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Reliable modelling in structural engineering is crucial for

the serviceability and safety of structures. A huge variety of

aerodynamic models for aeroelastic analyses of bridges poses

natural questions on their complexity and thus, quality.

Moreover, a direct comparison of aerodynamic models is

typically either not possible or senseless, as the models can be

based on very different physical assumptions. Therefore, to

address the question of principal comparability and complexity

of models, a more abstract approach, accounting for the

effect of basic physical assumptions, is necessary. This paper

presents an application of a recently introduced category

theory-based modelling approach to a diverse set of models

from bridge aerodynamics. Initially, the categorical approach is

extended to allow an adequate description of aerodynamic

models. Complexity of the selected aerodynamic models is

evaluated, based on which model comparability is established.

Finally, the utility of the approach for model comparison

and characterization is demonstrated on an illustrative example

from bridge aeroelasticity. The outcome of this study is

intended to serve as an alternative framework for model

comparison and impact future model assessment studies of

mathematical models for engineering applications.
1. Introduction
The design of a lifeline entails use of mathematical models to replicate

the full-scale structural behaviour and physical events that possibly

occur during the structure’s lifetime. For cable-stayed bridges,

wind-induced vibrations can be governing in the structural design.

Thus, reliable mathematical models are necessary to predict these
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Figure 1. Classification of models used in bridge aerodynamics.
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vibrations of various structural parts such as the deck, cables and towers, in terms of their aeroelastic

displacements and stability. An accurate representation of the aerodynamic forces acting on a bridge deck

due to wind requires a coupled model. Precisely, such a model consists of two partial models or sub-

models: a partial model for the structure and a partial model for the fluid, accomplished with appropriate

boundary conditions. Owing to a coupled nature of the fluid–structure interaction (FSI), the overall

quality of the structural design depends significantly on the quality of the partial models, as well as on the

coupling of partial models.

In bridge aerodynamics, the models for the aerodynamic forces are commonly divided in three groups,

namely (cf. figure 1, [1]): (i) semi-analytical models, (ii) computational fluid dynamics (CFD) models and

(iii) experimental models. In this classification, the semi-analytical models directly model the

aerodynamic forces using mathematical constructions, partially based on aerofoil theory, and

aerodynamic coefficients accounting for the FSI of a bluff bridge deck. These models are considered as a

special class of aerodynamic models, since the equations of fluid mechanics are not directly discretized

as in CFD models. An experimental model in bridge aerodynamics is a scaled replica of the full-scale

structure and wind characteristics on site with the goal to replicate occurring physical events.

A multitude of semi-analytical models has been proposed by many authors (cf. e.g. [2–8]) over the

years. The principal differences between the models originate from the underlying physical assumptions

used during the modelling process. With these assumptions, the semi-analytical models yield a

simplified form of the aerodynamic forces, which can neglect or account for certain phenomena such

as aerodynamic nonlinearity, fading fluid memory and aerodynamic coupling. To shed some light on

the influence of the specific assumptions on the quality of aerodynamic modelling, several studies

comparing and assessing different aerodynamic models have been performed (cf. e.g. [1,9–13]).

Therein, it is shown that the aerodynamic assumptions can significantly influence the structural

response. Consequently, the choice of aerodynamic model impacts mitigation strategies such as active

and passive control (cf. e.g. [14,15]). However, the question of a model comparison and assessment of

semi-analytical and CFD models w.r.t. their basic physical assumptions has not been studied yet on a

formal mathematical basis.

From a modelling perspective, the semi-analytical models and CFD models can be classified as

mathematical models, since these models are derived from physical laws and assumptions. To precisely

define what is regarded as a mathematical model herein, we follow the definition given by Babuska &

Oden [16]: ‘Mathematical model is a collection of mathematical constructions that provide abstractions

of a physical event consistent with scientific theory proposed to cover that event.’ Herein, we focus on

the comparison and assessment of the aerodynamic models as mathematical models. Model

validation, i.e. assessment of mathematical models by means of experimental models, is out of the

scope of this study and has been a topic of numerous previous works (cf. e.g. [17,18]).
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Comparison and assessment of mathematical models requires consideration of the complete

modelling process. The modelling process comprises setting up a mathematical model, introducing

input parameters for the specific problem and calculation of the results performed analytically or

numerically. In each of these stages of the modelling process, different type of uncertainties can arise

resulting in loss of model quality. Therefore, it is necessary to identify possible sources of uncertainty

influencing the final model. Generally speaking, three types of sources of uncertainties can be

distinguished [18,19]: (i) model inputs, (ii) numerical approximation and (iii) model form. The first

two sources of uncertainties are related to practical aspects of modelling such as errors in numerical

approximation, programming mistakes and parameter uncertainty. The source of uncertainty related

to the model form originates from violating the basic physical assumptions of models, i.e. conceptual

errors. This type of uncertainty requires a careful treatment and intrinsic knowledge of the physical

assumptions implied in the mathematical models since violating basic model assumptions influences

the complete modelling process, and therefore, is of critical importance for the practical use of models.

The task of assessment of models based on their physical assumptions, i.e. by taking into account

only their mathematical constructions independently of a specific engineering example, requires tools

of abstract mathematics supporting the idea of finding universal properties of models. The universal

properties of models, such as model complexity or model robustness, are properties that are common

for all mathematical models, without any particular engineering field or application. Several

modelling methodologies exploring the idea to work with tools of abstract mathematics, such as

graph theory [20], abstract Hilbert spaces [21,22] and abstract algebraic approach [23,24], have been

proposed in recent years. Although it is clear that any mathematical formalism can be chosen to serve

as a basis for a more formal modelling approach, in this article, we use and further develop

the abstract category theory-based modelling methodology which has been proposed in [25]. The

motivation for choosing category-theory based modelling methodology is twofold, namely: (i)

the abstract nature of category theory supports the idea of assessment of models only based on their

mathematical constructions regardless of the engineering field of application; (ii) although categorical

constructions are naturally abstract, it is straightforward to keep track of their real physical and

engineering interpretations in the category theory-based modelling methodology. Additionally, first

steps in computer support of abstract modelling originating from the category theory-based modelling

methodology has been proposed in [24], where type theory has been used as a bridge between the

ideas of categorical approach and computer realization of abstract modelling. However, a real-world

application of the category theory-based modelling methodology has not been presented yet.

Practical interpretation of the results obtained by the application of the category theory-based

modelling methodology requires a quantitative characteristic. The quantitative characteristic should

indicate clearly the influence of particular modelling assumptions, identified on the abstract level, on

the final result in engineering practice. In this paper, we will use the term system response quantity
(SRQ) of interest, which is typically regarded as the outcome of the modelling process [18]. As an

example from the field of bridge aeroelasticity, a typical SRQ can be the deck displacements for

buffeting analyses or the stiffness/damping of the system when the aerodynamic stability is of interest.

Thus, keeping in mind that the category theory-based modelling methodology is far from being

complete, the goal of this paper is to illustrate and further develop the methodology by working with

real-world practical application from bridge aerodynamics. In the light of the previous statements, we

attempt to advance the field of aerodynamic modelling and the category theory-based modelling

approach by:
— introducing a clear structure of aerodynamic models based on universal model properties identified

by help of categorical modelling methodology,

— extending the categorical framework by defining model comparability and model completeness with

application to buffeting and classical flutter phenomena of bridge decks, and

— quantitative application of the categorical framework in the field of bridge aerodynamics to study the

effect of model assumptions on SRQ in a structured manner.
To support the reader in our discussions, we recall in §2.1 definitions from the categorical approach,

which will be used in the sequel. Subsequently, we introduce aerodynamic models used for the

purpose of this study in §2.2. The contribution of this work to the categorical framework is given in

§3.1, followed by the application to bridge aerodynamics in §3.2. We demonstrate the applicability of

the framework on an illustrative example in §4. Finally, concluding remarks are given in §5.
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2. Framework background

2.1. Basics of the categorical approach to modelling
In this section, we briefly recall some basics facts about category theory and category theory-based

modelling methodology introduced in [25]. Generally speaking, category theory can be seen as an

abstract theory of functions studying different mathematical structures (objects) and relations between

them. For complete information on category theory we refer to [26]. Category theory starts with the

following definition of a category:

Definition 2.1 ([26]) A category consists of the following data:

(i) Objects: A, B, C, . . .

(ii) Arrows: f, g, h, . . .

(iii) For each arrow f, there are given objects dom( f ), cod( f ) called the domain and codomain of f. We

write f : A �! B to indicate that A ¼ dom( f ) and B ¼ cod( f ).

(iv) Given arrows f : A �! B and g: B �! C, i.e. with cod( f ) ¼ dom(g) there is given an arrow

g � f : A �! C called the composite of f and g.

(v) For each object A, there is given an arrow 1A: A �! A called the identity arrow of A.

These data are required to satisfy the following laws: h W (g W f ) ¼ (h W g) W f and f W 1A ¼ f ¼ 1B W f.

