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The study presents a Machine Learning (ML)-based framework designed to forecast the stress-strain relationship 
of arc-direct energy deposited mild steel. Based on microstructural characteristics previously extracted using 
microscopy and X-ray diffraction, approximately 1000 new parameter sets are generated by applying the Latin 
Hypercube Sampling Method (LHSM). For each parameter set, a Representative Volume Element (RVE) is 
synthetically created via Voronoi Tessellation. Input raw data for ML-based algorithms comprises these parameter 
sets or RVE-images, while output raw data includes their corresponding stress-strain relationships calculated after 
a Finite Element (FE) procedure. Input data undergoes preprocessing involving standardization, feature selection, 
and image resizing. Similarly, the stress-strain curves, initially unsuitable for training traditional ML algorithms, 
are preprocessed using cubic splines and occasionally Principal Component Analysis (PCA). The later part of the 
study focuses on employing multiple ML algorithms, utilizing two main models. The first model predicts stress-
strain curves based on microstructural parameters, while the second model does so solely from RVE images. The 
most accurate prediction yields a Root Mean Squared Error of around 5 MPa, approximately 1% of the yield 
stress. This outcome suggests that ML models offer precise and efficient methods for characterizing dual-phase 
steels, establishing a framework for accurate results in material analysis.

1.

1.

no

co

A

ha

A

En

*

sh

ht

Re
 Introduction

1. Additive manufacturing

Additive manufacturing (AM) has evolved as a disruptive technology 
t only for rapid prototyping, but also for building structures with a 
mplex topology out of given Computer Aided Design (CAD) models. 
s a result, pure academic and industry-oriented research in this field 
ve increased visibly in recent years [1].
Unlike traditional or conventional metal manufacturing methods, 

M is based on a layer-by-layer welding procedure, being arc-Direct 
ergy Deposition (arc-DED) one technique that, due to its higher de-
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position rates [2], makes production of relatively large parts possible; 
however, at a cost of losing certain accuracy and increasing notoriously 
the surface roughness of the final product [3].

A first insight about the mechanical behavior of any material is 
given by its uni-axial relation between stresses and strains, since es-
sential properties such as the Young’s modulus and the yield stress are 
extracted from it; furthermore, nonlinear strain hardening parameters 
when the material enters into the plastic range are also determined out 
of the mentioned curve.

More than general, the uni-axial stress-strain relationship for a given 
metallic material is obtained experimentally, which involves an expen-
sive and time consuming procedure, considering that a proper number 
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 coupons for a tensile test should be well prepared. These disad-
ntages are enhanced if the effect of the phase fractions is to be 
vestigated, resulting in several series of experiments. Therefore, the 
ain goal of the present work is to determine the stress-strain curves 
 a given material when its phase fractions can be modified. This is 
hieved with the aid of numerical simulations and the usage of ML 
chniques.

To carry out the numerical simulations for predicting the mechan-
al behavior of an AM part at a component scale (macro scale), it 
 crucial to look at the microstructural characteristics of the as built 
aterial. This reveals which numerical procedure is to be used after 
tegorizing the component as homogeneous or heterogeneous. Addi-
nally, it provides certain information whether the component will 
have anisotropically or not.
As a matter of fact, the approach followed in this work clearly be-
ngs to the fourth paradigm of science. In the context of Material 
ience, every paradigm represents a key step in understanding and de-
loping better materials [4]; for instance, the pursuit of knowledge 
as solely based on empirical methods in the first paradigm; while 
 the second one, the formulation of mathematical models based on 
e laws of physics was feasible, although analytical solutions were 
und only for very simple practical problems. Later came the era of 
e third paradigm, where it was possible to solve approximately the 
t of equations of the second paradigm with the aid of computers by 
plementing numerical techniques. Nowadays, the fourth paradigm is 
ing established and characterized by big data driven science, which 
 the present case is given by the utilization of hundreds of results 
tained after the first three paradigms to make accurate prognosis.

2. Machine learning

ML, which is one of the most common types of Artificial Intelligence 
I), can figure out any relation between input and output in order to 
ake predictions. It has been successfully applied to establish such rela-
ns in many engineering applications such as in [5–8] to name a few. 
 Solid Mechanics, it has been applied in material property prediction 
–11], crack recognition [12,13], damage classifications [14–16], and 
ditive manufacturing [17–20] among others.
There have been several studies that demonstrate the efficacy of ML 

 predicting the mechanical response of AM parts. For instance, Artifi-
al Neural Networks (ANNs) have been shown to achieve high accuracy 
 predicting the tensile strength of hybrid composites [21]. Support 
ctor regression has been used to predict the behavior of geomateri-
s [22]. Random Forest (RF) has been used to predict the compressive 
rength of basalt fiber reinforced concrete [23]. In a study by K. Yang et 
. [24], a framework to predict the Young’s modulus of silicate glasses 
 combining molecular simulations with ML has been developed. In 
eir work, RF and feed-forward neural networks were adopted to pre-
ct the Young’s modulus, achieving an accuracy of 99.1% and 98%, 
spectively. Moreover, X. Liu et al. [25] analyzed fracture toughness 
easurements by using ML models such as regression trees and ANNs. 
was demonstrated that, for such engineering problems, ML solutions 
nstitute a major improvement against their empirical counter parts 
 terms of reliable functionality and rapid deployment. Additionally, 
L algorithms were used to link the macro and micro scales in order to 
rry out localization on high-contrast composite materials [26], where 
o-phase RVEs were represented as two-color (black and white) do-
ains. Furthermore, Convolutional Neural Networks (CNNs) have been 
ed to determine stress and strain fields [27]. For example, Yang et 
. [28] generated the elastic strain field, including local strain concen-
ations, for composite materials.
Further applications of ML in Solid Mechanics include the realiza-
n of inverse analysis for the design of Metamaterials; for this, Deep 
arning (DL), a branch of ML that employs ANNs, is used [29]. The 
al here is to find out for example topological characteristics in order 
2

 obtain desired material properties [30], such as higher stiffness [31], an
Results in Engineering 20 (2023) 101587

perior buckling resistance [32] and optimized energy-absorbing ca-
bilities [33]. Once the geometry is determined, AM is employed to 
ild the final parts.
In the present work, the input for training ML-based algorithms is 
ven by specific microstructural characteristics provided either as a set 
 numerical parameters or as an image, while the output for training 
nsists of a one-dimensional array holding the stresses at given strains, 
hich are to be obtained deterministically i.e. after the Principles of 
assical Mechanics.

