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Abstract 

Polymer drug delivery systems have developed tremendously over the past two decades, 

with a variety of polymeric carrier formulations and structures being created in the 

laboratory. The compatibility between drugs (pharmaceutical agents) and polymers is 

always the key factor, regardless of the differences in the shapes or detailed properties 

of polymeric carriers. Compatibility can be studied in terms of polymer-drug mixtures 

and Gibbs free energy change of mixing ∆𝐺mix is a reliable tool for assessing polymer-

drug pair compatibility. The Flory-Huggins interaction parameter (FH) 𝜒 is a critical 

quantity in the calculation of ∆𝐺mix , which itself is also a common indicator for 

analyzing the miscibility of polymer blends. Hildebrand solubility parameter (SP) 𝛿 is 

again the key quantity for calculating 𝜒 and itself can also provide good indication of 

solubility, particularly for nonpolar compounds. 𝛿 can be determined experimentally 

or from simulations, but for polymers, it is almost impossible to measure directly by 

experiments. Computer simulation techniques have shown the power in this field and 

can provide detailed information from the atomistic scale to the mesoscale and even the 

macroscale. 

In this study, a “𝛿 − 𝜒 − ∆𝐺mix” hierarchical approach based on in silico methods 

was established for the prediction of compatibility between tailor-made polymers and 

drugs. Molecular dynamics (MD) simulation was applied to obtain 𝛿  based on the 

atomistic structures of pure compounds and mixtures. Then 𝜒  and ∆𝐺mix  were 

calculated with the simulation results and the predictions were in good agreement with 

experimental observations for specific polymer-drug systems. MD simulations can 

provide results with high accuracy, but require also high computational cost, especially 

for polymers with complex structure or long chains. Machine learning (ML) methods 

were then applied on the basis of a database that included our historical simulation 

results and encoded structural information (molecular descriptors). In current work, 
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various of ML models were built to predict 𝛿 of polymers and the predictions had good 

accuracy compared to the simulation results but were faster and less computationally 

expensive. 

In this study, not only atomistic scale simulations but also mesoscale simulations 

were applied to study the morphology of polymer-drug clusters. Dissipative particle 

dynamics (DPD) simulation, as a popular mesoscale method, were used to qualitatively 

study the encapsulation of small interfering RNA (siRNA) with PEG-b-PAGE block 

copolymer polyplex micelle. The FH parameter was essential for describing the 

interparticle interactions in DPD simulations and was a key element in bridging the two 

scales of simulation. In current work, the simulations processed both the charged and 

neutral models, and the simulation results were in good agreement with the 

experimental observations. The simulation results also revealed that the weight ratio of 

the PEG blocks was a key factor in the encapsulation ability of the PEG-b-PAGE 

micelles, which provided valuable theoretical support to the experimental team.  

In this dissertation, the completed work will be presented in three chapters: Chapter 

I describes the ML procedure for predicting SP based on MD results; Chapter II focuses 

on the prediction of miscibility of specific polymer-drug mixtures using MD 

simulations; and Chapter III is a DPD simulation to qualitatively study the 

encapsulation ability of PEG-b-PAGE block copolymer polyplex micelles for 

encapsulating siRNA.   
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Zusammenfassung 

Polymere Systeme zur Verabreichung von Arzneimitteln haben sich in den letzten zwei 

Jahrzehnten enorm weiterentwickelt, wobei im Labor eine Vielzahl von polymeren 

Trägerformulierungen und -strukturen entwickelt wurden. Die Kompatibilität zwischen 

Arzneimitteln (pharmazeutischen Wirkstoffen) und Polymeren ist immer der 

Schlüsselfaktor, unabhängig von den Unterschieden in den Formen oder detaillierten 

Eigenschaften der polymeren Träger. Die Kompatibilität kann anhand von Polymer-

Wirkstoff-Mischungen untersucht werden, und die Änderung der freien Gibbs-Energie 

beim Mischen ∆𝐺mix ist ein zuverlässiges Tool zur Bewertung der Kompatibilität von 

Polymer-Wirkstoff-Mischungen. Der Flory-Huggins-Wechselwirkungsparameter (FH) 

𝜒  ist eine Schlüsselgröße für die Berechnung von ∆𝐺mix , die ihrerseits auch ein 

gängiger Indikator für die Analyse der Mischbarkeit von Polymermischungen ist. Der 

Hildebrand-Löslichkeitsparameter (SP) 𝛿  ist ebenfalls die Schlüsselgröße für die 

Berechnung von 𝜒  und kann ebenfalls ein guter Indikator für die Löslichkeit sein, 

insbesondere für unpolare Verbindungen. δ kann experimentell oder durch 

Simulationen bestimmt werden, aber für Polymere ist es fast unmöglich, ihn direkt 

durch Experimente zu messen. Computersimulationstechniken haben ihre Effizienz auf 

diesem Gebiet bewiesen und können detaillierte Informationen von der Atomskala bis 

zur Mesoskala und sogar bis zur Makroskala bieten.  

In dieser Untersuchung wurde ein hierarchischer "𝛿 − 𝜒 − ∆𝐺mix" Ansatz auf der 

Grundlage von in silico-Methoden für die Vorhersage der Kompatibilität zwischen 

maßgeschneiderten Polymeren und Arzneimitteln entwickelt. Die Simulation der 

Molekulardynamik (MD) wurde angewandt, um SP auf der Grundlage der 

atomistischen Strukturen von reinen Verbindungen und Mischungen zu erhalten. Dann 

wurden 𝜒 und ∆𝐺mix mit den Simulationsergebnissen berechnet und die Vorhersagen 

stimmten gut mit den experimentellen Beobachtungen für bestimmte Polymer-

Wirkstoff-Systeme überein. MD-Simulationen können Ergebnisse mit hoher 
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Genauigkeit liefern, erfordern aber auch hohe Rechenkosten, insbesondere für 

Polymere mit komplexer Struktur oder langen Ketten. Anschließend wurden Methoden 

des maschinellen Lernens (ML) auf der Grundlage einer Datenbank angewendet, die 

unsere historischen Simulationsergebnisse und codierte Strukturinformationen 

(molekulare Deskriptoren) enthielt. In der aktuellen Arbeit wurden verschiedene ML-

Modelle zur Vorhersage von 𝛿 von Polymeren erstellt, und die Vorhersagen hatten eine 

gute Genauigkeit im Vergleich zu den Simulationsergebnissen, waren aber schneller 

und weniger rechenintensiv.  

In dieser Arbeit wurden nicht nur atomistische, sondern auch mesoskalige 

Simulationen angewandt, um die Morphologie von Polymer-Wirkstoff-Clustern zu 

untersuchen. Die Simulation der dissipativen Partikeldynamik (DPD), eine populäre 

mesoskalige Methode, wurde zur qualitativen Untersuchung der Einkapselung von 

small interfering RNA (siRNA) mit Polyplexmizellen aus PEG-b-PAGE-

Blockcopolymeren verwendet.  Der FH Parameter 𝜒 war für die Beschreibungen der 

Interpartikel-Interaktionen in DPD-Simulationen von wesentlicher Bedeutung und 

stellte ein Schlüsselelement für die Überbrückung der beiden Simulationsskalen dar. In 

der aktuellen Arbeit wurden in den Simulationen sowohl geladene als auch neutrale 

Modelle verarbeitet, und die Simulationsergebnisse waren in guter Übereinstimmung 

mit den experimentellen Beobachtungen. Die Simulationsergebnisse zeigten auch, dass 

das Massenverhältnis der PEG-Blöcke ein Schlüsselfaktor für die 

Verkapselungsfähigkeit der PEG-b-PAGE-Micellen war, was eine wertvolle 

theoretische Unterstützung für das Versuchsteam war. 

In dieser Dissertation wird die abgeschlossene Arbeit in drei Kapiteln vorgestellt: 

Kapitel I beschreibt das ML-Verfahren zur Vorhersage von SP auf der Grundlage von 

MD-Ergebnissen; Kapitel II konzentriert sich auf die Vorhersage der Mischbarkeit 

spezifischer Polymer-Wirkstoff-Mischungen mittels MD-Simulationen; und Kapitel III 

ist eine DPD-Simulation zur qualitativen Untersuchung der Verkapselungsfähigkeit von 

PEG-b-PAGE-Blockcopolymer-Polyplexmizellen zur Verkapselung von siRNA. 
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The following software, programs, or tools were utilized in the creation of this 

document: 

1. Microsoft Word for making the Thesis document. 

2. Materials studio for MD and DPD simulations. 

3. Materials Visualizer for viewing the structures of all compounds 

4. Turbomole (GUI: Tmolex) for DFT simulations 

5. Padel descriptor for generating molecular descriptors 

6. Anaconda, Spyder and Python for ML 

7. Microsoft PowerPoint for preparing figures. 

8. Microsoft Excel for making tables 
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Introduction 

 

 

 

How to take the drugs? This question has always accompanied the development of 

human civilization. From muddy, bitter broths and powders to tiny pills, capsules and 

injections, the way humans take medicine has become more efficient and safer as 

technology advances. After the end of the tragic wars worldwide, and the general 

improvement of health care in many countries, the main diseases causing human deaths 

were changed. According to the data of World Health Organization (WHO), 

cardiovascular diseases caused by aging, such as ischemic heart disease and stroke, 

have become the leading cause of death worldwide.[1] Unfortunately, for a number of 

reasons conventional medication is limited in its ability to control these diseases. One 

reason for this is the toxic side effects associated with the drug, which can attack healthy 

tissues or organs while it is working, which can cause great pain to patients, especially 

the elderly and young children.[2] At the same time, there are still many diseases that 

cannot be completely cured, such as acquired immunodeficiency syndrome (AIDS). 

Drug treatment can only temporarily stop the progression of the disease and must be 

taken regularly and consistently. These issues have served as the motivation for 

scientists to develop novel drug delivery systems.[3] These systems will have the ability 

to deliver drugs more precisely to reduce side effects, or to act as carriers of vaccines 

that effectively gain immunity to specific viruses. 

Polymers are playing an important role in the development of novel drug carriers 

and have already made significant progress in application.[4] The latest achievements of 

polymer drug carrier is the mRNA vaccine against COVID-19 virus, which was the first 

large-scale application of mRNA vaccines in reality.[5] The mRNA carrier is a lipid-
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based nanoparticle and polyethylene glycol (PEG) is applied to prolong the residence 

time of the nanoparticles in the human body and improve the stability of the 

nanoparticles (figure 1).  

 
Figure 1. The structure of mRNA-lipid nanoparticle COVID-19 vaccines (Reprinted from [6] open 

access: CC BY 4.0 DEED) 

 

Although the main body of the aforementioned nanoparticles consists of 

biomolecules (lipids), polymers exhibit an important role in improving the performance 

of drug carriers and increasing the efficiency of drug delivery.[4, 7] Polymer-based 

nanocarriers have attracted the attention of the scientists because the properties of 

polymers may be able to overcome the disadvantages of lipid-based carriers, such as 

the lack of targeted delivery and harsh storage requirements.[7]  

Research on the use of polymers for drug release has been conducted for decades, 

and essentially several well-established technical lines have been developed.[7, 8] 

Polymer can be simply used as a matrix to contain the drug and the release will be 

controlled by diffusion. In such systems, polymer performs just as a container and plays 

no role in the release process. Another way is using dehydrated hydrophilic polymers 

to encapsulate drug. The polymer matrix will swell when exposed to an aqueous 

environment and the drug will move out of the matrix based on diffusion or difference 

in solubility.[8] In such systems, polymer becomes not only a container but also a 

controller of drug release when the environment changes. Not only the above-

mentioned approaches, but biodegradable polymers also have a place. Biodegradable 

polymer can be shaped into different nano structures such as micelles or nanoparticles, 

which can maintain quite long-term stability until they were triggered by change of pH, 
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temperature or redox potential.[9] The ideal degradable systems will degrade into small 

and nontoxic compounds, which can be cleaned by natural clearance mechanism. This 

dissertation focuses mostly on the degradable polymer systems, which is also one of 

the core topics of PolyTarget project. 

It is difficult to find suitable polymeric carriers for specific drugs using only 

experimental methods. Selecting candidates, analyzing properties, encapsulating drugs, 

release test, etc. Each step requires extensive laboratory work, and scientists have to 

repeat the process endlessly to obtain an acceptable result. Some good results were 

obtained from such trial-error process[10] at the beginning but not sustainable due to the 

experimental cost.  

With the development of computational technology scientists are able to build fine 

mathematical models for single molecule or a cluster of molecules based on the theory 

from theoretical physics and chemistry.[11] With different simulation methods, various 

material properties and chemical or physical processes can be studied at different time 

scales and size scales (figure 2).  

 
Figure 2. Simulation approaches at different time and length scales (picture from: 

https://www.molbnl.it/node/116) 

 

Since the first simulation of liquid carried out by Metropolis et al.[12], computer 

simulation i.e., in silico method has become a powerful tool for selecting ideal 

candidate from the ocean of materials or for designing molecules with specific 

properties, even those that have not yet been synthesized. 

https://www.molbnl.it/node/116
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Simulation can also provide strong support for the study and design of polymer 

drug carrier from different dimensions, and good progress has been made on many 

topics. At atomic or molecular scale, Density Functional Theory (DFT) can be applied 

to investigate the polymer-drug interaction and to explain some features of specific 

polymer carrier.[13] By using empirical descriptions of force as well as classical 

mechanics, Molecular Dynamic (MD) simulation can be used to study the properties of 

a much larger system containing thousands of atoms or molecules at longer time scale 

and the properties can be related to macroscopic characteristics of polymer-drug 

conjugates.[14] Complex atomic structures can be further simplified to combinations of 

larger beads (i.e., coarse graining), and simulations using such coarse grained models 

are often referred to as mesoscale. Dissipative particle dynamics (DPD) method is one 

of the representatives of mesoscale simulations. With coarse grained models and a 

modified description of forces, DPD has been applied to study more complex molecules 

or clusters such as proteins, nucleic acids and polymer nanoparticles / micelles.[15] In 

addition, DPD is able to simulate the system over a longer period of time, which is 

comparable to the real process, for example the self-assembly of nano structures or the 

interactions of nanoparticles with bio-membrane.[16] A multi-scale approach combining 

atomic to mesoscale and even macroscale simulations is considered to provide a 

complete view of the design of polymeric drug carriers, but in practice there are a 

number of challenges.[17, 18] 

Machine learning (ML), a field of artificial intelligence, aims to improve the 

performance of computers on specific tasks by using structured and labeled data. Today 

all areas of society are gradually becoming digital, and the internet has become 

pervasive in all aspects of human life. More than ever before in history, humans need 

efficient ways to process and use data, and ML is one of the most talked about methods 

today. Back to the topic of drug delivery, ML is not only a fresh idea in this scientific 

field but has shown potential to support the design and analysis of drug carriers.[19] As 

mentioned above, selecting the appropriate candidate polymeric carrier for a particular 
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drug often means extensive work in the laboratory. Simulations can help speed up the 

process, but still require sufficient computational resources. Bringing in ML may 

significantly reduce the time and resources required for the above work, which is one 

of the current hot topics.[15, 20] 

Before ML became so popular, scientists were already trying to predict various 

physical and chemical properties through simple mathematical and statistical methods. 

Quantitative Structure - Activity Relationship (QSAR) and Quantitative Structure - 

Property relationship (QSPR) are computational modeling approaches for revealing the 

relationship between compound's structure and various activities or properties.[21] The 

goal of QSAR/QSPR is to build a mathematical function of a specific property by using 

structural and/or physiochemical information as inputs:  

𝑃 = 𝑓 ( 𝑝ℎ𝑦𝑠𝑖𝑜𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 
and

or
 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) + 𝑒𝑟𝑟𝑜𝑟. 

The advent of ML has brought more mathematical tools and possibilities to 

QSAR/QSPR method and has expanded the boundaries of the data that traditional 

QSAR/QSPR can use as input.[22] ML can be used not only for predicting compound 

properties, but also for many other applications in the field of polymer drug delivery, 

such as drug dose optimization, polymer carrier design, drug release time prediction, 

etc.[18] Also, for a long-running scientific project, ML can be an effective solution to the 

problem of handling old data.[23] 

Back to the polymeric drug delivery, the compatibility of polymers and drug 

molecules is a key factor that affects the encapsulation of polymeric drug carriers. Gibbs 

free energy change of mixing ∆𝐺mix  is a widely used thermodynamic index to 

determine the miscibility of two compounds and can be described as the combination 

of entropy and enthalpy 

                             ∆𝐺mix = ∆𝐻mix − 𝑇∆𝑆mix  ,            (1) 

where ∆𝐻mix is the enthalpy change of mixing, ∆𝑆mix is the entropy change of mixing 

and 𝑇 is the temperature.  

