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Introduction

Plants: the cornerstone of Earth’s lifeforms

Plants, found across all the biospheres on Earth, have played a paramount role in shaping
the natural history of our planet. Constituting nearly 80% of the Earth’s biomass (Bar‐On
et al., 2018), they serve as the primary source of carbohydrates, synthesized through
photosynthesis, thus providing the fundamental energy source for all heterotrophs (Field
et al., 1998). In parallel, insects, dominating the animal kingdom’s biomass, emerge as
the most abundant herbivores in terms of sheer numbers (Bar‐On et al., 2018), thereby
exerting selective pressures that have driven the evolution of diverse plant defense
strategies (Ehrlich and Raven, 1964). Consequently, the plant kingdom assumes a central
position in Earth’s ecological tapestry, intricately connecting nearly every species, either
directly or indirectly, to its existence.

The exploration of plant‐insect interactions dates back to the early 19th century when
Anton Kerner von Marilaun conducted a meticulous six‐year experiment in Vienna. In that
study, he cultivated over 300 annual and perennial plant species in four distinct common
garden experiments, each representing diverse climatic and geographical conditions.
Kerner’s findings revealed the pivotal role of biotic interactions in species distribution.
He concluded that “adaptation” is not a direct consequence of external conditions,
emphasizing that neither beneficial nor unfavorable conditions could induce heritable
changes in the overall form or structure of plants, including the development of plant
components (Von Marilaun, 1890). This was the first empirical example demonstrating
environmental non‐heritable changes in organisms, essentially phenotypic plasticity,
which argued against the then prevalent hypothesis of “the heritability of acquired
characters” by Jean Baptist Lamarck.

Following Kerner’s pioneering work, subsequent research by Léo Errera emphasized
the significance of plant chemicals in addition tomechanical defenses. Employing advanced
histochemical techniques available at the time, Errera conducted a meticulous analysis to
identify alkaloids within plants and precisely determined their distribution in different
tissues, establishing a comprehensive understanding of the specific localization patterns
of this compound class. Through careful examination of the spatial distribution, Errera
concluded that these chemicals likely arise as a “by product” of the plant’s developmental
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processes while also serving as a robust defense mechanism against herbivores (Hartmann,
2008). Errera not only urged botanists to investigate plant defense mechanisms, but also
encouraged zoologists to explore the counter adaptations, thereby laying the groundwork
for studying the evolutionary arms race between plants and herbivores (Hartmann, 2008).
Finally, Ernst Stahl’s comprehensive ecological field observations and experiments in Jena
with slugs and snails, provided invaluable insights into plant defenses (Stahl, 1888). Stahl
came to the conclusion that the various plant defense mechanisms provide relative rather
than absolute protection against different herbivores. He marveled at the diverse array of
mechanically and chemicallymediated defenses exhibited by plants, noting the distribution
of these compounds within plant organs, their induced accumulation, and predicted that
the overall quantitative design can only be comprehended by considering the impact of the
surrounding animal interactions on them (Hartmann, 2008).

The concepts put forth by Errera, Stahl, and Kerner converged upon a shared
evolutionary perspective. They recognized that compounds once regarded as mere
“by‐products” or considered “metabolically useless” or of “unknown functions,” such as
alkaloids and tannins, actually served as essential building blocks for the qualitative and
quantitative optimization of plant chemical defenses, evolving in response to the selective
pressure exerted by herbivores. This understanding harmonizes with Charles Darwin’s
theory of natural selection (Darwin, 1859). It is rather remarkable that these insights
were largely overlooked for a span of 70 to 100 years. During the mid‐20th century,
entomologists renewed the recognition of secondary metabolites as the mediator of
intricate interactions between plants and their environment, specifically highlighting the
essential role of these metabolites in the host plant selection process of herbivorous insects.
Gottfried Fraenkel’s seminal paper notably emphasized the dual function of plant secondary
metabolites in repelling or attracting herbivorous insects (Fraenkel, 1959). In the 1960s, the
resurging field of chemical ecology gained momentum as the quantification and empirical
observations firmly established the role of plant secondary metabolites in mediating the
multifaceted interactions between plants and their surrounding environment (Rosenthal
and Berenbaum, 2012). Thus, it took the active “interaction” of the entomologists with the
ecologists to reinvigorate the field of chemical ecology and steer it forward in the genomics
era.

Plant defense and jasmonate signaling

The transition of plants from their algal form residing in shallow freshwater habitats
to colonizing terrestrial environments represents a significant and remarkable shift in
their life history. This transition necessitated a series of adaptations, likely occurring
gradually over time. Reconstructing the precise evolutionary processes and their sequence
is challenging due to the limited availability of fossil records and the absence of extant
species that serve as direct intermediates in this transition. Nevertheless, insights can
be derived from the extant early‐diverging land plants and closely related taxa to infer
the evolutionary forces and their relative chronology. It can be argued that one such
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adaptation involved the development of the ability to synthesize a diverse array of natural
products, enabling plants to effectively overcome the numerous ecological challenges
associated with their sessile lifestyle (Knudsen et al., 2018). These natural products play
integral roles in plant growth, development, defense, and their overall Darwinian fitness,
often being synthesized in response to environmental signals. Phytohormones emerge as
crucial signaling regulators, governing plant responses to both biotic and abiotic stresses
through these natural products (Blázquez et al., 2020). Among these phytohormones,
jasmonate (JA) signaling assumes a pivotal role in coordinating a plant’s natural product
repertoire, enabling it to respond effectively to environmental stimuli, especially in relation
to the sectors associated with herbivore and pathogen resistance (Wasternack and Hause,
2013; Howe et al., 2018; Wasternack and Feussner, 2018).

At the core of JA signaling pathway is the hormone jasmonic acid (JA), which
is synthesized in response to various stimuli such as herbivory, pathogen attack, or
mechanical stress (Wasternack and Feussner, 2018). Upon perception of the initial stress
signal, JA is synthesized and conjugated to its bioactive form, jasmonoyl‐L‐isoleucine
(JA‐Ile) (Fonseca et al., 2009). JA‐Ile is then recognized by the F‐box protein COI1
(CORONITINE INSENSITIVE1) (Xie et al., 1998), which forms a receptor complex with the
hyper‐variable JAZ (JASMONATE ZIM DOMAIN) proteins as the target. In the absence of
JA‐Ile, JAZ proteins act as repressors by binding to transcription factors and preventing
their activity. However, upon binding of JA‐Ile to the COI1‐JAZ complex, the JAZ proteins
are degraded via the 26S proteasome pathway (Thines et al., 2007; Howe et al., 2018).
The degradation of JAZ proteins releases the transcription factors, such as MYC2 (a
basic helix‐loop‐helix transcription factor), allowing them to activate the expression of
downstream genes involved in defense responses, secondary metabolite production, and
other JA‐responsive processes (Niu et al., 2011; Schweizer et al., 2013). These genes regulate
the synthesis of various defense compounds in most higher plants, including proteinase
inhibitors, volatile organic compounds (VOCs), and other secondary metabolites, which
help them defend against herbivores, pathogens, and other stresses. The JA‐Ile receptor
complex is believed to be highly conserved among vascular land plants, which aligns
with the observation that several biotrophic pathogens, including the well‐studied model
pathogen Pseudomonas syringae, produce coronatine, a structurally similar compound to
JA‐Ile that activates the COI1‐JAZ receptor system, that serves as a crucial virulence factor
by suppressing salicylic acid (SA) signaling responses (Katsir et al., 2008; Geng et al., 2014).