 Methodology

Basically, the present work is carried out in two stages. First, the 
neration of training and testing data; then, the application of several 
 techniques on it in order to learn and predict the stress-strain curves 
 the given metallic material.

1. Generation of training and testing data

The process of data generation, either for training or testing, is the 
e proposed by Lizarazu et al. [3], where each RVE is created out 
 a Voronoi Tessellation. Here, this process is briefly summarized and 
rther complemented.

1.1. Microstructural investigation
A thoroughly study of the material’s microstructure is performed 
ce with the aid of Light Microscope, Scanning Electron Microscope 
EM) and X-ray diffraction, in order to determine heat affected regions, 
ain characteristics and phase composition. Lizarazu et al. [3] reported 
at the material’s phase volume fractions are 99% Ferrite and 1% Ce-
entite. This information was further confirmed after simulating the 
lidification process of the material with the aid of Thermo-Calc soft-
are (version 2021) and TCFE9 Steels/Fe-alloys database [34], whose 
sult, showing the evolution of the phase fraction composition in rel-
ive mass, is depicted in Fig. 1. In this figure, the abscissa represents 
e cooling down temperature during the manufacturing process and 
e ordinate represents the relative amount of mass for a given phase 
d temperature; then, it uses a scale between 0 and 1, where a value 
 0 indicates the total absence of that phase and 1, which is equiva-
nt to 100%, shows that the whole alloy is composed exclusively of 
at given phase. Fig. 1 shows how four phases evolve when the mate-
al cools down. It can be seen in this figure that for temperatures lower 
an 600 °C, the material is composed only by two phases: Ferrite and 
mentite; reaching the former a relative mass value of almost 1 and 
e latter a value close to zero.

1.2. Generation of the representative volume elements
After processing the information extracted from the SEM with the 
va-based image processing program ImageJ [35], the type of grain 
ze distribution and its statistical parameters were determined for im-
es of different sizes. This information was further used by Lizarazu et 
. to generate corresponding synthetic representative volume elements 
ith the aid of the Linux-based computer program Neper v. 4.2.0 [36]
d perform numerical simulations in order to find the dimensions of 
e RVE for the material under study, which resulted to be 36 μm x 
μm. In this work, this RVE is named the mean RVE, since some of 

 properties (see Table 1) represent the mean or initial values for the 
neration of 1000 analogous sets by using LHSM.
Provided the type of distribution (Log-normal), the statistical pa-
meters (number of grains, mean grain size and standard deviation for 
ch phase) and the phase fraction for 1000 sets, Neper was employed 
ain in this work to generate synthetically 1000 unique RVEs using 
e Voronoi Tessellation. All these synthetic RVEs are basically 1000 
ages in black and white (see Fig. 2), just to differentiate the Ferrite 

d Cementite phases, respectively.
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Fig. 1. Evolution of phase fractions.

Fig. 2. Two samples of synthetically generated RVEs.
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Table 1

Initial input set of values for Neper.
Parameter Value

Mean grain size of Ferrite 3.61 μm

Mean grain size of Cementite 1.33 μm

Std. deviation for Ferrite 3.46 μm

Std. deviation for Cementite 1.16 μm

Volume fraction of Cementite 1%

In principle, 200 grains were considered for each RVE, requiring this 
out 8 minutes for the corresponding tessellation in Neper. In order to 
eed up the process the number of grains was reduced to 100 and a 
rtual Machine from Google Cloud Platform (e2-medium 4 CPUs, each 
e with 12 GB RAM memory and Operating System Ubuntu 20.04 LTS) 
as employed to perform the same task. With this machine capabilities, 
e generation of 1000 tessellations and their corresponding Finite Ele-
ent discretizations demanded 4 hours of calculation.

1.3. Constitutive model
The hardening law of the Ferrite phase for the uniaxial case is given 
3

 Eq. (1), which was proposed by Rodriguez and Gutiérrez [37]. The th
st term (𝜎0) on the right hand side of this equation includes the effect 
 the lattice friction and the elements in the solid solution, whose ac-
rate determination for the alloy under study is reported in [3] after a 
emical analysis. The second term on the right hand side of Eq. (1)
scribes the hardening behavior of the phase and includes several 
rameters, whose identification for the current material was also re-
rted by Lizarazu et al. [3] and their meaning is explained in Table 2. 
 Eq. (1), the recovery rate is defined in terms of the Ferrite mean grain 
ze 𝑑𝛼 as 𝑘𝑟 = 10−5∕𝑑𝛼 [38] and the displacement mean free path 𝐿 is 
tually the mean grain size 𝑑𝛼 .

= 𝜎0 + 𝛼𝑀𝜇
√
𝑏

√
1 − 𝑒−𝑀𝑘𝑟𝜖𝑝

𝑘𝑟𝐿
(1)

The model can be simplified by reducing the number of parameters; 
en, the bulk number 𝐵 = 𝛼𝜇

√
𝑏 = 0.19 MPa is defined, as a result 

. (1) can be written as

= 𝜎0 +𝑀𝐵

√
1 − 𝑒

−𝑀𝑑𝛼

10−5
𝜖𝑝 . (2)

The bulk number 𝐵 in Eq. (2) is the last parameter to be varied using 

e LHSM.
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Fig. 3. Example of section assignment to a given RVE.
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Table 2

Set of parameters for the uniaxial hardening law 
of the Ferrite phase.
Symbol Name Units

𝑀 Taylor’s factor -

𝛼 Proportionality factor -

𝜇 Shear modulus MPa

𝑏 Burger’s vector -

𝐿 Displacement mean free path m

𝑘𝑟 Recovery rate -

𝜖𝑝 Equivalent plastic strain -

Cementite is a brittle material with high strength (up to 3000 MPa), 
. it practically does not exhibit plastic behavior; then, its constitutive 
rmulation is solely based on Hook’s Law with Young’s modulus of 210 
Pa and Poisson’s ratio of 0.3 [38].

