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Abstract

This thesis explores the potential of machine learning (ML) algorithms to enhance subgrid-
scale parameterizations in large-scale atmospheric simulations. Traditional approaches often
rely on simplifications or computationally expensive methods. This work aims to introduce
a more physically consistent and computationally efficient approach using Reservoir Com-
puting (RC) and data reduction techniques to extract subgrid-scale features from direct nu-
merical simulations (DNS) of thermal convection. To this end, the high-fidelity simulation
data is pre-processed by a Proper Orthogonal Decomposition (POD) or an Autoencoder
(AE) network to reduce the amount of data. An RC model is subsequently trained on this
reduced data space to predict future flow states without solving the governing nonlinear
equations of motion. The combined POD-RC model’s predictions are thoroughly validated
by original simulations. It is found that the model accurately replicates spatial organiza-
tion, structural features, and low-order statistics of dry and moist convection flows, opening
new ways for the dynamic parameterization of subgrid-scale transport in larger-scale circu-
lation models. Furthermore, this work investigates the generalization property of an AE-
RC model based on a flux-driven two-dimensional turbulent convection system. It is found
that the machine learning model can correctly reproduce spatial features and the statistical
properties of the physical fields. Finally, this work focuses on the parameterization of the
convective boundary layer (CBL) by means of a Generative Adversarial Network (GAN),
which is trained on high-fidelity DNS data of a three-dimensional CBL. It is shown that a
physics-informed rescaling of the limited amount of training data enables the method to re-
produce the CBL growth and the related pattern formation. The GAN results agree with
standard mass-flux schemes and additionally provide the granule-type horizontal organiza-
tion of the turbulent flow, which cannot be obtained with the mass-flux approach. Although
the primary focus is not on implementing ML-based parameterization schemes in large-scale
models, this work advances our understanding of the potential and limitations of the afore-
mentioned models in the context of climate modeling and numerical weather prediction.
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Zusammenfassung

In dieser Arbeit wird das Potenzial von Machine-Learning-Algorithmen (ML) zur Verbesserung
der Parametrisierung von großskaligen atmosphärischen Simulationen untersucht. Herkömm-
liche Ansätze verwenden oft Vereinfachungen oder rechenintensive Methoden. Diese Arbeit
beabsichtigt, einen physikalisch konsistenten und rechnerisch effizienten Ansatz einzuführen,
der Reservoir Computing (RC) und Datenkompression nutzt, um subgitter-skalige Merkmale
aus direkten numerischen Simulationen (DNS) der thermischen Konvektion zu extrahieren.
Hierbei wird der hochaufgelöste Simulationsdatensatz zuerst durch Proper Orthogonal De-
composition (POD) oder ein Autoencoder-Netzwerk (AE) vorverarbeitet, um die Daten-
menge zu reduzieren. Anschließend wird ein RC-Modell auf diesem reduzierten Datenraum
trainiert, um zukünftige Strömungszustände ohne die Lösung der nichtlinearen Bewegungs-
gleichungen vorherzusagen. Die Vorhersagen des kombinierten POD-RC-Modells werden
anhand der Originalsimulationen validiert. Das Modell reproduziert die strukturellen und
statistischen Merkmale von trockenen und feuchten Konvektionsströmungen und eröffnet
somit neue Wege für die dynamische Parametrisierung des subgrid-skaligen Transports in
grob aufgelösten Zirkulationsmodellen. Des Weiteren untersucht die Studie die Verallge-
meinerungseigenschaften eines AE-RC-Modells basierend auf einem wärmeflussgetriebe-
nen zweidimensionalen turbulenten Konvektionssystem. Dabei zeigt sich, dass das AE-RC-
Modell die räumliche Struktur und statistischen Eigenschaften der ungesehenen physikalis-
chen Felder korrekt wiedergibt. Schließlich liegt der Fokus auf der Parametrisierung der kon-
vektiven Grenzschicht (CBL) mithilfe eines Generative Adversarial Networks (GAN), das auf
hochaufgelösten DNS-Daten einer dreidimensionalen CBL trainiert wird. Es wird gezeigt,
dass die Methode durch eine physikalisch informierte Reskalierung der begrenzten Train-
ingsdaten in der Lage ist, das CBL-Wachstum und die damit verbundene Musterbildung zu
reproduzieren. Die GAN-Ergebnisse stimmen mit Standard Mass-Flux Parametrisierungen
überein und liefern zusätzlich die horizontale Anordnung der turbulenten Strömung, die mit
dem Mass-Flux-Ansatz nicht erreicht werden kann. Obwohl die Implementierung von ML-
basierten Parametrisierungsschemata in großskaligen Modellen nicht im Fokus steht, trägt
diese Arbeit dazu bei, unser Verständnis des Potenzials und der Grenzen dieser Modelle im
Kontext der Klimamodellierung und numerischen Wettervorhersage zu vertiefen.
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Käufer meine Anerkennung aussprechen, mit dem ich die Betreuung von Studierenden in
ihren Projektarbeiten übernehmen durfte. Diese gemeinsame Betreuung hat mich unter an-
derem gelehrt, wie man zielgerichtet studentische Arbeiten leitet. Philipp Teutsch gebührt
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Ŷ . . . . . . . . . . . . . . . reservoir target output matrix

r . . . . . . . . . . . . . . . reservoir state

u . . . . . . . . . . . . . . . velocity field

w, w . . . . . . . . . . . . neural network parameter/ weight

x . . . . . . . . . . . . . . . reservoir input, critic input

xG . . . . . . . . . . . . . . generator output

y . . . . . . . . . . . . . . . reservoir output

EMSE . . . . . . . . . . . mean squared error

ENARE . . . . . . . . . . normalized average relative error

ENRMSE . . . . . . . . . normalized root mean squared error

HT . . . . . . . . . . . . . temperature scale-height of the atmosphere

L . . . . . . . . . . . . . . . loss function

y . . . . . . . . . . . . . . . reservoir output signal

ENARE . . . . . . . . . . average normalized average relative error

ak . . . . . . . . . . . . . . kth POD time coefficient or kth AE latent space variable

xiv



Nomenclature

b . . . . . . . . . . . . . . . buoyancy

B0 . . . . . . . . . . . . . . bottom buoyancy flux

B1 . . . . . . . . . . . . . . top buoyancy flux

bbg . . . . . . . . . . . . . buoyancy background profile

C1 . . . . . . . . . . . . . . adjustable parameter of EDMF parameterization

cin . . . . . . . . . . . . . . reservoir input bias

cout . . . . . . . . . . . . . reservoir output bias

Dr . . . . . . . . . . . . . . reservoir density

Ekin . . . . . . . . . . . . turbulent kinetic energy

Fuz
′b′ . . . . . . . . . . . flattness of the buoyancy flux distribution

H . . . . . . . . . . . . . . vertical extent of fluid domain

h . . . . . . . . . . . . . . . height of the convective boundary layer

L . . . . . . . . . . . . . . . horizontal extent of fluid domain

L0 . . . . . . . . . . . . . . Ozmidov length scale

N . . . . . . . . . . . . . . polynomial order inside of the spectral element method

n . . . . . . . . . . . . . . . discrete time coordinate (time step)

N0 . . . . . . . . . . . . . . buoyancy frequency

Ne . . . . . . . . . . . . . . number of spectral elements

Nx, Ny, Nz . . . . . . number of grid points in x, y, z direction on an interpolated grid

Nin . . . . . . . . . . . . . reservoir input dimension

Nout . . . . . . . . . . . . reservoir output dimension

Nr . . . . . . . . . . . . . . reservoir dimension

p, p′, p0, p1 . . . . . . pressure, kinematic pressure, adiabatic ground state pressure, superadia-
batic correction pressure

R . . . . . . . . . . . . . . . reservoir state matrix

r . . . . . . . . . . . . . . . relative Rayleigh number parameter of the Lorenz model

R∗ . . . . . . . . . . . . . . ideal gas constant divided by molecular mass of gas constituents

si . . . . . . . . . . . . . . . ith eigenvalue of the POD covariance matrix

Suz
′b′ . . . . . . . . . . . skewness of the buoyancy flux distribution

T, T0, T1 . . . . . . . . temperature, adiabatic ground state temperature, superadiabatic correc-
tion temperature

xv



Nomenclature

t . . . . . . . . . . . . . . . . continous time coordinate

tf . . . . . . . . . . . . . . . free fall time

U(·, ·, ·), U(·, ·) . . unitary transformation

Uf . . . . . . . . . . . . . . free fall velocity

ux, uy . . . . . . . . . . . horizontal velocity fields

uz . . . . . . . . . . . . . . vertical velocity field

x, y, z . . . . . . . . . . . cartesian coordinates

X . . . . . . . . . . . . . . data matrix

Greek Symbols

α . . . . . . . . . . . . . . . thermal expansion coefficient at constant pressure

β . . . . . . . . . . . . . . . buoyancy-flux ratio

∆b,∆T . . . . . . . . . buoyancy, temperature difference

δ . . . . . . . . . . . . . . . geometric parameter of the Lorenz model

ϵ . . . . . . . . . . . . . . . . superadiabaticity parameter in anelastic approximation

η . . . . . . . . . . . . . . . learning rate

Γ . . . . . . . . . . . . . . . aspect ratio of fluid domain

γr . . . . . . . . . . . . . . ESN leaking rate

κ . . . . . . . . . . . . . . . thermal diffusivity

λr . . . . . . . . . . . . . . ESN regression parameter

µ . . . . . . . . . . . . . . . adjustable parameter of EDMF parameterization

ν . . . . . . . . . . . . . . . kinematic viscosity

Ω . . . . . . . . . . . . . . . spatial domain of the convective flow

ω . . . . . . . . . . . . . . . vorticity

Φ, ϕ . . . . . . . . . . . . spatial POD modes, spatial modes matrix

ρ, ρ0, ρ1 . . . . . . . . . fluid mass density, adiabatic ground state density, superadiabatic correc-
tion density

Σ . . . . . . . . . . . . . . . eigen value matrix

σ . . . . . . . . . . . . . . . nonlinear activation function

σr . . . . . . . . . . . . . . ESN input scaling

θ . . . . . . . . . . . . . . . temperature deviation from linear conduction profile

ε . . . . . . . . . . . . . . . entrainment rate parameter in the EDMF model

xvi



Nomenclature

ϱr . . . . . . . . . . . . . . ESN spectral radius

ξ . . . . . . . . . . . . . . . random variable

Ξr . . . . . . . . . . . . . . ESN hyperparameter set

ζ . . . . . . . . . . . . . . . stream function

Dimensionless numbers

Ma . . . . . . . . . . . . . Mach number

Nu . . . . . . . . . . . . . Nusselt number for Dirichlet boundary conditions

NuM . . . . . . . . . . . . moist Nusselt number (Dirichlet boundary conditions)

NuN . . . . . . . . . . . . Nusselt number for Neumann boundary conditions

Pr . . . . . . . . . . . . . . Prandtl number

Ra . . . . . . . . . . . . . . Rayleigh number

Rac . . . . . . . . . . . . . convective Rayleigh number

Racrit . . . . . . . . . . . critical Rayleigh number of the onset of convection

Re . . . . . . . . . . . . . . Reynolds number

Re0 . . . . . . . . . . . . . buoyancy Reynolds number

ReM . . . . . . . . . . . . moist Reynolds number

Mathematical Symbols

δij . . . . . . . . . . . . . . Kronecker delta

|ψ⟩ . . . . . . . . . . . . . quantum state in Dirac notation

⟨·⟩x . . . . . . . . . . . . . mean over variable x

C . . . . . . . . . . . . . . . complex numbers

R . . . . . . . . . . . . . . . real numbers

F . . . . . . . . . . . . . . . Fourier transform

H . . . . . . . . . . . . . . . hilbert space

N (µ, σ) . . . . . . . . . Normal distribution with mean µ, standard deviation σ

U [a, b] . . . . . . . . . . Uniform distribution on the interval [a, b]

∇x . . . . . . . . . . . . . differential operator w.r.t. x

⊗ . . . . . . . . . . . . . . . tensor product

σp . . . . . . . . . . . . . . standard deviation of the variable p

tanh (·) . . . . . . . . . element-wise hyperbolic tangent

AT . . . . . . . . . . . . . matrix inverse

AT . . . . . . . . . . . . . matrix transpose

I . . . . . . . . . . . . . . . identity matrix

xvii



xviii



Herzlich liebe ich die Physik.
Es ist so eine Art persönlicher Liebe, wie gegen einen Menschen, dem man sehr viel

verdankt.

- Lise Meitner (1879-1968),
Austrian physicist and first female physics professor in Germany

In God we trust. All others must bring data.

- William Edwards Deming (1900-1993),
US American statistician

xix



xx



Chapter 1

Introduction

1.1 Thermal convection in our atmosphere

Thermal convection describes the fluid motion driven by local temperature differences be-
tween fluid layers. The resulting buoyant flow leads to heat transport and can even become
turbulent for sufficiently large temperature gradients. It is a widespread, ubiquitous process
in nature, evident in occurrences such as the creation of clouds in Earth’s atmosphere, the
emergence of patterns on the Sun’s surface [1], and the gradual movement of solid mantle
rock within the Earth’s crust [2]. Furthermore, it affects the energy distribution within the
fluid system by distributing heat via up- and downdrafts. It is often coupled to other phys-
ical processes such as radiation [3] and phase change [4], which can act as vents for excess
heat. Most notably, this phenomenon is conspicuous in Earth’s atmosphere, where the so-
lar energy received through radiation gets converted into the kinetic energy of air masses.
This convective fluid motion can lead to pressure differences, which initiate horizontal winds.
Moreover, it promotes the transport of water vapor and other greenhouse gases like CO2

that interact with long-wave radiation emitted from our planet’s surface. Hence, thermal
convection is a central process in Earth’s complex climate system.

1.1.1 Rayleigh-Bénard convection

The system that most directly encapsulates the characteristics of thermal convection is Rayleigh-
Bénard convection (RBC) [5], illustrated in Figure 1.1. Within the Rayleigh-Bénard frame-
work of convection, a fluid is confined between two horizontal, non-penetrable plates. These
plates maintain a constant temperature, with the lower plate being set at a higher value
than the upper one. Due to the thermal expansion of fluid parcels at the bottom and ther-
mal contraction near the top, the fluid becomes buoyant, and a fluid motion is induced. This
seemingly simple system has been studied extensively over a century and dates back to the
experiments of Henri Bénard [6] in the year 1900. Note that Bénard’s setup differed from
the now commonly used model, as he studied the convection patterns arising in a thin fluid
layer over a free surface1. The second major contributor was Lord Rayleigh, who explained
the transition of pure conduction to convection in his linear stability analysis in 1916 [8]. He
introduced an upper lid to the setup of Bénard and shaped the Rayleigh-Bénard model, as
it is known today. The configurations of the most basic Rayleigh-Bénard convection setups
frequently exhibit rectangular or cylindrical forms, enabling a concentrated examination of
the convection process. Bénard’s and Rayleigh’s work paved the way for a paradigm that
has significantly advanced our understanding of heat transport, pattern formation [9–13],
turbulence [14] and atmospheric convection processes.

1His setup is better described by the Bénard-Marangoni system, where the surface tension at the top is the
driving force for the fluid motion [7].
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Chapter 1 Introduction

Figure 1.1: Rayleigh-Bénard convection in a cylindrical tank. A fluid trapped between
two impermeable plates is heated from below and cooled from the top. The
fluid near the top and bottom plates become buoyant, leading to warm and cold
parcels rising and falling. From ref. [14].

1.1.2 The atmospheric boundary layer

The most prominent example of convection in our atmosphere is situated in the lower part
of the troposphere, which is in direct contact with the Earth’s surface: the atmospheric
boundary layer (ABL). In this region, anthropogenic activities take place, and weather phe-
nomena directly impact our everyday life. The state of the ABL highly depends on the time
of day. During the daytime, the incoming solar radiation heats the ground. In turn, the
air layers above the ground become buoyant and rise. Convective fluid motion is initiated.
Hence this state of the ABL is also referred to as the convective boundary layer (CBL).
The convective flow eventually becomes turbulent and creates a well-mixed layer above the
ground that can extend from tens of meters in the morning to 1 − 3km in the afternoon.
In this daytime regime, the ABL can be divided into three layers: an unstable surface layer
(about 10% of the CBL thickness [15]), a mixed layer in the bulk (about 35 - 80% of the
CBL thickness [16]) and the boundary between the CBL and the free atmosphere: the en-
trainment zone. After sunset, when the incoming solar radiation has ceased, convection
stops, and a stably stratified nocturnal boundary layer forms near the surface. Above, the
remanence of the mixed layer is found in terms of a residual layer that is weakly stratified.
When the Sun rises, the CBL starts to grow into the residual layer, and the cycle begins
again. Figure 1.2 displays the diurnal cycle of the ABL in terms of backscattering measure-
ments of aerosols at different times of the day. It can be observed that during the growth
of the CBL, thermals overshoot into the capping inversion layer. Consequently, part of the
vertical motion is deflected, leading to the entrainment of warm, non-turbulent air into the
ABL. This has implications for the energy and material transport inside the ABL. Scalar
variables like pollutants, temperature, or moisture are well-mixed as the turbulent motion
smoothens their gradients. The free atmosphere above often acts as a cork for these vari-
ables, isolating them from reaching higher levels of the troposphere. Moreover, clouds can
form at the inversion line if moisture is present, leading to shallow cumulus clouds. On the
other hand, deep convective clouds like the cumulonimbus can reach far into the upper tro-
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1.1 Thermal convection in our atmosphere

posphere and cause heavy rain and storms. Therefore, the description of this part of the at-
mosphere is crucial for weather forecasts and the global circulation.

Figure 1.2: Diurnal cycle of the atmospheric boundary layer. Shown are lidar backscat-
ter measurements of aerosols at the Southern Great Plains Atmospheric Observa-
tory in Oklahoma, U.S.A. Red signifies high and blue low backscattering ampli-
tudes. Sunrise and sunset are indicated on the time axis. Before sunrise, a stable
nocturnal boundary layer and a residual layer can be observed. After sunrise,
Earth’s surface is heated by solar radiation. The heated ground subsequently ini-
tiates a convective fluid motion. The resulting convective boundary layer grows
into the stably stratified remanence of the residual layer. The buoyant flow even-
tually becomes turbulent, creating a well-mixed layer above the warm surface.
At noon, moist air vapor condenses at the top of the CBL, leading to the forma-
tion of clouds. From ref. [15].

1.1.3 Parameterization of thermal convection in our atmosphere

While the equations that describe the physical processes, like convection, inside the ABL
are known, they can not directly be incorporated into a General Circulation Model (GCM)
that numerically models Earth’s climate for several decades. This is due to the climate sys-
tem’s vast range of spatial and temporal scales. Weather and climate phenomena range
from microphysical processes like droplet formation inside clouds to large-scale precipita-
tion events like the Madden-Julien-Oscillation over the Indian and Pacific Oceans. Figure
1.3 gives an overview of the spatial and temporal variability of the atmosphere. The classi-
fication of atmospheric convection places it in the realm referred to as the mesoscale, which
roughly spans spatial scales ranging from 10 to 100 kilometers. This classification positions
it between the microscale and the macroscale. As discussed above, these mesoscale processes
substantially impact the atmosphere’s energy budget and, therefore, its general circulation.
Nevertheless, it is apparent that a numerical simulation representing all of the scales shown
in Figure 1.3, while performing multi-decade or even multi-century predictions, is still far
away from being feasible, even with the current computational capabilities. Nowadays, the
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Chapter 1 Introduction

Figure 1.3: Spatial and temporal scales of Earth’s climate system. The scales vary over
vast amounts of magnitudes, rendering a numerical climate model, which repre-
sents all of these processes, unfeasible for the near future. Adapted from ref. [17].
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1.1 Thermal convection in our atmosphere

horizontal resolution of climate models2 ranges from ∼ 100km down to ∼ 40 − 50km [19]
or even ∼ 10km [20] which only partially covers horizontal turbulent structures in the ABL
with a size of about 1 − 3km [21]. Insufficient numerical resolution is a problem that has
existed since the beginning of climate simulations. Traditionally, subgrid-scale parameteri-
zations, theories that model the impact of the unresolved scales on the resolved scales, are
used to take small-scale effects into account. To understand the concept of subgrid-scale pa-
rameterizations, let’s consider a scalar variable φ(x, t), e.g., temperature or humidity, which
follows the prognostic equation:

∂φ

∂t
+∇ · (uφ) = q. (1.1)

Here u = (ux, uy, uz)
T denotes the fluid velocity field, ∇ =

(
∂
∂x ,

∂
∂y ,

∂
∂z

)T
the differential

operator and ∂
∂t the partial time derivative. The term q comprises all sources that contribute

to a change of φ, like diffusion or radiation. Now consider that we seek to solve for φ in an
atmospheric model, which can not resolve all relevant physical spatial scales for the above
reasons. Therefore, the numerical grid on which we would like to solve for φ will be too
coarse to resolve all relevant scales of turbulence. This model will then resolve merely the
box-mean or filtered versions of φ, u and q, denoted by ⟨φ⟩, ⟨u⟩ and ⟨q⟩. Applying the filter
to eq.(1.1) yields

∂⟨φ⟩
∂t

+∇ · (⟨uφ⟩) = ⟨q⟩. (1.2)

The term ⟨uφ⟩ poses a problem, as it is an unclosed expression. However, eq.(1.2) can be
rearranged to form

∂⟨φ⟩
∂t

+∇ · (⟨u⟩⟨φ⟩) = ⟨q⟩+∇ · FSGS (1.3)

where the subgrid-scale (SGS) flux FSGS = ⟨u⟩⟨φ⟩ − ⟨uφ⟩ has been introduced. In this way,
the unresolved (small) scales act as a source or forcing term in the equations of motion of
the resolved (large) scales. Finally, the goal of subgrid-scale parameterization is to find a
closed form of FSGS, i.e., an expression in terms of ⟨φ⟩, ⟨u⟩. In the following, some common
parameterization models are briefly discussed.

One of the simplest parameterization schemes is the eddy-diffusivity approach or K-Theory,
which dates back to Boussinesq in 1877 [22]. It assumes that the SGS flux follows the local
gradient of the scalar in order to homogenize the flow by mixing

FSGS = −Kφ∇⟨φ⟩. (1.4)

Here Kφ is the eddy-diffusivity parameter to φ modeled depending on the physical inter-
pretation of φ and the stability of the fluid layer [16]. It is often a function of the vertical
position and the velocity field. Examples include mixing length models [23], Smagorinsky
models [24], and the K-profile method [25]. Further, K-theory is commonly used in modeling
the surface layer in the ABL [26–29]. A drawback of this parameterization technique is that

2Note that even weather forecast models which run only for a few days and therefore permit a smaller grid
spacing of ∼ 6km, ∼ 2km [18] run into problems. As the resolution of these models becomes even higher,
eventually reaching the size of the coherent structures of the ABL, turbulence will be partially resolved.
This so-called ”grey zone” poses a problem as the assumptions of common parameterization schemes break
down.
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it fails when large eddies are present in the flow. From eq.(1.4), it can be seen that counter-
gradient transport of φ, e.g., near the capping ABL inversion, can not be represented. Fur-
thermore, regions where the gradient vanishes, as is the case in the bulk of the ABL, are also
not captured by the model.

This sets the stage for another established approach: the mass-flux parameterization [30–32].
This scheme decomposes the columns of the convection domain into strong thermals and a
complementary quiescent environment. The subgrid-scale flux can then be written as

FSGS =Mφ (⟨φ⟩u − ⟨φ⟩) , (1.5)

where φu is the average over the values φ associated with strong updrafts [33] and Mφ is
the mass-flux parameter. This approach makes use of the fact that strong, narrow updrafts
dominate vertical transport, while at each height, most of the horizontal plane is covered by
slowly subsiding air. It is therefore only necessary to model the mass-flux Mφ and the up-
draft fields ⟨uz⟩u, ⟨φ⟩u by a plume model to represent the subgrid-scale transport of φ. This
scheme is often employed for the convective transport inside cumulus clouds [34–36]. While
this method allows scalar transport in regions where the mean gradient vanishes, it does
not capture the spatial organization of individual plumes that are the basis for the forma-
tion of clouds. Finally, the unified eddy-diffusivity mass-flux (EDMF) parameterization [33]
makes use of both the aforementioned methods and can represent local gradient and non-
local counter-gradient transport. Despite their simplicity, these approaches have greatly im-
proved climate [29] and weather [29, 37] simulations.

The schemes above have been around for decades and have been used extensively in numer-
ical weather prediction (NWP) and Global Climate Models. Their emergence can be traced
back to when computational capabilities for weather and climate predictions were limited.
Therefore, more complex parameterizations are built upon the existing schemes by adding
more and more physical processes. In the scientific cloud community, this has led to sev-
eral critical arguments against solely focusing on this path of parameterization development.
In [38], Arakawa points out that due to historical reasons, the development of parameter-
izations of cumuliform and stratiform clouds has made the simultaneous representation of
both cloud formations in a single model incompatible. The lack of a unified general frame-
work ”[...] represents the most serious practical problem in the conventional approach of for-
mulating model physics” [38]. Future parameterizations should allow all modeled physics
to be represented in the same framework. Moreover, 20 years ago, conventional cloud pa-
rameterizations’ progress rate was labeled ”unacceptably slow” [39]. Randall et al. argue
that the convection processes in our atmosphere are inherently complicated, and including
more and more prognostic variables of such processes into new parameterization schemes
will not increase their physical expressivity. In addition to the gradually evolving conven-
tional approaches, it is essential to explore novel avenues of parameterization. One such
novel scheme was the Cloud-Resolving Convective Parameterization (CRCP) introduced by
Grabowski and Smolarkiewicz [41, 42] in 1999 and 2001. Their model intended to resolve
some of the small-scale features explicitly, therefore directly computing the SGS flux FSGS

in expression (1.3) from a small-scale-resolving simulation that is synchronized with the cli-
mate model. CRCP uses an embedded lateral two-dimensional cloud-resolving model in the
vertical columns of a large-scale General Circulation Model. The concept can be seen in Fig.
1.4. The two-dimensional model does not fill the whole large-scale grid cell but aligns with
the vertical parent grid while increasing the resolution in one of the lateral directions (the
original work in [42] used an east-west orientation). Both models then interact via forcing
terms similar to the one in 1.3, where FSGS comprises the grid-box averages of the small-
scale thermodynamics. Another flux term in the equations of motion of the small scales
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1.1 Thermal convection in our atmosphere

Figure 1.4: Cloud-resolving convective parameterizaton or super-parameterization
concept. In each grid column of a General Circulation Model sits a two-
dimensional cloud-resolving model that takes on the role of conventional parame-
terization schemes. Both models are coupled through lateral averages of the fine-
scale model and large-scale drag from the GCM. From ref. [40].
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introduces a forcing by the advective tendencies of the large-scale GCM. In this way, both
simulations exchange information, and the prognostic variables of the large scale and av-
erages of the small scale relax onto each other. In the end, the objective is to ensure that,
for any coupled quantity, the horizontal average ⟨·⟩x,y in the small-scale model at a height
z corresponds to the value at the same height in the large-scale model. Hence, the vertical
properties of both flows become crucial coupling parameters. The CRCP scheme was first
used in a climate model by Khairoutdinov and Randall [43], where it was re-labeled super-
parameterization (SP). To this day, SP is widely used [44–48]. While this approach has the
downside of a higher computational cost than its conventional counterparts, it leads to more
physically realistic predictions as parts of the sub-grid scale are explicitly resolved. Further,
it is a natural first step towards a global cloud-resolving model.

Both parameterization frameworks introduced above have advantages: while conventional
parameterization methods are computationally lightweight, super-parameterizations explic-
itly resolve mesoscale flow features. However, while the former lacks physical expressiveness,
the latter comes at the computational cost of running a small-scale-resolving simulation in
each GCM grid cell, making a multi-century simulation unfeasible. This begs the question:

Can thermal convection processes be represented at low computational cost while retaining
physical accuracy?

This lays the foundation for the current thesis, which seeks to address this inquiry using a
machine learning-driven model.

1.2 A gentle introduction to neural networks

The undeniable success of machine learning (ML) and artificial neural networks (NN) dur-
ing the last decade has immensely impacted our everyday lives. Common examples include
recommendation systems in streaming services [49] or web shops, language processing in the
form of translator apps [50] and voice assistants [51] as well as computer vision tasks like
face recognition in online social networking platforms [52]. Furthermore, ML has sparked
new research directions in natural science and engineering. After careful preparation of the
numerical data, disciplines that naturally have to deal with large amounts of data can now
leverage the potential of machine learning models. ML summarizes many classes of compu-
tational models that all have in common that they are tasked with performing a particular
job without explicitly being programmed to do so. They rather self-teach or learn the task
themselves by observing, primarily large, sets of data. In this way, these models learn by
”gathering knowledge from experience” and therefore ”avoid[...] the need for human opera-
tors” [53].

A big part of ML’s success story stems from the concept of artificial neural networks and the
field of Deep Learning. Motivated by the architecture of biological neural networks inside
animal brains, these models are built from several connected units, called neurons or per-
ceptrons [54–56]. Figure 1.5a) shows the concept of a single neuron. It takes an input signal
x and produces an output y that is a nonlinear function of the weighted sum of its inputs.
This is similar to biological neurons, which receive electrical impulses, become activated, and
”fire” an output signal if the input signal surpasses a specific threshold value. The weights
wi of a perceptron are adaptable parameters resembling its ability to learn. Stacking sev-
eral such artificial neurons and providing them with the input signals results in a single-layer
network, shown in Figure 1.5b). If several such layers are followed by each other (see Fig-
ure 1.5c)), then the output of the current neuron layer is the input of the next layer, s.t. the
input information is processed in a feed-forward fashion. Even though there is no clear def-
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Figure 1.5: Neural network building blocks. (a): a single neuron (orange) receives a nu-
merical input signal x1, x2, x3 of three values. The neuron computes the weighted
sum of the three inputs, applies a nonlinear activation function σ(·) (see e) to
the sum, and outputs the result. Note that in practice, an additional scalar bias
term is added to the sum before σ(·) is applied. (b): two neurons arranged in
a single layer. Every neuron receives all information on the input and outputs
an individual signal y1 and y2. (c): a multi-layered deep neural network. Four
single-layer neurons receive the input signal. The output of each neuron is then
passed to the neurons in the next layer. The final layer consists of two neurons,
which result in two numerical output values y1, y2. (d): a recurrent neural net-
work consists of a reservoir of connected neurons. It possesses an internal state r,
which is dynamically updated at time step n. This new state is then used in the
next RNN run. (e) Examples of commonly used nonlinear activation functions σ.
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inition, often, the neural network is already considered deep if the number of layers exceeds
two. By applying a nonlinear activation function to the output of each neuron, the network’s
output y becomes a complex, highly parameterized representation of the input x. Note that
without this transformation at each neural output, the network output would behave as a
single neuron, as y would again be a linear combination of the x. Commonly used nonlinear
activation functions are shown in 1.5e). The combination of ”squashing” activation functions
and sufficiently deep, fully connected layers of neurons enables the network to approximate
”any continuous function on a closed and bounded subset of Rn” [53]. This fact is known as
the universal approximation theorem [57, 58].

Now that the feed-forward neural network model has been introduced let’s consider how
these networks learn. A trained NN corresponds to fixed weights and biases optimized in
a preceding training phase on a prepared training dataset. Training is done by minimizing
a loss or cost function L and adapting the weights and biases of the network. The loss func-
tion is task-specific and usually compares the network’s output y with user-labeled ground
truth (GT) target data ŷ. This methodology is denoted as supervised learning. For example,
take the mean squared error (MSE) loss for a dataset with N samples

Lw(y, ŷ) =
1

N

N∑
i=1

(yi − ŷi)2 . (1.6)

It measures the quality of the model output in a least-square sense compared to the ground
truth. The subscript indicates that the loss is parameterized by the weights w = (w1, w2, ...)
of the NN. Learning then requires minimizing this scalar loss function. This, on the other
hand, requires a high-dimensional optimization procedure for all parameters w of the NN.
For this, one relies on the gradient descent algorithm [59], an iterative process where one
follows down the steepest direction of the loss-gradient w.r.t. the network parameters until a
minimum of Lw is reached. Then, the updated or learned weights, after n + 1 optimization
steps (or epochs), are given by

wn+1 = wn − η∇wLw, (1.7)

where ∇w is the gradient w.r.t. to the NN weights, and η is the learning rate, a hyperpa-
rameter that defines their update speed. It is common to perform this updating step not
for each of the N samples but for batches, i.e., subsets of the training dataset. This pro-
cedure is referred to as minibatch gradient descent and has two advantages. First, it in-
creases the computational efficiency, as the amount of update steps after which the whole
training dataset has been used is drastically reduced compared to updating after each sam-
ple. Secondly, updating the weights for multiple batches of the training set introduces noise,
which helps escape local minima in the loss landscape, similar to stochastic gradient descent.
Nowadays, advanced versions of eq. (1.7) have greatly improved the performance and stabil-
ity of neural network training [60, 61].

Note that equation (1.7) requires the knowledge of the the gradients ∂Lw
∂wi

of each layer. How-
ever, as the output of each layer is the input to the next, the gradient w.r.t. of an initial
layer requires the gradient of all layers succeeding it. This is equivalent to the chain rule,
i.e., finding the derivative of a nested function f(g(x)) w.r.t. the inner-most argument x,
which can be written as

∂f

∂x
=
∂f

∂g

∂g

∂x
. (1.8)
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1.3 RNNs: learning sequential data

Likewise, the output of the network, and hence Lw is a nested function of each weight of
the neural network. Therefore, the necessary term in eq. (1.7) can be computed similarly
to (1.8). Take, for example, the loss gradient w.r.t. to a weight wi in the l-th layer of a NN
with a total of L layers. Let y(i) be the output of the i-th layer. The gradient ∂Lw

∂wi
is then

obtained by

• recording the gradient of the output ∂y(l)

∂wi
in the l-th layer

• recording the gradient ∂y(l+1)

∂y(l) , i.e. the gradient of the subsequent layer’s output w.r.t.

to its input

• recording these gradients until the last layer’s output ∂y(L)

∂y(L−1)

• computing the gradient of the loss function w.r.t. to the final output ∂L
∂y(L)

The derivative of the loss w.r.t. to the weight wi can then be constructed using the chain
rule

∂Lw
∂wi

=
∂y(l)

∂wi

∂y(l+1)

∂y(l)

∂y(l+2)

∂y(l+1)
. . .

∂y(L)

∂y(L−1)

∂Lw
∂yL

(1.9)

Note that the gradients ∂y(l+1)

∂y(l) can easily computed, as the derivative of the layer’s activa-

tion function is known. This back-propagation algorithm was first used in neural networks
by Rumelhart in 1986 [62] and is now standard in programming packages that implement
neural networks.

Feed-forward neural networks (FFNNs) have captured the attention of researchers in the
field of fluid dynamics as well. See, e.g., [63], [64] or [65] for comprehensive reviews. FFNNs
find utility across a diverse range of subjects, like in [66] and [67], which employ neural net-
works for the subgrid-scale modeling of turbulence in large eddy simulations. In [68], Fonda
et al. employ a deep neural network for the analysis of heat transport in Rayleigh-Bénard
convection. Moreover, FFNNs are used for flow control problems [69, 70]. Recently, many
deep-learning models have found applications in super-resolution tasks, i.e., the reconstruc-
tion of high-resolution fields from their low-resolution counterparts [71]. In [72], Mohan et
al. employ an Autoencoder network, a type of FFNN, to compress simulation data of three-
dimensional homogeneous isotropic turbulence to a low-dimensional latent space. Similar ar-
chitectures have also been used for the feature extraction of the unsteady flow past a cylin-
der [73]. Finally, novel physics-informed neural networks that incorporate physical laws into
their loss function have been proposed [74, 75].

1.3 Recurrent neural networks: learning sequential data

The aforementioned FFNNs are suitable for static data where subsequent input data slices
do not have a temporal relationship. This is suitable for classification tasks, where all the in-
formation required for the network’s output is stored in the current input sample. Yet, most
scientific measurements or simulations of physical processes are stored in terms of temporal
sequences. When trained on data of such systems, FFNNs have shown poor performance as
they do not possess an internal memory that can connect two subsequent samples. A class
of neural networks that can extract information from previous inputs is the recurrent neu-
ral network (RNN), illustrated in Fig. 1.5e). While FFNNs have different parameters for
each input feature, RNNs share their weights across multiple time instances, making it a
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profound neural network. Training an RNN is done by unrolling the computational graph
over the training time steps, resulting in a deep FFNN with shared weights and applying
the back-propagation algorithm. This is also referred to as back-propagation through time
(BPTT) [53]. Although their architecture theoretically enables them to capture long-term
dependencies, RNNs are inherently challenging to train. The BPTT results either in a van-
ishing or exploding gradient, as due to the chain rule, it involves the multiplication of many
Jacobians of the network parameters [76–79].

One way to circumvent this problem was proposed in 2001 by Herbert Jaeger [80] in the ma-
chine learning community and 2002 by Wolfgang Maass [81] in computational neuroscience.
The two independent works proposed randomly initializing the RNNs input and recurrent
weights and only training the connections from recurrent to output neurons to leverage the
potential of RNNs for sequential pattern analysis. While Jaeger labeled the approach Echo
State Network (ESN), Maass referred to it as Liquid State Machine (LSM). Both seminal
models are now summarized under the name of Reservoir computing (RC) models. The fact
that only the weights in the readout layer are trained has several advantages. Firstly, a re-
gression method is sufficient to find optimal weights in the mean-square sense. This avoids
costly gradient computations and circumvents the original problem of RNN training. Sec-
ondly, the training time is heavily reduced, as the solution of the regression problem can be
computed in a one-shot computation as opposed to the epochal and batch-wise training of
stochastic gradient descent methods. To this day, RC models have shown great performance
in a variety of applications, e.g. as deadbeat controller of a robot [82], as low-latency high
accuracy detector of epileptic seizures [83] or for speech recognition [84]. Recently, reservoir
computers have been applied to the task of forecasting nonlinear dynamical systems. There
the model is trained with trajectories of the dynamical system. Finally, the neural network
can autonomously generate trajectories, which do not require solving the underlying equa-
tions of motion. Recent works include chaotic systems like the Kuramoto-Sivashinsky equa-
tions [85, 86], the Lorenz 63’ model [86, 87] or a low-order model of a shear flow [88]. These
applications suggest that RC can perform well on chaotic dynamical systems while keeping
the computational cost minimal. This makes this framework a suitable candidate for an ap-
plication on turbulent convection flows, which require solving the underlying highly complex
equations of motion. If a trained reservoir can produce key aspects of the turbulent flow, like
the low-order heat and moisture transport statistics or the spatial organization of thermal
plumes, these models could make viable candidates for future ML-based parameterization
schemes.