The molecular mechanisms of JA signaling and its associated metabolic and
transcriptomic responses have been extensively studied in the Nicotiana attenuata –
Manduca sexta model plant‐herbivore system, which largely follows the canonical model.
Typically, the JA signaling cascade in N. attenuata is triggered and strongly amplified when
fatty acid amino acid elicitors in the oral secretions and regurgitants (OS) of Lepidopteran
larvae are introduced into wounds during feeding (Halitschke et al., 2001; Roda et al.,
2004; VanDoorn et al., 2010). The resulting metabolic and transcriptomic responses are
mediated by JA‐Ile (Kang et al., 2006) acting as a ligand for COI1 (Paschold et al., 2007,
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2008) which forms a receptor complex with hyper‐variable jasmonate ZIM‐domain (JAZ)
proteins (Oh et al., 2012; Li et al., 2016; Li et al., 2017; Bai et al., 2022). A wide array of
induced specialized metabolites are then synthesized, that serve as both direct and indirect
defense strategy against the herbivores. Manuscript I of this dissertation discusses in
detail these strategies, delving into the various layers of its regulatory processes and their
context‐dependent responses.

N. attenuata : an ecological model plant

Fig. 1: The N. attenuata system in its native habitat in the Great Basin Desert of SW Utah. From
top left to bottom: the wild fires that give germination cues to long lived seed‐banks of this species,
leading to large mono‐cultures (D. Kessler and K. Gase). Middle, an N. attenuata plant in its native
habitat (C. Diezel). Right, from top to bottom: aM. sexta moth feeding on N. attenuata flowers (D.
Kessler), the predatory big‐eyed bug Geocoris sp. feeding on a neonateM. sexta larvae (A. Kessler),
an adultM. sexta caterpillar (R. Ray).

The annual plant, wild coyote tobacco: N. attenuata, is indigenous to the Great Basin
Desert of North America. It exhibits a germination pattern driven by long‐lived seedbanks
in post‐fire soils characteristic of high nitrogen content (Baldwin and Morse, 1994; Baldwin
et al., 1994). This behavior often results in large scale germination event with near
mono‐cultures, which lead to high levels of competition for valuable resources among
conspecifics. Previous research has identified key traits relevant to the interactions
between N. attenuata and its associated community of pollinators and herbivores. JA
signaling governs a substantial portion of the defense responses against both generalist
and specialist herbivores, operating in both vegetative and reproductive tissues (Kessler et
al., 2004; Li et al., 2017, 2018). JA signaling also influences floral scent emission and nectar
production (Stitz et al., 2014), which serve to attract and reward the primary pollinator of
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N. attenuata, theM. sextamoths, whose larvae also rely on this plant for nourishment.

Fascinatingly, this wild tobacco species has evolved both JA‐mediated and
JA‐independent mechanisms that reconcile the dilemma between attracting pollinators
and defending against herbivores, achieved through changes in flower phenology or
attracting higher trophic predators that promote interactions with pollinators or predators,
thus minimizing the chances of eggs developing into herbivores (Kessler and Baldwin,
2001; Kessler et al., 2010; Zhou et al., 2017; Cortés Llorca et al., 2020). Over the course of
three decades, a combination of field observations and laboratory investigations, including
the analysis of numerous transgenic lines with genes silenced in various key pathways
and natural accessions, together with extensive transcriptomic and metabolomic data, has
contributed to an enhanced understanding of how this plant navigates interactions with
its adversaries, competitors, and pollinators.

VOCs emitted by plants has shown to play a crucial role in mediating ecological
interactions, particularly herbivore host‐plant choices as a function of VOC emission
(Kessler and Baldwin, 2001; Carroll et al., 2006; Schuman et al., 2012). However, the
precise impact of VOC‐mediated interactions on ecological dynamics remains largely
unexplored, and consequently, the extent to which these interactions exert selective
pressure on host plants and its fitness outcome remains unknown (Kessler and Heil, 2011;
Schuman, 2023). Measuring the impact of natural enemies as agents of natural selection
on VOCs is challenging due to several interrelated factors: the presence of a herbivore
species that consistently imposes negative fitness effects on the host plant; the attraction
of natural enemies that exert significant negative effects on the herbivore population; and
lastly the variation in natural enemy attraction in response to inducible VOC emission
within a plant population (Kessler et al., 2023). Moreover, accurately quantifying VOCs in
the natural environment is a challenging task from a practical point of view. For selective
pressure to occur, the herbivore and predator populations must exhibit relative stability,
which is not always the case in nature. Thus, a more nuanced assessment is required to
evaluate Darwinian fitness in terms of information‐mediated and/or resource‐mediated
defense mechanisms (Kessler and Heil, 2011), and the interaction should be evaluated
under the broader ecological dynamics at play, for example in Schuman et al. (2012).

During the course of the N. attenuata research program, genome sequencing
brought in a significant paradigm shift across the biological sciences, including the field
of molecular ecology. The ability to decode an organism’s complete genetic blueprint
provided unprecedented insights into the intricate mechanisms underlying species’
interactions with their environment. The Arabidopsis genome was sequenced back in
2000, a pioneering effort in plant genomics (Arabidopsis Genome Initiative, 2000), which
also coincided with the release of the first draft of the human genome, marking the
beginning of the “genomic era”. The assembly of the N. attenuata genome was published
17 years later, benefiting from significant advancements in sequencing and assembly
techniques along with a dramatic reduction in sequencing costs (Xu et al., 2017). The new
genomic resource facilitated the rapid generation of N. attenuata transgenic lines which,
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when released into the native habitat of the species, gave insights into the molecular basis
of various ecological traits. While this “sledge hammer” reverse genetics approach provided
within‐plant mechanistic and functional understanding of N. attenuata, a population level
understanding of this plant’s interactions remained largely elusive. In Manuscript I,
we argue why investigating within‐population trait variance can lead to a more holistic
functional understanding of the particular trait, with focus on JA‐signaling in N. attenuata.
And in Manuscript II, together with a contiguous reference N. attenuata reference
genome, we show how a major mutation in the JA‐signaling pathway can persist in natural
population of the species, through a combination of spatio‐temporally driven balancing
selection, and a robust herbivory elicited gene regulatory network buffering the mutation.

Forward genetics: unveiling Nature’s secrets

Population geneticists have long employed the genetic diversity observed in natural
populations to investigate the underlying genetic basis of specific traits and also understand
the evolutionary forces at play. In the case of N. attenuata, different accessions collected
from regions covering the range distribution of the species, show considerable natural
variation in OS‐induced metabolic response profiles when grown under controlled
glasshouse conditions (Li et al., 2015). This motivated the construction of a bi‐parental
mapping population, leveraging the allelic diversity of two natural accessions collected
from Utah and Arizona (Glawe et al., 2003; Wu et al., 2008), resulting in an Advanced
Intercross Recombinant Inbred Line (AI‐RIL) population. This AI‐RIL population has
been instrumental in identifying the genetic factors associated with indirect defense
mechanisms through VOCs (Zhou et al., 2017; He et al., 2019) (presented in Manuscript
III) and exploring the interactions with arbuscular mycorrhizal fungi (Wang et al., 2018).
Expanding upon the AI‐RIL approach, a Multiparent Advanced Generation Inter Cross
(MAGIC) population consisting of 26 parents was subsequently established together
with a new contiguous N. attenuata genome, and its significance in elucidating the
population‐level fitness effects of natural variation in JA signaling is discussed in detail in
Manuscript II.