1.4. Finite element modeling
Once the 1000 RVEs are generated after employing LHSM and the 
ronoi Tessellation, it follows their discretization into linear triangular 
ite elements using Neper again. All further steps concerning the FE 
odeling are done with the aid of ABAQUS CAE, whose final purpose 
 to simulate a tensile test that will result in a set of 1000 stress-strain 
ique curves. Here, the structure is to be stretched until it achieves 
maximum total strain of 30%, as it was the maximum strain value 
hieved by the metallic specimens before the material brakes.
The procedure in ABAQUS CAE consists of assigning the previously 
esented material properties to each phase and finite element in ev-
y RVE. After that, periodic boundary conditions are applied to each 
E [39] in order to later simulate a tensile test. This process is al-
ost fully automatized by implementing several Python subroutines as 
scribed in Fig. 4.
Fig. 3a shows a snapshot of a .tess file, where mode identifiers sepa-
te the phases into Modes 1 and 2 (Ferrite and Cementite, respectively) 
d Fig. 3b shows the visualization corresponding to the same *.tess 
e. Though, these visualization images (.png) are not considered in 
is stage of work, they are used later as input for training the ML-
gorithm.

2. Machine learning for stress-strain prediction

In this paper, two types of supervised ML models are implemented 
sed on the nature of the input data (see Fig. 5):

. An algorithm to predict the response in terms of stress-strain curves 
of AM mild steel out of microstructural parameters.

. An algorithm to predict the response in terms of stress-strain curves 
4

of AM mild steel out of images of synthetically generated RVEs. be
g. 4. Semi-automatic workflow of data generation and calculation processes.

The development of both above mentioned algorithms was achieved 
 following several stages of the ML life cycle, as shown in Fig. 6.
The predictions can be done in terms of Engineering Stress/Strain 
easurements, as well as in terms of True Stress/Logarithmic Strain 
easurements, everything depending on the data used for training the 
L models.
ML algorithms can not fit solely on raw data; instead, the data should 
 pre-processed to meet the requirements of individual algorithms; as 
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Fig. 5. Input data type on left: (a) Microstructural parameters [3] and (b) Synthetic RVE-image. On right, output data as corresponding stress-strain curves.

Fig. 6. Stages of the ML implementation.
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ch, data is transformed into useful information at every stage until the 
ployment, where predictions can be made from the model artifacts. 
 this study, two end-to-end ML pipelines were developed, which au-
mates the stages shown in Fig. 6.

2.1. Data collection
In this work, the synthetic generation of data was carried out pro-
ammatically and it involved more than half of the study period. The 
al data consisted of:

• Microstructural parameters: Generated by applying LHSM.
• RVE: As tesselletations generated in Neper.
• Corresponding stress-strain curves obtained after simulating tensile 
tests with ABAQUS CAE.

2.2. Exploratory data analysis
Exploratory Data Analysis (EDA) is concerned with analyzing and 
derstanding the trends of the data set. In this study, EDA was car-
ed out in Python using packages ‘pandas’, ‘matplotlib’ and ‘sweetViz’. 
5

ble 3 shows the descriptive statistics of input parameters.
2.3. Data pre-processing
Data pre-processing is vast and can consist of numerous steps de-
nding upon the data type, features, and model requirements. The fol-
wing two subsections describe the pre-processing steps implemented 
 the raw dataset.

. Pre-processing of input data: The generation of input data was 
explained beforehand, where 1000 sets of parameters with corre-
sponding RVE-Images were provided, as presented in Fig. 7. As part 
of a ML life cycle, pre-processing was carried out to recognize and 
fix errors in the dataset that may negatively influence a predictive 
model. The steps carried out to clean and prepare the input data 
are:

• Standardization: Data for each feature drawn from various 
sources may differ from each other in terms of scale and distri-
bution. The process of standardizing a dataset entails rescaling 
the distribution of values so that the mean of observed values is 0 
and the standard deviation is 1. It can be considered as centering 
the data.

• Feature Selection: While developing a predictive model, feature 

selection restricts the number of independent variables in an input 
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Table 3

Descriptive statistics of input parameters for 1000 samples for a log-normal Distribution.

Stat. 
measure.

cementiteMean ferriteMean cementitePerc Taylor’s factor bulkConstant

( μm) ( μm) (%) (-) (MPa)

mean 1.32 3.57 4.59 2.97 0.19

std 0.03 0.08 1.04 0.07 0.00

min 1.22 3.32 2.15 2.76 0.18

25% 1.30 3.52 3.89 2.92 0.19

75% 1.34 3.62 5,28 3.01 0.19

max 1.42 3.84 9.32 3,19 0.20

2

Fig. 7. Data pre-processing stages.

dataset, which aids in both lowering the computational cost and 
improving model performance. Feature selection methods analyse 
the relationship between every independent variable to the depen-
dent variable (target), eliminating variables that contain or hold 
less importance with regard to target attributes. There are several 
statistical methods to perform feature selection in the form of hy-
pothesis tests. Such methods differ based on the type of dataset 
available. For numerical data, methods such as Pearson or Spear-
man’s correlation and ANOVA or chi-square test for categorical 
data can be used. In this work, Pearson correlation was employed 
to rank the independent features based on their relationship with 
target stress-strain curves.
Fig. 8 illustrates the input feature correlations with the depen-
dent variable class, i.e., stress-strain curves. It can be observed 
that none of the input parameters have much influence on tar-
get variables except that of cementite percentage. Here, the target 
variables are of a two-dimensional continuous value, which can 
be labeled as a multi-output regression problem. Dimensionality 
reduction methods were applied to reduce the two-dimensional 
stress-strain value into a lower-dimensional plane. As shown in 
Fig. 8, the last three variables, target_pca_1, target_pca_2 and 
target_pca_3, are the lower-dimensional representation of the 
higher dimensional stress-strain values, also known as Principal 
Component (PC). A detailed description of the dimensionality re-
duction approach used in the study is discussed in the following 
sections.

• Image Data preparation: The second input entity generated to 
study the material behavior is of unstructured data type, i.e. im-
ages of an RVE tessellation. ML algorithms do not understand the 
unstructured data and cannot be used directly for training unless 
converted into vectors. Several image processing steps were car-
ried out to convert images into machine-readable vectors. Each 
image generated from Neper software was of (1000×1000×3) 
dimensions, where 1000×1000 is a pixel dimension and 3 cor-
6

responds to the RGB channel of a particular image. Resizing an 
Fig. 8. Heat map showing Pearson correlation values.

image was performed to bring down the pixel size to 420×420×3, 
which saves computational time and improves the model’s accu-
racy. Fig. 9 shows a few images obtained after pre-processing.