The negative ∆𝐺mix  indicates a good miscibility of the two compounds, and a 
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positive value indicates the opposite.[24] The equation can be further derived into 

different expressions and in the current work derivation based on Flory-Huggins mean-

field theory was applied.[25] 

                   ∆𝐺mix = 𝑅𝑇(𝑛1 ln(𝜑1) + 𝑛2 ln(𝜑2) + 𝑛1𝜑2𝜒1−2),      (2) 

where 𝑅 is the gas constant, 𝑇 is the temperature, 𝑛1 and 𝑛2 are number of moles of 

component 1 and 2, 𝜑1 and 𝜑2 are volume fraction of 1 and 2, respectively. 𝜒1−2 is 

the Flory-Huggins interaction parameter (FH) and is the key quantity of the calculation. 

FH theory is a lattice model for the thermodynamics of polymer solutions and can 

be used to describe the properties of not only polymer-solvent systems but also polymer 

blends.[26] The FH parameter 𝜒  is an important quantity in the field of polymer 

thermodynamics and can itself be used as an indicator of miscibility. Take semi-dilute 

polymer solution as an example, if 𝜒 in the range of 0 to 0.5, the solution is in well 

mixed state and 𝜒 = 0.5 becomes the critical point of phase separation of semi-dilute 

polymer solution.[27] In reality, however, the behavior of polymer solutions and 

mixtures is often complex. The FH parameter is difficult to use directly to determine 

the miscibility of a particular system, such as a polymer-drug mixture[28] but is still 

useful. Like ∆𝐺mix, FH parameter can also be derived in different from and in current 

work the derivation based on Hildebrand solubility parameter 𝛿 was used. 

In this dissertation, the completed work aims to establish a framework for 

predicting properties of polymeric nanocarriers by coupling advanced data analysis 

with physicochemical concepts, which could become a platform for direct property 

prediction of polymeric nanocarriers or as part of efficient large-scale simulation 

protocols. The thesis is presented in three chapters: Chapter I describes the ML 

procedure for predicting SP based on the results of MD simulations; Chapter II focuses 

on predicting the miscibility of specific polymer-drug mixtures using MD simulations 

and FH theory; and Chapter III describes DPD simulations investigating the 

encapsulation mechanism of PEG-b-PAGE block copolymer polyplex micelles for 

encapsulating siRNA.   



Theory and methodology 

 
 

12 
 

Theory and methodology 

 

 

 

1 Flory-Huggins parameter 

The basic idea to characterize the mixing ability of polymer mixtures using ∆𝐺mix in 

this study has been briefly introduced in the previous sections. Depending on the 

purpose of the task and the required accuracy, the FH parameter 𝜒 can be derived into 

different expressions. 

FH mean-field theory uses the lattice model to represent polymer solution, as 

shown in figure 3. Taking the polymer-solvent system as an example, the lattice model 

assumes that one polymer repeating unit or one solvent molecule occupies one lattice 

site, and all sites are of exactly the same size.[27] And there can be no empty spaces in 

the lattice model, which means that the polymer and solvent molecules must fill the 

entire lattice. 

 

Figure 3. Two-dimensional lattice model of a polymer-solvent mixture [27]. 

Based on the above assumptions, the FH parameter 𝜒  can be defined by the 

interactions among sites 
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                              𝜒 =
𝑍[𝜀PS−

𝜀PP+𝜀SS
2

]

𝑘B𝑇
,                (3) 

where 𝑍  is the number of contacts of the sites (lattice coordinates). 𝜀ij  is the 

interaction energy of polymer-solvent, polymer-polymer and solvent-solvent, 

respectively. 𝑘B is Boltzmann constant and 𝑇 is the temperature. If 𝑇 is kept constant, 

it can be clearly seen that the polymer-solvent interaction plays a dominant role in the 

positive and negative variation of 𝜒 : A negative 𝜒  indicates that the energy after 

mixing is lower than the energy before mixing, implying that polymer–solvent contacts 

are preferred, i.e., good miscibility. 

Then the enthalpy of mixing can be described by 𝜒 

                             ∆𝐻mix = 𝜒𝜑(1 − 𝜑) ∗ 𝑛site𝑅𝑇,           (4) 

where 𝜑 is volume fraction of one component, 𝑛site is the total number of lattice sites 

and R is gas constant. When 𝜒 = 0 , the solution is in athermal state and ∆𝐻mix = 0 

regardless of volume fraction. However, for real polymer solutions, this athermal state 

is only an ideal situation when the polymer concentration is very low.  

Another key threshold of 𝜒 is 𝜒 = 0.5 and in the FH mean-field theory, a solvent 

can solve the specific polymer at 𝜒 = 0.5 is the theta solvent and in such solution the 

polymer chain acts like ideal chain.[27] If a solvent with 𝜒 < 0.5, it can be considered as 

a good solvent and if 𝜒 > 0.5, the solvent can be a poor solvent or even nonsolvent for 

a specific polymer. 

In practice, if the energy of mixing ∆𝐸mix is determined (∆𝐸mix ≈ ∆𝐻mix), 𝜒 can 

be calculated by re-writing equation 4  

                                 𝜒 =
𝑉m

𝑅𝑇
∆𝐸mix,                 (5) 

where 𝑉m  is the molar volume of one site. For calculating ∆𝐸mix , another popular 

thermodynamic quantity will be introduced: Hildebrand solubility parameter 𝛿[29]  

                                 𝛿 = √
𝐸coh

𝑉m
,                  (6) 

where 𝐸coh is cohesive energy and 𝑉m is the molar volume. According to FH theory, 

𝐸coh is equivalent to the total interaction energy of a system, like 𝜀ij in equation 3. In 
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practice, term 
𝐸coh

𝑉m
 can also be named as cohesive energy density 𝐶𝐸𝐷.  

After introducing 𝛿, equation 5 can be re-written as 

𝜒 =
𝑉m

𝑅𝑇
(𝛿p − 𝛿s)

2
,                (7) 

where 𝛿i  is the Hildebrand solubility parameter of polymer and solvent, 

respectively.  

Of course, equation can also be applied to polymer blends or other mixtures. 

Expanding the squared term in the equation, one finds that the interaction of the two 

components of the mixture is approximated as the product of 𝛿 from pure components 

                           𝜒 =
𝑉m

𝑅𝑇
(𝛿p

2 + 𝛿s
2 − 2𝛿p𝛿s).           (8) 

This means that there is no need to obtain the interaction energy between the two 

components when calculating 𝜒 using equation 8, thus reducing the computational cost 

of obtaining the data. The method has proven to be reliable and easy to use over many 

years of scientific practice, however, this simplification inevitably introduces a bias in 

the accurate description of the state of the mixture.[27] In current study, another method 

to calculate 𝜒 with the consideration of exact interaction energy of the mixture system 

is applied[30] 

                           𝜒 =
𝑉m

𝑅𝑇
(𝜑p𝐶𝐸𝐷p + 𝜑s𝐶𝐸𝐷s − 𝐶𝐸𝐷p−s),        (9) 

where 𝜑  is volume fraction of one component (𝜑p  for polymer and 𝜑s  for small 

molecule, such as solvent and drug), 𝐶𝐸𝐷p is the cohesive energy density of the pure 

component and 𝐶𝐸𝐷p−s  is the cohesive energy density of the mixture. In actual 

scientific work, 𝛿  can also be used independently as an indicator to characterize 

solubility, as will be described in detail below.  

 

2 Hildebrand solubility parameter 

In the 1930s Joel Hildebrand introduced solubility parameter 𝛿 to explain the concept 

of regular solution using equation 6.[29] Later it became popular because this single 
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parameter was very easy to obtain and apply in experiments. Regardless of the 

properties of the solvent, once the evaporation energy 𝐸coh  (or cohesive energy) is 

determined, 𝛿  can be easily calculated. And 𝛿  can provide simple prediction of 

solubility by comparing the 𝛿 value of two components, based on “like dissolves like” 

rule: when the 𝛿 of two compounds (solvent and solute) are close enough and “close” 

normally described by the difference of solubility parameter ∆𝛿  in the range 

± 2 MPa1/2, such two compounds have good miscibility.[29] 𝛿 is easy to use, but of 

course has its limitation: it cannot provide reliable prediction on polar compounds or 

the system with hydrogen bonding.[31] To overcome this limitation, in the 1960s Charles 

Hansen divided 𝛿 into three terms[29] 

                                   𝛿2 = 𝛿D
2 + 𝛿P

2 + 𝛿H
2
,             (10) 

where 𝛿D, 𝛿P, and 𝛿H are the contribution of dispersive interaction (van der Waals), 

polar interaction and Hydrogen bonds, respectively. These three parameters are also 

known as Hansen solubility parameters and are still widely used today. The Hansen 

solubility parameters improve the solubility prediction of polar compounds by 

analyzing intermolecular interactions separately, allowing a more differentiated 

comparison of the solubility of two compounds. Furthermore, by using Hansen 

parameters, the solubility can be visualized by 3D graphics as in Figure 4. 

 
Figure 4. 3-Dimensional Hansen space with axes representing three energy contributions 𝛿D, 𝛿P, and 

𝛿H. The solute is located at the center of the sphere of radius 𝑅0, with poor liquid (red tetrahedron) 

outside the sphere and good liquid (blue cube) inside the sphere. ([32] open access: CC BY-NC 4.0 DEED) 

 

A three-dimensional coordinate system can be constructed by using Hansen 

parameters (Hansen space) and the 𝛿 of a compound is visualized as a point in Hansen 
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space. The difference of 𝛿 between two compounds is exactly the distance between 

two points. If the solubility limit is known, then a sphere can be built with radius 𝑅0 

(Hansen sphere). If the point of a compound is inside the sphere, it is theoretically 

considered as miscible and outside the sphere is non-miscible. Compared to Hildebrand 

𝛿, the Hansen parameters provide better predictions for polar systems and are still very 

easy to use but also have limitations. One of the limitations is that the measurement of 

the parameters is often difficult, especially for the contribution of hydrogen bonding 

𝛿H.[31] Therefore, a further modified form of 𝛿 with only two terms is introduced[26] 

                               𝛿2 = 𝛿vdw
2 + 𝛿el

2
,             (11) 

where 𝛿vdw is the contribution of van der Waals (non-polar) interactions and 𝛿el is the 

contribution of electrostatic (polar) interactions. This form is easier to apply in both 

experimental and theoretical analysis (figure 5).[33] 

Using 𝛿 or 𝐶𝐸𝐷 to predict solubility of polymers still has one serious problem: 

the “polymer” itself. Polymers cannot be vaporized, and it means that evaporation 

energy 𝐸cov  cannot be obtained directly from experimental measurements. Although 

some indirect measurement methods have been used for polymers,[34] they only work 

for a few polymer species and are often of doubtful accuracy. The rapid development 

of computer technology has brought new solutions to this field. Computer simulations 

can overcome such difficulties in experiments and also provide a more microscopic 

view.[26, 35] 
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Figure 5. Solubility predictions employing electrostatic 𝛿el and van der Waals 𝛿vdw contributions to 

SPs for PEG (PEO) and various solvents: A) solvents enclosed by the circle (black line) are predicted to 

dissolve PEG for arbitrary solution compositions; B,C) differences 𝛿el and 𝛿vdw for various polymer–

solvent combinations; dashed lines indicate arbitrary separation of 𝛿el into areas B) I and II as well as 

C) further separation of II into IIa and IIb for 𝛿vdw. Green and red colors indicate experimental solubility 

data for PEG. (Reprinted from [33] open access: CC BY-NC 4.0 DEED, Copyright 2023 the Authors.) 

 

3 Computer simulation for material science 

3.1 Quantum mechanics simulation 

Since the foundation and development of quantum mechanics in the 20th century, 

theoretical calculations have become an important tool in materials science.[36] Lots of 

information about molecules, such as structure, conformation, dipole moment, etc., can 

be obtained by calculations, and the results are often in agreement with experimental 

observations.[37] In the mid-20th century, the success of digital electronic computers 

made it possible to calculate on larger spatial and temporal scales,[37] and computer 
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simulation began to play an important role in science.  

Comparing with experimental approaches, computer simulations (or in silico 

methods) have many attractive features. The simulations do not require sample 

preparation and therefore may be much less expensive and safer, especially for studies 

of radioactive compounds or explosives.[37] Also, simulation can provide information 

for changes or processes that occur very quickly. In addition, the computational results 

can help scientists gain insight into their research subjects from a more microscopic 

perspective, information that is often difficult to obtain from experiments. These 

features remain important even today and are the reason why in silico methods is 

indispensable in scientific research. 

Nowadays, with the continuous advances in computer hardware and software, the 

speed and accuracy of quantum mechanical simulations have increased significantly. 

At the same time, the development of quantum theory has made it possible to simulate 

larger sizes or more complex systems. Many programs have been developed 

specifically for quantum mechanical calculations, which have also led to a gradual 

lowering of the threshold for simulations. However, the size and complexity of the 

systems that can be studied are still constrained by limitations stemming from quantum 

mechanics itself, especially for polymers (e.g., rubber and plastics) and biological 

macromolecules (e.g., proteins). Since the 1960s, scientists have been searching for 

non-quantum simulation methods to overcome such limitations and have so far 

obtained fruitful results, one of which is the emergence and development of molecular 

dynamics. 

3.2 Molecular dynamics simulation 

Molecular dynamics (MD) simulation is currently one of the most popular non-

quantum methods for solving complex or large-scale systems. MD was born exactly 

with the birth of electronic computers, so the development of MD is the result of the 

interaction between computer technology and material science.[38] Based on Born- 
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Oppenheimer-approximation, the motion of electrons is neglected in MD, and the 

energy of the system is a function of the coordinates of the nucleus,[38] which is different 

from quantum mechanics simulation.  

As a "dynamic" approach, MD describes the motion of atoms and molecules using 

Newton's equations of motion and can provide various information on the evolution of 

the system over time. Newton's equations of motion describe the motion of an object 

over a certain period of time and in the presence of forces. In MD, the trajectories of 

the particles in a given time are described by the potential energy surface (PES) of the 

system, and the force between the particles is the gradient of PES. 

One widely used method of representing PES is the force field, which is usually a 

series of functions that estimate the inter- and intra-molecular interactions of a system. 

The parameters of the force field can be obtained through quantum mechanical 

calculations or experimental measurements, and because of this there are various force 

fields available for MD.[38] Since the 1970s, force fields applicable to biomolecules, 

polymers, metals, etc. have been developed that can provide accurate thermodynamic 

or spectroscopic information for many systems. In some scenarios, MD is comparable 

in accuracy to quantum mechanical calculations, but uses far fewer computational 

resources and can provide not only thermodynamic information, but also information 

about the motion of the system.[39] 

Many open source or commercial MD programs are already available for use on 

the average PC, and they are now essential tools in laboratories, hospitals or industry. 

MD shows advantages in simulating the time evolution of complex systems, however 

only on a limited time scale. For longer physical or chemical processes, such as protein 

folding, scientists are still working to improve the MD's computational power and have 

achieved some success.[38] 

Another way to increase the time scale of dynamic simulations is to simplify the 

molecular structure, which leads to the so-called mesoscale simulations.  
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3.3 Dissipative particles dynamic simulation 

When a system is beyond the scale limit of MD simulation, one possible way to 

continue the study is to reduce the degrees of freedom in the system and coarse graining 

is one of the popular approaches to achieve this goal. During the coarse graining, a 

particular set of atoms or molecules will be considered as one particle (also called bead), 

and their internal interactions inside the bead are ignored. After coarse graining, the 

atomic model is reformulated as a coarse-grained model with similar morphology but 

fewer particles.  

 

Figure 6. A demonstration of coarse graining from A) atomistic model to C) beads model. 

 

Coarse-grained models have been widely used in the study of complex systems, 

such as proteins, fluids, and nucleic acids, and have proven to be a powerful tool for 

studying their dynamic processes.[40] The dynamic simulation of coarse-grained models 

is closely related to MD simulation, however the MD force field cannot be used directly 

for coarse-grained models, since the interactions between the beads are different from 

those of atomic models.[17] 

One popular dynamic simulation approach for coarse-grained model is dissipative 

particles dynamic simulation (DPD), which was first developed by Hoogerbrugge and 

Koelman in 1992 and later modified by Groot et al.[17] In the DPD simulation, the 
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molecules are described as a string of beads connected by a spring-like "soft" force, and 

of course the positions of all interacting beads evolve over time in accordance with 

Newton's second law 

                           
d𝒓𝑖

d𝑡
= 𝒗𝑖, 𝑚𝑖

d𝒗𝑖

d𝑡
= 𝑭𝑖,               (12) 

where 𝒓𝑖  , 𝒗𝑖  and 𝑚𝑖  denote the position vector, velocity and mass of bead 𝑖 , 

respectively. 𝑭𝑖  represents the total force acting on bead 𝑖 . 𝑭𝑖  includes three non-

bonded parts from its neighbors: a conservative force 𝑭𝑖𝑗
C , a dissipative force 𝑭𝑖𝑗

D , and 

a random force 𝑭𝑖𝑗
R 

 𝑭𝑖 = ∑ (𝑭𝑖𝑗
C + 𝑭𝑖𝑗

D + 𝑭𝑖𝑗
R )𝑖≠𝑗 ,           (13) 

where all three forces act only within a certain range, a distance known as the cut-off 

radius 𝑟𝑐. The conservative force 𝑭𝑖𝑗
C is a soft force acting on the central linkage of 

particles, which in the classical DPD approach can be expressed as 

 𝑭𝑖𝑗
C = {

𝑎𝑖𝑗(1 − 𝒓𝑖𝑗)𝑟̂𝑖𝑗     (𝑟𝑖𝑗 < 𝑟𝑐)

            0                  (𝑟𝑖𝑗 ≥ 𝑟𝑐)
,         (14) 

where 𝑎𝑖𝑗 denotes the strength of repulsion between particle 𝑖 and particle 𝑗. In the 

above equation, 𝒓𝑖𝑗 = 𝒓𝑖 − 𝒓𝑗, 𝑟𝑖𝑗 = |𝒓𝑖𝑗| and 𝑟̂𝑖𝑗 =
𝒓𝑖𝑗

|𝒓𝑖𝑗|
. 