Darwinian fitness, a concept introduced by Charles Darwin, refers to themeasure of an
organism’s reproductive success and its ability to pass on its genetic material to subsequent
generations, has been fundamental in understanding the evolutionary processes and
diversification of species (Darwin, 1859). Darwin’s theory of natural selection posits that
individuals with advantageous traits that enhance their fitness are more likely to survive
and reproduce, thereby increasing the frequency of those traits in the population over
time. In early 20th century, Ronald Fisher proposed the geometric model of adaptation,
reconciling Darwinian and Mendelian views on genetics, which laid the foundation of
quantitative genetics and its use as a currency to study the process of evolution. His
model predicted that most mutations are pleiotropic and that evolutionary adaptations,
which drive populations to realize fitness optima, result from changes in many genes of
small fitness effects, known as the infinitesimal model (Fisher, 1919; Barton et al., 2017).
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However, with the advent of high‐throughput genomic and transcriptomic data, counter
evidence of single gene mutation with large fitness effect started pouring in (Linnen et al.,
2013; Barrett et al., 2019; Berardi et al., 2021), and it became evident that the infinitesimal
model alone could not fully explain genotype to phenotype connections and ultimately
fitness outcomes. Recently, the “omnigene” model has been proposed which emphasizes
the role of gene networks and their interactions in shaping phenotypic variation (Boyle
et al., 2017; Liu et al., 2019). By considering the coordinated actions of multiple genes
and their regulatory networks derived from large multi‐omic studies, the omnigene model
proposes a more comprehensive mechanistic model of the evolutionary forces driving trait
variation and adaptation. These concepts are elaborated inManuscript II to contextualize
the natural variation uncovered in the core JA‐signaling pathway of N. attenuata.

Harnessing the power of multi‐omics for functional trait analysis

Fig. 2: A schematic diagram showing the broad analysis strategy of multi‐omic data integration.

Integrative approaches that combine individual omics data, in a sequential or simultaneous
manner, can be a powerful tool to understand themolecular basis of an adaptive trait. These
approaches help in assessing the flow of information from one omics level to the other and
thus help in bridging the gap from genotype to phenotype. Integrative analyses, by virtue
of their ability to study the biological phenomenon holistically, have the ability to improve
crop productivity, targeted pest control through genetic tools, disease resistance, and also
facilitate broader molecular profiling of the system (Crossa et al., 2017; Scossa et al., 2021;
Bai et al., 2022). Fig. 2 shows a broad schematic overview of the various multi‐omic data
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integration strategies that are typically employed.

The integration of genomics and phenomics data has proven to be a valuable
approach in understanding the genetic basis of agronomic traits in crop species. This
integration has been extensively employed through quantitative trait loci (QTL) mapping
and genome‐wide association studies (GWAS), leading to the identification of functional
genes associated with traits of interest in rice, maize, cotton, etc. for domestication and
improvement purposes (Wang et al., 2020; Zhao et al., 2022; Li et al., 2023). Building
upon this foundation, the research focus in the last decade has shifted on gaining deeper
insights into the specific genes and pathways that contribute to these traits. To achieve this,
the integration of gene expression data with the genome and phenome layer is carried out
through the use of expression QTL (eQTL) methods. More recently, transcriptome‐wide
association study (TWAS), has been developed to bridge the gap between genotype
and phenotype. This method involves first identifying associations between a trait and
gene expression, and then linking these associations back to the genome using eQTL or
traditional GWAS approaches. This integrative approach has been applied successfully
to dissect the genetic basis of leaf cuticular conductance in maize, which has important
implications for improving crop productivity in drought‐prone environments (Lin et al.,
2022).

Recent advancements in untargeted mass spectrometry (MS)‐based metabolomics
have further expanded our knowledge of plant metabolites and their associations
with complex traits. Integration of MS‐based metabolomics data is facilitated by the
establishment of metabolite‐gene correlation networks, which can help identify candidate
genes involved in specific metabolic pathways. This approach has been successfully applied
to uncover key metabolic pathways related to cold tolerance in peanuts (Wang et al., 2021).
In addition, the use of projection on latent variables (PLS‐DA) approach, as employed in
Manuscript II, offers another strategy for integrating multi‐omics data. This approach
entails the identification of underlying correlations across multiple datasets, facilitating
the detection important features (genes and metabolites), together with outliers or batch
effects in individual sets, thereby minimizing false positives. Consequently, it provides a
robust selection of genes and metabolites for further downstream analyses (Meng et al.,
2016). By simultaneously integrating multiple molecular‐level omics data, we can develop
a finer understanding of complex traits at an organismal level. However, it is important
to exercise caution when handling such large data sets, and to minimize false‐positive
results, better filtering and refined a priori information must be provided for robust feature
selection (Tini et al., 2019).

Thus, in the 21st century high‐throughput “omics” era, with advanced computational
algorithms and models, we can delve deeper into the mechanisms underlying biodiversity,
adaptation, and species interactions. These molecular and computational tools enable
the integration of vast amounts of data, facilitating the examination of genetic variation,
gene expression patterns, and molecular interactions within ecosystems, providing
unprecedented insights into the intricate workings of nature and finally validating the
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foundational theories put forth centuries ago.

Overview of the dissertation

Manuscript I presents a framework to evaluate the natural variation within various
N. attenuata accessions in the broader ecological context, specifically focusing on the
JA‐signaling pathway. We also review the literature pertaining to JA‐signaling in N.
attenuata and its various layers of defense response upon herbivory. The objective is
to gain a holistic functional understanding at an organismal level, and to unravel the
underlying ecological challenges that this natural variation helps address. It is to be
noted that while utilizing molecular and bioinformatic tools to investigate these genetic
variations can lead to valuable insights into novel biochemical components associated
with the trait, the primary emphasis here is to comprehending the functional implications
of the trait and its impact on ecological outcomes. Furthermore, it is crucial to assess
how variations in the trait influence the plants’ Darwinian fitness, thus highlighting the
significance of studying the ecological consequences of natural variation.

Manuscript II investigates the intra‐specific diversity in a 26‐parent MAGIC
population of N. attenuata, and uncovers a natural variation in the core JA signaling
pathway linked to a mutation in the NaJAR4 gene, which is involved in JA‐Ile biosynthesis.
From decades old seed collection of natural accessions, we show that this variation is
persistent in the natural population, showing signatures of balancing selection through
spatio‐temporal variation. Through a series of experiments and analyses of natural
accessions, we show that different variants of NaJAR4 are associated with varying fitness
outcomes in the absence of herbivores, as well as differences in foliar defenses. Furthermore,
NaJAR4 is part of a complex gene co‐expression network that coordinates responses to
OS‐elicitation, which is validated by silencing hub genes in the network, and quantifying
the resulting metabolic responses. The findings suggest that compensatory responses
within gene networks can allow mutations with significant fitness consequences to persist
in natural populations. These results provide insights into the role of natural variation
and gene networks in shaping plant defense responses, and highlight the importance of
considering the interplay between genetic variation and ecological factors in understanding
the adaptation of plants’ response to herbivory.