Finally, it should be mentioned that besides the Reservoir Computing approach, other so-
lutions to the vanishing/exploding gradient problem of RNNs have been proposed. Most
prominently, gated RNNs like the Long-Short Term Memory (LSTM) [89] and the Gated Re-
current unit (GRU) [90] have seen great success in the recent years. Both network architec-
tures use internal gating mechanisms that augment the internal memory of the RNN. While
the LSTM comes with a forget, update, and output gate, the GRU uses only an update and
reset gate. The controlled internal RNN state prevents the gradient from vanishing and ex-
ploding during training. However, as BPTT trains these networks, the time taken to train
these networks is significantly longer than for a reservoir computer.

1.4 Scientific contributions of this doctoral thesis

This dissertation investigates the potential of machine learning algorithms for the poten-
tial improvement of subgrid-scale parameterizations in large-scale atmospheric simulations.
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As discussed above, parameterization of subgrid-scale processes is a key challenge in atmo-
spheric modeling. Conventional approaches are often based on simplifying assumptions,
while super-parameterization schemes become computationally expensive. By leveraging
the prowess of neural networks, this thesis aims towards a more physically consistent ap-
proach for representing the subgrid processes while retaining low computational costs. For
this, a combination of an Echo State Network and state-of-the-art reduced-order modeling
techniques will be employed in order to learn subgrid-scale features from direct numerical
simulations of thermal convection. Specifically, this work aims to answer the following four
questions.

(i) How can a Reservoir Computing model be used for spatial, temporal, and statistical
feature generation of Rayleigh-Bénard convection, the paradigm of temperature-driven
turbulence?

(ii) How does the RC model performance change when the complexity of the underlying
convection flow is increased?

(iii) How can an RC model exhibit generalization when transitioning from one flux-driven
convection flow characterized by a specific set of system parameters to another flow
with distinct parameters?

(iv) How can a generative artificial neural network reproduce the transient pattern forma-
tion and associated transient statistics of a convective boundary layer?

All simulations performed for this thesis fully resolve the turbulent fluid motion down to the
smallest eddies, which allows an evaluation of a combined reduced order model Reservoir
Computing model in terms of reproducing crucial aspects of the turbulent flow, like its low-
order statistics, as well as transport properties of heat and moisture. While this work is not
concerned with implementing a machine learning-based parameterization scheme into an ac-
tual large-scale-resolving model, it aims to advance our understanding of the capabilities and
limitations of neural networks for improving the accuracy and efficiency of such schemes.
Potential applications lie in weather forecasting and climate modeling.

The work is structured as follows. Chapter 2 introduces the mathematical fundamentals of
thermal convection flows in 2.1, the Reservoir Computing paradigm and its various imple-
mentations in 2.2, as well as the two Reduced Order Models (ROMs) for data compression
in 2.3. Finally, the combined ROM-RC application to turbulent flow data and the evalua-
tion criteria are presented in 2.4. Chapter 3 then proceeds to apply an ESN to the chaotic
dynamics of a low-order model of thermal convection in 3.2. Moreover, a novel Quantum
Reservoir Computing model’s performance will be evaluated in 3.3. After that, in Chapter
4, a ROM-RC model will be applied to two-dimensional dry and moist Rayleigh-Bénard
convection in 4.1 and 4.2 respectively. The results are discussed in terms of their implica-
tions for an ML-based super-parameterization scheme. Chapter 5 shifts the focus from clas-
sical RBC flow to a convective boundary layer during daytime conditions. First, in 5.1, an
RBC-like CBL model in two spatial dimensions will be used to test the generalization ca-
pabilities of the ROM-RC model. Eventually, an alternative to the RC approach will be
presented in 5.2, where a generative network will be trained with simulation data from a
three-dimensional dry convective boundary layer. Moreover, it will be shown how a physics-
informed data augmentation can help boost the network’s performance. Furthermore, the
approach is compared to the results of a conventional eddy-diffusivity mass-flux parameteri-
zation scheme. Finally, in Chapter 6, a summary of all results will be given, followed by an
outlook on future research directions.
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Chapter 2

Reservoir Computing: Methodology and
application to turbulent thermal convection

2.1 Mathematical model of thermal convection

2.1.1 Atmospheric convection

The diagnostic equations of mass, momentum, and energy give the most general description
of thermal convection. For the sake of simplicity, this section will be restricted to dry con-
vection only. Comments on the moist convection will be made when appropriate. The mass
density enters the momentum equation via the gravitational body force term ρg. This force
triggers buoyant up- and downdrafts that lead to convective motion. Here, the mass density
ρ is a thermodynamic variable connected to pressure p and temperature T via an equation
of state ρ(T, p). For atmospheric flows, it is often justified [91] to assume the ideal gas law
to hold. It may be written as

ρ(T, p) =
p

R∗T
. (2.1)

Here, R∗ denotes the ideal gas constant divided by the molecular mass of the gas constituents.
The fully compressible equations for mass, momentum, and energy are inherently complex.
However, some simplifications can be introduced in the context of atmospheric flows. First,
the atmospheric motion can be assumed relative to an adiabatic atmosphere in a state of
hydrostatic equilibrium [92]. The assumption of adiabaticity can be understood by the low
heat conductibility of air, which leads to negligible heat fluxes across the boundaries of air
parcels. Further, for the parcel to be mechanically stable, the pressure inside the parcel must
be the same as the environmental pressure at the parcel height. The thermodynamic system
can then be described by the ground state profiles p0, T0, ρ0 and their superadiabatic correc-
tions p1, T1, ρ1

p = p0(z) + ϵp1(x, t), (2.2)

T = T0(z) + ϵT1(x, t), (2.3)

ρ = ρ0(z) + ϵρ1(x, t), (2.4)

with

∂p0
∂z

= −ρ0g (2.5)

where ϵ denotes the superadiabaticity parameter, approximately given by ϵ ≈ Ma2 [93].
Here, Ma is the Mach number, which relates the characteristic velocity of convection, see
(2.14) below, to the medium’s speed of sound. Plugging this expansion into the fully com-
pressible equations of motion and letting ϵ → 0 leads to the anelastic approximation [94,

15



Chapter 2 RC: Methodol. & appl. to turbulent thermal convection

95]. Note that this restricts the convective flow to subsonic velocities, as is the case in e.g.
Earth’s atmosphere. Furthermore, sound waves are effectively filtered out by these assump-
tions. This model is often applied in astrophysical processes [1, 96], as well as in deep atmo-
spheric convection [97].

A further simplification can be made if the temperature scale height HT , i.e., the height over
which pressure and density variations increase by one order of magnitude, is substantially
larger than the height H of the convective region. This is known as the Oberbeck-Boussinesq
approximation [98, 99]. This assumption has several implications. Most notably, the adia-
batic density profile ρ0 becomes independent of height, and the flow becomes incompressible.
Furthermore, it can be shown that heating due to viscous dissipation becomes small com-
pared to the internal energy variations. Similarly, the pressure contribution to the energy
budget equation becomes negligible. Further, the pressure p1 loses its thermodynamic mean-
ing altogether as the equation of state for the density becomes

ρ1 = −αρ0T1, (2.6)

which is now dependent on the temperature T1 only. Here, α denotes the thermal expansion
coefficient at constant pressure. Finally, the material properties of the fluid, like kinematic
viscosity ν and thermal diffusivity κ, become independent of temperature and pressure. De-
spite these simplifications, the Boussinesq approximation can be used in the modeling of var-
ious natural systems. For example, shallow convection in the atmospheric boundary layer
occurs in a narrow slab H ≈ 1 − 2km above the Earth’s surface. The scale height, however,
reaches far into the troposphere HT ≈ 7.5− 10km [91, 92]. To ease the notation, the temper-
ature T1 and the pressure p1 will, from here on, be referred to as T and p.

2.1.2 Equations of motion

The simplifications in the Oberbeck-Boussinesq-limit give rise to the following incompress-
ible equations of motion

∇ · u = 0 (2.7)

∂u

∂t
+ (u · ∇)u = −∇p′ + ν∇2u+ bêz (2.8)

∂T

∂t
+ (u · ∇)T = κ∇2T. (2.9)

Here u = (ux, uy, uz)
T is the three-dimensional velocity field, ν is the kinematic viscosity of

the fluid and κ its thermal diffusivity. Note that eq. (2.9) is sometimes written in terms of
the deviations θ from the purely conductive temperature profile Tdiff

θ(x, y, z, t) = T (x, y, z, t)− Tdiff(z), (2.10)

where Tdiff depends on the choice of boundary conditions of T . For the Dirichlet case, see
below, this profile becomes

Tdiff(z) = Tbottom −
Tbottom − Ttop

H
z, (2.11)

where Tbottom and Ttop denote the temperature values at the bottom and top boundary re-
spectively. As a consequence of the simplified equation of state (2.6), the kinematic pressure
p′ = p/ρ0 is fully determined by velocity and temperature field. As discussed above, the
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energy equation (2.9) has neither contributions from pressure nor from viscous dissipation.
The buoyancy term b in (2.8) incorporates the density variations ρ1 and is given by

b = −gρ1
ρ0

= αgT. (2.12)

It is common to reformulate the diagnostic equation for T in terms of b, as it allows for a
flexible switch between dry convection, as considered here, and moist convection. Even though
in the latter case, additional thermodynamic scalars like the liquid water content connect to
the equation of state (2.12), the momentum equation (2.8) is left unchanged. A moist con-
vection system will be introduced in Section 4.2. To keep the considerations general, the fol-
lowing part of this section will use the buoyancy formulation.

Many physical quantities in the governing equations (2.7 - 2.9) are not dimensionally inde-
pendent, and one can identify a few non-dimensional parameters describing the system. The
derivation of these nondimensional numbers follows the Buckingham-Pi theorem [100], which
states that a system with n physical quantities, of which k are dimensionally independent, is
described by n−k dimensionless numbers. For this, one has to specify characteristic scales in
which the physical quantities will be expressed. Here, the spatial scale is the vertical domain
height H. The choice of buoyancy scale is usually considered to be

∆b = α∆Tg, (2.13)

where ∆T = Tbottom − Ttop, is the difference of temperature values at the bottom and the
top of the convection domain. Moreover, a common choice for the velocity scale is the free-
fall velocity

Uf =
√
∆bH, (2.14)

(2.15)

where the associated free fall time scale follows as

tf = H/Uf . (2.16)

With this, the Boussinesq system can be written in a non-dimensional form

∇∗ · u∗ = 0 (2.17)

∂u∗

∂t∗
+ (u∗ · ∇∗)u

∗ = −∇∗p̂
′∗ +

√
Pr

Ra
∇∗

2u∗ + b∗êz (2.18)

∂b∗

∂t∗
+ (u∗ · ∇∗)b

∗ =

√
1

RaPr
∇2

∗b
∗, (2.19)

where the asterisk denotes non-dimensional physical variables and derivatives. The resulting
non-dimensional numbers are the Prandtl number

Pr =
ν

κ
, (2.20)

and the Rayleigh number

Ra =
∆bH3

νκ
. (2.21)

The former compares the coefficients of momentum diffusion to the thermal diffusion coef-
ficient. Typical values range from Pr = 0.7 for moist air and Pr = 1 for dry air to Pr = 7

17



Chapter 2 RC: Methodol. & appl. to turbulent thermal convection

for water[101]. The latter represents the diffusion time scale in relation to the time scale
of thermal convection. Therefore, the fluid is set in motion if Ra exceeds a critical value.
In Earth’s atmosphere typical values of Ra range from 1018 − 1022 [14]. A further non-
dimensional parameter is the aspect ratio of the convection cell

Γ =
L

H
, (2.22)

which relates the domain’s characteristic horizontal length L to its height. As discussed
above, ABL processes can extend to several hundred kilometers in the lateral directions and
1 − 2km in the vertical, which gives typical values of Γ ∼ 102. Another important dimen-
sionless number is the Reynolds number Re of the flow, which compares the forces of inertia
with the flow’s viscous forces and hence characterizes the momentum transport. In the con-
text of Rayleigh-Bénard convection, it is often defined as

Re =

√
Ra

Pr
⟨u2x + u2y + u2z⟩

1/2
V,t , (2.23)

where ⟨·⟩V,t denotes the volume-time average, and the characteristic velocity is chosen as the
root-mean-square velocity [10]. Further, the Nusselt number characterizes the heat transfer
through the convective domain. It is given by

Nu = 1 +
√
RaPr⟨uzb⟩V,t ≥ 1 (2.24)

It denotes the ratio of the total buoyancy flux due to turbulent convection and buoyancy
diffusion to the diffusive buoyancy flux. Hence, it is always greater or equal to one. Note
that both Re and Nu are diagnostic parameters that require knowledge of the physical fields.
Both quantities will be presented for each DNS run throughout this thesis.

The next subsection will introduce the boundary conditions for the present Boussinesq model.
After this, that is, after 2.1.3, the asterisk-notation is dropped, and x, y, z, t, u, p, T and b
are assumed to be dimensionless unless stated otherwise.

2.1.3 Boundary conditions

The Boussinesq equations (2.17 - 2.19) are completed by the specification of boundary con-
ditions on u and b. These should incorporate the physical environment of the convective
flow and can be quite different for various buoyancy-driven flows in nature. Moreover, the
geometry of the model has to be specified. A popular choice for buoyancy-driven flows is
a rectangular domain, often used for numerical purposes, as it allows for a straightforward
numerical implementation. This work will consider rectangular cells of size L × H (two-
dimensional convection) or L× L×H (three-dimensional convection).

As the mean flow is directed vertically, one should distinguish between the boundary con-
ditions at the lateral and vertical boundaries. The mechanical boundary conditions at the
vertical boundaries allow for a stress and stress-free formulation. The stress, or no-slip, con-
dition is given by

ux|z=0,H = 0, (2.25)

uy|z=0,H = 0, (2.26)

and assumes that the fluid sticks to the bottom and top plate. Due to momentum diffusion,
vertical stress ∂ux

∂z ,
∂uy

∂z is induced to the neighboring fluid layers. This configuration corre-
sponds to Dirichlet boundary conditions. Further, these conditions are typical for labora-
tory experiments of thermal convection with finite viscosity working fluids. The stress-free
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or free-slip boundary condition can be assumed when friction between the boundary and
fluid can be neglected. This is, e.g., the case for boundaries between two fluids. Here, the
horizontal velocities are not constant at the boundary but obey

∂ux
∂z

∣∣∣∣
z=0,H

= 0, (2.27)

∂uy
∂z

∣∣∣∣
z=0,H

= 0, (2.28)

(2.29)

making them Neumann boundary conditions. An example can be the top of the atmospheric
boundary layer, which is capped by a non-turbulent atmosphere that allows for non-zero
horizontal velocities. Further, as the vertical boundaries are considered impenetrable, the
vertical velocity has to obey the no-penetration conditions

uz|z=0,H = 0. (2.30)

In practice, the horizontal boundary conditions are given by no-slip and no-penetration bound-
aries. However, in numerical experiments, treating the spatial domain as a unit cell embed-
ded in a large, horizontally extended environment is convenient. One example is the two-
dimensional cloud-resolving model embedded inside the grid cells of a Global Climate Model
in the super-parameterization scheme (see again Fig. 1.4). There, periodic boundary con-
ditions are implemented at the horizontal boundaries of the two-dimensional model. In this
way, the flow is not restricted by impermeable lateral boundaries, which would lead to unde-
sired boundary effects. Periodic boundary conditions for the velocity fields read

ux(x+ L, y + L, z, t) = ux(x, y, z, t), (2.31)

uy(x+ L, y + L, z, t) = uy(x, y, z, t), (2.32)

uz(x+ L, y + L, z, t) = uz(x, y, z, t). (2.33)

Throughout this thesis, only periodic boundary conditions in the lateral directions will be
considered.
Similarly to the velocity fields, Dirichlet and Neumann boundary conditions can also be con-
sidered for the buoyancy field. The former is given by

b|z=0 = bbottom, (2.34)

b|z=H = btop (2.35)

with the constant boundary values bbottom > btop that lead to a buoyancy difference ∆b >
0 between both plates. This corresponds to the classic Rayleigh-Bénard setup, where the
bottom plate is heated, and the top plate is cooled, s.t. a constant temperature difference
is found between both boundaries. Dirichlet boundaries will be considered in 3 and 4. The
most general Neumann case prescribes two heat fluxes B0 > 0, B1 at the boundaries

∂b

∂z

∣∣∣∣
z=0

= −B0

κ
, (2.36)

∂b

∂z

∣∣∣∣
z=H

= −B1

κ
. (2.37)

Note that if the incoming buoyancy flux at the bottom leaves at the top boundary, i.e., B1 =
B0, this case becomes similar to the classical RBC setup. Even though ∆b becomes non-
constant, its lateral mean ⟨∆b⟩x,y becomes statistically stationary. Furthermore, this choice
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of boundary conditions has been shown to impact the turbulent flow and the associated
long-term pattern formation [13]. However, both buoyancy fluxes will not be the same in the
setting of an atmospheric boundary layer, where the bottom boundary is the heated ground.
In contrast, the top boundary, even though not present, can be modeled to represent the in-
fluence of entrained warm, non-turbulent air from above the mixed layer (see 5.1). In this
way, the fluid will also be heated from the top by

B1 = −βB0, (2.38)

with the buoyancy-flux ratio β > 0 and hence B1 < 0. This model will be discussed in more
detail in 5.1. Finally, to be consistent with the mechanical boundary conditions, b will be
considered periodic in the lateral directions, i.e.,

b(x+ L, y + L, z, t) = b(x, y, z, t). (2.39)

From here, all notation related to thermal convection is assumed to refer to the correspond-
ing non-dimensional form with the scales presented in 2.1.2.

2.2 Reservoir Computing

2.2.1 The Reservoir Computing paradigm

Since its introduction over 20 years ago, Reservoir Computing has developed into a unified
computational framework [102, 103] that summarizes many computational models. Most
prominently Echo State Networks [80], Liquid State Machines [81], Backpropagation-Decorrelation
models [104], novel quantum reservoir computers [105–108] as well as physical reservoir com-
puters [103]. They all share the concept of the reservoir as a temporal kernel. This can be
understood in the context of kernel-based methods (see Figure 2.1), which project their in-
put to a high-dimensional space1 for enhanced separability. Finally, a linear output rule is
used to compute the desired outputs. In the RC case, the high-dimensional feature space is
given by a ”reservoir of rich dynamics” [80], from which the output dynamics can be linearly
combined. In this way, the reservoir dynamics are given by the nonlinear system

r(n+ 1) = f r(r(n),x(n)), (2.40)

for the internal reservoir state r at the n+1-th iteration. The nonlinear function f r(·) incor-
porates the reservoir state from the last iteration and the forcing of an external input signal
x. The system’s output y is then computed via

y(n) = fout(r(n)), (2.41)

which relates the reservoir neurons to one or multiple output values. As mentioned in 1.3,
training is only applied to the parameters of the function fout(·). While this function does
not have to be linear in r and can involve terms like r2 as in e.g.[85], the output is always
constructed as a linear combination of these, possibly nonlinear, terms. This allows for a
simple regression for finding the optimal parameters in fout(·). This cheap training routine
and low computational cost make RC a compelling computational framework. Note that the
choice of f r(·) and fout(·) is dependent on the specific implementation of the reservoir com-
puter. The following subsections will introduce the diverse landscape of reservoir computers,
starting with the Echo State Network in Section 2.2.2, the main model used in this thesis.
In Section 2.2.3, hardware implementations of a reservoir computer will be illuminated. Fi-
nally, a novel Reservoir Computing technique based on digital gate-based quantum comput-
ers will be discussed in Section 2.2.4.
1Contrary to these kernel methods, in the RC case, the high-dimensional representation must be computed
explicitly, i.e., there is no kernel trick.

20



2.2 Reservoir Computing

Figure 2.1: Concept of kernel methods for a binary classification task. The two classes,
red and blue, in the two-dimensional domain a) can not be linearly separated.
However, this issue can be solved by projecting the problem into a feature
space of higher dimensions, here, R3, via a transformation ϕ, see b). Reservoir
Computing uses a similar concept: an input signal is projected into a high-
dimensional reservoir state space, and a linear output rule allows for the con-
struction of the target output. This figure was inspired by the scheme in ref.
[109].

2.2.2 The echo state approach

Jaeger’s echo state approach is the most well-studied RC implementation to date. It has
been studied extensively on a variety of problems. Nonlinear prediction tasks include the
Kuramoto-Sivashinsky equation [85–87, 110], the Lorenz 63’ model [86, 87, 110], the Rössler
system [110]. Industrial applications cover motor control [82], fuel cells [111] and visual place
recognition [112]. Recently, their application to turbulent flows has gained attention. This
includes flows past a cylinder [113, 114], two-dimensional Kolmogorov flow [115], shear flow [64,
88] and Rayleigh-Bénard convection [116–120]. This subsection will introduce the ESN im-
plementation, its training procedure, and the practical insights gained over the years.

2.2.2.1 Reservoir dynamics and training procedure

In the ESN formulation the reservoir state dynamics in eq.(2.40) take the following form2

r(n+ 1) = (1− γr)r(n) + γr tanh
(
W inx(n) +W rr(n)

)
, (2.42)

where r ∈ RNr and Nr is the reservoir dimension. The first part of the update rule is linear
in the previous reservoir state r(n) and corresponds to a perfect memory from the last iter-
ation. The second part introduces a nonlinearity in the shape of an entry-wise tanh(·) func-
tion. The nonlinearity acts on two contributions. The first summand corresponds to a forc-
ing of the reservoir by an external input signal x ∈ RNin , which often is a sample of a chaotic
dynamical system that is to be learned by the ESN. The second term resembles the neuronal
interactions within the reservoir. By applying a saturating activation function to the sum of

2Often an additional input bias cin is added, i.e. r(n+ 1) = (1− γ)r(n) + γ tanh
(
W inx(n) + cin +W rr(n)

)
,

where cin ∈ RNr and cin ∼ U [−0.5, 0.5] or cin ∼ N (0, 1).
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Chapter 2 RC: Methodol. & appl. to turbulent thermal convection

Figure 2.2: Echo State Network processing a one-dimensional input and output. The ESN
architecture is that of a recurrent neural network. The input weights W in pro-
vide the external input signal x to the reservoir (solid lines). The recurrent con-
nections (dashed lines) inside the reservoir represent the reservoir weights W r,
which link the neurons to each other. Finally, a trained readout layer W out

∗ com-
putes the reservoir output y. In the Reservoir Computing paradigm, only the
components of W out are learned via linear regression, while W in,W r are kept
fixed. The time series next to each node signifies the associated dynamics. This
sketch was inspired by ref. [121].

these terms, the second part of the reservoir update becomes a nonlinear memory. It allows
the reservoir to share information across nodes and take in information from outside the net-
work. The entries of the input and recurrent weights W in ∈ RNr×Nin , W r ∈ RNr×Nr are usu-
ally chosen from a symmetric random distribution like a uniform distribution U [−0.5, 0.5]
or a standard normal distribution N (0, 1) and are kept fixed after their initialization. This
way, the communication channels into and inside the reservoir become random. However,
a good reservoir should not depend on a certain realization of these parameters but should
show good performance for a certain choice of hyperparameters, see next section, indepen-
dent of the reservoir initialization. Evaluating the performance of a reservoir for different
random realizations of W in, W r will, therefore, be a crucial step for determining a robust
reservoir setting. Finally, linear and non-linear memory terms are balanced by the scalar
leaking rate hyperparameter3 γr ∈ (0, 1].

As discussed above, the reservoir dimension is chosen much larger than the input signal di-
mension, i.e., Nr ≫ Nin, s.t. the reservoir state r, becomes as a nonlinear high-dimensional
representation of the input x. The ESN output y ∈ RNout is then constructed by a linear
combination of this complex representation. For this4,5, trained output weights W out

∗ ∈
RNout×Nr are used in eq. (2.41)

y(n) =W out
∗ r(n). (2.43)

Finally, in Figure 2.2 the Echo State Network and its components are illustrated.

3The initial model of Jaeger [80] used a formulation corresponding to γr = 1 during evaluation.
4Some authors use the formulation W out(r, r2)T , e.g., ref. [85] to eliminate symmetries that hinder the reser-
voir in learning certain dynamical systems. Nevertheless, the training scheme stays linear.

5Also here an additional bias term can be added: y(n) = W out
∗ r(n)+cout. This bias is also learned during the

training procedure.
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To obtain the output weights W out
∗ , the network has to be trained. To this end, the reservoir

is provided with a sequence of Ntrain input signals x, such that the reservoir state evolves
according to (2.42). The resulting sequence of reservoir states is then recorded. Further, for
each sample of x, the ESN must be presented with a corresponding target output ŷ, which
the reservoir should ideally reproduce. In this way, a mean square error loss function can be
constructed

LW out =
1

NtrainNout

Ntrain∑
n=1

∥∥ŷ(n)−W outr(n)
∥∥2
2
+ λr

∥∥W out
∥∥
F
. (2.44)

The optimal output weights W out
∗ are then obtained by minimizing LW out w.r.t. the param-

eters in W out. The final term adds an L2 penalty to the optimization problem in the form
of the Frobenius norm ∥·∥F applied to W out. Moreover, the regression parameter λr con-
trols the strength of the penalty and poses an additional ESN hyperparameter. In regres-
sion problems, adding such a regularization term is common to avoid overfitting the train-
ing data. Overfitting is encountered when the fitted model perfectly reproduces the training
data but generalizes poorly to data points outside the training data set. In the context of
temporal inference, this term receives another interpretation concerning the stability of the
reservoir output. Large values of W out

∗ amplify small differences between the reservoir di-
mensions rk. This can lead to undesirable large reservoir output values. When the reservoir
operates in an autoregressive fashion (see the closed-loop scenario in 2.2.2.3), this will result
in saturated activations in eq. (2.42) and therefore, in undesirable reservoir performances.
Therefore, sufficient large values of λr are required to maintain good ESN dynamics.

Luckily, the minimization of expression (2.44) can be expressed in an analytical form [122]

W out
∗ = argmin

W out

LW out = Ŷ RT
(
RRT + λrIr

)−1
. (2.45)

Here, the nth column of R ∈ RNr×Ntrain , Ŷ ∈ RNout×Ntrain are the recorded reservoir state
and target output at the nth training time step. Moreover, Ir ∈ RNr×Nr denotes the iden-
tity matrix and (·)−1 the matrix inverse. A few things can be observed: the computational
complexity of training is O

(
N2

trainNr +N3
r

)
. Additionally, to avoid the issue of underde-

termination in the regression problem, it is necessary to have a sufficiently large number of
training samples, s.t. Ntrain ≳ Nr. Moreover, the output weights are acquired through a
single-step process, eliminating the need for multiple batches or epochs, following which the
network adjusts its weights accordingly. This makes the training of ESNs extremely fast, as
no backward pass through the network has to be performed. However, eq.(2.45) holds only
for the penalized mean square error loss function in eq. (2.44). This contrasts with optimiza-
tion methods such as gradient descent, where individual loss metrics can be applied. Section
2.4.2 will discuss problems arising from this restriction when inferring turbulent flow using
ESNs.

2.2.2.2 Reservoir hyperparameters and ESN tricks of the trades

Over the years of ESN research, several reservoir preparation guidelines have been estab-
lished. This section will briefly overview the most common ESN hyperparameters, i.e., pa-
rameters not optimized by the aforementioned training procedure. A correct choice of these
variables can lead to a drastic improvement in reservoir performance. As part of the au-
thor’s doctoral studies, he developed a Python package turbESN [123] in which all of the
below-mentioned details are implemented.
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Chapter 2 RC: Methodol. & appl. to turbulent thermal convection

Before a reservoir can be initialized, its dimensions have to be specified. While the input
and output dimensions Nin, Nout are pre-set by the external database of x and ŷ, the reser-
voir size Nr is a free parameter. In the spirit of kernel methods, it is common to choose Nr

to exceed Nin by at least one order of magnitude [124]. Moreover, it should also chosen so
as not to exceed the number of training samples Ntrain to avoid underfitting. Furthermore,
In the original formulation of the Echo State Networks, the adjacency matrix W r, which de-
scribes the intra-reservoir connections, is commonly kept sparse, i.e., most matrix elements
are set to zero. However, Jaeger’s initial suspicions about improving the ESN performance
via a reduced number of inter-reservoir communication channels have not been confirmed.
On the contrary, for most tasks, the reservoir performance is virtually independent of the
reservoir sparsity. Presently, a sparse weight matrix W r is used to reduce the computational
cost of eq. (2.42). Moreover, in practice, the complementary reservoir density Dr, the frac-
tion of non-zero weights, is specified. It takes on values between 0.2 and 0.5 [116, 117, 119].
In ref. [80], Jaeger points out that for a reservoir to perform reliably, its internal state r
should converge asymptotically, w.r.t. time, under the influence of the input x. This means
that two initially different reservoir states r(1)(0), r(2)(0) with the same reservoir matrices
should converge under the influence of the same input signal to the same state r(n) for a
sufficiently large number of iterations n. It embodies the fading memory characteristic that
an Echo State Network (ESN) should possess, enabling it to disregard information from dis-
tant past time steps. The ESN is then uniquely defined by the input signal. This property is
called the echo state property (ESP). Fulfilling the ESP is, therefore, desired for good reser-
voir performances. It is connected to the algebraic properties of the reservoir, as well as the
properties of the driving input. Following Jaeger’s seminal paper, many works restrict the
largest absolute eigenvalue of W r, i.e., its spectral radius ϱr, to values strictly smaller than
one. Jaeger argued ϱr < 1 to be a sufficient condition for the ESP. However, Lukoševičius
and Jaeger [125] discuss that this condition is neither necessary nor sufficient for achieving
the ESP, a conclusion to which other works have come as well [126, 127]. Presently, new at-
tempts towards reformulating the ESP in terms of Generalized Synchronization [128] have
been made. Nevertheless, the spectral radius ϱr and the leaking rate γr determine the reser-
voir update speed in eq. (2.42), such that both variables are commonly considered hyperpa-
rameters in ESN runs. Moreover, it is convenient to introduce an input scaling parameter σr
that is pre-multiplied to W in to control the non-linearity of the reservoir activation in (2.42),
as well as the strength of the input forcing.

These hyperparameters, together with the regression parameter in (2.45), define an ESN set-
ting Ξr = {Nr, ϱr, γr, λr, Dr, σr}. They must be chosen before training starts6 and highly
depend on the input data x. A practical guide for delimiting the range of values of these
variables can be found in [124], while a systematic review of these hyperparameters for sev-
eral benchmark problems is listed in [129]. Finally, hints on how to set up hyperparameter
grid search procedures can be found in [130].

2.2.2.3 ESN operation modes

After training, an ESN can be used in several ways. The two most prominent operation
modes are the continuously available data (open-loop) and the autonomous prediction (closed-
loop) scenario. Figure 2.3 illustrates both scenarios. In the former, the reservoir receives a
prior known input signal x, which is continuously supplied from outside the reservoir. Af-
ter its state r has been updated and the corresponding reservoir output y computed, the
reservoir receives the next external signal. In terms of prediction, this can be compared to a

6This is except for the regression parameter, which can be adapted after the matrix R has been constructed.
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2.2 Reservoir Computing

Figure 2.3: Operation modes of the ESN. (a) Open loop mode, where the input data x is
continuously provided at each iteration step. This mode allows for reconstruc-
tion tasks where the dimensionality of the input does not need to match the out-
put dimension. (b) Closed-loop mode, where the reservoir runs autoregressively.
While this scenario requires Nin ≡ Nout, it allows for predictions past the horizon
of the current database.

one-day weather forecast: given the known weather conditions today, what will the weather
be like tomorrow? This scenario has the advantage that the reservoir state is continually
updated with a guiding teacher signal that does not allow the state to diverge too far from
its previous instance. Incidentally, the reservoir is trained precisely for this mode in (2.45).
Note that this scenario allows for unequal input and output dimensions, i.e., Nin ̸= Nout,
and can therefore be used for inferring missing information, as in [110], where one of the
Lorenz 63 dimensions is used as input, and the ESN infers the missing two values. A simi-
lar approach will be taken in 3.3. Moreover, similar attempts have been made to apply an
open-loop ESN to spatial reconstruction tasks [114, 119]. Nevertheless, on occasions, it be-
comes intriguing to understand the events that transpire significantly further into the future
beyond the confines of the existing database records. In this case, no continuous external
information can be provided to the ESN. However, in terms of temporal prediction tasks,
one can rely on the recent reservoir output and use it as a basis for the next reservoir up-
date. In this closed-loop scenario, the reservoir’s outputs are fed back to the input layer, i.e.,
x(n + 1) = y(n). This way, the reservoir runs autoregressively using its past predictions,
starting from an initial user-provided starting point. Note that, unlike the open-loop case,
this requires the input and output dimensions to be the same, i.e., Nin ≡ Nout. Furthermore,
this can be interpreted as a long-term weather or climate forecast. The latter is attractive
for potential ML-based super-parameterization applications, as a trained ESN could run in
closed-loop mode, taking over the role of the subgrid-scale resolving fluid simulation. In this
way, several snapshots could be generated with low computational costs. In this spirit, this
thesis will primarily focus on the closed-loop operation mode for two-dimensional convection
flows. However, the open-loop scenario will be employed in sections 3.3.1 and 3.3.2.

2.2.3 Physical Reservoir Computing

Echo State Networks operate as computer programs, i.e., in silico. However, recently, it was
noted that ”the basic concept of RC is exploiting the intrinsic dynamics of the reservoir by
outsourcing learning [...] to the readout part. According to this unique setting, reservoirs
do not have to be an RNN anymore but can be any dynamical system.” [131]. From this
idea, novel physical reservoir computers that exploit physical dynamics for computation
tasks have emerged. This latest RC trend is worth mentioning as this emerging field builds
on the knowledge and success of current ESN applications. Moreover, opposed to software
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implementations, like the ESN, these hardware realizations are particularly interesting, as
they might yield high computational speed while maintaining low power consumption [103].
Recent examples, include photonic [132–135], electromechanical [136], opto-electronic [137,
138] or spintronic [139–141] reservoirs. Many of these implementations use delay-based reser-
voirs, a concept introduced by Appeltant et al. in ref. [137]. They are easy to implement in
a hardware application, as they only require a single nonlinear node and a delayed feedback
loop [142]. Furthermore, for good reservoir performances, the underlying physical reservoir
should possess steady-state dynamics and be close to a bifurcation [143]. In contrast to the
original formulation of RC, where many neurons interact with each other, the delay-based
reservoir consists only of a single node that interacts with itself over different instances of
time via a delay loop. Therefore, the reservoir state r consists of a collection of time sam-
ples of the response of the same node gathered via a time-multiplexing procedure. As the
reservoir dimensions are scattered over time and not a collection of physically implemented
nodes, they are also referred to as virtual nodes. In this case, the reservoir is given by a dy-
namical system with time-delayed feedback s.t. eq.(2.40) becomes

r(n+ 1) = f r(r(n), r(n− τ),x(n)), (2.46)

where τ is the delay time of the dynamical system.

Despite their hardware-friendly design, physical reservoirs face similar problems as the clas-
sical ESN, as tuning of several hyperparameters is required. Moreover, despite the high pro-
cessing speed of these reservoirs, the overall process is bounded by the external training pro-
cedure, which is still mostly done in silico. While physical Reservoir Computing will not be
applied in this dissertation, it may be an interesting future research direction, that can make
use of the results, which will be presented in the next chapters.

2.2.4 Quantum Reservoir Computing

A further descendant of the original RC formulation has found its way to the field of quan-
tum machine learning [144], a symbiosis between quantum computing (QC) and classical
machine learning. Besides the ESN implementation of a reservoir computer, this thesis will
consider a state-of-the-art Quantum Reservoir Computing (QRC) model in 3.3. Therefore,
the next paragraphs will be devoted to the architecture and concept of QRC. However, a
pedagogical introduction to quantum computing will be given first, after which the details
on a digital gate-based QRC implementation will be given.

2.2.4.1 A primer on quantum computing

Quantum computing, or quantum information science, is an interdisciplinary field of quan-
tum physics and information science that uses the principles of quantum mechanics to pro-
cess information [145]. The notion of a quantum computer dates back to Richard Feyn-
man [146], who speculated that simulating complex quantum systems with a computer that
exploits quantum mechanical phenomena is more straightforward than using a conventional
computer. Since then, quantum computing hard- and software development have rapidly im-
proved. Nowadays, researchers can run their code, often written in scripting languages like
Python, on a quantum device via commercial cloud services [147]. The quantum hardware is
typically implemented as ion traps [148, 149] or superconducting circuits [150], which reach
up to a few hundred of qubits, the basic unit of computation (see below). However, these
intermediate-scale devices are still prone to computational errors, which occur due to insuffi-
cient control of qubits and their decoherence. For this reason, the current era of QC is called
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2.2 Reservoir Computing

the noisy intermediate scale quantum (NISQ) era [151]. While still in its early stages and
vulnerable to decoherence, the progress made by current quantum technology plays a vital
role in shaping the future of quantum applications.

Figure 2.4: Basic quantum gate circuitry. (a) A quantum circuit processing Nqubit = 2
qubits in the initial state |0⟩. The two qubits become entangled after applying a
Hadamard and controlled not gate. The final state |ψ̃⟩ is an entangled Bell-state.
(b) Definition of rotational gates RX , RY with rotational angel φ. (c) Definition
of the Hamadard gate used in a). (d) Definition of the two-qubit CNOT gate,
used in (a).