A category is everything satisfying this definition, and therefore, very general objects can be put

together to form a category by specifying relations between objects via the arrows. Additionally to the

definition of a category, we need also to introduce the notion of a functor, which is a mapping

between different categories:

Definition 2.2 ([26]) A functor F: C �! D between categories C and D is a mapping of objects to

objects and arrows to arrows, in such a way that:

(i) F(f : A �! B) ¼ F(f): F(A) �! F(B);

(ii) F(1A) ¼ 1F(A);

(iii) F(g W f ) ¼ F(g) W F( f ).

That is, F respects domains and codomains, identity arrows and composition.

Application of category theory to mathematical modelling starts with the following definition

specifying the structure of a category of mathematical models:

Definition 2.3 (Objects of a category of mathematical models [25]) Let Model1 be a category of

mathematical models describing a given physical phenomenon. Then for all objects of Model1 the

following assumptions hold:

(i) objects are finite sets—set of assumptions of a mathematical model, denoted by SetA, where A is a

corresponding mathematical model;

(ii) arrows are relations between these sets;

(iii) for each set of assumptions and its corresponding model exists a mapping SetA 7!
S

A;

(iv) all objects are related to mathematical models acting in the same physical domain.
Some remarks about this definition are necessary. First, having finite sets as objects in the category is

one possible way to approach mathematical models. Alternatively, one could think of working directly

with mathematical expressions (equations) representing the models. However, in this case, it will be more

difficult to distinguish models, since the same set of assumptions can be formalized differently in terms

of final equations, e.g. equilibrium equation in terms of stresses and Lamé equation for displacements in

linear elasticity. Second, to have a stronger distinction between different models, the set of assumptions is

understood in a broader sense by including all modifications of models and assumptions during a

modelling process, such as linearization of original equations. In this regard, the use of classical set

theory would not be sufficient, since additionally to classical sets we need a more general structure

around them, which is naturally supplied by the use category theory. Third, in some cases, the

mapping S from point (iii) in definition 2.3 can be invertible, leading to a unique reconstruction of a

mathematical model from its set of assumptions. However, such a reconstruction is not possible in a

general case.
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Now we specify the relations between models from (ii) in definition 2.3 via the following definition:

Definition 2.4 (Complexity of mathematical models [25]) Let A and B be mathematical models in a

category Model1. We say that model A has higher complexity than model B if and only if SetA , SetB, but

SetB å SetA. Consequently, two models are called equal iff SetB ¼ SetA.

Thus, the model complexity introduced above is the universal model property serving as partial or

total order relation, see definition 2.5, in categories of mathematical models. Moreover, the introduced

definition of complexity of models is neither related to the definition of complexity typically used in

computer science (complexity of an algorithm), nor to the definition of complexity used for statistical

model, where the number of parameters serves as complexity measure. Thus, the introduced

complexity definition represents in a unique way the complexity of a mathematical model in general,

based on the difference in the underlying physical assumptions.

To refine the structure of the category of mathematical models, we distinguish between categories

with total and partial orders as follows:

Definition 2.5 (Partially ordered models [25]) Let Model1 be a category of mathematical models

with n objects, and let X be the set of all physical assumptions used in this category. Assume that

objects of Model1 can be ordered according to definition 2.4 as SetAi , SetA j for i , j. Then the

category Model1 contains totally ordered models iff X ¼ SetA1
< SetA2

< � � �< SetAn and SetAn ¼ X,

otherwise, the category Model1 contains partially ordered models.

Finally, to describe the FSI as a coupled model, we introduce the definition of coupled models as follows:

Definition 2.6 (Objects of a category of coupled models [25]) Let us consider two categories of

mathematical models Model1 and Model2. Then the coupling of models from these categories

constitutes a category Model12 with objects satisfying the following conditions:

(i) objects are finite sets—set of assumptions of a coupled mathematical model, denoted again by

SetA, where A is a corresponding coupled mathematical model, and arrows are relations

between these sets;

(ii) set of assumptions SetA of a coupled mathematical model is defined by SetA :¼ T(SetB) < F(SetC),

where SetB and SetC are sets of assumptions of mathematical models from Model1 and Model2,

correspondingly, T and F are functorial mappings between Model1, Model2 and Model12,

respectively. Moreover, the following statements for SetA are true

(a) (SetB < SetC) , SetA and (b) SetA å (SetB < SetC):

Thus, a coupled mathematical model A is a pair kB, Cl, i.e. Model12 provides the structure of a category of

coupled mathematical models.

Practical meaning of this definition is the following: property (i) implies that a coupling of

mathematical models produces again a mathematical model, meaning that complexity definition can

be used again to order coupled models now; and property (ii) underlines that the set of assumptions

of a coupled model is obtained by actions of functors on the sets of assumptions of models being

coupled, and not by a simple unification of these sets.

Finally, we would like to remark that the extension of category theory-based modelling methodology

to empirical and experimental models is still under construction. Therefore, only mathematical models

are analysed in this paper.

2.2. Aerodynamic models
In this section, we write the mathematical constructions of a CFD and 11 aerodynamic force models in a

concise manner, sufficient to distinguish the differences between the models. The results of this section

will be used in the sequel to introduce a clear structure of aerodynamic models based on the complexity

definition, and to discuss additional categorical constructions.

The coupled problem of wind–bridge interaction consists of a two-dimensional body G immersed in

a fluid F with a constant density r and an interface B (cf. figure 2). The deck with chord B is assumed to

be rigid and is supported on vertical kh and rotational spring ka, allowing vertical h and rotational a

displacements. Correspondingly, the body is with inertial mass mh and moment of inertia Ia, while

the structural damping of the system is included by the vertical ch and rotational ca damping
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Figure 2. Coupled fluid – structure system for the CFD model (a); simplified system for the semi-analytical models (b).
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coefficients. Herein, for the sake of simplicity, we focus on the time-dependent lift L ¼ L(t) and moment

M ¼M(t) forces, which act at the stiffness centre of the deck and constitute the aerodynamic force vector

f ¼ fL, Mg. Hence, using a structural system with two degrees of freedom is sufficient to model the

aerodynamic coupling between these two forces. The free-stream turbulence is separated on a mean

U, vertical w(t) and horizontal u ¼ u(t) fluctuating components. By separating the free-stream

turbulence in such way, it is implicitly assumed that it is a stationary and Gaussian process. These are

common assumptions for atmospheric turbulence in the design of structures [4,27]. During hurricanes

or thunderstorms/downbursts, these assumptions are not valid as the non-stationarity in the free-

stream turbulence is prevalent [28]. However, this is out of the scope of the present study and these

assumptions in the free-stream turbulence are retained for all aerodynamic models.

We define only one linear model S for the motion of the body using the Newton–Euler equations.

The structural model S is defined as follows:

S :¼ mh
€hþ ch

_hþ khh ¼ L,
ma€aþ ca _aþ kaa ¼ M:

�
(2:1)

As discussed previously, the semi-analytical aerodynamic models directly represent the forces with the

help of aerodynamic coefficients. Although there have been many semi-analytical models developed over

the years, herein we consider the following models: (i) steady model (ST); (ii) linear steady model (LST);

(iii) quasi-steady model (QS); (iv) linear quasi-steady model (LQS); (v) linear unsteady model (LU);

(vi) modified quasi-steady model (MQS); (vii) mode-by-mode model (MBM); (viii) corrected quasi-

steady model (CQS); (ix) hybrid nonlinear model (HNL); (x) modified nonlinear model (MNL) and

(xi) nonlinear unsteady model (NLU). We start by formulating the ST model as follows [1]:

ST :¼

L ¼ FL cosf� FD sinf, FD ¼
1

2
rU2

r BCD(ae), FL ¼ �
1

2
rU2

r BCL(ae),

M ¼ 1

2
rU2

r B2CM(ae), ae ¼ as þ f, f ¼ arctan
w

U þ u

� �
,

Ur ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(U þ u)2 þ w2

q
,

8>>>>><
>>>>>:

where the Ur is resultant wind velocity considering only thewind fluctuations,ae is the effective angle of attack,

f is the dynamic angle of attack, and as is the wind angle of attack at equilibrium position. The drag, lift and

moment static wind coefficients are denoted as CD, CL and CM, respectively. These coefficients are obtained

from static experimental tests or static CFD simulations under laminar flow and are dependent on the angle

of attack, generally in a nonlinear fashion. Linearizing at the angle equilibrium position and neglecting the

higher-order terms of the velocity, we obtain the LST model as follows [1]:

LST :¼
L ¼ � 1

2
rU2B CL þ 2CL

u
U
þ (C0L þ CD)

w
U

h i
,

M ¼ 1

2
rU2B2 CM þ 2CM

u
U
þ C0M

w
U

h i
,

8>><
>>:

where CD=CD (as), CL=CL (as) and CM=CM (as) are the static wind coefficients for as and their derivatives,

denoted with the prime notation. The QS model takes into account the aerodynamic damping and stiffness

in a quasi-steady manner, by introducing the displacements and their derivatives in the effective angle of

attack as follows [29]:

QS :¼

L ¼ FL cosf� FD sinf, FD ¼
1

2
rU2

r BCD(ae), FL ¼ �
1

2
rU2

r BCL(ae),

M ¼ 1

2
rU2

r B2CM(ae), ae ¼ as þ aþ f, f ¼ arctan
wþ _hþm1B _a

U þ u

 !
,

Ur ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(U þ u)2 þ (wþ _hþm1B _a)2

q
,

8>>>>>>>><
>>>>>>>>:

(2:2)
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where the m1 coefficient specifies the position of the aerodynamic centre [30]. The aerodynamic centre defines a

resultant point for each component of the self-excited forces due to rotation [12]. In other words, it specifies an

equivalent point at which there is an equivalent downwash (vertical velocity) due to angular motion as the self-

excited forces are dependent on the downwash at multiple points for bridge decks. This point is valid for an

equivalent quasi-steady state and is commonly determined based on the flutter derivatives, which are defined

in the sequel. Presently, there is no well-established method how this point is obtained. Further discussion on

the aerodynamic centre can be found in e.g. [1,9,12] and is out of the scope of this study.