. Pre-processing of simulation output data: The stress-strain values 
obtained from ABAQUS CAE were treated as a set of target attributes 
which the ML model should predict. However, the output, the two-
dimensional vector of each RVE, is of different size, i.e. the number 
of points obtained to draw each stress-strain curve is different from 
one RVE to another, as ABAQUS CAE does not provide the flexibility 
to control this. However, it is essential that the target variables be 
of the same dimension and shape. To achieve this, an interpolation 
approach by using cubic splines was first employed; so that, a new 
(interpolated) set of points for each stress-strain curve is generated. 
As a result, every stress-strain curve can be now described with the 
same number of points and storage of an specific strain vector for 
every curve is no longer needed. Further, dimensionality reduction 
techniques are to be used, which transform the stress-strain curves 
into an effective latent space of lower dimension.
• Cubic spline interpolation: The process of estimating (finding) 
unknown values or data points that fall between known values is 
known as interpolation. Cubic spline interpolation is an exact fit-
ting method, in which a piecewise polynomial of degree 3 is used 
for every couple of points. By using such 3𝑟𝑑 -order polynomials, it 
is possible to assure the continuity of the curve, the slope and the 
curvature between each picewise function. Furthermore, as the 
functions are actually low order polynomials, curve fitting using 
cubic splines does not show oscillation problems.

In this study, the raw stress-strain curves (without pre-processing) 
consisted of 1000 sets with a minimum of 11 and a maximum of 
66 points defining the elasto-plastic response until a total strain 

value of 30%, see Fig. 10. All of them were redefined based on 



Results in Engineering 20 (2023) 101587J. Lizarazu, E. Harirchian, U.A. Shaik et al.

Fig. 9. Set of RVE images after pre-processing.

Fi

AB

Fi

Fi
g. 10. 1000 raw stress-strain values obtained after simulating a tensile test in 
AQUS CAE.

g. 11. A 2D Plot of 1000 stress-strain values at 30 interpolated strain points.

30 and 10 points for the corresponding ML modeling, as depicted 
in Figs. 11 and 12 respectively. As expected, the redefined curves 
with 30 points are smoother.

• Principal component analysis: It is a statistical technique used, 
for example, for dimensionality reduction of data. It consists of de-
termining an orthonormal basis after an optimization procedure, 
on which the data sets are projected/referred to. Then, it is pos-
7

sible to lower the dimensional space by verifying that a given 
g. 12. A 2D Plot of 1000 stress-strain values at 10 interpolated strain points.

principal component (basis vector) accounts for a relatively much 
smaller variation of data. Dimensionality reduction, as it involves 
learning in a lower-dimensional environment, allows ML models 
to learn more effectively, resulting in improved accuracy with less 
training data.
In principle, the output data is split into training and testing data 
sets in a 80:20 proportion, in order to evaluate and validate the 
model performance. Afterwards, the dimensionality of the inter-
polated training data sets is reduced by using PCA for both cases, 
i.e. when using 30 and 10 stress-strain pairs for each simulation.

𝑿 =𝑼𝚺𝑽 𝑇 . (3)

The 𝑿 matrix in Eq. (3) depicts 1000×10 or 1000×30 compo-
nents, with each row representing a stress vector whose elements 
correspond to the 10 or 30 total strain values. Despite the fact that 
stress-strain curves are made up of both a stress and a strain vec-
tor, just the stress vector is fitted/passed to PCA because the strain 
vectors for all (1000) cases have the same lengths and values, i.e. 
fitting them in PCA would have not provided more information to 
the model. At first, each column of 𝑿 is standardized, such that, 
it has a mean value of 0 and a standard deviation of 1. Then, 𝑿
is factorized by using singular value decomposition, as indicated 
in Eq. (3), where the matrix 𝚺 contains the eigenvalues of each 
PC that measure the corresponding variance. The PCs are listed in 

the 𝑽 𝑇 matrix in decreasing order of relevance.



Results in Engineering 20 (2023) 101587J. Lizarazu, E. Harirchian, U.A. Shaik et al.

Fig. 13. Transition of stress vector from higher dimension (1000x10) to lower dimension (1000x2) with two PCs.

Fig. 14. Transition of stress vector from higher dimension (1000x30) to lower dimension (1000x3) with three PCs.
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Table 4

Variance by two PCs for stress vector 
with 10 strain points.
PCA components PC 1 PC 2

Explained variance 98.2% 1.5%

Table 5

Variance by three PCs for stress vector with 30 
strain points.
PCA components PC 1 PC 2 PC 3

Explained variance 92.2% 5.7% 1.2%

The Cumulative Explained Variance (CEV) is the sum of eigen-
values of selected PCs normalized by the sum of all eigenvalues. 
Then, based on CEV, 3 and 2 PCs for 𝑿 when defined out of 30 
and 10 strain points are considered, respectively.
In this study, PCA was implemented by using ‘sklearn’s PCA 
method from its decomposition module. Tables 4 and 5 show the 
CEV for the two cases. i.e. when 𝑿 is defined out of 10 and 30 
strain points respectively. Likewise, Figs. 13 and 14 depict the 
transitions from dimensionally higher spaces to lower ones for a 
given simulation.

2.4. Machine learning model building
Two end-to-end ML model pipelines were created to predict the 

ress vector. The first one employs traditional ML algorithms, whereas 
e second one is based on Deep Learning, namely CNNs.

. Machine learning model 1. The prediction of the output stress 
vector constitutes a multi-output regression problem, since it con-
sists of more than one numerical value. Unlike standard regression, 
which predicts a single value for each observation, multi-output re-
gression needs specific ML algorithms such as RF, linear regression, 
k-Nearest Neighbors (KNN) and Decision Trees (DTs).