Manuscript III focuses on plant volatile organic compounds (VOCs) and their role in
mediating ecological interactions. We investigate the genetic variation controlling VOCs
in N. attenuata, which revealed that herbivory‐induced emissions of leaf terpenoids vary
greatly, while emissions of green leaf volatiles remain similar. From field experiments, we
observe a significant correlation between the emission of linalool, a common VOC, and
predation of the herbivore M. sexta by native predators. Through genetic mapping and
genomemining, we identify a genetic variation in the enzyme NaLIS, that is responsible for
the variation in linalool emissions among different natural accessions. By manipulating the
linalool emission through heterologous gene expression, we show that the effect of linalool
on M. sexta oviposition preference depends on the specific VOC chemistry (enantiomer
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composition), plant genetic background, and environmental complexity. These results
highlight the extensive variation in linalool emissions among geographically interspersed
plants, and underscores the importance of considering genetic variation and environmental
complexity in characterization of plant‐insect interactions.
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In Manuscript I, we review the literature pertaining to JA‐signaling, focusing on the N.
attenuata system, and discuss the various layers of defense which it mediates. We argue
that the diverse responses are best understood in the context of the organism and its
ecological surroundings. We discuss the effects of JA signaling organism‐level, specifically
the responses that influence a plant’s Darwinian fitness. Furthermore, analyzing the natural
variation in JA signaling components within plants and populations, a comprehensive
understanding of the functional role of this signaling cascade can be achieved, and we
provide examples from the Nicotiana attenuata system to support this approach.
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In Manuscript II, we identified a mutation in the JA‐Ile biosynthetic gene, NaJAR4, in
N. attenuata natural populations using high resolution GWAS, which was then associated
with higher fitness but relatively compromised foliar defenses indicating a growth defense
trade‐off. However, the floral defense was buffered by a homologous gene, NaJAR6, which
complemented NaJAR4 in coordinating the overall defense responses in a spatio‐temporal
manner within the plant. We estimated the frequency of this variant allele in the seed
collection ofN. attenuata natural populations over several decades, revealing its presence at
variable frequencies, implying that a balancing selection through spatio‐temporal variation
in populations is acting on the loci. Moreover, by analyzing the transcriptomes and
metabolomes of different natural accessions, we uncovered a complex gene co‐expression
network which co‐ordinated plant defense response against herbivory. Silencing certain
hub genes within this network using RNAi technique, revealed their pleiotropic role
in mediating the induced metabolic responses against herbivory, closely following the
omnigene model. The findings suggest that compensatory responses from a large gene
network, together with environmental variation can allow mutations with significant
fitness consequences to persist in natural populations.
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In Manuscript III, we focused on the role of volatile organic compounds (VOC) in
mediating plant interactions in N. attenuata system, particularly in the context of
ecological variations. We utilized two natural accessions from Arizona and Utah and
a bi‐parental mapping population with these two accessions as parents, to investigate
the genetic factors controlling VOC variation. From field experiments we show that the
emission of linalool significantly correlated with the predation of M. sexta larvae and
eggs by native predators. Using QTL analysis, genetic mapping, and genome analysis, we
identified the causal gene, NaLIS, and the genetic variation that was associated with the
variation in linalool emission. By manipulating linalool emissions and its chemistry in vivo,
we show that the effects of different linalool enantiomers onM. sexta oviposition depended
on both the genetic background of the plant and the complexity of the environment.
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Discussion

I will begin the discussion with an overview of the existing and evolving molecular tools in
the genomics era, introduce some ecological and evolutionary conceptual frameworks, and
discuss the results presented in this dissertation in the context of these models.

Ecology in the genomics era

The major technical theme in this dissertation is the use of multi‐omic data, especially
genomics and metabolomics to elucidate complex ecological interactions at a molecular
level. The integration of genomics into ecological research took place in the beginning of
this century, which gradually shifted the research focus towards investigating the genetic
basis of organismal responses to natural environments (Tanksley, 1993; Mitchell‐Olds et al.,
2007), and testing functional hypotheses using genetically modified organisms. Around
the same time, it became apparent that evolutionary processes can occur rapidly enough
to influence ecological dynamics and vice versa, necessitating the inclusion of evolutionary
considerations in ecological studies (Hairston Jr et al., 2005). This realization opened up
new possibilities for ecology as a discipline to embrace genomic tools, allowing for the
identification of genetic mechanisms associated with ecological traits. Furthermore, this
approach provided insights into the population‐scale effects of genetic factors, down to the
resolution of individual genes.

The initial step of identifying genes associated with a specific trait of interest can
be accomplished through the use of forward genetic approaches. This methodology
typically involves conducting a screening process to identify a mutant phenotype within
a population, which can arise naturally or be induced through artificial means, such as
ethyl methanesulfonate‐mutagenesis carried out in Arabidopsis plants (Campos et al.,
2016). The population is subjected to phenotyping, and the causal mutations, genes, or
quantitative trait loci (QTLs) responsible for the observed phenotype are identified using
various genetic mapping techniques, fine mapping strategies, positional cloning, and
other advanced genomic tools (Schneeberger, 2014; Pereira et al., 2020). Traditionally,
positional cloning has been employed to identify the causal mutations, a process that is
known for being laborious, expensive, and time‐consuming due to the low recombination
rates observed in the target regions (Lukowitz et al., 2000). However, with the advent of
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genome sequencing, the identification of causal mutations can now be achieved rapidly
and at a relatively low cost. By comparing the genomes of the sample of interest with
an available reference genome using bioinformatic tools, the precise locus of genetic
variants can be identified. While both the sequencing and computational costs have
decreased rapidly in the last decade, analyzing large and complex genomes, such as those
of polyploid plants still remains a major challenge (Kyriakidou et al., 2018). The advantage
of employing a forward genetic approach is its ability to uncover novel genes that may not
have been considered as candidates based on a priori knowledge. However, it is important
to acknowledge the technical limitations associated with detecting loci of small effect, as
highlighted in previous studies (Otto and Jones, 2000; Rockman, 2012). Another drawback
of forward genetic approaches lies in their inherent bias towards phenotypes that exhibit
readily observable differences between populations. This bias may lead to the overlooking
of traits that are less apparent but still crucial for adaptive processes.

Another essential requirement for a successful forward genetic screen is a high‐quality
contiguous reference genome assembly that accurately detects variants and identifies
candidate genes linked to the traits of interest. Nicotiana attenuata, which has undergone
a genome triplication event, presents a significant technical challenge in this regard, due
to high number of repeat regions, making the genome assembly process difficult with
short reads, thereby resulting in a fragmented genome (Xu et al., 2017). In Manuscript
III, we employed a synteny approach, as previously used to identify another terpene
synthase gene (Zhou et al., 2017), where the variant genomic region was compared with
the analogous Solanum lycopersicum genome to identify the causal gene associated with
variations in linalool emissions. To solve this reliance on other genomes in identifying
causal genes, we assembled a contiguous N. attenuata genome from PacBio long reads.
Although long reads can make the overall genome assembly more contiguous, they are
often error prone at random bases, and can thus lead to false positives while performing
variant call (Korlach and Pacific Biosciences, 2013). To overcome this, we polished the
assembly with short Illumina reads, and super‐scaffolded it using BioNano optical maps
to achieve a chromosome‐length assembly. This improved genome was then used in
Manuscript II to identify the causal gene (NaJAR4) associated with JA‐Ile variation in the
MAGIC population without relying on other genomes as previously done in Manuscript
III and by Zhou et al. (2017).