The dissipative force 𝑭𝑖𝑗
D  acts to impedes the interaction of the particles, which is 

the origin of the name "DPD".  

𝑭𝑖𝑗
D = −𝛾𝜔D(𝑟𝑖𝑗)(𝑟̂𝑖𝑗 ∙ 𝒗𝑖𝑗)𝑟̂𝑖𝑗,         (15) 

where 𝜔D is the weight function, which describes the decay of the dissipative force as 

the distance between particles 𝑟𝑖𝑗  increases and 𝜔D = 0  when 𝑟𝑖𝑗 ≥ 𝑟𝑐 . 𝒗𝑖𝑗  is the 

relative velocity between particles 𝑖 and 𝑗, 𝒗𝑖𝑗 = 𝒗𝑖 − 𝒗𝑗. 𝛾 is the friction coefficient, 

which represents the dissipation strength. 

In DPD simulation, the kinetic energy of the system is reduced due to the blocking 

effect of the dissipative forces and this reduction in kinetic energy is compensated by 

the random force 𝑭𝑖𝑗
R  

    𝑭𝑖𝑗
R = 𝜎𝜔R(𝑟𝑖𝑗)𝜃𝑖𝑗𝑟̂𝑖𝑗,             (16) 
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where 𝜎 represents the noise strength, 𝜔R(𝑟𝑖𝑗) is the weight function related to 𝑟𝑖𝑗 and 

𝜃𝑖𝑗 denotes a randomly fluctuating Gaussian statistical variable with zero mean and unit 

variance that ensures that the total momentum is conserved. 𝜎, 𝜔R(𝑟𝑖𝑗) and 𝜔D(𝑟𝑖𝑗) 

can be obtained through following equations 

 𝜎 = √2𝛾𝑘B𝑇,                (17) 

𝜔R(𝑟𝑖𝑗) = 1 −
 𝑟𝑖𝑗

𝑟𝑐
,              (18) 

                 𝜔D(𝑟𝑖𝑗) = [𝜔R(𝑟𝑖𝑗)]
2

= (1 −
 𝑟𝑖𝑗

𝑟𝑐
)

2

      (𝑟𝑖𝑗 ≤ 𝑟𝑐),    (19) 

where 𝑇 is the system temperature and 𝑘B is the Boltzmann constant. 

Moreover, a spring force 𝑭𝑖𝑗
S   is introduced to describe the constraint between the 

bonded beads in molecules 

𝑭𝑖𝑗
S = ∑ 𝐶𝑟𝑖𝑗𝑗 ,                (20) 

where 𝐶 is the spring constant, and the sum runs over all particles to which particle 𝑖 

is connected. 𝐶 is often set to be 4.0 according to the study by Groot and Warren.[17] 

The repulsive parameter 𝑎𝑖𝑗 in equation 14 lies on the underlying atomistic interactions 

between bead 𝑖 and 𝑗 which is linearly related to the Flory-Huggins parameters 𝜒 [41] 

                                 𝑎𝑖𝑗 = 𝑎𝑖𝑖 + 3.27𝜒𝑖𝑗            (21) 

where 𝑎𝑖𝑖  is equal to 78[17, 42] and 𝜒𝑖𝑗  can be estimate with Hildebrand solubility 

parameter 𝛿  of bead 𝑖  and 𝑗  by equation 7. The coefficient 3.27 is derived from a 

linear estimation between 𝜒𝑖𝑗 and the excess repulsion (𝑎𝑖𝑗 − 𝑎𝑖𝑖) in a series of linear 

chain models proposed by Groot and Warren. [17] 

To this point, a potential multi-scale approach combining MD and DPD simulations, 

using the Hildebrand solubility parameter as a bridge, could be established. As 

computational power continues to increase, multiscale simulation has become an 

increasingly important topic in materials science, and this approach is considered to 

provide a significant amount of information about a system or a chemical/physical 

progress over a wider range of spatial or temporal scales than conventional simulation 

approach.[43] Multiscale simulations already have some achievements,[44] but still faces 
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some challenges and there are still many questions that need to be addressed, for 

example a general validation metric for the simulation results and error propagation 

within the multiscale models.[45] 

3.4 Machine learning 

With the massive advances in computer hardware and algorithms, the spatial and 

temporal scale limitations of today's simulations have been greatly improved compared 

to earlier times. Molecular dynamics, for example, can already simulate systems of 

more than 10 billion atoms at a scale that overlaps even some mesoscale simulations. 

But many challenges remain: computing resources are still strained, and the larger and 

more complex the system being simulated, the more computing power is naturally 

required. Also, the time scale of the simulation is still insufficient compared to reality, 

e.g. a particular biochemical process. In addition, the use of data and simulation results 

is always inefficient because simulated systems tend to have specific environments that 

are defined according to the requirements of the research project.[46] When the project 

is terminated or the data is unsatisfactory, these simulation results become "hot 

potatoes" on the hard disk. 

Nowadays, Machine learning (ML) and other branches of Artificial intelligence 

(AI) have made great strides, and their applications have reached into the field of 

scientific research. With the proliferation of high-performance computer hardware and 

programming knowledge, as well as a thriving Internet community, ML-related 

information is being rapidly shared and learned around the world. Thanks to open-

source programming packages such as Scikit-learn[47] and Pytorch,[48] the barriers to 

learning and using ML have been greatly lowered, allowing many scientists with no 

programming experience to get up to speed quickly.  

Machine learning is essentially a method of data processing and analysis, with the 

entire process highly automated. The collected and processed data will be fed into a 

computer which will then generate a specific mathematical model based on the 
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algorithms and input data which will be applied for different purposes such as 

prediction, evaluation, decision making, classification etc. 

ML provides an alternative way of dealing with experimental, computational and 

simulation data in the field of materials science, and it is also possible to find links or 

correlations between data from different sources or methods.[49] Many advances have 

been made in the application of ML in the field of materials science, such as predicting 

material properties, screening specific molecules, and designing molecular 

structures.[49] The addition of ML has greatly improved the efficiency of related 

scientific work and its accuracy has been recognized by professional researchers.[18, 19]  

The first step in ML is always to collect enough data and build a dataset, and in the 

field of materials science, one of the important prerequisites is to efficiently digitize 

information about the various properties and structures of molecules. Prior to the large-

scale application of ML in materials science, analytical methods such as quantitative 

structure-activity relationship (QSPR) and quantitative structure-activity relationship 

(QSAR) have been widely used to predict the properties or chemical/biological 

activities of molecules based on the similarity of their structures. In QSPR/QSAR, 

molecular descriptors (descriptors for short) were introduced to encode the structural 

information or properties of molecules into values for statistics analysis or 

calculation.[50] One of the well-known definitions of molecular descriptors is “The 

molecular descriptor is the final result of a logic and mathematical procedure which 

transforms chemical information encoded within a symbolic representation of a 

molecule into a useful number or the result of some standardized experiment”,[51] and 

this suggests that descriptors can be obtained from reliable experiments or simulations.  

In practice, simulated data are relatively more complete and tend to have smaller 

deviations than experimental data, but experimental data are more trustworthy if some 

specific simulated data are far from experimental observations (low chemical accuracy). 

In the current work, descriptors are mainly collected from different simulation methods 

because polymer properties from experimental measurements are often incomplete, and 
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the methods of measuring polymer properties are limited. Descriptors collected from 

simulation or calculation are also known as theoretical descriptors, and there are various 

programs that can calculate all descriptors in batch. The calculation of descriptors 

always needs the molecular structure as the input and Simplified Molecular Input Line 

Entry Specification (SMILES) is the most popular tool to encode the molecular 

structures into ASCII strings. To date, thousands of theoretical descriptors have been 

made available for use in ML methods, but not all of them are necessary for a particular 

task, so there is always a need for data cleanup after the database has been created.[52]
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Research, results and discussion 
Chapter I 

MD calculation and ML prediction of 
Hildebrand solubility parameters 
 

 

 

In this chapter, a complete one-step ML procedure was established for predicting SP 

with MD simulation results. Based on the knowledge and experience from our earlier 

work,[53] the structural information of the polymer chains was newly extracted and 

encoded into molecular descriptors. Two datasets were constructed from a self-built 

polymer database and then processed through three methods to select appropriate 

descriptors. Four popular ML algorithms were trained using processed datasets to 

generate multiple models. Some of these models showed good performance and 

comparisons of these models have been made in this Chapter. 

1 Methods and materials  

1.1 Programs 

In the current work, all molecular dynamics simulations were performed in Materials 

Studio,[54] and calculations based on density functional theory were performed with 

program Turbomole.[55] The machine learning approach was done using python 3.8 

and the Scikit-learn package as well as other packages.[47] The Padel Descriptor 

program is used to calculate a portion of the molecular descriptors.[56] 



Chapter I: MD calculation and ML prediction of Hildebrand solubility parameters 
 

 
 

27 
 

1.2 Machine learning process  

ML consists of three components: the computational algorithms that are at the core of 

decision making, the relevant underlying knowledge with known answers that train the 

system to learn, and the features that make up the decisions.[49] The features in current 

study were provided by molecular descriptors and will be explained in detail later. First, 

the training data with a known answer is fed to the model. Then, the algorithm is run 

for training, the training results are evaluated, and the parameters are adjusted to reduce 

the difference between the known answer and the output of the algorithm. The 

algorithm repeats this evaluation and optimization process until an accuracy threshold 

is met, and finally the trained model is used to make predictions or decisions. 

In this study, the prediction of Hildebrand solubility parameters 𝛿  using ML is 

considered as a supervised learning-regression process, which means that the training 

data is processed, building a function (or model) that maps new data on expected output 

values. The workflow of ML in this study is as follows (figure 7). Collecting data and 

building a dataset is always the first step in ML, and in the current work the dataset 

consists of two parts (figure 7): the target quantity-Hildebrand solubility parameter (SP) 

𝛿 and the molecular descriptors used to generate the regression model. The calculations 

of the dataset components will be explained later. 

 

Figure 7. Workflow of ML procedure 
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After the dataset is constructed, descriptors in the dataset that are not relevant to 

the goal and descriptors that are all zeros need to be manually removed. After cleaning, 

the descriptors will be standardized to avoid large differences between descriptors and 

overweighting of some descriptors. The standardized dataset will then be analyzed by 

different algorithms to select the most relevant combination of descriptors to the target 

quantity, which will then be fed into the computer to generate the corresponding ML 

model (preprocessing). Four ML algorithm are applied to generate corresponding ML 

models: Support vector machine (SVR),[57] Random forest (RF),[58] Least absolute 

shrinkage and selection operator (Lasso)[59] and Elastic net regression (ENR).[60] Due 

to the limited size of dataset, leave-one-out cross validation is used in order to fully 

utilize each sample in the dataset.  

The performance of the ML model is evaluated by three numerical metrics: the 

coefficient of determination (R2), the mean absolute error (MAE) and the root mean 

square error (RMSE). During the training process, the hyperparameters of the ML 

model will be optimized through Gridsearch algorithm until the metrics reach the 

desired criteria. Finally, the whole machine learning process ends with machine 

learning models containing optimized hyperparameters. 

 

1.3 Hildebrand SP: MD simulation  

The target quantity, Hildebrand solubility parameter (SP) 𝛿  was calculated for all 

polymers using the same molecular dynamics simulation procedure (figure 8). To begin 

with, the atomic models of all molecules were built, and fed into a simulation cell with 

periodic boundary condition based on Monte Carlo method.[61] Subsequently, during 

the equilibration process, selected cells would be treated with simulated annealing to 

reduce the energy, then equilibrated by isothermal-isobaric (NPT) ensemble using 

Berendsen barostat[62] and Parrinello-Rahman barostat[63] for the refined structural 

model. Finally, the cells were scaled to the average cell parameters obtained from the 
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NPT simulations, and the average values of properties such as cohesive energy density 

(CED) would be sampled from the canonical (NVT) simulations and 𝛿 was calculated 

and output based on CED. The details of MD procedure are described in Appendix 

Ch.I.1. 

 
Figure 8. Brief illustration of the MD simulation procedure. Time unit: picosecond (ps) 

 

1.4 Molecular descriptors   

As mentioned in the previous paragraph, the training data for ML are all derived from 

simulated data. Molecular descriptors are a major component of the training data, and 

the predictive power of ML models depends heavily on descriptors covering a wide 

range of structures and compositions.[23, 49, 50, 52, 64] In the current study, descriptors were 

mainly collected from atomistic structure of the polymer or density-functional theory 

(DFT) simulations because it is difficult to obtain enough relevant experimental data as 

descriptors. A popular approach to collect descriptors for polymer is to use the features 

of its monomer,[50] but the properties of the polymer may be fundamentally different 

from those of the monomer. Therefore, organic small molecules with a similar structure 

to the polymer's repeating unit may be a better choice, and in the current work, selected 

small molecules are considered as repeating units (REs) of the polymer.[53]  

For a given polymer, different molecules can be identified to represent the RE, such 

as polyethylene glycol (PEG) shown in Figure 9. Dimethyl ether was chosen to be the 

RE because ethylene glycol and ethanol, as polar molecules forming strong hydrogen 

bonds and are poor choices for deriving molecular descriptors. Therefore, if multiple 

potential molecules appear as REs, it is important to select molecules without strong 
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polarity or hydrogen bonding whenever possible.[53] An optimal descriptor should have 

structural interpretation and also be kept as simple as possible. Therefore, in the current 

work, descriptors were extracted only from the simplest molecule that was similar to a 

single repeating unit. 

 
Figure 9. Polyethylene glycol (PEG) and different choices of small molecules with a structural motif of 

the repeating element of PEG (Reprinted from [53] open access: CC BY-NC 4.0 DEED, Copyright 2023 

the Authors.) 

 

Depending on the number of dimensions of the molecular structure required for the 

descriptor calculations, molecular descriptors can be classified as zero-dimensional 

(0D), one-dimensional (1D) and two-dimensional (2D). 

 

0D descriptor  

All the molecular descriptors for which no information about molecular structure 

and atom connectivity is needed belong to the class of 0D descriptors. Atom counts as 

well as sums or averages of atomic attributes are typical features of such descriptors. 

These descriptors can be always easily calculated, are naturally interpreted, do not 

require optimization of the molecular structure, and are independent of any 

conformational problem.[51, 56] 

1D descriptor 

Usually represent molecular information regarding the size, shape, and electronic 

distribution in the molecule, such as the number of benzene rings, the number of 

hydrogen bond donors, etc.[51] 

2D descriptor 

2D descriptor represents topological features and how the atoms are connected (e.g., 

adjacency, connectivity). They are usually the descriptors derived from the molecular 

graph representations of nodes and edges such as size, degree of branching, the 
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neighborhood of atoms in terms of electronic & steric effects, flexibility, overall shape, 

etc.[51] 

In current study, the collected descriptors can be divided into three parts: Padel 

descriptors contains 0D, 1D and 2D descriptors of polymer RE, quantum chemical 

descriptors were calculated by program Turbomole and chain-related descriptors 

contains information of polymer chain. Then two datasets were constructed with 

different data structures (figure 10): dataset 1 contained padel descriptors and quantum 

chemical descriptors, while dataset 2 further included chain-related descriptors. The 

two datasets will be discussed in section 2.3 and 2.4. 

 

Figure 10. Schematic diagram of the dataset structures 

1.4.1 Padel descriptors 

The program Padel Descriptor[56] was used to calculates molecular descriptors using 

SMILES of polymer REs (Appendix Ch.I.2). In this work, 1444 descriptors were 

obtained by Padel, which occupy the vast majority of the datasets, including all types 

of descriptors such as geometrical, informational, charge, functional group counts, 

molecular properties, etc. The full specification of the descriptors and their 

interpretations are given in Appendix Ch.I.3. 

1.4.2 Quantum chemical descriptors 

The collection of quantum chemical descriptors is based on density functional theory 

calculations performed with the Turbomole program.[55] SMILES of polymer REs were 

also used as the input for the calculation. The Becke 3-parameter Lee–Yang–Parr (B3-

LYP)[65] exchange–correlation functional was employed, along with triple zeta valence 
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plus polarization (def2-TZVP)[66] basis sets and Grimme dispersion correction (DFT-

D3).[67] The geometry convergence criteria for DFT calculations were 10−6 hartree for 

the energy change and 10−3 hartree/bohr for the gradient norm. 