Similar as for the LST model, we obtain the LQS model by linearizing the QS model at the static angle

of attack, yielding the following formulation [29]:

LQS :¼

L ¼ � 1

2
rU2B

"
CL þ 2CL

u
U
þ (C0L þ CD)

w
U
þ(C0L þ CD)

_hþm1B _a

U
þ C0La

#
,

M ¼ 1

2
rU2B2 CM þ 2CM

u
U
þ C0M

w
U
þ C0M

_hþm1B _a

U
þ C0Ma

" #
:

8>>>>><
>>>>>:

(2:3)

Based on the linear unsteady theory for a flat plate immersed in a potential flow, if a unit-step motion

or gust is introduced to the system, the resultant aerodynamic forces will have a rise time and attain their

quasi-steady value asymptotically. The rise time is commonly referred to as ‘fluid memory’ and accounts

for the unsteadiness in the flow. In the LU model for bridge aerodynamics, we introduce the linear fluid

memory by indicial functions F in the LQS model, yielding the subsequent form [29]:

LU :¼

L ¼ � 1

2
rU2B CL þ 2CL

ðt

0

FLu(t� t)
_u(t)

U
dtþ (C0L þ CD)

ðt

0

"
FLw(t� t)

_w(t)

U

(
:

þFLh(t� t)
€h(t)

U
þFL _a(t� t)

m1B€a(t)

U
þFLa(t� t) _a(t)

#
dt

)
,

M ¼ 1

2
rU2B2 CM þ 2CM

ðt

0

FMu(t� t)
_u(t)

U
dtþ C0M

ðt

0

"
FMw(t� t)

_w(t)

U

(
:

þFMh(t� t)
€h(t)

U
þFM _a(t� t)

m1B€a(t)

U
þFMa(t� t) _a(t)

#
dt

)
,

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

(2:4)

where FL and FM are the lift and moment indicial functions, respectively, due to the corresponding unit-

step motion or fluctuation. The indicial functions are obtained from numerical simulations or

experimental tests, where unit-step motion or fluctuation is applied on the system. However, this

entails experimental or numerical procedures which are difficult to conduct; therefore, the indicial

functions are commonly obtained by rational approximation of frequency-dependent terms, i.e. flutter

derivatives and aerodynamic admittance functions. The frequency-domain formulation of the LU

model including the frequency-dependent terms is expressed as follows [2–4]:

LLU ¼ � 1

2
rU2B

"
CL þ 2CL

u
U
xLu þ (C0L þ CD)

w
U
xLw �KH�1

_h
U
� KH�2

B _a

U
� K2H�3a� K2H�4

h
B

#

MLU ¼ 1

2
rU2B2

"
CM þ 2CM

u
U
xMu þ C0M

w
U
xMw þ KA�1

_h
U
þ KA�2

B _a

U
þ K2A�3aþ K2A�4

h
B

#
,

(2:5)

where xL ¼ xL (K) and xM ¼ xM (K) are the lift and moment aerodynamic admittance functions,

respectively, corresponding to the specific wind fluctuation, and H* ¼ H* (K) and A* ¼ A* (K) are the lift

and moment flutter derivatives, respectively, corresponding to a specific degree of freedom. The reduced

frequency K is defined as K ¼ vB/U for v being the circular frequency of wind fluctuations or motion

w.r.t. aerodynamic admittance functions or flutter derivatives, respectively. The aerodynamic admittance

functions and flutter derivatives are obtained as transfer functions of the aerodynamic forces with the

incoming wind fluctuations and harmonic motion, respectively. For the sake of brevity, we omit the

relations between the indicial functions and their frequency-domain counterparts. These relations can be

found in [29]. Since (2.4) are constructed based on the linear assumption, the motion and gust indicial

functions are independent of the gust and motion amplitude, respectively. Correspondingly, the flutter

derivatives and aerodynamic admittance functions are also amplitude independent in (2.5).
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In order to avoid rational approximation in the LU model and account for the ambiguity of the

aerodynamic centre in the LQS model, Øiseth et al. [31] simplify (2.5) by introducing frequency

independent coefficients in the MQS model, yielding the following form:

MQS :¼

L ¼ � 1

2
rU2B CL þ 2CL

u
U
þ (C0L þ CD)

w
U
� h1

_h
U
� h2

B _a

U
� h3a� h4

h
B

" #
,

M ¼ 1

2
rU2B2 CM þ 2CM

u
U
þ C0M

w
U
þ a1

_h
U
þ a2

B _a

U
þ a3aþ a4

h
B

" #
,

8>>>>><
>>>>>:

(2:6)

where h j ¼ KcH�j (Kc), a j ¼ KcA�j (Kc) for j ¼ f1, 2g and h j ¼ K2
c H�j (Kc), a j ¼ K2

c A�j (Kc) for j ¼ f3, 4g are

frequency-independent coefficients taking into account the average fluid memory at a specific

reduced frequency of oscillation Kc. The frequency-independent coefficients in (2.6) are obtained

either by using linear least-square fit to the flutter derivatives or by using the secant

approximation of the flutter derivatives for a selected value of Kc, based on an oscillation

frequency for each direction of motion (translation or rotation) [1,31]. In the first manner, Kc is

obtained implicitly, while in the latter, Kc is typically based on the first natural frequency for

each direction.

The simplification in the MBM model is the disregard of the coupling between structural modes on

the aerodynamic side. For a two degrees of freedom system, the cross-terms between the vertical and

torsional degrees of freedom in (2.4) are neglected; hence, the MBM model is obtained as follows:

MBM :¼

L ¼ � 1

2
rU2B CL þ

ðt

0

2CLFLu(t� t)
_u(t)

U
dt

�

þ(C0L þ CD)

ðt

0

FLw(t� t)
_w(t)

U
þFLh(t� t)

€h(t)

U

" #
dt

)
,

M ¼ 1

2
rU2B2 CM þ

ðt

0

2CMFMu(t� t)
_u(t)

U
dtþ

ðt

0

C0M FMw(t� t)
_w(t)

U

��

þFM _a(t� t)
m1B€a(t)

U
þFMa(t� t) _a(t)

�
dt

�
:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

Owing to its simplicity and computational efficiency in the frequency domain, the conventional MBM

model was used in the past for buffeting analysis [3,32].

The motivation of the CQS model [5] is to retain the aerodynamic nonlinearity of the QS model, while

accounting for the fluid memory in an ‘averaged’ sense. By introducing dynamic derivatives K* in the QS

model, the formulation of the CQS model yields the following:

CQS :¼

L ¼ FL cosf� FD sinf, FD ¼
1

2
rU2

r BC�D(ae), FL ¼ �
1

2
rU2

r BC�L(ae),

M ¼ 1

2
rU2

r B2C�M(ae), ae ¼ as þ aþ f, f ¼ arctan
wþ _hþm1B _a

U þ u

 !
,

Ur ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(U þ u)2 þ (wþ _hþm1B _a)2

q
,

C�j (ae) ¼ C j(as)þ
ðae

as

K�j (a, vc)C0j(a) da, for j ¼ {D, L, M}:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(2:7)

The dynamic derivatives K* ¼ K*(a, vc) are either obtained from dynamic tests, or more commonly, from

the flutter derivatives at various angles of incidence [5]. In the latter case, the flutter derivatives are

interpolated at specific circular frequency vc, based on the averaged frequency of oscillation.

Chen & Kareem [7] introduced the HNL model under the premise that the effect of fluid memory is

insignificant at low reduced frequencies and the nonlinearity is governing the aerodynamic forces, while

for high reduced frequencies, the effect of fluid memory is dominant. In the HNL, the effective angle of

attack is split into a low- and a high-frequency component, denoted as al
e and ah

e , respectively. For the

low-frequency part, the QS model is used to compute the forces (cf. (2.2)), and for the high-frequency

component, the LU model is employed (cf. (2.4)), linearized at the low-frequency angle of attack.
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Taking this into account, we can define the HNL model as follows:

HNL :¼

L ¼ LQS(al
e)þ LLU(ah

e )jal
e
, M ¼ MQS(al

e)þMLU(ah
e )jal

e
,

ae ¼ al
e þ ah

e , al
e ¼ as þ al þ arctan

wl þ _h
l þm1B _al þ n1 _wl

U þ ul

 !
,

8>>><
>>>:

(2:8)

where jal
e

denotes linearization at al
e, which includes the small angle hypothesis and disregards higher-

order terms. The cut-off frequency should be chosen in such manner to accommodate for the validity of

the quasi-steady assumption in the low-frequency band of ae [9].

