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Let p, q ∈ (0, ∞], s ∈ R, and M(Bs
p,q(Rn)) denote the 

pointwise multiplier space of the Besov space Bs
p,q(Rn). In 

this article, the authors first establish the characterizations 
of both M(Bs

1,∞(Rn)) with s ∈ R \ {0} and M(Bs
∞,1(Rn))

with s ∈ (−∞, 0]. Then, as an application, the authors 
give a corrected proof of the well-known duality principle 
for pointwise multiplier spaces of Besov spaces, namely the 
formula

M
(
Bs

p,q(Rn)
)

= M
(

B−s
p′,q′ (Rn)

)
,

where p, q ∈ [1, ∞], s ∈ R, and 1/a + 1/a′ = 1 for any 
a ∈ [1, ∞], and, moreover, the authors also show that this 
duality principle is sharp in some sense. The proofs of all these 
results essentially depend on the duality theorem of Besov 
spaces themselves, some elaborate estimates of paraproducts 
as well as the relation between M(Bs

p,q(Rn)) and the auxiliary 
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multiplier space M(B̃s
p,q(Rn)), where B̃s

p,q(Rn) denotes the 
completion of the Schwartz function space S(Rn) in Bs

p,q(Rn).
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

Determining the set of all pointwise multipliers for a given function (or distribution) 
space belongs to the key problems in the theory of function spaces. Remarkable contri-
butions have been made by Maz’ya and Shaposhnikova [18,19]. They described the set of 
all pointwise multipliers for Sobolev, Besov, and Bessel potential spaces for a wide range 
of parameters. For more information about pointwise multipliers on various function 
spaces, we refer to Strichartz [34], Kalyabin [12,13], Triebel [35,37,38], Netrusov [25], 
Gala and Sawano [10], Kawasumi and Nakai [14], Nakai and Yabuta [24], Nakai and 
Sadasue [23], and Nakai [20–22] as well as the monographs [28] and [31]. In particular, 
smoothness function spaces, such as Besov and Triebel–Lizorkin spaces, and their related 
multiplier spaces have been intensively investigated; see, for instance, [11] for weighted 
Besov and Triebel–Lizorkin spaces, [29] for Besov–Morrey and Triebel–Lizorkin–Morrey 
spaces, [43] for Besov-type and Triebel–Lizorkin-type spaces, [42] for Besov and Triebel–
Lizorkin spaces in metric spaces as well as [5] for Zygmund spaces.

It is well known that pointwise multipliers have been widely used in the study of 
partial differential equations; see, for instance, the monographs [18,19] and [1]. Here, we 
present another recent very interesting application of pointwise multipliers in the study 
of the so-called bilinear decomposition for multiplications of elements in the Hardy space 
H1(Rn) and its dual space BMO (Rn), which is just [4, Conjecture 1.7]. This means to 
find the “smallest” linear space Y such that H1(Rn) × BMO (Rn) has the following 
bilinear decomposition of the form:

H1(Rn) × BMO (Rn) ⊂ L1(Rn) +Y.

Indeed, via making full use of the characterization of pointwise multipliers of BMO (Rn), 
which was obtained by Nakai and Yabuta [24] (see also the recent survey [22] of Nakai), 
Bonami et al. [3] showed Y = H log(Rn) (a special case of Musielak–Orlicz–Hardy spaces 
originally introduced by Ky [16]) and hence completely solved this conjecture. The corre-
sponding conjectures on the Hardy spaces Hp(Rn) with p ∈ (0, 1) and their dual spaces 
as well as their local versions were completely solved in [2,6,41,44] via first establishing 
the characterizations of pointwise multipliers of Campanato spaces. For more studies 
on the real-variable theory of Musielak–Orlicz–Hardy spaces and their relations with 
multiplier spaces, we also refer to [16,40].

Here in our work we will concentrate on the multiplier space M(Bs
p,q(Rn)) of the 

Besov space Bs
p,q(Rn). Studied already in various articles (see, for instance, [15,17,19,

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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25–27,33,37]), the knowledge is still rather incomplete. In particular, in the endpoint 
cases p = ∞ or q = ∞, there still exist many cases in which a concrete characterization 
of M(Bs

p,q(Rn)) is unknown.
In this article we establish characterizations of the following three multiplier spaces:

• M(Bs
1,∞(Rn)) with s ∈ (0, ∞) (see Theorem 3.1),

• M(Bs
1,∞(Rn)) with s ∈ (−∞, 0) (see Theorem 3.5),

• M(Bs
∞,1(Rn)) with s ∈ (−∞, 0] (see Theorems 3.9 and 3.13).

Recall that the characterizations of both M(B0
1,∞(Rn)) and M(Bs

∞,1(Rn)) with s ∈
(0, ∞) were given, respectively, in [15, Theorem 5] (see also [17, Theorem 3.3 and Remark 
3.4]) and [26, Theorem 1.7]. As an application of the preceding characterizations we will 
give a corrected proof of the well-known duality principle for pointwise multiplier spaces 
of Besov spaces, namely the formula

M
(
Bs

p,q(Rn)
)

= M
(

B−s
p′,q′(Rn)

)
, (1.1)

where p, q ∈ [1, ∞], s ∈ R, and, as usual, 1/a + 1/a′ = 1 for any a ∈ [1, ∞]. In [9, p. 134], 
Frazier and Jawerth stated an even more general result. To be precise, let X be a Banach 
space such that S(Rn) ↪→ X ↪→ S′(Rn) and denote by X ′ its dual space, then Frazier 
and Jawerth claimed that M(X) = M(X ′). But this is not true in this generality as was 
first observed by Triebel [37]. Formula (1.1) was also mentioned in [28, Lemma 4.9], but 
the given proof there contains an essential error (see Remark 4.2 below for more details).

Our proofs of all these results obtained in this article essentially rely on the duality the-
orem of Besov spaces themselves, some elaborate estimates of paraproducts as well as the 
relation between M(Bs

p,q(Rn)) and the auxiliary multiplier space M(B̃s
p,q(Rn)), where 

B̃s
p,q(Rn) denotes the completion of the Schwartz function space S(Rn) in Bs

p,q(Rn).
The remainder of this article is organized as follows.
In Section 2, we first recall some basic concepts and properties about both Besov 

spaces and associated pointwise multiplier spaces. We then establish an identity between 
M(B̃s

p,q(Rn)) and M(B−s
p′,q′(Rn)) (see Lemma 2.12) and an embedding result between 

M(Bs
p,q(Rn)) and M(B̃s

p,q(Rn)) (see Lemma 2.15), which play essential roles in this 
article.

The target of Section 3 is to characterize both the pointwise multiplier spaces 
M(Bs

1,∞(Rn)) with s ∈ R \ {0} and M(Bs
∞,1(Rn)) with s ∈ (−∞, 0]. On the one hand 

this complements the knowledge of pointwise multiplier spaces of Besov spaces, on the 
other hand it also plays a key role in our proof of the duality principle. First, via care-
fully estimating paraproducts and constructing the auxiliary functions {gk}k∈N∩[2,∞)
[see (3.14) below for the definition], we obtain a characterization of the multiplier space 
M(Bs

1,∞(Rn)) with s ∈ (0, ∞). Then, by some elaborate estimates of paraproducts again 
and several embedding relations between the two multiplier spaces M(Bs

p,q(Rn)) and 
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M(B̃s
p,q(Rn)) (see, for instance, Lemma 3.8), we will obtain a Fourier analytic characteri-

zation of both M(Bs
1,∞(Rn)) for any s ∈ (−∞, 0) and M(Bs

∞,1(Rn)) for any s ∈ (−∞, 0].
In Section 4, based on the characterizations obtained in the last section as well as the 

identity between M(B̃s
p,q(Rn)) and M(B−s

p′,q′(Rn)) established in Lemma 2.12, we give 
a proof of the duality principle (1.1). Moreover, we give a counterexample to show that 
the identity (1.1) is no longer true for values p, q ∈ (0, 1).

Finally, we make some conventions on notation. As usual, N denotes the natural 
numbers, Z+ the natural numbers including 0, Z the integers, and R the real numbers. 
Let n ∈ N. Then Rn denotes the n-dimensional Euclidean space; Zn and Zn

+ denote, 
respectively, the spaces of vectors in Rn with integer and with nonnegative integer com-
ponents. For any s ∈ R, the symbol �s� denotes the smallest integer not less than s, 
and the symbol �s	 denotes the largest integer not greater than s. For any j ∈ Z and 
ν ∈ Zn, define the dyadic cube Qj,ν := 2−j(ν + [0, 1)n). The symbol Q denotes the set 
of all cubes with edges parallel to the coordinate axes. In addition, for any x ∈ Rn and 
r ∈ (0, ∞),

B(x, r) := {y ∈ Rn : |y − x| < r}.