The basic unit of information on a quantum computer is known as a qubit. It resembles a
two-level, and therefore the smallest non-trivial, quantum system and is described by the
quantum state

|ψ⟩ = α |0⟩+ β |1⟩ . (2.47)

As given by the axioms of quantum mechanics, the state vectors |0⟩ and |1⟩ are basis func-
tions of a two-dimensional Hilbert space H. The complex amplitudes α, β ∈ C denote proba-
bility amplitudes and must obey

|α|2 + |β|2 = 1, (2.48)

i.e., their absolute squares denote the probability of finding the qubit in the state |0⟩, |1⟩
respectively. One advantage of quantum computing can be understood when considering the
combined state of two qubits |ψ1⟩ = α1 |0⟩+ β1 |1⟩ ∈ H1 and |ψ2⟩ = α2 |0⟩+ β2 |1⟩ ∈ H2, i.e.,

|ψ1ψ2⟩ = |ψ1⟩ ⊗ |ψ2⟩ = η00 |00⟩+ η01 |01⟩+ η10 |10⟩+ η11 |11⟩ ∈ H1 ⊗H2, (2.49)

where ⊗ denotes the tensor product and |00⟩ = |0⟩ ⊗ |0⟩, |01⟩ = |0⟩ ⊗ |1⟩, etc. Note that
the amplitudes of the composite state are given by η00 = α1α2, η01 = α1β2, etc. In this way,
the state space of a quantum system grows exponentially with the number of qubits Nqubit.
This exponential state space allows for complex feature representations and can be leveraged
when unitary quantum operators augment the combined quantum state. Figure 2.4a) shows
a basic quantum circuit of a Nqubit = 2 qubit system, which is augmented from left to right
by a Hadamard gate and controlled not (CNOT) gates. Both gates are defined in Fig. 2.4c),
d). While the initial quantum state is given by the product state in eq. (2.49), the final
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state can not be written as the product of two qubits. This phenomenon is known as quan-
tum entanglement. When two states are entangled, they become ”highly correlated”, i.e.,
the operations on the one qubit also affect the other. This non-local interaction of qubits
paired with their exponentially growing state space has made quantum devices highly inter-
esting for machine learning tasks, where complex representations are leveraged.

The application of QC can roughly be classified into three fields [152]: (1) simulation of
quantum systems for physical or chemical processes. (2) Solving classical optimization prob-
lems. Interest in this field has risen since theoretical considerations proposed a quantum
speed-up of classical optimization problems. Most notably, these considerations are based
on the works of Shor and Grover about the factorization of prime numbers [153] and com-
binatorial optimization involving an exhaustive search [154]. (3) Data processing on quan-
tum computers, which includes the topic of Quantum Reservoir Computing. The success
of machine learning and deep neural networks, which extract features effectively by finding
complex data representations, has sparked the notion of quantum machine learning. Bia-
monte et al. describe the motivation behind QML by the following idea: ”If small quantum
information processors can produce statistical patterns that are computationally difficult
for a classical computer to produce, then perhaps they can also recognize patterns that are
equally difficult to recognize classically” [144]. For this, novel quantum algorithms are re-
quired. These algorithms subsequently use a quantum state’s large state space and entangle-
ment property to encode a classical input x into a complex high-dimensional representation.
This sets the stage for the present Quantum Reservoir Computing algorithm.

2.2.4.2 A digital gate-based quantum reservoir computer

The research on QRC proceeds along two major model frameworks: (i) Analog frameworks
that simulate the Hamiltonian dynamics of an interacting boson or fermion many-particle
quantum system. Examples are spin ensembles [105, 106] or arrays of Rydberg atoms [155].
(ii) Digital gate-based frameworks, where the quantum reservoir comprises a circuit of uni-
versal quantum gates implemented on a NISQ device. Such an implementation will be in-
troduced below. Applications of quantum reservoir computers are still very limited but have
shown good performance for the one-step prediction of nonlinear dynamics of the Mackey-
Glass time-delay differential equation [105] as well as of the nonlinear autoregressive moving-
average time series [156, 157].

Philipp Pfeffer developed the following QRC algorithms, labeled H1 and H2, at the Insti-
tute of Thermo- and Fluid Dynamics at TU Ilmenau. They were published in two joint
works [108, 158] and make use of a digital gate-based approach, sketched in Figure 2.5. The
following paragraphs will introduce the two quantum reservoir architectures employed in
Section 3.3. In both methodologies, the traditional input x is incorporated into the quan-
tum circuit through an amplitude encoding process. For this purpose, the input is appro-
priately adjusted, for example, within the range of x ∈ [−π, π]. Ultimately, the individ-
ual elements of x are translated into rotational angles for the application of RY gates (see
again Fig. 2.4b)). One iteration of the circuit then comprises the unitary evolution of the
initial quantum state |ψ⟩ and a measurement of the final state |ψ̃⟩ w.r.t. to the Pauli Z-
basis. This process has to be repeated several times in order to obtain a probability distri-
bution p = (p1, p2, ..., p2Nqubit )

T of all 2Nqubit basis states. The dynamics of both algorithms
are motivated by the classical ESN dynamics in (2.42). H1 makes use of the following hybrid
classical-quantum approach

rH1(n+ 1) = (1− γr)rH1(n) + γrp(n+ 1) (2.50)
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Figure 2.5: Digital gate-based quantum reservoir computer. The quantum reservoir is
implemented as a sequence of unitary quantum gates. a) Algorithm H1: the ini-
tial quantum state at every iteration is given by |0⟩⊗Nqubit . Further, the input
x is encoded as an angle of rotation into the rotational gate RY . Additional ro-
tational gates take in random variables ξ and a subset of previously measured
probabilities pi. The final quantum state of the system |ψ̃⟩ is then measured sev-
eral times to obtain a distribution p of all basis states. b) Algorithm H2: Con-
trary to H1, the quantum state |ψ⟩ is initialized with the previously measured
probabilities Pi,|1⟩ to find the ith qubit in |1⟩. Moreover, the leaking rate γr is
also passed to the quantum gates. Again, the input and random parameters
ξ are introduced to the reservoir. Note that the quantum circuits are far more
complex than these simplified schemes. More details follow in 3.3.
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with

pj(n+ 1) = |⟨ej |U (ξ,x(n), rH1(n)) |e1⟩|2, (2.51)

where ej is the jth basis vector of the Nqubit Hilbert space C⊗Nqubit . Moreover, e1 = |0⟩⊗Nqubit

is the basis vector for which all qubits are in the state |0⟩. The quantum circuit U is param-
eterized by the random variables ξ ∼ U [0, 4π], the current input x and the previous reservoir
state rH1(n) ∈ [0, 1]7. γr ∈ (0, 1] is again the leaking rate parameter. For execution on a real
quantum device, it is preferred to use only a subset of rH1, instead of the full 2Nqubit val-
ues, as it speeds up the computation of the whole quantum circuit. Nevertheless, the subset
should be large enough to act as nonlinear memory in the reservoir dynamics. The quantum
circuit consists of rotational gates that incorporate the mentioned parameters, along with
interspersed CNOT layers. Note the similarlities between expressions (2.42) and (2.50). In
this way, H1 employs a linear memory that requires a classical device for storage of rH1(n).
Further, the nonlinear quantum memory is realized by the embedding of rH1 into RY .

The H2 algorithm sets itself apart from this approach by conducting the entire execution
directly on the quantum device. The reservoir is not parameterized by the reservoir state
but is projected on an approximate reservoir vector

| ˆrH2(n)⟩ =
Nqubit⊗
i=1

[√
1− Pi,|1⟩(n) |0⟩+

√
Pi,|1⟩(n) |1⟩

]
, (2.52)

that incorporates the probability Pi,|1⟩ of measuring the ith qubit in the basis state |1⟩. Then,
the dynamics become

rH2(n+ 1) = p(n+ 1), (2.53)

with

pj(n+ 1) = |⟨ej |U (γrξ, γrx(n)) |r̂H2⟩|2 and U(0, 0) = I
2
Nqubit . (2.54)

Here I
2
Nqubit ∈ R2

Nqubit×2
Nqubit

denotes the identity matrix. By integrating the leakage rate
γr into the unitary operator U , the external memory, as seen in H1, is effectively transferred
within the reservoir. Moreover, the perfect memory for γr = 0 is retained.

Finally, as in the classical case, a trained output matrix yields the reservoir outputs

y(n) =W out
∗ rH1/H2(n). (2.55)

The optimal weights W out
∗ are again computed via the minimization of (2.44). Note that

the training procedure (2.45) is done on a classical device. Hence both H1 and H2 are hy-
brid classical-quantum RC approaches. Finally, a comparison between ESN and the just in-
troduced QRC formulation is in order. Table 2.1 lists the ESN hyperparameters and their
quantum analogs. While the leaking rate and regression parameter are reminiscences of the
classical reservoir, the reservoir dimension of the quantum reservoir becomes exponentially
dependent on the number of qubits, i.e., Nr = 2Nqubit . Moreover, it should be noted that
the spectral radius, as introduced for the ESN, drops out of the quantum algorithm, as the
largest absolute eigenvalue of the unitary U is unity. Finally, as mentioned above, the clas-
sical squashing activation function is substituted by the sine and cosine entries of the rota-
tional gate RY .

7In practice the state is multiplied by π, s.t., rH1 ∈ [0, π].
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Quantity Classical RC (ESN) Quantum RC

Reservoir dimension Nr Nr = 2Nqubit

Leaking rate γr γr
Regression parameter λr λr
Spectral radius of reservoir ϱr 1

Reservoir state at time n r(n) ∈ RNr rH1/H2(n) ∈ CNr

Reservoir model nonlinearity tanh(·) RY (·)

Table 2.1: Comparison of classical ESN and the gate-based Quantum Reservoir Computing
models. The number of qubits is Nqubit. Since unitary transformations are norm-
preserving, the quantum case’s spectral radius ϱr always equals 1. Note that the
ESN possesses two additional hyperparameters: reservoir density Dr and input
scaling σr, which have no direct QRC counterpart.

2.3 Reduced order modeling of thermal convection flows

Traditional kernel methods have the advantage that the transformation to the high-dimensional
feature space can be avoided through the ”kernel trick” [159]. However, ESNs do not offer
such an easy way out. Instead, a reservoir, i.e., its weight matrices W in, W r, W out have to
be explicitly computed and stored in computer memory. Furthermore, as mentioned above,
to obtain a ”reservoir of rich dynamics” [80], the reservoir size should be chosen s.t. Nr ≫
Nin. Common choices pick reservoir dimensions at least an order of magnitude larger than
the input dimension [124]. However, this becomes a challenge when the input signal pos-
sesses many degrees of freedom. Take the two-dimensional RBC flow considered in Section
4.1. It has a grid size of Nx ×Nz = 256× 64. That is approximately 1.6 · 104 float values per
physical field and snapshot. This would require a reservoir of at least Nr ∼ 105 neurons to
satisfy the aforementioned condition. This substantially decelerates the dynamics and train-
ing process of the ESN, resulting in memory-intensive and time-consuming training sessions
and exhaustive searches for hyperparameters. Common literature values of Nr range from
tens to thousands of neurons [129].

The main part of this thesis will be concerned with the use of ESNs to infer information
about turbulent thermal convection. Hence, numerical data on turbulent convection must
be provided to the network. However, turbulent flows cover a wide range of spatial scales.
These scales are encoded in the instantaneous flow fields and manifest, e.g., as eddies or
thermal plumes. However, it has been observed that spatial features tend to organize them-
selves into coherent structures that undergo characteristic temporal variations [160, 161].
Moreover, a sufficiently large database of flow snapshots can be used to extract said spatial
features and save them into a numerical library. Furthermore, the individual elements of this
library, referred to as modes, can be sorted according to their contributions, e.g., to the tur-
bulent kinetic energy or thermal variance of the physical fields. Complexity and data can
be heavily reduced by merely considering the most important modes, i.e., the largest spatial
scales. Such modeling techniques that confine many degrees of freedom to a low-dimensional
manifold are termed Reduced Order Models (ROMs). Such models make a suitable pre-
processing step for the present Reservoir Computing approach to turbulent convection flows.
By limiting the reservoir input to the most crucial flow features, one can leverage the tem-
poral kernel of the reservoir while keeping computational and memory costs at a low level.
At first glance, ignoring the small-scale sounds counter-intuitive to the motivation in Chap-
ter 1, which introduced the idea of using an ML model to provide the sub-grid scale features
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Chapter 2 RC: Methodol. & appl. to turbulent thermal convection

Figure 2.6: Reduced Order Model schemes for a two-dimensional fluid flow. (a) A Proper
Orthogonal Decomposition compresses the input snapshot of a physical field to a
set of spatial modes Φi(x, z) and their temporal coefficients ai(t). (b) An Au-
toencoder neural network decomposes the data into the latent representation
ai(t). Moreover, the Encoder and Decoder network’s trained weights wE , wD are
trained. While the POD decomposes the physical field into a linear combination
of modes and coefficients, the AE can be seen as a nonlinear extension of the lin-
ear POD approach.
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2.3 Reduced order modeling of thermal convection flows

to a large-scale model. However, it should be noted that this thesis will only consider direct
numerical simulations that resolve all turbulent scales down to the smallest eddy. Further,
conventional cloud-resolving models used in SP do not fully resolve all scales of turbulence
themselves, as they can be compared to large eddy simulations. Therefore, concentrating
only on the most prominent spatial features of the below-presented convection flows is a le-
gitimate pre-processing strategy.

This section introduces two standard ROMs that will be employed in chapters 3, 4 and 5:
(i) the Proper Orthogonal Decomposition (POD) is a well-known method in fluid mechan-
ics that decomposes snapshots of physical fields into data-driven optimal spatial modes and
their temporal coefficients. (ii) The convolutional Autoencoder (AE) is a feed-forward neural
network with a bottleneck structure. The process involves taking a DNS snapshot as input,
compressing it into a lower-dimensional representation, and then expanding it back to its
original size. Through training the network to reconstruct the original snapshot, it is forced
to capture the fundamental spatial characteristics of the flow in the low-dimensional repre-
sentation. In the following two subsections, both methods will be presented. Further, their
similarities and differences will be discussed.

2.3.1 Proper Orthogonal Decomposition

The idea of decomposing a dataset of flow measurements into a collection of modes dates
back to Lumely in 1967 [162]. He brought forth the notion of Principal Component Analysis
(PCA) [163, 164] to the realm of fluid dynamics, establishing it as a conventional technique
for reducing dimensionality. In this field, it has since come to be recognized as Proper Or-
thogonal Decomposition. Similar to the PCA in statistics, it has become a standard tool for
research in fluid dynamics [165]. As mentioned above, the POD decomposes a series of snap-
shots into a set of orthogonal spatial modes and their corresponding temporal coefficients.
While the spatial modes can be interpreted as dominant spatial patterns of the underlying
flow, the temporal coefficients describe their temporal evolution. Applications range from
data reduction in Rayleigh-Bénard [166, 167] and moist convection [168] to wall-bounded
shear flows [169] and flows past a cylinder [113, 169]. Moreover, it is commonly used for flow
control [170, 171].

Figure 2.6a) illustrates the concept of the POD for a two-dimensional flow with horizontal
and vertical velocity fields ux(x, z, t) and uz(x, z, t): a collection of snapshots is decomposed
into a set of spatially dependent modes Φi = (Φux

i (x, z), Φuz
i (x, z))T and their temporal

coefficients ai(t). This decomposition can be written as a Galerkin projection formulation

ux(x, z, t) ≈
∞∑
i=1

ai(t)Φ
ux
i (x, z), (2.56)

uz(x, z, t) ≈
∞∑
i=1

ai(t)Φ
uz
i (x, z), (2.57)

i.e., the fluid flow is decomposed into a linear combination of dominant spatial patterns of
each field and their shared temporal modulation. The spatial modes are orthonormal func-
tions, i.e.,

(ΦiΦj)L2 = δij , (2.58)

where δij denotes the Kronecker delta. The time coefficients are obtained by projecting the
spatial modes on the function u = (ux, uz)

T :

ak = (Φk,u)L2 , (2.59)
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where (·, ·)L2 is the inner product of the square integrable function space L2 (Ω,Cn). For two
functions f(x, z),g(x, z) ∈ L2 (Ω, Cn) it is defined as

(f ,g)L2 =
n∑

i=1

∫
Ω

fi(x, z)g
∗
i (x, z)dxdz, (2.60)

where fi, gi (i = 1, 2, .., n) are the components of f ,g and Ω denotes the two-dimensional
spatial domain. Further, the asterisk denotes the complex conjugate.

The POD aims to find a set of modes that captures the maximal kinetic energy of the origi-
nal flow. Specifically, it minimizes the loss functional

L(Φi) =

〈∥∥∥∥∥u−
∞∑
i=1

(u,Φi)L2Φi

∥∥∥∥∥
2

L2

〉
t

subject to ∥Φi∥2L2 = 1, (2.61)

where ⟨·⟩t denotes the time average and || · ||L2 is the norm induced by (·, ·)L2 . It can be
shown that this leads to an eigenvalue problem of the time average of the two-point correla-
tion tensor of u [172]. For further details, the work of Volkwein [173] is recommended.

When dealing with discretized data, the minimization problem (2.61) translates to the least-
squares loss [172]

L(ϕ) =
∥∥X − ϕϕTX∥∥

F
, (2.62)

where ∥·∥F denotes the Frobenius norm. When the spatial grid is of size Nx × Nz and Nt

snapshots of the flow have been collected, the two fields can be stored in a data matrix X ∈
R2NxNz×Nt with NxNz = Nx×Nz. One row of this snapshot matrix then captures the spatial
information of the underlying physical fields at a fixed instance of time. One column of X,
on the other hand, describes the temporal variation of one of the physical fields at a fixed
point in space. The aim of the POD is then to extract the most prominent correlations of
this data matrix. Moreover , the ith spatial mode Φi is given by the ith column of the spatial
mode matrix ϕ ∈ R2NxNz×2NxNz . Note that if ϕ is known, the temporal coefficient matrix
A ∈ R2NxNz×Nt is computed by projecting the flow data onto the mode basis

A = ϕTX. (2.63)

By differentiating (2.62) the minimization becomes an eigenvalue problem [173]

XXTϕ = ϕΣ (2.64)

where XXT is the covariance matrix of X. Its eigenvalues8 si are the elements of the diago-
nal matrix Σ ∈ R2NxNz×2NxNz . Note that the itheigenvalue represents the individual contri-
bution of the ith mode to the kinetic energy of the flow. However, in practice, the grid size
of a sampled flow exceeds its number of snapshots, i.e., Nx × Nz ≫ Nt. In this case, XXT

can become an extensive matrix. The complexity of the task can be reduced by using the
method of snapshots introduced by Sirovich and Park [174, 175]. This equivalent method
converts the original eigenvalue problem (2.64) into one for a Nt ×Nt covariance matrix

XTXA = AΣ, (2.65)

8Note that these eigenvalues are the square of the singular values of X.
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2.3 Reduced order modeling of thermal convection flows

where now A ∈ RNt×Nt and Σ ∈ N≈ × N≈. Therefore the POD computation boils down to
the following steps9: (i) Collect flow data into a data matrix X, (ii) Compute the snapshot
covariance matrix XTX, (iii) Compute its eigenvectors, i.e., the temporal coefficients A, (iv)
Compute the spatial modes Φ by projecting X onto A. (v) Truncate the number of spatial
modes and time coefficients to a subset NPOD < Nt for data reduction. The resulting lin-
ear combination of NPOD POD modes produces an approximation to the initial flow fields
ux and uz that is optimal in the mean square sense. The POD can also be applied to other
physical fields than the velocity. Convection flows, which are the topic of this thesis, deal
with at least one more additional scalar field, the buoyancy. For these problems, the POD
will be applied not only to the flow field but, e.g., to the vector (ux(x, z, t), uz(x, z, t), b(x, z, t))

T .
Therefore, the eigenvalues si of the covariance matrix denote the amount of kinetic energy
and buoyancy variance captured by the corresponding spatial modes.

The POD is a useful tool that can heavily reduce the degrees of freedom, as will be shown
in Section 3.3.2, 4.1 and 4.2 for two-dimensional convection. However, the POD is expected
to run into problems when the flow exhibits a broader range of scales. This will naturally
occur when the flow becomes highly turbulent, or one considers a full three-dimensional
flow, where more complex flow structures can occur. In these cases, the POD will have to,
in order to capture enough variance of the flow, consider an increased number of modes
NPOD. This is a drawback of this linear method. By allowing a nonlinear representation of
the physical fields, one might get away with fewer modes and time coefficients. This sets the
stage for the next section.

2.3.2 Autoencoder networks

Autoencoder networks are feed-forward neural networks that, similar to the POD, aim to
compress the amount of input data. They possess a bottleneck structure in the middle, which
involves compression and decompression of the processed input data. A sketch can be seen
in Figure 2.6b). AEs consist of two parts: an Encoder and a Decoder network. The former
receives an input snapshot, e.g., x = (ux(x, z), uz(x, z), b(x, z))

T and subsequently reduces
the number of spatial points via e.g. a pooling operation, where only the maximum data val-
ues of a local sliding window are kept. This process is referred to as Max-Pooling10. In this
process of spatial compression, the network learns to extract the main characteristics of the
three fields. In the end, the Encoder outputs a low-dimensional latent representation

fwE(x) = a ∈ RNAE , (2.66)

where fwE denotes the Encoder network and wE its trainable weights. Here, a can be seen
as a nonlinear version of the POD time coefficients11, where the latent dimension NAE takes
the place of the number of retained POD modes NPOD. Similar to the POD reconstruction,
the Decoder network gwD(·) receives a as input and learns to reverse the encoding process.

gwD(a) = xAE. (2.67)

Due to the bottleneck structure of the combined network, the reconstruction process is lossy,
i.e., the Decoder outputs will not match the Encoder inputs exactly. This is similar to the

9It should be noted that in this way, the first spatial mode will always be the time-mean field ⟨u(x, z)⟩t, while
its time coefficient a1 will be a constant. This is why it is convenient to subtract the time mean value in a
zeroth-step before performing the algorithm.

10Another possibility is to retain only the average of this window. This is referred to as Average-Pooling.
11Both POD and AE latent representations are denoted by the same symbols a. This is to emphasize that
the AE is merely a nonlinear extension of the linear POD approach. As POD and AE do not appear in the
same section after this chapter, there is no risk of confusion.
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Chapter 2 RC: Methodol. & appl. to turbulent thermal convection

reconstruction from a subset of POD modes that only capture a certain variance of the in-
put snapshot. Therefore the AE can be seen as an extension of the linear POD decomposi-
tion in (2.56, 2.57) to nonlinear functions (2.66, 2.67).

Finally, the Encoder and Decoder networks are trained in a combined process to minimize
the mean-square reconstruction loss

LwE ,wD ∼ ∥x− xAE∥22 = ∥x− gwD(fwE(x))∥
2
2 . (2.68)

As is outlined in 1.2, the weights of the feed-forward neural network are trained via stochas-
tic gradient descent in an iterative process over several epochs and data samples, contrary to
the one-shot POD algorithm. Note that linear functions fwE and gwD consisting of a single
fully connected layer each would result in (2.62). However, as Encoder and Decoder use non-
linear activation functions σ(·), they can approximate a vast amount of functions that may
allow for a higher data compression NAE < NPOD, as compared to their linear counterpart.
This makes the AE network a promising alternative to the POD approach in fluid dynamics.

A fully connected deep neural network, as shown in Fig. 1.5c), has the flaw that the num-
ber of parameters increases rapidly with the number of input features. The latter, however,
relies on the spatial resolution of the direct numerical simulation, which must be sufficiently
fine to capture phenomena such as turbulent eddies. For this reason, the majority of Au-
toencoders utilize convolutional layers to capture the primary spatial characteristics of their
input. In a convolutional layer, a trainable filter or kernel is convolved with the input snap-
shot. This is opposed to assigning individual weights to each input data point for a fully
connected layer. Take a two-dimensional input array X ∈ RNz×Nx , e.g., a snapshot of the
vertical velocity field, with a corresponding convolutional kernel κ ∈ Rnz×nx , where nx ≪ Nx

and nz ≪ Nz. The output of the convolutional layer at some final image position (i, j) can
then be written as [53]

(X ∗ κ)(i, j) =
⌊nz⌋∑

p=−⌊nz⌋

⌊nx⌋∑
o=−⌊nx⌋

X(i− p, j − o)κ(p, o), (2.69)

where (X ∗ κ) denotes the convolution of X with κ. For coordinates (i, j) located close to
the edges of X, where the kernel partially extends beyond the image, it’s common to ap-
ply padding with constant values. This ensures that the convolution operation described
above remains well-defined. This is similar to the ghost cell concept from computational
fluid dynamics. Eq. (2.69) implies that the output of the convolution operation only in-
corporates local information of X. This locality principle has the advantage that the AE
learns not the position of a feature but rather the feature itself. Take an updraft in a flow
field, for example. This updraft’s position varies with time. Therefore it is meaningful not
to learn where updrafts are located but how to identify them no matter their spatial posi-
tion. This principle of translation invariance makes convolutional layers suited for pattern
identification. Furthermore, as the receptive field of the kernel is chosen to be much smaller
than the dimensions of X, they result in a much smaller number of parameters w than their
fully-connected counterparts. This results in a speed-up of the AE’s training process and
a reduced amount of memory required to run the neural network. Note that (2.69) can be
generalized to input data with several physical fields, by adding a channel dimension to X.
Furthermore, the kernel usually maps the output to either an increased number of channels,
as is done in the Encoder part, or a decreased number of channels, as is done in the Decoder
part. This way, the spatial information is compressed into artificial physical field dimensions
during encoding, while the opposite is done during the decoding phase.
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2.4 Combined ROM-RC model for thermal convection flows

While the POD is an established tool for reduced order modeling of fluid flows, Autoencoder
networks have only recently been explored in the fluid dynamics community. Such works in-
clude ROMs of the viscous Burger flow as well as the inviscid shallow water equations [176].
Other works combine the AE with a long short-term memory network for temporal predic-
tion tasks [177], similar to the approach of this thesis with a Reservoir Computing model.
More sophisticated AE make use of physical laws that they embed in their architecture.
Such physics-informed networks have recently been applied to reduce the degrees of freedom
of three-dimensional homogeneous isotropic turbulence in ref. [72]. Finally, Variational Au-
toencoders, a form of generative networks where the latent space is sampled from a learned
distribution, have shown good performance in terms of sub-grid scale parameterization with
the Community Atmosphere Model in ref. [178]. Similar approaches have been explored for
the generation of small-scale storms by Mooers et al. in ref. [179].

2.4 Combined ROM-RC model for thermal convection flows

Now that the concepts of all machine learning methods have been introduced, their com-
bined application in a ROM-RC model to direct numerical simulation data will be explained
in the next section. Additionally, the turbulent flow inferred by this model must be assessed
with regard to its predictive performance and its alignment with physical accuracy. This will
be done in 2.4.2.

2.4.1 Convection data pipeline: DNS to the predicted turbulent flow

Figure 2.7 shows the pipeline of the thermal convection data for applying the ROM-RC
model. The process can be summarized in six steps: (i) Data generation by means of direct
numerical simulation of thermal convection, (ii) DNS data post-processing (time sampling,
grid interpolation), (iii) Data compression via a ROM, either POD or Encoder network, (iv)
Establishing a cross-validation dataset, which involves dividing the data into training, vali-
dation, and testing subsets, (v) Latent space prediction via RC model, (vi) Decompression
via inverse POD or Decoder network. After the final step, the predicted convection flow can
be analyzed and compared to the validation and testing snapshots.

In the first step, the convection data is generated via direct numerical simulations, i.e., the
solution of the underlying nonlinear equations of motions. For example, the two-dimensional
RBC data in Chapter 4 stems from solving the coupled Boussinesq system (2.17 - 2.19) for
a parameter set of Γ, Ra and Pr. For these cases, the spectral element code Nek5000 [180]
was used. The spectral element method [181] decomposes the problem domain into Ne non-
overlapping elements. Further, inside each element, the solution fields are given by a local
expansion into orthogonal polynomials, e.g., Legendre polynomials, of the order N evalu-
ated at the Gauss-Lobatto-Legendre (GLL) quadrature nodes. This spectral representation
and the non-uniform GLL nodes result in an approximation error that decreases exponen-
tially with the polynomial degree [182]. The resulting physical fields are then, in the second
step, interpolated from the original unstructured element mesh to a uniform grid with reso-
lution Nx × Nz. Moreover, the sampling interval ∆t of the DNS snapshots is kept constant.
In this way, Nt snapshots are gathered. The simulations presented in Chapter 5 differ in the
numerical methods used for solving the underlying dynamics. For these simulations, the fi-
nite differences code tlab [183] was employed. The post-processing, however, is the same as
mentioned above. In the third step, the DNS data is reduced via POD (or AE network) to a
set of NPOD ≪ Nx × Nz (or NAE ≪ Nx × Nz) temporal modes with Nt snapshots. Out of
these, a subset of length Ntrain will be used for training the reservoir later on. Two further,
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Figure 2.7: Convection data pipeline using the example of two-dimensional dry con-
vection: I. Snapshots of ux, uz and b are generated by means of direct numer-
ical simulations. II. The data is post-processed, e.g., interpolated to a uniform
grid of size Nx × Nz. III. The post-processed data is compressed to a low-
dimensional space a by means of a POD or an Encoder network. Hence, the con-
vection dynamics are translated to dynamics of the latent space a(t). IV. The
low-dimensional time series data is split into a training, validation, and testing
dataset. The resulting datasets can be used to cross-validate the ML model’s
performance. V. A RC model is trained with the training data of a(t). It is then
used to infer subsequent time instance a(t+∆t). VI. The inferred latent space is
decompressed using the inverse POD or a Decoder network. In this way, the ini-
tial snapshot of ux, uz, and b are advanced in time by means of a Reduced Order
Model and a Reservoir Computing model.
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non-overlapping subsets of length Nval and Ntest will be used for cross-validating the final
ROM-RC model12. After that, the RC model is trained with the training dataset. Then, it
can be used for the task of predicting the latent space variables a at further time steps. The
inferred variables can then be expanded to the physical space again, s.t., the corresponding
inferred velocities, and buoyancy can be analyzed. In this context, the validation dataset is
utilized to identify the optimal hyperparameters for the ESN, which are then tested on the
testing dataset.

2.4.2 Assessing the accuracy of the inferred flow

Here, the methodologies used to measure the predictive algorithm’s accuracy and overall
performance are explored, permitting the user to optimize the ESN’s hyperparameters. As
mentioned above, it is common to prepare, besides a training dataset, a validation dataset
with which the model output can be reconciled. Several metrics qualify for the aforemen-
tioned purpose. The dynamic core in step V. of Fig. 2.7 generates a multivariate time series
of either POD time coefficients or AE latent space variables. Therefore, a direct comparison
of inferred and ground truth dynamics is a natural choice for assessing the accuracy of the
ML method. For this, the mean squared error between reservoir output y(n) and the ground
truth signal a(n) is suitable

EMSE(a,y) =
1

Nval

Nval∑
n=1

∥a(n)− y(n)∥2. (2.70)

Alternatively, using the normalized root-mean-squared error (NRMSE) is common, defined
as13

ENRMSE(a,y) =

√
EMSE(a,y)

max(a)−min(a)
. (2.71)

As the NRMSE allows for a better comparison between datasets, it will be employed in
parts of this thesis. However, using the MSE and NRMSE in the context of temporal pre-
diction tasks has a major drawback. As will be elaborated upon in the upcoming chapters,
the dynamics inferred by an ESN using the closed-loop mode will rapidly diverge from the
actual ground truth signal. Characteristic temporal frequencies may, however, be retained.
Consequently, this will lead to a higher NRMSE value, as the NRMSE quantifies merely
the proximity between the two signals a and y. Moreover, it has been observed that a con-
stant ESN output signal y = const often results in a lower absolute error value than pre-
dictions which reproduce physical properties [113]. Similar results have been observed for
the NRMSE measure in the course of the author’s doctoral studies. A simple example is
two sinusoidal time series with a constant non-zero phase shift. If the phase shift is suffi-
ciently large, the mean square deviation between both signals might become larger than a
constant signal without any dynamics. This can lead to misleading conclusions, as a mini-
mum in ENRMSE need not correspond to the best ESN prediction. It is, therefore, important
to evaluate the ESN performance also in regard to the statistical and physical properties of
the reconstructed flow.

One such measure can be derived on the basis of the super-parameterization scheme, pre-
sented in 1.1.3. There, it was mentioned that the mean vertical properties of flow and ther-
modynamic scalars are particularly interesting for super-parameterizations, as they are the

12In case of the Autoencoder training procedure, a similar split is done. More details in 5.1.
13Other definitions use the mean or standard deviation of the ground truth signal in the denominator.
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link over which the cloud-resolving model and GCM share information. Hence, it is impor-
tant for future ROM-RC models to replicate these essential properties of the underlying
ground truth flow. Therefore, it is logical to define an error measure via the vertical profiles,
i.e., the lateral-time averages ⟨·(z)⟩x,t (for the two-dimensional case) of ground truth and the
reconstructed ESN predictions. For this, the normalized average relative error (NARE) [184]
ENARE (·) can be introduced. For the buoyancy flux uzb, it is defined as

ENARE (⟨uzb⟩x,t) =
1

Cmax

1∫
0

∣∣∣⟨uzb(z)⟩ESNx,t − ⟨uzb(z)⟩GT
x,t

∣∣∣dz , (2.72)

with the constant

Cmax = 2 max
z∈[0,1]

(∣∣⟨uzb(z)⟩GT
x,t

∣∣) . (2.73)

Here, the superscripts indicate whether the profile stems from the reconstructed ESN pre-
dictions or the ground truth (POD or AE). Moreover, the NARE for the buoyancy flux is
particularly interesting, as it incorporates the error of two fields. Finally, in order to mea-
sure whether several profiles are matched, it is convenient to compute the arithmetic average
value of their NARE values. For example, the error of the root mean square profiles of verti-
cal and horizontal velocities is given by the average NARE

ENARE =
1

2

(
ENARE

(
⟨u2x⟩

1/2
x,t

)
+ ENARE

(
⟨u2z⟩

1/2
x,t

))
. (2.74)

Now that all methods have been introduced, the next chapter will present results for an ESN
applied to the dynamics of a low-order model of thermal convection. It will introduce the
reader to common procedures, like hyperparameter tuning, and familiarize them with the
network’s capabilities. Furthermore, the low-dimensional system will be used to test the
QRC algorithm introduced above and compare its performance with the original ESN.
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Chapter 3

Reservoir Computing of a low-order model
of convection

A low-order model (LOM) describes a system of ordinary differential equations with few
degrees of freedom derived from the basic equations of atmospheric motion [185]. The first
LOM originated during the 1960s [186, 187] when computational resources were scarce and
mostly unavailable to meteorologists [185]. By using LOMs, researchers were able to repro-
duce qualitative aspects of the general circulation while keeping the computational cost low.
Even after the exponential increase in computational power and the availability of compu-
tational resources in the subsequent decades, the interest in LOMs prevailed. Their sim-
plicity allowed researchers to focus on understanding the basic mechanisms of atmospheric
motion and turbulence. To this day, many LOMs have been proposed. Amongst others,
this includes the turbulent thermal convection models by Saltzman [188], Lorenz1 [187],
Howard and Krishnamurti [189], Grossmann and Lohse [190], Gluhovsky and Tong [191]
and Gluhovsky et al. [192]. Further examples comprise multi-scale atmospheric flow as in-
troduced by Lorenz2 [193], shell models of homogeneous isotropic turbulence by Eggers and
Grossmann [194] and Grossmann and Lohse [195], as well as a turbulent shear flow LOM by
Moehlis et al. [196]. Their simplistic nature and few degrees of freedom have made LOMs an
ideal testing bed for Echo State Networks for the prediction of nonlinear dynamics. Appli-
cations to the Lorenz 63 dynamics include the correct reproduction of its chaotic attractor
and non-negative Lyapunov exponents [87, 197], as well as the reconstruction of two miss-
ing modes by a continuously available measurement of the third [110]. Moreover, attempts
of transfer learning, a generic term for the generalization capability of a neural network,
between two Lorenz systems with different Rayleigh numbers have been made in [198]. In
[88], Pershin et al. show that an ESN can correctly infer the turbulent-to-laminar transi-
tions in Mohelis et al.’s shear model. Furthermore, LOMs are often used as proof of prin-
ciple for new RC architectures [86, 115, 198, 199] or new theoretical approaches towards a
consistent definition of the echo state property [128]. In this spirit, this chapter will apply
an Echo State Network to a LOM with eight degrees of freedom. The results of this chapter
were published in two works [108] and [158].

3.1 An eighth-order Lorenz model of thermal convection

One of the first LOMs was developed by Edward N. Lorenz in 1963 [187], therefore often
referred to as the Lorenz 63 model. It describes two-dimensional incompressible thermal
convection between two impermeable parallel plates with Dirichlet boundary conditions for
the temperature and free-slip boundaries for the velocity field. For a detailed derivation,
the reader is referred to Appendix A.1.1. The starting point for the derivation is the two-
dimensional form of the Boussinesq system (2.8 - 2.9). The LOM is obtained by expanding

1This LOM is commonly known as Lorenz 63 model.
2This LOM is commonly known as Lorenz 96 model.
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the temperature deviation from the diffusive profile θ(x, z, t) and stream function ζ(x, z, t)
into a finite series of trigonometric Fourier modes and keeping only the quadratic nonlin-
earities. By restricting the expansions to only a few modes, a system of coupled ordinary
differential equations is obtained. This chapter will consider four modes for the temperature
field and another four modes for the stream function. This results in an eighth-order Lorenz
model, as introduced in [192]. It reads

dA1

dt
= Pr (B1 −A1)− cA1,1A2A3 + cA1,2A3A4, (3.1)

dA2

dt
= −δPr

4
A2 −

3

2
√
2
A1A3, (3.2)

dA3

dt
= −cA3,1PrA3 − cA3,2PrB3 + cA3,3A1A2 + cA3,4A1A4, (3.3)

dA4

dt
= −9δPr

4
A4 −

1

2
√
2
A1A3, (3.4)

dB1

dt
= −B1 + rA1 −A1B2 +

1

2
A2B3 +

3

2
A4B3, (3.5)

dB2

dt
= −δB2 +A1B1, (3.6)

dB3

dt
= −cB3,1B3 −A2B3 +

√
2rA3 + 3A4B1 − 2

√
2A3B4, (3.7)

dB4

dt
= −4δB4 +

3
√
2

4
A3B3, (3.8)

where r is the Rayleigh number relative to its critical value Racrit for the onset of convec-
tion [200] and δ is a geometric parameter connected to the aspect ratio Γ of the convection
domain. cAij and cBij are constants. The full LOM with the definitions of these constants is
given in Appendix A.1.2. Note that the classical Lorenz 63 model3 is obtained when letting
A2 = A3 = A4 = 0 and B3 = B4 = 0. Furthermore, the system is defined by the parameter
space (Pr, r, δ).

