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Efficient domain decomposition based reliability analysis for
polymorphic uncertain material parameters
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Realistic uncertainty description incorporating aleatoric and epistemic uncertainties can be described within the framework of
polymorphic uncertainty, which is computationally demanding. Utilizing a domain decomposition approach for random field
based uncertainty models the proposed level-based sampling method can reduce these computational costs significantly and
shows good agreement with a standard sampling technique. While 2-level configurations tend to get unstable with decreasing
sampling density 3-level setups show encouraging results for the investigated reliability analysis of a structural unit square.
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1 Introduction

Realistic modeling of uncertainties for engineering models require appropriate uncertainty models. Uncertainties can be
categorized into aleatoric and epistemic ones [1]. Aleatoric uncertainties are associated with the natural variability in processes
or parameters and is usually governed by probability theory [2, 3]. Epistemic uncertainties are due to limited data and/or the
lack of knowledge and can be modeled using intervals or fuzzy variables [4,5]. Realistic uncertainty models can be achieved by
combining basic uncertainty approaches to polymorphic uncertainty models, like interval probability-based random variables
or fields [6, 7]. Various approaches have been developed to remedy high computational costs of reliability analysis: Ranging
from efficient failure probability estimation [2, 8] to domain decomposition (DD) approaches involving random field material
description [9, 10]. Analyses involving polymorphic uncertainty are typically even more challenging due to the analysis
procedures in the non-stochastic space, e.g. α-level optimization [11]. Surrogate-based fuzzy analysis have been proposed
to boost numerically efficiency [12]. This contribution proposes a computational efficient level-based sampling technique
utilizing a DD approach of interval probability-based random fields for a structural reliability analysis.

2 Methods

2.1 Polymorphic uncertainty models

Random fields A random field or process Zrf comprises a set of random variables {Zrf(θ), θ ∈ Θ}, where Zrf(θ) repre-
sents a random variable at every point θ in Θ. Random fields are usually defined over the Euklidian space (Θ ⊆ R3), whereas
random processes are associated with time (Θ ⊆ T ). Random fields are defined on a common probability space (Ω, Σ, P),
where Ω is the set of events, ΣΩ is a sigma-algebra over Ω and P : ΣΩ → [0, 1] a probability measure for the occurrence of
an event ω ∈ ΣΩ. In case of an univariate random field, at every point θ, the field is a random variable: Zrf(θ, ω) = Xr(ω),
whereas it is a random vector Zrf(θ, ω) = Xr(ω) for a multivariate random field.

A random field is characterized by its auto-covariance Cov (θ1, θ2) = E
(
Zrf(θ1, ω), Z

rf(θ2, ω)
)
of two points θ1, θ2 ∈

Θ. An auto-correlation function RZrf : Θ×Θ → [−1, 1] with RZrf (θ1, θ2) = RZrf (θ2, θ1) depends on a distance measure
dΘ and an auto-correlation length lΘ. Typically, the isotropic Euclidean distance is used for random fields in an engineering
context.

Interval probability-based random fields Combinations of basic uncertainty models form polymorphic uncertainty models
that offer the possibility to describe uncertain input of engineering models more realistically. Interval probability-based
random fields are introduced exemplary for polymorphic uncertainty models. Further models (like fuzzy probability-based
random variables) can be found in [6].

Interval probability-based random fields (ip-rf) H iprf are introduced based on the definition of random fields. Interval
probability-based random fields are defined if at least one of these characteristics is fulfilled:

• An interval probability space (Ω, Σ, Pi), e.g. by interval parametrization of the underlying distribution function.

• An interval auto-correlation function Ri
Hiprf

(
θA, θB ; d

i
Θ; l

i
Θ

)
, defined by an interval variable in auto-correlation length

liΘ and/or an interval parametrization in the distance measure diΘ.
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2.2 Random field generation using a Domain Decomposition Karhunen-Loève method

This section briefly summarizes the Domain Decomposition Karhunen-Loève (DD-KL) method from [9], which is used in
this study. We consider non-overlapping subdomains of domain Θ with Θ =

⋃D
d=1 Θd,Θi ∩ Θi̸=j = ∅. The main idea

of the DD-KL is to express a global random field (RF) via local (subdomain based) eigenmodes and random variables,
enabling an independent parallelized computation of the global RF in the subdomains while reducing the stochastic dimension
dramatically.