For any locally integrable function u and any measurable set E ⊂ Rn, let
 

E

u(x) dx := 1
|E|

ˆ

E

u(x) dx

and the characteristic function of E is denoted by 1E. Also, throughout this article, for 
any q ∈ (0, ∞], let

q′ :=

⎧⎨⎩
q

q − 1 when q ∈ (1, ∞),

∞ when q ∈ (0, 1].
(1.2)

Then, for any q ∈ [1, ∞], q′ is just the usual conjugate index of q, that is, 1/q + 1/q′ = 1. 
Furthermore, the symbols c, c1, . . . denote positive constants which depend only on the 
fixed parameters n, s, b, and p, and probably also on auxiliary functions unless otherwise 
stated, their values may vary from line to line. Sometimes we use the symbol “�” instead 
of “≤”. The meaning of A � B is given by: there exists a positive constant C such that 
A ≤ C B. Similarly we shall use �. If f ≤ Cg and g = h or g ≤ h, we then write 
f � g = h or f � g ≤ h, rather than f � g ∼ h or f � g � h. The symbol A ∼ B will 
be used as an abbreviation of A � B � A.

2. Besov spaces and pointwise multipliers

The main targets of this section are twofold. The first one is to recall some basic 
concepts and results about Besov spaces as well as pointwise multiplier spaces, which 
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are frequently used in this article. The second one is to establish several useful properties 
of the multiplier spaces M(Bs

p,q(Rn)) and M(B̃s
p,q(Rn)), which also play key roles later.

2.1. Besov spaces

In this subsection, we recall some basic concepts and related auxiliary lemmas about 
the Besov space Bs

p,q(Rn), which are important in this article. In particular, we present 
the concept of the subspace B̃s

p,q(Rn) of Bs
p,q(Rn) and also recall the dual theorem of 

Besov spaces, both of which play essential roles in the investigation of Besov multiplier 
spaces in this article. To do this, let C∞

c (Rn) denote the set of all infinitely differentiable 
functions on Rn with compact support, and let S(Rn) denote the set of all Schwartz 
functions on Rn, whose topology is determined by a family of norms, {‖ ·‖SM (Rn)}M∈Z+ , 
where, for any M ∈ Z+ and ϕ ∈ S(Rn),

‖ϕ‖SM (Rn) := sup
{α∈Zn

+, |α|≤M}
sup

x∈Rn

{
(1 + |x|)n+M+|α| |∂αϕ(x)|

}
with the multi-index α := (α1, . . . , αn) ∈ Zn

+, |α| := α1 + · · · + αn, and ∂α :=
( ∂

∂x1
)α1 · · · ( ∂

∂xn
)αn . Also, let S′(Rn) be the space of all tempered distributions on Rn

equipped with the weak-∗ topology. Here and thereafter, for any γ := (γ1, . . . , γn) ∈ Zn
+

and x := (x1, . . . , xn) ∈ Rn, let xγ := xγ1
1 · · · xγn

n . For any f ∈ S′(Rn), we use F f to de-
note its Fourier transform and F−1f to denote its inverse Fourier transform in S′(Rn); 
in particular, for any f ∈ L1(Rn) and ξ ∈ Rn,

F f(ξ) := (2π)− n
2

ˆ

Rn

f(x) e−ix·ξ dx

and

F−1f(ξ) := (2π)− n
2

ˆ

Rn

f(x) eix·ξ dx.

Let φ0 ∈ S(Rn) be a radial and real-valued function satisfying that

0 ≤ φ0 ≤ 1, φ0 ≡ 1 on {x ∈ Rn : |x| ≤ 1} , and φ0 ≡ 0 on {x ∈ Rn : |x| ≥ 3/2} . (2.1)

Define {φk}k∈N by setting, for any x ∈ Rn,

φ1(x) := φ0

(x

2

)
− φ0(x) (2.2)

and, for any k ∈ N ∩ [2, ∞),

φk(x) := φ1
(
2−k+1x

)
. (2.3)
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Clearly, 
∑

k∈Z+
φk = 1 on Rn. Furthermore, for any k ∈ Z+ and f ∈ S′(Rn), we let

Skf := F−1 (φkF f) = ϕk ∗ f (2.4)

and

Skf :=
k∑

j=0
Sjf = 2nk

[
ϕ0

(
2k·

)]
∗ f, (2.5)

where, for any k ∈ Z+, ϕk := (2π)−n/2F−1φk. It is easy to show that, for any f ∈ S′(Rn),

suppF (S0f) ⊂ {x ∈ Rn : |x| ≤ 3/2} , (2.6)

for any k ∈ N

suppF (Skf) ⊂
{

x ∈ Rn : 2k−1 ≤ |x| ≤ 3 · 2k−1} (2.7)

and

suppF
(
Skf

)
⊂

{
x ∈ Rn : |x| ≤ 3 · 2k−1} , (2.8)

and, for any k ∈ N ∩ [2, ∞)

suppF
([

Sk−2f
]

Skg
)

⊂
{

x ∈ Rn : 2k−3 ≤ |x| ≤ 2k+1} ,

suppF
(
[Skf ] Sk−2g

)
⊂

{
x ∈ Rn : 2k−3 ≤ |x| ≤ 2k+1} , (2.9)

and

suppF

⎛⎝ k+1∑
j=k−1

[Sjf ] Skg

⎞⎠ ⊂
{

x ∈ Rn : |x| ≤ 5 · 2k
}

. (2.10)

Now, we present the concept of Besov spaces as follows, see, for instance, [35, Definition 
2.3.1/2].

Definition 2.1. Let p, q ∈ (0, ∞] and s ∈ R. Then the Besov space Bs
p,q(Rn) is defined to 

be the set of all f ∈ S′(Rn) such that

‖f‖Bs
p,q(Rn) :=

⎧⎨⎩ ∑ [
2ks ‖Skf‖Lp(Rn)

]q

⎫⎬⎭
1/q

< ∞.

k∈Z+
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Remark 2.2. By [35, Proposition 2.3.2/1 and Theorem 2.3.3], we know that the Besov 
space Bs

p,q(Rn) is a quasi-Banach space independent of the choice of the generator φ0. 
For more information about Besov spaces we refer to the monographs by Peetre [27], 
Triebel [35,36,38], and Sawano [30].

Let a ∈ (0, ∞), j ∈ Z+, and f ∈ S′(Rn). Recall that the maximal function of Peetre–
Fefferman–Stein type is defined by setting, for any x ∈ Rn,

S∗,a
j f(x) := sup

y∈Rn

|Sjf(x − y)|
(1 + 2j |y|)a

, (2.11)

where the operator Sj is defined in (2.4); see, for instance, [35, Definition 2.3.6/2]. Clearly, 
|Sjf(x)| ≤ S∗,a

j f(x) for any x ∈ Rn. The following lemma (see [35, 2.3.6/(22)]) means 
that, for any p ∈ (0, ∞], S∗,a

j f is bounded by Sjf in the norm of Lp(Rn).

Lemma 2.3. Let p ∈ (0, ∞] and a ∈ (n
p , ∞). Then there exists a positive constant C such 

that, for any j ∈ Z+ and f ∈ S′(Rn),∥∥S∗,a
j f

∥∥
Lp(Rn) ≤ C ‖Sjf‖Lp(Rn) .

The following useful conclusion is just [28, 4.2.1/(4) and (5)], which is important in 
this article.

Lemma 2.4. Let p, q ∈ (0, ∞] and s ∈ R.

(i) There exist two positive constants C1 and C2 such that, for any f ∈ Bs
p,q(Rn),

C1 ‖f‖Bs
p,q(Rn) ≤ sup

j∈Z+

∥∥Sjf
∥∥

Bs
p,q(Rn) ≤ C2 ‖f‖Bs

p,q(Rn) .

(ii) If q ∈ (0, ∞), then, for any f ∈ Bs
p,q(Rn), limj→∞ ‖Sjf − f‖Bs

p,q(Rn) = 0.

Furthermore, we need the following Fatou property of Besov spaces, see, e.g., [8, p. 
40, Theorem 1].

Lemma 2.5. Let p, q ∈ (0, ∞] and s ∈ R. Assume that {fj}j∈N ⊂ Bs
p,q(Rn) and f ∈

S′(Rn) satisfy that both fj → f in S′(Rn) as j → ∞ and lim infj→∞ ‖fj‖Bs
p,q(Rn) < ∞. 

Then f ∈ Bs
p,q(Rn) and there exists a positive constant C, independent of both {fj}j∈N

and f , such that

‖f‖Bs
p,q(Rn) ≤ C lim inf

j→∞
‖fj‖Bs

p,q(Rn) .

Finally, we recall the duality theorem of Besov spaces. Let X ⊂ S′(Rn) be a quasi-
Banach space such that S(Rn) is dense in X. Then the dual space of X, denoted by X ′, 
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is defined to be the set of all f ∈ S′(Rn) satisfying that there exists a positive constant 
C such that, for any ϕ ∈ S(Rn), |〈f, ϕ〉| ≤ C‖ϕ‖X . Moreover, for any f ∈ X ′, let

‖f‖X′ := sup
ϕ∈S(Rn), ‖ϕ‖X ≤1

|〈f, ϕ〉| .

Also, recall that, for any q ∈ (0, ∞], q′ is the same as in (1.2). Then the following is 
known, see, for instance, [35, 2.11.2/2.11.3].

Lemma 2.6. Let p, q ∈ (0, ∞) and s ∈ R.

