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ABSTRACT
A novel combination of the ant colony optimization algorithm (ACO)and computational fluid
dynamics (CFD) data is proposed for modeling the multiphase chemical reactors. The proposed
intelligent model presents a probabilistic computational strategy for predicting various levels of
three-dimensional bubble column reactor (BCR) flow. The results proveanenhancedcommunication
between ant colony prediction and CFD data in different sections of the BCR.
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1. Introduction

Multiphase bubble column reactor (BCR) types are
highly important for different industries because of their
applications and efficiency (Kumar, Degaleesan, Laddha,
& Hoelscher, 1976; Li & Prakash, 2002; Schäfer, Merten,
& Eigenberger, 2002). A BCR’s structure is composed of
a cylindrical vessel with a gas distributor at the bottom
section so that the gas bubbles are fed into the reac-
tor (Bouaifi, Hebrard, Bastoul, & Roustan, 2001; Dhotre,
Ekambara, & Joshi, 2004; Lefebvre & Guy, 1999; Shah,
Kelkar, Godbole, & Deckwer, 1982). Therefore, the gas
is sparked in other phases for separation or chemical
reaction. Moreover, this phase may have two forms; i.e.
liquid–solid mix and liquid phase (Cho, Woo, Kang, &
Kim, 2002; Kantarci, Borak, & Ulgen, 2005; Pino et al.,
1992; Pourtousi, Sahu, & Ganesan, 2014). The BCR is
particularly beneficial in petrochemical, chemical,metal-
lurgical, and biochemical industries, and they are utilized
as multiple reactors and contactors since these fluid-
structure domains give a large surface area (Bombač,
Rek, & Levec, 2019; Rieth & Grünewald, 2019; Shi et al.,
2019; Shu, Vidal, Bertrand, & Chaouki, 2019). The BCRs
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in different industries such as pharmaceutical or bio-
chemical are used in the processes that involve reac-
tions such as chlorination, oxidation, polymerization,
hydrogenation, and alkylation, which are advantageous
for the production of synthetic fuels(Chen, Hasegawa,
Tsutsumi, Otawara, & Shigaki, 2003; Ruzicka, Zahrad-
nık, Drahoš, & Thomas, 2001; Sokolichin & Eigenberger,
1994; Wang et al., 2003). The Fischer–Tropsch process is
considered as a major application of the mentioned reac-
tors in the chemical industries (Prakash, Margaritis, Li,
& Bergougnou, 2001). It is the process of indirect coal
liquefaction, resulting in various kinds of fuels like syn-
thetic fuels, methanol synthesis, and transportation fuels
(Chuntian & Chau, 2002; Maalej, Benadda, & Otterbein,
2003; Rabha, Schubert, &Hampel, 2013). The production
of these kinds of fuels is environmentally advantageous
compared to the fuels derived from petroleum (Behkish,
Men, Inga, & Morsi, 2002; Kantarci et al., 2005; Michele
& Hempel, 2002). The BCRs are extensively used due to
their specific operation and design. The high heat trans-
fer coefficients are characteristics of the bubble columns
(Buwa & Ranade, 2003; Kantarci et al., 2005; Krishna
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& Van Baten, 2003; Leonard, Ferrasse, Boutin, Lefevre,
& Viand, 2015; Luo, Lee, Lau, Yang, & Fan, 1999). As
the advantage of the bubble columns, it can be stated
that a catalyst or other packing chemical components are
able to stay a long period even though they are exten-
sively used (Asil, Pour, & Mirzaei 2018; Kannan, Naren,
Buwa, & Dutta, 2019; Liu & Luo, 2019; Shi, Yang, Li,
Zong, &Yang, 2019; Xin, Zhang,He, &Wang 2019). Also,
it is possible to add or remove the online catalyst eas-
ily(Deen, Solberg, & Hjertager, 2000; Díaz et al., 2008;
Masood & Delgado, 2014; Shimizu, Takada, Minekawa,
& Kawase, 2000; Thorat & Joshi, 2004). Thus, the bubble
columns are used in biochemical and chemical indus-
tries. In order to get effective BCRs, it is necessary to
consider their design scale(Krishna, Baten, & Urseanu,
2001; Masood, Khalid, & Delgado, 2015). Hence, if the
reactors are improved by computation and simulation of
the column’s hydrodynamics, then a perfect understand-
ing concerning the process can be provided (Pourtousi,
Ganesan, & Sahu, 2015; Razzaghian, Pourtousi, & Darus,
2012; Verma & Rai, 2003). Various numerical methods
are available for estimation of the multiphase flow in
the BCRs. Nevertheless, the scholars have difficulties in
the simulation of the full gas movement (Besagni, Gué-
don, & Inzoli, 2018; Li & Prakash, 2001; Silva, d’Ávila,
&Mori, 2012). In order to numerically simulate complex
turbulence behavior in the two-phase reactor, often the
supercomputers provide the opportunity to calculate the
liquid flow in the very complicated geometries. In experi-
mental observation, If the fluid flow is needed to be mea-
sured during operation, because of the requirement for
the high-speedmicroscopic cameras andmodern probes,
it is not economical (Besagni, Guédon, & Inzoli, 2016;
Clift, 1978; Pourtousi, Zeinali, Ganesan, & Sahu, 2015;
Rzehak & Krepper, 2013; Wang et al., 2014). Moreover,
the other constraint of the approach in the prediction of
large BCRs is related to the computational costs at vary-
ing operational conditions and different times (Cartland
Glover, Blažej, Generalis, & Markoš, 2003; Ekambara,
Dhotre, & Joshi, 2005; Hecht & Grünewald, 2019; Jami-
alahmadi &Müller-Steinhagen, 1992; Joshi, 2001). These
limitations gave way to the application of the intelligent
algorithms for simulation of BCRs (Burns, Frank,Hamill,
& Shi, 2004; Buwa,Deo,&Ranade, 2006; Pourtousi, 2016;
Xing, Wang, & Wang, 2013).