The MNL model approximates the aerodynamic hysteresis in a nonlinear fashion. There are several

ways to approximate the aerodynamic hysteresis, for example, using rheological models [33] or artificial

neural networks [34]. For illustration, herein we use the approximation using a polynomial of degree n
[6,9], which introduces the additional assumption that the fluid memory due to wind fluctuations and

motion is similar, i.e. ae is obtained by the superposition principle. We write the mathematical

construction of the MNL model as follows:

MNL :¼

L ¼ � 1

2
rU2

r B[Chys
L (ae, _ae, vc) cosfþ Chys

D (ae, _ae, vc) sinf],

M ¼ 1

2
rU2

r B2Chys
M (ae, _ae, vc), ae ¼ as þ aþ f,

f ¼ arctan
wþ _hþm1B _a

U þ u

 !
, Ur ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(U þ u)2 þ (wþ _hþm1B _a)2

q
,

Chys
j ¼ C j(as)þ

Xn

k,l

h jkla
k
e (vc) _al

e(vc), for j ¼ {D, L, M},

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(2:9)

where Chys ¼ Chys(ae, _ae, vc) is the aerodynamic hysteresis and h is the approximation coefficient. The

experimental or numerical aerodynamic hysteresis generally differs for various K; however, the

approximated aerodynamic hysteresis is obtained at a specific central circular frequency vc based on

the frequency of oscillation. Alternatively, the aerodynamic hysteresis can be averaged for the whole

range of K including a rheological model for the instability range [6], or the band-superposition

scheme can be used for splitting the wind-spectrum in multiple frequency ‘bands’ [9].

One of the most recently developed semi-analytical models is the NLU model, based on the nonlinear

indicial functional. Since a general nonlinear indicial functional is presently unavailable for bridge decks,

Wu & Kareem [8] introduced a reduced scheme based on a finite sum of multidimensional convolution

integrals accounting for higher-order nonlinear effects. Based on their formulation, we write the

mathematical formulation of the NLU model as follows:

NLU :¼

L ¼ � 1

2
rU2B F0

L þ
X

k

ðt

0

FI
Lk(t� t) _k(t) dt

(

þ
X

k,l

ðt

0

ðt

0

FII
Lkl(t� t1, t� t2) _k(t1)_l(t2) dt1 dt2 þ � � �

)
,

M ¼ 1

2
rU2B2 F0

M þ
X

k

ðt

0

FI
Mk(t� t) _k(t) dt

(

þ
X

k,l

ðt

0

ðt

0

FII
Mkl(t� t1, t� t2) _k(t1)_l(t2) dt1 dt2 þ � � �

)
,

for k, l ¼ {u, w, _h, a, _a},

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

(2:10)

where F0, FI and FII are the zeroth-, first- and second-order indicial functions, respectively. Higher-

order indicial functions can be introduced in a similar manner. It is convenient to formulate the NLU

model in a Volterra series formalism, by using the analogies between the unit-step and unit-impulse

functions [8]. With this, the well-established procedures for identification of the Volterra kernels due

to unit-impulse input are readily applicable.

The CFD model is based on a numerical solution of the Navier–Stokes equations. For an unbounded

domain D , R2 comprising a fluid F and an immersed body G (cf. figure 2), we formulate the governing

equations of F and forces acting on G based on the vorticity-transport equation and Biot–Savart relation
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as follows [35,36]:

CFD :¼

@v

@t
þ (u � r)v ¼ nr2v, u(x) ¼ U � 1

2p

ð
D

(x� y)�v(y)

jx� yj2
dy,

1

2p

ð
DB

(xB � y)�v(y)

jxB � yj2
dy ¼ I(xB)þU � uB,

d

dt

ð
D
vdx ¼ 0,

v(x, 0) ¼ v0, f ¼ �r d

dt

ð
D
v� x dx,

8>>>>>>>>><
>>>>>>>>>:

(2:11)

where u is the velocity vector, n is the kinematic viscosity, v ¼ r� u ¼ ven is the fluid vorticity, and en is

a unit vector perpendicular to the fluid plane. The velocity no-slip and no-penetration boundary

conditions are imposed through the boundary values of the vorticity and Kelvin’s theorem, both

defined in the second row of (2.11), respectively. Herein, DB is a fluid layer with infinitesimal

thickness adjacent to the surface B, U is the free-space velocity vector, and the vector I(xB) defines the

induced velocity from the vorticity in the fluid, without taking into account the contribution of DB.

The free-stream turbulence is introduced by the vorticity initial conditions, while the aerodynamic

force vector f is obtained from the time derivative of the fluid impulse.

There are various numerical methods for the discrete solution of the governing equations in the CFD

model such as the finite-element and finite-volume methods. Herein, the manner which (2.11) are written

is suitable for the grid-less vortex particle method, which is also used in the illustrative example. The

vortex particle method discretizes the vorticity field on fluid particles, which carry concentrated

circulation. The free-stream turbulence is introduced by inflow particles with spectral characteristics based

on a prescribed velocity field, which are injected upstream of the section in the CFD domain at a constant

rate. Without going into details, we supply references for the reader for detailed information on the

derivation of the vortex method (cf. e.g. [35]), present numerical implementation (cf. [36,37]) and

modelling of free-stream turbulence (cf. [38,39]). We note that the use of the vortex particle method is

to merely illustrate the overall concept of a CFD model within the categorical framework. In fact,

many other CFD methods can be used for the same purpose with various turbulence models. Thus, a

discussion regarding the complexity and numerical uncertainty of the CFD methods is beyond the

scope of this study.
3. Categorical framework for aerodynamic modelling
3.1. Extension of the categorical modelling approach
We start the extension of the categorical modelling approach by refining the structure of categories of

mathematical models. Particularly, we introduce the following definition:

Definition 3.1 (Simplest and most complex models) Consider a category of mathematical models

Model1 with n objects. Let X be the set of all physical assumptions used in this category. Let fA1,

A2, . . ., Ang be the set of all models associated with the sets of assumptions from Model1. Then, the

model An is the simplest model in Model1 iff SetAn ¼ X; additionally, the model A1 is the most

complex model in Model1 iff SetA1
, SetAi , X 8i ¼ 2, . . . , n.

Combining this definition with definition 2.5, we immediately get the following corollary:

Corollary 3.2 In totally ordered categories of mathematical models the simplest and the most complex
models exist.

By using the definition of complexity (cf. definition 2.4), a comparison of different models can be

performed. Particularly, the effect of specific assumptions on a selected SRQ can be evaluated. Such

comparison works perfectly in the case of totally ordered categories of models. However, if a given

category contains only partially ordered models, then models which are not under the complexity

relation cannot be compared directly. To illuminate this point, consider e.g. two semi-analytical

aerodynamic models: one being linear and unsteady and the other being nonlinear and steady; and

the SRQ represented by the displacement of a system. By studying the SRQ from both models, we

observe discrepancies which are due to the assumptions of linearity or steadiness. However, a precise

specification of the assumption causing the discrepancy in the SRQ is not possible, since the models
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are not complexity-related to each other. To overcome this problem and to allow a clear comparison of

model assumptions in practice, we introduce the following definition:

Definition 3.3 (Comparability of mathematical models) Let A, B and C be models from a

category of mathematical models Model1. The models A, B and C are called directly comparable

iff they are complexity-related. Further, the models A and B are called relatively comparable w.r.t.

model C iff A < B (the union implies the union of the corresponding sets of assumptions) and C

are complexity-related, i.e.

(SetA < SetB) # SetC or SetC # (SetA < SetB):

In the preceding definition, the direct comparability is simply the application of complexity definition,

and in a totally ordered category all models are directly comparable. The relative comparability practically

implies that for a comparison of two models, which are not complexity-related, a third model is required,

which is either simpler or more complex than both of the models. From the point of view of a

diagrammatic representation of models, the relative comparability addresses the branching point in

the diagram (see §4 for concrete examples). It is important to note that, in the case of the relative

comparability, we cannot draw a conclusion on which model outcome is of higher quality based on a

simpler model, rather only study the effect of excluding assumptions from the set of assumptions of

the simpler model.

When comparing two models, the effect of the assumptions on a selected SRQ needs to be evaluated

quantitatively. Typically, measures, such as mean squared error or L2 error, are used to quantify the

model output quality. Since a specific choice of the measure is problem dependent, in the sequel we

will refer to such measures more generally as to comparison metric. A comparison requires a selection

of a reference model, based on which the relative effect of excluding/adding an assumption w.r.t a

selected SRQ is studied. Depending on a reference model chosen, we can distinguish forward and

backward comparison, defined as follows:

Definition 3.4 (Forward and backward comparison) Let a comparison metric M quantify the

difference of an SRQ between the models A and B, where A is chosen to be the reference model. We

say that we conduct a:

(i) forward comparison, if SetB # SetA, and we denote the comparison metric M as MA,B
SRQ;

(ii) backward comparison, if SetA # SetB, and we denote the comparison metric M as MA,B
SRQ.
The comparison metrics can be considered in deterministic or probabilistic fashion. By taking the

parameter and numerical uncertainty of the models into account, the comparison metric can be

considered as random variable with a corresponding probability distribution. Hence, the effect of

assumptions on a selected SQR will be also considered in a probabilistic manner. Moreover,

sensitivity analysis can be performed w.r.t. a certain comparison metric to better understand the

influence of parameter and numerical uncertainty on the effect of model assumptions. Herein, we

restrict the discussion to deterministic comparison metrics. It is noteworthy to mention that a

validation metric, which is commonly used in the verification and validation framework (cf. [17]), is,

in fact, a special case of a comparison metric. In the case of a validation metric, deterministic or

probabilistic, the experimental results are always chosen to be the reference. Moreover, we cannot

draw any conclusions if a reference model, simpler or more complex, is an appropriate representation

of reality only by using the categorical modelling approach. This requires appropriate validation with

experimental results for each particular case study.