(i) If p ∈ [1, ∞), then

(
Bs

p,q(Rn)
)′ = B−s

p′,q′(Rn).

(ii) If p ∈ (0, 1), then

(
Bs

p,q(Rn)
)′ = B

n
p −n−s

p′,q′ (Rn).

Moreover, let p, q ∈ (0, ∞] and s ∈ R. Recall that B̃s
p,q(Rn) is defined to be the 

completion of S(Rn) in the Besov space Bs
p,q(Rn) and is equipped with the quasi-norm 

‖ · ‖Bs
p,q(Rn). Then, if p, q ∈ (0, ∞), from the density of S(Rn) in Bs

p,q(Rn) (see, for 
instance, [35, Theorem 2.3.3]), we infer that, in this case, B̃s

p,q(Rn) = Bs
p,q(Rn). Fur-

thermore, we have the following duality relation, we refer to [35, Remarks 2.11.2/2 and 
2.11.3/3].

Lemma 2.7.

(i) If p ∈ [1, ∞), q = ∞, and s ∈ R, then

(
B̃s

p,∞(Rn)
)′

= B−s
p′,1(Rn).

(ii) If p = ∞, q ∈ (0, ∞], and s ∈ R, then

(
B̃s

∞,q(Rn)
)′

= B−s
1,q′(Rn).

(iii) If p ∈ (0, 1), q = ∞, and s ∈ R, then

(
B̃s

p,∞(Rn)
)′

= B
n
p −n−s

p′,1 (Rn).
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2.2. Pointwise multiplication

In this subsection, we recall the definition of the product of two distributions as well 
as the concept of pointwise multiplier spaces. Then we give some basic properties of both 
the multiplier spaces M(Bs

p,q(Rn)) and M(B̃s
p,q(Rn)). In particular, via making full use 

of the duality relations of Besov spaces themselves, we establish an identity between 
M(B̃s

p,q(Rn)) and M(B−s
p′,q′(Rn)).

First, we give the definition of the product as follows. For any f, g ∈ S′(Rn), we put

fg := lim
j→∞

(
Sjf

)
Sjg

if the limit on the right-hand side exists in S′(Rn). Thus, at least formally, fg has a 
decomposition

fg =
∞∑

k=2

(
Sk−2f

)
Skg +

∞∑
k=0

k+1∑
l=max{0,k−1}

(Slf) Skg +
∞∑

k=2

(Skf) Sk−2g

=: Π1 (f, g) + Π2 (f, g) + Π3 (f, g). (2.12)

The bilinear mappings Π1 (f, g), Π2 (f, g), and Π3 (f, g) are called the paraproducts
which are indispensable tools in the study of pointwise multipliers. If they exist in S′(Rn), 
then the product exists as well.

Definition 2.8. Let X ↪→ S′(Rn) be a quasi-Banach space. Then the pointwise multiplier 
space M(X) of X is defined to be the collection of all m ∈ S′(Rn) such that mg ∈ X for 
all g ∈ X and

‖m‖M(X) := sup
g∈X, g 
=0

‖mg‖X

‖g‖X
< ∞ . (2.13)

Here 0 denotes the zero element of X.

Remark 2.9. Recall that Maz’ya and Shaposhnikova [19, p. 33] used a slightly weaker 
definition. They did not require (2.13). But, this is due to the fact that they dealt with 
X being a subspace of L1(Rn) + L∞(Rn). For those spaces (2.13) follows from mg ∈ X

for all g ∈ X.

For the pointwise multiplier space M(X), the following duality relation holds, we refer 
to [9, p. 134] (see also [37, Subsection 4.2]).

Lemma 2.10. Let X be a quasi-Banach space satisfying that S(Rn) ↪→ X ↪→ S′(Rn). 
Assume S(Rn) is dense in X. Let X ′ denote the dual space of X. Then M(X) ↪→ M(X ′).
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The following lemma contains some basic properties of the multiplier spaces 
M(Bs

p,q(Rn)) and M(B̃s
p,q(Rn)). For proofs of parts (i) and (ii) we refer to [15, Lemma 

9] and [28, Theorem 4.3.2 and Lemma 4.6.3/1]. Moreover, part (iii) was proved in [17, 
Lemma 2.7(iv)].

Lemma 2.11. Let p, q ∈ (0, ∞], s ∈ R, and X := Bs
p,q(Rn) or B̃s

p,q(Rn).

(i) There exists a positive constant C such that, for any f ∈ M(X), f ∈ L∞(Rn) and

‖f‖L∞(Rn) ≤ C ‖f‖M(X) .

(ii) If further assume p, q ∈ [1, ∞] and h ∈ L1(Rn), then h ∗ f ∈ M(X) and

‖h ∗ f‖M(X) ≤ ‖h‖L1(Rn) ‖f‖M(X) .

(iii) If further assume p, q ∈ [1, ∞], then M(X) is a Banach space.

In the remainder of this subsection, we turn to investigate the relation between 
M(Bs

p,q(Rn)) and M(B̃s
p,q(Rn)). First, we have the following relation based on the du-

ality.

Lemma 2.12. Let p ∈ [1, ∞], q ∈ [1, ∞), and s ∈ R. Then

M
(

B̃s
p,q(Rn)

)
= M

(
B−s

p′,q′(Rn)
)

in the sense of equivalent norms.

Remark 2.13. As already mentioned in the introduction, Frazier and Jawerth [9, p. 134]
stated a more general result than (1.1) or Lemma 2.12. Let X and X ′ be the same as 
in Lemma 2.10, and further assume X is a Banach space. Then Frazier and Jawerth 
claimed that M(X) = M(X ′). But, this is not true in this generality as can be seen from 
the following counterexample, due to Triebel [37]. Let s ∈ (0, ∞). Then it holds that

M
(

B̃s
∞,∞(Rn)

)
� M

(
B−s

1,1(Rn)
)

. (2.14)

However, recall that (B̃s
∞,∞(Rn))′ = B−s

1,1(Rn) by Lemma 2.7(ii). For an explicit example 

of a function f ∈ M(B−s
1,1(Rn)) \ M(B̃s

∞,∞(Rn)), we refer to [37, (4.6)] (see also [17, 
Remark 2.14]).

To prove Lemma 2.12, we first show the following auxiliary conclusion about Schwartz 
functions.

Lemma 2.14. Let f ∈ L∞(Rn) and g, h ∈ S(Rn). Then (fg) ∗ h ∈ S(Rn).
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Proof. Applying [7, Proposition 8.10], we find that (fg) ∗ h ∈ C∞(Rn) and, for any 
β ∈ Zn

+,

∂β ([fg] ∗ h) = (fg) ∗
(
∂βh

)
.

Thus, for any α, β ∈ Zn
+ and x ∈ Rn, we have

∣∣xα∂β ([fg] ∗ h) (x)
∣∣

=

∣∣∣∣∣∣xα

ˆ

Rn

f(y)g(y)∂βh(x − y) dy

∣∣∣∣∣∣
≤ ‖f‖L∞(Rn) |x||α|

ˆ

Rn

|g(y)|
∣∣∂βh(x − y)

∣∣ dy

�
ˆ

Rn

|x||α||g(y)|
(1 + |x − y|)n+1+|α| dy �

ˆ

Rn

(|x − y||α| + |y||α|)
(1 + |x − y|)n+1+|α| |g(y)| dy

�
ˆ

Rn

[
1

(1 + |x − y|)n+1 + |y||α||g(y)|
]

dy ∼ 1,

where the implicit positive constants are independent of x. This further implies that, for 
any α, β ∈ Zn

+, supx∈Rn |xα∂β([fg] ∗ h)(x)| < ∞. Therefore, (fg) ∗ h ∈ S(Rn), which 
then completes the proof of Lemma 2.14. �

Now, we show Lemma 2.12.

Proof of Lemma 2.12. From Lemmas 2.6(i), 2.7(ii), and 2.10, we infer that

(
B̃s

p,q(Rn)
)′

= B−s
p′,q′(Rn),

and hence

M
(

B̃s
p,q(Rn)

)
↪→ M

(
B−s

p′,q′(Rn)
)

. (2.15)

Conversely, we next prove M(B−s
p′,q′(Rn)) ↪→ M(B̃s

p,q(Rn)). To do this, let f ∈
M(B−s

p′,q′(Rn)) and g ∈ S(Rn). Then, by the definition of the product of both 
Schwartz functions and distributions, we conclude that fg exists in S′(Rn) and 
fg = limj→∞(Sjf)g in S′(Rn). Notice that, for any j ∈ Z+, (Sjf)g ∈ S(Rn) ⊂
B̃s

p,q(Rn). Thus, applying the fact that (B̃s
p,q(Rn))′ = B−s

p′,q′(Rn), [7, Theorem 5.8(ii)], 
Lemma 2.11(ii), and (2.5), we find that, for any j ∈ Z+,
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∥∥(Sjf
)

g
∥∥

B̃s
p,q(Rn) = sup

h∈(B̃s
p,q(Rn))′, ‖h‖(B̃s

p,q (Rn))′ =1

∣∣〈h,
(
Sjf

)
g
〉∣∣

∼ sup
h∈B−s

p′,q′ (Rn), ‖h‖
B

−s
p′,q′ (Rn)

=1

∣∣〈h,
(
Sjf

)
g
〉∣∣

= sup
h∈B−s

p′,q′ (Rn), ‖h‖
B

−s
p′,q′ (Rn)

=1

∣∣〈hSjf, g
〉∣∣

� sup
h∈B−s

p′,q′ (Rn), ‖h‖
B

−s
p′,q′ (Rn)

=1

∥∥hSjf
∥∥

B−s
p′,q′ (Rn) ‖g‖Bs

p,q(Rn)

≤
∥∥Sjf

∥∥
M(B−s

p′,q′ (Rn)) ‖g‖Bs
p,q(Rn)

≤ 2nj
∥∥ϕ0

(
2j ·

)∥∥
L1(Rn) ‖f‖M(B−s

p′,q′ (Rn)) ‖g‖Bs
p,q(Rn)

∼ ‖f‖M(B−s
p′,q′ (Rn)) ‖g‖Bs

p,q(Rn) .