Random field by global KL Let U ∈ L2(Θ,Ω) be a centered random process with known covariance. The truncated KL
approximation, UN , consists of anN -term expansion where each term is composed of a product of a deterministic function of
L2(Θ) and a random variable of L2(Ω). The KL approximation is defined as the minimization of the approximation error in a
L2 sense. A zero-mean RF can be expressed as such a KL expansion, which is given by UN (x⃗, ω) ≡ ∑N

α=1

√
λαηα(ω)Φα(x⃗),

where λα and Φα are the dominant eigenvalues and their corresponding (normalized) eigenfunctions of the covariance and
ηα(ω) are the orthonormal stochastic coordinates of U . Due to the structure of the covariance function, the non-negative
eigenvalues can be ordered in decreasing magnitude leading to a truncation of the expansion.

Random field by local KL Local eigenmodes ϕ̃(d)
β and their corresponding eigenvalues λ(d)

β are introduced on the sub-

domain Θd. The local eigenfunctions are extended to the global domain. Therfore, the eigenfunctions ϕ
(d)
β (x⃗) are also

orthonormal in Θ.
Choosing md dominant eigenpairs for each subdomain Θd, we get an orthonormal reduced basis. An approximation of

the global modes is then given by Φ(x⃗) ≈ Φ̂(x⃗) =
∑D

d=1

∑md

β a
(d)
β ϕ

(d)
β (x⃗), where the vector of local coordinates of Φ̂ for

x⃗ ∈ Θd is given by a⃗(d) =
(
a
(d)
1 , . . . , a

(d)
md

)
. Applying the Galerkin method yields a global discrete eigenvalue probelm.

Using its eigenvalues Λα in decreasing magnitude, we can set up a truncated approximation of the global RF U

U ≈ ÛN̂ (x⃗, ω) =

D∑

d=1




md∑

β=1

√
λ
(d)
β ξ

(d)
β (ω)ϕ

(d)
β (x⃗)


 , with ξ

(d)
β (ω) =

N̂∑

α=1

√
Λα

λ
(d)
β

a
(d)
α,β η̂α(ω), (1)

where {ξ(d)β , β = 1, . . . ,md} are called the local random variables. Hence, the global RF U is represented on the subdomain
level in terms of local random variables, eigenmodes and eigenvalues. The proposed method of level-based sampling exploits
this property.

2.3 Level-based sampling for interval reliability analysis

The analysis of any uncertain model requires sampling over the underlying uncertainty domain, for example Monte Carlo
Sampling (MCS) on a stochastic domain.

Considering a model with a heterogeneous material described by an interval probability-based random field Z iprf(x⃗, ω, pi),
where x⃗ ∈ R3, sampling on an interval-stochastic space is required. For every sample pk from the interval space pi a (usually
computationally demanding) stochastic analysis is performed, for example a failure probability pF,k is estimated.

This contribution suggests a level-based sampling approach of the interval space to reduce the computational costs. For the
considered case of a reliability analysis, it is assumed that the a critical region can be identified, where the QoI (Quantaty of
Interest) is most likely to reach the limit state threshold. We define L levels l = 1, . . . , L with level samplings p1, . . . pL, s.t.
the number of samples nl satisfies n1 ≥ · · · ≥ nL, with l = 1 corresponding to the most critical level. Dl subdomains are
associated to each level l based on the distance between the sub-domains’ centroid and the critical region. The level sampling
pl are combined to p = {p1, . . . , pL}, s.t. min

∑L
l=2(pl − p1)

2.
The subdomain based RF generation method enables a localization in the physical space of the RF parameters (like auto-

and cross-correlation). Therefor the level-based sampling can be applied to interval valued RF parameters. Depending on
the number of subdomains Dl and samples nl per level the computational costs are given in terms of

∑L
l=1 nlDl subdomain

calculations.