In contrast, the goal in reverse genetics is to investigate the impact of induced
variation within a specific gene and to infer its biological function. This can be achieved
through techniques such as gene knockout, knockdown, or over‐expression through
various techniques such as RNA interference (RNAi), ectopic expression, or through
genome editing such as CRISPR‐Cas9 (McGinnis, 2010; Zhu et al., 2020). This allows
researchers to hone in on the specific effects of the particular gene, enabling the direct
assessment of its function in a biological process. The N. attenuata silenced lines used in
this dissertation have been transformed using the stable RNAi approach, which makes it
heritable and the turn around time is relatively fast, where phenotypes can be observed in
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the T1 generation (Gase et al., 2011). However, a disadvantage of the RNAi approach is that
some genes can be resistant to silencing by exogenous RNA, probably because of sequence
or structural features of these genes. Also, transcripts of genes that are similar in sequence
to the target locus may be inadvertently co‐silenced together with the actual target gene,
leading to ‘off‐target’ effect, thereby making it difficult to interpret the results.

Both forward and reverse genetic approaches serve as valuable tools in unraveling
the intricacies of genetic adaptation. Their combined use allows us to achieve the broad
objective to understand the fitness consequences of specific phenotypes, decipher the
underlying genetic architecture, and comprehend the selective pressures influencing traits.
While each approach offers valuable insights, they are inherently limited in providing a
complete picture individually. Therefore, by synergistically combining these approaches,
we can harness their collective power and gain a more comprehensive understanding of
the complex puzzle of adaptation genetics (Barrett and Hoekstra, 2011). For example,
forward genetics can identify novel genes and pathways underlying a specific phenotype,
and reverse genetics can subsequently confirm the roles of these genes by manipulating
their expression and studying the resulting ecological or fitness effect as employed in both
Manuscript II and Manuscript III. Interestingly, two different mapping populations
have been employed in these two studies, MAGIC population in Manuscript II and an
AI‐RIL population inManuscript III. The N. attenuataMAGIC population captures a large
portion of the genetic diversity of the species, and in general has been proven to be very
powerful in dissecting genetic basis of various traits in other systems (Scott et al., 2020).
Whereas, the AI‐RIL is a bi‐parental mapping population, which makes it more tractable
both computationally and logistically, but comes at a cost of limited pool of genetic
diversity compared to MAGIC population. The N. attenuata AI‐RIL population consists
of the well characterized UT and AZ genotypes as its parents, which in principle makes it
a subset of the larger MAGIC population. By integrating information from these forward
genetic tools, and complementing it with reverse genetic approaches, we can validate the
functions of identified genes and gain a deeper understanding of the ecological processes
in which they are involved and assess their impact on organismal fitness. Moreover, the
emergence of high‐throughput DNA/RNA sequencing technologies has facilitated the
integration of forward and reverse genetics approaches rapidly and in a cost effective
manner (Ben‐Amar et al., 2016; Sahu et al., 2020).

DNA sequencing plays a dual role in unraveling both mechanistic and evolutionary
aspects of biological systems. On one hand, DNA sequence provides a template for
molecular biologist to derive mechanistic understanding of how biological processes occur
at the molecular level. On the other hand, DNA sequence data also enables the study
of evolutionary processes and the reconstruction of evolutionary relationships among
organisms by studying the single nucleotide polymorphism (SNP) or conserved sequences
between diverging populations or species. Additionally, DNA sequence can bring together
these two camps into providing mechanistic insights into evolutionary change, such as the
identification of genetic mutations which lead to variance in traits under selection, and
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genomic rearrangements that drive evolutionary function. Thus it becomes a double edged
sword and has led to numerous debates of scientists talking past each other. The source of
the debate arises from the definition of the word “function” (Garson, 2016), which can be
broadly delineated into two categories, causal role (CR), and selected effect (SE) (Garson,
2016).

In the context of the biological function of DNA, CR refers to the specific contribution
or influence of a particular DNA sequence or gene on a biological process or phenotype.
It refers to the direct cause‐and‐effect relationship between the DNA sequence and the
observed effect. CR emphasizes the mechanistic understanding of how DNA sequences
function in biological systems. On the other hand, SE relates to the evolutionary
perspective of DNA function. It considers the role of DNA sequences in contributing
to an organism’s fitness and survival through natural selection. The SE focuses on
the evolutionary consequences of DNA sequences, highlighting their ability to confer
advantages or disadvantages in terms of adaptation, reproductive success and overall
fitness.

This debate reached its pinnacle with the publication of the ENCODE project, which
proposed that over 80% of the human genome was functional in the CR sense (ENCODE
Project Consortium, 2012). However, contrasting this perspective, a significant body of
literature suggests that a much smaller portion, at most 25% and likely even less, of the
human genome is subject to selection and thus possesses a SE function (Doolittle and
Brunet, 2017). The ENCODE project did not distinguish between the SE and CR viewpoints
of function, sparking extensive discourse among biologists, particularly regarding the
functional role of transposable elements (TEs), often regarded as “junk DNA” (Doolittle
and Brunet, 2017). Although TEs contain expressed and regulated genes, their adaptations
primarily serve their own propagation selfishly, and lack necessary positive contributions
to the fitness of the host organisms in whose genomes they reside (Orgel and Crick,
1980). Consequently, when defining function, it is crucial to consider the specific frame
of reference in which it is being evaluated. For example in Manuscript II we show that
the NaJAR4 locus does have significant fitness effect in environments lacking herbivores,
thus one can argue that this locus has a SE function. However, the functional definition
of the NaLIS locus investigated in Manuscript III should be limited to CR since we show
how it affects linalool levels, but do not show a direct fitness effect associated with the
locus. However, we note that the effect ofM. sexta oviposition based on the plant’s genetic
background might ultimately result in fitness effect, but it needs to demonstrated.

The Selfish Genemodel

“We are survival machines – robot vehicles blindly programmed to preserve the selfish
molecules known as genes. This is a truth which still fills me with astonishment.”

– Richard Dawkins, The Selfish Gene

Richard Dawkins in his seminal book, “The Selfish Gene”, presented the contrasting
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roles of individual organisms and genes in the process of natural selection (Dawkins, 1976).
To reconcile this conflict, Dawkins introduced the concepts of “replicator” and “vehicle.”
Replicators represent the fundamental units of selection and correspond to DNA, entities
that persist and replicate, leading to lineages of identical copies with occasional random
alterations. These replicators come together and form cooperative entities called “vehicles,”
which encompass higher organisms. The vehicles serve as the collective framework for the
survival and propagation of replicators. It is worth noting that in this context, the term
“gene” encompasses stretches of DNA that impact traits within an organism, including both
coding and non‐coding elements such as transposons and siRNAs, extending beyond the
conventional notion of coding regions transcribed into proteins.