In this model, several multi-output regressors are employed, 
8

which are listed in Fig. 15, where the flow of the ML model is 
also depicted. In principle, the linear regression algorithm with de-
fault parameters given by sklearn’s linear model package in Python 
was trained with the given input and output datasets. After that, 
the Ridge regression algorithm with default parameters given by 
sklearn’s linear model package by ‘RidgeCV’ in Python was em-
ployed. The given input and output datasets have been analyzed 
with the DT regression algorithm using entropy as purity criteria, 
making the tree with a maximum depth of five. Additionally to 
the previous ML algorithms, RF as an ensemble ML method for re-
gression and classification has been implemented. RF is a type of 
bagging approach that originates from a significant advancement in 
DT variance. RF aggregates the result from multiple trees built on 
sample datasets. Unlike DT, RF creates multiple trees, which are ex-
ecuted in parallel without any interaction between them. In short, 
it creates multiple DT and aggregates the output generated by all 
predictors. The RF model is implemented by using ‘sklearn’s linear 
model package by ‘RandomForestRegressor’ in Python. The RF re-
gression algorithm was set with default parameters of 100 trees and 
a maximum depth of 4. Along with the mentioned regression al-
gorithms, others multi-output regression methods like KNN, Lasso, 
ElasticNet, Gradient Boosting Regressor, and Ada Boost Regressor 
were also employed for the investigation of the best fit.

In ML, Root Mean Squared Error (RMSE), Mean Absolute Error 
(MAE) and Mean Squared Error (MSE) are commonly used evalu-
ation metrics for regression problems. MAE, according to Eq. (4), 
is defined as the average of the differences between true 𝑌𝑖 and 
predicted 𝑌𝑖 𝑛-components of the stress vector; then, the average 
magnitude of error is measured, being a higher value an indicator 
of worse performance

MAE = 1
𝑛

𝑛∑
𝑖=1

|||𝑌𝑖 − 𝑌𝑖
||| . (4)

MSE is similar to MAE; however, it uses the squared difference 
instead, see Eq. (5). Generally, MSE is widely used to train models 
because it is differentiable, unlike MAE.

1
𝑛∑

̂ 2

MSE =

𝑛
𝑖=1

(𝑌𝑖 − 𝑌𝑖) . (5)
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Fig. 15. Flow of ML Model 1 with several multi-output regressors.

Fig. 16. Flow of ML model 2 with multiple CNN.

2

RMSE can be any non-negative value, including values greater 
than 1. RMSE as presented in Eq. (6), has the same units of the 
dependent variable. The lower RMSE is, the more accurate the pre-
diction is

RMSE =

√∑𝑛

𝑖=1 (𝑌𝑖 − 𝑌𝑖)
2

𝑛
. (6)

. Machine learning model 2.
When traditional ML algorithms can not solve a given problem 

due to its complexity, Deep learning-based algorithms will be used. 
Deep Learning is a branch of ML, which uses a multi-layered ANN. 
9

This approach involves simple Mathematics, Statistics, Physics, and 
Signal Processing methods. CNN is a type of ANN that mainly deals 
with images and videos as input. The main idea behind implement-
ing CNN in this study is to predict the stress-strain curve of a given 
dual phase material out of its RVE; for this, images generated from 
Neper (as input) together with 30-point stress vectors are to be 
trained. Fig. 16 illustrates the steps regarding ML model 2.

CNN is the most popular artificial neural network because of its 
ability to deal with large datasets; as a result, it is commonly used 
to analyze and find patterns in images. Digital photos provide pixel-
level information about an object. For three separate RGB channels, 
each pixel contains brightness intensity values ranging from 0-255. 

In this study, only one CNN model was implemented, which takes 
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Table 6

Characteristics of each assigned layer for CNN.
Filters Kernel size Activation function Max pooling

Convolutional Layer1 32 (3,3) ReLU (2,2)

Convolutional Layer2 64 (3,3) ReLU (2,2)

Convolutional Layer2 128 (3,3) ReLU (2,2)

Output layer 31 (Dense nodes) - - -

Table 7

Metrics of ML model 1 on A) 10 interpolated stress-strain points, B) 2 PCs, C) 30 interpolated stress-strain points, and D) 3 PCs.
Algorithms/Metrics A B C D

MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE

KNN 3.868 25.786 5.078 3.868 25.783 5.075 4.826 45.491 6.745 4.932 48.259 6.947

Linear regression 3.662 24.205 4.920 3.662 24.207 4.920 4.553 40.873 6.393 4.552 40.876 6.393

Ridge 3.664 24.228 4.922 3.664 24.230 4.992 4.541 40.842 6.391 4.551 40.845 6.391

Lasso 3.998 28.514 5.340 3.998 28.514 5.340 4.693 42.088 6.488 4.587 40.819 6.389

Elastic Net 3.998 28.514 5.340 3.871 26.851 5.182 4.693 42.088 6.488 4.577 40.739 6.383

RF Regressor 3.745 24.825 4.982 3.746 24.845 4.984 4.580 40.773 6.385 4.580 40.794 6.387

DT Regressor 4.113 30.424 5.516 4.117 30.455 5.519 4.820 46.131 6.792 4.821 46.265 6.802

Gradient Boosting Regressor 3.865 26.486 5.146 3.871 26.470 5.145 4.575 40.496 6.364 4.580 39.441 6.280

Ada Boost Regressor 3.732 24.987 4.999 3.751 25.093 5.009 4.657 41.408 6.435 4.739 43.889 6.625

3.

w

(M

3.

pl

ge

A

B

C

D

is

re

te

ba

be

po

pr

ac

Li

a 

po

so

fo

st

m

pr

sa

re

as

im

er

m

th

3.

in

in

st

cr
a 430×430-sized image as an input and a stress-strain curve with 
30 interpolated strain points as an output. Again, the 1000 samples 
were split into 80% training and 20% testing data. Each convolu-
tional layer in the CNN model consists of five main components that 
perform classification or regression operation on images by trans-
forming an n-dimensional image into a single dimension vector.

CNNs are used with python scripting language employing the 
TensorFlow module, an open-source library provided by Google. 
The development of the CNN model was carried out with the char-
acteristics presented in Table 6 for each convolutional layer.

 Results and discussion

This section is based on the metrics evaluated in Section 2.2.4, 
hich were calculated for structured (ML model 1) and unstructured 
L model 2) data.

1. Evaluation of ML model 1

The training was carried out by using 9 regressors, which were im-
emented using Python’s ‘scikit-learn’ module. For this analysis, four 
neral cases were considered:

. ML model 1 trained by 10 interpolated stress-strain points.

. ML model 1 trained by 2 PCs (obtained from 10-point stress-strain 
curves).