This, combined with the fact that fg = limj→∞(Sjf)g in S′(Rn) and also with 
Lemma 2.5, further implies that fg ∈ Bs

p,q(Rn) and

‖fg‖Bs
p,q(Rn) = ‖fg‖B̃s

p,q(Rn) � ‖f‖M(B−s
p′,q′ (Rn)) ‖g‖Bs

p,q(Rn) . (2.16)

Now, we show that fg ∈ B̃s
p,q(Rn). Indeed, from the assumption q < ∞ and 

Lemma 2.4(ii), it follows that

lim
j→∞

∥∥Sj(fg) − fg
∥∥

Bs
p,q(Rn) = 0. (2.17)

In addition, for any j ∈ Z+, by Lemmas 2.11(i) and 2.14, we conclude that Sj(fg) ∈
S(Rn). Therefore, using (2.17), we obtain fg ∈ B̃s

p,q(Rn). Combining this, the assump-
tion that S(Rn) is dense in B̃s

p,q(Rn), and (2.16), we further have f ∈ M(B̃s
p,q(Rn)) and 

‖f‖M(B̃s
p,q(Rn)) � ‖f‖M(B−s

p′,q′ (Rn)). This completes the proof of Lemma 2.12. �
Finally, we establish the following relation between M(Bs

p,q(Rn)) and M(B̃s
p,q(Rn)).

Lemma 2.15. Let p ∈ (0, ∞], q ∈ (0, ∞), and s ∈ R. Then M(Bs
p,q(Rn)) ↪→

M(B̃s
p,q(Rn)). Moreover, for any f ∈ M(Bs

p,q(Rn)),

‖f‖M(B̃s
p,q(Rn)) ≤ ‖f‖M(Bs

p,q(Rn)) .

Proof. Let f ∈ M(Bs
p,q(Rn)) and g ∈ S(Rn). Then, by Lemmas 2.11(i) and 2.14, we 

find that, for any j ∈ Z+, Sj(fg) ∈ S(Rn). Moreover, applying the assumption q < ∞
and Lemma 2.4(ii), we conclude that ‖Sj(fg) − fg‖Bs

p,q(Rn) → 0 as j → ∞. Therefore, 
fg ∈ B̃p,q(Rn). This, combined with the density of S(Rn) in B̃s

p,q(Rn), further implies 
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that f ∈ M(B̃s
p,q(Rn)) and hence, as sets, M(Bs

p,q(Rn)) ⊂ M(B̃s
p,q(Rn)). Furthermore, 

for any f ∈ M(Bs
p,q(Rn)) and g ∈ B̃s

p,q(Rn), we have

‖fg‖Bs
p,q(Rn) ≤ ‖f‖M(Bs

p,q(Rn)) ‖g‖Bs
p,q(Rn) ,

which then implies that, for any f ∈ M(Bs
p,q(Rn)), ‖f‖M(B̃s

p,q(Rn)) ≤ ‖f‖M(Bs
p,q(Rn)). 

This finishes the proof of Lemma 2.15. �
Remark 2.16. We should point out that, in Lemma 2.15, if q = ∞, then the conclusion 
may not hold. Indeed, let p ∈ (1, ∞] and s ∈ R. Then, in this case, by [17, Proposition 
2.13], we have the embedding

M
(

B̃s
p,∞(Rn)

)
↪→ M

(
Bs

p,∞(Rn)
)

, (2.18)

which is completely contrary to the conclusion of Lemma 2.15. Moreover, as mentioned 
above in Remark 2.13, we have

M
(

B̃s
∞,∞(Rn)

)
� M

(
Bs

∞,∞(Rn)
)

.

3. Characterizations of pointwise multipliers of Besov spaces in endpoint cases

In this section, we study characterizations of pointwise multiplier spaces of Besov 
spaces in the following endpoint cases:

• M(Bs
1,∞(Rn)) with s ∈ (0, ∞) (see Theorem 3.1);

• M(Bs
1,∞(Rn)) with s ∈ (−∞, 0) (see Theorem 3.5);

• M(Bs
∞,1(Rn)) with s ∈ (−∞, 0] (see Theorems 3.9 and 3.13).

Moreover, for the simplicity of the representation, in what follows, for any s ∈ R and 
f ∈ S′(Rn), let

‖f‖s := sup
k∈N∩[2,∞)

2ks
k−2∑
l=0

2−ls sup
m∈Zn

⎡⎢⎣  

Ql,m

|Skf(x)| dx

⎤⎥⎦ . (3.1)

3.1. A characterization of M(Bs
1,∞(Rn)) with s ∈ (0, ∞)

In this subsection, we obtain the characterization of the multiplier space M(Bs
1,∞(Rn))

with s ∈ (0, ∞). The proof essentially depends on both some elaborate estimates of 
paraproducts and the construction of the auxiliary functions {gk}k∈N∩[2,∞) [see (3.14)
below for the definition] which are motivated by the intrinsic structure of the term ‖ · ‖s

defined in (3.1).
Indeed, we characterize M(Bs

1,∞(Rn)) for any s ∈ (0, ∞) as follows.
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Theorem 3.1. Let s ∈ (0, ∞). Then f ∈ M(Bs
1,∞(Rn)) if and only if f ∈ L∞(Rn) and

‖f‖L∞(Rn) + ‖f‖s < ∞.

Moreover, there exist two positive constants C1, C2 such that, for any f ∈ M(Bs
1,∞(Rn)),

C1‖f‖M(Bs
1,∞(Rn)) ≤ ‖f‖L∞(Rn) + ‖f‖s ≤ C2‖f‖M(Bs

1,∞(Rn)).

Remark 3.2. Netrusov in [25, Theorem 3(1)] has found the following characteriza-
tion of the multiplier space M(Bs

1,∞(Rn)) with s ∈ (0, ∞). Let s ∈ (0, ∞). Then 
f ∈ M(Bs

1,∞(Rn)) if and only if f ∈ L∞(Rn) and

sup
j∈Z+

2js

1ˆ

2−j−1

⎡⎢⎣ sup
x∈Rn

ˆ

B(x,t)

|fj(x)| dx

⎤⎥⎦ ts−n dt

t
< ∞, (3.2)

where {fj}j∈Z+ ⊂ S′(Rn) ∩ L1
loc(Rn) satisfies suppF f0 ⊂ B(0, 2),

suppF fj ⊂ B(0, 2j+1) \ B(0, 2j−1), ∀ j ∈ N,

and f =
∑

j∈Z+
fj in S′(Rn). We should point out that, compared with (3.2), our 

characterization in Theorem 3.1 has a minimal change in the formulation. However, 
Netrusov never published a proof.

To show Theorem 3.1, we first give some notation. In what follows, for any Q ∈ Q, we 
always use l(Q) to denote its edge length. Furthermore, for any x ∈ Rn and l ∈ (0, ∞), 
the symbol Q(x, l) denotes the cube with center x and edge length l, and the symbol
e := (1, . . . , 1) denotes the unit of Rn. Let h ∈ C∞

c (Rn) be such that

1Q0,0
≤ h ≤ 1Q( 1

2 e,2).

Then we have the following estimates about h, which play key roles in the proof of 
Theorem 3.1.

Lemma 3.3. Let M ∈ Z+. For any l ∈ Z+ and xl, x ∈ Rn, let

hl,xl
(x) := h

(
2l[x − xl]

)
.

Then there exists a positive constant C, depending only on n and M , such that

(i) for any j ∈ Z+ ∩ [0, l],

‖Sj (hl,xl
)‖ 1 n ≤ C2−ln;
L (R )
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(ii) for any j ∈ N ∩ [l + 1, ∞),

‖Sj (hl,xl
)‖L1(Rn) ≤ C2(M+1−n)l−(M+1)j .

Proof. We first prove (i). Indeed, using the Young inequality, we find that

‖Sj (hl,xl
)‖L1(Rn) � ‖hl,xl

‖L1(Rn) = 2−ln ‖h‖L1(Rn) ∼ 2−ln,

which completes the proof of (i).
Next, we show (ii). To this end, let j ∈ N ∩ [l + 1, ∞). Then, from (2.7) with k := j, 

we infer that, for any γ ∈ Zn
+,

ˆ

Rn

ϕj(x)xγ dx = 0.