In  the  current  work,  two  quantum  chemical  descriptors  were  calculated: 

atomization  energy  (𝐴𝐸),  quadrupole  moment  (𝑄𝑀).  The atomization energy is the 

extra energy needed to break up a molecule into separate atoms 

𝐴𝐸 = ∑ 𝐸atom,𝑖 − 𝐸molecule,              (23) 

where  𝐸atom,𝑖   is  the  energy  of  single  atom  and  𝐸molecule   is  the  energy  of  the 

corresponding molecule. There are different definitions for the quadrupole moment.[68, 

69] In the present work, the quadrupole moment was defined as the second moment of 

charge,[68] and  𝑄𝑀  was taken as 

   𝑄𝑀 =
1

3
(𝑄𝑥𝑥 + 𝑄𝑦𝑦 + 𝑄𝑧𝑧),             (24) 

where  𝑄𝑥𝑥,  𝑄𝑦𝑦and  𝑄𝑧𝑧are  diagonal  elements  of  the  second  moment  of  the  charge 

tensor.   

1.4.3 Chain-related descriptors 

Based on the results of MD simulations in the current work and observations from other 

publications, the chain length of the polymer (i.e., the degree of polymerization, DP) 

has  a  strong  influence  on many properties of  the polymer.[70] Figure 11A shows  an 

example of polyethylenimine (PEI) and it can be seen that  the Hildebrand solubility 

parameter  𝛿  decreases with the increasing polymer chain length. 
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Figure 11. MD simulation results of A) Hildebrand solubility parameter of polyethylenimine (PEI) with 

different chain length, B) Hildebrand solubility parameters of polyethylenimine (PEI), poly(N-

isopropylacrylamide) (PNIPA), poly(2-hydroxyethyl methacrylate) (pHEMA) and polyglycolic acid 

(PGA) with different number of polymer chains in the simulation cell. 

At the same time, according to previous studies on polymers, the number of 

polymer chains in the simulation cell has a minor effect on the simulation results (figure 

11B). Based on the above observations, information about polymer chain was 

considered as an important component in the dataset and in current study three chain-

related descriptors were collected: molecular weight of the polymer, the polymer chain 

length and the connectivity indices. 

The  zero­  and  first­order  connectivity  indices  were  described  in  the  work  of 

Bicerano.[71] Firstly, two atomic indices (𝜎  and  𝜎𝑣) are defined, describing the bonding 

and  electronic  environment  of  each  non­hydrogen  atom.  The  first  one  is  a  simple 

connectivity index,  𝜎, which is equal to the number of non­hydrogen atoms to which 

an atom is bound. The latter atomic index,  𝜎𝑣, contains information about the electron 

configuration of the atom and is given by 

𝜎𝑣 =
𝑧𝜈−𝑁𝐻

𝑧−𝑧𝜈−1
 ,              (25) 

where  𝑧ν   is  the  number  of  valence  electrons  of  the  atom,  𝑁H   is  the  number  of 

hydrogens  bound  to  it,  and  𝑧   is  its  atomic  number.[72]  The  zeroth­order  (atomic) 

connectivity indices  𝜒 
0   and  𝜒 

0 1  for the polymer molecule are defined in terms of the 

summations: 
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𝜒 
0  = Σ

1

√𝜎
  ,               (26) 

and 

𝜒 
0 1 = Σ

1

√𝜎𝑣  ,              (27) 

 

1.5 Data cleaning and descriptors selection 

After the dataset is constructed, nulls or outliers in the dataset are removed, and 

descriptors in the dataset that have only zeros are cleared. After manual cleaning of the 

data, the remaining descriptors in the dataset will be cleaned by different methods or 

strategies, which is also known as feature selection in the field of machine learning. 

Depending on the different feature selection method strategies, the whole dataset or part 

of the dataset will be targeted for cleaning, which will be explained in section 2.3. 

1.5.1 Pearson correlation coefficient 

In statistics, the Pearson correlation coefficient (PCC)[73] is a measure of linear 

correlation between two sets of data. It is the ratio between the covariance of two 

variables and the product of their standard deviations, given by 

𝑟𝑥𝑦 =
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1 √∑ (𝑦𝑖−𝑦̅)2𝑛

𝑖=1

 ,          (28) 

where 𝑟𝑥𝑦 is the sample Pearson correlation coefficient, 𝑛 is sample size, 𝑥𝑖 and 𝑦𝑖 

are the individual sample points indexed with 𝑖, 𝑥̅ and 𝑦̅ are the mean values of 𝑥𝑖 

and 𝑦𝑖, respectively. In the current work, the sample means the dataset. 

PCC is essentially a normalized measurement of the covariance, such that the result 

always has a value between −1 and 1.[74] Correlations of -1 or 1 imply an exact linear 

relationship. Positive correlations imply that as 𝑥  increases, so does y  and the 

situation is reversed when the correlation is negative. In this work, PCC was performed 

by Python with the stats.pearsonr function in the SciPy package. Padel descriptors 
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were the target of PCC, since they were the majority in the datasets. After the PCC, the 

remaining padel descriptors would then be combined with other descriptors to construct 

a new dataset for the next step. 

1.5.2 Principal component analysis 

PCA (Principal component analysis)[75] is a common data analysis method and 

transforms the original data into a set of linearly independent representations of each 

dimension by linear transformation, which can be used to extract the main feature 

components of the data and is often used for dimensionality reduction of high-

dimensional data.[76] According to the mechanism of PCA, not only the Padel 

descriptors but the whole dataset was analyzed and performed via the 

decomposition.PCA function in the Scikit-learn package. 

1.5.3 Recursive feature elimination 

Recursive feature elimination (RFE)[77] is a feature selection method that allows the 

importance of each descriptor to be obtained by using the relevant attributes of the 

model returned by the estimator (An estimator is an object that fits a model based on 

some training data and is capable of inferring some properties on new data.).[47] Then, 

the least important descriptors are removed from the current set of descriptors. This 

recursive step is repeated over the descriptor set until the desired number of descriptors 

is finally reached.[78] 

RFE requires that a specified number of descriptors be retained, however, it is often 

not known in advance how many descriptors are valid. To find the optimal number of 

descriptors, the cross-validation method[79] is used in RFE (RFECV) to score different 

subsets of descriptors and select the best scored set of descriptors as the sub-dataset for 

further training. During RFECV no descriptors are removed, if it would cause a 

performance loss. This method is relatively good for selecting single model descriptors 

but has two drawbacks: (1) it is computationally intensive, (2) as the estimator changes, 
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the optimal combination of descriptors will also change, which in some cases can have 

a detrimental effect.[80] 

The Yellowbrick visualization tool for python was used to plot the number of 

descriptors in the model along with their cross-validation test scores, variability and 

also the number of selected descriptors.[81] 

After three different feature selection processes, three sub-datasets with different 

combinations of descriptors were generated on the basis of each original dataset.  

1.6 Molecules: polymer and small molecule 

For predicting 𝛿  in current work, up to 82 polymers were selected as the training 

materials for ML. Table 1 shows all polymers in the datasets. As explained above 

polymer chain length usually has a strong influence on some of the properties of the 

polymers, so polymers with the same repeat elements but different chain lengths were 

treated separately. Therefore, there were in total 167 samples in the dataset 2. The REs 

of corresponding polymers are summarized in Appendix Ch.I.2. 
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Table 1. The summary of polymers in the datasets 

Polymer  Chain length  Polymer  Chain length  Polymer  Chain length 

Polyethylene glycol  40, 50, 60  Polyvinyl butyrate  40, 50, 95  Polymethyl cyanoacrylate  35, 50, 85 

Polylactic acid  20, 35, 50  Polyethylene terephthalate  20, 30, 50  Polyvinyl ether  25, 40, 50 

Polystyrene  30, 45, 50  Polycaprolactone  30, 50, 60  Polynorbornene  10, 30, 50 

Polyvinyl ethyl ether  40, 50, 60  Polyethylene  20, 50, 90  Polyethylenimine  15, 30, 75 

Polyacrylamide  40, 50, 60  Cis-1,4-polyisoprene  20, 40, 50  Poly(2-hydroxyethyl methacrylate)  15, 30 

Polyacrylic acid  40, 50, 60  Polyvinyl alcohol  15,30,50,75  Polyglycolic acid  15, 40, 80 

Polybutylene  40, 50, 60  Polyvinyl butyral  15, 35, 50  Poly(N-isopropylacrylamide)  15, 30, 75 

Polyacrylonitrile  20, 35, 50  Polyvinyl chloride  20, 35, 50  Polyamide 6  10 

Polyallyl cyanide  50, 55, 65  Polychloral  10, 40, 70  Polyamide 66  10 

Polyallyl acetate  50, 55, 65  Polyoxymethylene  25, 40, 50  Polybutylene succinate  10 

Polypropylene  15, 30, 50, 70, 75, 80  Polyvinyl fluoride  10, 50, 90  Polycarbonate(iso)  10, 20, 30 

Polyvinyl acetate  40, 50, 60  Polychloroprene  10, 30, 45  Polyether ether ketone  10 

Polymethacrylonitrile  45, 50, 80  Polyacetylene  25, 40, 50  Polyurethane  10 

Poly(4-vinylphenol)  50, 55, 65  Polyepichlorohydrin  40, 50, 60  Poly{succinic acid-alt-[bis(2-oxazoline)]}  10 
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Polyphenylene oxide  10  Polyphtalamide  10, 15, 20  Poly{adipic acid-alt-[bis(2-oxazoline)]}  10 

Poly(2-ethyl-2-oxazolin)  10  Polyethylene naphthalate  10  Poly{dodecanedioic acid-alt-[bis(2-oxazoline)]}  10 

Poly(2-methyl-2-oxazolin)  10  Poly(3-hydroxypropionate)  10  Poly{dimethylglutaric acid-alt-[bis(3-oxazoline)]}  10 

Poly(2-propyl-2-oxazolin)  10  Poly(3-hydroxybutyrate)  10  Poly{diethylglutaric acid-alt-[bis(2-oxazoline)]}  10 

Polypeptoid alpha  10  Poly(3-hydroxyvalerate)  10  Poly{diethylmalonic acid-alt-[bis(3-oxazoline)]}  10 

Polypeptoid beta  10  Poly(3-hydroxyhexanoate)  10  Poly{cyclopentanediacetic acid-alt-[bis(2-oxazoline)]}  10 

Polypeptoid gamma  10  Poly(3-hydroxyheptanoate)  10  Poly{cyclohexanediacetic acid-alt-[bis(2-oxazoline)]}  10 

Polymethylpentene  10, 30, 45  Poly(3-hydroxyoctanoate)  10  Poly{phenylsuccinic acid-alt-[bis(2-oxazoline)]}  10 

Polyetherketoneketone  10  Poly(3-hydroxynonanoate)  10  Polycyclohexylenedimethylene terephthalate  10 

Polyketone  10, 30, 50  Poly(3-hydroxydecanoate)  10  P(Phe-alt-G)  78, 90 

Polypropylene carbonate  10  Poly(3-hydroxyundecanoate)  10  P(Val-alt-G)  55, 93 

Polybutylene terephthalate  10  Poly(3-hydroxydodecanoate)  10  P(IIe-alt-G)  55 

Polytrimethylene terephthalate  10, 20, 30  Poly(3-hydroxytetradecanoate)  10  Polyvinylpyrrolidone  50, 55, 65 

Epichlorohydrin rubber  50         
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2 Results and discussion 

2.1 Descriptors selection  

2.1.1 Pearson correlation coefficient 

Pearson correlation coefficient (PCC) was applied for analyzing the correlation 

between descriptors and polymer SPs in the dataset. When the magnitude of correlation 

coefficient  𝑟𝑥𝑦 is in the range of 0.5 to 0.75, it indicates a moderate correlation between 

descriptors,  and  greater  than  0.75  could  be  considered  strongly  correlated.[82]  For 

datasets in current work no descriptors with  𝑟𝑥𝑦 greater than 0.75 were observed and 

all descriptors with  𝑟𝑥𝑦 greater than 0.5 were left in the datasets. After PCC processing, 

17 and 22 Padel descriptors were retained for dataset 1 and dataset 2, respectively. 

These were then combined with quantum chemical and chain-related descriptors to 

create final datasets containing 23 and 28 descriptors, respectively. 

 

Figure 12. PCC analysis for A) dataset 1 and B) dataset 2. 

2.1.2 Principal component analysis 

In principal component analysis (PCA), the amount of dimensionality reduction has a 
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significant impact on the quality of the processed dataset. Without dimensionality 

reduction, the performance of the ML model may be limited, but if the target dimension 

is too low, a huge loss of information can occur. The number of the principal component 

(PC)  can  be  determined  by  examining  the  cumulative  explained  variance  rate  𝜐 

associated  with  the  number  of  components,  in  figure  13  the  red  bars  show  the 

percentage explained variance for each PC and the blue line shows 𝜐. 

For the datasets in current work, it can be observed that the first PC (PC1) explains 

39.49 % of the variance of the dataset. Then the first 10 PCs explained 74.91% and 

approximately 50 PCs were needed to describe close to 100% of the variance. The 

performance of the final model is influenced not only by the number of PCs, but also 

by other hyperparameters of the particular ML model. Therefore, a grid search 

procedure (Gridsearch function in Scikit-learn) combined with the hyperparameters 

of the corresponding ML model was applied. The optimal number of components was 

determined as 23 for both datasets, which would retain 90% of the variance. 

 

Figure 13. PCA results for A) dataset 1 and B) dataset 2. 

2.1.3 Recursive feature elimination 

As explained in section 1.5.3, recursive feature elimination (RFE) extracts the subsets 

with different combination of descriptors from the original datasets and select the most 
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suitable subset as the sub-dataset for a given ML models. Therefore, unlike the two 

feature selection methods mentioned above, the sub-datasets after RFE processing were 

not identical for different ML models. Figure 14 shows an example that the cross-

validation test scores of a Random forest model (RF) against the number of descriptors. 

On the basis of the mechanism of RFE, it is able to rank the filtered-out descriptors with 

the order of elimination, but not for the descriptors still in the set. The selected 

descriptors for all ML models are listed in Appendix Ch.I.4. 

 

Figure 14. RFE results based on RF model for A) dataset 1 and B) dataset 2. 

2.2 ML algorithm and Hyperparameters optimization 

2.2.1 Support vector machine regression (SVR) 

SVR is a regression model of the Support Vector Machine (SVM) algorithm, which is 

a relatively simple supervised ML algorithm. The main idea behind SVM is to find a 

hyperplane with largest margin that separates the different classes in the training data. 

Once the hyperplane is determined, new (unknown) data can be classified by 

determining on which side of the hyperplane it falls.[57] Therefore, based on this 

mechanism, SVM was initially used for classification tasks. More than that, its 

regression model can also effectively handle continuous multidimensional data. By 
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adding kernel functions, kernelized SVM can also effectively handle nonlinearly 

separable data, and the choice of kernel functions is one of the hyperparameters of the 

SVM algorithm.[49] 

In Scikit-learn package, three hyperparameters of SVR can be adjusted: kernel, 

Gamma and C. Kernel means the choice of kernel functions, there are several kernel 

functions available: linear, polynomial, rbf and sigmoid. Gamma decides the influence 

range of a single training example reaches during transformation, which in turn affects 

how tightly the decision boundaries end up surrounding points in the input space. C 

controls the amount of regularization applied to the data. 

2.2.2 Random forest (RF) 

RF is a popular machine learning algorithm which combines the output of multiple 

decision trees to reach a single result. In short, the RF algorithm randomly generates a 

certain number of uncorrelated decision tree models from the same input dataset 

through some mechanism.[58] Once the forest is created, all decision tree models will 

provide their respective predictions based on the training data, and for the regression 

task, the average of the individual decision trees will be used as the final prediction of 

the RF. Since many randomly generated decision trees can produce a fairly large 

number of predictions, the hyperparameters of the RF model are reasonably easy to 

tune, and in some cases good performance can be obtained even without tuning. In 

current work, only two hyperparameters were in focus: max_depth and n_estimators. 

Max_depth  controls  the  split  depth of  single decision  tree  and  n_estimators  is  the 

number of trees in the forest. 

2.2.3 Lasso 

Least Absolute Shrinkage and Selection Operator, or Lasso in short is an improvement 

of the multi­linear regression. The aim of multi­linear regression is to minimize the cost 

function or residual sum of squares (RSS) 
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𝑅𝑆𝑆 = ∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛
𝑖=1 ,             (29) 

where 𝑦𝑖   is  the  true  value  of  the  input  data  and  𝑦̂𝑖   is  the  predicted  value.  The 

performance of  linear  regression can be  easily affected by  large number of colinear 

features in the dataset and over­fitting problem is difficult to avoid. To overcome such 

problems, an extra L1­regularization term  𝛼 ∑ |𝛽𝑗|𝑝
𝑗=1   is added 

𝑅𝑆𝑆 = ∑ (𝑦𝑖 − 𝑦̂𝑖)2 + 𝛼 ∑ |𝛽𝑗|
𝑝
𝑗=1

𝑛
𝑖=1 ,         (30) 

where 𝛼  controls the strength of regularization,  𝑝  is the number of variables that are 

available in the dataset and  𝛽𝑗  is the factor of the j­th variable. When  𝛼 = 0, the model 

will again become an ordinary linear regression, and when  0 < 𝛼 < ∞, the regression 

model  is Lasso. Thus,  𝛼  is  the only hyperparameter  for Lasso, notated as alpha  in 

Scikit­learn. 