. ML model 1 trained by 30 interpolated stress-strain points.

. ML model 1 trained by 3 PCs (obtained from 30-point stress-strain 
curves).

Accordingly, the output data for training, namely the stress vector, 
 given in four formats, all of them carrying the same information, 
sulting in 36 (9 × 4) ML models.
According to Table 7, a better agreement between ML prediction and 
sting data was achieved for cases A and B, where output training was 
sed on 10 stress-strain points. Additionally, the maximum difference 
tween the metrics obtained by considering the whole set of 10 or 30 
ints and the PCA is less than 6.1%, i.e. PCA proved to be a suitable 
ocedure to accelerate the calculations without any important loss of 
curacy. Further, the metrics of the best prediction obtained after the 
near Regressor for Cases A and B are practically the same.
As already mentioned, the stress-strain curve after a tensile test for 
10

given material provides valuable information from a macroscopical ba
Fig. 17. Actual and predicted ultimate tensile strength of the material.

int of view. Among this information, the strength of the material, 
metimes referred to as the maximum stress, has been determined 
r both actual and predicted stress-strain curves. Fig. 17 depicts the 
ress-strain curve and maximum stress, which can be also termed the 
aterial’s ultimate tensile strength.
Fig. 18 shows the difference between actual (testing dataset) and 
edicted maximum stress; here, the x-axis represents the number of 
mples (the first 100 out of 200 testing samples), while the y-axis 
presents the strength for every chosen testing sample. For a better 
sessment of the relative prediction error in the prognosis of the max-
um stress, Fig. 19 was prepared, where the variation of the absolute 
ror (actual - predicted) of tensile strength is presented. It shows a 
aximum discrepancy of 16 MPa, that represents less than the 3% of 
e strength of the material.

2. Evaluation of ML model 2

In ML model 2, the training was based on RVE images as input data, 
 contrast to ML model 1, where microstructural parameters were used 
stead.

Deep learning-based algorithms were employed to predict the stress-
rain curves. Even though synthetic RVE images are generated from mi-
ostructural parameters, the main reason to work with deep learning-

sed algorithms is their innovative learning with neurons, which is not 
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Fig. 18. Difference between actual and predicted strength (maximum stress).

Fig. 19. Residual error of strength for the first 100 test samples.

Table 8

Evaluating metrics of CNN model.
Algorithm C

MAE MSE RMSE

CNN 14.5 287.21 19.94

the case with traditional ML models; besides, it was intended the devel-
opment of a tool that can directly analyze images that, for example, 
could be obtained from an Scanning Electron Microscope.

The same evaluation metrics of ML model 1 were used and they are 
shown in Table 8. Compared to that of the traditional ML model, losses 
are high. The mean absolute error for each epoch of the training and 
validation up to 10 epochs is presented in Fig. 20. As it can be seen, the 
errors drastically reduced after the 4th epoch, after which the training 
11

Fig. 20. Training and validation loss for 10 epochs. an
d validation losses are almost the same.
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Fig. 21. Stress-strain predictions after employing CNN algorithm.

4.

th

w

cl

du

Th

to

da

st

em

ha

di

of

is

re

fo

tr

m

to

lo

an

ad

A

ar

AI

AM

A

CA

CE

CN

D

D

ED

FE

KN

LH

M

M

Some predictions based on the ML model 2 are depicted in Fig. 21.

 Conclusion

A complete framework was developed from the generation of syn-
etic data to ML and DL model training. In addition, a web framework 
as developed, where inferences from the model can be drawn with a 
ick of a button. For this purpose, 1000 synthetic samples of a given 
al-phase steel were created with a semi-automatic workflow process. 
en, a tensile test was simulated for each RVE using the FE Method 
 obtain the corresponding stress-strain curve. Afterwards, the input 
ta is divided into structured (microstructural parameters) and un-
ructured data (RVE images); on which ML and DL-based models are 
ployed to carry out the prognosis, respectively.
Three different metrics were used to assess the accuracy. On one 
nd, classic ML algorithms performed beyond expectations by pre-
cting the whole non-linear stress-strain curve with a minor RMSE 
 approximately 5 MPa. On the other hand, although showing a sat-
factory convergence, DL based predictions from RVE images had a 
lative larger error. Nevertheless, determining the stress-strain curve 
r a given dual-phase steel out of an RVE image, that could be ex-
acted from an SEM device, without any further work, is undoubtedly 
12

uch more pragmatic. M
In pursuit of predicting the stress-strain curves, it was also possible 
 verify the effectiveness of PCA when reducing data almost without 
sing information. In future studies, some limitations can be improved 
d achieve a better and more robust method by having more data, 
ditional computational resources and different materials.

bbreviations

c-DED arc-Direct Energy Deposition
Artificial Intelligence
Additive Manufacturing

NN Artificial Neural Network
D Computer Aided Design
V Cumulative Explained Variance
N Convolutional Neural Network
L Deep Learning
T Decision Tree
A Exploratory Data Analysis

Finite Element
N k-Nearest Neighbors
SM Latin Hypercube Sampling Method
AE Mean Absolute Error
L Machine Learning

SE Mean Squared Error
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Principal Component
A Principal Component Analysis
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Random Forest
E Representative Volume Element
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D. Radu, A hybrid artificial neural network—particle swarm optimization algorithm 
model for the determination of target displacements in mid-rise regular reinforced-
concrete buildings, Sustainability 15 (12) (2023) 9715.

[17] C. Tian, T. Li, J. Bustillos, S. Bhattacharya, T. Turnham, J.X. Yeo, A. Moridi, 
Data-driven approaches toward smarter additive manufacturing, Adv. Intell. Syst. 
3 (2021).

[18] L. Meng, B. McWilliams, W. Jarosinski, H.-Y. Park, Y.-G. Jung, J. Lee, J. Zhang, Ma-
chine learning in additive manufacturing: a review, JOM 72 (6) (2020) 2363–2377.

[19] J. Jiang, A survey of machine learning in additive manufacturing technologies, Int. 
J. Comput. Integr. Manuf. (2023) 1–23.

[20] S. Kumar, T. Gopi, N. Harikeerthana, M.K. Gupta, V. Gaur, G.M. Krolczyk, C. Wu, 
Machine learning techniques in additive manufacturing: a state of the art review on 
design, processes and production control, J. Intell. Manuf. 34 (1) (2023) 21–55.