Finally, from a practical point of view, it is beneficial to introduce the following definition:

Definition 3.5 (Model completeness) Let A be a model from a category Model1. The model A is

called complete w.r.t. a certain physical phenomenon iff its corresponding set of assumptions SetA
allows to describe that phenomenon without any additional modification.

In practice, model completeness implies a subdivision of models in a given category into (discrete)

subcategories of models w.r.t. physical phenomena these models are able to describe, based on the

physical mechanisms they account for. Such a clear structure simplifies comparative analysis of

models, since it narrows the set of models for a specific physical phenomenon of interest prior to

comparison. We note that a specific categorical interpretation of the subcategories constructed

according to definition 3.5 depends on specific purposes of the analysis.
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3.2. Aerodynamic modelling via categorical approach

We start the extension of categorical approach to aerodynamic modelling by formulating the coupled FSI

model (cf. figure 2). The coupled model is constructed of structural and fluid partial models, both defined

in R2. Considering an R2 instead of R3 domain is itself an assumption in terms of the structural behaviour

(three-dimensionality of the energy transfer between modes), fluid behaviour (spatial coherence of the

free-stream turbulence, three-dimensionality of the turbulent energy cascade and non-uniform mean

wind profile along the bridge span) and FSI (strip assumption) [12,39,40]. Nevertheless, defining both

partial models in R2 is compliant with (iv) from definition 2.3 and is sufficient for the purpose of this

study.

We denote a category of the structural model S as StrutModel and a category of aerodynamic model

as AeroModel. In AeroModel, we include all 12 models for the aerodynamic forces outlined in §2.2.

According to definition 2.6, sets of assumptions in category CoupModel are obtained as

SetC :¼ T(SetS) < F(SetA), (3:1)

where S is the structural model (cf. (2.1)) and A can be any model from AeroModel. The assumption of

linearity in the structural model S can have significant influence to the structural behaviour along with

the aerodynamic model assumptions. This is particularly evident at high wind speeds and in the post-

flutter regime in terms of limit cycle oscillations [14,41,42]. However, the main interest of this study is

the aerodynamic models; thus, we will define the sets of assumptions for the models in AeroModel.

Remark 3.6 Sets of assumptions introduced in definition 2.3 are assumed to be written by help of a

natural language. An alternative way would be listing directly mathematical formalization of the

assumptions. However, it would lead to a more complicated construction, since strongly speaking, the

formalized assumptions do not necessarily form sets. In the sequel, to make the application more

transparent, we will list the formalized assumptions and reference them as sets of assumptions, implying

that each formalized assumption corresponds to the same assumption written in a natural language.

The set of assumptions for the CFD model is formulated by assuming the fluid is incompressible and

homogeneous, with conservative body forces. Thus, the set of assumptions takes the following form:

SetCFD :¼ @r

@t
¼ 0, rr ¼ 0, r� f b ¼ 0

� �
,

where fb is the body force vector. The origin of the aerodynamic coefficients in the semi-analytical models

is dependent on the model, CFD or experimental, from which they are obtained and its input. Since the

semi-analytical models are basically ‘phenomenological’ models, their predictive capabilities are limited

by their mathematical constructions and the information contained in the aerodynamic coefficients.

Thus, the aerodynamic coefficients are based on and valid for certain input properties of the model they

are obtained from, such as frequency content and amplitude (motion or gust) and Reynold’s number.

Depending on the range of application, the aerodynamic coefficients can be assumed insensitive to

variations of these input parameters in some cases (e.g. Reynold’s number dependency for bridge

decks), while in others not (e.g. Reynold’s number dependency for cables [43]). Herein, we assume that

all aerodynamic coefficients are obtained from the CFD model, meaning that a semi-analytical model is

a reduced-order model from the Navier–Stokes equations. Hence, SetCFD is a subset of the sets of

assumptions corresponding to all semi-analytical models. The validity of the two-dimensional Navier–

Stokes equations and vortex method and how well they represent a realistic situation is not in the scope

of our discussion. Nevertheless, if the aerodynamic coefficients are validated with experimental data in

statistical sense, as it has been conducted in many instances in bridge aerodynamics for the vortex

method (cf. e.g. [44]), it is reasonable to assume that the CFD model is a close approximation of the

reality. Thus, we construct the set of assumptions for the NLU model as a superset of SetCFD as follows:

SetNLU :¼ SetCFD < {f v ¼ 0; f in ¼ 0; f (t) ¼ f (q(t))},

where fv and fin are vectors representing the forces due to vortex shedding and interior noise, respectively.

The third assumption indicates that the forces are time-invariant due to input q including the wind

fluctuations and structural motion. Although the higher-order indicial functions account for a portion of

aerodynamic nonlinearity and fading fluid memory, they cannot replicate the complete aerodynamic

behaviour simulated by the Navier–Stokes equations. Hence, the NLU model does not account for the

forces due to vortex shedding and interior noise. The term ‘interior noise’ is used here to allude to

aerodynamic phenomena which can be chaotic such as wake instability, laminar-turbulent transition
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(Reynold’s number), local separation and reattachment. The physical relationship between the interior

noise and the aerodynamic forces is not well established and can yield time-variant output

(aerodynamic forces) for time-invariant input (motion or incoming gusts). This cannot be captured by

the NLU model (cf. [45] for discussion). Therefore, the relation in the mathematical constructions

between the CFD and NLU models is not as clear as the subsequent relations between the semi-

analytical models.

The LU model includes the fluid memory in a linear sense. Therefore, we can formulate SetLU as a

superset of SetNLU as follows:

SetLU :¼ SetNLU < {f ¼ f jas
},

where linearization implies that the first-order kernel is equal to the corresponding indicial function

FI ¼ c1F, where c1 is a coefficient accounting for the quasi-steady asymptotes. The products

involving higher-order kernels are neglected (cf. (2.4) and (2.10)).

As noted in the previous section, the MQS model considers the averaged fluid memory only in the

motion-induced forces by interpolating the flutter derivatives at a specific reduced frequency Kc, or

equivalently, specific reduced velocity Vrc ¼ 2p/Kc (cf. (2.5) and (2.6)). For the LU model, the reduced

velocity, i.e. Vr ¼ 2p/K, represents an interval [0, 1), while for the MQS model, Vrc is a case-

dependent coefficient, and therefore, Vrc , Vr. Since the MQS model is a special case of the LU

model, SetLU is a subset of SetMQS, which is constructed as follows:

SetMQS :¼ SetLU < {xLu ¼ 1; xLw ¼ 1; xMu ¼ 1; xMw ¼ 1; Vr ¼ Vrc}: (3:2)

The MBM model neglects the aerodynamic coupling; however, it accounts for the linear fluid

memory. Hence, we formulate SetMBM from SetLU as follows:

SetMBM :¼ SetLU < {FLa _a ¼ 0; FL _a€a ¼ 0; FMh
_h ¼ 0}: (3:3)

The MNL model accounts for the aerodynamic nonlinearity and averaged fading fluid memory by

selecting a specific reduced velocity Vrc for the approximation of the aerodynamic hysteresis.

Accounting only for a specific reduced velocity makes the MNL model a special case of the NLU

model. For the MNL model it is additionally assumed that the forces are independent of the origin of

the effective angle. By origin we mean whether this angle is computed from wind fluctuations,

motion or as a combination of the two. Thus, SetMNL is obtained as follows:

SetMNL :¼ SetNLU < Vr ¼ Vrc; f
w

U þ u

� �
¼ f

_h
U

 !
¼ f

m1Ba
U

� �( )
:

Neglecting the hysteretic behaviour of the aerodynamic coefficients in the MNL model, the CQS model is

independent of the derivative of the effective angle of attack _ae (cf. (2.7) and (2.9)). With this, the

corresponding set of assumptions for the CQS model is given as follows:

SetCQS :¼ SetMNL <
Xn

k,l

hkla
k
e (vc) _al

e(vc) ¼
Xn

k

hka
k
e (vc) _a0

e (vc)

( )
,

where the h coefficients can be obtained as n degree polynomial of the integral term in (2.7).

The QS model is a special case of the CQS model, where instead of a specified reduced velocity Vrc,

we assume that the system is mapped to an equivalent state at infinite time. Thus, we formulate SetQS as

a superset of SetCQS as follows:

SetQS :¼ SetCQS < {Vrc ! 1},

meaning that the correction coefficients (cf. (2.7)) are unity under the quasi-steady assumption, i.e.