2.2.4 Elastic net  

Elastic net regression (ENR) is another popular improvement on multi­linear regression 

that adds L1 and L2­regularization terms  1−𝛼

2
𝛽𝑗

2  to the cost function.   

𝑅𝑆𝑆 = ∑ (𝑦𝑖 − 𝑦̂𝑖)2 + 𝛼 ∑ |𝛽𝑗|
𝑝
𝑗=1

𝑛
𝑖=1 +

1−𝛼

2
𝛽𝑗

2,        (31) 

when  𝛼 = 0 ,  the  model  becomes  regression  model  with  L2­regularization  (ridge 

regression), and if  𝛼 = 1, the model then changes to a Lasso model. Therefore, ENR 

is  able  to  combine  the  Lasso  and  ridge  regression,  in order  to  find a better balance 

between variance and bias. In Scikit learn, the  𝑅𝑆𝑆  is re­write into 

𝑅𝑆𝑆 = ∑ (𝑦𝑖 − 𝑦̂𝑖)2 + alpha ∗ l1_ratio ∑ |𝛽𝑗|
𝑝
𝑗=1

𝑛
𝑖=1 + 0.5 ∗ alpha ∗ (1 − l1_ratio)𝛽𝑗

2,    (32) 

where alpha and l1_ratio are the hyperparameters for ENR. 

The optimized hyperparameters of each ML model for datasets 1 and 2 were listed 

in Table 2 and table 3, respectively. 

 

 



Chapter I: MD calculation and ML prediction of Hildebrand solubility parameters 
 

 
 

44 
 

 
Table 2. Hyperparameters for machine learning models based on dataset 1 

 

Table 3. Hyperparameters for machine learning models based on dataset 2 

 

2.3 ML performance for dataset 1 

In our earlier work, ML approach was applied to predict the heat of vaporization or 

cohesive energy 𝐸coh of small molecules with literature data.[53] Then the Hildebrand 

Selection method  Model  Hyperparameter 

PCC 

SVR  kernel = linear, C = 2.2 
RF  max_depth = 50, n_estimators = 200 

Lasso  alpha = 0.1 
ENR  alpha = 0.9, l1_ratio = 0.29 

PCA   

SVR  kernel = rbf, C = 10.2,  𝛾  = 0.0005 
RF  max_depth = 20, n_estimators=50 

Lasso  alpha = 0.3 
ENR  alpha = 0.1, l1_ratio = 1.0 

RFE 

SVR  kernel = linear, C = 4.5 
RF  max_depth = 20, n_estimators=50 

Lasso  alpha = 0.1 
ENR  alpha = 0.5, l1_ratio = 0   

Selection method  Model  Hyperparameter 

PCC 

SVR  kernel = linear, C = 0.2 
RF  max_depth = 50, n_estimators = 50 

Lasso  alpha = 0.1 
ENR  alpha = 0.1, l1_ratio = 0.05 

PCA   

SVR  kernel = rbf, C = 14.9,  𝛾  = 0.002 
RF  max_depth = 30, n_estimators=50 

Lasso  alpha = 0.3 
ENR  alpha = 1.0, l1_ratio = 0.22 

RFE 

SVR  kernel = linear, C = 8.5 
RF  max_depth = 20, n_estimators=100 

Lasso  alpha = 1 
ENR  alpha = 1.0, l1_ratio = 0 
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solubility parameter 𝛿  of polymer REs was calculated with predicted 𝐸cov  using 

equation 6 and correlated to the 𝛿  of polymers. Acceptable correlation could be 

observed but there were three major problems. First, literature data were collected from 

different sources and under different measurement conditions. Consequently, the data 

were less reliable and had unknown noise when used for machine learning. Second, the 

approach is a two-step procedure: ML model predicts one quantity and then correlates 

with another by further calculations. The whole procedure was complicated, and the 

final performance for a real task was suspected. Third, the dataset contained only 

structural information of small molecules or RE without any information about polymer 

chain. Hence, whether these data alone can adequately reflect the polymer structure was 

an issue.  

Therefore, an improved one-step ML approach was developed, and the data were 

all collected from simulations with same process. Dataset 1 was built in the same 

manner as the previous work, but with the addition of more samples. Dataset 2 

contained more information extracted from the polymer chain structure, and the size of 

the dataset was further expanded as data on polymers with various chain lengths became 

available. 

Figure 15 shows the comparison of 𝛿 predicted by the ML model using PCC for 

descriptor selection with 𝛿  simulated by MD. When using Leave-Out Cross-

Validation (LOOCV), one sample from the dataset is used to validate the model in each 

round of training, and the rest of the samples are used for training until all the samples 

are used for validation at once. The blue traces show the change in predictions during 

the training with LOOCV. Overall, none of the models showed good performance after 

LOOCV and some of them with serious problems. RF model (figure 15B) achieved 

relatively good results in training, but not in testing, suggesting an over-fitting 

problem.[83] Two linear models, Lasso and ENR, were at the bottom of the ranking and 

Lasso even had an outlier (figure 15C). 
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Figure 15. Performance comparison of ML models with PCC and MD results: A) SVR, B) RF, C) Lasso, 

D) ENR. MAE and RMSE in MPa1/2. The blue traces show the change in predictions during training with 

LOOCV, where each sample is selected for validation until all samples have been selected once. 

 

ML models using PCA gave much better results than those using PCC, but they 

were still not satisfactory (figure 16). The SVR and RF models scored high in training 

but too low in testing, which indicated a high risk of over-fitting (figures 16A and B). 

The Lasso and ENR models were not over-fitted, just under-performing. 
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Figure 16. Performance comparison of ML models with PCA and MD results: A) SVR, B) RF, C) Lasso, 

D) ENR. MAE and RMSE in MPa1/2. 

 

The best result for dataset 1 was found in the SVR model with RFE (figure 17A). 

RFE_SVR achieved good scores without overfitting not only in training but also in 

testing. The very short blue traces for training represented very consistent predictions 

in LOOCV. RFE_RF was comparable to SVR in training, but failed in testing, with a 

higher potential for over-fitting. The ENR model outperformed the Lasso model and 

the consistency during LOOCV was very satisfactory. 
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Figure 17. Performance comparison of ML models with RFE and MD results: A) SVR, B) RF, C) Lasso, 

D) ENR. MAE and RMSE in MPa1/2. 

 

To summarize, only ML models using RFE for descriptor selection showed 

acceptable performance, which was possibly due to the mechanism of RFE. As a 

wrapper-type algorithm, the selected ML model will become the core of RFE, and the 

descriptor selection procedure is more tailored. Nevertheless, direct prediction of 

solubility parameter 𝛿 via one-step ML has been demonstrated to be feasible. 

2.4 ML performance for dataset 2 

Based on the data structure of dataset 1, dataset 2 was further extended to include more 
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polymer chain descriptors, which already introduced in previous sections. The 

performance of ML models will be presented in the same manner as those for dataset 1. 

In general, based on experience with practical cases, the performance of ML models 

improves as the amount of data increases. As shown in figure 18, all the models using 

PCC have improved considerably, especially the RF model (figure 18B). The good R2 

scores in the test indicated that the RF no longer had over-fitting problems and that the 

model was essentially ready for practical use. 

 
Figure 18. Performance comparison of ML models with PCC and MD results: A) SVR, B) RF, C) Lasso, 

D) ENR. MAE and RMSE in MPa1/2. 
 

Similar to the PCC models, all PCA ML models showed significant improvements 

over the models for dataset 1. The SVR and RF models no longer have over-fitting 
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issues (figure 19A and B), and the R2 scores for the test were fairly good but did not 

reach 0.9. For SVR and RF, it is clear to see that the majority of the samples in the 

dataset have 𝛿 concentrated in the range of 16 to 22, which makes this portion of the 

data more effective in training. If there are more data with 𝛿  greater than 22, ML 

models may further refine the issue of too much scatter. The Lasso and ENR models 

did not show much improvement in training, but the test scores were much better than 

those for dataset 1. 

 
Figure 19. Performance comparison of ML models with PCA and MD results: A) SVR, B) RF, C) Lasso, 

D) ENR. MAE and RMSE in MPa1/2. 
 

Of all the ML models for dataset 2, the SVR and RF models with RFE performed 

the best (figure 20A and B). The RFE_RF model showed a tremendous level of 
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improvement over the model for dataset 1, and no over-fitting was detected. However, 

the R2 score of RFE_SVR was even higher than the RF in the test, although the training 

score was slightly worse.  

 
Figure 20. Performance comparison of ML models with RFE and MD results: A) SVR, B) RF, C) Lasso, 

D) ENR. MAE and RMSE in MPa1/2. 
 

It is also interesting to compare the Lasso model with the ENR model because the 

hyperparameters of ENR indicating that the model was an L1-regularized linear model 

identical to the Lasso model, but the two models eventually showed different 

performance. This actually remains because of the mechanism by which RFE operates. 

As described in section of the dataset 1, the RFE uses selected ML model as the core 

for filtering the descriptors, with different filtering results for different models. Two 
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models were trained with different filtered datasets and then produced different final 

results. 

The RFE_SVR model was found to be the best model for dataset 2, not only 

because of the highest test R2 scores, but also considering the computational demands. 

The critical point is that training SVR requires much less computational resources than 

RF, which is the very reason that SVR becomes the best model for dataset 2 in the whole 

work. The computing time of all models for dataset 1 and 2 is porvided in Appendix 

Ch.I.5. 

Through this work, several ML models with satisfactory performance were found 

for dataset 2. These models were essentially ready for practical use and their 

performance may be further optimized as the dataset expands in future work. The 

inclusion of descriptors obtained from the polymer chains improved the ML models 

significantly, and this is supposed to solved the third major problem from our previous 

work. At this point, a ML procedure has been completely constructed based on 

simulation data, while the dataset contains structural information about repeating units 

(REs) as well as polymer chains. This procedure comprehensively addresses the key 

problems summarized in previous work and has the capability of continuous refinement. 

 

3 Conclusion 

In this study, a polymer database was constructed containing structural information on 

polymer REs and polymer chains. The Hildebrand solubility parameters 𝛿  of the 

polymers were obtained through molecular dynamics simulations as target values for 

machine learning. Two datasets were extracted from the database with different 

descriptors selected. Three descriptor selection methods were combined with four ML 

algorithms to generate 12 ML models for each of the two datasets. The relatively good 

performance of the ML model for dataset 2 demonstrated that it is feasible to predict 

polymer 𝛿 using a one-step ML procedure.  
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With the addition of chain-related descriptors, most of the models have been 

significantly improved and PCC_RF, RFE_RF and RFE_SVR were made available for 

practical applications. During the work, it was found that the choice of descriptor 

selection methods has a significant impact on the model performance, especially the 

RFE. RFE_SVR was considered to be the best model for the current work, not only 

because of its performance, but also because the computation time was much shorter 

than the RF model during LOOCV. However, as the dataset expands, LOOCV will 

become more computationally intensive, so other cross-validation methods will have to 

be used and the computational cost of RF would be different at that time. As a linear 

model, elastic net (ENR) showed much better results than Lasso and it has the potential 

to be further improved. One of the most important things about linear models is that 

they are simple and highly explainable[84]. Powerful but complex models are sometimes 

not a good choice for scientific research because scientists are more interested in 

understanding the path or reason for the model's decisions or predictions[84]. Moreover, 

complex models such as neural networks often require large amounts of data for 

training, which is also very difficult for many scientific tasks[49]. If the quality of the 

dataset is high enough, good results can also be obtained using simple and explainable 

models, which is one of the goals that this work wants to pursue. 

The search for new descriptors is one of the most important tasks for the future, 

and there are several possibilities. Much information still can be extracted and encoded 

from polymer chains, for example radius of gyration, viscosity and other 

thermodynamic properties. In the current work, only two quantum chemical descriptors 

were chosen, but other chemical quantities describing reactivity or interactions, such as 

chemical hardness and polarizability,[85] can be obtained from DFT calculations, and 

these could potentially be added to future datasets. It is also important to collect stable 

and reliable data from experimental characterizations, as simulations sometimes suffer 

from a lack of chemical accuracy, which can be corrected by data from real 

experiments.[49] In addition, many experimental characterization results are shown by 

various spectrum such as Differential Scanning Calorimeter (DSC),[86] Fourier 
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Transform Infrared Spectroscopy (FTIR),[87] and Nuclear Magnetic Resonance 

Spectroscopy (NMR).[88] A growing number of publications introduce ML methods for 

predicting material properties using a various spectrum, some of which are adequate 

for the scientific task.[89, 90] If used in the right way, the spectrum can be a treasure chest 

of information and become high-quality training material for ML. The dataset will thus 

not only contain structure-related information but will also include more statistical 

information, which is helpful for the improvement of ML performance and 

generalization. Of course, such an endeavor requires assembling more manpower and 

resources to get started and can never be accomplished by a few scientists or a mini 

team.
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Chapter II 

Prediction of polymer­drug miscibility based on 
the Flory­Huggins theory 
 

 

 

A favorable interaction of the drug with the carrier material is significant for an efficient 

encapsulation. In this chapter, the miscibility of selected polymer-drug mixtures was 

analyzed by MD simulation results. Polyester amides (PEAs) are a class of polymers 

that are considered potential competitors to poly(lactic-co-glycolic acid) (PLGA) for 

drug delivery applications. In this work, two methods based on the Flory-Huggins 

theory were applied to predict miscibility and to compare the miscibility of certain 

PEAs with PLGA. L-valine (Val) and L-isoleucine (Ile) based PEAs showed 

comparable performance to PLGA and different miscibility trends were found by MD 

simulations. The theoretical predictions were in good agreement with the experimental 

observations, which confirms the reliability of the MD simulations. 

 

1 Materials and methods 

1.1 Polymer candidates and reference drugs 

At the request of the collaborative experimental group, several polymers were selected 

from table 4 and their miscibility with specific drug molecules was predicted on the 

basis of Flory-Huggins mean filed theory.[27] The information of polymers and 

corresponding drug molecules were listed in table 4 and due to the complexity of 

chemical names, abbreviated names are used for all polymers in this section.[30, 91] 
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Table 4. The summary of selected polymers and drugs 

Polymer 
(Degree of polymerization) 

Drug 
(number of molecules) 

PEA2 (10)[28]  Indomethacin (IMC) (1)[28] 

PEA5 (10)[28]  Indomethacin (IMC) (1)[28] 

PValG (55)[91]  BRP-187 (1)[91] 

PIleG (55)[91]  BRP-187 (1) 

PValG (55)[91]  BRP-201 (1)[91] 

PIleG (55)[91]  BRP-201 (1) 

PLGA (184)  BRP-187 (1) 

PLGA (184)  BRP-201 (1) 

 

Figure 21 shows the structural formular of all polymers. Random copolymer 

poly(lactic-co-glycolic acid) (PLGA) is considered as one of the most effective 

biodegradable polymer for drug delivery.[92] Due to the low toxicity and 

biocompatibility with tissue and cells, PLGA has been approved by US FDA to use in 

drug delivery systems.[93] But PLGA still has drawbacks including the limited tuning 

ability of the nanoparticles, e.g., regarding limited drug encapsulation capacities and 

the occurrence of free drug precipitates in addition to the nanoparticles.[94] 

Polyester amides (PEAs) are a class of polymers that growing number of studies 

have supported as an alternative to PLGA.[28, 30, 95] Additional amide moieties in the 

PEA structures (figures 21A and B) can contribute to hydrogen bonding between the 

polymer and the drug or between the polymer and the polymer, thereby influencing the 

properties of the polymeric drug carrier, such as degradation behavior and 

encapsulation ability. L-valine (Val) and L-isoleucine (Ile) based PEAs (PValG and 

PIleG in figure 21B) were selected as the candidates because of the similarity of the 

glycolic acid block (GA) in their structures to PLGA, which theoretically has 

comparable performance as a drug carrier.[96] 

Based on the data from the PLGA used by the experimental partner, a PLGA chain 
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with 48.3/51.7 block ratio of lactic- (LA) and glycolic acid (GA) was built for MD 

simulations. The two repeating units of the PLGA molecule were randomly combined 

according to the reactivity ratios (LA: 4.5, GA: 0.32) from the literature.[97] The 

constructed polymer chain contains a total of 184 repeating units, terminates in a 

hydroxyl group and weighs about 12000 g/mol (figure 21C).  

 
Figure 21. Structural formular of A) PEA2 and PEA5, and B) PValG and PIleG, and C) atomistic model 

of PLGA random block copolymer with 48.3/51.7 molar ratio of LA/GA. Green: lactic acid (LA) with 

reactivity ratio 4.5 and purple: glycolic acid (GA) with reactivity ratio 0.32. Abbreviations: Val: L-valine 

and Ile: L-isoleucine.  
 