[21] M.G. Vineela, A. Dave, P.K. Chaganti, Artificial neural network based predic-
tion of tensile strength of hybrid composites, Mater. Today Proc. 5 (9) (2018) 
19908–19915.

[22] H. Zhao, Z. Huang, Z. Zou, Simulating the stress-strain relationship of geomaterials 
by support vector machine, Math. Probl. Eng. 2014 (2014).

[23] H. Li, J. Lin, X. Lei, T. Wei, Compressive strength prediction of basalt fiber reinforced 
concrete via random forest algorithm, Mater. Today Commun. 30 (2022) 103117.

[24] K. Yang, X. Xu, B. Yang, B. Cook, H. Ramos, N. Krishnan, M.M. Smedskjaer, C. 
Hoover, M. Bauchy, Predicting the Young’s modulus of silicate glasses using high-
throughput molecular dynamics simulations and machine learning, Sci. Rep. 9 (1) 
(2019) 1–11.

[25] X. Liu, C.E. Athanasiou, N.P. Padture, B.W. Sheldon, H. Gao, A machine learning ap-
proach to fracture mechanics problems, Acta Mater. 190 (2020) 105–112, https://
doi .org /10 .1016 /j .actamat .2020 .03 .016, https://www .sciencedirect .com /science /
article /pii /S1359645420302032.

[26] R. Liu, Y.C. Yabansu, A. Agrawal, S.R. Kalidindi, A.N. Choudhary, Machine learning 
approaches for elastic localization linkages in high-contrast composite materials, 
Integr. Mater. Manuf. Innov. 4 (1) (2015) 192–208.

[27] Z. Yang, C.-H. Yu, M.J. Buehler, Deep learning model to predict complex stress and 
strain fields in hierarchical composites, Sci. Adv. 7 (15) (2021) eabd7416.

[28] Z. Yang, Y.C. Yabansu, D. Jha, W.-k. Liao, A.N. Choudhary, S.R. Kalidindi, A. 
Agrawal, Establishing structure-property localization linkages for elastic deforma-
tion of three-dimensional high contrast composites using deep learning approaches, 
Acta Mater. 166 (2019) 335–345.

[29] X. Zheng, X. Zhang, T.-T. Chen, I. Watanabe, Deep learning in mechanical meta-
materials: from prediction and generation to inverse design, Adv. Mater. (2023) 
2302530.

[30] S. Kumar, S. Tan, L. Zheng, D.M. Kochmann, Inverse-designed spinodoid metamate-
rials, npj Comput. Mater. 6 (1) (2020) 73.

[31] J.-H. Bastek, S. Kumar, B. Telgen, R.N. Glaesener, D.M. Kochmann, Inverting the 
structure–property map of truss metamaterials by deep learning, Proc. Natl. Acad. 
Sci. 119 (1) (2022) e2111505119.

[32] M. Maurizi, C. Gao, F. Berto, Inverse design of truss lattice materials with superior 
buckling resistance, npj Comput. Mater. 8 (1) (2022) 247.

[33] B. Deng, A. Zareei, X. Ding, J.C. Weaver, C.H. Rycroft, K. Bertoldi, Inverse design of 
mechanical metamaterials with target nonlinear response via a neural accelerated 
evolution strategy, Adv. Mater. 34 (41) (2022) 2206238.

[34] Thermo-calc software TCFE9 steels/Fe-alloys database, https://thermocalc .com /
products /databases /steel -and -fe -alloys/.

[35] C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH image to ImageJ: 25 years of image 
analysis, Nat. Methods 9 (7) (2012) 671–675.

[36] R. Quey, P. Dawson, F. Barbe, Large-scale 3d random polycrystals for the fi-
nite element method: generation, meshing and remeshing, Comput. Methods Appl. 
Mech. Eng. 200 (17) (2011) 1729–1745, https://doi .org /10 .1016 /j .cma .2011 .01 .
002, https://www .sciencedirect .com /science /article /pii /S004578251100003X.

[37] R. Rodriguez, I. Gutiérrez, Unified formulation to predict the tensile curves of steels 
with different microstructures, in: Materials Science Forum, vol. 426, Trans Tech 
Publications Ltd., Zurich-Uetikon, Switzerland, 2003, pp. 4525–4530.

[38] S. Ma, X. Zhuang, Z. Zhao, Effect of particle size and carbide band on the flow 
behavior of ferrite–cementite steel, Steel Res. Int. 87 (11) (2016) 1489–1502.

[39] X. Zheng, T.-T. Chen, X. Guo, S. Samitsu, I. Watanabe, Controllable inverse design 
of auxetic metamaterials using deep learning, Mater. Des. 211 (2021) 110178.
13