The notion of a genotype (the “vehicle”) optimizing its fitness in relation to its
environment can be enticing, however, this perspective can be problematic and overlooks
a fundamental flaw. Individuals with optimal phenotypes will inevitably produce offspring
with suboptimal phenotypes due to random mutations and recombination, resulting in
reduced fitness, or due to change in the environment itself. In contrast, the concept of
the selfish gene as an optimizer overcomes this challenge through gene‐level selection,
where multiple agents affecting conflicting traits evolve mechanisms that lead to an
adaptive compromise at the individual level. Consequently, individuals can exhibit strong
adaptation even if there isn’t a specific trait they optimize (Dawkins, 1990; Haig, 2014).
Similarly, in the context of plant‐insect interactions, it may be tempting to favor an
individual‐centric evolutionary model over a gene‐centric one, but as Haig argues that
organismal phenotypes often arise as by‐products of selection acting onmultiple loci (Haig,
2014). This notion is empirically supported by the OS‐elicited gene network analysis and
subsequent metabolic response characterization presented inManuscript II.

InManuscript II, we identified four hub genes from anOS‐elicited gene co‐expression
network. Upon silencing these genes using RNAi, the metabolic response of the silenced
lines provided insights into the potential role of each of these genes in buffering the
deleterious effect of the NaJAR4 mutation through gene regulatory networks. This
buffering mechanism closely aligns with the “parliament of genes” model, which offers a
gene‐centric perspective on evolution and highlights the ability of genes to suppress selfish
genetic elements that may reduce the fitness of other genes in the organism (Leigh, 1971;
Scott and West, 2019). Given that the other genes in the organism far outnumber the
selfish genetic elements, there is a collective interest among these genes to suppress them,
leading to a resolution of conflicts and ultimately favoring fitness maxima at the individual
level (Strassmann and Queller, 2010; Queller and Strassmann, 2018). We propose that the
conserved OS‐induced gene co‐expression network in natural accessions of N. attenuata
is analogous to such a parliament of genes, potentially providing a buffering effect against
the deleterious NaJAR4 mutation against herbivory. In other words, for the deleterious
NaJAR4 allele, even though it selfishly tries to propagate itself, the effect is buffered by the
larger “parliament of genes”, that ultimately maximize the individual fitness. Furthermore,
this model also hints at a large gene level interaction network at play, such as that of an
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“omnigene” model (Boyle et al., 2017; Liu et al., 2019), as discussed inManuscript II.

However, Dawkins notes that Darwinian selection does not directly operate on genes
themselves, but through their effects, that is phenotypes. Natural selection favors certain
genes over others not due to their intrinsic nature, but because of the consequences they
bring about in their phenotypic effects in the real world (Dawkins, 1976). The formal
Darwinian definition of “individual fitness” entails the production and propagation of
new individuals, not just somatic survival of selfish genes. Very often these phenotypic
effects can extend beyond individual organisms, thus making it important to understand
an individual’s fitness in an ecological context. To avoid philosophical conflicts, we need
to employ a pluralistic view to have a holistic understanding of the system considering
the alternative hypotheses at the same level of analysis (Sherman, 1988). Thus, rather
than searching for a universal maximization mechanism underlying natural selection,
it can be more fruitful to identify the specific biological circumstances where natural
selection consistently produces phenotypes that potentially maximize fitness, such as in
Manuscript II and III. By doing so, we can gain insights into the evolutionary history of
populations exhibiting these phenotypes, leading to a more comprehensive understanding
of the biological system, as proposed inManuscript I.

For example, inManuscript III, we show the role of linalool chemistry on oviposition
patterns of Manduca sexta, which varied depending on the environment complexity.
Plants producing (S)‐(+)‐linalool attracted more moths for oviposition, while an increase in
(S)‐(+)‐linalool through genetic manipulation resulted in reduced oviposition. In contrast,
(S)‐(+)‐linalool supplementation in the UT background led to moths being repelled in a
wind‐tunnel assay, but showed no effect in more complex environments. The impact of the
(R)‐(−)‐linalool enantiomer on oviposition varied among AZ and UT plants, despite the
higher (R)‐(−)‐linalool emissions in UT lines. Interestingly, in an outdoor tent experiment
with all the WT and ectopic expression lines, there was no significant preference among
different lines for oviposition; however, female moths tended to prefer the AZ background
lines. Typically, in such a scenario, gravid female moths seek to maximize fitness by
selecting host plants that can provide nourishment for their emerging larvae, ensuring
survival. This selection is driven primarily by olfactory cues (Späthe et al., 2013), which
also play a role in pollination for the plant, providing nectar as a reward, resulting in an
antagonistic and mutualistic interaction between the host plant and the moth. However,
for the moth, the selection pressure between these two behavior differ: oviposition and
host selection can directly affects the fitness of the individual, whereas feeding behavior
does not (Späthe et al., 2013). In contrast, for the plant, moth pollination offers an
advantage in maintaining a diverse genetic pool through out‐crossing, but at the same
time oviposition leads to herbivory, incurring a fitness cost. Analyzing the foliar metabolic
profile of these WT and ectopic expression lines challenged with M. sexta herbivory, and
assessing their volatile bouquet’s impact on predation rates ofM. sexta larvae and eggs, we
can quantitatively test how plants resolve this conflict and optimize their fitness.

It thus becomes essential to acknowledge and examine the presence of these
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evolutionary conflict occurring within and between biological systems. Biological conflict
arises from the inherent tension that exists between interacting organisms or selfish
genetic elements, occurring at different levels, including between individuals, between
species, or even within an individual organism as discussed. Such conflicts stem from
the divergent interests and selective pressures acting on different entities, leading to
competition, antagonism, or trade‐offs (Queller and Strassmann, 2018). Investigating
and elucidating these conflicts can provide key insights into the dynamics of ecological
interactions, the evolution of traits, and the overall formation of biodiversity.

Growth defense trade off

In plant‐herbivore interactions, a fundamental phenomenon that has been studied in
great detail is the growth‐defense trade‐off (Züst and Agrawal, 2017). This trade‐off refers
to the allocation of often limited resources by plants, where they must strike a balance
between investing in growth and allocating resources towards defense mechanisms against
herbivores. Plants face a continual challenge of optimizing their growth for reproduction
and survival while simultaneously defending themselves against herbivory (Cope et al.,
2021). Allocating resources to defense traits such as physical barriers, chemical deterrents,
or induced defenses can come at the cost of growth and reproductive potential, ultimately
affecting their fitness. In order to understand the effect of herbivory on plant fitness and
the underlying evolutionary process, we need to first understand and quantify the cost
associated with plant defense.

Plant defensive traits or compounds require precursor molecules obtained from
primary metabolism, together with energy and metabolites required for various other
processes involved in the synthesis, modification, transport, and maintenance or storage of
these metabolites. Consequently, the metabolic cost associated with these activities can be
substantial and can act as a significant limiting factor in plant development (Gershenzon,
1993). At the same time, there is conflicting empirical evidence regarding whether such
metabolic costs ultimately manifest as fitness effects (Koricheva, 2002). While it is
commonly proposed that the direct competition for resources or allocation costs between
two traits is the primary causal factor driving trade‐offs, this perspective may oversimplify
the intricate allocation processes in plants (Karban and Baldwin, 2007). For instance,
when N. attenuata plants were induced with methyl jasmonate (MeJA) in hydroponic
chambers, their allocation towards reproduction remained relatively unaffected despite
the substantial increase in nitrogen allocation for nicotine production. Conversely, when
these plants were grown in their natural habitats with varying soil nitrogen content, a
significant difference in estimated fitness was observed between the two groups (Baldwin
et al., 1998). Thus, evaluating the allocation costs within the appropriate environmental
context becomes crucial. It is important to acknowledge that while resource availability
serves as a limiting factor influencing trade‐off decisions, phenotypic variation is also
driven by biotic and abiotic interactions experienced by individuals over time and space.
In this case, plants are required to balance resource allocation with the probability of
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herbivore attacks, which ultimately shapes their fitness in a context‐dependent manner.