Support vector machines (Moazenzadeh, Moham-
madi, Shamshirband, & Chau, 2018), neural networks
(Taherei Ghazvinei et al., 2018), simulated annealing, and
evolutionary algorithms are some of the soft-computing
approaches that can be applied for predicting and sim-
ulating the chemical processes(Mahmoud & Ben-Nakhi,
2007; Ozsunar, Arcaklıoglu, & Dur, 2009; Sudhakar, Bal-
aji, & Venkateshan, 2009). This system can direct the

complicated relationships (Saleem, Di Caro, & Farooq,
2011). Using this approach, a smart way is provided
for the estimation of the complicated mechanisms in
engineering. A suitable example in this regard is the
regulation of robotic movements in risky cases(Burns
et al., 2004; Krishna, Urseanu, Van Baten, & Ellenberger,
1999; Rampure, Kulkarni, & Ranade, 2007). Thus, this
approach is useful in order to control the robots in the
cases that the chemical reactions may be dangerous for
the people (Buwa et al., 2006; Simonnet, Gentric, Olmos,
& Midoux, 2007; Xing et al., 2013).

As mentioned, soft modeling approaches pursue a
smart process; thus, it is useful in decision-making
because of its comprehensiveness and complex algorithm
(Berrichi, Yalaoui, Amodeo, & Mezghiche, 2010). In
addition, they can be devoid of various errors includ-
ing the accuracy in monotonous conditions. In addition,
using the different inputs and output procedure is ben-
eficial when the output-input association is inherently
meaningful (Lu & Liu, 2013). Therefore, the method’s
learning process is completely dependent on the data
both for experimental or simulated cases (Babanezhad,
Rezakazemi, Hajilary, & Shirazian; Mosavi, Shamshir-
band, Salwana, Chau, & Tah, 2019; Mosavi et al., 2019;
Jafari-Sejahrood et al., 2019; Shamshirband et al., 2019).
The recent research works have been mainly focused on
a specific dimension of soft-computing methods used
for flow patterns production in the BCRs. According to
the research works, the relationship between machine
learning and CFD results in important concepts for the
computation of different properties of BCRs. A number
of researchers, e.g. Mohammad Pourtousi (2016) used
different type of big data in the bubble column reac-
tor in the machine learning algorithm and they pre-
dicted pattern recognition of gas and liquid flow in the
BCR (Fotovatikhah et al., 2018; Yaseen, Sulaiman, Deo,
& Chau, 2018). In this study, the ant colony method is
combined to predict the flow pattern in the BCR. The
application of ant colony algorithm is an appropriate
alternative rather than using the CFD approach, which
is costly in terms of computation, for the flow simula-
tion in BCRs. In this study, the flow characteristics were
trained in the BCR by pheromone-based communication
of biological ants and compare the results with exist-
ing CFD data (Marco Dorigo & Gambardella, 1997; Xu,
Chen, Zhu, & Wang, 2010). As a combination of opti-
mization methods and fuzzy system have not been fully
used to simulate biological and physics-based phenom-
ena. In this paper, the ant optimization method with
the fuzzy system was used to predict continuous data.
For the first time, the optimization method is used as a
solver of machine learning to simulate bubble column
characteristics.
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2. Method

For the simulation of bubbling flow in the BCR, the Eule-
rian–Eulerian approach is used throughout the domain.
This method can simulate the fraction of each phase
in the domain and it is based on ensemble-averaged
mass andmomentum transport equations for each phase.
For solving fluid flow in the BCR firstly the continuity
equation was computed as follows:

∂

∂t
(ρkεk) + ∇(ρkεkuk) = 0 (1)

Momentum transfer equation:

∂

∂t
(ρkεkuk) + ∇(ρkεkukuk)

= −∇(εkτk) − εk∇p + εkρkg + MI,k (2)

Figure 1. Schematic of the bubble column reactor and sparging
bubble through the Sparger.