Considering only these eight modes is a severe reduction of the complexity of the original
Boussinesq system. Nevertheless, in the manner of LOMs, this truncation retains several
major physical effects: (i) Conservation of energy

E =
1

2Ω

∫
Ω
((∇ζ)2 − 2RaPrθz)dΩ , (3.9)

with a kinetic and potential energy term. Here Ω again represents the convection domain.
Gluhovsky et al. [192] showed that eqs. (3.1-3.8) can be transformed into a system of cou-
pled gyrostats and hence conserve expression (3.9). (ii) Tilted convictions rolls, i.e., vertical
shear motion, can be observed in this extension. This property was also addressed by the
sixth-order Lorenz-like model of Howard and Krishnamurti [189], which introduced two ad-
ditional temperature modes and a new shear mode to the Lorenz 63 model. However, their
model did not conserve energy. (iii) Finally, the present model conserves vorticity [201] in
the convection domain

1

Ω

∫
Ω
ωdΩ , (3.10)

3The formulation that is found in literature is obtained by letting X = A1, Y = B1, Z = B2, σ = Pr and
b = δ.
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3.2 Reservoir Computing of an eighth-order Lorenz model

with vorticity ω = −∇2ζ. While property (i) also holds for the original model proposed by
Edward N. Lorenz, properties (ii) and (iii) are not captured. The lack of shearing motion
can be seen in Figure 3.1 (a,b,d,e), which compares the reconstructed velocity and temper-
ature fields for the present model with eight degrees of freedom and the third-order Lorenz
model. Figure 3.1 (c,f) shows the chaotic attractor spanned by A1, B1, B2 for both models.

To assess the ESN’s prediction horizon, it is convenient to express the time coordinate in a
meaningful time scale. The inverse of the maximum Lyapunov exponent Λ1 introduces such
a time scale for chaotic systems. The Lyapunov exponent Λ1 quantifies the deterministic
chaos of a dynamical system. After one Lyapunove time Λ−1

1 , two initially close trajectories
will have diverged by a factor of e−1. Thus, an effective predictor can be characterized by
its ability to produce outputs that closely match the actual trajectory for a duration of at
least one period, or potentially even longer. It can be estimated numerically by the method
of Sprott [202]. There, the trajectory of the dynamical system is perturbed in one of its di-
mensions while maintaining a copy of the original, unperturbed trajectory. The evolving
difference in the state is recorded. The perturbed trajectory is then renormalized to avoid
computational overflow. By averaging this process over many time instances and repeating
the procedure for all eight state dimensions, one ends up with an estimate for the leading
Lyapunov exponent. For the system (3.1-3.8), with the parameter set listed below, it was es-
timated as Λ1 = 0.825, which is a bit smaller than the value for the Lorenz 63 model [203].
In the next section, this model will be used to train an Echo State Network for the task of
prediction.

3.2 Reservoir Computing of an eighth-order Lorenz model

Equations (3.1 - 3.8) are solved for (Pr, r, δ) = (10, 28, 8/3) with a fourth-order Runge-Kutta
scheme for a period of 163 Lyapunov times Λ1

−1. Further information on the chosen Lorenz
parameters is detailed in Table 3.1. This setting corresponds to a common Lorenz 63 con-
figuration known to exhibit chaotic behavior. Here, δ = 8/3 corresponds to a convection
cell with aspect ratio Γ = 2

√
2, the critical wavelength at which the flow becomes linearly

unstable. Eqs. (3.1-3.8) are easily solved numerically. Hence, there is no computational ben-
efit in applying an ML model to avoid solving the systems equations of motion. Neverthe-
less, this aids in comprehending specific mechanisms of the machine learning model. This
encompasses aspects like the prediction horizon, dependencies on hyperparameters, and the
variation among ensembles of the RC model. Only upon recognizing these mechanisms can
conclusions be drawn regarding the performance of the ESN on a real turbulent flow, as dis-
cussed in Chapter 4.

An ESN is trained using a subset of the generated data in the time interval [0, ttrain] with
ttrain = 7.1Λ−1

1 . It is discretized by a sampling interval of ∆t = 1.65 · 10−4Λ1
−1. Specifically,

the ESN is employed in the closed-loop setting and is tasked to output y(n) = x(n+1) when
receiving x(n). The reservoir input comprises all eight Lorenz modes

x(n) = (A1(n), A2(n), A3(n), A4(n), B1(n), B2(n), B3(n), B4(n))
T . (3.11)

After training, the ESN runs autoregressively, using its output as the next input. A grid
search is utilized to make a statement about hyperparameter dependencies. Luckily, the low
degrees of freedom allow for an exhaustive grid search of ESN hyperparameters while main-
taining a low computation time. The following hyperparameters are chosen for the search:
leaking rate and spectral radius are important parameters for capturing the correct time
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Chapter 3 RC of a LOM of convection

Figure 3.1: Comparison of two Lorenz models with eight (a-c) and three modes (d-
f). The chaotic attractor spanned by (A1,B1,B2) is shown in (c,f). The re-
constructed temperature field θ(x, z) is shown in (a,b,d,e) at the two times
P1, P2 (red symbols in c,f). The reconstructed two-dimensional velocity field
(ux(x, z), uz(x, z)) is superimposed. The convection rolls in (a,b) are tilted, signi-
fying the shear motion captured by the additional modes in ζ(x, z, t). Table 3.1
lists the corresponding Lorenz parameters.

Pr r δ Ra Racrit Γ Λ1 Λ1tsolve Λ1∆tsolve
10 28 8/3 1.84 · 104 27π4/4 2

√
2 0.825 163 1.65 · 10−4

Table 3.1: Lorenz model simulation parameters (left) and resulting physical param-
eters (right). The model parameters are the Prandtl number Pr, the relative
Rayleigh number r, and the geometric parameter δ. The resulting parameters are
the Rayleigh number Ra, its critical value for the onset of convection Racrit, and
the aspect ratio of the convection domain Γ. Λ1 is the leading order Lyapunov ex-
ponent of the eighth-order system for the current parameter setting. Its inverse
corresponds to the time scale after which two initially close trajectories depart
from each other. Eqs. (3.1 - 3.8) were solved by means of a fourth-order Runge-
Kutta scheme. The time stepping was ∆tsolve. The solution trajectory comprises
a period of length tsolve.
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3.2 Reservoir Computing of an eighth-order Lorenz model

scales in the data. In contrast, the regression parameter stabilizes the delicate closed-loop
reservoir dynamics and, therefore, will be considered as well. Moreover, the size of the reser-
voir will be examined to determine if the model exhibits improvement as the number of neu-
rons increases. Finally, each hyperparameter setting was run for 100 different random initial-
ization of W r and W in. Further details on the grid search are listed in Table 3.2.

γr ϱr λr Nr

[0.1, 1.0, 0.1] [0.0, 1.5, 0.1] {0.05, 0.5, 5.0} {64, 128, 256, 512, 1024}

Reservoir realizations Λ1ttrain Λ1tval Λ1ttest
100 7.10 5.00 7.00

Table 3.2: Closed-loop ESN hyperparameter grid search procedure for the eight-mode
Lorenz system. The reservoir density was fixed at Dr = 0.2, i.e., only 20% of
intra-reservoir links are active. The input scaling was σr = 2. Square brackets
indicate the range of the searched hyperparameter: [start, end, stepsize]. Braces
indicate an array of values that were used. ttrain, tval, ttest are the length of the
training, validation, and testing interval, respectively. The total number of differ-
ent reservoir settings is 10×16×3×5 = 2400, while a total of 100×2400 = 2.4 ·105
reservoirs were run. The grid search run time was 18.6h using the turbESN li-
brary [123].

Figure 3.2a) shows an excerpt of the (ϱr, γr, Nr) landscape of the NRMSE between reservoir
predictions and ground truth Lorenz dynamics during the validation phase. From a practical
point of view, one is interested in the average reservoir performance, i.e., given a reservoir
setting Ξr, what performance can you expect independent of the random realization of W in,
W r. For this purpose, the median reservoir realization’s ENRMSE values are shown. Several
things can be observed: sufficiently low leaking rate and spectral radius values are desir-
able as NRMSE values reach a minimum. Further, the ESN performance increases as the
number of neurons increases. See the expanding low-error region at low (ϱr, γr) values. This
seems natural, as a higher number of neurons should increase the approximation capabili-
ties of a neural network. However, the minimum value, marked by the green star symbol,
is not found at the grid search’s maximum value Nr = 1024, but at 512. Nevertheless, the
high-error region for large (ϱr, γr) values is increasingly dissolved as the number of neurons
increases. Overall the loss-landscape shows the complex interdependencies of the ESN hy-
perparameters.

γr ϱr λr Nr Dr σr ENRMSE

0.10 0.30 5.00 512 0.20 2.00 0.272

Table 3.3: Best ESN hyperparameter settings Ξr after analysis of the normalised root-
mean-square error in a hyperaparameter grid search. This setting is also marked
by the green star symbol in the error landscape in Fig. 3.2a).

Based on this error landscape, the best hyperparameter set Ξr can be identified. It is listed
in Tab. 3.3 together with the corresponding NRMSE value. Fig. 3.2b) shows the outputs
of this reservoir setting during the validation phase together with the ground truth (blue).
The orange curves mark the outputs of all 100 reservoir realizations of W in,W r. It can be
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Chapter 3 RC of a LOM of convection

Figure 3.2: Results of the grid search described in Table 3.2. (a) Validation ENRMSE land-
scape for ESN hyperparameters (ϱr, γr, Nr) (λr = 5.0). Shown is the median
value of all reservoir realizations. (b) ESN outputs during the validation phase.
Shown are the ground truth (blue) and the with a) associated best ESN predic-
tion (green). The corresponding hyperparameter setting is marked by the green
star symbol in (a). Moreover, the outputs of the remaining 99 reservoir realiza-
tions (orange) with this hyperparameter configuration are shown as well.
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3.2 Reservoir Computing of an eighth-order Lorenz model

seen that all reservoirs reproduce the ground truth reasonably well up to 2 Lyapunov times.
After that, the predictions start to deviate from the reference curve. After 2Λ1

−1, a spread
among the ensemble members can be observed. As a reference, the best of these ESN predic-
tions is shown in green. It corresponds to the lowest NRMSE value among the realizations.
Here, it can be seen that even though the accumulated prediction error leads to deviations
from the real dynamics, the inferred dynamics reproduce the temporal features of the LOM.
This example demonstrates nicely how delicate and complex the ESN performance can be.
While the closed-loop scenario permits autonomous predictions for longer than several Lya-
punov times, it depends on the right combination of reservoir hyperparameters. Moreover,
the random realization of the input and recurrent weight matrices generally leads to differing
ESN output trajectories. However, choosing the average hyperparameter setting leads to the
same initial dynamics. Furthermore, the ESN should not be expected to reproduce the ex-
act same trajectory as the chaotic reference signal. Due to the chaoticity of the LOM, even
small deviations would inadvertently amplify. The same goes for the Echo State Network,
which is prone to prediction errors that accumulate over the autonomous prediction phase.
However, the inferred dynamics should be seen as a new realization of the learned chaotic
system. In this way, the reservoir can be understood as a generative network that produces
synthetic time series. This can checked by looking at Fig. 3.2c), which tests the chosen Ξr

during a testing phase. A quick deviation from the reference curve can be observed while the
characteristic features of each mode are reproduced. The ESN, therefore, seems to mimic
the ground truth dynamics. This hypothesis can be checked by analyzing further charac-
teristics of the inferred signal. For the present LOM, it is convenient to analyze the repro-
duction of the chaotic attractor spanned by A1, B1, B2 and the reconstructed physical fields.
In 3.3.2 and the next chapters, this analysis will also consider the statistical properties of
the reconstructed flow fields. Fig. 3.3 shows the three snapshots of the reconstructed physi-
cal fields during the testing phase. It can be observed that the ESN outputs also reproduce
the characteristic Lorenz attractor with its butterfly wing shape. Note that even though the
three time instances (blue, orange, and green markers) are not found at the same position,
the reconstructed temperature and velocity fields match reasonably well. The shearing fluid
motion is inferred to a good extent as well, while minor differences can be seen in 3.3(e,f).

Finally, this proof of concept is a good way to analyze the machinery of the ESN that pro-
duced the results in figures 3.2 and 3.3. In Fig. 3.4 the three reservoir weight matrices W r,
W in and W out

∗ are shown. The hyperparameter set was Ξr, as listed in table 3.3. As de-
scribed in 2.2.2.2, the components of W r are generated randomly. The entries describe the
connection strength between two or the same reservoir nodes. Further, the reservoir density
of Dr = 0.2 leads to most of these connections being zero (green color code). Note that the
magnitude of the entries depends on the chosen spectral radius ϱr. The input weights W in

are also generated randomly. However, it is a dense matrix that distributes the Lorenz input
information x on all Nr nodes. The magnitude of its entries is controlled by the input scal-
ing parameter σr. Finally, the entries of the output matrix W out

∗ are obtained by the linear
regression procedure (2.45) and link the reservoir state to the reservoir output, i.e., the in-
ferred Lorenz modes. Fig. 3.5 shows the dynamics of six reservoir state components ri dur-
ing training (t ≤ 0) and testing phase (t > 0). It can be observed that the reservoir state
exhibits similar dynamics to the underlying nonlinear Lorenz model. Note that these signals,
together with the output weights shown in Fig 3.4c) produce the reservoir outputs in Fig.
3.2b).
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Chapter 3 RC of a LOM of convection

Figure 3.3: Reconstructed temperature field T (x, z) of ground truth (a,c,e) and ESN
prediction (b,d,f) in the testing phase at three instances in time. See color frame
and markers in (g,h). The reconstructed velocity fields ux(x, z) and uz(x, z) are
superimposed. The reconstructed chaotic attractor is shown in (h) for the ESN
case. (g) shows the corresponding ground truth trajectory.
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3.2 Reservoir Computing of an eighth-order Lorenz model

Figure 3.4: Realization of the three reservoir matrices: the intra-reservoir matrix W r (a),
the input matrix W in (b) and trained output matrix W out

∗ . The corresponding
ESN setting is listed in Tab. 3.3. For visualization purposes, only the first 128
(out of Nr = 512) reservoir dimensions are shown.

Figure 3.5: Reservoir dynamics r(t) to the corresponding ESN setting listed in Tab. 3.3.
Shown are the dynamics during the training phase t ≤ 0 and the testing phase
t > 0 (highlighted in yellow). The time axis aligns with the testing outputs
shown in 3.2b).
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3.3 Hybrid quantum-classical Reservoir Computing of thermal
convection

Now that the ESN and its closed-loop mode of operation have been introduced on the ba-
sis of a LOM of thermal convection, this section will focus on a second Reservoir Comput-
ing implementation, namely its digital gate-based quantum computing implementation. As
introduced in 2.2.4, Quantum Reservoir Computing uses quantum systems to process, pri-
marily classical, information. In a nutshell, they are recurrent machine learning algorithms
for which the reservoir state is built by a highly entangled tensor product quantum state
that grows exponentially in dimension with the number of qubits. However, current NISQ
devices are prone to computational errors and, therefore, are not yet suited for computation-
ally heavy and complex tasks. For this reason, dynamical systems with few degrees of free-
dom, as the presented Lorenz model, are ideal testing beds for the application of a quantum
reservoir computer. Therefore, in 3.3.1, a QRC algorithm will be tested on the eight degrees
of freedom of the above-presented LOM. In 3.3.2, a truncated POD model with 16 modes
will be used to test an improved QRC model. Finally, their performance will be compared to
the classical ESN implementation.

3.3.1 Quantum Reservoir Computing of an eighth order Lorenz model

The quantum circuit of Algorithm H1 is set up using the Qiskit library [204]. Specifically,
the circuit will run the algorithm in the open-loop mode, where two of the eight Lorenz
modes, namely A4 and B3, are continuously provided to the network. See also Section 2.2.2.3
again for the open-loop procedure. Finally, the network is tasked with reconstructing all
eight modes. To this end, a seven qubit (Nqubit = 7) quantum circuit will be employed.
The circuit architecture is displayed in Fig. 3.6a). The corresponding reservoir dimension
is consequently Nr = 2Nqubit = 128. The circuit is kept shallow to decrease the decoher-
ence of the qubits and, hence, the error of the model. The inputs x(n) = (A4(n), B3(n))
are encoded as angles of the rotational gates RY . Further, to reduce the cost of loading the
data to the quantum register, only a subset of 14 reservoir dimensions rH1,i are fed back to
the reservoir. Hence, the nonlinear memory of this model comprises 14 nodes. However, all
128 dimensions are employed to compute the reservoir output via eq. (2.55). The reservoir
then evolves according to eq. (2.50). Remember that at each iteration, the circuit must be
run several times in order to compute the probabilities p of all 2Nqubit basis states. See again
eq. (2.51). Here, 217 measurements of the final quantum state were performed. This leads
to a computation time of about 3s per reservoir iteration n [205]. Moreover, no error correc-
tions were performed. The circuit was run on the quantum device ibm perth, which consists
of seven superconducting qubits. See Fig. 3.6b) for its qubit connections.

The Lorenz data from Tab. 3.1 is used to construct a training dataset of length Λ1ttrain =
7.84 and a validation set of length Λ1tval = 7.84. In this first proof of concept, a testing data
set is neglected to keep the computation times of the QRC model at a minimum. More-
over, no hyperparameter search was conducted for the present QRC model, and only one
reservoir realization is considered. Finally, the leaking rate was set to γr = 0.3. Fig. 3.7
shows the QRC model predictions for the case that two of the eight Lorenz modes are pro-
vided as teacher input at each reservoir iteration. To back up the results of the quantum
device, two Qiskit simulation runs were conducted. One is the ideal Qiskit simulator. The
other simulation was done on a noisy Qiskit simulator for which one can describe the prob-
abilities of measurement errors, here 0.05, gate errors, here 0.1, and qubit resets, here 0.03.
These values have been chosen such that they come close to those of an actual quantum de-
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3.3 Hybrid quantum-classical RC of thermal convection

Figure 3.6: Quantum Algorithm H1’s circuit architecture for the open-loop prediction sce-
nario (a). The number of qubits is Nqubit = 7. The two modes A4 and B3 are
continuously provided to the network as ground truth input. As described in
Section2.2.4.2, the reservoir state rH1 and inputs are encoded as angles of ro-
tational gates RY . A subset of only 14 out of the Nr = 128 states are fed back to
the circuit to keep the circuit shallow. Moreover, rH1 evolve according to (2.50).
(b) Corresponding connections of the seven qubits on the ibm perth quantum
computer. Note that entanglement operations, e.g., by CNOT gates, are only
possible for qubits connected by the colored bars.
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vice. It can be seen that the data from the noisy Qiskit simulator and the actual quantum
device partly deviate from the ground truth but are found to follow the overall trend rea-
sonably well. It can also be observed that the prediction of the actual device breaks down
after about 2.1Λ−1

1 due to the decoherence of the superconducting qubits. Nevertheless,

Figure 3.7: Inferred eight-order Lorenz modes of the open-loop QRC model run dur-
ing the part of the training (yellow background) and the validation phase. The
model was tasked to reconstruct the missing modes from the knowledge of only
A4 and B3 (not shown), which were continuously provided to the reservoir.
Shown are the QRC model runs performed on the actual quantum device (red),
the ideal/noisy Qiskit simulator (orange/green), and the corresponding ground
truth (blue). The leaking rate and reservoir size of all QRC were γr = 0.3 and
Nr = 128. The runtime of a single reservoir for training and validation was about
3.3h [205].

this proves the concept of a hybrid QRCM for a classical dynamical system on a NISQ de-
vice. Finally, the performance of a classical reservoir with the same size is compared to the
present QRC model. To this end, the optimal values of γr, ϱr, λr are identified by means of
a hyperparameter search of the open-loop ESN. The details on the grid search are listed in
Appendix A.2. Fig. 3.8 shows the ESN reconstructions of the Lorenz modes during the val-
idation phase. Again, the inputs were the Lorenz modes B3 and A4. It can be seen that the
classical RC model performs exceptionally well for this open-loop task. Despite minor inac-
curacies like in mode A3 around 1.6Λ−1

1 , the ESN is able to reconstruct the missing informa-
tion from the learned dynamics. The NRMSE of all QRC runs and the optimized ESN run,
as well as their (optimal) hyperparameter set Ξr, are listed in Tab. 3.4. While the ESN per-
forms best among all four runs, the two Qiskit simulations are still in a similar error range.
The actual quantum device performs the poorest among all reservoirs. However, consider-
ing the sensitive hardware of the NISQ device, these results are a first step toward future
quantum reservoir applications. In terms of hyperparameters, it can be observed that the
optimal classical leaking rate value comes close to the chosen quantum value. Even though
this parameter was not optimized in the quantum case, a similar value would seem natural
as this hyperparameter should correlate with the characteristic time scale of the Lorenz dy-
namics [124]. Further, a preliminary study showed that the quantum reservoir performs best
when the L2 penalty term in eq. (2.44) becomes zero, i.e., λr = 0. This might be due to the
induced noise of the quantum circuit, which acts similarly to the Tikhonov regularization.
Finally, as described in Section 2.1, the spectral radius of the quantum circuit is always zero
due to the unitary time evolution of the quantum state |ψ⟩.
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Figure 3.8: Inferred eight-order Lorenz modes of the open-loop classical RC (ESN) run
during the validation phase. The model was tasked to reconstruct the missing
modes from the knowledge of only A4 and B3, which were continuously provided
to the reservoir. The reservoir size was the same as the QRC models Nr = 128.
The classical reservoir (orange) reproduces the GT information (blue) exception-
ally well. The hyperparameters are listed in Tab. 3.3 and were optimized in a
preceding grid search. See also A.2

Model Nr γr ϱr λr ENRMSE

Qiskit Ideal 128 0.3 1.0 0.0 3.09 · 10−2

Qiskit Noisy 128 0.3 1.0 0.0 4.85 · 10−2

ibm perth 128 0.3 1.0 0.0 1.12 · 10−1

ESN 128 0.2 0.9 0.05 1.30 · 10−2

Table 3.4: Hyperparameter set Ξr and validation normalized root-mean-square error
of the classical (ESN) and quantum Reservoir Computing model at Nr = 128.
The quantum reservoir was run with the ideal and noisy Qiskit simulator, as well
as on the actual quantum device ibm perth. Note that the hyperparameters, i.e.,
leaking rate and circuit architecture, of the QRC model were not optimized, while
a grid search was run for the classical case. The corresponding hyperparameter
landscape is shown in Appendix A.2.
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3.3.2 Quantum Reservoir Computing of a two-dimensional
Rayleigh-Bénard flow

The application of the presented Quantum Reservoir Computing model can be extended to-
ward more complex classical dynamical systems. Starting with the above presented Lorenz
model, the complexity of the task to be learned can be increased by proceeding to a tur-
bulent convection flow at the same geometry and Prandtl number as in the Lorenz case
but at a significantly higher Rayleigh number. To this end, direct numerical simulations of
Rayleigh-Bénard convection are conducted. Since the phase space of an actual Rayleigh-
Bénard system is high-dimensional, the QRC model will be combined with a data reduc-
tion method, namely the POD. The resulting model will subsequently be used to test the
QRC’s ability in the open-loop scenario to reproduce low-order statistics of the RBC flow
while having only partial information on the reduced representation of the convective flow.

3.3.2.1 Direct numerical simulation of Rayleigh-Bénard convection

To this end, the two-dimensional Boussinesq system (2.17 - 2.19) is numerically solved using
the Nek5000 spectral element solver [180]. The aspect ratio of the two-dimensional system
is Γ = 2

√
2, while the Prandtl and Rayleigh numbers are Pr = 10 and Ra = 105. Dirichlet

boundary conditions are imposed for the temperature field at the top and bottom. Further-
more, free-slip boundary conditions in the vertical z-direction are applied for the velocity
field. Periodic boundaries for all fields are taken in the horizontal x–direction. The chosen
boundary conditions, aspect ratio and Prandtl number correspond to the Lorenz model that
was used in 3.2 and 3.3.1, but at a higher Ra and thus fully turbulent in contrast to the pre-
vious sections. Table 3.5 lists the DNS parameters, and Fig. 3.9 compares the reconstructed

Γ Ra Pr Ne N Nx ×Nz tDNS/tf ∆tDNS/tf Re τeddy/tf Nu

2
√
2 105 10 32× 8 11 128× 32 2500 5 · 10−4 19.56 5.11 8.97

Table 3.5: Simulation parameters of the direct numerical simulation of Rayleigh-Bénard
convection. Listed are the aspect ratio Γ of the two-dimensional cell, the Rayleigh
number Ra, the Prandtl number Pr, as well as the total number of spectral el-
ements Ne and polynomial order N on each element. Finally, the DNS data is
interpolated to a uniform grid of size Nx × Nz. tDNS and ∆tDNS denote the time
for how long the DNS was run and the corresponding time step size, respectively.
The Reynolds number Re, as defined in (2.23), largest eddy turnover time τeddy,
and Nusselt number Nu, as defined in (2.24), are diagnostic parameters obtained
from the DNS.

eight-order Lorenz fields to the ones obtained by the present DNS. In both cases, two con-
vection rolls form. Further, it can be seen that the DNS case exhibits finer and more com-
plex thermal plumes. Moreover, a thermal boundary layer at the top and bottom plate can
be identified in the DNS case. For the purpose of the ML application, the DNS data is sub-
sequently interpolated to a uniform grid of size Nx × Nz = 128 × 32 and sampled in a time
interval of 0.25tf in the statistically steady regime.

3.3.2.2 Dimensionality reduction via POD

As explained in Section 2.3, the utilization of interpolated snapshots of ux, uz, and θ as
inputs for the reservoir would result in substantial computational expenses, owing to the
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Figure 3.9: Comparison between a snapshot of the temperature field T (x, z) = 1−z+θ(x, z)
based on (a) the reconstructed eighth order Lorenz model at Ra = 1.84 · 104
(r = 28) (employed in the last two sections) and (b) direct numerical simulations
of RBC at Ra = 105. The vector arrows indicate the superimposed velocity field
ux(x, z) and uz(x, z). The aspect ratio and Prandtl number are the same in both
cases. In both cases, two convection rolls develop. Note the much richer features
in the DNS case.

need for a significantly enlarged reservoir dimension. To circumvent this bottleneck, a pre-
processing step is introduced, in which the most prominent features of the physical fields
are extracted, and the dynamics of the convection flow are translated to dynamics of tempo-
ral coefficients a(t). For this purpose, a Proper Orthogonal Decomposition is applied to the
fluctuation fields u′x, u

′
z, and θ

′, which are defined by the following decomposition

ux(x, z, t) = ⟨ux⟩t(x, z) + u′x(x, z, t), (3.12)

uz(x, z, t) = ⟨uz⟩t(x, z) + u′x(x, z, t), (3.13)

θ(x, z, t) = ⟨θ⟩t(x, z) + θ′(x, z, t). (3.14)

Fig. 3.10a) shows the cumulative spectrum of the captured variance for the present DNS
case. It can be observed that already 16 modes are enough to capture more than 86% of the
variance of all three physical fields. Figs. 3.10 b) and c) show the effect of the truncation
to the first 16 modes. The main spatial features of the heat flux u′zθ

′ are still retained, and
its vertical profile, despite a decreased value in the bulk, follows the DNS trend. A subset
of the NPOD time coefficient dynamics a(t) are shown in Fig. 3.11. While the first modes
a1, a2 exhibit changes over large time scales, higher mode numbers, e.g., a10, a11, a16, cap-
ture higher temporal frequencies. This separation of scales among the time coefficients also
translates to the spatial modes Φ, shown in Fig. 3.12. It can be observed that Φ1 captures
large-scale structures like the thermal boundary layer in Fig. 3.12a) or up- and downdrafts
in Fig. 3.12g). Modes of higher degree on the other hand, incorporate finer structures, as
can be seen in Fig. 3.12 c, f, i). well.

In the next step, a QRC model will be trained on the dynamics of the reduced-order POD
model. For this, two algorithms will be considered, namely H1, already applied in the last
section, and a novel algorithm, H2. See again 2.2.4.2 for their definition. Contrary to the
QRC model in 3.3.1, in the present scenario, the quantum state will be simulated using the
Qiskit Statevector Simulator for both H1 and H2 [204]. This way, the high computational
cost of approximating the necessary probabilities p by repeated measurements is circum-
vented. However, no actual quantum device will be employed in this study. Finally, for com-
parison, a classical reservoir computer in terms of an ESN will be considered again.

55



Chapter 3 RC of a LOM of convection

Figure 3.10: POD model of the Rayleigh-Bénard flow listed in Table 3.5. (a) The cumula-
tive spectrum of captured variance. The shaded area makes the first NPOD = 16
modes. (b) Comparison between DNS heat flux (top) and the reconstructed
heat flux based on the first 16 modes. (c) Corresponding vertical profiles of
⟨u′zθ′⟩x,t.

3.3.2.3 POD-QRC model for two-dimensional Rayleigh-Bénard convection

To this end, the RC models are again employed in the open-loop mode. They receive the
first three POD coefficients as input, i.e., x(n) = (a1(n), a2(n), a3(n))

T , and are trained to
output the whole 16 variables. This way, the reservoir acts similarly to a subgrid-scale pa-
rameterization, where the small-scale dynamics are computed based on the knowledge of
the large-scale state. Because the quantum state |ψ⟩ is being simulated, there is no need
for computationally intensive approximations of probabilities through multiple measure-
ments. This allows for a hyperparameter grid search to be conducted in order to determine
the best-performing hyperparameter combination of the quantum reservoir. Details on the
procedure are listed in Tab. 3.6. Note that the procedure for the quantum algorithms only
considers the leaking rate γr and reservoir size Nr, i.e., the number of qubits Nqubit, as the
spectral radius has no quantum counterpart and a nonzero regression parameter showed no
improvement of the QRC model’s performance. Moreover, the testing phase is again omit-
ted to avoid additional computational costs. The quantum circuit architectures of both H1
and H2 can be found in Appendix A.3. To assess the performance of the reservoirs in terms
of reconstructing the convective flow, the normalized average relative error ENARE, as de-
fined in eq. (2.72), is considered. Specifically, ENARE (⟨u′zθ′⟩x,t), i.e., the NARE of the in-
ferred convective heat flux u′zθ

′ will be used. Remember that the NARE measures the devi-
ations between the vertical profiles ⟨·⟩x,t of inferred and ground truth fields. As this measure
is prone to the errors of two fields, it is a suited measure of the accordance of the inferred
convection flow. For this, the inferred 16 POD time coefficients are used to reconstruct the
three physical fields u′x(x, z), u

′
z(x, z), and θ

′(x, z). Finally, the vertical properties of the re-
constructed heat flux u′zθ

′ can be compared to ground truth, here the POD model with 16
modes. The hyperparameter dependencies of ENARE w.r.t. γr and Nr can be seen in 3.13
for all three reservoirs. The NARE values correspond to the median ENARE value among all
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3.3 Hybrid quantum-classical RC of thermal convection

Figure 3.11: POD time coefficients ai(t) for modes i = 1, 2, 4, 10, 11, 16. The time coeffi-
cients determine the temporal behavior of the associated spatial modes Φi(x, z)
in Fig 3.12. Note the increasing range of frequencies for higher mode numbers.
This scale separation is also observed for spatial structures in the POD spa-
tial modes. Moreover, similar temporal features can be observed in the Lorenz
model. Compare e.g. a10(t) with mode A1(t) in Fig. 3.2c).

Figure 3.12: POD spatial modes of (a-c) the temperature fluctuations Φθ, (d-f) horizontal
velocity Φux , and (g-i) vertical velocity Φuz . Lower mode numbers are associ-
ated with large-scale features, while higher modes represent finer structures.
Corresponding temporal coefficients are shown in Fig. 3.11.
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γr ϱr λr Nr

ESN [0.1, 1.0, 0.1] [0.1, 1.5, 0.1] {0.05, 0.5} {64, 128, 256, 512, 1024, 2048}
H1 [0.0, 1.0, 0.05] − − {64, 128, 256, 512, 1024, 2048}
H2 [0.0, 1.0, 0.05] − − {64, 128, 256, 512, 1024, 2048}

Reservoir realizations ttrain/tf tval/tf
ESN 100 1250 125
H1 10 1250 125
H2 10 1250 125

Table 3.6: Hyperparameter grid search procedure for classical ESN and quantum reser-
voir algorithms H1, H2. Square brackets indicate the range of the searched hy-
perparameter: [start, end, stepsize]. Braces indicate an array of values that were
used. ttrain, tval, ttest are the length of the training, validation, and testing in-
terval, respectively. For the ESN, the reservoir density and input scaling were
fixed at Dr = 0.2 and σr = 1. The total number of different ESN settings is
10 × 15 × 2 × 6 = 1800, with 100 reservoir realizations. The search for the QRC
algorithms was limited to 10 × 6 = 60 combinations, with a total of 10 instances
being run due to the still exhaustive simulation time. Also, no testing phase is
used for the same reason. The grid search run times were 18.6h (ESN), 166h (H1,
H2 each) [206] on the TU Ilmenau high-performance-computing cluster. The cor-
responding quantum circuits for H1 and H2 are shown in Appendix A.3.

reservoir realizations, while all other parameters are pre-optimized, that is, the optimal spec-
tral radius ϱr and the Tikhonov parameter λr in the classical RC model case, the number
of layers l (see Appendix A.3 for an explanation) in the hybrid quantum-classical cases. It
can be observed that H1 and H2 seem to outperform the classical approach for qubit num-
bers Nqubit < 10, i.e., Nr < 1024. The global optimum, i.e., the minimal amplitudes of
ENARE (⟨u′zθ′⟩x,t), is obtained for the new architecture H2 at Nqubit = 9, i.e., Nr = 512,
though the other RC models can perform similarly well if the reservoir is large enough. All
three optimal reservoir settings Ξr are listed in Tab. 3.7. Finally, the reservoir outputs for

Model Nr γr ϱr λr l ENARE (u′zθ
′)

H1 256 0.5 0.0 0.0 5 7.46 · 10−3

H2 512 0.3 0.0 0.0 5 6.40 · 10−3

ESN 2048 0.8 1.4 0.5 − 8.07 · 10−3

Table 3.7: Hyperparameter set Ξr and validation NARE of the classical (ESN) and quan-
tum Reservoir Computing models H1 and H2. The quantum reservoirs were run
using the ideal Qiskit Statevector Simulator. Hence, no multiple measurements
of the final quantum state were necessary. Note that the spectral radius of the
quantum reservoir is always unity due to the unitary quantum state evolution.
Moreover, the quantum circuit depth l has no classical counterpart. See also the
quantum circuit architecture in Appendix A.3.

the optimal setting are shown in Figure 3.14a). It can be seen that all models perform fairly
well. Even though the ground truth trajectories are not fully reproduced, the overall trends
are represented well. Hence, the reconstructed low-order statistics of the vertical profiles of
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3.4 Conclusions from this chapter

Figure 3.13: Normalized average relative error ENARE (⟨u′zθ′⟩x,t) for the convective heat
flux of quantum reservoirs H1 (orange), H2 (green) and the classical reservoir
(blue) for different reservoir sizes and leaking rate values. The reservoir sizes
correspond to Nqubit = 6, 7, 8, 9, 10, 11. Displayed are the median values for 10
seeds with H1 and H2 and 100 seeds for the ESN. The optimum of each curve
is the single-best median for the respective approach at the given reservoir size.
A star marker in the respective color marks the minimum NARE value of each
algorithm.

the convective heat flux and root-mean-square fluctuations of all physical fields are also in
good accordance with the reference profiles. These are shown in 3.14b) - e). Even though
the predictions were chosen according to the profile in 3.14e), the other lateral-time averages
are also perfectly reproduced. Hence, the information on three POD time coefficients is suffi-
cient for all reservoirs to reproduce the vertical properties of the turbulent flow.

3.4 Conclusions from this chapter

This chapter introduced a low-order model of thermal convection with eight degrees of free-
dom that extended the model from Lorenz from 1963 by shear and conservation of vorticity.
The reduced representation made the system an ideal testing bed for understanding how
an Echo State Network responds to chaotic time series data. It was shown that an ESN
can autoregressively infer the dynamics of the LOM. While an exact reproduction of the
chaotic time series is beyond the grasp of this machine learning model, it was found that
the reservoir is able to generate similar dynamics to the ground truth signal and even repro-
duces the chaotic Lorenz attractor. A second operation mode, the open-loop scenario, was
used to compare an ESN against two novel Quantum Reservoir Computing models. In this
scenario, the reservoir receives few input signals and, based on this knowledge, is tasked to
infer the missing degrees of freedom. Both QRC models show comparable performances to
the classical ESN. Furthermore, a quantum reservoir was run on a real seven-qubit quan-
tum computer, which showed impressive first results, indicating new pathways for RC mod-
els on quantum devices. Moreover, the first results on a DNS of Rayleigh-Bénard convec-
tion indicate that quantum algorithms are able to reproduce low-order statistics of RBC at
Ra = 105. However, the latter results were obtained by means of a state vector simulation.
A real NISQ device would have to take samples to approximate the underlying distribution
of the quantum state. Moreover, in [158], Pfeffer et al. indicate that such a practical imple-
mentation would require sampling of the order 220, which dampens the prospects for an ap-
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Chapter 3 RC of a LOM of convection

Figure 3.14: Open-loop Reservoir Computing results for the 16 mode POD model. (a)
Inferred POD time coefficients by means of the classical ESN (blue) and quan-
tum reservoirs H1 (orange) and H2 (green). The ground truth is shown in
black. (b-e) Reconstructed vertical profiles ⟨·⟩x,t based on the 16 POD coeffi-
cients. Shown are the root-mean-square profiles of fluctuations of temperature
θ′ (b), horizontal (c), and vertical velocities (d) u′x and u′z, as well as the con-
vective heat flux u′zθ

′ (e). Note that the reservoirs received the first three coeffi-
cients as input and were tasked to reconstruct the whole 16 POD variables.

60
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plication on current noisy intermediate-scale quantum devices. However, a repetition of the
hyperparameter grid search with sample-based probabilities and the additional implementa-
tion of weak measurements might ease this problem [207]. Furthermore, it has to be evalu-
ated if the hybrid quantum-classical Reservoir Computing approach can be further scaled up
to flows at higher Rayleigh numbers and hence more turbulent flows.