3 Numerical example

As an illustrative example we consider a structural unit square modeled using standard finite element method with a plane-
stress linear elastic material law. A uniform vertical displacement is applied at the top while the system is fixed at bottom.
The Young’s modulus is described via lognormally distributed random field Eiprf with interval valued correlation length lic =
[0.2, 0.6] as parameter of a squared-exponential auto-correlation function, cf. Fig. 2; Poisson’s ratio is aussumed as constant.
The QoI is the maximum horizontal displacement ux,mx. The unit square is divided intoD = 8 subdomains. The subdomains
are associated to L = 2 and L = 3 levels, cf. Fig. 3a and Fig. 3b, respectively, where subdomains d ∈ 6, 7, 8 correspond to
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l = 1 etc. For this case study, nl samples are distributed evenly over the whole interval width lc,w = 0.6− 0.2 = 0.4, where
the sample points are calculated according to pi = lc,w/nl(i− 0.5) for i = 1, . . . , nl.
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Fig. 2 Sample plots of Young’s modulus random field Eiprf and the
resulting horizontal displacement ux
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Fig. 4 Domain decomposition of a unit square, subdomains
associated to L = 2 and L = 3 levels

For different configurations nl reliability analyses are performed using a limit state function g = ux,th − ux,mx, where
g < 0 defines the failure region. In this study ux,th = 8.8mm is used. A configuration with the maximum number of
samples on all subdomains serves as a reference (L = 1, D1 = D). In Fig. 5 a representative result for L = 3 levels with
nl = {9, 5, 3} is shown, where Fig. 5a illustrates the level-based sampling and Fig. 5b shows the estimated failure probabilities
of this configuration compared to the reference. It can be noticed that the reference and the [9, 5, 3] configuration are in very
good agreement for the most lc sample points but show some discrepancies at the edges of lic. The computational costs are
calculated toNref = 72 subdomain calculation for the reference compared toNDl,nl

=
∑3

l=1 Dl ·nl = 3 ·9+2 ·5+3 ·3 = 46
subdomain calculations, which constitutes only 64% of the reference’s computational costs.
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(a) Level-based sampling configuration using L = 3 levels with
nl = [9, 5, 3]
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Fig. 5 Results of a reliability analysis: (a) level-based sampling configuration of L = 3, (b) comparison to reference

Figure 6 shows the relative error of the estimates pF (w.r.t. to the reference pF,ref ) for different level sampling configura-
tions for L = 2 and L = 3 levels, respectively. It can be observed that the relative error increases with decreasing sampling
density (e.g. [9, 7] → [9, 1]) and at the lower edge of the auto-correlation length interval lic. Finally, the Mean Squared Er-
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Fig. 6 Relative error of pF for different configurations nl

ror (MSE) of pF over all sample points in lic is evaluated as a function of the relative computational costsNDl,nl
/Nref for each

sampling configurations on L = 2 and L = 3 sampling levels, respectively, cf. Fig. 7. Obviously, the MSE increases with
decreasing sampling density (i.e. relative computational costs). While the three-level configurations outperform the two-level
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ones in the high accuracy regime (i.e. low MSE), the large MSE for nl = [9, 1] indicates a higher robustness of the sparse
sampling configurations with relative computational costs of <50% for L = 3 levels, where the number of samples per level
is decreased in a smoother fashion.
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Fig. 7 Mean squared error (MSE) of estimated failure probability pF as a function of relative computational costs NDl,nl/Nref

4 Conclusion

Uncertainty quantification within the scope of polymorphic uncertainty, which combines basic uncertainty models like interval,
fuzzy and random variables, is computationally challenging. In the case of interval or fuzzy probability-based random fields
a domain decomposition approach can be exploited, which enables localized, subdomain-based random field definition. The
proposed method of level-based sampling was applied to a reliability analysis of a structural unit square where its Young’s
modulus was modeled via an interval probability-based random field. It could be shown that the computational costs were
reduced up to 50% with a mean squared error of the estimated failure probabilities of 2×10−4 using a 3-level based sampling
configuration. Sampling configurations with only 2 sampling levels were found to be unstable for lower sampling densities.
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