In Manuscript II, we assessed the cost of induced defense by evaluating the activity
of MeJA‐induced trypsin protease inhibitor (TPI). TPI has been demonstrated as a potent
defense mechanism against herbivores, working in synergy with other deterrents like
nicotine (Steppuhn and Baldwin, 2007), and was associated with substantial fitness costs
when plants are grown in competition (Zavala et al., 2004). We show that MeJA‐induced
NaJAR4 variant lines exhibited a 37% increase in seed capsule production compared to
lines carrying the intact NaJAR4 allele when grown in an herbivore‐free environment.
This finding suggests that these variant lines may have adapted to their deficiency in
NaJAR4 mediated jasmonate (JA)‐signaling, and when heavily induced with MeJA in this
case, they exploit this deficiency to maximize their seed set. Additionally, we observed
only minor differences in the induced metabolic defense response between the NaJAR4
variant lines and the non‐variant lines. This result revealed how the genetic background
of an individual influences trade‐offs and underscores the role of individual genotype in
determining the allocation cost, which ultimately affects fitness in this particular case. It
is worth noting that N. attenuata plants germinate post fire events, leading to competition
among conspecifics for ephemeral resources. Therefore, to effectively assess fitness
outcomes and growth‐defense trade‐offs in ecologically realistic conditions, experiments
should be conducted in resource‐limited environments. This concept aligns with Charles
Darwin’s observations in the Galápagos Islands, which formed the basis of “The Origin
of Species”, where he observed that adaptive traits evolved in species facing resource
limitations, enabling them to maximize their fitness in such environments.

All these observations raises a fundamental question: why do these trade‐offs exist
in nature? A leading hypothesis suggests that trade‐offs in fitness enhancing traits,
including those across different environments, are essential for maintaining genetic
diversity within a species (Fritz and Simms, 2012; Agrawal, 2020). Two decades earlier,
when the growth‐fitness trade‐off associated with TPI was demonstrated by Zavala et
al. (2004), it was not contextualized in its evolutionary context (discussed in Agrawal
(2020)). Manuscript II attempts to address this gap by elucidating how TPI, which is
regulated by jasmonoyl‐L‐isoleucine (JA‐Ile) (Wang et al., 2007), which in turn is affected
by NaJAR4 variant allele which is maintained in natural populations under a balancing
selection regime. Our results reveal substantial gene flow among populations harboring
this allele at varying frequencies, suggesting that balancing selection resulting from
environmental stochasticity and phenotypic plasticity, rather than frequency‐dependent
niche adaptations, contribute to the preservation of this variation in the gene pool of
N. attenuata, consistent with the hypothesis. Although our glasshouse experiments
demonstrate that a 50% reduction in TPI production can lead to a 37% increase in seed
production under ecologically realistic conditions, it remains uncertain how plants truly
benefit from the trade‐off against TPI in the presence of multiple biotic and abiotic
stresses in natural field conditions. Nevertheless, this genetic diversity potentially provides
a reservoir for trait variation within populations which might manifest under certain
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environmental conditions buffering emergent environmental stress, elegantly described as
“evolutionary capacitance” (Bergman and Siegal, 2003).

Evolutionary trade‐offs can also shape trait variation in higher trophic interactions by
allocating limited resources towards different advantageous traits. A field study involving 16
milkweed species (Asclepias spp.) and itsmajor herbivore (the aphidAphis nerii) in different
soil conditions with variable predator pressure demonstrated that the cascading effects of
predators on plant biomass were not associated with predator‐herbivore interactions, but
rather with the trade‐off between herbivore tolerance and the effects of soil fertility on
plants (Mooney et al., 2010). Additionally, the emission of volatile organic compounds
(VOCs), specifically sesquiterpenes, was found to positively correlate with the top‐down
effects of predators on plant biomass, providing a mechanistic insight into this interaction.
Similarly, in N. attenuata natural accessions, OS treated VOCs from leaf headspace show
substantial variation (Halitschke et al., 2000), which was also recapitulated inManuscript
III, andmoreover, the emission of linalool significantly correlated with predation rates ofM.
sexta eggs and larvae. This variation in linalool emission was driven by allelic variation in
theNaLIS gene between twowell‐characterizedN. attenuata genotypes, UT and AZ. The UT
genotype, harbors a 766 basepair deletion in one of the exons of the NaLIS gene, and emits
only trace amounts of linalool. Interestingly, the AZ genotype is impaired in producing
TPIs due to pseudogenation of the TPI gene but UT harbors an intact allele of the gene (Wu
et al., 2007). This negative correlation between linalool emission and TPI production in
these two accessions suggests an evolutionary trade‐off within theN. attenuata populations.
Indeed, previous research by Schuman et al. (2012) showed that when TPI production was
silenced in plants with UT background, predation of M. sexta larvae and eggs by Geocoris
spp. was higher compared to WT plants, which the authors hypothesize is due to Geocoris
spp.’s preference for TPI‐silenced line fed larvae, which aremore nutritious. This hypothesis
can be rigorously tested by planting the AZ and UT genotypes in their native habitats, and
conducting predations assays involving the native predators, at the same time measuring
the emitted VOCs.

Thus, a comprehensive understanding of the growth‐defense trade‐off employing
natural populations, coupled with advanced genomic and metabolomic platforms, can
provide both mechanistic insights into plant function, while also uncovering the broader
ecological and evolutionary role of these trade‐offs. This knowledge can offer valuable
guidance for conserving global biodiversity in the face of rapidly changing world climate,
and considering that plants often hold a central position in most ecosystems, they should
thus be accorded a significant priority.

Conclusion and outlook

The advent of high‐throughput sequencing, advanced chemical analysis techniques
and remote sensing technologies has revolutionized ecological research and greatly
enhanced our ability to test long standing hypotheses. Recently by integrating unbiased
metabolomics and transcriptomics and applying sophisticated statistical tools, predictions
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of optimal defense and moving target theories on plant defense were tested (Li et al., 2020).
However, a major challenge lies in effectively integrating diverse data obtained from
various platforms and formats across the genotype‐phenotype continuum, performing
robust data exploration and forming critical hypothesis, and analyzing and interpreting the
final outcomes. To address this, it is imperative to incorporate more robust visualization
tools, advanced multi‐omics analysis approaches using better statistical models and
bioinformatic tools, and provide them with high quality a priori information to reduce
false positives. The manuscripts presented in this dissertation, provides a framework to
evaluate natural variation in ecological and evolutionary context, which we subsequently
apply to elucidate the role of natural variation in N. attenuata defense response, and also in
its higher trophic interactions. We integrated high‐throughput genomics, transcriptomics,
and metabolomics together with field observation data on various ecological traits, and
contextualized these natural variations with the natural history of the species.