This, together with both the Taylor remainder theorem and the Tonelli theorem, further 
implies that, for any y ∈ Rn, there exists ty ∈ (0, 1) such that

‖Sj (hl,xl
)‖L1(Rn)

=
ˆ

Rn

∣∣∣∣∣∣
ˆ

Rn

ϕj(y)hl,xl
(x − y) dy

∣∣∣∣∣∣ dx

=
ˆ

Rn

∣∣∣∣∣∣∣∣
ˆ

Rn

ϕj(y)

⎡⎢⎢⎣hl,xl
(x − y) −

∑
γ∈Zn

+
|γ|≤M

∂γ(hl,xl
(x − ·))(0)
γ! yγ

⎤⎥⎥⎦ dy

∣∣∣∣∣∣∣∣ dx

=
ˆ

Rn

∣∣∣∣∣∣∣∣
ˆ

Rn

ϕj(y)
∑

γ∈Zn
+

|γ|=M+1

∂γ(h(2l(x − xl − ·)))(tyy)
γ! yγ dy

∣∣∣∣∣∣∣∣ dx

� 2(M+1)l+jn

ˆ

Rn

ˆ

Rn

|y|M+1 ∣∣ϕ1(2jy)
∣∣ ∑

γ∈Zn
+

|γ|=M+1

∣∣∂γh
(
2l(x − xl − tyy)

)∣∣ dx dy

= 2(M+1−n)l−(M+1)j

ˆ

Rn

ˆ

Rn

|y|M+1 |ϕ1(y)|
∑

γ∈Zn
+

|γ|=M+1

∣∣∂γh(x − 2l−jtyy)
∣∣ dx dy

= 2(M+1−n)l−(M+1)j

ˆ

Rn

ˆ

Rn

|y|M+1 |ϕ1(y)|
∑

γ∈Zn
+

|γ|=M+1

|∂γh(x)| dx dy.

Applying this and the assumption h ∈ C∞
c (Rn), we further conclude that
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max
γ∈Zn

+
|γ|=M+1

{
‖∂γh‖L∞(Rn)

}
< ∞

and hence

‖Sj (hl,xl
)‖L1(Rn)

� 2(M+1−n)l−(M+1)j

ˆ

Rn

ˆ

supp h

|y|M+1 |ϕ1(y)|
∑

γ∈Zn
+

|γ|=M+1

|∂γh (x)| dx dy

� 2(M+1−n)l−(M+1)j

ˆ

Rn

ˆ

Q( 1
2 e,2)

|y|M+1 |ϕ1(y)| dx dy

∼ 2(M+1−n)l−(M+1)j

ˆ

Rn

|y|M+1 |ϕ1(y)| dy ∼ 2(M+1−n)l−(M+1)j .

This finishes the proof of (ii) and hence Lemma 3.3. �
We also need the following simple estimate of the paraproduct Π1 (·, ·), see, e.g., [28]

or [17, Lemma 4.1].

Lemma 3.4. Let p, q ∈ [1, ∞] and s ∈ R. Then there exists a positive constant C such 
that, for any f ∈ L∞(Rn) and g ∈ Bs

p,q(Rn),

‖ Π1 (f, g)‖Bs
p,q(Rn) ≤ C ‖f‖L∞(Rn) ‖g‖Bs

p,q(Rn) .

Via above preparations, we now prove Theorem 3.1.

Proof of Theorem 3.1. We first show the sufficiency. To this end, let f ∈ L∞(Rn) be 
such that ‖f‖L∞(Rn) + ‖f‖s < ∞ and let g ∈ Bs

1,∞(Rn). Then, applying (2.12), we find 
that

‖fg‖Bs
1,∞(Rn) ≤

3∑
j=1

‖ Πj (f, g)‖Bs
1,∞(Rn) =:

3∑
j=1

Ij . (3.3)

By Lemma 3.4 with p := 1 and q := ∞, we conclude that

I1 � ‖f‖L∞(Rn) ‖g‖Bs
1,∞(Rn) ≤

[
‖f‖L∞(Rn) + ‖f‖s

]
‖g‖Bs

1,∞(Rn) . (3.4)

Now, we deal with I2. Indeed, using (2.6), (2.7), and (2.10), we obtain, for any l ∈ Z+,

Sl ( Π2 (f, g)) = Sl

⎛⎝ ∞∑
k=max{0,l−3}

k+1∑
j=max{0,k−1}

[Sjf ] Skg

⎞⎠ . (3.5)
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From this, both the Young and the Hölder inequalities, the definition of ‖ · ‖Bs
1,∞(Rn), 

and the assumption s ∈ (0, ∞), we deduce that, for any l ∈ Z+,

‖Sl ( Π2 (f, g))‖L1(Rn)

≤
∞∑

k=max{0,l−3}

k+1∑
j=max{0,k−1}

‖Sl ([Sjf ] Skg)‖L1(Rn)

�
∞∑

k=max{0,l−3}

k+1∑
j=max{0,k−1}

‖Sjf‖L∞(Rn) ‖Skg‖L1(Rn)

�
∞∑

k=max{0,l−3}

k+1∑
j=max{0,k−1}

‖f‖L∞(Rn) ‖Skg‖L1(Rn)

� ‖f‖L∞(Rn) ‖g‖Bs
1,∞(Rn)

∞∑
k=l−3

2−ks ∼ 2−ls ‖f‖L∞(Rn) ‖g‖Bs
1,∞(Rn) .

This, combined with the definitions of both I2 and ‖ · ‖Bs
1,∞(Rn), further implies that

I2 = sup
l∈Z+

{
2ls ‖Sl ( Π2 (f, g))‖L1(Rn)

}
� ‖f‖L∞(Rn) ‖g‖Bs

1,∞(Rn) ≤
[
‖f‖L∞(Rn) + ‖f‖s

]
‖g‖Bs

1,∞(Rn) , (3.6)

which completes the estimation of I2. We next estimate I3. Indeed, by (2.6), (2.7), and 
(2.9), we conclude that, for any j ∈ Z+,

Sj ( Π3 (f, g)) = Sj

⎛⎝ j+3∑
k=max{2,j−1}

[Skf ] Sk−2g

⎞⎠ . (3.7)

Applying this and the Young inequality, we find that, for any j ∈ Z+,

‖Sj ( Π3 (f, g))‖L1(Rn) ≤
j+3∑

k=max{2,j−1}

∥∥Sj

(
[Skf ] Sk−2g

)∥∥
L1(Rn)

�
j+3∑

k=max{2,j−1}

∥∥(Skf) Sk−2g
∥∥

L1(Rn) . (3.8)

To finish the estimation of I3, we now estimate ‖(Skf)Sk−2g‖L1(Rn) with k ∈ N∩ [2, ∞). 
Indeed, for any k ∈ N ∩ [2, ∞), by (2.5) with k and f therein replaced, respectively, by 
k − 2 and g, we conclude that
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∥∥(Skf) Sk−2g
∥∥

L1(Rn) ≤
k−2∑
l=0

ˆ

Rn

|Skf(x)| |Slg(x)| dx

=
k−2∑
l=0

∑
m∈Zn

ˆ

Ql,m

|Skf(x)| |Slg(x)| dx

≤
k−2∑
l=0

∑
m∈Zn

max
x∈Ql,m

{|Slg(x)|}
ˆ

Ql,m

|Skf(x)| dx. (3.9)

Noticing that, for any given l ∈ Z+ and m ∈ Zn and for any x, y ∈ Ql,m, we have

|y − x| ≤ 2−l
√

n,

which further implies that

|Slg(x)| � |Slg(x)|
(1 + 2l|y − x|)n+1 ≤ S∗,n+1

l g(y)

with the implicit positive constant independent of both l and m, where S∗,n+1
j g(y) is the 

same as in (2.11) with a, j, f , and x therein replaced, respectively, by n + 1, l, g, and y. 
From this, we then infer that, for any l ∈ Z+ and m ∈ Zn,

max
x∈Ql,m

{|Slg(x)|} � min
y∈Ql,m

{
S∗,n+1

l g(y)
}

.