http://refhub.elsevier.com/S2590-1230(23)00714-4/bib9FFAE65EA4AFB68C8A42C1C52A249761s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib9FFAE65EA4AFB68C8A42C1C52A249761s1
https://doi.org/10.1016/j.addma.2018.06.020
https://www.sciencedirect.com/science/article/pii/S2214860418303920
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib78423E42E514956D932166B384DDF9CCs1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib78423E42E514956D932166B384DDF9CCs1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib78423E42E514956D932166B384DDF9CCs1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib78423E42E514956D932166B384DDF9CCs1
https://doi.org/10.1063/1.4946894
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib0DB1C6CC2E073D610629CDA1202E64F3s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib0DB1C6CC2E073D610629CDA1202E64F3s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib0DB1C6CC2E073D610629CDA1202E64F3s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bibD6DD1A6355012022803DE7FE2E3B727Es1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bibD6DD1A6355012022803DE7FE2E3B727Es1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bibD6DD1A6355012022803DE7FE2E3B727Es1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib71A6AA3DA0FA87B400000F17AE87A115s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib71A6AA3DA0FA87B400000F17AE87A115s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib71A6AA3DA0FA87B400000F17AE87A115s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib22E0BE45D93ABF9B01E24A06FF6822BCs1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib22E0BE45D93ABF9B01E24A06FF6822BCs1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib22E0BE45D93ABF9B01E24A06FF6822BCs1
https://doi.org/10.1038/npjcompumats.2016.28
http://refhub.elsevier.com/S2590-1230(23)00714-4/bibFC91D742DE2A45A27287B8EC26AC38A4s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bibFC91D742DE2A45A27287B8EC26AC38A4s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bibFC91D742DE2A45A27287B8EC26AC38A4s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bibE6B03E36581FAFE905C6801432116267s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bibE6B03E36581FAFE905C6801432116267s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bibE6B03E36581FAFE905C6801432116267s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib34171E3D7C5B52B96A8339B8FB88C4B4s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib34171E3D7C5B52B96A8339B8FB88C4B4s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib34171E3D7C5B52B96A8339B8FB88C4B4s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib837127C02360F63B1C0CA6019791E032s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib837127C02360F63B1C0CA6019791E032s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib837127C02360F63B1C0CA6019791E032s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bibA7DCE93EE4B87F22374057A672B12538s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bibA7DCE93EE4B87F22374057A672B12538s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bibA7DCE93EE4B87F22374057A672B12538s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bibA7DCE93EE4B87F22374057A672B12538s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib67D3A25C1AC5DA66D466C6343965E5D9s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib67D3A25C1AC5DA66D466C6343965E5D9s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib67D3A25C1AC5DA66D466C6343965E5D9s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib6C8248A42B9DD766EA6FB5B0115593ECs1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib6C8248A42B9DD766EA6FB5B0115593ECs1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib6C8248A42B9DD766EA6FB5B0115593ECs1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib6C8248A42B9DD766EA6FB5B0115593ECs1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bibFDDE15929878C9808BB4B1FA82AB007Es1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bibFDDE15929878C9808BB4B1FA82AB007Es1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bibFDDE15929878C9808BB4B1FA82AB007Es1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib851CE2D3C877C47A64C6AFD84950CA05s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib851CE2D3C877C47A64C6AFD84950CA05s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib6033315953CD7648C2A1A6C4E2225F5Cs1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib6033315953CD7648C2A1A6C4E2225F5Cs1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib470C7B2368368A12860F8081C9A80022s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib470C7B2368368A12860F8081C9A80022s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib470C7B2368368A12860F8081C9A80022s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib60BE5E0937425474E771E3CA3D33B012s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib60BE5E0937425474E771E3CA3D33B012s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib60BE5E0937425474E771E3CA3D33B012s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib3F09C0CB5A4C2165706E7C785F068014s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib3F09C0CB5A4C2165706E7C785F068014s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib929C843AA57ADC12D11803E4732D022As1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib929C843AA57ADC12D11803E4732D022As1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bibA3B18BEBEBDCDA6CDAA9179F3FDC031As1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bibA3B18BEBEBDCDA6CDAA9179F3FDC031As1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bibA3B18BEBEBDCDA6CDAA9179F3FDC031As1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bibA3B18BEBEBDCDA6CDAA9179F3FDC031As1
https://doi.org/10.1016/j.actamat.2020.03.016
https://doi.org/10.1016/j.actamat.2020.03.016
https://www.sciencedirect.com/science/article/pii/S1359645420302032
https://www.sciencedirect.com/science/article/pii/S1359645420302032
http://refhub.elsevier.com/S2590-1230(23)00714-4/bibC19690EB756ABB61316FBDC06F62A90Ds1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bibC19690EB756ABB61316FBDC06F62A90Ds1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bibC19690EB756ABB61316FBDC06F62A90Ds1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib0F0D97BE284565AD5CF9960962C014BDs1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib0F0D97BE284565AD5CF9960962C014BDs1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bibC35AC56A358B3F06C14730CFD08620F7s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bibC35AC56A358B3F06C14730CFD08620F7s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bibC35AC56A358B3F06C14730CFD08620F7s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bibC35AC56A358B3F06C14730CFD08620F7s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib9DF895D34214CB975D093F14DA037236s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib9DF895D34214CB975D093F14DA037236s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib9DF895D34214CB975D093F14DA037236s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib40ADD936F93EB0BEC243E756F4071CD3s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib40ADD936F93EB0BEC243E756F4071CD3s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bibCF97F11A8A71F1C3F9840B4C2ED73F8Ds1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bibCF97F11A8A71F1C3F9840B4C2ED73F8Ds1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bibCF97F11A8A71F1C3F9840B4C2ED73F8Ds1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib1B5380B8C55A423552B98D08F3EAEFE7s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib1B5380B8C55A423552B98D08F3EAEFE7s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib82FB63F5C46000ECDAC4B3FE9950393As1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib82FB63F5C46000ECDAC4B3FE9950393As1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib82FB63F5C46000ECDAC4B3FE9950393As1
https://thermocalc.com/products/databases/steel-and-fe-alloys/
https://thermocalc.com/products/databases/steel-and-fe-alloys/
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib40C36A412348C2E3E8412B7E290FCDA5s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib40C36A412348C2E3E8412B7E290FCDA5s1
https://doi.org/10.1016/j.cma.2011.01.002
https://doi.org/10.1016/j.cma.2011.01.002
https://www.sciencedirect.com/science/article/pii/S004578251100003X
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib84EA0419404CA80DDE4EAA6B320203D4s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib84EA0419404CA80DDE4EAA6B320203D4s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bib84EA0419404CA80DDE4EAA6B320203D4s1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bibB238DFD4EBF7EDC8F408334FD84D528As1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bibB238DFD4EBF7EDC8F408334FD84D528As1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bibBE2B8319E2EFD9DD36BE19795DE2A49Fs1
http://refhub.elsevier.com/S2590-1230(23)00714-4/bibBE2B8319E2EFD9DD36BE19795DE2A49Fs1

	Application of machine learning-based algorithms to predict the stress-strain curves of additively manufactured mild steel ...
	1 Introduction
	1.1 Additive manufacturing
	1.2 Machine learning

	2 Methodology
	2.1 Generation of training and testing data
	2.1.1 Microstructural investigation
	2.1.2 Generation of the representative volume elements
	2.1.3 Constitutive model
	2.1.4 Finite element modeling

	2.2 Machine learning for stress-strain prediction
	2.2.1 Data collection
	2.2.2 Exploratory data analysis
	2.2.3 Data pre-processing
	2.2.4 Machine learning model building


	3 Results and discussion
	3.1 Evaluation of ML model 1
	3.2 Evaluation of ML model 2

	4 Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