Today, when sequencing genomes has become a routine procedure, we are entering
the “pan‐genomic” era, where we can simultaneously asses genetic variation associated with
traits at a population scale, which was previously not captured through a single reference
genome (Jin et al., 2023). Assimilating this wealth of data would now require researchers to
critically develop robust alternative hypotheses at the same level of analysis (Sherman, 1988)
and this presents an unprecedented opportunity to draw holistic inferences of organisms at
a population level and drive conservation efforts of our biodiversity.
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Summary

Plants have been instrumental in shaping Earth’s natural history, comprising a substantial
portion of biomass and serving as the primary food source for heterotrophs. Insects,
particularly herbivores, exert selective pressures on plants, driving the evolution of diverse
defense strategies in them. These plant‐insect interactions were first recognized by
scientists in the 18th century, and later, in the 19th century, biologists began to appreciate
the impact of plant chemistry on herbivore behavior, leading to the emergence of the field
of chemical ecology.

This dissertation describes various aspects of plant‐herbivore interactions in N.
attenuata by examining natural variation through two mapping populations, and its
implications on plant fitness and defense responses. We first define a framework
to understand natural variation, specifically in the jasmonic acid (JA) pathway in an
ecological context, and subsequently identify a genetic variation in the NaJAR4 gene,
which conjugates isoleucine to JA, thereby significantly affecting jasmonoyl‐L‐isoleucine
(JA‐Ile) levels. When elicited with methyl jasmonate, different NaJAR4 variants in N.
attenuata natural accessions exhibit varying fitness outcomes, which can be explained by a
JA signaling‐regulated growth defense trade‐off. Transcriptome analysis of Manduca sexta
oral secretions and regurgitant (OS)‐elicited natural accessions of N. attenuata revealed
that the NaJAR4 mutation is embedded in a gene co‐expression network coordinating
defense responses against herbivory. By manipulating hub genes in the gene network we
test the metabolic responses to OS‐elicitation, which were either proportional to JA‐Ile
accumulations ormade the plants constitutively induced. This suggests a possible buffering
effect of the gene network on the NaJAR4mutation, which together with varying herbivory
loads perhaps allow the mutation to persist in natural populations. Furthermore, from
seed collections of natural populations spanning a decade, we find that these variants occur
at variable frequencies, indicating that that balancing selection through spatio‐temporal
variation is acting on the NaJAR4 loci. These results demonstrate the context‐dependent
nature of plant‐herbivore interactions, where biotic and abiotic factors together with
genetic variation influence plant fitness and defense responses.

Additionally, the dissertation explores the ecological importance of volatile organic
compounds (VOC), uncovering natural variation in the NaLIS gene in N. attenuata
plants that affects the emission of OS‐elicited linalool from leaves, a common VOC, and
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is significantly correlated with predation of M. sexta by native predators in the field.
Furthermore, by manipulating the NaLIS gene, we demonstrate that the impact of linalool
on M. sexta oviposition preference depends on the linalool chemistry, plant genetic
background, and environmental complexity. Thus, the presence of enzymatically inactive
variants like NaJAR4 and NaLIS, together with evidence of balancing selection, highlights
the dynamic interplay between genetic diversity, environmental complexity, and herbivore
behavior in maintaining adaptive potential of plants in nature.
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Zusammenfassung

Pflanzen haben maßgeblich die Naturgeschichte der Erde geprägt, indem sie einen
erheblichen Teil der Biomasse ausmachen und als primäre Nahrungsquelle für
Heterotrophe dienen. Insekten, insbesondere Herbivoren, üben selektiven Druck auf
Pflanzen aus und treiben dadurch die Evolution verschiedener Abwehrstrategien voran.
Diese Pflanzen‐Insekten‐Interaktionen wurden erstmals im 18. Jahrhundert von
Wissenschaftlern erkannt, und später, im 19. Jahrhundert, begannen Biologen sich auf die
Auswirkungen der Pflanzenchemie auf das Verhalten von Herbivoren zu fokusieren, was
zur Entstehung des Fachgebiets der chemischen Ökologie führte.

Diese Dissertation beschreibt verschiedene Aspekte der
Pflanzen‐Herbivoren‐Interaktionen in Nicotiana attenuata, indem natürliche Variationen
in zwei Mapping‐Populationen untersucht werden und ihre Auswirkungen auf die Fitness
der Pflanzen und deren Abwehrreaktionen betrachtet werden. Zunächst wird ein
Rahmenwerk definiert, um die natürliche Variation, insbesondere im
Jasmonsäure‐(JA)‐Signalweg, im ökologischen Kontext zu verstehen. Anschließend wird
eine genetische Variation im NaJAR4‐Gen identifiziert, das Isoleucin an JA bindet und
somit die Konzentration von Jasmonoyl‐L‐Isoleucin (JA‐Ile) wesentlich beeinflusst. Bei
Zugabe von Methyljasmonat zeigen unterschiedliche NaJAR4‐Varianten in natürlichen N.
attenuata‐Linien unterschiedliche Fitnessergebnisse, die durch ein ausbalanciertes
Wachstums‐Abwehr‐Verhältnis im Zusammenhang mit JA‐Signalgebung erklärt werden
können. Die Transkriptomanalyse von natürlichen N. attenuata‐Linien, die mit oralen
Sekrete (OS) vonManduca sexta Raupen induziert werden, zeigt, dass die
NaJAR4‐Mutation in ein Gen‐Koexpressionsnetzwerks eingebettet ist, das
Abwehrreaktionen gegen Pflanzenfresser koordiniert. Durch Manipulation von
Schlüsselgenen im Gen‐Netzwerk testen wir die metabolische Reaktion auf
OS‐Stimulation, die entweder proportional zur JA‐Ile‐Akkumulationen ausfallen oder die
Pflanzen konstitutiv aktivieren. Dies deutet auf eine mögliche Pufferwirkung des
Gen‐Netzwerks auf die NaJAR4‐Mutation hin, die zusammen mit der variierenden
Herbivorenbelastung möglicherweise die Persistenz der Mutation in natürlichen
Populationen ermöglicht. Darüber hinaus zeigt die Untersuchung von Sammlungen von
natürlichen Populationen über eine Dekade hinweg, dass diese Varianten in variablen
Frequenzen auftreten, was darauf hinweist, dass eine balancierende Selektion durch
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Zusammenfassung

räumlich‐zeitliche Variation auf die NaJAR4‐Loci einwirkt. Diese Ergebnisse zeigen die
kontextabhängige Natur von Pflanzen‐Herbivoren‐Interaktionen, bei denen biotische und
abiotische zusammen mit genetischer Variation die Fitness und Abwehrreaktionen der
Pflanzen beeinflussen.

Darüber hinaus erforscht die Dissertation die ökologische Bedeutung flüchtiger
organischer Verbindungen (VOC) und deckt eine natürliche Variation im NaLIS‐Gen bei
N. attenuata‐Pflanzen auf, die die Emission von OS‐induziertem Linalool aus Blättern
beeinflusst, ein häufiges VOC, und signifikant mit der Prädation vonM. sexta durch
heimische Räuber im Feld korreliert. Durch Manipulation der NaLIS‐Gen wird gezeigt,
dass die Auswirkungen von Linalool auf die Eiablagepräferenz vonM. sexta von der
Linalool‐Chemie, dem genetischen Hintergrund der Pflanze und der Umweltkomplexität
abhängen. Die Existenz enzymatisch inaktiver Varianten wie NaJAR4 und NaLIS sowie der
Nachweis einer balancierten Selektion betont das dynamische Zusammenspiel von
genetischer Vielfalt, Umweltkomplexität und Herbivorenverhalten zur Aufrechterhaltung
des Anpassungspotenzials von Pflanzen in der Natur.
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