This, together with (3.9), Lemma 2.3(i) with p, a, j, and f therein replaced, respectively, 
by 1, n + 1, l, and g, and the definition of ‖ · ‖Bs

1,∞(Rn), further implies that, for any 
k ∈ N ∩ [2, ∞),

∥∥(Skf) Sk−2g
∥∥

L1(Rn) �
k−2∑
l=0

∑
m∈Zn

min
y∈Ql,m

{∣∣∣S∗,n+1
l g(y)

∣∣∣} ˆ

Ql,m

|Skf(x)| dx

≤
k−2∑
l=0

∑
m∈Zn

ˆ

Ql,m

S∗,n+1
l g(y) dy

 

Ql,m

|Skf(x)| dx

≤
k−2∑
l=0

∥∥∥S∗,n+1
l g

∥∥∥
L1(Rn)

sup
m∈Zn

⎧⎪⎨⎪⎩
 

Ql,m

|Skf(x)| dx

⎫⎪⎬⎪⎭
�

k−2∑
l=0

‖Slg‖L1(Rn) sup
m∈Zn

⎧⎪⎨⎪⎩
 

|Skf(x)| dx

⎫⎪⎬⎪⎭

Ql,m
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≤ ‖g‖Bs
1,∞(Rn)

k−2∑
l=0

2−ls sup
m∈Zn

⎧⎪⎨⎪⎩
 

Ql,m

|Skf(x)| dx

⎫⎪⎬⎪⎭ , (3.10)

which is the desired estimate of ‖SkfSk−2g‖L1(Rn).
On the other hand, observe that, for any j ∈ Z+ and k ∈ N ∩ [max{2, j − 1}, j + 3], 

2js ∼ 2ks. Combining this, (3.8), and (3.10), we find that, for any j ∈ Z+,

2js ‖Sj ( Π3 (f, g))‖L1(Rn)

� 2js ‖g‖Bs
1,∞(Rn)

j+2∑
k=max{2,j−1}

k−2∑
l=0

2−ls sup
m∈Zn

⎧⎪⎨⎪⎩
 

Ql,m

|Skf(x)| dx

⎫⎪⎬⎪⎭
∼ ‖g‖Bs

1,∞(Rn)

j+2∑
k=max{2,j−1}

2ks
k−2∑
l=0

2−ls sup
m∈Zn

⎧⎪⎨⎪⎩
 

Ql,m

|Skf(x)| dx

⎫⎪⎬⎪⎭
� ‖f‖s ‖g‖Bs

1,∞(Rn) ≤
[
‖f‖L∞(Rn) + ‖f‖s

]
‖g‖Bs

1,∞(Rn) .

Using this and the definition of I3, we further obtain

I3 = sup
j∈Z+

{
2js ‖Sj ( Π3 (f, g))‖L1(Rn)

}
�

[
‖f‖L∞(Rn) + ‖f‖s

]
‖g‖Bs

1,∞(Rn) .

From this, (3.3), (3.4), and (3.6), it follows that

‖fg‖Bs
1,∞(Rn) �

[
‖f‖L∞(Rn) + ‖f‖s

]
‖g‖Bs

1,∞(Rn) .

Hence, f ∈ M(Bs
1,∞(Rn)) and

‖f‖M(Bs
1,∞(Rn)) � ‖f‖L∞(Rn) + ‖f‖s . (3.11)

Thus, we have completed the proof of the sufficiency part.
Conversely, we next prove the necessity. To this end, let f ∈ M(Bs

1,∞(Rn)). Then, 
using Lemma 2.11(i) with p := 1 and q := ∞, we find that f ∈ L∞(Rn) and

‖f‖L∞(Rn) � ‖f‖M(Bs
1,∞(Rn)) . (3.12)

On the other hand, for any given k ∈ N ∩ [2, ∞) and for any l ∈ Z+ ∩ [0, k − 2], there 
exists mk,l ∈ Zn such that

sup
m∈Zn

⎧⎪⎨⎪⎩
 

Ql,m

|Skf(x)| dx

⎫⎪⎬⎪⎭ ≤ 2
 

Ql,mk,l

|Skf(x)| dx. (3.13)
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For any k ∈ N ∩ [2, ∞) and x ∈ Rn, let

gk(x) :=
k−2∑
l=0

2(n−s)lh
(
2lx − mk,l

)
. (3.14)

Now, we show that, for any k ∈ N ∩ [2, ∞), gk ∈ Bs
1,∞(Rn) and

sup
k∈N∩[2,∞)

{
‖gk‖Bs

1,∞(Rn)

}
� 1. (3.15)

Indeed, for any k ∈ N ∩ [2, ∞), by Lemma 3.3(i) with j := 0 and xl := 2−lmk,l for any 
l ∈ Z+ ∩ [0, k − 2] and by the assumption s ∈ (0, ∞), we conclude that

‖S0gk‖L1(Rn) ≤
k−2∑
l=0

2(n−s)l
∥∥S0

(
h
(
2l

[
· − 2−lmk,l

]))∥∥
L1(Rn)

�
k−2∑
l=0

2(n−s)l2−ln ≤
∑

l∈Z+

2−ls ∼ 1. (3.16)

On the other hand, for any j ∈ N and k ∈ N ∩ [2, ∞), from Lemma 3.3 with M := �s	
and xl := 2−lmk,l for any l ∈ Z+ ∩ [0, k − 2], we deduce that

‖Sjgk‖L1(Rn) ≤
k−2∑
l=0

2(n−s)l
∥∥Sj

(
h
(
2l

[
· − 2−lmk,l

]))∥∥
L1(Rn)

�
j−1∑
l=0

2(n−s)l2(�s�+1−n)l−(�s�+1)j +
∞∑

l=j

2(n−s)l2−ln

=
j−1∑
l=0

2(�s�+1−s)l−(�s�+1)j +
∞∑

l=j

2−ls ∼ 2−js.

Combining this and (3.16), we further obtain, for any k ∈ N ∩ [2, ∞),

‖gk‖Bs
1,∞(Rn) = sup

j∈Z+

{
2js ‖Sjgk‖L1(Rn)

}
� 1,

which implies that gk ∈ Bs
1,∞(Rn) and hence completes the proof of (3.15).

In addition, observe that, for any k ∈ N ∩ [2, ∞), l ∈ Z+ ∩ [0, k − 2], and x ∈ Rn, we 
have

1Ql,mk,l
(x) ≤ h

(
2lx − mk,l

)
.

This, together with (3.13), further implies that, for any k ∈ N ∩ [2, ∞),
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2ks
k−2∑
l=0

2−ls sup
m∈Zn

⎧⎪⎨⎪⎩
 

Ql,m

|Skf(x)| dx

⎫⎪⎬⎪⎭
� 2ks

k−2∑
l=0

2(n−s)l

ˆ

Ql,mk,l

|Skf(x)| dx

= 2ks

ˆ

Rn

|Skf(x)|
k−2∑
l=0

2(n−s)l1Ql,mk,l
(x) dx

≤ 2ks

ˆ

Rn

|Skf(x)|
k−2∑
l=0

2(n−s)lh
(
2lx − mk,l

)
dx

= 2ks

ˆ

Rn

|Skf(x)| |gk(x)| dx

= 2ks
∥∥(Skf) Sk−2gk

∥∥
L1(Rn) + 2ks

∞∑
j=k−1

‖(Skf) Sjgk‖L1(Rn)

=: Ik,1 + Ik,2. (3.17)

We first deal with Ik,1. Indeed, for any k ∈ N ∩ [2, ∞), applying (2.9), (2.6), (2.7), 
(2.13) with p, q, f , and g therein replaced, respectively, by 1, ∞, Skf , and Sk−2gk, 
Lemma 2.11(ii) with p := 1, q := ∞, and h := ϕk, Lemma 2.4(i) with p := 1, q := ∞, 
and f := g, and (3.15), we find that

Ik,1 ≤ 2ks
∑

j∈Z+

∥∥Sj

(
[Skf ] Sk−2gk

)∥∥
L1(Rn)

∼
k+1∑

j=max{0,k−3}
2js

∥∥Sj

(
[Skf ] Sk−2gk

)∥∥
L1(Rn)

� sup
j∈Z+

{
2js

∥∥Sj

(
[Skf ] Sk−2gk

)∥∥
L1(Rn)

}
=

∥∥(Skf) Sk−2gk

∥∥
Bs

1,∞(Rn)

≤ ‖ϕk ∗ f‖M(Bs
1,∞(Rn))

∥∥Sk−2gk

∥∥
Bs

1,∞(Rn)

� ‖f‖M(Bs
1,∞(Rn)) ‖gk‖Bs

1,∞(Rn) ∼ ‖f‖M(Bs
1,∞(Rn)) . (3.18)

This finishes the estimation of Ik,1 with k ∈ N ∩ [2, ∞). Now, we turn to the estima-
tion of Ik,2, k ∈ N ∩ [2, ∞). Indeed, for any k ∈ N ∩ [2, ∞), by the Hölder inequality, 
Lemma 3.3(ii) with M := �s	 and xl := 2−lmk,l for any l ∈ Z+ ∩ [0, k − 2], the Young 
inequality, and (3.12), we conclude that
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Ik,2 ≤ 2ks ‖Skf‖L∞(Rn)

∞∑
j=k−1

‖Sjgk‖L1(Rn)

≤ 2ks ‖Skf‖L∞(Rn)

∞∑
j=k−1

k−2∑
l=0

2(n−s)l
∥∥Sj

(
h
(
2l

[
· − 2−lmk,l

]))∥∥
L1(Rn)

� 2ks ‖Skf‖L∞(Rn)

∞∑
j=k−1

k−2∑
l=0

2(n−s)l2(�s�+1−n)l−(�s�+1)j

∼ ‖Skf‖L∞(Rn) ≤ ‖ϕk‖L1(Rn) ‖f‖L∞(Rn) � ‖f‖M(Bs
1,∞(Rn)) ,

which then completes the estimation of Ik,2. From this, (3.12), (3.17), (3.18), and the 
definition of ‖ · ‖s, we infer that

‖f‖L∞(Rn) + ‖f‖s � ‖f‖M(Bs
1,∞(Rn)) . (3.19)

This finishes the proof of the necessity. Moreover, applying (3.11) and (3.19), we further 
obtain

‖f‖M(Bs
1,∞(Rn)) ∼ ‖f‖L∞(Rn) + ‖f‖s ,

which completes the proof of Theorem 3.1. �
3.2. A characterization of M(Bs

1,∞(Rn)) with s ∈ (−∞, 0)

In this subsection, we characterize M(Bs
1,∞(Rn)) with s ∈ (−∞, 0). Our main tool is 

an embedding between M(Bs
p,q(Rn)) and M(B̃s

p,q(Rn)) (see Lemma 3.8 below).
Let s ∈ (−∞, 0). Then the Fourier analytic characterization of M(Bs

1,∞(Rn)) is as 
follows.