Figure 22 shows the structural formular of all drug molecules. Indomethacin is a 

nonsteroidal anti-inflammatory drug (NSAID) used to treat mild to moderate acute 

pain[28] and relieve symptoms of arthritis (osteoarthritis and rheumatoid arthritis) or 

gout, such as inflammation, swelling, stiffness, and joint pain. 

 
Figure 22. Structural formular of drug molecules 
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Two water-insoluble compounds BRP 187 and BRP 201 are lipophilic anti-

inflammatory drugs, which are representatives of the novel drug class of dual inhibitors 

that target the 5-lipoxygenase-activating protein (FLAP) and the microsomal 

prostaglandin E2 synthase-1 (mPGES 1).[98] These two drugs were selected as the 

reference drugs, in order to evaluate the potential and stability of above-mentioned 

polymers as drug carrier materials.  

1.2 Simulations and calculations 

Firstly, the cohesive energy density (𝐶𝐸𝐷) or Hildebrand solubility parameter 𝛿 for 

pure compounds and mixture were obtained through MD simulations. The simulation 

process was same as the process applied in chapter I. After collecting 𝐶𝐸𝐷, segment 

volume 𝑉m and volume fraction 𝜑s of the compounds (𝜑p for polymer and 𝜑s for 

drug), Flory-Huggins parameter 𝜒p−s would be calculated by two methods (equation 

33 and equation 34)[28, 33] 

Method I                𝜒p−s
I =

𝑉m

𝑅𝑇
(𝛿p − 𝛿s)

2
,              (33) 

Method II               𝜒p−s
II =

𝑉m

𝑅𝑇
(𝜑p𝐶𝐸𝐷p + 𝜑s𝐶𝐸𝐷s − 𝐶𝐸𝐷p−s).    (34) 

It is clear that method I only needs the 𝛿 from the simulations of pure compounds 

but method II needs the simulation results from exact mixture systems. Thus, Method I 

is considered a rapid approximation, and Method II can be used for accurate predictions, 

but tends to be much more computationally expensive than Method I. Then, the Gibbs 

free energy change of mixing ∆𝐺mix  could be further calculated using both 𝜒 

(equation 2) 

            ∆𝐺mix = 𝑅𝑇(𝑛1 ln(𝜑1) + 𝑛2 ln(𝜑2) + 𝑛1𝜑2𝜒1−2), 

for convenience, the equation can be further derived as follows 

              ∆𝐺mix = 𝑅𝑇 (
𝜑p

𝑁p
ln(𝜑p) +

𝜑s

𝑁s
ln(𝜑s) + 𝜑p𝜑s𝜒p−s),    (35) 

where 𝑁i is the number of segments of the compounds. 
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2 Results and discussion 

2.1 Simulations for PEA-Indomethacin mixture 

Table 5 shows the results of simulations for pure compounds and mixtures, including 

Hildebrand solubility parameters and Gibbs free energy change of mixing. 

 
Table 5. Results of MD simulations: cohesive energy density, 𝐶𝐸𝐷, Hildebrand solubility parameters, 

𝛿, energy of mixing, ∆𝐸mix, Flory-Huggins parameters, 𝜒sim, and Gibbs free energy change of mixing, 

∆𝐺mix. 𝜒sim and ∆𝐺mix were calculated with methods I and II as described in the text. 

 
𝑪𝑬𝑫     

[𝐉 𝐜𝐦−𝟑] 

𝜹   

[√𝐌𝐏𝐚] 

𝝌𝐬𝐢𝐦 ∆𝑮𝐦𝐢𝐱                     

[𝐉 𝐦𝐨𝐥−𝟏] 

   I II  I II 

PEA2+IMC 420.58 20.51 1.13 0.15  -65.95 -82.15 

PEA5+IMC 389.24 19.73 2.10 -0.46  -50.06 -92.08 

PEA2 421.05 20.52 - -  - - 

PEA5 383.94 19.59 - -  - - 

Indomethacin 570.95 23.89 - -  - - 

 

It is clear to see that ∆𝐺mix calculated by Method I and II for PEA2+IMC and 

PEA5+IMC were both negative, which indicated miscibility of IMC with PEA2 as well 

as PEA5. However, the values from the two methods showed opposite trends. The 

values of ∆𝐺mix obtained with Method I indicated better solubility of IMC in PEA2 

than in PEA5, which is in disagreement with experimental observations.[28] In contrast, 

method II correctly predicted higher solubility of IMC in PEA5 as compared to PEA2. 

Method I provided a simple empirical estimation of 𝜒sim based on pure compounds, 

which may account for the poor performance as it did not take into account specific 

molecular interactions such as hydrogen bonding.[33] 

Figure 23A and B show that multiple hydrogen bonds[99] were formed between the 
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IMC molecule and the surrounding polymer chains with bond distances from 1.72 to 

2.48 Å. More pronounced hydrogen bonding in PEA5+IMC compared to PEA2+IMC 

was evident from the RDF plots (figure 23C). In the case of the intermolecular atomic 

NHPEA – ClIMC pairs the maximum was 2.45 and 2.75 Å for PEA5+IMC and 

PEA2+IMC, respectively. Therefore, the chlorine atom of IMC was closer to hydrogen 

atoms of PEA5 compared to PEA2 (figure 23C, left) contributing stronger to the 

attractive heteromolecular forces. The same trend was found for NPEA – OHIMC (figure 

23C, right). Intermolecular RDF plots for other types of hydrogen bonds that were 

additionally found in the simulated cells appeared similar in strength (Appendix 

Ch.II.2). 

According to MD simulations, stronger hydrogen bonding in PEA5+IMC 

compared to PEA2+IMC possibly accounts for the better solubility of IMC in PEA5, 

which provides theoretical support for the experimental observations of the cooperative 

experimental group.[28] 
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Figure 23. Snapshots of MD simulation trajectories showing examples of hydrogen bonds between the 

indomethacin molecule and PEA chains PEA2-IMC and PEA5-IMC: A) chemical structure 

representation B) ball-and-stick representation (grey background for PEA, orange background IMC). C) 

Intermolecular radial distribution function (RDF) plots of the two hydrogen bonding types possibly 

responsible the different solubility behavior. The interaction distance is in Angstrom (Å). 

2.2 Simulations for New PEAs-BRP drugs 

Table 6 shows the results of the simulations based on the two methods for the Flory-

Huggins parameters, Gibbs free energy change of mixing and the predicted solubility 

limits for PValG, PIleG and the corresponding mixtures with BRP-187 and BRP-201. 

Simulation results of PLGA random copolymer were also included as the comparison.  

For the four simulated mixtures of PValG and PIleG, ∆𝐺mix  was negative 

incorporating roughly 1 wt% of drug, using both the simpler Method I (𝜒I) and the more 
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accurate Method II (𝜒II). Thus, the PValG and PIleG are considered to be miscible with 

the drugs at a mass fraction that is commonly applied for the formulation of drugs into 

nanoparticles.[91] Although the simulation results for PLGA also indicate the miscibility 

of two drugs, but different trend in thermodynamic properties can be seen, comparing 

with two polyester amides.  

 
Table 6. Flory-Huggins (FH) parameters 𝜒I and 𝜒II calculated with the method I and II, respectively, 

the corresponding free energy of mixing (J/mol) and solubility limits (wt%) for the simulated mixtures 

of PValG, PIleG and PLGA with BRP-187 and BRP-201. 

Polymer  Drug 
Drug weight ratio 

[wt%] 
𝝌𝑰  𝝌𝑰𝑰 

∆𝑮𝐦𝐢𝐱 (𝝌𝑰) 
[J mol-1] 

Solubility limit (𝝌𝐈) 
[wt%] 

∆𝑮𝐦𝐢𝐱 (𝝌𝑰𝑰) 
[J mol-1] 

Solubility limit (𝝌𝐈𝐈) 
[wt%] 

PValG  BRP-187  1  0.73  2.63  -39.1  5.0 -26.7  1.5 
PValG  BRP-201  1.1  0.13  3.85  -49.6  20.2 -16.1  1.5 
PIleG  BRP-187  1  1.31  2.68  -39.1  3.5 -26.7  1.4 
PIleG  BRP-201  1  0.39  3.23  -47.3  8.7 -21.8  1.6 
PLGA  BRP-187  0.8  0.099  0.035  -18.22  21.5  -18.39  38.1 
PLGA  BRP-201  0.8  1.6e-4  -4.6e-3  -18.49  ∞  -18.5  ∞ 

 

Theoretically, the values of the FH parameters (𝜒) above 0.5 indicated generally 

limited miscibility between the drug and the polymers, as shown in the results of PValG 

and PIleG.[27] However, calculations based on Method II for all mixtures at 1 wt% drug 

concentration showed that although 𝜒 values for PLGA mixtures were much smaller 

than those for polyester amide mixtures, the difference in ∆𝐺mix was very small. In 

addition, the 𝜒 and ∆𝐺mix values of the PValG and PIleG mixtures obtained by the 

two methods were also significantly different, but the results for the PLGA mixtures 

were very close. The differences between the two methods can be explained by the 

conclusion of simulations for the PEA-Indomethacin mixtures that specific interactions 

between the polymer and the drug were not taken into account in Method I.[28] Moreover, 

the absence of greatly differing results suggests that such interactions may not play a 

role in PLGA mixtures, and it will be discussed later. 

The interaction between drug and polymer is shown for each system in figure 24. 

Indeed, hydrogen bonding between drug and polyester amides contributed to the 
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miscibility (figure 24A-D). As both drugs feature hydrogen bond donors (the carboxylic 

acid functionality in BRP-187 and one nitrogen atom in the oxadiazole-based 

heterocycle in BRP-201), interactions with ester and amide oxygen atoms of the PEA 

were seen. In addition, the amide moieties of the PEA act as hydrogen bond donors as 

they are in close proximity to various hydrogen bond acceptors of the drug (e.g., the 

isoxazole ring and chlorine atom of BRP-187, or the imidazole ring of BRP-201).  

 

 
Figure 24. Ball-and-stick representation of polymer segment – drug interactions. A) PValG with BRP-

187, B) PIleG with BRP 201, C) PIleG with BRP-187, D) PIleG with BRP-201, E) PLGA with BRP-

187 and F) PLGA with BRP-201. The interaction distance is in Angstrom (Å). 

 

Hydrogen bonding was also observed in mixtures of PLGA and two BRP drugs, 

and both PLGA repeating units can form this interaction with the BRP drug molecule. 

According to the literature,[99] interactions cannot generally be considered as "strong" 
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hydrogen bonding if the interaction distance is greater than 2.5 Å. The same situation 

of hydrogen bonding can be found in the mixture of PValG with BRP201 and the values 

of ∆𝐺mix  based on Method II were also very close. Overall, the relatively weak 

hydrogen bonding between PLGA and BRP drugs could be the reason for the minor 

differences in the ∆𝐺mix from two calculation methods, because such interaction didn’t 

play a role in the miscibility of PLGA with BRP drugs. This also indicates that the 

driving force for miscibility in PLGA could be different from that of Polyester amides 

when mixing with BRP drugs.  

As shown in table 6, the less accurate Method I predicted the solubility limit of 

BRP drugs in PEAs to be between 3.5 and 20.2 wt%. However, the more accurate 

calculations using Method II consistently predict a miscibility limit of about 1.5 wt%, 

which in good agreement with experimental measurements.[91] For PLGA mixtures, the 

solubility limits of BRP drugs showed very different trends, especially for PLGA-

BRP201. According to theory, BRP201 can mix infinitely in PLGA at 300 K because 

of a negative 𝜒 , but there is no experimental evidence to support this prediction. 

Additionally, it should be noted that 𝜒 is a concentration-dependent quantity, and in 

the current work, 𝜒 was obtained by performing MD simulations on mixtures with 

only one drug molecule. As the concentration of the drug in the mixture increases, 𝜒 

could be affected and the predictions might be different. In this the study, it was 

preferred to analyze the miscibility by the comparison of ∆𝐺mix  at a certain drug 

concentration, and the solubility limit could be used as a theoretical estimate only. For 

better and more reliable predictions, it is recommended that the mixtures be simulated 

on the basis of known drug concentrations close to the experiments, as in the case of 

the PEA-BRP mixtures.  

The simulation results showed comparable performance of polyester amides to 

PLGA in miscibility with both BRP drugs with about 1 wt% drug concentration and 

this was also in good agreement with experimental observations by encapsulation test 

of BRP drugs with polymer nanoparticles.[91] However, it should be noted that the 

miscibility mechanism in reality is more complex and involves more compounds in the 
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preparation of polymer nanoparticles and drug encapsulation. Simulations can only 

provide a theoretical perspective on the potential influencing factors of polymer-drug 

interactions and point out a possible way to improve the design of polymeric drug 

carriers. 

 

3 Conclusion 

The in silico miscibility prediction based on Flory-Huggins theory has been 

demonstrated to be a reliable tool for describing the miscibility behavior of polyester 

amides with specific drugs, in good agreement with experimental observations.[28, 30] 

Based on the comparison of the simulation results of PEA2+IMC and PEA5+IMC 

mixtures, hydrogen bonding between PEA and drug molecules was considered to be 

the key factor for miscibility. The same phenomenon occurred in the simulations of 

PValG and PIleG mixtures, but the simulations of PLGA mixtures indicated that 

hydrogen bonding played a minor role in miscibility with BRP187 and BRP201. 

Therefore, to further improve the accuracy of the prediction, not only hydrogen bonding 

interactions but also other types of host-guest interactions (e.g., van der Waals forces 

and hydrophobic interactions) must be taken into account in accurate simulations[100] 

and the absence of consideration of host-guest interactions is the reason for the 

inaccuracy of the fast calculation method. 

Combined with experimental measurements, it can be confirmed that the performance 

of PValG and PIleG mixed with BRP187 and BRP201 is comparable to that of PLGA, 

but it is important to note that in practice, hydrophobic PEA and PLGA are typically 

used as the hydrophobic block of larger block copolymers, e.g. poly(2-ethyl-2-

oxazoline)-block-poly(ester amide) and poly(ethylene glycol) -block-PLGA.[91] Thus, 

miscibility can be affected not only by the interaction between the polymer and the drug, 

but also by many other factors. Still, simulations can provide theoretical support for 

improving the performance of polymeric drug carriers. Based on the differences in the 
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results obtained from the two calculation methods, it is clear that simulations of the 

exact mixing system are still necessary in order to be more consistent with the 

experimental observations. However, the computational cost of such simulations may 

become an issue when more complex polymer candidates come into sight. Since 

machine learning approaches have been applied to predict the solubility parameters of 

polymers and have shown good accuracy and agreement with MD simulations (Chapter 

I), and the MD simulation workflow for mixture systems in current work is almost 

identical to that for pure polymers and drugs. Therefore, the simulation results of 

mixtures are available for machine learning approaches and miscibility prediction based 

on a mixture database can be realized in the near future. 
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Chapter III 

DPD simulations of modified block copolymer 
micelles with specific therapeutic agents 
 

 

 

In this chapter, the encapsulation ability of modified block copolymers with specific 

therapeutic agents was investigated using dissipative particle dynamics (DPD) 

simulations to identify the key factors for improving the performance of polymer 

polyplex micelles. In difference to the polymers used in previous chapters, a series of 

block copolymers were chosen to build nano micelles to encapsulate small interfering 

RNAs (siRNAs) as pharmaceutical agents.[101] The poly(ethylene glycol)-block-

poly(allyl glycidyl ether) (PEG-b-PAGE) diblock copolymer carries amino moieties in 

the side chain, which theoretically interact with the phosphate group of the siRNA 

molecule to enhance encapsulation. The molecular weights or block ratios of PEG 

blocks are thought to affect the properties of polyplex micelles made from PEG-b-

PAGE, therefore a series of block copolymers with different PEG block ratios were 

constructed. The aim of this study was to evaluate the relationship between the PEG 

block ratio and encapsulation, both experimentally and by simulation, and find the most 

suitable polymer formulation for siRNA delivery. 

 

1 Materials and methods 

1.1 Polymers and small interfering RNA  

In the current study, the PAGE block was functionalized by amino moieties, which 

imparted cationic charges to the molecule (PEG-b-PAGENH2).
[101] PAGE segment with 
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cationic charges allows polyion complexation with anionically charged siRNA, 

forming the core of the polyplex micelles with PEG as a corona. The ratio between PEG 

corona and siRNA complexed PAGE core of polyplex micelles was chemically varied 

by altering the degree of polymerization of PAGENH2. 

  
Figure 25. Structural formular of PEG-b-PAGENH2 and the theoretical structure of the polyplex micelle 

encapsulating siRNA. 

 

Table 7 lists micelles prepared with four different PEG-b-PAGENH2 polymer chains. 