The total interfacial force schemes between the main
phases are mainly drag and turbulent dispersion force.
The overall forcing scheme is written as:

MI,L = −MI,G = MD,L + MTD,L (3)

The details description of interfacial force methods
that are utilized used in this investigation can be observed
in (Mosavi et al., 2019a; Tabib, Roy, & Joshi, 2008).
For calculation of the turbulence flow characteristics
the k–ε model is utilized for calculation of turbulence
behavior in the bubble column reactor. All turbulence
model parameters are similar to k–e model (Pourtousi,
2016).

2.1. Geometrical structure

A BCR with a height of 2.6m and a diameter of 0.288m,
is used, and a single sparger point is used at the bottom of
the column with 0.5m height. (see Figure 1) The details
description of boundary conditions such as slip boundary
conditions and degassing pressure at the surface of the
column in this investigation can be observed in Pfleger
and Becker (2001). The source point boundary condition
used for a single Sparger is identical to Tabib et al. (2008)
and Mosavi et al. (2019a).

2.2. Grid

A structured hexahedral grid is utilized for calculation
of the whole fluid-structure and the interaction between
liquid and gas.

Figure 2. (a) Ants food-finding schematic; (b) Ants with an obstacle (starting problem); (c) Ants with an obstacle (best solution).
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2.3. ANT colony

In this study, the ant colony optimization method (ACO)
is a technique for solving big data with complicated prob-
lem structures that can be decreased to discover good
paths through graphs. Intelligent Ants or artificial algo-
rithms of ant method stand for multi-agent methods to
mimic the real behavior of ants. In this study, thismethod
was used to predict the gas–liquid flow pattern in the col-
umn. More description about this method can be found

in (Baker & Ayechew, 2003; Bell & McMullen, 2004;
Blum, 2005; Castillo, Neyoy, Soria, García, & Valdez,
2013; M Dorigo, Birattari, & Stützle, 2006; Dorigo &
Blum, 2005; Li, Sun, Sattar, & Corchado, 2014; Maroosi
&Amiri, 2010;McMullen, 2001;Mocholi, Jaen, Catala, &
Navarro, 2010; Mohan & Baskaran, 2012; Mullen, Mon-
ekosso, Barman, & Remagnino, 2009; Rao, Srinivasan, &
Venkateswarlu, 2010; Suganthi& Samuel, 2012; Tian,Ma,
& Yu, 2011; Valdez, Melin, & Castillo, 2014; Yu, Yang, &
Yao, 2009) (see Figure 2).

Figure 3. Ant colony algorithm training and testing process with one input (number of ant = 20, 30, 40; number of data = 1500; max
iteration = 100; P=%70; FCM clustering).

Figure 4. Ant colony algorithm training and testing process with two inputs (number of ant = 20, 30, 40; number of data = 1500; max
iteration = 100; P=%70; FCM clustering).
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3. Results

In the present study, through simulating a cylindrical
BCR reactor by the CFD method, different parameters
of the fluid are acquired as the CFD outputs parameters.
The output parameters consist of the x, y, and z coor-
dinates which denote pressure, air superficial velocity,
and air volume fraction, simultaneously. In this study, the

CFD outputs were assessed by combining the intelligence
optimization algorithm of ant colony and fuzzy inference
system (FIS) with.

To use the Ant colony algorithm, part of the CFD out-
puts were considered as input and the others were consid-
ered as output. In this research, five inputs were utilized;
the first input was the x coordinate, the second input was
the y coordinate and the third was the z coordinate. The

Figure 5. Ant colony algorithm training and testing process with three inputs (number of ant = 20, 30, 40; number of data = 1500;
max iteration = 100; P=%70; FCM clustering).

Figure 6. Ant colony algorithm training and testing process with four inputs (number of ant = 20, 30, 40; number of data = 1500; max
iteration = 100; P=%70; FCM clustering).
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pressure which was one of the traits of the fluid inside the
BCR is the fourth input; air superficial velocity another
characteristic of the fluid inside BCR is the fifth input,
whereas air volume fraction is considered as output.
To initiate the learning process by artificial intelligence
(ant colony algorithm), the following conditions are
assumed:

The maximum iteration is 100, the total data num-
ber is 1500, the value of p represents a percentage of
the data that has been used in the learning processes
and is considered as %70. In the training process, %70
of the data were involved and %100 of the data were

evaluated in the training process. The clustering type
was assumed as Fuzzy c-means (FCM). With the above-
mentioned assumptions, by considering the input of the
x coordinates and the output of the air volume fraction,
the training and testing processes were performed sepa-
rately for 20, 30, and 40 numbers of ants. As presented
in Figure 3, the best Regression (R) value is 0.30 for a
number of 30 ants which shows that FIS does not have
sufficient intelligence in the learning process using the
ant colony algorithm, and the change in the number of
ants has made no significant enhancement in the FIS
intelligence.