Theorem 3.5. Let s ∈ (−∞, 0). Then

M
(
Bs

1,∞(Rn)
)

= B−s
∞,1(Rn)

in the sense of equivalent norms.

Recall that Nguyen and Sickel [26, Theorem 1.7] obtained the following characteri-
zation of M(Bs

∞,1(Rn)) for any s ∈ (0, ∞), which will be used in the proofs of both 
Theorem 3.5 and the duality principle Theorem 4.1 below.

Proposition 3.6. Let s ∈ (0, ∞). Then

M
(
Bs

∞,1(Rn)
)

= Bs
∞,1(Rn)

in the sense of equivalent norms.



Y. Li et al. / Journal of Functional Analysis 286 (2024) 110198 23
Also, to prove Theorem 3.5, we shall need some properties of differences. Let N ∈ Z+
and h ∈ Rn. Recall that the difference operator ΔN

h is defined by setting, for any complex-
valued function f and any x ∈ Rn,

ΔN
h f(x) :=

N∑
j=0

(−1)N−j

(
N

j

)
f(x + jh),

where, for any j ∈ {0, . . . , N}, 
(

N
j

)
:= N !

j!(N−j)! . In addition, recall that the symbol
C(Rn) denotes the set of all continuous functions on Rn. The following characterization 
of Bs

∞,q(Rn) by differences is a simple application of both [36, 2.6.1/(3)] and [32, Theorem 
3.3.1(ii)]; we omit the details.

Lemma 3.7. Let q ∈ (0, ∞], s ∈ (0, ∞), and N ∈ N ∩ (s, ∞). Then f ∈ Bs
∞,q(Rn) if and 

only if f ∈ L∞(Rn) ∩ C(Rn) and, when q ∈ (0, ∞),

‖f‖∗
Bs

∞,q(Rn) := sup
x∈Rn

|f(x)| +

⎡⎣ 1ˆ

0

t−sq sup
|h|≤t

sup
x∈Rn

∣∣ΔN
h f(x)

∣∣q dt

t

⎤⎦
1
q

< ∞

or, when q = ∞,

‖f‖∗
Bs

∞,∞(Rn) := sup
x∈Rn

|f(x)| + sup
t∈(0,1)

{
t−s sup

|h|≤t

sup
x∈Rn

∣∣ΔN
h f(x)

∣∣} < ∞.

Moreover, there exist two positive constants C1 and C2 such that, for any f ∈ Bs
∞,q(Rn),

C1 ‖f‖Bs
∞,q(Rn) ≤ ‖f‖∗

Bs
∞,q(Rn) ≤ C2 ‖f‖Bs

∞,q(Rn) .

Based on Lemma 3.7, we now establish the following embedding between M(Bs
p,q(Rn))

and M(B̃s
p,q(Rn)), which will be essential for the proof of Theorem 3.5.

Lemma 3.8. Let p, q ∈ (0, ∞], s ∈ R, and f ∈ M(B̃s
p,q(Rn)). If fg exists in S′(Rn)

for any g ∈ Bs
p,q(Rn), then f ∈ M(Bs

p,q(Rn)) and there exists a positive constant C, 
independent of f , such that

‖f‖M(Bs
p,q(Rn)) ≤ C‖f‖M(B̃s

p,q(Rn)).

Proof. Let g ∈ Bs
p,q(Rn). Then, applying the assumption that fg exists in S′(Rn) and 

also applying [17, Remark 2.9 and Corollary 2.11], we conclude that

fg = lim
j→∞

fSjg (3.20)
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in S′(Rn). Let ψ ∈ C∞
c (Rn) be such that ψ(0) = 1. Then, from [7, Proposition 9.9], it 

follows that, for any j ∈ N, fSjg = liml→∞ f(Sjg)ψ(2−l·) in S′(Rn). Combining this 
and (3.20), we further obtain

fg = lim
j→∞

lim
l→∞

f
(
Sjg

)
ψ
(
2−l·

)
(3.21)

in S′(Rn).
Observe that, for any j, l ∈ N, (Sjg)ψ(2−l·) ∈ C∞

c (Rn) ⊂ B̃s
p,q(Rn). Using this, the 

assumption f ∈ M(B̃s
p,q(Rn)), [35, Theorem 2.8.2], and Lemma 2.4(i), we find that there 

exists ρ ∈ (max{0, s, np − s}, ∞) such that, for any j, l ∈ N,

∥∥f
(
Sjg

)
ψ
(
2−l·

)∥∥
Bs

p,q(Rn)

≤ ‖f‖M(B̃s
p,q(Rn))

∥∥(Sjg
)

ψ
(
2−l·

)∥∥
Bs

p,q(Rn)

� ‖f‖M(B̃s
p,q(Rn))

∥∥Sjg
∥∥

Bs
p,q(Rn)

∥∥ψ
(
2−l·

)∥∥
Bρ

∞,∞(Rn)

� ‖f‖M(B̃s
p,q(Rn)) ‖g‖Bs

p,q(Rn)
∥∥ψ

(
2−l·

)∥∥
Bρ

∞,∞(Rn) . (3.22)

In addition, for any N ∈ Z+, l ∈ N, and x, h ∈ Rn, we have

ΔN
h

(
ψ
(
2−l·

))
(x) =

N∑
j=0

(−1)N−j

(
N

j

)
ψ
(
2−lx + 2−ljh

)
= ΔN

2−lhψ
(
2−lx

)
.

By this and [43, (4.28)], we conclude that, for any N ∈ Z+, l ∈ N, t ∈ (0, 1), and 
x, h ∈ Rn with |h| ≤ t,∣∣ΔN

h

(
ψ
(
2−l·

))
(x)

∣∣ � (
2−l|h|

)N sup
α∈Zn

+, |α|=N

sup
y∈Rn, |2−lx−y|≤N |h|

|∂αψ(y)| � |h|N ≤ tN .

From this with N := �ρ	 + 1 and also from Lemma 3.7 with s replaced by ρ, we then 
deduce that, for any l ∈ N,∥∥ψ

(
2−l·

)∥∥
Bρ

∞,∞(Rn)

∼ sup
x∈Rn

∣∣ψ (
2−lx

)∣∣ + sup
t∈(0,1)

{
t−ρ sup

h∈Rn, |h|≤t

sup
x∈Rn

∣∣∣Δ�ρ�+1
h

(
ψ
(
2−l·

))
(x)

∣∣∣}
� sup

x∈Rn

∣∣ψ (
2−lx

)∣∣ + sup
t∈(0,1)

t�ρ�+1−ρ ∼ 1.

This, together with (3.22), further implies that, for any j, l ∈ N,∥∥f
(
Sjg

)
ψ
(
2−l·

)∥∥
s n � ‖f‖M(B̃s (Rn)) ‖g‖Bs (Rn) .
Bp,q(R ) p,q p,q
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By this, (3.21), and Lemma 2.5, we conclude that fg ∈ Bs
p,q(Rn) and

‖fg‖Bs
p,q(Rn)

� ‖f‖M(B̃s
p,q(Rn)) ‖g‖Bs

p,q(Rn) ,

which implies that f ∈ M(Bs
p,q(Rn)) and ‖f‖M(Bs

p,q(Rn)) � ‖f‖M(B̃s
p,q(Rn)). This then 

finishes the proof of Lemma 3.8. �
Now, we are in position to give the proof of Theorem 3.5.

Proof of Theorem 3.5. We first show

M
(
Bs

1,∞(Rn)
)

↪→ B−s
∞,1(Rn). (3.23)

To do this, let f ∈ M(Bs
1,∞(Rn)) and g ∈ B−s

∞,1(Rn). Then, applying Lemmas 2.11(i) 
and 3.7, we find that f ∈ L∞(Rn) and g ∈ L∞(Rn) ∩ C(Rn). These, combined with [28, 
Proposition 4.2.1], further imply that fg exists in S′(Rn). In addition, from Lemma 2.12, 
it follows that f ∈ M(B̃−s

∞,1(Rn)). Thus, by Lemma 3.8, we further conclude that f ∈
M(B−s

∞,1(Rn)) and ‖f‖M(B−s
∞,1(Rn)) � ‖f‖M(B̃−s

∞,1(Rn)). Combining these, Proposition 3.6, 
and Lemma 2.12 again, we obtain

‖f‖B−s
∞,1(Rn) ∼ ‖f‖M(B−s

∞,1(Rn)) � ‖f‖M(B̃−s
∞,1(Rn)) ∼ ‖f‖M(Bs

1,∞(Rn)) .