K* ¼ 1. Precisely, the variable coefficient Vrc is assumed to be the limit case towards infinity.

Therefore, Vrc!1 is a subset of the variable coefficient Vrc.

Although the HNL model is partially able to replicate the nonlinear behaviour while accounting for

the fluid memory in the high-frequency range, this model cannot be considered as fully nonlinear nor

fully unsteady. Therefore, the only semi-analytical model, having a set of assumptions as a subset of

SetHNL, is the NLU model. Consequently, we have the following:

SetHNL :¼ SetNLU < {Vr ! 1 for al
e; f ¼ f jal

e
for ah

e }:
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The mathematical relations between (2.10) and (2.8) can be obtained using Volterra frequency-response

functions and they can be found in [46].

The LQS model is linear and neglects the fluid memory; hence, SetLQS is obtained as follows:

SetLQS :¼ SetMQS < {Vrc ! 1} ¼ SetQS < {f ¼ f jas
}

¼ SetHNL < {f ¼ f jas
for al

e; Vr ! 1 for ah
e }:

(3:4)

By setting Vrc!1, the frequency-independent coefficients in the MQS attain their quasi-steady value,

which can be obtained simply by comparing (2.3) and (2.6). Since the LU model is more widely used

than the MQS model, it is noteworthy to mention that we can also relate the flutter derivatives to

their corresponding quasi-steady values for Vr! 1 (cf. (2.3) and (2.5)).

Disregarding the motion-induced forces generally leads to an inaccurate prediction of the

aerodynamic forces, especially for high wind velocities. As the ST model accounts for the

aerodynamic nonlinearity and does not include the motion-induced forces, we construct SetST as a

superset of SetQS as follows:

SetST :¼ SetQS <

(
ae ¼ as þ aþ f ¼ as þ f; f ¼ arctan

wþ _hþm1B _a

U þ u

 !
¼ arctan

w
U þ u

� �)
: (3:5)

Since the LST model neglects the motion-induced forces and fluid memory in the buffeting forces, SetLST

is formulated as a superset of SetMBM, SetLQS and SetST as follows:

SetLST :¼ SetLQS < (C0L þ CD)
_hþm1B _a

U
¼ 0; C0La ¼ 0; C0M

_hþm1B _a

U
¼ 0; C0Ma ¼ 0

( )

¼ SetMBM < {FLh
_h ¼ 0; FMa _a ¼ 0; FM _a€a ¼ 0} ¼ SetST < {f ¼ f jas

}:

(3:6)

Based on sets of assumptions used for the models in category AeroModel, we have the following

diagram:

LST ST

QS

CQS

LQS

HNL

MQS

NLU

MBM LU

MNL

CFD

f3

f2

f4

f9f8

f6

f12 f13f11

f7

f5

f1

f10

f14

f15

By using definitions 2.4, 2.5 and 3.1, the following conclusions can be drawn from the diagram of

category AeroModel: (i) AeroModel is a category with partially ordered models; (ii) the CFD model

is the most complex aerodynamic model since SetCFD , SetA, where A is any model in the category

AeroModel; (iii) the NLU model is the most complex semi-analytical aerodynamic model since

SetNLU , SetA, where A is any model in the category AeroModel, except the CFD model; (iv) the

LST is the simplest aerodynamic model since SetLST ¼ X, where X are all aerodynamic assumptions

considered in the category AeroModel.
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Additionally, we see from the diagram that each arrow fi between models increases complexity. With

the increase of the model complexity, we can study the effect of the underlying assumptions in the

models based on a selected SRQ. Taking into account definition 3.3, and the fact that AeroModel is a

category with partially ordered models, it is evident that a direct comparison of SRQ for any two

models from CoupModel is not possible. For example, a direct comparison of LU and QS models is

not possible, since the former includes the linear fluid memory, while the latter neglects the fluid

memory and is nonlinear. This point will be further elaborated in §4 based on an illustrative example.

Depending on the wind characteristics, structural properties and deck shape, several phenomena may

occur during the wind–bridge interaction. These phenomena include for example, vortex-induced

vibrations, buffeting response and aeroelastic instabilities. Although all models in CoupModel account

for the FSI up to a certain extent, not all are complete w.r.t. all of these phenomena. Herein, we use

definition 3.5 w.r.t. the aeroelastic phenomenon classical flutter for the models of CoupModel. To

precisely define the term classical flutter in bridge aerodynamics, we use the definition given by Simiu &

Scanlan [27]: ‘[Classical flutter] implies an aeroelastic phenomenon in which two degrees of freedom of a

structure, rotation and vertical translation, couple together in a flow-driven, unstable oscillation.’ From

this definition, it is clear that a model that considers concurrently the aerodynamic and structural

behaviour is required to simulate flutter. Since the partial differential equations on the structural side for

model S (cf. (2.1)) are decoupled (this is coupling of degrees of freedom, not mathematical models), the

coupling occurs on the aerodynamic side due to the self-excited forces (flow-driven forces).

The assumption which permits an aerodynamic model to account for classical flutter is the disregard of

aerodynamic coupling. This assumption is also implied by the disregard of the self-excited forces. The sets

of assumptions which include this particular assumption are SetMBM (cf. (3.3)), SetST (cf. (3.5)) and SetLST

(cf. (3.6)). Let us consider a category of aerodynamic models FlutterModel, which set of assumptions X does

not contain the assumption that the aerodynamic coupling is neglected. We can obtain FlutterModel as a

sub-category from AeroModel by a functorial mapping as follows:

FlutterModel
I
7!AeroModel:

The models included in FlutterModel are a sub-collection of the models from AeroModel, i.e. fLQS, QS,

MQS, LU, HNL, CQS, MNL, NLU, CFDg. Subsequently, it is straightforward to define a category

CoupModelF that contains a coupled model C, which is obtained in similar manner as in (3.1), with the

difference that the aerodynamic model A can be any model from FlutterModel instead of AeroModel.

We can now say that the models in CoupModelF are complete w.r.t. classical flutter phenomenon.
4. Illustrative example
In this section, we illustrate the applicability of the categorical approach to practical aerodynamic

modelling. The practical part of this section is essentially based on the results presented in [12].

However, only a selection of results will be used as the goal of this section is the manner of interpretation

of results using the categorical framework, which is, in fact, independent of the example. For complete

information on the numerical discretization, model implementation and results we refer to [12].

The reference object is the Great Belt cross section, schematically presented in figure 2. Great Belt’s

deck is B ¼ 31 m wide, the mass of the girder is mh ¼ 22.74 t m21, while the mass moment of inertia is

ma ¼ 2:74� 103 tm2 m21. The vertical and torsional frequencies are selected as 0.1 and 0.278 Hz,

respectively, and the structural damping ratio is set as zs ¼ 0:5% of the critical damping.

Initially, we study the response of the deck due to free-stream turbulent fluctuations, i.e. the buffeting

phenomenon, using a model from CoupModel. The LQS, QS and LU semi-analytical models and the CFD

model are used for the aerodynamic forces. The bridge deck is subjected to wind speeds in the range of

U ¼ 20260 m s21 with free-stream isotropic turbulence with intensity of 10%. The von Kármán power

spectral density function is used with longitudinal and vertical turbulent length scales of Lu ¼ 54 m and

Lw ¼ 27 m, respectively. For the input wind fluctuations in the semi-analytical models, the recorded

fluctuations from the CFD model are taken, so that all of the models have the same input. The total run-

time for each analysis is amounting to t ¼ 700 s, of which 600 s were used for the results as per common

practice considering the Gaussianity and stationarity assumptions [27,28]. The aerodynamic coefficients

are determined from CFD analyses. A constant Reynold’s number is maintained for all analyses. As an

example, figure 3 depicts the static wind coefficients and lift indicial functions. A sample particle map

and a sample time history of the vertical displacements are given in figure 4. Figure 5 depicts the root

mean square of the vertical displacements (hrms) and rotation (arms), which are selected as SRQ.
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The diagram of the category of aerodynamic models AeroModel shown in §3.2 clearly shows the

relations for comparison of the models. A forward comparison metric based on the root mean square

of the vertical response is selected (cf. definition 3.4), and it is given as follows:

MA,B
hrms
¼ hA

rms � hB
rms

hA
rms

,

where model A has higher complexity than model B. For a backward comparison, the comparison metric

is denoted as MA,B
hrms

. Analogue expressions are used for the rotation as well.

As an example, let us study the effect of aerodynamic nonlinearity by examining the QS and LQS

models. The QS is a model of higher complexity as f6 : LQS! QS and based on (3.4), we study the

effect of aerodynamic nonlinearity, since the principal difference in the sets of assumptions is coming

from linearization. For simplicity, we will denote such differences in sets of assumptions as follows

SetQSnSetLQS ¼ {f ¼ f jas
}. It is crucial to specify that we study the effect of a certain assumption, based

on the set of assumptions of the model with higher complexity. The reason for this is that there can



U (m s–1)

M
h r

m
s, M

a r
m

s 
(–

)

20 30 40 50 60
−1.6

−1.2

−0.8

−0.4

0.0

M QS, LQS
hrms

M QS, LQS
arms

U (m s–1)

M
h r

m
s, M

a r
m

s(–
)

20 30 40 50 60
−0.5

−0.4

−0.3

−0.2

−0.1

0.0

M
LU, LQS
hrms

M LU, LQS
arms

(b)(a)

Figure 6. Relative comparative metric based on the root mean square.