The next chapter will pose a first step towards an ML-based super-parameterization, as an
autoregressive ESN will be applied to two-dimensional turbulent Rayleigh-Bénard convection
DNS data. Further, the spatial domain of the flow will be more than double the size consid-
ered in this chapter. Moreover, the flow will be significantly more turbulent as the Rayleigh
number is increased to Ra = 107 and the Prandtl number is decreased to Pr = 7.
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Chapter 4

Reservoir Computing of two-dimensional
Rayleigh-Bénard convection

As discussed in the introduction, this work aims at evaluating Reservoir Computing mod-
els for use in potential super-parameterization applications. For the latter, properties like
the vertical distribution of heat and moisture are essential features determining the inter-
action between large-scale circulation and the local two-dimensional cloud-resolving model.
Hence, prior to replacing a subgrid-scale model with a trained ROM-RC model, it is essen-
tial to verify its capability to produce the spatial and statistical features that are distinctive
of thermal convection. While the last chapter described how reservoir computers perform on
the chaotic dynamics of eight and 16 degrees of freedom, the present chapter will evaluate
the ESN performance on DNS data of two turbulent Rayleigh-Bénard systems. Naturally,
as the complexity of the convection system increases, the degrees of freedom the reservoir
has to learn will grow as well. In Section 4.1, the ability of the reservoir to reproduce two-
dimensional RBC features will be tested. After that, in Section 4.2, a four times bigger cell
at a higher state of turbulence will be considered. Furthermore, the complexity of the prob-
lem will be increased by the inclusion of water vapor that can undergo condensation, result-
ing in the formation of clouds. The results of this chapter were published in [117].

4.1 Two-dimensional Rayleigh-Bénard convection

This section will introduce the first application of an ESN, run in the closed-loop mode, to a
DNS of Rayleigh-Bénard convection. In this way, the reservoir will autoregressively infer the
turbulent flow without the need for an external input. In pursuit of this objective, the nu-
merous degrees of freedom within the turbulent flow need to be condensed to a manageable
extent. To accomplish this, the POD algorithm will be once again utilized. Owing to the
much more intricate nature of the flow compared to the one examined in Section 3.3.2, the
number of input features for the ESN will notably increase. It is worth noting that this sec-
tion investigates a similar flow configuration to that explored by Pandey and Schumacher in
ref. [116], although their work lacked an exhaustive grid search procedure and an appropri-
ate number of reservoir realizations. This section will conduct a more thorough investigation
into these matters.

4.1.1 Direct numerical simulation of Rayleigh-Bénard convection

A DNS of two-dimensional RBC at Pr = 7 and Ra = 107 was conducted. Note that the as-
pect ratio is more than two times larger than in Section 3.3.2, namely Γ = 6. The boundary
conditions at the bottom and top lid were chosen to be no-slip for the velocity and Dirich-
let for the temperature field. Again, periodic boundaries are considered in the horizontal
x-direction. Further DNS parameters like the number of spectral elements and polynomial
order are listed in Tab. 4.1. In a second step, the non-uniform DNS grid is interpolated to a
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Chapter 4 RC of two-dimensional RBC

uniform grid of size Nx × Nz = 256 × 64 for further use. An instantaneous snapshot of the
temperature and velocity fields can be seen in Fig. 4.1. Two convection rolls with complex
shapes characterized by the presence of finely formed thermal plumes can be observed. In
the next step, this database will be reduced by means of a POD analysis.

Γ Ra Pr Ne N Nx ×Nz tDNS/tf ∆tDNS/tf Re τeddy/tf Nu

6 107 7 48× 8 11 256× 64 2500 10−3 156.25 7.65 13.43

Table 4.1: DNS parameters of the simulation of two-dimesnional Rayleigh-Bénard con-
vection. Listed are the aspect ratio Γ of the two-dimensional cell, the Rayleigh
number Ra, the Prandtl number Pr, as well as the total number of spectral ele-
ments Ne and polynomial order N on each element. The DNS data is interpolated
to the uniform grid of size Nx × Nz. tDNS and ∆tDNS denote the time for how
long the DNS was run and the time stepping, respectively. The Reynolds number
Re, largest eddy turnover time τeddy, and Nusselt number Nu are diagnostic pa-
rameters obtained from the DNS. The time sampling of the saved snapshots was
0.25tf .

Figure 4.1: DNS snapshot of the temperature field T (x, z) = 1 − z + θ(x, z) of the two-
dimensional Rayleigh-Bénard flow at Ra = 107 and Pr = 7. The aspect ratio is
Γ = 6. The velocity vector fields ux(x, z), uz(x, z) are superimposed. The flow
features complex characteristics like fine thermal plumes and turbulent fluid mo-
tion. The simulation parameters are listed in Table 4.1.

4.1.2 Dimensionality reduction via POD

As discussed in 2.3, this flow’s number of degrees of freedom, namely Nx×Nz, is too large to
be used as reservoir input. At this degree of turbulence, it can be expected that more than
16 modes, as used in the previous chapter, are required to capture enough of the turbulent
kinetic energy and thermal variance of the convective flow. To this end, the interpolated
DNS data of (ux, uz, θ)

T is collected into a snapshot matrix. Then the fields are decomposed
into their time mean ⟨·⟩t and the fluctuations about it

ux(x, z, t) = ⟨ux(x, z)⟩t + u′x(x, z, t) (4.1)

uz(x, z, t) = ⟨uz(x, z)⟩t + u′z(x, z, t) (4.2)

θ(x, z, t) = ⟨θ(x, z)⟩t + θ′(x, z, t). (4.3)

Here, the prime denotes the fluctuations. Therefore a POD snapshot matrix of (u′x, u
′
z, θ

′)T

is constructed and the eigenvalue problem (2.65) of its covariance matrix is solved. The re-
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4.1 Two-dimensional Rayleigh-Bénard convection

sulting spatial modes Φθ
i (x, z),Φ

ux
i (x, z),Φuz

i (x, z) and their temporal coefficients ai(t) are
shown in figures 4.2 and 4.3 respectively.

Figure 4.2: POD spatial modes Φθ of the temperature fluctuations θ′ (a-c), Φux of the
horizontal velocity fluctuations u′x (d-f) and Φuz of the vertical velocity u′z (g-
i). Note that lower mode numbers are associated with large-scale features, while
higher modes represent finer structures. The corresponding time coefficients are
illustrated in Fig. 4.3.

While the first mode Φ1 represents large-scale features like the thermal boundary layer or
main up- and downdrafts, Φ50 describes their finer spatial characteristics. This scale separa-
tion translates to the temporal coefficients: while coefficients with a low mode degree vary
slowly over time, high mode number coefficients exhibit fast, chaotic dynamics with a wide
range of frequencies. Hence, again, the POD decomposes the flow into slowly evolving large-
scale and quickly varying small-scale structures. Moreover, the cumulative spectrum of the
captured variance is shown in Fig. 4.4a). It can be seen that the spectrum of the turbulent
flow rapidly increases, and after 150 modes, already 82% of the original variance is retained.
Fig. 4.4b) compares a DNS snapshot of the heat flux with the corresponding reconstruction
from the most energetic 150 POD modes. It can be observed that this reduced representa-
tion suffices in capturing the main spatial features like the locations of enhanced heat flux.
However, it results in a reduced magnitude corresponding to the discarded variance of the
missing POD modes. Finally, in Fig. 4.4c) the corresponding lateral-time average profiles
of the convective heat flux ⟨u′zθ′⟩x,t are presented. Again, it can be seen that the ROM re-
tains the main aspects of the heat flux profile. Therefore, this section will consider the first
NPOD = 150 POD time coefficients a1(t), ..., aNPOD

(t) for training and evaluating the perfor-
mance of an Echo State Network used in the closed-loop mode.
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Figure 4.3: POD time coefficients ai(t) for modes i = 1, 2, 3, 10, 50, 150. The time coeffi-
cients determine the temporal behavior of the associated spatial modes Φi(x, z)
in Fig 4.2. It is these temporal signals that the ESN is trained to reproduce. Ob-
serve the expanding spectrum of frequencies associated with higher-order modes.
This scale separation is also observed for spatial structures in the POD spatial
modes.

Figure 4.4: (a) POD spectrum: The orange-shaded region marks the first 150 modes used
for further use for the Reservoir Computing model. (b) Comparison between a
DNS snapshot of the heat flux u′zθ

′ (top) and the reconstruction from the first
150 modes (bottom). It can be seen that the truncated POD captures the main
spatial patterns. (c) Vertical profiles of the lateral-time average profiles of the
heat flux ⟨u′zθ′⟩x,t. The orange curve stems from the reconstructed fields of the
first 150 POD modes. The full DNS profile is shown in blue for comparison. The
POD model captures the trend of the profile. However, it results in an overall
reduced value of the heat flux due to the loss of information by the compression
algorithm.
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4.1 Two-dimensional Rayleigh-Bénard convection

4.1.3 POD-RC model for two-dimensional Rayleigh-Bénard convection

4.1.3.1 ESN hyperparameter search

The time-discretized coefficients a(n) = (a1(n), a2(n), ..., aNPOD
(n))T are sampled over a

time interval of ∆t = 0.25tf . They are then partitioned into training, validation, and testing
subsets. The training subset is employed to train the ESN, the validation subset is utilized
to optimize its hyperparameter set Ξr, and the testing subset is used to evaluate the ESN’s
ultimate performance. The data for each of the three subsets were derived from consecu-
tive RBC data within the statistically steady state. As a result, the dynamics across these
subsets display comparable temporal characteristics. The optimization of Ξr is again done
by means of a grid search procedure. The chosen hyperparameters are leaking rate, spectral
radius, regression parameter, and reservoir size. The latter should ideally exceed the input
dimension, here NPOD, by at least one order of magnitude (see Section 2.2.2 again) so that
it will be restricted to the values 1024, 2048 only. More details on the hyperparameter search
can be found in Table 4.2.

γr ϱr λr Nr

[0.1, 1.0, 0.1] [0, 1.0, 0.11] {3.47, 7.40, 15.79, 33.71, 71.95} {1024, 2048}

Reservoir realizations ttrain/tf tval/tf ttest/tf
100 1000 500 500

Table 4.2: ESN hyperparameter grid search procedure for an ESN run in closed-
loop mode. Square brackets indicate the range of the searched hyperparameter:
[start, end, stepsize]. Braces indicate an array of values that were used. ttrain, tval,
ttest are the length of the training, validation, and testing interval, respectively.
The first 12.5tf out of the training time was used for initializing the internal
reservoir state. The reservoir density and input scaling were fixed at Dr = 0.2 and
σr = 1.0. The total number of different reservoir settings is 10× 10× 5× 2 = 1000,
while a total of 100 × 1000 = 105 reservoirs were run. The total runtime was
38.75h using the turbESN library [123].

In the present closed-loop scenario, the ESN is trained to predict a(n + 1) based on the in-
put x(n) = a(n). Moreover, the training length was 1000tf , corresponding to about 130
turnovers of the largest eddy. Unlike the Lorenz system with only eight degrees of freedom
or the 16 mode POD model of RBC, the ESN must now process 150 variables with highly
turbulent dynamics. Moreover, the ESN is now run in an autoregressive fashion, where no
ground truth input can stabilize the ESN predictions. Similarly to the closed-loop results
in Section 3.2, it is not expected that the ESN reproduces the exact time series as shown in
Fig. 4.3 due to the chaotic nature of the underlying dynamics. Instead, the anticipation is
for the deduced dynamics to represent realizations of the same flow configuration, ideally
exhibiting consistent statistical characteristics. This has implications for how one measures
the ESN performance in the post-processing of the hyperparameter search. The NRMSE
is suited for tasks where one is interested in two trajectories that stay close to each other.
Here, however, the ESN is supposed to mimic the statistical properties of the reduced-order
RBC system. Furthermore, recall that the vertical profiles ⟨·(z)⟩x,t are used for communica-
tion between small-scale and large-scale simulations in the super-parameterization approach.
Hence, the correct reconstruction of profiles of all three fields u′x, u

′
y, θ

′ is crucial. Conse-
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quently, the normalized average error ENARE is a suitable measure of the ESN’s performance.
Here, the arithmetic average ENARE of the NAREs of all three fields will be considered. Fur-
thermore, to increase its significance, the NARE of the heat flux ⟨u′zθ′⟩x,t is added to the
average to increase its significance. The measure then reads

ENARE =
1

4

[
ENARE

(
⟨u′x

2⟩1/2x,t

)
+ ENARE

(
⟨u′z

2⟩1/2x,t

)
+ENARE

(
⟨θ′2⟩1/2x,t

)
+ ENARE

(
⟨u′zθ′⟩x,t

)]
(4.4)

In this way, it is expected that the final reservoir results capture both first- and second-order
statistics.

Figure 4.5 depicts the obtained relationships between the ESN output error and its corre-
sponding hyperparameters in the validation phase. For comparison, both the NRMSE and
NARE landscapes are shown. Several things can be observed. Firstly, the error landscapes
of both measures differ greatly. Although particular transition regions, as can be seen in
Fig. 4.5b) and e), are recognizable in both instances, their respective regions of minimum
and maximum values have been swapped. That is, low NRMSE regions correspond to high
NARE values and vice versa. This means reservoir outputs that reconstruct the vertical
properties of the physical fields do not reproduce the exact POD time series. Once more,
this outcome is within expectations, given that no ESN output can perfectly align with the
validation signal. Low NRMSE values simply indicate that the average of the inferred time
series is in proximity to the average of the actual ground truth signal. Based on this anal-

ysis, two optimal hyperparameter sets Ξ
(1)
r ,Ξ

(2)
r can be identified. They correspond to the

minimal error values of the median ENRMSE and ENARE respectively and are labeled in Fig.
4.5c,f) by a green star marker. It can be seen that both combinations differ in their choice of
γr and ϱr, while the values for reservoir size and regression parameter coincide. The two sets
are listed in Table 4.3. In the following, the results for both settings during the testing phase
will be evaluated.

Applied Error Measure γr ϱr λr Nr Dr σr ENARE ENRMSE

Ξ
(1)
r ENARE 0.6 0.88 71.94 2048 0.2 1.0 4.07 · 10−3 0.23

Ξ
(2)
r ENRMSE 0.1 1.00 71.94 2048 0.2 1.0 4.34 · 10−2 0.20

Table 4.3: Optimal ESN hyperparameter settings Ξ
(1)
r after analysis of the average

NARE value and Ξ
(2)
r after analysis of the NRMSE. Both settings correspond to

the lowest value of the respective measure. Both settings differ in their leaking
rate and spectral radius. Both NRMSE and average NARE are listed for both set-
tings as well. These settings are labeled by the green star marker in Fig. 4.5c,f).
Note that reservoir density and input scaling were both fixed and not optimized.

4.1.3.2 Results of the combined POD-RC model

The autoregressive reservoir outputs for Ξ
(1)
r and Ξ

(2)
r during the testing phase are shown in

Fig 4.6a-e). Again, one finds that both reservoirs do not reproduce the ground truth signals
ai(t). Especially in the slowly evolving first modes a1 and a2, discrepancies between reser-
voir outputs and the POD coefficients can be seen. However, the individual dynamics of the
coefficients are captured by both signals as the variance of the outputs increases with grow-
ing mode degree. This again suggests that the reservoir acts as a generator of the dynamical
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4.1 Two-dimensional Rayleigh-Bénard convection

Figure 4.5: Results of the grid search procedure of the closed-loop ESN run with the
two-dimensional RBC data. Shown is the hyperparameter landscape of leaking
rate γr, spectral radius ϱr and regression parameter λr. The corresponding reser-
voir size is Nr = 2048. For comparison, both the normalized root mean square
error ENRMSE (a-c) and the normalized average relative error, averaged over the
values for ux,

′ u′z, θ
′ and u′zθ

′, ENARE (see eq. (4.4))(d-f) are shown. The error
landscapes of both measures differ vastly from each other. Out of all 100 reser-
voir realizations, the one corresponding to the median error value is shown. The
green star symbols mark the minimum error value and hence the corresponding

optimal hyperparameter settings Ξ
(1)
r and Ξ

(2)
r .
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system rather than a predictor of a certain realization of that system. In Fig. 4.6f-j), the
Fourier power spectrum |F(·)|2, i.e. the square of the absolute value of the Fourier trans-

form, of the three signals are shown. The hyperparameter set Ξ
(1)
r , optimized for the vertical

profiles of the reconstructed flow, is found to be in good accordance with the spectrum of

the ground truth. The spectrum of Ξ
(2)
r , on the other hand, drops off quickly and therefore

fails to reproduce the high frequencies, especially in the rapidly varying time coefficients a50
and a150.

Figure 4.6: (a-e) Reservoir testing phase outputs for Ξ
(1)
r (orange) and Ξ

(2)
r (green) ac-

cording to the lowest value of ENARE and ENRMSE resepectively (see Tab. 4.3).
The POD ground truth trajectory is shown in blue. (f-j) Their corresponding
Fourier power spectrum |F(·)|2 is shown on the right. It can be seen that the
hyperparameter set optimized for the NRMSE shows poor performance in cap-
turing the highly frequent components of the original signal.

To obtain information on the inferred convection flow, the inferred time coefficients and
their corresponding spatial modes Φi are combined to reconstruct the physical fields. More-
over, using expressions (4.1 - 4.3), the fields θ(x, z), ux(x, z) and uz(x, z) can be derived.
See Fig. 4.7 for an instantaneous snapshot of the three fields and the heat flux uzθ. Ar-
ranged from left to right, the columns display the actual field values and, using ESN out-
puts, the reconstructed field values linked to the lowest NARE and NRMSE scores corre-
spondingly. Even though the time coefficients have diverged from the ground truth, the
reconstructed fields show characteristical features of the underlying Rayleigh-Bénard flow.
Thermal plumes, as well as up-and downdrafts, can be identified for both POD-RC models.
Moreover, the two-dimensional heat flux field is reproduced nicely. As previously discussed,
the ESNs can be regarded as temporal generators. Consequently, their integration with the
POD enables them to not only replicate temporal aspects but also generate the distinctive
spatial characteristics of Rayleigh-Bénard convection. However, for Ξ2

r , it can be observed
that the reproduced features lack the fine structures found in the original RBC flow. See
e.g., Fig. 4.7l). The NARE-optimized ESN, on the other hand, shows finer features, also in
the heat flux.

Reproducing vertical profiles of the aforementioned fields is crucial for potential SP applica-
tions. Hence, the lateral-time averages will be analyzed as well. Figure 4.8 shows the profiles
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4.1 Two-dimensional Rayleigh-Bénard convection

Figure 4.7: Reconstructed physical fields of POD (a,b,c,d) and reservoir predictions

based on Ξ
(1)
r (e,f,g,h) and Ξ

(2)
r (i,j,k,l). Shown is the temperature field T (x, z) =

1 − z + θ(x, z) (a,e,i), horizontal velocity field ux(x, z) (b,f,j), vertical velocity
field uz(x, z) (c,g,k) and heat flux uzθ(x, z) (d,h,l). Both reservoirs produce the
typical spatial patterns of the two-dimensional RBC flow. The time instance cor-
responds to t = 750tf in Fig. 4.6a-e).

of the root-mean-square fluctuations of the three physical fields and the heat flux. Recall

that the setting Ξ
(1)
r was chosen, s.t., the ESN reconstructions match these profiles. There-

fore, good agreement is found between all profiles generated by the underlying RC model.

This can not be said for the statistics associated with Ξ
(2)
r . While the profiles of ⟨θ2⟩1/2x,t

match fairly well, the statistics of both velocities show discrepancies near the boundaries and
bulk. Moreover, the minimal NRMSE setting does not retain the constant heat flux inside
the RBC cell but produces an unrealistic profile. This suggests that replicating the inher-
ent RBC flow dynamics depends not just on effective dimensionality reduction via POD, but
also on the temporal features produced by the ESN. Overall, the NARE-optimized reservoir
shows good performance in reproducing the temporal, spatial, and statistical features of the
two-dimensional Rayleigh-Bénard flow.

These are promising first results. However, the complexity of the present RBC model is
still pretty contained, as aspect ratios of mesoscale convection processes can reach up to
Γ ∼ 102 [208]. Moreover, in a real atmosphere, the presence of water vapor can lead to the
formation of clouds, which are, to this day, one of the largest sources of uncertainty in the
modeling process of Earth’s climate system [209].
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Chapter 4 RC of two-dimensional RBC

Figure 4.8: Vertical profiles of lateral-time averages ⟨·⟩x,t of root-mean-square fluctuations
of temperature deviations (a), horizontal vertical (b), and vertical velocity (c).
The heat flux ⟨uzθ(z)⟩x,t is shown in (d). The reservoir optimized for ENRMSE

(dashed green) reproduces the trends of POD reference profiles (blue) of all three
fields. However, it does not capture the heat flux profile. Note that the ESN hy-

perparameters in Ξ
(1)
r were chosen to optimize ENARE. s.t. their lateral-time av-

erages (dashed orange) match the reference curve to a high degree.
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4.2 Two-dimensional moist convection in an absolutely unstable layer

4.2 Two-dimensional moist convection in an absolutely
unstable layer

To address the aforementioned topics, this section will consider moist convection in a do-
main with an enhanced aspect ratio. For this, the moist Rayleigh-Bénard convection (MRBC)
model of shallow moist convection by Pauluis and Schumacher [210] will be employed. This
system of increased physical complexity introduces an additional scalar field, the liquid wa-
ter content, to the governing equations of motion. The enhanced spatial domain combined
with the complex thermodynamics extends the ESN’s application to RBC, presented above,
to a more challenging physical system. The following section will shortly introduce the con-
cept of the MRBC model, after which the DNS and subsequent POD-RC model will be dis-
cussed.

4.2.1 The moist Rayleigh-Bénard convection model

This subsection will briefly review the model for moist Rayleigh-Bénard convection in two
spatial dimensions. A detailed derivation can be found in [210–212]. The MRBC framework
is based on the mathematically equivalent formulation by Bretherton [213, 214]. Similar sim-
plified models of moist convection with precipitation were introduced by Smith and Stech-
mann [215], and Vallis et al. [216]. For example, evaporative cooling and buoyancy reversal
effects were discussed by Abma et al. [217].

The dimensional buoyancy in atmospheric convection is given by [92]

b = −gρ(S, qv, ql, qi, p)− ρ0
ρ0

(4.5)

where g is again the gravity acceleration and ρ0 the hydrostatic mean density (see again eq.
(2.4)). Moreover, the density depends on the pressure p, the entropy S, and the contents of
water vapor qv, liquid water ql, and ice qi. Here, only warm clouds, i.e., qi = 0, will be con-
sidered. Further, local thermodynamic equilibrium is assumed. From the latter assumption,
it follows that no precipitation is possible, and the number of independent variables in eq.
(4.5) reduces to three. By introducing the total water content qT = qv + ql, the buoyancy
can further be expressed as b(S, qT , p). Moreover, similar to its dry counterpart, the MRBC
model makes use of the Boussinesq approximation. Therefore, the pressure p loses its ther-
modynamic meaning (see again Section 2.1.1), s.t. the buoyancy is only dependent on the
hydrostatic pressure p0(z) and the buoyancy becomes b(S, qT , z). Furthermore, the convec-
tion layer is assumed to be near the vapor-liquid phase boundary. The buoyancy can then
be expressed as a piecewise linear function of S and qT on both sides of the saturation line.
This step preserves the discontinuity of the first partial derivatives of b and, therefore, the
physics of a first-order phase transition. The advantage of this formulation is that, locally,
the saturation state of the air can be determined. In the final stage, the linear combinations
of S and qT on both sides of the phase boundary are replaced with a dry buoyancy D and a
moist buoyancy M . Consequently the buoyancy field b can be written as [210]

b(x, z, t) = max
(
M(x, z, t), D(x, z, t)−N2

0 z
)

(4.6)

where the fixed Brunt-Väisälä frequency

N0 =

√
(Γu − Γs) g

T0
(4.7)
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is determined by the lapse rate Γs/Γu of saturated/unsaturated moist air and the adiabatic
reference temperature T0. An air parcel at height z and time t is unsaturated if M(x, z, t) <
D(x, z, t) − N2

0 z and saturated if M(x, z, t) > D(x, z, t) − N2
0 z. Note that the newly intro-

duced dry buoyancy field D is proportional to the liquid water static energy (or liquid water
potential temperature) and the moist buoyancy field M to the moist static energy (or equiv-
alent potential temperature). Similar to dry Rayleigh-Bénard convection with constant tem-
perature boundary conditions, the dimensional fields D and M can be separated into static
diffusive profiles Ddiff(z),Mdiff(z) and their fluctuations θM , θD about them

D(x, z, t) = Ddiff(z) + θD(x, z, t) (4.8)

M(x, z, t) =Mdiff(z) + θM (x, z, t) (4.9)

with

Ddiff(z) = Dbottom +
Dtop −Dbottom

H
z (4.10)

Mdiff(z) =Mbottom +
Mtop −Mbottom

H
z (4.11)

where Dbottom, Mbottom and Dtop, Mtop are the imposed values of D, M at the bottom (z =
0) and top (z = H) of the computational domain. This section will consider, Dbottom =
Mbottom. In order to non-dimensionalize the MRBC equations of motion, its characteris-
tic scales have to be introduced. Here, both buoyancy fields are expressed in terms of the
moist buoyancy scale ∆b = Mbottom − Mtop, while the spatial scale is again the height of
the convection layer H. The free-fall velocity and time are then given by expressions (2.14)
and (2.16) with the new definition of ∆b. Four dimensionless numbers can be identified: the
Prandtl number, dry Rayleigh number, and moist Rayleigh number are given by

Pr =
ν

κ
(4.12)

RaD =
(Dbottom −Dtop)H

3

νκ
(4.13)

RaM =
(Mbottom −Mtop)H

3

νκ
. (4.14)

Note that in this way the moist Rayleigh number takes on the role of Ra in eq.(2.21). Ad-
ditionally, both saturated and unsaturated air possess the same viscosity ν and thermal
diffusivity κ, resulting in the absence of any differential diffusion between the two gas con-
stituents. An additional parameter emerges due to the phase transition

CSA =
N2

0H

Mbottom −Mtop
. (4.15)

The condensation in saturated ascent (CSA) controls the amount of latent heat an ascend-
ing saturated parcel can release on its way to the top. Note that both Reynolds and Nusselt
number as defined in (2.23) and (5.9) can be rewritten in terms of RaM and M . They are,
therefore, given by

ReM =

√
RaM
Pr
⟨u2x + u2z⟩

1/2
V,t , (4.16)

NuM = 1 +
√
RaMPr⟨uzM⟩V,t. (4.17)
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The non-dimensional governing equations of the moist Boussinesq system are then given by
the unchanged mass and momentum balances (2.17) and (2.18). The latter incorporates the
nondimensional buoyancy

b∗ = max

(
θ∗M , θ

∗
D +

(
1− RaD

RaM
− CSA

)
z∗
)
. (4.18)

They are complemented by two advection-diffusion equations for the non-dimensional buoy-
ancy fields M∗ and D∗, respectively

∂D∗

∂t∗
+ (u∗ · ∇∗)D

∗ =

√
1

RaMPr
∇2

∗D
∗ (4.19)

∂M∗

∂t∗
+ (u∗ · ∇∗)M

∗ =

√
1

RaMPr
∇2

∗M
∗. (4.20)

Again, the asterisk notation for non-dimensional variables is omitted for readability. This
idealized model describes the formation of warm, non-precipitating low clouds in a shallow
layer up to a depth of ∼ 1km. The assumptions made here hold, for example, to a good ap-
proximation over the subtropical oceans. Moreover, the saturation condition (4.18) implies
that liquid water is immediately formed at a point in space and time when θM > θD − (1 −
RaD/RaM −CSA)z. Therefore, there is no supersaturation considered in this model, and the
liquid water content field ql and thus the clouds are given by

ql(x, z, t) = θM − θD −
(
1− RaD

RaM
− CSA

)
z . (4.21)

Note that in this formulation, ql can become negative as it measures the degree of satura-
tion. When the atmosphere is saturated, ql ≥ 0 and the conventional liquid water content
is retained. The following sections will study the case of RaD,RaM > 0. Hence both buoy-
ancy fields are linearly unstable. For the case of a conditionally unstable moist layer with
RaD ≤ 0, the reader is referred to [213, 214] or [218]. Finally, note that dry RBC case is
obtained when b =M , D = 0, CSA = 0.

4.2.2 Direct numerical simulation of moist Rayleigh-Bénard convection

The two-dimensional Boussinesq system (2.17, 2.18) with buoyancy (4.18) together with the
two diagnostic equations (4.19, 4.20) are solved numerically using the Nek5000 code [180].
No-slip boundary conditions are considered for the velocity fields. Similar to dry RBC, both
dry and moist buoyancy fields are prescribed with a constant bottom (Dbottom, Mbottom)
and top value (Dtop, Mtop). Both Rayleigh numbers were chosen as RaM = 4 · 108 and
RaD = 2 · 108, which corresponds to an absolutely unstable moist atmosphere. Moreover, the
Prandlt number was set to Pr = 0.7, which closely resembles moist air. Finally, the fourth
MRBC parameter was set to CSA = 0.3. Further parameters are listed in Table 4.4. The
DNS data is subsequently interpolated to the uniform grid of size Nx × Nz = 1024 × 64 for
further processing. A snapshot of the moist buoyancy and velocity fields is shown in 4.9a).
Moreover, the resulting two-dimensional cloud layer field ql(x, z) > 0 can be obtained by
using the expression (4.21) for the liquid water content ql. It can be seen that the turbu-
lent fluid motion leads to the formation of complex convection cells. Further, a broken cloud
cover, consisting of individual clouds, can be identified.
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Γ RaM RaD Pr CSA Ne N Nx ×Nz tDNS/tf ∆tDNS/tf
24 4× 108 2 · 108 0.7 0.3 600× 32 11 1024× 64 2500 10−3

ReM τeddy/tf NuM
8335 2.87 30.98

Table 4.4: Simulation parameters of the direct numerical simulation of moist Rayleigh-
Bénard convection. The table contains the aspect ratio Γ of the two-dimensional
cell, the moist and dry Rayleigh numbers RaM , RaD, the Prandtl number Pr, the
condensation in saturated ascent parameter CSA, as well as the total number of
spectral elements Ne and polynomial order N on each element. The DNS was in-
terpolated to the uniform grid of size Nx×Nz. tDNS denotes the period over which
the DNS was run. The Reynolds number ReM , as defined in (4.16) largest eddy
turnover time τeddy and the moist Nusselt number NuM , as defined in (4.17), are
diagnostic parameters, obtained from the DNS.

Figure 4.9: Instanteneous DNS Snapshot of (a) buoyancy field b(x, z), (b) moist buoyancy
field M(x, z) and (c) the associated positive liquid water content ql(x, z) > 0,
i.e., clouds. The arrows in (a) indicate the two-dimensional velocity field. The
simulation parameters are listed in Table 4.4. The aspect ratio is Γ = 24. For
visualization purposes, only half of the horizontal extent Γ/2 = 12 is shown.
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4.2 Two-dimensional moist convection in an absolutely unstable layer

4.2.3 Dimensionality reduction via POD

The 1024 × 64 degrees of freedom per field have to be compressed by means of a Reduced
Order Model to establish a workable input dimension for the subsequent RC model. To this
end, a POD of the four fields (u′x, u

′
z, θ

′
M , θ

′
D)

T , based on the aforementioned DNS data, is
computed. Here, the prime denotes fluctuations about the time mean, i.e., the fields are de-
composed into

ux(x, z, t) = ⟨ux(x, z)⟩t + u′x(x, z, t), (4.22)

uz(x, z, t) = ⟨uz(x, z)⟩t + u′z(x, z, t), (4.23)

θM (x, z, t) = ⟨θM (x, z)⟩t + θ′M (x, z, t), (4.24)

θD(x, z, t) = ⟨θD(x, z)⟩t + θ′D(x, z, t). (4.25)

Note that the POD now considers one more field compared to the last section due to the
additional phase transition. Figure 4.10a) shows the cumulative variance captured by the
POD. While the first mode incorporates about 38% of the total variance, the individual con-
tributions become less as the mode number increases. Again, the choice of cut-off mode is a
trade-off between keeping the ESN input dimension as low as possible and retaining enough
physical information about the fields. Here, a ROM of NPOD = 150 is considered, as it still
allows for feasible reservoir sizes and captures 79.94% of the initial information. The result-
ing liquid water flux u′zq

′
l, an important parameter for representing subgrid-scale moist pro-

cesses, is shown in Fig. 4.10b). While the ROM captures the main spatial patterns of u′zq
′
l,

its vertical properties also agree to a reasonable extent with the DNS profile. This is illus-
trated in Fig. 4.10c), which shows ⟨u′zq′l(z)⟩x,t of both DNS and reduced POD model. Fig-

Figure 4.10: (a) Cumulative POD spectrum: The red-shaded region marks the first 150
modes that make up the Reduced Order Model. (b) Instantaneous snapshot of
liquid water flux u′zq

′
l of DNS (top) and POD model using 150 modes (bottom).

Again, only half of the horizontal domain is shown. (c) Corresponding lateral
time average profile ⟨u′zq′l⟩x,t, where blue denotes the DNS and orange the POD
profile. It can be seen that the ROM captures the main characteristics of the
DNS. However, it demonstrates diminished values within the bulk region and
near z = 0.2 and z = 0.8, indicating the loss of variance.

ure 4.11 shows the resulting spatial modes for selected mode numbers. Similar characteris-
tics to the dry case can be observed. Low mode numbers capture large-scale features, while
higher modes incorporate fine-scale structures. The modes of vertical velocity show domi-
nant patterns in the bulk of the cell. In contrast, moist and dry buoyancy modes exhibit a
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more localized behavior in the boundary layers, where plumes form and detach. The corre-
sponding time coefficients ai(t), shared by all modes, are shown in Figure 4.12. Once more,
alterations in a1 and a2 manifest across extended time scales, with higher frequencies be-
coming more prevalent as the mode number increases.

Figure 4.11: POD spatial modes of horizontal (a-c) and vertical velocity (d-f), as well as
the ones corresponding to the dry (g-i) and moist (j-l) buoyancy deviations from
their respective diffusive profiles. While the low mode numbers capture large-
scale spatial features, higher modes incorporate the fine-scale structure of the
physical fields. For visualization purposes, only a quarter Γ/4 = 6 of the spatial
domain is shown. See also Fig 4.12 for the corresponding time coefficients.

The following section will subsequently use this Reduced Order Model of moist Rayleigh-
Bénard convection as a training database for an Echo State Network. Again, the ESN will
be tasked to infer the underlying POD dynamics. The assessment of the reconstructed moist
convection flow will involve an evaluation of its alignment with regard to dynamic, spatial,
and statistical properties.

4.2.4 POD-RC model of two-dimensional moist Rayleigh-Bénard
convection

4.2.4.1 ESN hyperparameter search

In order to find the best ESN hyperparameter set Ξr, a grid search of its hyperparameters is
performed. The details are listed in Tab. 4.5. The hyperparameters that are considered stay
the same as in Section 4.1. One of the results of the last section was the choice of error mea-
sure. It was shown that the arithmetic average of the normalized average relative error of
the flow’s vertical profiles ENARE is a meaningful measure of the ESN’s performance. For the
present moist case, a similar approach to the one in expression (4.4) is employed. However,
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4.2 Two-dimensional moist convection in an absolutely unstable layer

Figure 4.12: POD time coefficients ai(t) for modes i = 1, 2, 10, 50, 150. The time coeffi-
cients determine the temporal behavior of the associated spatial modes Φi(x, z)
in Fig 4.11. Note the increasing range of frequencies for higher mode numbers.

γr ϱr λr Nr

[0.1, 1.0, 0.1] [0, 3.0, 0.3] {0.035, 0.26, 1.87, 13.68, 100} {1024, 2048}

Reservoir realizations ttrain/tf tval/tf ttest/tf
100 1000 500 500

Table 4.5: ESN hyperparameter grid search procedure for the closed-loop ESN trained
on the MRBC data. Square brackets indicate the range of the searched hyperpa-
rameter: [start, end, stepsize]. Braces indicate an array of values that were used.
ttrain, tval, ttest are the length of the training, validation, and testing interval,
respectively. The first 12.5tf out of the training time was used for initializing
the internal reservoir state. The reservoir density and input scaling were fixed
at Dr = 0.2 and σr = 1.0. The total number of different reservoir settings is
10× 11× 5× 2 = 1100, while a total of 100 × 1100 = 1.1 · 105 reservoirs were run.
The total runtime was 38.75 h.
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now, this measure will additionally incorporate the second buoyancy term as well as its re-
spective flux. Moreover, the NARE of the liquid water flux u′zq

′
l will also be included. In this

way, the accuracy of the convective transport of liquid water is ensured as well. The average
NARE then becomes

ENARE =
1

7

[
ENARE

(
⟨u′x

2⟩1/2x,t

)
+ ENARE

(
⟨u′z

2⟩1/2x,t

)
+ ENARE

(
⟨θ′M

2⟩1/2x,t

)
+ENARE

(
⟨θ′D

2⟩1/2x,t

)
+ ENARE

(
⟨u′zθ′M ⟩x,t

)
+ ENARE

(
⟨u′zθ′D⟩x,t

)
+ ENARE

(
⟨u′zq′l⟩x,t

)]
(4.26)

Fig. 4.13 presents the median validation ENARE error over 100 realizations of W in and W r.
Shown is the error landscape in dependence of the leaking rate and spectral radius (γr, ϱr)
for three values of the regression parameters λr and the two reservoir sizes Nr = 1024, 2048.
Contrary to the previous hyperparameter tuning procedures, the present case investigates
spectral radii larger than unity. It can be seen that low error values can be found at ϱr ≳
1.6 for λr < 100. This indicates that a sizeable spectral radius can be beneficial for a wide
range of hyperparameter settings. Moreover, it can be observed that the low-error basin near
high values of γr and ϱr (see 4.13a,d) expands at increasing λr values. Therefore, a wider
range of γr and ϱr values leads to well-performing ESNs. Moreover, note that for λr = 100,
the smaller reservoir exhibits minor errors near low spectral radius values, while the large
reservoir has a sharp low-error region at ϱr ≳ 0.7. The optimal ESN setting Ξr is listed in
Tab. 4.6 and can be seen in 4.13c) in the shape of a green star marker. In the following, the
testing data set will be used to assess the quality of the inferred moist convection flow.

ENARE γr ϱr λr Nr Dr σr

4.04 · 10−3 0.80 3.00 100 1024 0.2 1.0

Table 4.6: Optimal ESN hyperparameter set Ξr according to the grid search shown in
Fig. 4.13. Note the large spectral radius, which significantly exceeds unity. The
corresponding average NARE ENARE, comprising the NAREs of root-mean-square
fluctuations of u′x, u

′
z, θ

′
M , θ

′
D, as well the fluxes u′zθ

′
M , u′zθ

′
D and u′zq

′
l is also listed.