All polymer chains contain PEG blocks of the same length, but the PAGENH2 blocks are 

different. The Sequence of siRNA molecule for polyplex micelles is shown in table 

8.[101] 

 
Table 7. Physicochemical properties of polyplex micelles and Mn ratio of PEG:PAGE 

Polyplex micelles  DP of PEG  Dp of PAGE  Mn of PAGE  Mn ratio of 
PEG:PAGE 

EN15  42  15  2808  0.66 

EN29  42  29  5556  0.34 

EN60  42  60  11485  0.16 

EN76  42  76  14579  0.13 

DP: degree of polymerization 

Table 8. The sequence of siRNA used for the encapsualtion test 

siRNA  Sequence (5’ to 3’) 

Sense (22 base pairs) 

Tm = 54°C 
[2OMeU]CAUAUUCAAAGAUACACCCCC 

Antisense (22 base pairs)  [2OMeG]GGGGUGUAUCUUUGAAUAUGA 
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Tm = 54°C 

1.2 Dissipative particle dynamics simulation  

All DPD simulations were performed with the program Materials Studio (MS) and the 

Mesocite module.[54] The polyplex micelle systems simulated in this study were 

composed of siRNA, PEG42-b-PAGENH2 block copolymer and water. Coarse-grained 

models of all species involved in these systems are shown in figure 26. Every two PEG 

repeat units were coarse-grained into one bead (denoted as E), one PAGENH2 repeat unit 

was comprised of two beads N and S (S bead is positively charged because of amino 

moieties). The siRNA molecule was coarse-grained into six different types of beads 

(denoted as A, B, C, G, P, and U), in which A, U, G, and C represented the four different 

bases of siRNA, B and P represented the ribose and phosphoric acid (charged). The 

bead of water W contained three water molecules. In the DPD simulation all beads share 

the same mass and size, and the average volume, mass and radius of each bead was set 

to 177 Å3, 113 amu and 3.5 Å, respectively. 

The coarse-grained models of polymer chains were built based on the experimental 

DP values (table 7) and the siRNA model was built based on the TLR4 sequence (table 

8). Since simulations of actual micelles would be too computationally demanding even 

for DPD, we used smaller models that contained only one siRNA molecule and enough 

polymer material for its complete encapsulation. Nevertheless, such models are still 

expected to provide a qualitative picture of siRNA-polymer arrangement in the 

micelles.[101]  
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Figure 26. Coarse grained structures of PEG42-b-PAGENH2 block copolymer, siRNA and water. 

 

The length and time scale of DPD simulations in current work, 𝑟𝑐 and 𝑡𝑐, were 

set to 8.1 Å and 0.0047  ns as 1 time step. Cubic simulation cells in the size of 

25×25×25 𝑟𝑐
3 were built. Using reduced units, spring constant was determined as 4.0 

and dissipative force parameters as 4.5 for all models. The siRNA molecule was placed 

in the cell as the core and PEG42-b-PAGENH2 molecules formed a shell with radius from 

15 to 70 Å (figure 27). The rest of the space in the cell was filled with water. All cells 

were simulated for 20000 time steps. The repulsive parameter 𝑎𝑖𝑗 for all beads were 

obtained based on the MD simulations in Materials studio and the details are provided 

in Appendix Ch.III.2. 

 
Figure 27. Schematic diagram of simulation cell. (Reprinted from [101] open access: CC BY 4.0 DEED, 

Copyright 2023 the Authors.) 
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To investigate the effect of charges on the performance of polyplex micelles, DPD 

simulations of charged micelles were carried out for selected PEG42-b-PAGENH2 

molecules. In charged bead micelle systems, the S beads of PAGE block carried positive 

charges and the P beads of the siRNA molecule carried negative charges. The nitrogen 

to phosphate (N/P) ratio was set to 5 according to the experiment.[101] An appropriate 

number of W beads were replaced by charged W beads with negative charge to maintain 

neutrality of the whole system. Particle-Particle-Particle-Mesh (PPPM) summation 

method was applied for electrostatic interactions of beads.  

The DPD simulation for a charged system is usually more complicated than a 

neutral system and needs more sophisticated adjustments, for example the balance 

between charge values and spring constant between the beads.[41, 102] The influence will 

be discussed in section 2: Results and discussion. 

According to the experience of DPD simulations in the soft matter systems,[103] the 

charges and the form of charges for DPD simulations have relatively little impact on 

qualitative analysis. While sophisticated tuning of specific interactions can lead to more 

rational microstructures, it is not cost-effective for mesoscale qualitative studies.[103] 

Therefore, it is preferable to implicitly include the electrostatic interactions 

between the PAGE block and siRNA in the DPD force field,[101] while all beads remain 

electrically neutral, resulting in a less consuming simulation. The comparison between 

charged and neutral micelles will be shown in next section. 

 

2 Results and discussion 

2.1 DPD simulations for charged siRNA 

As explained in previous section, the DPD simulations for charged systems need more 

tunings on the beads. The tuning began with setting the appropriate charge values for 

the beads and constructing a simulation cell containing only siRNA and water for 
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testing. Figure 28 shows the structure of siRNA with different charge values and the 

spring constant 𝐶 was set to default value (𝐶 = 4.0) for all simulations. 

 
Figure 28. Structure of the charged siRNA molecule with spring constant 𝐶 = 4.0 and bead charges: 

A) 0 e, B) 0.1e, C) 0.2e, D) 0.3e and E) 0.4e. Water beads are hidden. (Reprinted from [101] open access: 

CC BY 4.0 DEED, Copyright 2023 the Authors.) 

 

It is clearly seen that the repulsive force between the P beads increased with 

increasing charge values, resulting in the stretching of the siRNA molecule until a non-

physical morphology was formed. A default charge value of 0.3e was used for the rest 

of the simulation, and the spring constant 𝐶 was then adjusted to overcome the strong 

repulsive forces. Figure 29 shows the structure of charged siRNA (0.3e) with different 

spring constant 𝐶  and the siRNA molecule became more physical with the 

increasing 𝐶, but when the spring force was too strong, siRNA molecule was going 

to be squeezed together.  

 
Figure 29. Structure of siRNA molecule with 0.3e charge and different values of the spring constant 𝐶: 
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A) 𝐶 = 4 , B) 𝐶 = 12 , C) 𝐶 = 20 , D) 𝐶 = 28 , and E) 𝐶 = 36 . Water beads are hidden. (Reprinted 

from [101] open access: CC BY 4.0 DEED, Copyright 2023 the Authors.) 

To have a look at the connection between MD and DPD simulations, we also 

performed two molecular dynamics simulations of protonated and charged siRNA 

molecules. The simulation procedure was based on the work from Ziebarth et al. but 

replaced with the COMPASS force field to maintain consistency throughout the 

project.[104] To reduce the computational cost, only half of the siRNA sequence was 

used to construct the atomistic model of siRNA (figure 30) and a simulation cell with 

size about 75 x 75 x 75 Å3 were built. For protonated siRNA, the simulation cell 

contained only one siRNA molecule and the rest of space was filled by water.  

 
Figure 30. Atomistic model of siRNA with half of the full sequence. Sense: CCCCCACAUAGAA,  
Antisense: GGGGGUGUAUCUU. 

 

For charged siRNA the simulation cell as mor complicated. In order to maintain 

the electroneutrality of the simulation cell, ionized sodium chloride was additionally 

added according to literature operations. In the cell, in total 78 sodium cations and 52 

chloride anions were added and the concentration of sodium chloride reached 194 mM 

(figure 31), which is similar to the literature settings.[104] Further MD simulation 

procedure see Appendix Ch. III.3. 
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Figure 31. Simulation cell filled by charged siRNA molecule, Na+, Cl- and water. Water molecules were 

hidden. 

 

Different from single-stranded RNAs such as messenger RNA (mRNA), siRNAs 

have a double-stranded structure, with base pairs built up between the two strands by 

hydrogen bonding, which is rather closer to the DNA molecules. Figure 32 shows the 

equilibrated structure of protonated siRNA, and it is clear that the molecule was unable 

to maintain an ordered double-stranded structure. Some base pairs were gradually 

broken, but the two chains are not completely decoupled, which is very close to the 

morphology in the DPD simulations, albeit at half the length.  

 

Figure 32. The equilibrated structure of protonated siRNA from MD and DPD simulations 

 

The simulation for charged siRNA was not satisfying (figure 33) because the two 

strands almost broke up. The disintegration of base pairs could result from too weak a 

hydrogen bond, together with excessive electrostatic forces, might be responsible for 

the structural instability. Hydrogen bonding in base pairs cannot be described by 

ordinary hydrogen bonding, and the COMPASS force field may underestimate the 
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strength of these interactions. The situation is very similar to that of the DPD 

simulations, but since the COMPASS force field series is a commercial product, it is 

not possible to adjust its parameters. 

In the work of Ziebarth et al, refined AMBER force field ff12SB was applied to 

simulate DNA and siRNA molecules,[104] which is considered to be the best force field 

for protein and nucleic acids at the time. The COMPASS force field series has proven 

to be an accurate and powerful force field system for the simulations of organic 

compounds, inorganic small molecules, and polymers,[105] but COMPASS may not be 

available for the simulations of nucleic acid molecules without additional 

modifications.[106] This may pose difficulties in the future in integrating the entire 

project and using the same force field and simulation procedures in a uniform manner. 

 

 
Figure 33. The equilibrated structure of siRNA with Na+ and Cl-. Water molecules were hidden. 

 

2.2 DPD simulations for charged polyplex micelle EN15 

Following the tests on siRNA, the EN15 charged polyplex micelle with the largest PEG 
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weight ratio was selected for the next simulation. The morphologies of EN15 micelle 

with different 𝐶 are presented in figure 34. 

 
Figure 34. DPD simulations of EN15 micelle system with charge of 0.3e after 20000 time steps  
A) 𝐶 = 4, B) 𝐶 = 12, C) 𝐶 = 20, D) 𝐶 = 28 and E) 𝐶 = 36. 

 

With the increase of 𝐶 value, the structure of siRNA changed as in the previous 
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simulations, but no significant change was observed in the trend of encapsulation 

capacity and the morphology of micelles. Before reached 𝐶 = 28, the siRNA molecule 

could stretch within the micelles, but as 𝐶 continues to increase, the siRNA core was again 

compressed. 

It is concluded that 𝐶 = 28 was best suited for modeling charged systems with 

0.3e, since the morphology of siRNA was the most physical and could even show a 

double helix structure. At the same time, no obvious changes were found in the 

morphology of polyplex micelle, indicating that the qualitative behavior for the 

micelle system was not affected in an apparent manner, which in agreement with 

the findings and suggestions from other published works on organic soft 

matters.[103] Therefore, charge neutral beads were used with default spring 

constant 𝐶 = 4 for the rest of the DPD simulations. 

 

2.3 DPD simulations for neutral polyplex micelles 

Figure 35 shows the DPD results of charge neutral polyplex micelles from EN15 to 

EN76, respectively and different trends were observed. The first thing to note is that for 

EN15 there was no significant difference between the charged and neutral models, 

comparing with figure 34. This indicates that the short-range electrostatic interactions 

that are included implicitly in the DPD force field parameters have the strongest 

influence on the structure of the micelles. 
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Figure 35. Snapshots of DPD simulations showing the formation and structure of polyplex micelles 

complexed with siRNA (water beads are hidden for clarity): (a) EN15 and (b) cross-sectional view of 

the final micelle; (c) EN29 and (d) cross-sectional view of the final micelle; (e) EN60 and (f) cross-

sectional view of the final micelle; (g) EN76 and (h) cross-sectional view of the final micelle. (Reprinted 

from [101] open access: CC BY 4.0 DEED, Copyright 2023 the Authors.) 

 

In the initial stage of DPD simulations, all polyplex micelles with siRNA formed 

disordered distribution of beads. As the simulations progressed, EN15, EN29, and 

EN60 gradually formed a layered micelle, with the hydrophilic PEG beads building an 

outer layer and the PAGE beads accumulating around the siRNA core. After 10000 time 

steps, the micelle structure became stable and maintained its stability for the remaining 

10000-time steps (20000-time steps for the entire DPD simulation). The cross-sectional 

views in figures 35b, 35d and 35f demonstrated that EN15, EN29, and EN60 fully 

encapsulated the siRNA molecule in the core. The cross-sectional view also revealed a 

gradual decrease in the PEG layer thickness from EN15, EN29 to EN60. EN76 (figure 
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35g) showed similarly disordered structures in the initial simulation stages as other 

micelles. However, a disrupted PEG corona formed in the final micelle structure, with 

the siRNA partially exposed on the surface of the micelle (figures 35g and h). All 

micelles maintained spherical morphologies, which is in good agreement with 

experimental observations (figure 36).  

 
Figure 36. TEM images suggest a spherical shape of all polyplex micelles. (Reprinted from [101] open 

access: CC BY 4.0 DEED, Copyright 2023 the Authors.) 

 

The failure of EN76 micelles to encapsulate siRNA was inconsistent with 

theoretical assumptions since, as the polymer chain with longest PAGENH2 block, the 

interaction between the PAGENH2 and siRNA should be the strongest. Moreover, further 

experimental measurements confirmed that EN76 could not encapsulate siRNA (figure 

37), which cross-verified that the electrostatic interactions between PAGENH2 block and 

siRNA were not a key factor affecting the stability of polyplex micelles. The intravital 

microscopy images demonstrated the injection process of four micelles containing 

fluorescently labeled siRNA in the mouse liver. Take EN 15 as an example, 5 minutes 

after injection, the magenta fluorescence could be observed in liver canaliculi (tiny 

channels among liver cells for substance exchange), indicating the ongoing 

transportation of the siRNA. 30 minutes after injection, fluorescence was all over the 

observation area, indicating that the siRNA survived for 30 minutes in the liver and 

were not fully captured by immune cells. In contrast, the fluorescence of EN76 

encapsulated siRNA did not change after 15 minutes and immune cells could be found 

in the blood vessel area. This difference in images was straightforward evidence of the 
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stealth ability of EN15-siRNA and confirmed the protective effect of EN15 micelle. 

Micelles with higher PEG weight ratio, i.e., thicker hydrophilic outer shell showed 

higher stability both in simulations and experimental observations. In combination with 

other experimental tests and measurements, it is confirmed that the weight ratio of PEG 

is more influential on the performance of the polyplex micelles than the specific 

interaction between PAGENH2 and siRNA. 

 

 
Figure 37. Different PEG ratio of siRNA polyplex micelles significantly influences the biodistribution 

profiles. (a) Intravital microscopy of the liver. Hepatocytes are identified by their strong NAD(P)H 

autofluorescence (blue). Each polyplex micelles were complexed with Cy3-siRNA (magenta) and 
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injected through a tail vein catheter. A representative set of images from a time series (0 min before 

injection to 30 min after injection) is presented. (b) Magnification of some representative aerials in the 

images, depicting hepatocytes, blood vessels (sinusoids), the post-hepatocellular canaliculi (indicating 

elimination of Cy3), and immune cells, in particular, Kupffer cells (local macrophages), (c) F4/80-FITC 

(green) antibody was injected after IVM evaluation to counterstain Kupffer cells. Colocalization (white) 

between Cy3-siRNA polyplex micelles (magenta) and Kupffer cells (green) was observed (red ▲). N/P 

ratio of 5 was used for micelles in the experiments. (Reprinted from [101] open access: CC BY 4.0 DEED, 

Copyright 2023 the Authors.)  

3 Conclusion 

In this study, DPD simulations successfully provided the qualitative analysis on the 

performance of series of polyplex micelles with specific therapeutic agents, which in 

good agreement with experimental measurements. For PEG-b-PAGENH2 micelles 

encapsulating siRNA, it is confirmed that the weight ratio of PEG is one of the key 

factors for the performance and stability of polyplex micelle. This may provide some 

guidance for improving such nanostructures in a cheaper route, as polymerization of 

PEG is much easier than enhancing electrostatic interactions between the polymers and 

the therapeutic agents. 

For the DPD simulation itself, the charge-neutral model with implicitly included 

short-range electrostatic interactions may be sufficient for a qualitative task. Adding 

charge and further tuning of parameters may bring the physical morphology closer to 

reality, but this is not cost-effective.[16, 103] Furthermore, it is noted that the repulsive 

parameter 𝑎𝑖𝑗 were calculated with Flory-Huggins parameter 𝜒  from MD simulations, 

indicating that using the Flory-Huggins parameter as a bridge could enable a multiscale 

simulation approach from the atomic scale to the mesoscale. However, the differences 

in simulating siRNA molecules with DPD and MD suggest that there are still many 

barriers to be crossed, as larger scale simulations will always mean that more simplified 

and empirical parameters will be involved,[102, 103, 107] and maintaining the expression 

of the molecular structure across the range of scales can be a great challenge. 
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Conclusion and outlook 

 

 

 

In this study, computer-aided methods around thermodynamic properties proved to be 

a powerful tool for investigating the properties of nanoparticulate polymeric drug 

carriers. The good agreement with experimental characterizations and observations 

demonstrates that the in silico approach is able to provide theoretical support from the 

atomic scale to the mesoscale. 