Figure 7. Ant colony algorithm training and testing process with five inputs when (number of ant = 20; the number of data = 1500;
max iteration = 100; P=%70; FCM clustering).

Figure 8. The CFD method nodes used in the ant colony algorithm learning process.
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To boost the system intelligence, the number of inputs
was increased and evaluated; the x coordinate and y
coordinate were considered as inputs, and learning pro-
cesses were carried out for 20, 30, and 40 ants separately.
Figure 4 does not show much enhancement in system
intelligence.

To elevate the ant colony algorithm intelligence, the
increase in the number of inputs from 2 to 3 was con-
sidered and z coordinate was considered as third input
and the air volume fractions were considered as output.
By conducting separate training and testing procedures

for various numbers of ants, no significant changes are
observed in intelligence as shown in Figure 5.

In this stage of the study, one of the characteristics of
the fluid inside the BCR i.e. pressure was considered as
the fourth input. The learning processes (training and
testing) for 20, 30, and 40 ants were done separately,
but unfortunately, there was still no significant effect on
elevating the system intelligence. (See Figure 6)

Afterward, in order to attain favorable system intelli-
gence, another characteristic of the fluid inside BCR i.e.
air superficial velocity was considered as the fifth input,

(a)

(b)

Figure 9. (a) Training process target and prediction (number of ant = 20; number of data = 1500; max iteration = 100; P=%70; FCM
clustering). (b) Testing process target and prediction (number of ant = 20; number of data = 1500;max iteration = 100; P=%70; FCM
clustering).
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Figure 10. Ant colony algorithm Prediction (number of ants = 20; number of data = 1500; max iteration = 100; P=%70; FCM
clustering).

and the learning processes were carried out for 20 ants.
As presented in Figure 7, the value of R for the training
process has increased from about 0.20 to 0.96 and for the
testing process, it has increased to 0.95, which indicates
a very favorable enhancement in the system intelligence
and the achievement of complete intelligence for the sys-
tem. Using this intelligence, various parts of the BCR can
also be predicted. In Figure 8, points of BCR that partic-
ipated in the learning process are observed that used in
the ant colony algorithm learning process.

The combination of artificial intelligence (ant colony
algorithm) and the CFD method decreases the required
time for calculations by the CFD method, it also leads
to avoiding the solving of complex equations by the
CFDmethod; moreover, by exploiting the created intelli-
gence, much more information and result points can be
acquired.

A comparison of the CFD output nodes and ACO
algorithmpredictionnodes demonstrates a very favorable
agreement between the CFD results and the ant colony
algorithm output (see Figure 9(a,b)). Using this obtained
intelligence, nodes that are not present in the learn-
ing process can be predicted and this shows the very
favorable capacity of the artificial intelligence (ant colony
algorithm), which is very advantageous and effective (see
Figure 10).

4. Conclusion

Current work describes the simulation of the gas fraction
based on different bubble column characteristics with an

ant colony approach. In particular, the CFD data are con-
sidered as training inputs of the ant colony method, and
this method predicts the behavior of the bubble column
reactor. The simulation of the gas fraction is implemented
in a 3D domain of fluid-structure and it is compared with
the results of CFD. In the training process, the reactor’s
top bottom and middle levels are chosen for comput-
ing the BCR hydrodynamics because of the gas holdup
behavior at thementioned levels. TheAnt colonymethod
model is an appropriate tool for prediction with almost
30% of data in the learning state. Nevertheless, the tun-
ing parameters of this model significantly enhance the
ant colony method’s intelligence. Also, it is possible to
train it in a highly short period of time (iteration), which
provides a quick learning procedure having very small
computational time and efforts. Moreover, as no obstacle
of computational time is present, a higher amount of data
can be generated in the input domain of data indicating
novel reactor conditions with no experimental or numer-
ical outcomes. This new perception of data analysis with
artificial ants and local search algorithms is a sophis-
ticated process for post-processing the data as other
researchers started with other soft-computing methods.
Prediction of the fluid flow around bubbles can be very
complicated and estimation of the vortex structure near
bubbles requires more training data. This new combina-
tion of CFD and AI can provide more tuning parameters
in AI prediction of the reactor to achieve accurate predic-
tion results, and enables us to organize data during train-
ing and optimization base on the biological overview. For
future studies, other biological optimizationmethods can
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be combined with inference fuzzy system to predict the
BCR hydrodynamics. However, the ant colony method
can bemodified based on different ants such as Tapinoma
nigerrimum, Redwood ant and Myrmecia.
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