4.2.4.2 Results of the POD-RC model

The reservoir outputs and the ground truth signal are presented in Fig. 4.14a-e). Their cor-
responding Fourier power spectrum ∥F(·)∥2(f) is shown in Fig. 4.14g-k). The large spec-
tral radius has an impact on the inferred dynamics, which exhibit additional high-frequency
components in comparison to the POD dynamics. This can be seen most notably in a1, a2
and a20, where the power spectrum does not match the ground truth. For a50 and a150, the
frequency spectrum of the reservoir outputs becomes more similar to the one of the POD.
Therefore, it seems that the reservoir has trouble reproducing the scale separation of the
POD time coefficients. A snapshot of the reconstructed fields of ux, uz, and the liquid wa-
ter flux u′zq

′
l in the middle of the validation phase are shown in Fig. 4.15 (a-f). It can be

seen that the autoregressive ESN accurately infers the spatial features of both velocity fields.
Again, the exact position and strength of up- and downdrafts are not reproduced, as the
ESN’s outputs do not align with the POD signal. Nevertheless, the generated two-dimensional
fields are almost indistinguishable from the ground truth. Moreover, the turbulent transport
of liquid water is also reproduced to a high degree. These results are surprising as the ESN
outputs show deficiencies in reproducing all temporal characteristics of the POD time coef-
ficients. Moreover, u′zq

′
l is extremely sensitive to errors, as it incorporates three fields uz, θM
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Figure 4.13: Results of the grid search process of the closed-loop ESN run for two-
dimensional moist Rayleigh-Bénard convection. Shown is the arithmetic aver-
age normalized average relative error ENARE involving the seven fields u′x, u

′
z,

θ′M , θ′D, u
′
zθ

′
M , u′zθ

′
D and u′zq

′
l in dependence of the ESN hyperparameters. The

hyperparameter landscape consists of leaking rate γr, spectral radius ϱr, regres-
sion parameter λr and reservoir size Nr. Here, (a-c) shows Nr = 1024 and (d-f)
shows Nr = 2048. Reservoir density and input scaling were fixed to Dr = 0.2
and σr = 1.0. Moreover, out of the 100 reservoir realizations, the median ENARE

value is shown. The results were computed on the validation data set. The
green star marker labels the lowest error, and hence the optimal hyperparam-
eter set Ξr.
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Figure 4.14: ESN outputs (orange) and the ground truth POD time coefficients (blue) (a-
e) during the validation phase. The corresponding Fourier power spectrum of
each coefficient is shown in (f-j). The ESN hyperparameters were chosen accord-
ing to Ξr in Tab. 4.6. Note the excess high frequencies in the first modes.

and θD (see again (4.21)). Finally, in Fig. 4.15g,h), the resulting cloud cover, i.e., ql > 0, is
presented. It can be observed that the ESN produces a reasonable cloud formation that dif-
fers in cloud position and fine features like the clouds’ tails. Motivated by these results, it is
reasonable to assess whether the ESN is able to infer quantities such as the cloud cover CC.
Here the cloud cover is defined as the ratio of the number of vertical grid lines Nql>0 that
contain at least one mesh point with ql > 0 along their vertical line of sight and the total
number of vertical grid lines Nx (see again Tab. 4.4). Thus follows

CC =
Nql>0

Nx
× 100%. (4.27)

The temporal evolution of the inferred cloud cover is shown in Fig. 4.16a). It can be seen
that similar to the temporal predictions of the POD time coefficients, the modeled variation
of CC possesses a wide range of frequencies that are not present in the ground truth. How-
ever, the overall percentage of cloud cover is inferred to a reasonable degree. The same goes
for the volume average of the positive liquid water content ⟨ql > 0⟩x,z, which can be seen in
4.16b). Moreover, the PDFs of the liquid water flux at the three heights z = 0.1, 0.5, 0.9 are
plotted in 4.16c,d,e). While the ESN captures the symmetric PDF in bulk, it overestimates
the tail values near the boundaries. This can be explained by the larger temporal variance of
the ESN outputs, which could result in an increased presence of outlier values. However, the
overall trend agrees to a reasonable extent. Finally, the POD-RC model will be evaluated in
terms of the vertical properties of the inferred fields, which pose essential parameters in the
super-parameterization procedure. Figure 4.17 shows the lateral-time average profiles of the
root-mean-square values of both velocity fields and moist buoyancy fluctuations θ′M , as well
as of the liquid water flux u′zq

′
l. While certain deficiencies in the vertical velocity fields can

be observed, the buoyancy profile matches fairly well. Moreover, the liquid water flux profile
is captured by the ML model despite small discrepancies near the bulk and in the boundary
layer. This shows that the combined POD-RC model can accurately deduce numerous char-
acteristics of this moist convection flow, even though it possesses higher complexity when
contrasted with the dry case discussed in Section 4.1.
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4.2 Two-dimensional moist convection in an absolutely unstable layer

Figure 4.15: Instantaneous snapshot of horizontal (a,b) and vertical (c,d) velocity fields,
as well as liquid water flux (e,f). The resulting cloud cover, i.e., ql > 0, is shown
in (g,h). Note the small differences like the cloud tails in (h). Both reconstruc-
tions from ground truth (a,c,e,g) and ESN outputs (b,d,f,h) are shown at time
t = 750tf in the validation phase. The corresponding time coefficients are shown
in Fig. 4.14.
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Figure 4.16: (a) Temporal evolution of the cloud cover CC, as defined in (4.27). Shown
is the CC derived from the ESN’s liquid water content (orange) and the corre-
sponding ground truth CC of the POD model (blue). (b) Temporal evolution
of the volume average of the strictly positive liquid water content ⟨ql > 0⟩x,z.
Again, the POD-RC model produces high-frequency components not present
in the ground truth. (c-e) PDFs of the liquid water flux u′zq

′
l, normalized by its

root-mean-square value u′zq
′
lrms, at three different heights z = 0.1 (c), 0.5 (d),

0.9 (e).
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4.2 Two-dimensional moist convection in an absolutely unstable layer

Figure 4.17: Vertical profiles of lateral-time averages ⟨·⟩x,t of horizontal (a), vertical veloc-
ity (b), as well as moist buoyancy variations (c), and liquid water flux (d). The
ESN profiles (dashed orange) align nicely with the ground truth profiles (blue).
Deficiencies can be observed in the bulk for both velocities. The liquid water
flux matches to a reasonable extent as well.
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4.3 Conclusions from this chapter

This chapter studied a combined POD-RC model applied to two direct numerical simula-
tion datasets of two-dimensional Rayleigh-Bénard convection at two levels of complexity.
Moreover, the Echo State Network, the dynamical core of the model, was employed in the
closed-loop mode, where it runs autoregressively and does not require an external input.
This application can be seen as a first step towards an ML-based super-parameterization
scheme, where the aforementioned ML model substitutes the subgrid-scale cloud-resolving
model. This chapter paved the way for such an application in several ways. Firstly, it was
found that the recurrent neural network is not able to reproduce the exact POD trajectory.
In view of the results of Section 3.2, this is to be expected, as the now highly turbulent flow
exhibits chaotic dynamics, and minor errors in the reservoir’s outputs get amplified quickly.
Instead, it was found that the ESN’s outputs can be seen more as another realization of the
chaotic POD dynamics. Hence, it acted more as a generator of temporal features than a
time series predictor. Moreover, it was found that the combination of ESN and POD trans-
lates this generative behavior to spatial and statistical features. Specifically, the POD-RC
model is able to represent characteristic structures like thermal plumes, up-, and downdrafts,
as well as the formation of clouds. Further, it reproduces the vertical properties of both dry
and moist RBC, including the turbulent transport of heat and moisture to a reasonable ex-
tent. Hence, this chapter answered two of the four research questions this doctoral disserta-
tion posed in its introduction. The next chapter will shift the focus from Rayleigh-Bénard
convection towards a convective boundary layer, an essential part of our atmosphere. Con-
trary to the RBC case, the buoyancy boundary conditions in this scenario are given by fixed
fluxes. Further, it will introduce a generative network model for sub-grid scale feature gener-
ation.
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Towards a machine learning
parameterization of the convective
boundary layer

Figure 5.1: Sketch of a convective boundary layer at three subsequent time instances.
The air above the warm ground is heated by the surface heat flux B0, and a
convective fluid motion is initiated. Contrary to RBC, there is no impermeable
top boundary. Instead, warm, non-turbulent fluid imposes a capping inversion
(yellow-shaded region), and strong thermals can penetrate into a thin layer above
the turbulent mixed layer (gray arrows). There, they get deflected and take some
of the warm fluid with them. Consequently, the CBL height h(t) grows over time
t1 < t2 < t3.

The convective fluid motion considered so far in this thesis was driven by a sustained tem-
perature or, more generally, buoyancy difference between two rigid, impenetrable plates.
Convection in nature, on the other hand, often originates from a sustained heat flux rather
than from a ground surface that is held at a homogenous temperature. As discussed in Sec-
tion 1.1.2, the convective motion of the atmospheric boundary layer during daytime is sus-
tained by a continuous heat flux from Earth’s surface, which is itself heated by the incom-
ing solar radiation. Hence, to depict more authentic scenarios of atmospheric convection,
particularly the ABL, it is appropriate to consider a constant warming heat flux, resem-
bling the surface flux B0 from Earth’s surface. Moreover, an impenetrable top boundary
is non-existent for an ABL. Instead, the free, non-turbulent atmosphere is situated above
the convective layer. It acts as a capping inversion that hinders the rising fluid from exiting
the CBL. In turn, strong thermals penetrate into a small region above the turbulent layer,
where they experience a buoyancy reversal and get deflected downwards. This leads to the
entrainment of warm, non-turbulent air into the convective layer and, hence, the growth
of the CBL. A sketch of a CBL growing over time can be seen in Fig. 5.1. As discussed in
Section 1.1.3, General Circulation Models do not, or only partially, resolve CBL processes.
Consequently, parameterization schemes are required to represent their characteristic fea-
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tures. In this chapter, the two remaining research questions of this thesis will be addressed,
i.e., whether the ROM-RC approach can be used to transition between different convection
regimes and whether a generative neural network can model the transient dynamics of a
CBL. The former question will be approached regarding a simplified CBL model in Section
5.1. Related results were published in [120]. Finally, the latter problem is discussed in Sec-
tion 5.2. A corresponding manuscript is currently under review at Journal of Advances in
Modeling Earth Systems. A pre-print can be found in [219].

5.1 Testing the generalizability of an AE-RC model on a
model of the CBL

5.1.1 A simplified model of the convective boundary layer

To test the generalizability of a combined ROM-RC model, a two-dimensional Rayleigh-
Bénard system driven by buoyancy fluxes from the bottom and top is considered. See again
2.1.3 for the definition of the Neumann boundary conditions. Moreover, this initial study
will focus on the scenario of dry convection. Note that this section will consider dimensional
variables. Hence, non-dimensional variables will be marked by an asterisk. Again, all phys-
ical fields are periodic in the horizontal x-direction. Further, as no fixed buoyancy is pre-
scribed at the vertical boundaries, the buoyancy difference

⟨∆b⟩x = ⟨b(z = 0, t)⟩x − ⟨b(z = H, t)⟩x (5.1)

becomes a diagnostic parameter, dependent on the incoming heat fluxes at the bottom B0

and the top B1. The same goes for the Dirichlet Rayleigh number (2.21) and free-fall scales
(2.14,2.16), which can be defined by using ⟨∆b⟩x,t. Hence, it is convenient to non-dimensionalize
the Boussinesq equations (2.7 - 2.9) in terms of the surface flux B0 and the convection cell
height H. One can then define the following characteristic scales: the convective velocity

Uc = (B0H)1/3, (5.2)

the convective time

tc = (H2/B0)
1/3, (5.3)

and the convective buoyancy

bc = (B2
0/H)1/3. (5.4)

While the Prandtl number and aspect ratio, as defined in eq. (2.20) and eq. (2.22) are left
unchanged, two new parameters arise: the convective Rayleigh number

Rac =
B0H

4

νκ2
, (5.5)

and the buoyancy-flux ratio

β = −B1

B0
. (5.6)

Moreover, the diffusive buoyancy profile of the RBC case (2.11) changes as well. From the
two-dimensional version of the Boussinesq equations (2.7 - 2.9) the diffusive buoyancy profile
follows as

bdiff(z, t) =
B0H

κ

(z/H − 1)2 + β(z/H)2

2
+
B0

H
(1 + β)t+ const. (5.7)
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Note that for β = −1, i.e., the flux entering at the bottom leaves at the top, the steady
linear solution that corresponds to the problem with Dirichlet boundary conditions is re-
covered. Further, bdiff is quasi-steady in the sense that the shape of the parabolic profile
remains constant. Integrating the diagnostic equation for the dry buoyancy b in eq. (2.19)
yields that the volume-averaged buoyancy increases linearly in time with

⟨b(t)⟩x,z =
B0

H
(1 + β)t (5.8)

Hence, in the turbulent case, the fluid warms linearly with increasing time. This model re-
sembles a two-dimensional CBL in several terms. Firstly, it captures daytime conditions over
land, where a fluid layer becomes buoyant due to heating from the warm land surface with a
surface flux B0 > 0. The resulting turbulent fluid motion creates a mixed layer in the bulk
of the domain that resembles the vertical homogeneity of the CBL bulk. Further, the effect
of warm entrained air is modeled by a B1 < 0. Therefore, the case β > 0 is of main inter-
est here. Typical atmospheric conditions correspond to β ranging approximately from 0.1
to 0.3 [16, 220]. As β increases further to a value of 0.4, the upper region of the convective
layer is increasingly stabilized. Moreover, preliminary simulations indicate that at β ≈ 0.5,
the mean buoyancy difference ⟨∆b⟩x,t changes its sign, which is in line with different dynam-
ics. Therefore this section will consider β ∈ {0.1, 0.2, 0.3, 0.4}, including the edge case of
β = 0.4. Note that this Rayleigh-Bénard framework does not allow the convection cell height
H to change over time, as would be the case for a CBL growing into a free atmosphere (see
again Fig. 5.1). This case will be considered in 5.2, where a variable CBL thickness h(t)
will be examined. For now, this RBC model of the CBL is an ideal testing bed for the cur-
rent objective, which is to test the generalizability of the ROM-RC model. Specifically, the
ROM-RC model will be employed to generalize from a training dataset with β = 0.3 to the
dynamics of β = 0.1, 0.2, 0.4. Further, an alternative to the POD data compression technique
will be introduced: a convolutional Autoencoder network.

5.1.2 Direct numerical simulation of a two-dimensional convective
boundary layer

Direct numerical simulations at four different buoyancy-flux ratios β are conducted (see Ta-
ble 5.1)1. The Prandtl and convective Rayleigh numbers are fixed at Pr = 1 and Rac =
3 · 108. Again, an extended aspect ratio of Γ = 24 is considered. The two-dimensional
Boussinesq equations were discretized by a high-order spectral-like compact finite-difference
method. The time evolution is treated by a low-storage fourth-order Runge-Kutta scheme.
More details of the numerical method can be found in Mellado and Ansorge [221]. The tlab
software used to perform the simulations is freely available at [183]. As mentioned above,
the buoyancy difference across the cell ⟨∆b⟩x,t is a major dependent variable. Moreover, the
buoyancy difference can be expressed in terms of a Neumann Nusselt number

NuN =
∆bdiff
⟨∆b⟩x,t

=
1− β
2κ

B0H

⟨∆b⟩x,t
. (5.9)

After an initial transient, these quantities relax into a statistically stationary state, as can
be seen in Fig. 5.2a) and b) for all four cases. Moreover, based on ⟨∆b⟩x,t the free-fall scales
tf and Uf in eqs. (2.16) and (2.14) can be computed to make the results comparable to the
dry and moist RBC cases in Chapter 4. A snapshot of the normalized buoyancy

bnorm =
b(x, z)− ⟨b⟩x,t(z = 1))

⟨∆b⟩x,t
(5.10)

1The DNS was part of [120] and was performed by the co-author Juan Pedro Mellado.
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β Γ Rac Pr NFD Nx ×Nz tDNS/⟨tf ⟩t ∆tDNS/tc

0.1 24 3× 108 1 2400× 150 720× 30 2500 1.2− 1.6 · 10−3

0.2 24 3× 108 1 2400× 150 720× 30 2500 1.2− 1.6 · 10−3

0.3 24 3× 108 1 2400× 150 720× 30 2500 1.2− 1.6 · 10−3

0.4 24 3× 108 1 2400× 150 720× 30 2500 1.2− 1.6 · 10−3

β Re ⟨∆b⟩t ⟨tf ⟩t ⟨NuN ⟩t ⟨Ra⟩t τeddy/⟨tf ⟩t
0.1 965 19.0± 0.4 0.23 15.9± 0.3 8.5 · 106 3.03

0.2 894 15.4± 0.3 0.26 17.4± 0.4 6.9 · 106 2.92

0.3 798 10.7± 0.4 0.31 21.9± 0.9 4.8 · 106 2.74

0.4 700 4.1± 0.51 0.5 49.8± 6.6 1.84 · 106 1.94

Table 5.1: Simulation parameters of the direct numerical simulation of the two-
dimensional RBC model of a convective boundary layer. The table contains the
aspect ratio Γ of the two-dimensional cell, the convective Rayleigh number Rac, as
defined in eq. (5.5), the Prandtl number Pr, as well as the grid size of the finite-
difference scheme NFD and the buoyancy flux parameter β, as defined in (5.6).
Nx, Nz denote the uniform grid onto which the DNS data was interpolated. The
DNS covered a period of tDNS with a time-stepping of ∆tDNS , which approxi-
mately gives 0.25⟨tf ⟩t in each case. The buoyancy difference ⟨∆b⟩x,t, free fall time
⟨tf ⟩t, Neumann Nusselt number ⟨NuN ⟩t (see eq. (5.9)), Dirichlet Rayleigh number
⟨Ra⟩t, largest eddy turnover time τeddy and Reynolds number Re (see eq. (2.23))
are diagnostic DNS variables that reach a statistically steady state. More details
can also be found in [120].

Figure 5.2: Temporal variation of (a) the buoyancy difference ⟨∆b(t)⟩x, and (b) the Nus-
selt number NuN . See eqs. (5.1) and (5.9) for their definitions. Both quantities
become statistically stationary after an initial transient. Note that both time
axes are normalized by the time mean of the free fall time tf =

√
H/∆b in the

statistical stationary regime.
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and the vertical flux u′zb
′(x, z) (definition follows) in the statistically stationary state is shown

in figures (5.3) (a-d) and 5.3(e-h). It can be seen that an increasing buoyancy-flux parame-
ter results in a growing thermal boundary layer near the top boundary. For β = 0.4, the
convection is confined to a smaller domain near the bottom plate. From there, thermal plumes
detach and rise into the bulk that is increasingly stabilized from the top, thus causing the
strongly fluctuating time series of the Nusselt number in Fig 5.2b). Naturally, the structures
in the buoyancy flux are also affected by the change in the top flux. As more buoyant fluid
is transported from the top into the center of the turbulent region, the cellular order is in-
creasingly dissolved, which can be seen by prominent thermal plumes in both figures; com-
pare Figs. 5.3a,e) and Figs. 5.3d,h). Finally, all three fields are decomposed into their vol-

Figure 5.3: Instantaneous DNS snapshot of the normalized buoyancy field bnorm (a-d), as
defined in (5.10), and turbulent buoyancy flux u′zb

′′ (e-h) for the four β values
0.1 (a,e), 0.2 (b,f), 0.3 (c,g), 0.4 (d,h). Shown is a snapshot of the fields in the
statistically stationary regime. The four different top boundary conditions (β =
0.1, 0.2, 0.3, 0.4) differ in the width of their top thermal boundary layer. Note
that with increasing β, the range of bnorm increases.

ume mean ⟨·⟩x,z and their fluctuations u′x, u
′
z, b

′. They are given by

ux(x, z, t) = ⟨ux(t)⟩x,z + u′x(x, z, t) , (5.11)

uz(x, z, t) = ⟨uz(t)⟩x,z + u′z(x, z, t) , (5.12)

b(x, z, t) = ⟨b(t)⟩x,z + b′(x, z, t) . (5.13)

Note that ⟨b⟩x,z depends on time (see again (5.8)), as it incorporates the linear warming of
the fluid. Meanwhile, ⟨ux⟩x,z and ⟨uz⟩x,z are statistically stationary and vary weakly about

91



Chapter 5 Towards an ML parameterization of the CBL

their zero mean. The vertical profiles of normalized buoyancy and the root-mean-square val-
ues of b′ and u′z are shown in 5.4a-c) for all four values of β. A reference profile of a simula-
tion of an actual CBL, i.e., with no upper lid, is shown for reference. It can be seen that the
RBC model of the CBL captures main characteristics of the CBL like the well-mixed bulk
and the sharp gradients near the edges.
Additionally, the total buoyancy flux, comprising the convective and diffusive buoyancy
transport,

Fb = ⟨u′zb′⟩x,t − κ
∂⟨b⟩x,t
∂z

, (5.14)

normalized by its bottom value is shown in Fig. 5.4(d). For further processing steps in the
next sections, the DNS data is interpolated to a uniform grid of size Nx × Nz = 720 × 30.
Moreover, for the data reduction approach, the buoyancy field is further decomposed into

b′(x, z, t) = ⟨b(x, z)⟩t + b′′(x, z, t). (5.15)

5.1.3 Dimensionality reduction via an Autoencoder network

In Chapter 4, the Proper Orthogonal Decomposition allowed for compression of the DNS
data to a latent space of size NPOD = 150 with a loss of about 20% of the flow’s variance.
In the present case, however, preliminary studies show that a truncated POD model of each
of the four flows would require up to NPOD ≃ 700 modes in order to represent 80% of the
respective flow’s variance.2. Hence, the linear POD approach is not able to reduce the DNS
data to a sufficiently small representation without losing essential information on the flow.
To circumvent this limitation, this section explores the second data reduction approach in-
troduced in Section 2.3.2, namely a convolutional Autoencoder network.

For each of the β values, a respective neural network is trained to compress a snapshot of
the turbulence fields (u′x, u

′
z, b

′′)T to a latent space a ∈ RNAE with latent space dimension
NAE = 300. Information on the training procedure is shown in Tab. 5.2. All four networks
share the same architecture, where the spatial information is processed and compressed
throughout several convolutional and Max Pooling layers in the Encoder. The channel di-
mensions are subsequently increased from three to 16. Finally, the Decoder uses transposed
convolutions and Upsampling layers that increase the spatial dimensions of the latent space
and decrease the channel size to the original size of the input snapshot. More details about
the Autoencoder architecture can be found in Appendix B.1.2. Table 5.2 lists the Autoen-
coder’s hyperparameters that all four networks share. Each network was trained to mini-
mize the mean-square error loss LwE ,wD in eq. (2.68). The optimization was done by use
of the adaptive moment estimation method (Adam) proposed by Kingma et al. [61]. Fig.
5.5a) shows the training and validation loss of the case β = 0.2. After about 1500 epochs,
the mean square loss does not improve further, and training ceases. Fig. 5.5b) compares the
buoyancy flux u′zb

′′(x, z) of DNS to the, based on 300 features, AE reconstruction. Similar
to the POD method, one finds that the loss of information manifests in a reduced magnitude
of the reconstructed field. While small-scale features are neglected by the network, the over-
all characteristics of the flux agree well with the ground truth. Finally, the vertical profile

2Note that in ref. [120] the POD was taken over a time interval of 500tf (2000 snapshots), for which 300
modes sufficed to capture 80% of the turbulent kinetic energy and buoyancy variance. In the preliminary
study, the whole 2500tf (10000 snapshots) were considered, indicating that the POD in [120] was not fully
converged. See also Appendix B.1.1 for the POD spectra.
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Figure 5.4: Vertical profiles of (a) the normalized buoyancy bnorm, (b) buoyancy fluctua-
tions, (c) vertical velocity fluctuations, and (d) normalized total buoyancy flux
Fb(z)/Fb(z = 0) = Fb(z)/B0. While the boundary conditions significantly affect
the buoyancy and its fluctuations, the influence on the vertical velocity profiles
is less important. The fluxes show linear variation across the cell. The brown
dashed line shows the profiles of an actual CBL growing into a free atmosphere.

NAE η batch size tAE
train/⟨tf ⟩t tAE

val /⟨tf ⟩t tAE
test/⟨tf ⟩t

300 10−5 64 2000 250 250

Table 5.2: Details on the Autoencoder’s training procedure. The latent dimension was
NAE. η denotes the learning rate, i.e., the update speed of the training procedure.
See again eq. (1.7). The batch size refers to the number of training examples pro-
cessed together in a single forward and backward pass. The network was trained
on 8000 snapshots comprising a period of tAE

train, validated on 1000 snapshots com-
prising tAE

val and finally tested on a testing set with the same length as the valida-
tion data. The training was stopped when the AE showed no improvement on the
validation dataset after 50 epochs.
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of the turbulent flux of the ROM reproduces the characteristic linear decay over the height
of the convection domain. See Fig. 5.5c). However, the neural network introduces artifacts
into the profile, as can be seen at z/H ≃ 0.1. Also, the boundary conditions are not ex-
actly reproduced by this method. See, e.g., at the lower boundary. After the AE is trained,

Figure 5.5: Dimensionality reduction via convolutional Autoencoder network for the
case β = 0.2. The latent space dimension was NAE = 300. (a) Training and
validation loss throughout the training procedure. (b) Comparison between DNS
(top) and the AE’s reconstructed buoyancy flux u′zb

′′ (bottom). Similar to the
POD, the characteristics of the flux are reproduced, while small-scale features
are not captured. For better visibility, only half of the horizontal domain is
shown. (c) Lateral-time average ⟨·⟩x,t profiles of the buoyancy flux for the DNS
(blue) and Autoencoder (orange) case. Note the artifacts in the Autoencoder’s
profile near z/H ≃ 0.1.

the Encoder part can compute a low-dimensional representation of each DNS snapshot of
(u′x, u

′
z, b

′′)T . Therefore, the Encoder translates the convection dynamics to dynamics a(t) of
the latent space. These are shown for β = 0.2 in Fig 5.6. Contrary to the POD time coef-
ficients, the AE latent space does not exhibit scale separation among its NAE modes. More-
over, while the POD time coefficients are related to their corresponding spatial modes, the
a of the Autoencoder are non-trivially linked to the trained weights wE , wD of the Encoder
and Decoder network. To get an idea of how the network processes the physical fields, the
reader is referred to Appendix B.1.3.

5.1.4 AE-RC model of a two-dimensional convective boundary layer model

In the following, it will be explored whether the ESN can be used to infer changes in the
convective flow induced by changes in the buoyancy flux at the top of the two-dimensional
domain. A trained network is thus exposed to unseen data at a different physical parame-
ter set. In this way, this procedure will probe the generalization property of the Echo State
Network.

5.1.4.1 Generalization procedure

The aforementioned subject is also connected to a transfer of the learned parameters from
one task to a similar one which is known as Transfer Learning [222]. Due to the computa-
tionally inexpensive training scheme of ESNs, Transfer Learning is not often applied for this
class of algorithms, even though implementations have been proposed very recently [198].
Here, a different approach, sketched in Fig. 5.7, will be taken. A reservoir is trained with
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Figure 5.6: Encoding space dynamics a(t), i.e., the output of the Encoder network for
a given sequence of snapshots of (u′x, u

′
z, b

′′)T . The latent space dimension is
NAE = 300. Shown is the β = 0.2 case. Note that, contrary to the POD, the
reduced space does not exhibit a scale separation among the different mode num-
bers. See again figures 4.3 and 4.12.

the reduced data of one case of buoyancy boundary conditions at z = H, namely β = 0.3.
An intermediate reservoir washout phase clears the reservoir memory of recent β = 0.3 in-
formation and leads to a transition of the reservoir state to one of three different and unseen
convection flows with buoyancy flux parameters β = 0.1, 0.2 or 0.4. Finally, the trained net-
work is used for the prediction of the dynamics and the statistical properties of the unseen
regimes. Specifically, this means that once the ESN has learned to process the data in the
latent space for the case of β = 0.3, it is exposed to unseen data of the three CBL model
cases, β = 0.1, 0.2, and 0.4 without further training adjustments. For this, the reservoir
state r is re-initialized with unseen latent space data. In detail, the reservoir input is aβ=0.1,
aβ=0.2 or aβ=0.4 for a period of ttrans = 25⟨tf ⟩t and the reservoir memory evolves according
to eq. (2.42). Note that this transition time corresponds to about 8 − 12.5 turnover times of
the respective largest eddies. See also Fig. 5.8 where these crossover dynamics are displayed
for one example. Note how the training and prediction dynamics of the reservoir state differ
after this procedure. Therefore, with this washout phase, this procedure intends to transi-
tion to the run with a new β. Starting from this reservoir state, the ESN will autonomously
predict future time steps with its output weights learned for β = 0.3. These predictions are
validated by a direct comparison with aβ=0.1(n), aβ=0.2(n) and aβ=0.4(n) respectively. More-
over, their reconstructions will be examined in terms of spatial and statistical accordance.
The next section will inspect the hyperparameter dependence of the error in the vertical
profiles, i.e., the ENARE. Further, the best ESN settings Ξr will be identified.
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Figure 5.7: Sketch of the ESN generalization procedure. (a) During the training phase,
snapshots of the simulation data for β = 0.3 are encoded into the latent space
via the reduction by AE (denoted as aβ=0.3). A reservoir is subsequently trained
with the latent space. The network learns the dynamics; the optimal output
weights are obtained. (b) In the closed-loop prediction (validation/testing)
phase, the reservoir is then used to infer the dynamics of the target latent spaces
at β = 0.1, 0.2, 0.4 and predicts aβ ̸=0.3. Snapshots of the convection flow can then
be reconstructed and validated by the corresponding Decoder to obtain fully re-
solved fields for the cases of β = 0.1, 0.2, and 0.4.
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Figure 5.8: Generalization procedure: Time evolution of individual components of the
reservoir state r for inference of β = 0.1 in the AE-RC algorithm. During train-
ing, the reservoir is exposed to aβ=0.3. After the training phase, W out is held
fixed, and the memory on the training inputs is cleared, while inputs of aβ=0.1

are given to the reservoir for a period of ttrans = 25⟨tf ⟩t. Simultaneously, the
reservoir builds up a memory of the unseen β = 0.1 case. Finally, the newly
initialized state and an initial input of aβ=0.1 are used to start the autonomous
prediction phase. Line styles for the different phases are given above. Note the
different reservoir dynamics during training and prediction.

γr ϱr λr Reservoir realizations

[0.1, 1.0, 0.1] [0, 2.0, 0.2] {0.5, 5.0} 50

ttrain/⟨tf ⟩t ttrans/⟨tf ⟩t tval/⟨tf ⟩t ttest/⟨tf ⟩t
1000 25 250 250

Table 5.3: ESN hyperparameter grid search procedure for the closed-loop ESN trained
on the β = 0.3 DNS data. The transition to the unseen β = 0.1, 0.2, 0.4 case
is done via the procedure shown in Fig. 5.7. Square brackets indicate the range
of the searched hyperparameter: [start, end, stepsize]. Braces indicate an array of
values that were used. ttrain, tval, ttest are the length of the training, validation,
and testing interval, respectively. The first 12.5tf out of the training time was
used for initializing the internal reservoir state. The reservoir density and input
scaling were fixed at Dr = 0.20 and σr = 1.00. Moreover, the reservoir size was set
to Nr = 3000. The total number of different reservoir settings is 10× 11× 2 = 220,
while a total of 50 × 220 = 1.1 · 104 reservoirs were run. The total grid search
runtime for one target β was 57h.
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5.1.4.2 ESN hyperparameter search

The larger latent dimension, in contrast to the previous chapter, results in a reservoir with
a greater input dimension. Consequently, a larger reservoir is required as well. Moreover,
exhaustive grid searches, as performed in 4.1.3.1 and 4.2.4.1, will now become more compu-
tationally intensive. Hence, for the current task, the hyperparameter search space will be
limited to the leaking rate γr, the spectral radius ϱr and the regression parameter λr in or-
der to keep the computation time of the grid search similar to the ones of the last chapter.
The reservoir size and density are fixed at Nr = 3000, Dr = 0.2, and a grid search for the
three generalization tasks is computed. Furthermore, the input scaling is set to σr = 1.0.
In alignment with prior methodology, an average NARE will be established as a metric for
measuring errors. Here, the natural choice is

ENARE =
1

4

[
ENARE

〈
u′x

2⟩1/2x,t

)
+ ENARE

〈
u′z

2⟩1/2x,t

)
+ ENARE

〈
b′′

2⟩1/2x,t

)
+ ENARE

〈
u′zb

′′⟩x,t
)]
, (5.16)

i.e., involving the three physical fields and the associated buoyancy flux. The resulting vali-
dation NARE in dependence of the ESN hyperparameters for each target β is shown in Fig.
5.9. The first thing that is striking is that the ESN, trained on β = 0.3, can generalize more
easily towards β = 0.4, as the ENARE values are all much below the ones for β = 0.1 and
0.2. This is somewhat unexpected, as the edge case β = 0.4 exhibits strongly fluctuating
properties. See e.g. the Nusselt number in Fig. 5.2b). Moreover, β = 0.1, 0.2 both exhibit
a similar error dependence on the spectral radius, leaking rate, and regression parameter.
At sufficiently low leaking rate values, the error becomes almost independent of the spectral
radius. Interestingly, for β = 0.1, the optimal ESN possesses a spectral radius ϱr = 0.0, ef-
fectively deactivating its nonlinear memory. This might indicate that β = 0.1 is too hard
to infer based on the learned weights for β = 0.3. The optimal hyperparameter set for each
target β is listed in Tab. 5.4. The corresponding normalized average relative errors are listed
in 5.5.

β γr ϱr λr Nr Dr σr

0.1 0.1 0.0 0.5 3000 0.20 1.0

0.2 0.1 0.2 0.5 3000 0.20 1.0

0.4 0.1 0.4 5.0 3000 0.20 1.0

Table 5.4: Optimal ESN hyperparameter set Ξr of each generalization procedure ac-
cording to the ESN hyperparameter grid search. The optimal setting is marked
with a green star symbol in the error landscape in Fig. 5.9. The corresponding
NARE values are listed in Tab.5.5.

5.1.4.3 Results of the AE-RC model

By decoding the inferred latent spaces in the testing phase using eq. (2.67) the three physi-
cal fields are reconstructed. Figure 5.10 shows instantaneous snapshots of the local turbulent
kinetic energy

Ekin(x, z, t) = 0.5(u′x
2
(x, z, t) + u′z

2
(x, z, t)) (5.17)

turbulent flux u′zb
′′(x, z), and buoyancy fluctuations b′′(x, z) of inferred fields (ESN) and

ground truth (AE). Here, the predicted and true fields are almost indistinguishable in terms
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Figure 5.9: Results of the grid search process of the closed-loop ESN run trained for the
generalization procedure described in 5.1.4.1. The ESN was trained on data from
the β = 0.3 case. Shown is the arithmetic average normalized average relative
error ENARE involving the fields u′x, u

′
z, b

′′ and u′zb
′′, as defined in eq. (5.16). The

target β values were 0.1 (a,b), 0.2 (c,d), and 0.4 (e,f). The hyperparameter land-
scape consists of leaking rate γr, spectral radius ϱr, and the regression parameter
λr. Reservoir size, density and input scaling were fixed at Nr = 3000, Dr = 0.2
and σr = 1.0. Moreover, out of the 50 reservoir realizations, the median ENARE

value is shown. The results were computed on the validation data set. The green
star marker indicates the lowest error, and hence the best hyperparameter set Ξr

to each target β value.
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β ENARE

(
⟨⟨u′x

2⟩1/2x,t

)
ENARE

(
⟨u′z

2⟩1/2x,t

)
ENARE

(
⟨b′′2⟩1/2x,t

)
ENARE (⟨u′zb′′⟩x,t)

0.1 3.60 · 10−2 3.62 · 10−2 8.20 · 10−3 1.99 · 10−2

0.2 3.34 · 10−2 2.27 · 10−2 1.11 · 10−2 2.41 · 10−2

0.4 1.63 · 10−2 7.02 · 10−3 7.15 · 10−3 1.89 · 10−2

β ENARE

0.1 2.50 · 10−2

0.2 2.29 · 10−2

0.4 1.23 · 10−2

Table 5.5: Normalized average relative errors of the optimal ESN setting Ξr listed in Tab.
5.3. Listed are the individual NARE values of horizontal and vertical velocities,
buoyancy fluctuations, and convective buoyancy flux. Moreover, the arithmetic
mean of all four NAREs ENARE is also shown. This measure is also depicted in
Fig. 5.9.

of their features. Roll patterns, as well as thermal plumes detaching from the bottom, are
reproduced very naturally. Moreover, the fine features of the buoyancy flux are also inferred
to a reasonable extent. The corresponding line-time averaged profiles of the physical fields
are illustrated in 5.11. Different from the linear POD method, the AE is trained by a gra-
dient descent procedure, which introduces artifacts in the statistical profiles of the ground
truth (solid lines). The loss of information in the Encoder-Decoder structure thus impacts
the statistical features of the reconstructed flow. This is especially the case for second-order
statistics like ⟨Ekin(z)⟩x,t and ⟨u′zb′′(z)⟩x,t. Naturally, this behavior translates to the inferred
profiles. It is possible that this error can be reduced by introducing an additional term to
the loss function of the AE that penalizes large deviations from the mean profiles. This is
not applied here. Nevertheless, the differences are acceptable, as the asymmetry and shape
of the true profiles are retained. The inferred vertical profiles of β = 0.1 and 0.2 show higher
discrepancies in the turbulent kinetic energy and vertical velocity. However, the root-mean-
square of buoyancy, as well as the profile of the buoyancy flux, are reproduced nicely. As
mentioned above, the β = 0.4 case exhibits the lowest average NARE and, hence, agrees
very well with its ground truth. However, small errors are found close to the top boundary
in the root-mean-square profile of the buoyancy. Finally, Fig. 5.12 shows the inferred latent
space variables a(t) and the corresponding Fourier power spectra for the β = 0.1 case. It
can be seen that the generalization procedure does capture the low-frequency components
of the target parameter dynamics. However the spectras’ tails at higher frequencies is not
reproduced. Similar behavior can be observed for the other two cases β = 0.2 and 0.4. See
Appendix B.1.4 for the corresponding results. This suggests that the presented generaliza-
tion procedure is able to reproduce spatial and statistical features of the target flow but fails
to capture their temporal aspects.