A machine learning procedure was constructed based on molecular dynamics 

simulations to predict the Hildebrand solubility parameters 𝛿 of polymers. As a first 

step, a database containing information on the structure of polymer repeating units and 

polymer chains was created, in which the repeating units of the polymers were replaced 

by saturated organic small molecules (repeating elements, REs) with structural 

similarities. Four ML algorithms were then combined with three descriptor selection 

methods to produce a series of ML models. After training, some models showed 

satisfactory performance, and the computation time was much smaller than that of MD 

simulations. The addition of chain-related descriptors significantly improved the ML 

model compared to our previous work.[53] Along this direction, a focus of future work 

will be to further extend the database to collect a wider range of descriptors, such as 

structural information on polymer chains, reliable experimental data, and various 

spectra from experimental measurements, etc.[87, 90] It is also important to focus on the 

explainability of the model to ease the involvement of scientists from different fields.[84] 

Moreover, this ML procedure could theoretically be migrated to the thermodynamic 

investigation of small organic molecules (solvents, drugs, etc.) as well, provided that 

high-quality database is available. 

Subsequently, miscibility predictions based on the Flory-Huggins parameter 𝜒 
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and the Gibbs free energy change of mixing ∆𝐺mix were indicated to be accurate in 

selecting suitable polymers for specific drug molecules. Theoretical calculations were 

in good agreement with experimental observations, but the problem is that high-

precision simulations of mixtures tended to be too resource-consuming and inefficient. 

Since the ML procedure for polymers has already been built, if it can also be applied to 

small molecules as described above, then a larger scale or multi-level ML model can be 

built with inputs for the target polymer as well as the drug to directly predict 

compatibility. If such a procedure is indeed established in the future as a means of 

primary screening, it could save a great deal of time and effort, even if the accuracy rate 

is not extremely high. 

Following this, DPD simulation successfully revealed the key factors for the 

encapsulation of siRNA by PEG-b-PAGENH2 polyplex micelles. The contribution of the 

electrostatic interaction of the PAGE block with siRNA to the encapsulation ability was 

not as important as expected. Instead, the weight ratio of PEG (i.e., the thickness of the 

hydrophilic shell) had a greater effect on encapsulation performance, a finding that was 

in agreement with experimental observations. During the study, it was found that, as far 

as qualitative conclusions are concerned, the simulation of the charged system did not 

help much, even though the structure in the simulation was closer to the image of 

scientific intuition but did not affect the conclusions. One of the most important 

parameters in the DPD simulation: the repulsive parameter 𝑎𝑖𝑗 was calculated from 

𝜒  , while in this work the 𝜒  could be calculated from 𝛿  obtained from the MD 

simulations, which made the 𝛿 an important bridge linking the three main components 

in this work. Still, it should be noted that it is not easy to maintain consistency between 

scales. The settings of force fields and other parameters would produce different effects 

at different scales. ML also can play a role in bridging scales and reduce the 

computational cost.[18, 108]  

In conclusion, simulation and machine learning around Hildebrand solubility 

parameter can play a role in all stages of polymeric drug carrier design. From screening 

polymers for specific drugs to analyzing the encapsulation properties of polymer 
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nanostructures up to investigating the mechanism of drug release from carriers, there is 

a space for theoretical computation combined with machine learning. It is even possible 

to construct multi-scale, full-process machine learning models from molecule screening 

to subsequent drug release. Some countries and research institutions have already done 

some preparatory work in this area,[18, 108] but it is important to note that the data and 

manpower required to build models on such a large scale are enormous and not 

affordable for any individual or small team. However, it is feasible to build a full-

process ML model by narrowing down the focus of the search (e.g., by first identifying 

the drugs and potential polymers to be studied), but it still requires a sustained long-

term commitment.
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Appendix 

 

 

Chapter I 

1 MD simulation procedure 

The detailed procedure of MD simulation is presented as figure Ch.I.1 and the specific 

simulation parameters for the work of chapter I are listed as follows: 

1.  The initial density of the system is set to 1 g/cm3. 

2.  Each unit cell will generate 10 to 20 configurations. The appropriate number of 

configurations will be adjusted according to size of the polymer. 

3.  5 to 10 cells with lowest energy will be selected. 

4.  During  the  simulated  annealing,  the  system  is  equilibrated  at  T  =  300  K. 

Subsequently,  the temperature will be step­wisely increased to 1000 K and  then 

decreased to 300 K. At each step, the temperature is increased/decreased by 100 K, 

followed by a 5 ps equilibration. 

5.  Duration of sampling process is set as 200 ps for both  𝑁𝑃𝑇  and  𝑁𝑉𝑇  simulation.   

6.  During  𝑁𝑃𝑇  simulation,  cell  has  200  ps  to  equilibrate,  while  during  𝑁𝑉𝑇   the 

duration is set as 50 ps. 
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Figure Ch.I.1. Workflow of MD simulation for calculating Hildebrand solubility parameter 
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2 Polymer REs and SMILES 

Due to too much data, the summary of polymers is not convenient to present. All 82 

polymers and corresponding REs can be found in .xlsx document through the link: 

https://nas.cms.uni-jena.de:5501/sharing/z70kHFQw3 

Note that the names of some REs were automatically generated by the software based 

on the IUPAC nomenclature because as fictional molecules there are no real names for 

them. 

3 Datasets and descriptors 

Two datasets can be found in .csv file through following link: 

Dataset 1: https://nas.cms.uni-jena.de:5501/sharing/7JsKr97No 

Dataset 2: https://nas.cms.uni-jena.de:5501/sharing/MPtvCIVE7 

 

The description of padel descriptors in .xlsx: 

https://nas.cms.uni-jena.de:5501/sharing/qtXYYMSij 

4 RFE selection of descriptors 

For dataset 1 

SVR: in total 30 descriptors 

AATS5s  VE1_Dzm  SdsCH  mindsCH  maxHCsats 

AATSC8c  VE3_Dze  minwHBd  maxHBd  hmax 

AATSC3p  VE1_Dzp  minHBint2  maxwHBd  ETA_EtaP_L 

MATS4i  SpMin7_Bhm  minHBint5  maxHsNH2  ETA_EtaP_F_L 

GATS6v  SpMin5_Bhs  minHsNH2  maxHssNH  BIC0 

GATS1e  SHsNH2  minHCsatu  maxHCHnX  JGI1 

https://nas.cms.uni-jena.de:5501/sharing/z70kHFQw3
https://nas.cms.uni-jena.de:5501/sharing/7JsKr97No
https://nas.cms.uni-jena.de:5501/sharing/MPtvCIVE7
https://nas.cms.uni-jena.de:5501/sharing/qtXYYMSij
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RF: in total 13 descriptors 

AATS1s  maxsCH3  IC0  MLFER_BO 

AATSC0c  ETA_dEpsilon_D  SIC0   

SpMin3_Bhe  ETA_EtaP  CIC1   

CrippenLogP  ETA_EtaP_F_L  MDEC-12   

 

Lasso: in total 3 descriptors 

AATS1s  SHsNH2  ETA_dEpsilon_D 

 

ENR: in total 19 descriptors 

number of repeating units  nHBint2  meanI  nHBDon_Lipinski 

AATS1s  SHsNH2  ETA_dEpsilon_D  SIC1 

AATSC4s  SsCH3  ETA_EtaP  CIC1 

BCUTp-1l  minHsNH2  ETA_EtaP_L  XLogP 

SpMin8_Bhm  maxHsNH2  ETA_EtaP_F_L   

 

 

For dataset 2 

SVR: in total 30 descriptors 

number of repeating units  SpMin6_Bhm  AVP-5 

AATSC3m  SpMin7_Bhm  ndCH2 

MATS5i  SpMin7_Bhv  SdsCH 

GATS1c  SpMax7_Bhp  StsC 

GATS1e  SpMax2_Bhs  minwHBd 

VE1_Dzp  C1SP3  minHBa 

minHCHnX  maxsNH2  VR2_D 

mintsC  gmax  JGI3 
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maxHBint2  ETA_dEpsilon_D  maxHCHnX 

maxHBint5  ETA_EtaP_F_L  MDEO-22 

 

RF: in total 88 descriptors 

number of repeating units  AATSC4p  VR1_Dzs  ETA_dEpsilon_D 

Molecular weight  AATSC1i  BCUTc-1l  ETA_EtaP 

Connectivity index 0X  AATSC0s  BCUTp-1l  ETA_EtaP_F 

Connectivity index 1X  MATS3c  SpMax8_Bhe  ETA_EtaP_F_L 

Connectivity index 1Xv  MATS1m  SpMin3_Bhe  nHBDon_Lipinski 

ALogP  MATS1e  SpMax8_Bhs  IC0 

AATS0v  MATS3p  SpMin3_Bhs  SIC0 

AATS1i  GATS1c  SpMin6_Bhs  SIC1 

AATS4i  GATS4c  SpMin7_Bhs  SIC2 

AATS0s  GATS2m  Mp  CIC1 

AATS1s  GATS1e  CrippenLogP  CIC3 

ATSC1c  GATS2e  SHCsats  CIC4 

ATSC3c  GATS1p  SsCH3  BIC1 

ATSC1m  GATS3i  minHBa  BIC4 

ATSC1v  GATS1s  minssCH2  MIC0 

ATSC3p  GATS3s  maxsCH3  MIC5 

ATSC4p  VE2_Dzm  meanI  MDEC-12 

ATSC3s  VE1_Dzp  hmin  MLFER_BH 

AATSC0c  VE2_Dzp  LipoaffinityIndex  MLFER_BO 

AATSC3c  SM1_Dzs  ETA_Epsilon_5  MLFER_S 

AATSC2v  VE2_Dzs  ETA_dEpsilon_A  RotBFrac 

JGI2  VE3_D  TopoPSA  XLogP 
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Lasso: in total 2 descriptors 

AATS1s  ETA_dEpsilon_D 

 

ENR: in total 13 descriptors 

nN  maxHsNH2  SIC1 

AATS1s  meanI  BIC1 

AATSC4s  ETA_dEpsilon_D  MDEC-12 

nBase  ETA_EtaP_L   

SHsNH2  ETA_EtaP_F_L   

 

5 Computing time of ML models 

The SVR, RF and Lasso models were computed on the platform with following specs: 

Processor: AMD Ryzen 9 5950X 16-Core (3.40 GHz) 
RAM: 16.0 GB (DDR 4) 
OS: Windows 10 professional x64 
 
Table Ch.I.1. Summary of computing time for SVR, RF and Lasso 

 

 

 

 

 

 

ML model  Dataset 1 
(min) 

Dataset 2 
(min) 

ML model  Dataset 1 
(min) 

Dataset 2 
(min) 

ML model  Dataset 1 
(min) 

Dataset 2 
(min) 

PCC-SVR  0.58  2.36  PCA-SVR  6  21.36  RFE-SVR  6.77  14.36 

PCC-RF  60.06  172.91  PCA-RF  60.23  163.49  RFE-RF  89.2  443.14 

PCC-Lasso  0.16  0.44  PCA-Lasso  0.13  0.31  RFE-Lasso  0.15  0.37 
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ENR models were computed on the platform with following specs: 

Processor: Intel Core i5 12500H 12-Core (2.50 GHz) 
RAM: 32.0 GB (DDR 4) 
OS: Windows 11 professional x64 
 
Table Ch.I.2. Summary of computing time for ENR 

ML model  Time for Dataset 1 
(min) 

Time for Dataset 2 
(min) 

PCC-ENR  4.3  9.43 

PCA-ENR  9.6  13.8 

RFE-ENR  6.6  15.2 
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Chapter II 

1 Details of polymers  

Table Ch.II.1. Summary of polymers for MD simulations in chapter II 

Polymer  DP  Molar mass of single chain 
g/mol 

SP 𝜹 
MPa1/2 

PEA2   10  3005.13  20.52 

PEA5   10  3405.78  19.59 

PValG   55  8752.43  18.91 

PIleG   55  9523.92  19.89 

PLGA   184  12029.2  21.35 

 

Table Ch.II.2. Summary of drugs for MD simulations in chapter II 

Drug  Molar mass  
g/mol 

SP 𝜹 
MPa1/2 

Indomethacin  357.793  23.89 

BRP187  456.885  23.54 

BRP201  503.64  21.44 

2 Intermolecular RDF plots of H bonds (PEA+IMC) 

 

Figure Ch.II.1. PEA+IMC intermolecular RDF plots of A) NH-N, B) OH-O and C) NH-O 
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Chapter III 

1 Atomistic structures of all beads 

Table Ch.III.1. Atomistic structures and Hildebrand solubility parameters 𝛿 of DPD beads 

Beads  Atomistic structure  𝜹  MPa1/2 

A 
 

30.1 

B 
 

32.8 

C 
 

41.0 

G 
 

40.3 

P 
 

43.6 

U 
 

34.6 

N 
 

22.4 

E 
 

20.7a 

W    47.8a 

S 
 

19.4 

H      C      N      O      S    P                                                                  a) SP from [16] 
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2 Repulsive parameters 𝒂𝒊𝒋 for all beads 

Table Ch.III.2. Interaction parameters 𝛼𝑖𝑗 between different DPD beads 

 
                                                  a) Parameters taken from from [16] 

3 MD simulation procedure for siRNA 

Basic settings: 
Force field: COMPASS III 
Simulation cell: 75 x 75 x 75 Å3 
Time step: 2 fs 
Constraint algorithm: RATTLE on H covalent bonds 
Algorithm for electrostatic interaction: PPPM (accuracy 0.0001) 
Algorithm for Van der Waals interaction: atom based 
Thermostat: NHL 
Barostat: Berendsen 

 

Procedure: 

1. NVT simulation: 2000 steps with harmonic restraints  
   (restrain constant: 10 kcal/mol/Å2) 
2. NVT simulation: 1000 steps without restraints 
3. NPT simulation: 20 ps at 1K -> 100 K -> 200 K - > 300 K  

  A  B  C  G  P  U  N  E  S  W 

A  78.00                   

B  79.05a  78.00                 

C  94.67a  87.36a  78.00               

G  92.75a  85.94a  78.06a  78.00             

P  103.57a  94.28a  78.95a  79.48a  78.00           

U  80.90a  78.46a  83.67a  82.57a  89.26a  78.00         

N  88.48  96.15  131.59  128.10  146.81  102.40  78.00       

E  90.40  98.65  135.82  132.20  151.59  105.28  78.08  78.00     

S  94.15  103.41  143.62  139.76  160.36  110.72  78.61  78.25  78.00   

W  122.16  109.61  84.57  85.87  80.52  102.44  175.68a  78.98  191.71  78.00 
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4. NPT simulation: 20 ns with restraints (restrain constant: 10 kcal/mol/ Å2) 
5. NPT simulation: 400 ps without restraints 

 



List of Abbreviations 

 
 

96 
 

List of Abbreviations 

 

 

0D      Zero-dimensional 

1D      One-dimensional 

2D      Two-dimensional 

AE     Atomization energy   

AI      Artificial intelligence 

B3-LYP   The Becke 3-parameter Lee–Yang–Parr exchange–correlation functional 

CED    Cohesive energy density   

def2-TZVP  Triple zeta valence plus polarization basis sets     

DFT    Density functional theory  

PES    Potential energy surface 

DP      Degree of polymerization  

DPD     Dissipative particle dynamics    

ENR    Elastic net regression  

FH      Flory-Huggins interaction parameter 

FLAP     5-lipoxygenase-activating protein 

GA     Glycolic acid 

HF     Hartree-Fock    

Ile      L-isoleucine 

IMC    Indomethacin 

LA     Lactic acid   

Lasso    Least absolute shrinkage and selection operator  

LOOCV  leave-one-out cross validation    
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MAE     The mean absolute error   

MD     Molecular dynamics 

ML     Machine learning    

mPGES 1  Microsomal prostaglandin E2 synthase-1   

N/P ratio   The nitrogen to phosphate ratio   

NSAID   Nonsteroidal anti-inflammatory drug   

PC     Principal component   

PCA     Principal component analysis   

PCC     Pearson correlation coefficient   

PEA     Polyester amides  

PEG     Polyethylene glycol   

PEG-b-PAGE  Poly(ethylene glycol)-block-poly(allyl glycidyl ether)     

PEI     Polyethylenimine   

PGA     Polyglycolic acid  

pHEMA   Poly(2-hydroxyethyl methacrylate)     

PIleG    L-isoleucine based Polyester amide 

PLGA     Poly(lactic-co-glycolic acid)   

PNIPA    Poly(N-isopropylacrylamide)   

PValG    L-valine based Polyester amide 

QM     Quadrupole moment   

QSAR    Quantitative structure-activity relationship   

QSPR    Quantitative structure-property relationship  

R2      The coefficient of determination 

RE     Repeating element   

RF      Random Forest  

RFE     Recursive feature elimination    

RFECV   The cross-validation method used in RFE     
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RMSE    The root mean square error   

RSS     Residual sum of squares   

siRNA    Small interfering RNA   

SMILES  Simplified Molecular Input Line Entry Specification     

SP      Hildebrand solubility parameter 

SVM     Support Vector Machine   

SVR     Support vector machine   

TEM    Transmission electron microscopy 

Val     L-valine  

WHO    World Health Organization   
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