-regions successfully identified 11 of the
113 Basidiomycota genera (Badotti et al. 2017). Amplicon sequencing has been shown to
be helpful for identifying low-abundance fungi, even though it also has some disadvantages
as it is subject to selective primer bias or lower taxonomic resolution (Tiew et al. 2020). An
alternative is the use of whole-genome shotgun (WGS) metagenomics to study the
mycobiome. Different from amplicon sequencing, WGS metagenomics sequences the total
DNA from a given sample. However, the availability of tools to characterize the fungal
community based on metagenomic reads is almost inexistent. The low abundance of fungi
relative to bacterial DNA across a variety of human samples is a challenge for WGS
mycobiome profiling. High sequencing depth that goes together with high cost is likely
required to determine the fungal composition using WGS metagenomics (Tiew et al. 2020).
Much work remains to improve and develop new strategies and protocols for more accurate
and sensitive fungal WGS metagenomic profiling.

Finally, more efforts to develop standardized protocols need to be done for fungi.
For example, studies have found that the DNA extraction method influences the microbial
community obtained (Sui et al. 2020). The impact has been shown to be lower when
extracting bacterial DNA, as most of the protocols have been optimized for bacteria, leading
to more biased results for other microbes such as fungi (Leigh Greathouse et al. 2019).
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Therefore, more investigation is required to evaluate optimal DNA extraction methods and
protocols to study fungal communities.

In conclusion, knowledge about the gut mycobiome and how it affects human health
and disease is still limited, and new advances and research need to be done in this field. The
development of novel tools, standardized protocols, and more complete and curated
databases is crucial for achieving more comprehensive mycobiome analyses. Only one
previous study together with manuscript III has investigated the fungal community in
NAFLD development and has demonstrated an important role of the mycobiome in NAFLD
progression. Therefore, more studies are required to deeper elucidate the fungal role and its
link with bacterial changes in NAFLD.

5. Synthesis of the four studies comprising my dissertation

Numerous studies have found that different types of environmental and lifestyle factors
have a clear impact on the gut microbiome of individuals. An important gut microbiome
modulator is diet, which has a lot of potential for developing microbiome-based therapies.
Consequently, much research has focused on understanding how different types of foods
modulate the gut microbiome. For instance, Barone et al. conducted a study demonstrating
that a Mediterranean diet promotes a gut microbiome composition associated with health
benefits, while a high-fat Western diet leads to gut microbiome alterations with negative
implications for metabolic health, including a greater relative abundance of asaccharolytic
bacteria as well as of fat- and bile-loving microorganisms (Barone et al. 2019). Ketogenic
diet was also found to produce changes in the gut microbial composition associated with an
improvement of metabolic health in different diseases including epilepsy, obesity, and
dyslipidemia (Attaye et al. 2022). In this dissertation, my manuscript published in Cell
Metabolism (manuscript I, Ni et al. in press) investigated the potential use of RS as
microbiome-directed food to treat NAFLD. In this study, we found that RS supplementation
modulates the gut microbiome composition, and possible mediators related to the beneficial
effects of RS were evaluated. However, as demonstrated in my publication in Microbiome
(manuscript II, Chen et al. 2023), each individual’s microbiome community response is
different and predictable. The ML model that I developed in this study can be used for
patient stratification in dietary studies. Therefore, if I had to repeat manuscript I study,
besides the randomization based on age, gender, and other factors, I could use this ML
model to stratify patients including the same proportion of individuals with resistant and
flexible gut microbiomes in the two groups.

Apart from the use of machine learning for patient stratification, this novel discipline
has a variety of applications in the microbiome field including phenotypic prediction,
biomarker discovery, and treatment outcome evaluation among others (Li et al. 2022a). For
instance, Heshiki et al. developed a ML model that successfully predicts cancer treatment
output using the microbiome information prior to therapy initiation (Heshiki et al. 2020).
Another study by Chen et al. constructed a highly accurate age prediction model using gut
microbiome data (Chen et al. 2022). My publication in Science Translational Medicine
(manuscript IV, Leung et al. 2022) presents, for the first time, a microbiome-based
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prognostic model for NAFLD. This model incorporates clinical data, metabolites, and gut
bacteria community information. However, as demonstrated in my collaborative
manuscript with the University of Wiirzburg (manuscript I1I), not only bacteria but also
fungi are playing an important role in the development of NAFLD. Taking into
consideration the importance of the fungal community in NAFLD and the recent
development of new methods for fungal identification using shotgun metagenomics data
(Xie and Manichanh 2022; Narunsky-Haziza et al. 2022; Salem-Bango et al. 2023), it would
be very interesting to repeat manuscript IV study incorporating the fungal profile in the
model. In this way, it would be possible to evaluate the prognostic power and potential of
the fungal composition for NAFLD prognosis
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