While the present two-dimensional CBL model shares several characteristics with a con-
vective boundary layer, it still lacks the transient growth behavior of an actual CBL that
grows throughout the diurnal cycle. However, this behavior will become challenging to re-
produce using the current combination of data compression technique and Reservoir Com-
puting model. This is because all considered convection models so far entered a state of
statistical homogeneity, where spatial and temporal patterns could easily be extracted by
means of a POD or Autoencoder network. However, in reality, these patterns change dras-
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Figure 5.10: Inferred fields for β = 0.1. Instantaneous snapshots of the turbulent kinetic en-
ergy (a,b), the buoyancy flux u′zb

′′ (c,d), and the buoyancy fluctuations b′′(e,f)
at t = 375⟨tf ⟩t in the middle of the testing phase. The ground truth (AE) re-
constructions are (a,c,e), and the ESN predictions are (b,d,f). For better visibil-
ity, only 75% of the horizontal domain is shown.

tically over time as the CBL thickness increases during the day. The following section will,
therefore, introduce an alternative approach to capture this transient behavior. It will make
use of a Generative Adversarial Network and a preceding data augmentation step that is
motivated by the physical scaling laws.
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Figure 5.11: Line-time average profiles of the optimal ESNs listed in Tab. 5.4. All re-
sults were trained on the case β = 0.3 Shown are the profiles of (a-c) turbulent
kinetic energy, (d-f) root-mean-square of the vertical velocity fluctuations, (g-
i) root-mean-square buoyancy fluctuations and (j-l) convective buoyancy flux.
The Autoencoder introduces artifacts in the statistical profiles (solid lines) of
β = 0.1 (blue) in the first column, β = 0.2 (orange) in the second column, and
β = 0.4 (green) in the third column. The dotted lines mark the ESN predic-
tions.
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Figure 5.12: Inferred time series of selected AE latent space variables for the case of β =
0.1. (a-e) The ESN output (orange) is compared to the ground truth (blue).
(f-j) The corresponding Fourier power spectrum is shown to the right. It can
be seen that the inferred dynamics do not capture the spectrums tails at high
frequencies. The inferred signals for the other two cases are shown in Appendix
B.1.4
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5.2 A physics-informed generative neural network approach to
the parameterization of the CBL

In this section, both the ROM-RC approach and the Rayleigh-Bénard model will be aban-
doned. Instead, a convective boundary layer growing into a stably stratified atmosphere
will be considered. Moreover, the application of a generative neural network to DNS data
of the aforementioned system will be explored. The following section will provide an intro-
duction to the specifics and the physical context of a CBL under dry and shear-free condi-
tions. Subsequently, the findings from direct numerical simulations conducted on the CBL
will be examined. Following that, information regarding the generative neural network and
its augmented training dataset will be presented. Lastly, the performance of the trained ma-
chine learning model in terms of its ability to capture the transient spatial and statistical
characteristics of convective flow will be evaluated in three critical zones: the surface, mixed
layer, and entrainment layer. To conclude, the results are compared to a conventional eddy-
diffusivity mass-flux parameterization scheme commonly used in General Circulation Mod-
els.

5.2.1 A dry convective boundary layer growing into a stratified free
atmosphere

A dry convective boundary layer can be described by the dimensional form of the three-
dimensional Boussinesq equations (2.7 - 2.9) for a velocity field (ux, uy, uz)

T and buoyancy
field b. The boundary conditions are no-slip for the velocity, while a constant buoyancy flux
B0 is used at the bottom. At the top, a constant buoyancy flux is assumed as well. Con-
trary to the previously studied RBC setups, a CBL has no top lid that confines the fluid
motion. Numerically, this can be implemented by placing the top boundary of the computa-
tional domain far enough from the bottom boundary, s.t., the boundary layer at the bottom
plate is not affected by the actual top lid. In this way, the height of the computational do-
main becomes unimportant for a CBL simulation. Moreover, the fluid above the convective
boundary layer is stably stratified due to the warm, non-turbulent atmosphere (see Fig. 5.1
again) sitting on top of the CBL. This capping inversion hinders the growth of the convec-
tive layer and leads to the formation of an entrainment layer between the mixed CBL and
non-turbulent fluid. In practice, this stratification is implemented by initializing the buoy-
ancy with a corresponding vertical background profile

bbg = N2
0 z + f(z) (5.18)

where N0 is again the Brunt-Väisälä buoyancy frequency as defined in eq. (4.7) and f(z)
only non-zero near the bottom to assure the bottom Neumann boundary condition. In this
way, convective motion is initiated near the warm surface. The thickness h(t) of the CBL
grows in time as strong thermals shoot into the non-turbulent atmosphere and entrain warm
air into the CBL. Here, the height of the CBL is defined in terms of the encroachment height [223,
224]

h =

2N−2
0

z∞∫
0

(⟨b⟩x,y − bbg)dz

1/2

, (5.19)

where the upper integration limit denotes the height of the computational domain3. There-
fore, the CBL thickness is defined as the height, where the mean lateral buoyancy ⟨b⟩x,y
3Note that previously z∞ was also the height of the convection layer, denoted as H.
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changes from vertically constant, well mixed inside the turbulent CBL, to the linear back-
ground profile bbg in the capping free atmosphere. Another effect is that this stratification
hinders the growth of the CBL thickness to the point that the characteristic time for changes
of mean properties is small compared to the large eddy turnover time, and a statistically
quasi-steady state is observed. It is this phase that will be of interest for the present gener-
ative ML application. Furthermore, the thickness of the entrainment layer can be character-
ized by the reference Ozmidov scale

L0 =

(
B0

N3
0

)1/2

. (5.20)

Note that L0 is constant in time, while h increases over time. Consider the mean buoyancy
equation with statistical homogeneity in the horizontal directions. Then starting from (2.9)
it can be shown that (5.19) yields

h(t)

L0
=

[
2N0(t− t0)

(
1 +

1

PrRe0

)]1/2
, (5.21)

where t0 is an integration constant, and the buoyancy Reynolds number Re0 is defined as

Re0 =
B0

νN2
0

. (5.22)

The convective Rayleigh number (5.5), now defined via h(t) instead of H, becomes time-
dependent as well. As mentioned above, here, the CBL is considered without phase change.
In this way, the present study can be seen as a proof of concept, which tries to ascertain the
benefits and trade-offs of the generative ML approach. However, the following approach can
readily be extended to the moist case. Finally, the buoyancy flux is the central transport
measure. It couples buoyancy and vertical velocity fluctuations, i.e., the deviations from the
respective vertical mean profiles of both fields defined as

ux(x, y, z, t) = ⟨ux(z)⟩x,y + u′x(x, y, z, t), (5.23)

uy(x, y, z, t) = ⟨uy(z)⟩x,y + u′y(x, y, z, t), (5.24)

uz(x, y, z, t) = ⟨uz(z)⟩x,y + u′z(x, y, z, t), (5.25)

b(x, y, z, t) = ⟨b(z)⟩x,y + b′(x, y, z, t), (5.26)

where ⟨·⟩x,y denotes the average over the horizontal directions. As touched on in the intro-
duction, a large-scale model that does not resolve the fluctuations often employs an eddy-
diffusivity mass-flux model for such quantities. This scheme models the buoyancy flux as,

ρ0⟨uz ′b′(z)⟩x,y = −ρ0κt
∂⟨b⟩x,y
∂z

+Mu(⟨b(z)⟩u − ⟨b(z)⟩x,y) , (5.27)

where ρ0 is the constant reference density in the convective boundary layer, and Mu is the
mass flux parameter. Here, ⟨·⟩x,y are horizontal plane averages. The first term in (5.27) is
the standard Boussinesq term for a turbulent stress, which contains the turbulent diffusivity
κt. The second term on the right-hand side stands for the mass-flux parametrization, which
has to be included when the mean buoyancy gradient vanishes for the well-mixed layer, as is
the case here. A detailed derivation of the mass flux parameterization can be found in Ap-
pendix B.2.1.

5.2.2 Direct numerical simulation of a convective boundary layer

A DNS of a three-dimensional CBL in a computational domain x, y ∈ [−12.5, 12.5], z ∈ [0, 3]
was conducted, again employing the tlab code [183]4. Discretization in space is performed

4The DNS was part of [219] and was performed by the co-author Juan Pedro Mellado.
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using sixth-order spectral-like compact finite differences on a structured Cartesian grid [221].
A low-storage fourth-order accurate Runge–Kutta scheme is used for time stepping. The dis-
crete solenoidal constraint is satisfied to machine accuracy using a Fourier decomposition
along the periodic horizontal planes in x-y directions and a factorization of the resulting set
of equations along the vertical coordinate z. The corresponding simulation parameters are
listed in Tab. 5.6. The final DNS snapshots are collected at three heights: z/h = 0.2 close
to the surface layer, z/h = 0.5 in the mixed bulk, and the entrainment zone at z/h = 1.0.
The horizontal slices are interpolated to a uniform grid of size Nx × Ny = 512 × 512 for
further use in the following sections. Fig. 5.13 illustrates the temporal growth of the con-

L0 N0 B0 t0 ν Pr NFD Nx ×Ny Re0

0.025 11.69 1.0 −0.5078 1.49 · 10−3 1 2400× 2400× 210 512× 512 4.894

Table 5.6: Simulation parameters of the direct numerical simulation of the three-
dimensional dry convective boundary layer. Presented are the Ozmidov length
L0 (5.20), buoyancy frequency N0, surface flux B0, reference time t0, see (5.21),
kinematic viscosity ν, Prandtl number Pr, finite-difference grid size NFD. horizon-
tal slices of the DNS were interpolated to a uniform grid of size Nx × Ny. Fur-
ther, the buoyancy Reynolds number Re0 (5.22) is listed as well. The final CBL
height at the end of the DNS was 48.41L0. The DNS aims to replicate the two-
dimensional system of 5.1. As parameters like Γ and Ra are now time-dependent,
the DNS was instructed to assume values of Rac = 3 · 108 and Γ = 25 during its
runtime.

Uc

Uc2

Figure 5.13: Transient temporal growth of the atmospheric boundary layer. (a-c) Con-
tours of the vertical velocity fluctuations uz′ viewed from the top onto the
whole horizontal domain three different times. (d-f) Corresponding turbulent
kinetic energy, Ekin = 0.5(u′x

2 + u′y
2 + u′z

2), in a vertical contour plot. The hor-
izontal extension of the cut is indicated in (a-c). (g) panels (a-c). See also Fig.
5.14 for the corresponding vertical profiles of the buoyancy.

vective boundary layer during the DNS. While panels (a-c) provide a view from the top for
the vertical velocity fluctuations with an aggregation of the convection cells, panels (d-f) dis-
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Figure 5.14: (a-c) Plane averaged vertical profiles of the buoyancy versus height at the
three time instants from Fig. 5.13. (d) Rescaled vertical profiles of the three
time instants over the rescaled height z/h. By doing so, all the profiles merge
into a single unified profile. It is such a renormalization procedure that will be
exploited for the training database of the generative neural network.
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play the turbulent kinetic energy (TKE) in a vertical cut, illustrating the transient growth
process. Moreover, Fig. 5.14 demonstrates that this transient growth follows a self-similar
process and a rescaling of lengths with h(t) and buoyancy with N2

0h(t) collapses the vertical
mean buoyancy profiles ⟨b(z, t)⟩x,y at different times to a unified profile. It is precisely this
self-similar behavior given by (5.21) for the growth of the mesoscale patterns in vertical and
horizontal directions, which will be used to augment the training database for the generative
network.

The prefactor Mu in the second term of (5.27) incorporates the specifics of the upward trans-
port. As detailed in Appendix B.2.1.2, the unknown mass flux Mu is estimated as a product
of the updraft area fraction, au, and the excess of the mean vertical velocity in the updraft
regions, ⟨uz⟩u, over the mean upward motion, i.e.,

Mu ≈ ρ0au(⟨uz⟩u − ⟨uz⟩x,y) . (5.28)

The horizontal cross-section of the layer Atotal is decomposed into disjoint strongest up-
draft (u) and downdraft (d) regions, as well as the remaining intermediate motions region
(i), i.e., Atotal = Au ∪ Ad ∪ Ai. Moreover, the environment region is further refined, typ-
ically taken as Ae = Ai ∪ Ad, e.g., when the mass-flux models are discussed. This step
is taken to analyze the asymmetry between the up- and down-welling motion of the same
strength. Note that while ⟨·⟩x,y are horizontal averages with respect to the whole cross-
section Atotal, ⟨·⟩u denotes an average over the updraft regions Au, see also eq. (5.27). Fig-
ure 5.15 underlines the observation from Fig. 5.13 more quantitatively. The buoyancy flux is
arranged in narrow updraft and broad downdraft regions in the convective boundary layer.
Here, the probability density functions (PDFs) for both cases at different times of the tran-
sient growth at half-height are presented in panels (a,b). A direct comparison of both panels
shows that the downdraft distributions have broader tails. Consequently, downdrafts occupy
slightly broader areas, which underline the top-down asymmetry of the convective motion,
see also panel (c). The asymmetry becomes stronger the closer one moves to the surface (not
shown). Moreover, it can be seen that the PDFs collapse increasingly better on each other
in the core and parts of the tails as h/L0 grows. The insets in Fig. 5.15(a) point out that
the cell width of the updraft patterns grows with time.

5.2.3 Generative machine learning model of the CBL

5.2.3.1 Generative adversarial networks

In this section, the generative machine learning model and its architecture are introduced.
Specifically, this part of the thesis will make use of a Generative Adversarial Network (GAN)
[225]. DNS data will be denoted in short by x, following the general machine learning nomen-
clature. Here the input will be x =(b′, u′z). Figure 5.16 illustrates the concept of the two-
component neural network. A GAN is a neural network comprising two interconnected and
adversarial components: a generator G and a discriminator (or critic) D. The generator is
seeded by random latent variables ξ ∼ N (0, 1)5 and generates synthetic data xG =(u′z

GAN(x, y),
b′GAN(x, y)), here, horizontal slices of fluctuations of vertical velocity and buoyancy. The dis-
criminator’s role is to distinguish between the synthetic data produced by the generator and
a true DNS snapshot uz

′(x, y), b′(x, y). It then emits a score indicating whether the current
input snapshot stems from the DNS, labeled as real, or the generator, labeled as fake. The
two components are trained simultaneously in a competitive manner, with the generator
striving to generate data that can fool the critic and the critic continuously improving its

5Note that ξ must have the same dimensions as the output of the generator.
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Figure 5.15: Statistics of the up- and down-welling fluid motion in the convective
boundary layer (top 95% of uz-values). (a) Probability density functions
(PDFs) of the area elements Au,j of the up-welling fluid motion normalized
by the horizontal updraft area Au =

∑
j Au,j as a function of h/L0 (see color

legend in (b)). Note that the area fraction in the mass-flux scheme is au =
Au/Atotal. The two insets display a cutout of the updrafts in a fixed horizontal
plane z = 0.5 at different times. (b) PDF of the area elements Ad,j of the down-
welling fluid motion normalized by the horizontal downdraft area Ad =

∑
j Ad,j

as a function of time. (c) Horizontal cutout, which illustrates the decomposition
of Atotal into regions of strongest updrafts Au, strongest downdrafts Ad, and the
intermediate motions Ai. Note that the union of the regions of the strongest
downdrafts and intermediate motions yields the environment Ae for the mass-
flux formulation.

Figure 5.16: Generative Adverserial Network (GAN) scheme. The GAN consists of two
networks: the generator G, which is trained to mimic DNS data together with
its statistical properties. Secondly, the discriminator, or critic network, D is
trained to classify an input image as stemming from the DNS or the generator.
Both networks are trained against each other, s.t., similar to a two-player game,
an equilibrium between both players is reached.
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ability to classify the data correctly. This adversarial relationship drives the GAN to pro-
duce increasingly realistic, high-quality synthetic data. The training of the network is com-
pleted once the Nash equilibrium is reached [226] and the discriminator is unable to distin-
guish synthetically generated and ground truth data. Then, the generator can be decoupled
from the discriminator and operate autonomously. However, GANs are notoriously hard to
train [227]. Common issues include a vanishing generator gradient and a non-converging ad-
versarial training process. To circumvent these problems, the Wasserstein–GAN (WGAN)
formulation from Arjovsky et al. [228], which solves the vanishing gradient problem of the
generator of the original GAN model, will be employed. This is done using the Wasserstein
distance (or Earth-movers distance) between the synthetic and real data in the WGAN loss
function. In this way, the generator network will overcome the initial phase, where the dis-
criminator will quickly identify the generated data samples, and the GAN training ends in
favor of the critic network. Furthermore, the WGAN shows greater stability and conver-
gence during the training. Details on the specific neural network architecture that was used
here can be found in Appendix B.2.2.1

In the WGAN formulation, the output of the critic corresponds to a score that grades the
origin of the input. Therefore, the critic is trained to output a higher score for the DNS in-
put x than for its synthetic counterpart xG. The generator on the other hand, is trained to
maximize the critic’s output for xG. The Wasserstein distance is incorporated into the dis-
criminator loss function using the Kantorovich-Rubinstein duality [229]. However, this re-
stricts the critic D(·) to be a 1-Lipschitz function (i.e., the Lipschitz constant is one), which
can be enforced by an additional gradient penalty term [230]. The WGAN discriminator loss
function then reads

LD = E
xG∼PG

[D(xG)]− E
x∼Pr

[D(x)] + λ E
x̂∼Px̂

[(∥∇x̂D(x̂)∥2 − 1)2], (5.29)

where x is sampled from the real, i.e., DNS data distribution Pr and xG from the gener-
ator model distribution PG. The latter is given by G(ξ) with the random latent variable
ξ ∼ N (0, 1) sampled from a standard normal distribution. The last term in (5.29) is the
gradient penalty term, which enforces the 1-Lipschitz condition on the discriminator. The
random samples x̂ are sampled from straight lines χx + (1 − χ)xG between pairs of x and
xG, as proposed in by Gulrajani et al. [230]. Here, χ ∼ U [0, 1], i.e., uniformly distributed be-
tween 0 and 1. The gradient penalty weight λ is a hyperparameter. Moreover, the generator
loss is given by

LG = − E
xG∼PG

[D(xG)]. (5.30)

Finally, the Wasserstein loss function, which is given by

LWGAN = E
x∼Pr

[D(x)]− E
xG∼PG

[D(xG)] , (5.31)

reflects the WGAN performance. A detailed WGAN training procedure is summarized in
Algorithm 1 in Appendix B.2.2.2.

5.2.3.2 Physics-informed training data augmentation

The interpolated horizontal slices of DNS data are used as a training database for the GAN.
For this, the data is augmented in a re-normalization procedure that removes the major
first-order effects of the CBL growth. To this end, the DNS snapshots in the statistical quasi-
steady phase of the CBL are used. Remember that, in this phase, spatial patterns of the up-
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and downdrafts are not affected by the very initial fast CBL growth. See Fig. 5.15. To this
end, the cutoff value of h/L0, after which all re-normalized snapshots can be considered for
the training routine, is determined by the following procedure. First, the individual up- and
downdraft areas Au and Ad, given by values uz > 0.95max(uz) and uz < 0.95min(uz) re-
spectively, are retrieved using the algorithm introduced in ref. [231] via the OpenCV [232]
library implementation. Finally, the Kullback-Leibler divergence (KLD) between the PDF p
of up- or downdrafts at h/L0 with the final PDF pfinal at h/L0 = 48.41 (i.e., the end of the
recorded snapshots) is computed. For updrafts, it is then given by

DKL(p∥pfinal) =
∑
Au

p(Au,j) log

(
p(Au,j)

pfinal(Au,j)

)
. (5.32)

Figure 5.17 shows the KLD for the three planes over h/L0. The slope of the KLD becomes
less steep near h/L0 = 35.87 (start of green shaded area). After this value, all snapshots
are considered for the GAN training. In this statistical quasi-steady regime, a new set of

Figure 5.17: Kullback-Leibler divergence between the probability density functions of
normalized updraft (downdraft) area elements Au,j (Ad,j) at h/L0 and the cor-
responding final probability density function. The green shaded area marks the
snapshots that were considered for the training of the GAN. It comprises the
period h/L0 ∈ [35.87, 48.41].

variables can be introduced that embed, to leading order, the transient temporal growth of
the boundary layer height. To this end, the turbulence fields are rescaled with the similarity
variables, which correspond to the mixing layer theory by Deardorff [233]. These variables
are given by the convective scales (5.2 - 5.4), where the constant RBC height H is substi-
tuted by the increasing CBL height h(t). This gives the following transformation rules,

uz
∗(x∗, y∗, z∗, h/L0) =

uz(x, y, z, t)

Uc(t)
, b∗(x∗, y∗, z∗, h/L0 =

b(x, y, z, t)

bc(t)
, (5.33)

with rescaled time h(t)/L0 and the normalized coordinates x∗, y∗, z∗ = (x/h(t), y/h(t),
z/h(t)). By doing so, the CBL height is fixed. This has implications for the horizontal ex-
tent of the normalized snapshots as the aspect ratio of the domain decreases over time. Hence,
to compare two snapshots at two different h/L0 with the same horizontal extent, one has
to crop the snapshot with the smaller value of h(t)/L0. This in turn results in similar-sized
spatial patterns of uz

∗ and b∗ and thus of uz
∗′b∗′ at different times h∗. In this way, the first-

order effects of the transient CBL growth in a fixed plane z∗ = const are removed. This
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Figure 5.18: Renormalization and cropping procedure illustrated for the vertical veloc-
ity fluctuations u′z

∗ in plane z∗ = 0.5 for four time instances h/L0. (a-d) Orig-
inal simulation snapshots of uz

′(x, y). (e-h) Rescaled fluctuations u′z
∗(x∗, y∗)

in the new coordinate system (x∗, y∗). (i-l) u′z
∗(x∗, y∗) cropped to the domain

x∗, y∗ ∈ [−L̃, L̃] with L̃ ≈ 8.5 at time h/L0 = 48.41 of panel (l). See also the
red box in the middle row. The data preparation for the buoyancy fluctuations
proceeds along the same lines. While the snapshots in the initial row display
significant dissimilarities, the augmented snapshots in the final row demonstrate
more consistent spatial characteristics.
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renormalization process is illustrated in Fig. 5.18. In panels (i-l), it can be seen that for suf-
ficiently large values of h/L0, this procedure produces horizontal slices with comparable flow
patterns. The same does hold for the buoyancy fluctuations b′ (not shown). It is these flow
patterns that the GAN will be trained with to generate synthetic data. The training data of
the GAN is then chosen to be a horizontal slice at a plane z∗ with constant horizontal ex-
tent in normalized coordinates for all snapshots. In summary, this results in an augmented
training database that encodes the effects of a growing boundary layer to the first order.
The similar spatial features are then easily picked up by the generator network. Finally, in
order to obtain synthetic snapshots at any given rescaled time h/L0, the re-normalization
procedure is simply reversed.

5.2.3.3 GAN training

Three GANs are trained for the planes z∗ = 0.2, 0.5 and 1.0, respectively. In this way, the
ML approach enables a fast generation of spatial and statistical information at three impor-
tant and representative heights: the surface and mixed layer and the entrainment zone. All
GANs are trained for 2000 epochs using the Adaptive moments estimation (Adam) opti-
mizer [61]. An early stopping routine ceased training after 300 epochs of no improvement of
the Wasserstein metric LWGAN. The choice of GAN hyperparameters for the three planes is
listed in Tab. 5.7. Figure 5.19 shows the losses for both the generator and the discriminator,
together with the Wasserstein loss for all three GANs. It can be seen that all losses converge
nicely to an equilibrium state of both the generator and critic. In this converged regime, the
generator can then be used for the task of subgrid-scale feature generation.

plane z∗ η batch size ND/NG λ Ntrain

0.2 2 · 10−5 64 12 11 550

0.5 2 · 10−5 64 11 10 550

1.0 5 · 10−5 64 90 10 550

Table 5.7: GAN hyperparameters. As described in Section 1.2, the learning rate η regu-
lates the speed of the gradient descent update step. Again, the batch size refers
to the number of training examples processed together in a single forward and
backward pass. The parameter ND/NG signifies the degree to which the critic
network undergoes additional training compared to the generator network. The
gradient penalty parameter λ controls the strength of the 1-Lipschitz condition in
(5.29). Each GAN was trained on Ntrain DNS training samples, which covered the
period h/L0 ∈ [35.87, 48.41]. Each training run was performed on two NVIDIA
A100 Tensor-Core GPUs and took up to 24h to finish. See also Algorithm 1 in
Appendix B.2.2.2 for the role of each hyperparameter.

5.2.4 Results of the generative machine learning method

5.2.4.1 Structure and statistics of the generated sub-grid scale fields

Figure 5.20a-f) demonstrates that the GAN can produce strikingly realistic horizontal slices
of uz

′(x, y), b′(x, y), and uz
′b′(x, y) that reproduce all spatial features of all (ground truth)

fields, here for half-height z∗ = 0.5 at h/L0 = 48.41. Moreover, the generated data repro-
duces the highly non-Gaussian, skewed PDFs of all three fields almost perfectly, see panels
(g-i). Even far-tail events are captured fairly well in all three cases. This has direct implica-
tions for a machine learning-based convective parameterization, as information on the spatial

113



Chapter 5 Towards an ML parameterization of the CBL

Figure 5.19: GAN Training loss of the three neural networks at height z∗ = 0.2 (a), 0.5
(b) and 1.0 (c). The discriminator (blue) and generator (orange) loss LD and
LG converge towards individual values. The Wasserstein loss LWGAN (green)
measures the quality of the GAN results. Hence the parameters of the GAN are
saved at the minimum Wasserstein loss value.

organization of individual plumes becomes available in contrast to the physical parameteri-
zation models based on means and Gaussian statistics. Additionally, the derived PDFs allow
access to the high-order statistics of the fields, such as the strongest updrafts that shoot into
the stably stratified layer above the CBL. Similar results can be observed for the distinct
patterns and PDFs at z∗ = 0.2 in Fig. 5.21, slightly above the surface layer, and for z∗ = 1.0
in Fig. 5.22, in the entrainment zone.

5.2.4.2 Transient time evolution

Motivated by these results, the GAN’s performance in reconstructing the transient statistics
is evaluated. Figure 5.23 reports the turbulence statistics with respect to time. Panels (a-c)
of the figure presents the PDFs of uz

′/σuz
′ , b′/σb′ , and uz

′b′/σuz
′b′ where the corresponding

σ2p(t) = ⟨p2⟩x,y for p = {uz ′, b′, w′b′}. It is seen that the GAN generates the correct time evo-
lution of the statistics and the corresponding moments. Panels (d-f) show the time evolution
of the fluctuations σ2uz

′b′ = ⟨(uz ′b′)2⟩x,y and the normalized third- and fourth-order statistical
moments of the buoyancy flux versus time. The latter two are the skewness Suz

′b′ and the
flatness Fuz

′b′ which are given by

Suz
′b′(t) =

⟨(uz ′b′)3⟩x,y
σ3uz

′b′
and Fuz

′b′(t) =
⟨(uz ′b′)4⟩x,y

σ4uz
′b′

. (5.34)

The figure shows that both normalized moments deviate strongly from the Gaussian values,
which would follow to Suz

′b′ = 0 and Fuz
′b′ = 3. Again, the GAN reproduces the slow growth

of the moments fairly well. Note also that the fluctuations of the time series grow with time
since the sampling area for taking statistics shrinks with respect to time due to the renor-
malization procedure discussed above. Flatness values of the order of 50 indicate a highly
intermittent transport across the growing CBL.
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Figure 5.20: Comparison of the generated turbulent fields with the ground truth. (a-c)
Horizontal cross sections at z = 0.5h = 0.584 at h/L0 = 48.41 of the verti-
cal velocity fluctuations uz

′ (a), the buoyancy fluctuations b′ (b), and the local
convective heat flux uz

′b′ (c) from DNS which is the ground truth (GT). (d-f)
Corresponding cross-sections which have been generated by the generative ad-
versarial network (GAN). Note that the normalization of all fields was reversed
to end up with dimensional physical fields. (g-i) Comparison of the probability
density functions of the fields.
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Figure 5.21: Comparison of the generated turbulent fields with the ground truth. Hori-
zontal slices at h/L0 = 48.41 in plane z = 0.2h = 0.233 of the vertical velocity
fluctuations uz

′ (a), the buoyancy fluctuations b′ (b), and the local convective
heat flux uz

′b′ (c) from DNS which is the ground truth (GT). (d-f) Correspond-
ing cross-sections which have been generated by the generative adversarial net-
work (GAN). Note that the normalization of all fields was reversed to end up
with dimensional physical fields. (g-i) Comparison of the probability density
functions of the fields. Note the different spatial characteristics as compared to
the z/h = 0.5 case in Fig. 5.20
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Figure 5.22: Comparison of the generated turbulent fields with the ground truth. Hori-
zontal slices at h/L0 = 48.41 in plane z = 1.0h = 1.167of the vertical velocity
fluctuations uz

′ (a), the buoyancy fluctuations b′ (b), and the local convective
heat flux uz

′b′ (c) from DNS which is the ground truth (GT). (d-f) Correspond-
ing cross-sections which have been generated by the generative adversarial net-
work (GAN). Note that the normalization of all fields was reversed to end up
with dimensional physical fields. (g-i) Comparison of the probability density
functions of the fields. Note the different spatial characteristics compared to the
z/h = 0.2, 0.5 cases in Figs. 5.20, 5.21.
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Figure 5.23: Prediction of the time evolution of the turbulence statistics by the Gener-
ative Adversarial Network (GAN). The probability density functions of the ver-
tical velocity fluctuations (a), the buoyancy fluctuations (b), and the buoyancy
flux (c) are shown for different times h/L0. All quantities are normalized by
their corresponding root-mean-square values. The ground truth (GT) is given in
blue, and the GAN results in red. The bottom row panels display the time evo-
lution of the moments of the buoyancy flux. These are the fluctuations (d), the
skewness (e), and the flatness (f). The blue line is for the GT, and the orange
line is for the GAN. Data are for z∗ = 0.5.
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Figure 5.24: Vertical profile of the buoyancy flux ⟨uz′b′⟩/B0 at three values of h/L0.
The eddy diffusivity mass-flux scheme uses a mass flux that is proportional to
the updraft velocity Mu ∼ ⟨uz⟩u, which is obtained from a plume model (green
curve), see also Appendix B.2.1. Note the discrepancy of the EDMF in the sur-
face layer. This is due to the eddy-diffusivity component, which overestimates
the maximum near z∗ = 0.1. The generative network results at three heights
z∗ = 0.2, 0.5, and 1.0 are marked as red symbols.

5.2.4.3 Comparison with an eddy diffusivity mass-flux parameterization

Finally, the GAN networks enable computation of the mean turbulent buoyancy flux ⟨u′zb′⟩x,y
at reference heights inside the CBL. Their performance is now compared with the ground
truth, as well as with the results from a frequently used closure, see (5.27). As mentioned
before, the latter is termed eddy-diffusivity mass-flux and contains the mass-flux parametriza-
tion as a second term next to the Boussinesq term, which always connects subgrid-scale flux
(or stress) with a mean gradient via an eddy (or turbulent) viscosity.

To this end, an EDMF scheme is applied, which follows from a steady plume model [33]. As
detailed in Appendix B.2.1, the model comprises expression (5.27) and the following two
equations

∂⟨b⟩u
∂z

= ϵ(⟨b⟩x,y − ⟨b⟩u) , (5.35)

1

2
(1− 2µ)

∂⟨uz⟩2u
∂z

+ C1ϵ⟨uz⟩2u = ⟨b⟩u − ⟨b⟩x,y . (5.36)

Note that these equations still contain the adjustable model parameters µ, C1, and ε. Typ-
ically µ ≈ 0.15 and C1 ≈ 0.5 are chosen [33]. The yet unknown entrainment rate ε is also
height-dependent and modeled by the following expression with adjusted prefactor [33]

ε(z) ≃ 0.4

(
1

z
+

1

h− z

)
. (5.37)
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Equations (5.35)–(5.37) for the variables ⟨b(z)⟩u and ⟨uz(z)⟩u together with eq. (5.27) are
then solved numerically. The EDMF closure takes finally Mu ≃ au⟨uz⟩u [234] where au =
0.056. See again Appendix B.2.1.3 where the model formula for the turbulent diffusivity κt
is provided as well. The comparison of all models is shown in Fig. 5.24 for three different
times h/L0. It can be seen that the three flux values, predicted by the GAN, agree excel-
lently with the DNS profiles. These results compare also well to the profiles of the EDMF
parametrization. Note the discrepancy of the EDMF in the surface layer. This is due to the
eddy-diffusivity component, which overestimates the maximum near z∗ = 0.1.

5.3 Conclusions from this chapter

This chapter was concerned with the application of two major machine learning frameworks
for the feature generation of turbulent convection flows. The first explored the generalization
property of a combined Autoencoder-Reservoir Computing model applied to a more complex
convection flow than standard RBC. To this end, buoyancy fluxes at the vertical boundaries,
which can be understood as entrainment from the top and surface heating from the bottom
in an atmospheric convective boundary layer, are applied to a two-dimensional convection
domain. Thus the model resembles properties absent in a standard Rayleigh-Bénard setup
with uniform temperatures at the top and bottom. In particular, the top-down symmetry of
the boundary layers is broken; in this respect, the present model is similar to a complex non-
Boussinesq convection flow. It is thus an ideal testing bed for dynamic parametrizations of
the buoyancy flux and its low-order moments by machine learning algorithms. To this end,
the combined AE-RC model was trained on DNS convection data for the case where the top
flux equals 0.3 of the surface flux. The performance of the machine learning algorithm to un-
seen data with different physical parameters was evaluated. For this purpose, three target
cases where the top flux was 0.1, 0.2, or 0.4 of the bottom flux were selected. It can be con-
cluded that for the presented setup, data emerging from one case with constant flux bound-
ary conditions can be used to infer at least statistical and spatial features of two different
cases with different conditions. The combination of Autoencoder and Echo State Network
can thus serve as a reduced-order and scalable dynamical model that generates the appropri-
ate turbulence statistics without solving the underlying Navier-Stokes equation of the flow.
However, deficiencies can be observed in their ability to reconstruct the temporal features of
the unseen flow.

In the second part of this chapter, a data-driven parametrization on sub-kilometer scales for
a dry convective boundary layer, the lowest part of the atmosphere, was presented. Simula-
tions of a three-dimensional CBL growing into a stably stratified, non-turbulent atmosphere
were conducted. The growing boundary layer exhibits transient dynamics as well as evolving
spatial features that are not expected to be picked up by the previously employed ROM-RC
approaches. Hence, the parameterization was based on a different approach using a genera-
tive adversarial network with Wasserstein loss metrics. Moreover, the network was trained
on DNS data that was re-normalized using scales derived from similarity theory. The aug-
mented DNS data resulted in an enhanced training database for the generative network. In
turn, the GAN provides the horizontal spatial organization and the statistics of the vertical
velocity component and the buoyancy, and thus the one of the local buoyancy flux at dif-
ferent heights inside the CBL. Moreover, the machine learning algorithm is also able to pre-
dict the gradual temporal change of the statistical distributions of the buoyancy flux in the
course of the diurnal cycle, which is connected with a growth of the boundary layer height

6This corresponds to the definition of a strong updraft as uz > 0.95max(uz).
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h(t) and increasing entrainment into the stable atmosphere on top of the CBL. The highly
non-Gaussian and intermittent statistics of this process are successfully reproduced by the
generative convective parametrization.
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Chapter 6

Conclusions and perspectives

This thesis was concerned with the modeling of turbulent convection flows by two machine
learning-based frameworks, namely a Reservoir Computing model and a Generative Adver-
sarial Network. The purpose of the presented work was to assess their performance in regard
to reproducing the spatial organization, structural features and low-order statistics of dry
and moist convection flows without solving the underlying non-linear equations of motion.
Taking into account the low computational expenses of a trained ML model, the motivation
of this work was contextualized within the sub-grid scale parameterization of large-scale gen-
eral circulation models. With this goal in mind, the two machine learning frameworks were
employed to acquire spatial and temporal patterns, along with low-order statistics, from di-
rect numerical simulation data related to turbulent convection flows.

The first and primary approach of this thesis employed a combination of a Reduced Or-
der Model, such as a POD or an Autoencoder network, and a Reservoir Computing model,
namely an Echo State Network. While the former was designed to condense the numerous
degrees of freedom in a thermal convection flow into a lower-dimensional latent space, the
latter served as a dynamic core trained on the dynamics of the reduced latent space to per-
form temporal prediction without knowing the Boussinesq equations of turbulent convection.
In a subsequent autoregressive prediction phase, the model produced a time series that was
subsequently decompressed to yield predictions of the turbulent convection flow. Chapter 4
showed how this framework can operate on two-dimensional dry and moist convection flows
using the echo state approach together with a POD. It was observed that the autoregressive
ML model generates synthetic snapshots that exhibit temporal and spatial characteristics of
the corresponding convection flow. Furthermore, the model demonstrated the capability to
replicate vertical profiles such as the buoyancy flux, a vital feature relevant to subgrid-scale
transport within large-scale atmospheric models. In this way, research question (i), as
presented in Section 1.4, has been addressed.

Moreover, the ROM-RC framework was used to answer research question (ii), which tar-
geted the performance of the aforementioned model when applied to convection systems of
varying complexity. To achieve this, in Section 3.2, an autoregressive Echo State Network
(ESN) was trained using an eight-degree-of-freedom low-order model of thermal convection.
Because the dynamical system’s dimensionality was low, there was no need for a data reduc-
tion step. It was shown that even though the ESN is able to predict the Lorenz dynamics
accurately for several Lyapunov times, the prediction error quickly accumulates. However,
the generated data captures the typical behavior of the individual modes and even repro-
duces its chaotic attractor, indicating that the reservoir outputs can be seen as new real-
izations of the nonlinear system trajectory. This behavior was also observed in Section 4.1,
where the ML model was applied to POD time coefficients of direct numerical simulations
of two-dimensional Rayleigh-Bénard convection at a moderate aspect ratio and low Rayleigh
number. The model not only generated matching temporal and spatial features but also ro-
bustly reproduced the low-order statistics of the convection flow. In Section 4.2, the com-
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plexity of the convection flow was increased further in two ways. First, the aspect ratio was
increased by a factor of four, such that the necessary degree of data reduction is significantly
higher. Secondly, the physical complexity of turbulent convection was enhanced by adding
moisture and the associated effect of condensation and evaporation. After applying the POD
to this new system, it was observed that the ESN is also able to match crucial moisture pa-
rameters like the fraction of clouds, cloud patterns, and liquid water flux. Hence, the present
model is able to handle tasks of varying complexity. However, it should be noted that in all
cases, a grid search procedure of the RC model’s hyperparameters needs to be conducted in
order to identify their optimal combination. This bottleneck can lead to long computation
times depending on the dimensionality of the reservoir input.