20 30 40 50 60
0.1

0.2

0.3

0.4

0.5

0.6

20 30 40 50 60
−0.2

0.0

0.2

0.4

0.6

M
h r

m
s, M

a r
m

s 
(–

)

M
h r

m
s, M

a r
m

s 
(–

)

U (m s–1) U (m s–1)

M
LQS, QS
hrms

M LQS, LU
hrms

M CFD, QS
hrms

M CFD, LU
hrms

(b)(a)

Figure 7. Relative comparative metric based on the root mean square. The solid lines indicate the metrics for the vertical
displacements h, i.e. Mhrms , while the dashed lines indicate the metrics for the rotation a, i.e. Marms .

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:181848
17
be two other models, for which the relative complement of their sets of assumptions can be also the same

as for the first two models. In this case, this occurs for the ST and LST models, for which

SetLSTnSetST ¼ {f ¼ f jas
}. Taking this into account, we can study the effect of nonlinearity, based on

the SetQS model, for which MQS,LQS
rms is given in figure 6a. The figure indicates that including the

aerodynamic nonlinearity, based on the QS model, reduces the root mean square of the response.

Particularly for the rotation, the overestimation for the LQS model increases for higher wind velocities.

By comparing the LU and LQS models, we can study the effect of linear fluid memory on the SRQ, as

opposed to the quasi-steady state. From (3.2) and (3.4), we can realize that the LU model is with higher

complexity, i.e. f7 W f5 : LQS! LU, and the assumption that is of interest is SetLQSnSetLU ¼ {Vr ! 1},

based on SetLU. Figure 6b depicts the relative metric MLU,LQS
rms . From the figure, we can gather that

including the linear fluid memory based on the LU model, the response is reduced. The difference

decreases with increasing wind speeds (thus, increasing Vr) for the vertical degree of freedom, as the

effect of fluid memory should be insignificant at high Vr. However, the difference for the rotation for

U . 40 m s21 increases, which is attributed to the effect of fluid memory on the aerodynamic coupling

[12]. To study this effect in detail, we additionally need to investigate the response of the MBM model

and introduce additional uncoupled quasi-steady model; however, this is beyond the scope of this

article. Previously, we studied the aerodynamic nonlinearity and linear fluid memory, taking the QS and

LU models, respectively, as reference. Nevertheless, we cannot make any statements on which effect has

the larger influence w.r.t. the LQS based on figure 6. In order to do so, we need to take the model LQS

as a reference and conduct a backward comparison, which is in line of definition 3.3 and (ii) from

definition 3.4. The backward comparative metrics, relative to the LQS model, are depicted in figure 7a.

Looking at the figure, we can conclude that including the aerodynamic nonlinearity, based on the QS

model, has a larger impact for the rotation than including the linear fluid memory, based on the LU

model, taking the LQS model as a reference. In the case of the vertical displacements, including the fluid

memory has a larger impact for U � 40 m s21, while including the aerodynamic nonlinearity has a larger

impact for U . 40 m s21. However, a conclusion on the quality of the result obtained by the QS and LU

models cannot be drawn. For such a conclusion, a reference model with higher complexity than both

models is necessary.

To be able to facilitate a discussion on the quality of the result of the QS or LU model for

the selected case, we compare them w.r.t. the CFD model, which is of higher complexity since f15 W f14
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W f13 W f9 : QS! CFD and f15 W f11 : LU! CFD. The assumptions that are of interest now for the LU model

are SetLUnSetCFD ¼ {f ¼ f jas
; f v ¼ 0; f in ¼ 0; f (t) ¼ f (q(t))} and for the QS model

SetQSnSetCFD ¼ {Vr ! 1; f v ¼ 0; f in ¼ 0; f (t) ¼ f (q(t))}, both based on SetCFD. We note that the relative

component of SetCFD in both, SetLU and SetQS, contains the disregard of vortex-shedding forces and

interior noise, and the stationarity assumption. However, in addition to these three assumptions, the

relative component of SetCFD includes the disregard of the nonlinearity and fluid memory in SetLU

and SetQS, respectively. Therefore, we say that we quantify the effects of fluid memory and

aerodynamic nonlinearity on the SRQ concurrently with the additional effects of vortex shedding,

interior noise and local non-stationarity, all based on SetCFD. It is important to note these relations,

since if one studies the effect of fluid memory and nonlinearity based on e.g. the NLU model,

different observations could be made due to the nonlinear interaction of the forces due to the

additional effects. Figure 7b depicts the Mrms for both degrees of freedom. Based on Mrms and

preceding statements, we can conclude that results for the LU model are of better quality, except for

the vertical degree of freedom at high wind speeds, for which the response is overestimated by the

LU model. The reason for this discrepancy is probably the effect of aerodynamic nonlinearity, which

effect is prominent at high amplitudes of oscillation.

Buffeting and flutter analyses are commonly performed using the same aerodynamic model. However,

not all models from CoupModel are suitable to replicate the coupled flutter phenomenon. Before a model is

used for a certain phenomenon, it should be assured that they are complete w.r.t. that particular

phenomenon. Herein, we perform flutter analyses using the LU and MBM models. The first one is

included as a model in the subcategory CoupModelF, while the latter is not. The analyses are conducted

in the frequency domain for increasing wind speeds, without free-stream turbulence. For the LU model,

we use the frequency formulation given in (2.5). Similar formulation can be obtained for the

MBM model, by assuming no aerodynamic coupling, i.e. KH�2 ¼ K2H�3 ¼ KA�1 ¼ K2A�4 ¼ 0 in (2.5).

A convenient SRQ in the flutter analyses is the damping ratio, since negative damping ratio of a system

at a critical wind speed Ucr indicates unstable oscillations. To obtain the total (aerodynamic and

structural) damping ratio of the system z, (2.1) is rearranged in a state-space formulation and iterative

complex eigenvalue analysis is performed. The analysis yields four complex eigenvalues that form two

conjugate pairs lj for each degree of freedom j ¼ fh, ag. Since l j ¼ �z jv j + iv j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� z2

j )
q

, where ‘i’ is

the imaginary unit, the total damping ratio can be directly obtained [47]. Figure 8a depicts the total

damping ratios of the vertical zh and rotational za degrees of freedom. It can be observed that only for

the LU model the SQR is negative (Ucr � 72 m s21). Since the uncoupled aerodynamic damping-related

flutter derivatives, i.e. H�1 and A�2, are always negative (cf. figure 8b), it can be deduced that the

aerodynamic instability is coupled flutter. Moreover, for negative values of H�1 and A�2, the response

obtained using the MBM model cannot result in unstable oscillations. Thus, the MBM model is

incomplete w.r.t. coupled flutter; hence, any comparisons are obsolete.
5. Conclusion
A categorical perspective for comparison of aerodynamic models in bridge aerodynamics has been

presented in this paper. Initially, the categorical framework was extended in terms of comparison
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metrics, model comparability and completeness. Using the advantages offered by the categorical

framework, complexity relations for the selected aerodynamic models have been formalized. The

outcome is a clear and organized diagram which distinguishes which model is more complex, and

hence, better, based on its mathematical construction. This diagram represents a fundamental basis of

the presented modelling approach for model comparison and quantification of the effect of model

assumptions on a selected SQR.

Moreover, model completeness of the aerodynamic models w.r.t. classical flutter phenomenon has

been defined, resulting in a subcategory of models. Such clear structure narrowed a set of

aerodynamic models from a category which accounts for multiple aerodynamic phenomena.

The applicability of the framework has been demonstrated on an example for buffeting and flutter

analyses for a bridge deck. It has been shown that it is straightforward to determine the assumption

responsible for the discrepancies in a particular metric of an SRQ by using the diagram.

In conclusion, the presented framework for aerodynamic modelling shows potential to be used in

model assessment studies. A newly developed model can be easily integrated in the diagram, and the

advantages and limitations of its mathematical constructions can be observed immediately. Extending

this framework in a probabilistic fashion remains a viable outlook as well.

Data accessibility. This theoretical article has no additional data. The purpose of the example is to demonstrate the manner

of interpretation of the results, which is independent of the case study. For the particular example, the results are

obtained and explained in detail in [12].

Authors’ contributions. I.K. conceived of the study subject based on former publications by D.L./K.G. and I.K./G.M.,

respectively, previously performed the numerical analyses and drafted the manuscript. D.L. participated in drafting

the manuscript and together with K.G. provided mathematical rigour with a particular contribution to the

category-theory related parts, while G.M. contributed to the fundamental aerodynamic aspects. G.M. and K.G.

provided ideas, supervised the project and supplied funding. All authors contributed to the discussions, revised

and gave approval of the final version of the manuscript.

Competing interests. We declare we have no competing interests.

Funding. This research is supported by German Research Foundation (DFG) in the scope of project nos. 329120866 (I.K.

and G.M.) and 43475018 (all authors), which is gratefully acknowledged by the authors. The publication of this article

is supported by the Open Access Publication Funds of the Bauhaus-Universität Weimar, which is also highly

appreciated.

Acknowledgements. We are grateful to the reviewers who provided useful remarks to improve the article.
References

1. Kavrakov I, Morgenthal G. 2017 A comparative

assessment of aerodynamic models for
buffeting and flutter of long-span bridges.
Engineering 3, 823 – 838. (doi:10.1016/j.eng.
2017.11.008)

2. Scanlan RH. 1978 The action of flexible bridges
under wind, I: flutter theory. J. Sound. Vib. 60,
187 – 199. (doi:10.1016/S0022-460X(78)80028-5)

3. Scanlan RH. 1978 The action of flexible bridges
under wind, II: buffeting theory. J. Sound. Vib.
60, 201 – 211. (doi:10.1016/S0022-
460X(78)80029-7)

4. Davenport AG. 1962 The response of slender,
line-like structures to a gusty wind. Proc. Inst.
Civ. Eng. 23, 389 – 408. (doi:10.1680/iicep.1962.
10876)

5. Diana G, Bruni S, Cigada A, Collina A. 1993
Turbulence effect on flutter velocity in long
span suspended bridges. J. Wind Eng. Ind.
Aerodyn. 48, 329 – 342. (doi:0.1016/0167-
6105(93)90144-D)

6. Diana G, Rocchi D, Argentini T, Muggiasca S.
2010 Aerodynamic instability of a bridge deck
section model: linear and nonlinear approach to
force modeling. J. Wind Eng. Ind. Aerodyn. 98,
363 – 374. (doi:10.1016/j.jweia.2010.01.003)
7. Chen X, Kareem A. 2001 Nonlinear response
analysis of long-span bridges under turbulent
winds. J. Wind Eng. Ind. Aerodyn. 89,
1335 – 1350. (doi:10.1016/S0167-
6105(01)00147-7)

8. Wu T, Kareem A. 2014 A nonlinear convolution
scheme to simulate bridge aerodynamics.
Comput. Struct. 128, 259 – 271. (doi:10.1016/j.
compstruc.2013.06.004)

9. Wu T, Kareem A. 2013 Bridge aerodynamics and
aeroelasticity: a comparison of modeling
schemes. J. Fluids Struct. 43, 347 – 370. (doi:10.
1016/j.jfluidstructs.2013.09.015)

10. McRobie A, Morgenthal G, Abrams D,
Prendergast J. 2013 Parallels between wind and
crowd loading of bridges. Phil. Trans. R. Soc. A
371, 20120430. (doi:10.1098/rsta.2012.0430)

11. Diana G, Rocchi D, Argentini T. 2013 An
experimental validation of band superposition
model of the aerodynamic forces acting on a
multi-box deck sections. J. Wind Eng. Ind.
Aerodyn. 113, 40 – 58. (doi:10.1016/j.jweia.
2012.12.005)

12. Kavrakov I, Morgenthal G. 2018 A synergistic
study of a CFD and semi-analytical models for
aeroelastic analysis of bridges in turbulent wind
conditions. J. Fluids Struct. 82, 59 – 85. (doi:10.
1016/j.jfluidstructs.2018.06.013)

13. Piccardo G, Pagnini LC, Tubino F. 2015 Some
research perspectives in galloping phenomena:
critical conditions and post-critical behaviour.
Continuum Mech. Thermodyn. 27, 261 – 285.
(doi:10.1007/s00161-014-0374-5)

14. Casalotti A, Arena A, Lacarbonara W. 2014
Mitigation of post-flutter oscillations in
suspension bridges by hysteretic tuned mass
dampers. Eng. Struct. 69, 62 – 71. (doi:10.1016/
j.engstruct.2014.03.001)

15. Li K, Zhao L, Ge YJ, Guo ZW. 2017 Flutter
suppression of suspension bridge sectional
model by the feedback controlled twin-winglet
system. J. Wind Eng. Ind. Aerodyn. 168,
101 – 109. (doi:10.1016/j.jweia.2017.05.007)

16. Babuska I, Oden JT. 2004 Verification and
validation in computational engineering and
science: basic concepts. Comput. Methods Appl.
Mech. Eng. 193, 4057 – 4066. (doi:10.1016/j.
cma.2004.03.002)

17. Oberkampf WL, Barone MF. 2006 Measures of
agreement between computation and
experiment: validation metrics. J. Comput. Phys.
217, 5 – 36. (doi:10.1016/j.jcp.2006.03.037)

http://dx.doi.org/10.1016/j.eng.2017.11.008
http://dx.doi.org/10.1016/j.eng.2017.11.008
http://dx.doi.org/10.1016/S0022-460X(78)80028-5
http://dx.doi.org/10.1016/S0022-460X(78)80029-7
http://dx.doi.org/10.1016/S0022-460X(78)80029-7
http://dx.doi.org/10.1680/iicep.1962.10876
http://dx.doi.org/10.1680/iicep.1962.10876
http://dx.doi.org/0.1016/0167-6105(93)90144-D
http://dx.doi.org/0.1016/0167-6105(93)90144-D
http://dx.doi.org/10.1016/j.jweia.2010.01.003
http://dx.doi.org/10.1016/S0167-6105(01)00147-7
http://dx.doi.org/10.1016/S0167-6105(01)00147-7
http://dx.doi.org/10.1016/j.compstruc.2013.06.004
http://dx.doi.org/10.1016/j.compstruc.2013.06.004
http://dx.doi.org/10.1016/j.jfluidstructs.2013.09.015
http://dx.doi.org/10.1016/j.jfluidstructs.2013.09.015
http://dx.doi.org/10.1098/rsta.2012.0430
http://dx.doi.org/10.1016/j.jweia.2012.12.005
http://dx.doi.org/10.1016/j.jweia.2012.12.005
http://dx.doi.org/10.1016/j.jfluidstructs.2018.06.013
http://dx.doi.org/10.1016/j.jfluidstructs.2018.06.013
http://dx.doi.org/10.1007/s00161-014-0374-5
http://dx.doi.org/10.1016/j.engstruct.2014.03.001
http://dx.doi.org/10.1016/j.engstruct.2014.03.001
http://dx.doi.org/10.1016/j.jweia.2017.05.007
http://dx.doi.org/10.1016/j.cma.2004.03.002
http://dx.doi.org/10.1016/j.cma.2004.03.002
http://dx.doi.org/10.1016/j.jcp.2006.03.037


royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:181848
20
18. Oberkampf WL, Trucano TG. 2002 Verification

and validation in computational fluid dynamics.
Prog. Aerosp. Sci. 38, 209 – 272. (doi:10.1016/
S0376-0421(02)00005-2)

19. Roy CJ, Oberkampf WL. 2011 A comprehensive
framework for verification, validation, and
uncertainty quantification in scientific computing.
Comput. Methods Appl. Mech. Eng. 200,
2131 – 2144. (doi:10.1016/j.cma.2011.03.016)

20. Keitel H, Karaki G, Lahmer T, Nikulla S, Zabel V.
2011 Evaluation of coupled partial models in
structural engineering using graph theory and
sensitivity analysis. Eng. Struct. 33, 3726 – 3736.
(doi:10.1016/j.engstruct.2011.08.009)

21. Dutailly JC. 2014 Hilbert spaces in modelling of
systems. HAL Id: hal-00974251, p. 47.

22. Dutailly JC. 2014 Common structures in scientific
theories. HAL Id: hal-01003869, p. 34.

23. Nefzi B, Schott R, Song Y, Staples G, Tsiontsiou
E. 2015 An operator calculus approach for multi-
constrained routing in wireless sensor networks.
In Proc. of the 16th ACM Int. Symp. on Mobile
Ad Hoc Networking and Computing, Hangzhou,
China, 22 – 25 June. New York, NY: ACM.

24. Legatiuk D, Nilsson H. 2017 Abstract modelling:
towards a typed declarative language for the
conceptual modelling phase. In Proc. of 8th Int.
Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools, Weßling,
Germany, 1 December. New York, NY: ACM.

25. Gürlebeck K, Hofmann D, Legatiuk D. 2017
Categorical approach to modelling and to
coupling of models. Math. Meth. Appl. Sci. 40,
523 – 534. (doi:10.1002/mma.3978)

26. Awodey S. 2006 Category theory, 2nd edn.
New York, NY: Oxford University Press.

27. Simiu E, Scanlan R. 1996 Wind effects on structures,
3rd edn. New York, NY: John Wiley & Sons.

28. McCullough M, Kwon DK, Kareem A, Wang L.
2014 Efficacy of averaging interval for
nonstationary winds. J. Eng. Mech. 128, 1 – 19.
(doi:10.1061/(ASCE)EM.1943-7889.0000641)
29. Chen X, Kareem A. 2002 Advances in modeling
of aerodynamic forces on bridge decks. J. Eng.
Mech. 128, 1193 – 1205. (doi:10.1061/
(ASCE)0733-9399(2002)128:11(1193))

30. Blevins RD. 2001 Flow-induced vibration, 2nd
edn. Malabar, FL: Krieger Publishing Company.
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