In Section 5.1, the ROM-RC model was tested on its capability to generalize between con-
vection systems with different system parameters. For this, a Rayleigh-Bénard-like model of
a two-dimensional convective boundary layer was employed. Four cases differing in the ra-
tio β of their buoyancy flux values at the vertical boundaries were considered. The systems’
degrees of freedom were reduced using four convolutional Autoencoder networks that were
trained on each of the convection cases. Moreover, a reservoir computer was trained on the
reduced latent space data of the β = 0.3 case. It was shown that clearing the reservoir’s
memory of the known latent space dynamics and feeding it information of another, unseen
β case can lead to a transition phase, after which the reservoir’s output and the associated
reconstructed flow reproduce properties of the unseen new regime. It was shown that spatial
characteristics are reproduced naturally by this process. Low-order statistics like the buoy-
ancy flux and fluctuations of velocity and buoyancy fields are also in good accordance. As a
result, the third objective, research question (iii), of this dissertation received a positive
response.

The second machine learning model departed from the ROM-RC approach and instead ven-
tured into a novel direction for sub-grid scale parameterization of a three-dimensional dry
convective boundary layer. In Section 5.2, it was demonstrated that the transient growth of
the convective boundary layer and its related pattern formation were attainable by train-
ing a Generative Adversarial Network using pre-processed simulation data of the CBL. Fur-
thermore, the investigation revealed that despite the absence of memory in the GAN model,
the dynamic pattern formation can still be captured by leveraging insights from similarity
theory. This kind of physics-informed approach allowed for an enhancement of the limited
amount of high-fidelity training database and, therefore, for a reproduction of the under-
lying transient process by the generative network. In this way, the model was able to gen-
erate snapshots of horizontal slices of buoyancy and vertical velocity fluctuations at three
important CBL heights: the surface and mixed layer, as well as near the entrainment zone.
Moreover, the synthetic turbulence data matched the strongly non-Gaussian statistics at
the three heights to a very high degree. Further, the GAN was able to produce matching re-
sults to that of a conventional eddy-diffusivity mass-flux parameterization, however, with the
advantage that the ML approach resolves individual up- and downdrafts. Finally, the pre-
sented data augmentation technique grounded in atmospheric theory reveals the potential
for future machine learning applications to integrate fundamental physical principles. This
answered the final question (iv) of this thesis.

Despite these four research questions, this thesis also touched on the subject of Quantum
Reservoir Computing, where the high-dimensional reservoir was implemented in terms of a
circuit of universal quantum gates. It was shown how a digital gate-based QRC model in-
corporates the classical RC properties of memory and input loading, by making use of the
exponentially growing state space of the circuit’s qubits. For this, two algorithms were pro-
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posed. Both models underwent assessment in a reconstruction assignment, wherein each
model was granted access to only restricted pieces of information. Their objective was to
reconstruct the complete set of information using this limited input. Notably, it was demon-
strated that an actual quantum device, employing the first algorithm, can faithfully repli-
cate the dynamics and attractor of the eight-order Lorenz model using solely the information
from two of its modes. Furthermore, the QRC algorithm demonstrated significant success
when executed on a real quantum NISQ device. While this algorithm still required a classi-
cal memory, a second algorithm was proposed, where the complete execution was enabled on
a quantum computer. Both QRC methods exhibited encouraging Qisiki simulation outcomes
when implemented in the ROM-RC framework for a fully-resolved simulation of Rayleigh-
Bénard convection at a Rayleigh number of 105. It was found that three out of a total of 16
POD modes suffice to reconstruct the dynamics and low-order statistics of the chaotic flow.
While these initial utilization of quantum machine learning for fluid dynamics issues remain
confined in scope, they could potentially establish a pathway toward tackling more intricate
challenges as we transition beyond the NISQ era.

The aforementioned results give rise to several research directions. While the ESN has shown
good performance in reconstructed spatial and statistical features of the underlying RBC
flow, it becomes harder for the network to capture the correct dynamics as the flow becomes
more turbulent. See e.g. Section 4.2. By definition, neural networks are not designed to
process data that live on a continuum of different lengths and times, a property inherent
to turbulent flows. A potential approach toward achieving a scale-aware reservoir could in-
volve manipulating the information flow within the reservoir by carefully designing the ran-
dom input and reservoir weights. Recent studies have already started to pursue such direc-
tions by imposing a small-world topology onto the reservoir [235, 236]. Further, the reservoir
was mostly employed in its closed-loop mode, where the error quickly accumulates, and the
reservoir exhibits a generative behavior. The open-loop mode, on the other hand, showed
excellent results, even for the novel quantum reservoir, indicating that the reservoir per-
forms best when it is recalibrated with a reference signal. Hence, it is probably such tasks
where the future of ESN applications lies. A potential use case could involve employing it
as a turbulence model for subgrid-scale processes. In this scenario, the teacher signal would
encompass data related to the larger scale, and the resulting output would pertain to the
corresponding subgrid scale. A first test might be a shell model, as it was done in ref. [237]
for an LSTM. Another application could be for super-resolution tasks or tasks of spatial pre-
diction, as it was done in refs. [119] and [114].

The last chapter of this work revealed that a proper encoding of physical laws can enhance
the performance of a neural network for feature generation. This pathway seems to be a fa-
vorable direction for future applied ML research, as it enforces the physical accuracy of the
model’s outputs. This could improve several of the methods employed in this work. First,
as shown in Section 5.1, the convolutional Autoencoder introduced small artifacts into the
lateral time average profiles of all physical fields. A way to circumvent this problem would
be to introduce additional penalty terms into the Autoencoder loss function, s.t., the net-
work preserves these features. In addition to such soft constraints, the physical information
could be encoded directly into the architecture of the network. A similar path was taken, for
example, in ref. [72], where an additional non-trainable layer enforced the incompressibility
constraint. Another next step would be to make the ESN respect specific restrictions of the
learned temporal data. In the case where the ESN learns POD time coefficients, which are
pairwise orthonormal using the snapshot POD method, it should ideally also output an or-
thonormal multidimensional time series. Similarly, the AE’s latent space is often restricted
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to a specific range due to a squashing latent activation function. Again, the ESN output
should not lie outside this range so as not to generate latent space representations that the
decoder network has difficulties deciphering. Additional incorporation of physical constraints
could potentially be achievable through the previously mentioned structuring of the reservoir
matrices.

Finally, this work was not concerned with the implementation of the presented ML mod-
els into an actual weather or climate model. The conventional methods of sub-grid scale
parameterization used in these models necessitate stability in addition to physical accu-
racy and low computational costs. However, recent studies suggest that neural networks,
while performing exceptionally well in offline tests, can lead to instabilities when coupled
to a running atmospheric model [238]. Only if the neural network produces both reliable
and stable outputs can they be coupled to long-term, large-scale simulations of our atmo-
sphere. This can become a challenge for an autoregressive Echo State Network, where pre-
diction errors can quickly accumulate and may even diverge. Further, the present work ap-
plied the echo state approach solely to Rayleigh-Bénard convection systems, which, due to
their simplicity, do not represent essential effects like deep convection, precipitation, or the
transient dynamics of an atmospheric flow. In such scenarios, one might question the suit-
ability of an RC model, given the potentially significant differences in dynamics between
the training and prediction phases. Such tasks exceed the ESN generalization procedure
introduced in Section 5.1. Utilizing alternative neural network approaches that leverage
transfer learning could be a viable direction to consider. Lastly, ML models have a broad
range of potential applications in climate science besides data-driven parameterization mod-
els [239]. Other aspects comprise cloud detection and classification [240], uncertainty quan-
tification [241] or pattern analysis in climate datasets [242]. All these fields employ a variety
of machine learning models, which have to satisfy different requirements. This underlines the
fact that there is no single model that performs best in all disciplines. After all, there is ”no
free lunch” [243]. While the last years have seen a great interest in ML applications in the
fields of fluid dynamics and climate science, it is to be expected that certain ML models will
show a significant advantage over others for certain tasks like subgrid-scale parameteriza-
tion. It is, therefore, up to future research in this interdisciplinary field to ascertain whether
a Reservoir Computing model will be among them. I hope that I have provided a fair start-
ing point with my dissertation.
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A.1 Low-order Lorenz-like model

A.1.1 Derivation of the low-order Lorenz model from the two-dimensional
Boussinesq system

The starting point for the derivation is the two-dimensional Boussinesq system (2.7 - 2.9).
As mentioned above, free slip boundary conditions are considered for the velocity fields
u(x, z, t) = (ux(x, z, t), uz(x, z, t))

T and constant temperature boundary conditions for the
temperature field T (x, z, t). As is often done in RBC, one subtracts the non-dimensional lin-
ear temperature profile Tdiff = 1 − z, corresponding to the purely conducting case, from the
temperature field and uses only its fluctuations

θ(x, z, t) = T (x, z, t)− Tdiff(z) = T (x, z, t)− 1 + z. (A.1)

The two-dimensionality and incompressibility of the flow allow for a more compact descrip-
tion of the problem. More precisely, the velocity field u(x, z, t) can be expressed in terms of
a scalar stream function ζ(x, z, t)

ux = −∂ζ
∂z
, uz =

∂ζ

∂x
. (A.2)

This relation automatically satisfies the incompressibility condition (2.7), as u = ∇ × ζêz.
Substituting this definition into the Boussinesq system (2.8) and (2.9) and non-dimensionalizing
with the free-fall scales (2.14) and (2.16) yields

∂∇2ζ

∂t
=
∂ζ

∂z

∂∇2ζ

∂x
− ∂ζ

∂x

∂∇2ζ

∂z
+ Pr∇4ζ +RaPr

∂θ

∂x
, (A.3)

∂θ

∂t
=
∂ζ

∂z

∂θ

∂x
− ∂ζ

∂x

∂θ

∂z
+∇2θ +

∂ζ

∂x
. (A.4)

Further, the boundary conditions translate to

ζ
∣∣
z=0,1

= 0,
∂2ζ

∂z2

∣∣∣∣∣
z=0,1

= 0 and θ
∣∣
z=0,1

= 0. (A.5)

Both the stream function and the temperature fluctuations are then expanded into a finite
series of trigonometric Fourier modes

ζ(x, z, t) = cζ

Nζ∑
i,j=1

Aij(t)Φ(αix) sin(βjz), (A.6)

θ(x, z, t) = cθ

Nθ∑
k,l=1

Bkl(t)Φ(αkx) sin(βlz), (A.7)
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where cζ and cθ denote normalization constants. Here, Φ(x) can be either cos(x) or sin(x).
{A1(τ), . . . , ANζ

(τ)} are real amplitudes for the stream function and {B1(τ), . . . , BNθ
(τ)}

the real amplitudes for the temperature fluctuations1. The horizontal and vertical wavenum-
bers are

αk = kα =
2πk

Γ
and βk = kβ = kπ. (A.8)

Finally, Nζ and Nθ are the leading truncation order of the thermal convection LOM. This
Ansatz satisfies the boundary conditions for the stream function and temperature and en-
codes the spatial structure of the thermal convection flow. Finally, a low-order model of
thermal convection is obtained by substituting Ansatz (A.6,A.7) into eqs. A.3 and A.4, while
only considering quadratic nonlinearities

dAi

dt
= Fi(Aj , Bk,Pr,Ra, δ), (A.9)

dBk

dt
= Gk(Bl, Ai,Pr,Ra, δ). (A.10)

For convenience, the Rayleigh number is often expressed relative to the critical Rayleigh

number Racrit = (α2+β2)3

α2 of the onset of convection for free-slip boundary condition [200],
i.e.

r =
Ra

Racrit
> 1. (A.11)

Further, the aspect ratio Γ is encoded into a geometric parameter

δ =
4Γ4

4 + Γ2
(A.12)

For a given number of truncation modes Nζ , Nθ the specific LOM setting is defined by the
parameter space (Pr, r, δ).

1The amplitudes Aij , Bkl can be rewritten as Ai, Bk by viewing the former in row-major (lexicographic ac-
cess) order.
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A.1.2 Eight-mode Lorenz model

The full eight-mode Lorenz model is obtained for Nζ = Nθ = 4

dA1

dτ
= Pr (B1 −A1)−

3β2 + α2

√
2(α2 + β2)

A2A3

+
3α2 − 15β2√
2(α2 + β2)

A3A4, (A.13)

dA2

dτ
= −Prδ

4
A2 −

3

2
√
2
A1A3, (A.14)

dA3

dτ
= −Prα

2 + 4β2

α2 + β2
A3 − Pr

α2 + β2√
2(4β2 + α2)

B3

+
α2

√
2(α2 + β2)

A1A2 +
24β2 − 3α2

√
2(4β2 + α2)

A1A4, (A.15)

dA4

dτ
= −9Prδ

4
A4 −

1

2
√
2
A1A3, (A.16)

dB1

dτ
= −B1 + rA1 −A1B2 +

1

2
A2B3 +

3

2
A4B3, (A.17)

dB2

dτ
= −δB2 +A1B1, (A.18)

dB3

dτ
= −α

2 + 4β2

α2 + β2
B3 −A2B3 +

√
2rA3 + 3A4B1

− 2
√
2A3B4, (A.19)

dB4

dτ
= −4δB4 +

3
√
2

4
A3B3. (A.20)

Note that the time is rescaled to τ = (α2 + β2)t, where t is measured in the free-fall time
scale tf .

A.2 Hyperparameter search to the open-loop ESN in 3.3.1

A classical ESN is compared to the QRC model presented in 3.3.1. For comparison the reser-
voir size is fixed at Nr = 128. The ESN grid search details are listed in table A.1. The
search comprised the leaking rate, spectral radius, and regression parameter. The result-
ing NRMSE error landscape is shown in Fig. A.1. It can be seen that for λr = 0.05 and
λr = 0.5, a broad range of leaking rate and spectral radius values exhibit good reservoir per-
formances.

A.3 Quantum circuits for H1, H2 in 3.3.2.3

Here, the quantum circuits for the two QRC algorithms H1, see Fig. A.2 and H2, see Fig.
A.3, used in Section 3.3.2.3 are reported. The circuit depth l poses a hyperparameter of the
QRC model and denotes the number of repetitions of a block of quantum gates. It is pro-
portional to the computational cost of running the circuit. More information on the circuit
architecture and the hyperparameter dependence of, e.g., ENARE can be found in ref. [158].
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γr ϱr λr
[0.1, 1.0, 0.1] [0.0, 1.5, 0.1] {0.05, 0.5, 5.0}

Reservoir realizations Λ1ttrain Λ1tval Λ1ttest
100 7.10 5.00 7.00

Table A.1: Open-loop ESN hyperparameter grid search procedure for the eight-mode
Lorenz system. The reservoir density was fixed at Dr = 0.2. The input scaling
was σr = 1. Square brackets indicate the range of the searched hyperparameter:
[start, end, stepsize]. The reservoir size was Nr = 128. Braces indicate an array
of values that were used. ttrain, tval, ttest are the length of the training, validation,
and testing interval, respectively. The total number of different reservoir settings
is 10× 16× 3 = 480, while a total of 100× 480 = 4.8 · 104 reservoirs were run. The
grid search run time was 2.44 h using the turbESN library [123].

Figure A.1: Results of the grid search described in Table A.1. (a) Validation ENRMSE land-
scape for ESN hyperparameters (ϱr, γr, λr), Nr = 128. Shown is the median value
of all reservoir realizations. (b) ESN outputs during the validation phase. Shown
are the ground truth (blue) and the a) associated best ESN prediction (green).
The corresponding optimal hyperparameter setting is marked by the green star
symbol in (a).
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A.3 Quantum circuits for H1, H2 in 3.3.2.3

Figure A.2: Quantum circuit for algorithm H1 used in Section3.3.2.3. The circuit depth
was l = 5. The variables ξi were chosen randomly from a uniform distribution
U [0, 4π].

Figure A.3: Quantum circuit for algorithm H2 used in Section3.3.2.3. The circuit depth
was l = 5. The variables ξi were chosen randomly from a uniform distribution
U [0, 4π]
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B.1 Appendix to Section 5.1

B.1.1 Preliminary POD studies in Section 5.1.3

Fig. B.1 shows the cumulative POD spectrum of all four β cases. For this, all 10000 snap-
shots of the DNS time span 2500⟨tf ⟩t were considered. It can be seen that the POD con-
verges very slowly and requires at least 700 modes to capture similar portions of the vari-
ance as in Sections 4.1 and 4.2. An ESN learning the reduced POD space would subsequently
require a reservoir of size Nr ≥ 7000. This would impose a significant memory load, resulting
in a computationally expensive hyperparameter exploration process. Hence, in Section 5.1,
the POD approach was abandoned, and the Autoencoder network was applied.

Figure B.1: Results of the preliminary POD studies for all four β values involving all 10000
snapshots in the DNS period of 2500⟨tf ⟩t. It can be seen that the POD requires
about NPOD ≥ 700 modes to capture 80% of the flow’s variance. This, in turn,
would require a reservoir dimension of at least Nr = 7000. The green shaded
area marks the captured variance of up to 80%.

B.1.2 Details on the Autoencoder implementation in Section 5.1

In Tab. B.1, two basic neural network blocks are listed. Both Encoder and Decoder consist
of four such blocks. Details on the number of channels of the convolutional network, as well
as the sizes of the kernels of Max-Pooling and Upsampling layers in each block, are listed
in Tab. B.2. A Python script with the corresponding AE architecture, as well as a training
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script, can be found in the freely available supplementary repository to this thesis on Zen-
odo [244].

Encoder block 5× Conv2d + ELU Max-Pooling BatchNorm Dropout

Decoder block 5× ConvTranspose2d + ELU Upsample BatchNorm Dropout

Table B.1: Architecture of an Encoder and Decoder block. In the former two-dimensional
convolutions Conv2d, the exponential linear unit (ELU) [245] activation func-
tion, as well as Max-Pooling (MP) layers, are employed. The Decoder block uses
transposed convolutions ConvTranspose2d, the ELU function, and an Upsampling
layer, which increases the spatial dimensions by a constant factor. Both blocks
make use of batch normalization and dropout layers. The dropout probability
was set to p = 0.15. The last Encoder block is followed by a fully connected lin-
ear layer and a Sigmoid activation. Further, the first decoding block is preceded
by a linear layer as well. See also Tab. B.2 for the channel and kernel sizes.

Layer E#1 E#2 E#3 E#4 D#1 D#2 D#3 D#4

channels (3,8) (8,16) (16,8) (8,3) (3,8) (8,16) (16,8) (8,3)

MP/Upsample kernel (2,1) (2,2) (2,2) (2,2) (2,2) (2,2) (2,2) (2,1)

Table B.2: Size of Max Pooling (MP)/Upsampling kernels and channels for each En-
coder/Decoder block in the Autoencoder network. See also the definition of
one block in Tab. B.1. The channels are given in the form (no. input chan-
nel, no. output channel), while both MP and Upsample kernel are given by
(height, width). The shape of the input data was (3,30,720), where 3 denotes
the three turbulence fields. Its spatial dimensions were zero-padded to the shape
(3,32,1024) before entering the Encoder and cropped to the original size after
passing through the Decoder. The kernel size of all convolutions and transposed
convolutions was (3, 3).

B.1.3 Additonal results of the Autoencoder network in Section 5.1.3

The final training and validation errors of the Autoencoder networks are listed in Tab. B.3.
Moreover, the reconstructed fields u′x, u

′
z and b′′ for the cases β = 0.1, 0.2, 0.3, 0.4 are com-

pared to the corresponding DNS snapshots shown in Figs. B.2, B.3, B.4 and B.5 respec-
tively. Furthermore, to understand what the network does to the physical fields, Fig. B.6d-
g) shows four of the eight-channel outputs of Encoder block E#1. See again Table B.2 for
its definition. For comparison, the input fields u′x, u

′
z, b

′′, in their for the AE normalized
form, are shown in B.6a-c). It can be seen that the outputs possess features of all three in-
put fields, e.g., diagonal patches in Fig.B.6a,d).

B.1.4 Additonal results of the AE-RC model in Section 5.1.4.3

This section provides additional results to the ones presented in Section 5.1.4.3. Figures B.7
and B.8 show the inferred fields of β = 0.2 and β = 0.4. Similar results to the β = 0.1 in the
main text can be observed. Finally, the latent space predictions are shown in Fig. B.9 and
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β training MSE validation MSE

0.1 1.6 · 10−3 1.9 · 10−3

0.2 1.8 · 10−3 2.2 · 10−3

0.3 1.8 · 10−3 2.4 · 10−3

0.4 2.1 · 10−3 2.7 · 10−3

Table B.3: Mean square error loss during the training and validation phase of the four
AE networks. The cross-validation split was 8000 snapshots for training and 1000
snapshots for validation and testing each.

Figure B.2: Comparison between DNS (a,c,e) and reconstructed decoder fields (b,d,f) of u′x
(a,b), u′z (c,d) and b′′ (e,f). Shown is the β = 0.1 case.

135



Appendix B Appendix to Chapter 5

Figure B.3: Comparison between DNS (a,c,e) and reconstructed decoder fields (b,d,f) of u′x
(a,b), u′z (c,d) and b′′ (e,f). Shown is the β = 0.2 case.

Figure B.4: Comparison between DNS (a,c,e) and reconstructed decoder fields (b,d,f) of u′x
(a,b), u′z (c,d) and b′′ (e,f). Shown is the β = 0.3 case.
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Figure B.5: Comparison between DNS (a,c,e) and reconstructed decoder fields (b,d,f) of u′x
(a,b), u′z (c,d) and b′′ (e,f). Shown is the β = 0.4 case.

Figure B.6: Comparison between, for the AE, normalized input fields, obtained from DNS
(only half the horizontal domain is shown), (a-c) and their processed form after
passing through the Encoder block E#1 (d-g). See again tables B.1 and B.2 for
the definition of this block. Out of the eight output channels, four are shown.
Note that the vertical dimension has halved due to a pooling operation. It can
be seen that the outputs possess features of the physical fields.
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Fig. B.10 for the case β = 0.2 and β = 0.4, respectively. Again, the same trend as the main
text can be observed for these target cases.

Figure B.7: Inferred fields for β = 0.2. Instantaneous snapshots of the turbulent kinetic en-
ergy (a,b), the buoyancy flux u′zb

′′ (c,d), and the buoyancy fluctuations b′′(e,f)
at t = 375⟨tf ⟩t in the middle of the testing phase. The ground truth (AE) re-
constructions are (a,c,e), and the ESN predictions are (b,d,f). For visualization
purposes, only 75% of the horizontal domain is shown.

Figure B.8: Inferred fields for β = 0.4. Instantaneous snapshots of the turbulent kinetic en-
ergy (a,b), the buoyancy flux u′zb

′′ (c,d), and the buoyancy fluctuations b′′(e,f)
at t = 375⟨tf ⟩t in the middle of the testing phase. The ground truth (AE) re-
constructions are (a,c,e), and the ESN predictions are (b,d,f). For visualization
purposes, only 75% of the horizontal domain is shown.
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Figure B.9: Inferred time series of selected AE latent space variables for the case of β = 0.2.
(a-e) The ESN output (orange) is compared to the ground truth (blue). (f-j)
The corresponding Fourier power spectrum is shown to the right. It can be seen
that the inferred dynamics do not capture the spectrum tails at high frequencies.

Figure B.10: Inferred time series of selected AE latent space variables for the case of β = 0.4.
(a-e) The ESN output (orange) is compared to the ground truth (blue). (f-j)
The corresponding Fourier power spectrum is shown to the right. Again, it can
be seen that the inferred dynamics do not capture the spectrum tails at high
frequencies.
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B.2 Appendix to Section 5.2

B.2.1 Mass-flux parametrization

In this section, the basics of the mass-flux parametrization is described. The following for-
mulation is used in many global numerical models of the Earth system, such as the Inte-
grated Forecasting System of the European Centre for Medium-Range Weather Forecasts
(www.ecmwf.int/en/publications/ifs-documentation). The mass-flux parametrization is one
part of the eddy diffusivity mass-flux, which models the vertical profiles of the subgrid-scale
fluxes of liquid-water potential temperature θl (convective heat flux) or total water content
qt (moisture flux) across the atmosphere.

B.2.1.1 Buoyancy flux closure by eddy diffusivity mass-flux

In the present proof-of-concept study, phase changes and cloud formation are omitted. The
liquid-water potential temperature θl reduces then to the virtual potential temperature θv
and the buoyancy b becomes

b(x, y, z, t) = g
θv(x, y, z, t)− θv,0

θv,0
, (B.1)

with the acceleration due to gravity g and the virtual potential temperature at the surface
θv,0. The eddy diffusivity mass-flux closure for the subgrid-scale buoyancy flux is given by
[33, 246, 247],

ρ0⟨uz ′b′(z)⟩x,y = −ρ0κt
∂⟨b⟩x,y
∂z

+Mu(⟨b(z)⟩u − ⟨b(z)⟩x,y) . (B.2)

Here, ρ0 is the constant reference density in the lower atmospheric boundary layer and Mu

is the unknown mass flux. As already said in Section 5.2.2, the horizontal cross section A
can be decomposed into disjoint updraft regions (u) and the remaining environment (e), i.e.,
Atotal = Au ∪ Ae. For simplicity Atotal will simply be denoted by A to ease notation. The
first term in (B.2) is the standard Boussinesq term for a turbulent stress which contains the
eddy diffusivity κt and the mean buoyancy gradient. The additional second term comprises
the mass-flux parametrization. In detail,

⟨uz ′b′(z)⟩x,y =
1

A

∫
A
(uz − ⟨uz⟩x,y)(b− ⟨b⟩x,y) dA , (B.3)

au⟨uz ′b′(z)⟩u =
1

A

∫
A
(uz − ⟨uz⟩u)(b− ⟨b⟩u) dA , (B.4)

(1− au)⟨uz ′b′(z)⟩e =
1

A

∫
A
(uz − ⟨uz⟩e)(b− ⟨b⟩e) dA , (B.5)

with the area fractions au = Au/A and 1− au = Ae/A. Let us neglect the first gradient term
on the right-hand side of (B.2) for a while. The second term of (B.2) can be rewritten to

⟨uz ′b′⟩x,y = au⟨uz ′b′⟩u + (1− au)⟨uz ′b′⟩e + au(1− au)[⟨uz⟩u − ⟨uz⟩e][⟨b⟩u − ⟨b⟩e] . (B.6)

The first term quantified the buoyancy flux connected with Au, the second with Ae, and the
third is an exchange term due to organized turbulence, which connects both. The following
approximations can be made: (i) au ≪ 1, in practice mostly about 5 %; (ii) ⟨uz⟩e ≃ ⟨w⟩x,y,
and (iii) ⟨b⟩e ≃ ⟨b⟩x,y. This results in the mass-flux parametrization

⟨uz ′b′(z)⟩x,y ≃
Mu

ρ0
(⟨b(z)⟩u − ⟨b(z)⟩x,y) with Mu = ρ0au[⟨uz(z)⟩u − ⟨uz(z)⟩x,y] , (B.7)
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with the undetermined mass flux Mu. Recall also that the mass flux carries the physical
dimension of kgm−2s−1. A plume model is required to determine this unknown quantity
which is discussed in the following.

B.2.1.2 Steady plume model

(2.9) of the Boussinesq model is the counterpart of the set of prognostic equations in a global
circulation model. We apply a Reynolds decomposition and obtain the following unclosed
coarse-grid equation [248]

∂⟨b(z)⟩x,y
∂t

= − 1

ρ0

∂

∂z
[ρ0⟨uz ′b′(z)⟩x,y] +

∂⟨b(z)⟩x,y
∂t

∣∣∣∣∣
forcing

. (B.8)

All remaining terms due to horizontal mean advection and diffusion are summarized in the
last term of (B.8) as a forcing term. Note that we get in this way an effective vertical trans-
port model without any information on the spatial horizontal mesoscale organization of the
convective turbulence which the DNS in Section5.2.2 display. The area decomposition into
Au and Ae gives

⟨b(z)⟩x,y = au⟨b(z)⟩u + (1− au)⟨b(z)⟩e . (B.9)

Equations (B.6) and (B.9) are now plugged into (B.8). We use that au(1 − au) ≈ au since
au ≪ 1 and apply additionally the approximations (ii) and (iii) from the last subsection.
This leads to the following updraft budget equation (omitting the z argument),

ρ0
∂

∂t
[au⟨b⟩u] = −

∂

∂z
[ρ0au⟨uz ′b′⟩u]−

∂

∂z
[ρ0au(⟨uz⟩u − ⟨uz⟩x,y)︸ ︷︷ ︸

=Mu

⟨b⟩u] + E⟨b⟩e −D⟨b⟩u + ρ0au
∂⟨b⟩x,y
∂t

∣∣∣∣∣
forcing

,

(B.10)

and the corresponding downdraft budget equation

ρ0
∂

∂t
[(1− au)⟨b⟩e] = −

∂

∂z
[ρ0(1− au)⟨uz ′b′⟩e] +

∂

∂z
[Mu⟨b⟩e]− E⟨b⟩e +D⟨b⟩u + ρ0(1− au)

∂⟨b⟩x,y
∂t

∣∣∣∣∣
forcing

.

(B.11)

Two terms in both equations have been added to express the mass exchange due to entrain-
ment and detrainment with rates E and D, respectively. Adding both equations brings us
back to (B.8). Furthermore, a continuity equation is required, which can be obtained from
one of the budget equations by substituting ⟨b⟩ with 1. This gives

ρ0
∂au
∂t

= −∂Mu

∂z
+ E −D . (B.12)

Next, a (statistically) steady state is assumed such that (B.10) and (B.12) simplify to, see
also ref. [33],

∂

∂z
[Mu⟨b⟩u] = −

∂

∂z
[ρ0au⟨uz ′b′⟩u] +Muε⟨b⟩e −Muδ⟨b⟩u , (B.13)

∂Mu

∂z
=Mu(ε− δ) , (B.14)

where fractional entrainment and detrainment rates follow from E = Muε and D = Muδ,
respectively. When the first term on the right-hand side of (B.13) is set to zero, both equa-
tions can be combined to give the following simple updraft equation

∂⟨b⟩u
∂z

= ε(⟨b⟩x,y − ⟨b⟩u) . (B.15)
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Furthermore, we need an equation for ⟨uz⟩u such that we can close the buoyancy flux model
[33, 249]. This is obtained from the momentum balance for the updrafts, assuming a steady
regime again. This gives

−1

2

∂⟨uz⟩2u
∂z

− C1ε⟨uz⟩2u −
1

ρ0

∂⟨p⟩x,y
∂z

+ ⟨b⟩u − ⟨b⟩x,y = 0 . (B.16)

This equation went again through a number of simplification steps: (i) the first term results
from the nonlinear advection of ⟨uz⟩u, (ii) the second term encloses all remaining advection
terms, (iii) the effective entrainment rate which is connected with the turbulent mixing in
(ii) is assumed to be directly proportional to the entrainment for ⟨b⟩u in (B.15). (iv) The
pressure gradient term is approximated finally to be ∂(µ⟨uz⟩u)/∂z. This is the last step, and
the mass-flux parametrization comprises the following coupled system of equations which
would have to be solved together with the mean prognostic equation for ⟨b⟩x,y,

∂⟨b⟩u
∂z

= ε(⟨b⟩x,y − ⟨b⟩u) , (B.17)

1

2
(1− 2µ)

∂⟨uz⟩2u
∂z

+ C1ε⟨uz⟩2u = ⟨b⟩u − ⟨b⟩x,y . (B.18)

If ⟨uz⟩u and ⟨b⟩u are known, the second term on the right-hand side of the EDMF model
in (B.2) can be computed for a given au. The model parameters ε, C1, and µ are however
unknown. Large eddy simulations studies by Siebesma et al. [33] suggest C1 ≃ 0.5 and
µ ≃ 0.15. The fractional entrainment rate ε, which will be height dependent, is more re-
cently included as a stochastic multi-plume model, i.e., for each plume i the EDMF model
equations are solved. The entrainment rates εi are chosen from a Poisson distribution [247].

B.2.1.3 Numerical Implementation

The eddy-diffusivity κt is implemented by a simple profile method [250] and results to

κt(z
∗) = k (39kz∗)1/3 z∗ (1− z∗)2 Uch , (B.19)

where k ≈ 0.4 is the von Kármán constant. The mass-flux contributions were obtained
by integrating equations (B.17) and (B.18) using a fourth-order Runge-Kutta scheme. The
starting height z0 > 0 together with the boundary conditions are chosen as

⟨b(z0)⟩u = ⟨b(z0)⟩+ αB0/σuz , (B.20)

⟨uz(z0)⟩2u = σ2uz
(z0), (B.21)

where an empirical standard deviation σuz can be used, such as in ref. [251] which is given
by

σuz(z
∗)/Uc ≃ 1.3 (0.6z∗)1/3 (1− z∗)1/2 , (B.22)

which fits well for the present direct numerical simulations, as seen in Fig. B.11. Further-
more, an entrainment rate profile as suggested in [33, 252] is used. It is given by

ε ≃ 0.4

(
1

z
+

1

h− z

)
. (B.23)

These inputs lead to the profiles in Fig. 5.24 of the main text, which was used to compare
this closure with the machine-learning results.
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B.2 Appendix to Section 5.2

Figure B.11: Standard deviation of vertical velocity w obtained from the direct numerical
simulation (blue) in comparison to the expression (B.22) (orange). The GAN
values are shown in red.

B.2.2 Supplementary information about the GAN used in Section 5.2.3

B.2.2.1 Details on the GAN architecture

Here, a generator with a U-shaped deep neural network structure, in short U-Net [68, 253],
is used. A U-Net applies additional residual connections between the contraction and ex-
pansion paths of the network and is used for complex segmentation tasks with few training
examples. In the present case, it has seven contraction and seven subsequent expansion lay-
ers. After each contraction layer, the spatial dimensions are halved via a convolution opera-
tion, while the channel dimensions are doubled. The opposite is done in the expansion path
via transposed convolutions. Both paths are connected via residual connections, allowing for
a direct information flow between two layers in the contraction and expansion paths of the
U-shape. The activation function was chosen as the Parametric Rectified Linear Unit [254]
(PReLU)

PReLU(x) =

{
x, if x ≥ 0
ax, otherwise

(B.24)

where the slope a is an additional learnable parameter. The discriminator network consists
of eight convolution layers, which reduce the input data to a scalar score. Here, the PReLU
activation was used as well. Finally, to increase the variance of the network, we use Dropout
layers, which set the layer output to zero with a probability of 0.3. A Python script with the
corresponding GAN architecture can be found in the freely available supplementary reposi-
tory to this thesis on Zenodo [244].

B.2.2.2 Details on the GAN training procedure

Algorithm 1 illustrates the procedure of training a GAN. The listed hyperparameters in the
algorithm are the ones used in the present study. A training script can be found in the freely
available supplementary repository to this thesis on Zenodo [244].

143



Appendix B Appendix to Chapter 5

Algorithm 1 WGAN with gradient penalty. Default values: m = 64, β1 = 0.9, β = 0.999.

Require: batch size m, Adam parameters β1, β2, learning rate γ, number of discriminator
iterations per generator iterations ND/NG, gradient penalty parameter λ.

Require: initial discriminator and generator weights θD, θG, LWGAN ←∞
1: while LWGAN has not converged do
2: for j = 1, ..., ND/NG do
3: for i = 1, ...,m do
4:

5: Sample real data x ∼ Pr, latent variable ξ ∼ N (0, 1)
6: xG ← GθG(ξ)

7: L(i)WGAN ← DθD(x)−DθD(xG)
8:

9: Sample random number χ ∼ U [0, 1].
10: x̂← χx+ (1− χ)xG

11: L(i)D ← −L
(i)
WGAN + λ (∥∇x̂DθD(x̂)∥2 − 1)2

12:

13: end for
14: end for

15: θD ← Adam(∇θD
1
m

m∑
i=1
L(i)D , θD, γ, β1, β2) ▷ Train Discriminator

16: end for
17: end for
18:

19: Sample batch of latent variables {ξ(i)}mi=1 ∼ N (0, 1)

20: LG ← 1
m

m∑
i=1

[
−DθD

(
GθG(ξ

(i))
)]

21: θG ← Adam(∇θGLG, θG, γ, β1, β2) ▷ Train Generator
22:

23: end while
24: end while
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Appendix C

Technical Appendix

C.1 Direct numerical simulations

The DNS of RBC in Sections 3.3.2, 4.1 and 4.2 were conducted using the spectral element
solver Nek5000 [180]. Moreover, the spectral interpolation to the uniform grids Nx ×Nz was
also performed using the Nek code. The corresponding run files can be found in the sup-
plementary Zenodo repository available in [244]. All DNS runs were performed at the high-
performance computing cluster of TU Ilmenau. The DNS of the RBC-like system in Section
5.1 and the dry CBL in Section 5.2 were conducted by Juan Pedro Mellado (Department
of Earth System Sciences, Meteorologisches Institut, Universität Hamburg) using computa-
tional resources at the SuperMUC supercomputer in Garching. For this, the tlab solver [183]
was employed.

C.2 Echo State Network implementation

For this thesis, the ESN framework was implemented in the shape of a Pyhton package turbESN.
It is available on GitHub at [123]. All computations were performed on the computing clus-
ter of TU Ilmenau. Note that a single ESN run is easily computed on a PC with moderate
computational capabilities. For grid search procedures and multiple reservoir realizations,
the package makes use of Python’s multiprocessing package. For larger grid search proce-
dures, 24 to 96 CPUs are recommended. All ESN scripts for the results of this thesis can be
found in the Zenodo repository at [244].

C.3 Quantum Reservoir Computing

All computations with the QRC models were performed by my colleague Philipp Pfeffer at
TU Ilmenau. For this, he employed IBM’s Python library Qiskit [204].

C.4 Proper Orthogonal Decomposition

The POD of a given DNS dataset is readily computed using the steps explained in Section
2.3.1. The computation of POD time coefficients and POD spatial modes was done at the
computing cluster of TU Ilmenau. The Python POD code for obtaining the results of this
thesis is available in the Zenodo repository at [244].

C.5 Autoencoder and GAN implementations

Autoencoder and Generative Adversarial networks were implemented using the Pyhton Deep-
Learning library PyTorch [255]. Both models were run using up to four Nvidia A100 Tensor
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Core GPUs at the computing cluster at TU Ilmenau. All scripts are available in the Zenodo
repository at [244].

C.6 Post-Processing

All post-processing (e.g., running the trained neural networks, computations based on the
simulated flows, figures, etc.) was done in Python, mainly using IPython Notebooks. All
scripts are available in the Zenodo repository at [244].
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