This finishes the proof of (3.23).
By Proposition 3.6 and Lemmas 2.15 and 2.12, we find that

B−s
∞,1(Rn) = M

(
B−s

∞,1(Rn)
)

↪→ M
(

B̃−s
∞,1(Rn)

)
= M

(
Bs

1,∞(Rn)
)

,

which proves B−s
∞,1(Rn) ↪→ M(Bs

1,∞(Rn)). The proof of Theorem 3.5 is then com-
plete. �
3.3. A characterization of M(Bs

∞,1(Rn)) with s ∈ (−∞, 0]

In this subsection, by some elaborate estimates of paraproducts and several relations 
between two multiplier spaces M(Bs

p,q(Rn)) and M(B̃s
p,q(Rn)), we obtain the Fourier 

analytic characterization of M(Bs
∞,1(Rn)) for any s ∈ (−∞, 0]. First, we characterize 

M(B0
∞,1(Rn)) as follows.

Theorem 3.9. Let ‖ · ‖0 be the same as in (3.1) with s replaced by 0. Then f ∈
M(B0

∞,1(Rn)) if and only if f ∈ L∞(Rn) and

‖f‖B0
∞,1(Rn) + ‖f‖0 < ∞.

Moreover, there exist two positive constants C1 and C2 such that, for any f ∈
M(B0

∞,1(Rn)),
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C1 ‖f‖M(B0
∞,1(Rn)) ≤ ‖f‖B0

∞,1(Rn) + ‖f‖0 ≤ C2 ‖f‖M(B0
∞,1(Rn)) .

To prove this theorem, we need the following characterization of M(B0
1,∞(Rn)), see, 

for instance, [15, Theorem 5] or [17, Theorem 3.3 and Remark 3.4].

Proposition 3.10. Let ‖ · ‖0 be the same as in (3.1) with s therein replaced by 0. Then 
f ∈ M(B0

1,∞(Rn)) if and only if f ∈ L∞(Rn) and

‖f‖B0
∞,1(Rn) + ‖f‖0 < ∞.

Furthermore, there exist two positive constants C1 and C2 such that, for any f ∈
M(B0

1,∞(Rn)),

C1 ‖f‖M(B0
1,∞(Rn)) ≤ ‖f‖B0

∞,1(Rn) + ‖f‖0 ≤ C2 ‖f‖M(B0
1,∞(Rn)) .

The following auxiliary estimate of the operators {Sj}j∈Z+ on cubes also plays a key 
role in the proof of Theorem 3.9.

Lemma 3.11. There exists a positive constant C such that, for any f, g ∈ S′(Rn), l, k, j ∈
Z+, ν ∈ Zn, and x ∈ Ql,ν ,

|Sl ([Skf ] Sjg) (x)| ≤ C ‖Sjg‖L∞(Rn) sup
m∈Zn

 

Ql,m

|Skf(y)| dy.

Proof. Let f, g ∈ S′(Rn), l, k, j ∈ Z+, and ν ∈ Zn. Then, for any x ∈ Ql,ν , we have

|Sl ([Skf ] Sjg) (x)| ≤
ˆ

Rn

|ϕl(x − y)| |Skf(y)| |Sjg(y)| dy

� ‖Sjg‖L∞(Rn)

ˆ

Rn

2ln

(1 + 2l|x − y|)n+1 |Skf(y)| dy

= ‖Sjg‖L∞(Rn)

∑
m∈Zn

 

Ql,m

1
(1 + 2l|x − y|)n+1 |Skf(y)| dy. (3.24)

Notice that, for any m ∈ Zn, x ∈ Ql,ν , and y ∈ Ql,m, 1 + 2l|x − y| ∼ 1 + |ν − m|. 
From this, (3.24), and the fact that 

∑
m∈Zn

1
(1+|ν−m|)n+1 ∼ 1, we then infer that, for any 

x ∈ Ql,ν ,

|Sl ([Skf ] Sjg) (x)| � ‖Sjg‖L∞(Rn)

∑
m∈Zn

1
(1 + |ν − m|)n+1

 
|Skf(y)| dy
Ql,m
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� ‖Sjg‖L∞(Rn) sup
m∈Zn

⎡⎢⎣  

Ql,m

|Skf(y)| dy

⎤⎥⎦ .

This finishes the proof of Lemma 3.11. �
Now, we turn to the estimation of the paraproduct Π2 (·, ·), which will be used in the 

proof of Theorem 3.9.

Lemma 3.12. Let s ∈ (−∞, 0]. Assume that f ∈ L∞(Rn) satisfies ‖f‖−s < ∞ and that 
g ∈ Bs

∞,1(Rn). Then there exists a positive constant C, independent of both f and g, 
such that

‖ Π2 (f, g)‖Bs
∞,1(Rn) ≤ C

[
‖f‖L∞(Rn) + ‖f‖−s

]
‖g‖Bs

∞,1(Rn).

Proof. Using (3.5) and the Tonelli theorem, we have

‖ Π2 (f, g)‖Bs
∞,1(Rn)

≤
∑

l∈Z+

∞∑
j=max{0,l−3}

j+1∑
k=max{0,j−1}

2ls ‖Sl ([Skf ] Sjg)‖L∞(Rn)

=
5∑

l=0

l+2∑
j=max{0,l−3}

j+1∑
k=max{0,j−1}

2ls ‖Sl ([Skf ] Sjg)‖L∞(Rn)

+
5∑

l=0

∞∑
j=l+3

j+1∑
k=j−1

· · · +
∞∑

l=6

∞∑
j=l−3

j+1∑
k=j−1

· · ·

�
5∑

l=0

l+2∑
j=max{0,l−3}

j+1∑
k=max{0,j−1}

2ls ‖Sl ([Skf ] Sjg)‖L∞(Rn)

+
5∑

l=0

∞∑
j=l+3

j+1∑
k=j−1

· · · +
∞∑

j=3

j+1∑
k=j−1

k−2∑
l=0

· · · +
∞∑

j=3

j+1∑
k=j−1

j+3∑
l=k−1

· · ·

=: III1 + III2 + III3 + III4. (3.25)

Notice that, for any l ∈ Z and j ∈ Z ∩ [l − 3, l + 2], 2ls ∼ 2js. Applying this and the 
Young inequality, we obtain

III1 �
5∑

l=0

l+2∑
j=max{0,l−3}

j+1∑
k=max{0,j−1}

2ls ‖Skf‖L∞(Rn) ‖Sjg‖L∞(Rn)

� ‖f‖L∞(Rn)

7∑
j=0

2js ‖Sjg‖L∞(Rn) ≤ ‖f‖L∞(Rn) ‖g‖Bs
∞,1(Rn) , (3.26)
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which is the desired estimation of III1.
Now, we estimate III2. Indeed, from the Tonelli theorem, Lemma 3.11, and the fact 

that, for any j ∈ Z and k ∈ Z ∩ [j − 1, j + 1], 2js ∼ 2ks, we deduce that

III2 ≤
∞∑

j=3

j+1∑
k=j−1

5∑
l=0

2ls ‖Sl ([Skf ] Sjg)‖L∞(Rn)

�
∞∑

j=3
2js ‖Sjg‖L∞(Rn)

j+1∑
k=j−1

2−ks
5∑

l=0

2ls sup
m∈Zn

 

Ql,m

|Skf(y)| dy. (3.27)

Obviously we have

∞∑
j=9

2js ‖Sjg‖L∞(Rn)

j+1∑
k=j−1

2−ks
5∑

l=0

2ls sup
m∈Zn

 

Ql,m

|Skf(y)| dy

� ‖f‖−s ‖g‖Bs
∞,1(Rn) ,

because in this case 5 ≤ k − 2. Furthermore,

9∑
j=3

2js ‖Sjg‖L∞(Rn)

j+1∑
k=j−1

2−ks
5∑

l=0

2ls sup
m∈Zn

 

Ql,m

|Skf(y)| dy

� ‖g‖Bs
∞,1(Rn)

5∑
l=0

2ls sup
m∈Zn

 

Ql,m

|Skf(y)| dy

� ‖g‖Bs
∞,1(Rn) ‖f‖L∞(Rn) .

Inserting these inequalities into (3.27) we obtain

III2 � (‖f‖L∞(Rn) + ‖f‖−s) ‖g‖Bs
∞,1(Rn) . (3.28)

This finishes the estimation of III2.
Next, for III3, we can proceed as in the case III2 and find

III3 �
∞∑

j=3

j+1∑
k=j−1

k−2∑
l=0

2ls ‖Sjg‖L∞(Rn) sup
m∈Zn

 

Ql,m

|Skf(y)| dy

∼
∞∑

j=3
2js ‖Sjg‖L∞(Rn)

j+1∑
k=j−1

2−ks
k−2∑
l=0

2ls sup
m∈Zn

 

Ql,m

|Skf(y)| dy

� ‖f‖−s ‖g‖Bs
∞,1(Rn) . (3.29)
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Finally, we deal with III4. Indeed, using the Young inequality, we conclude that

III4 �
∞∑

j=3

j+1∑
k=j−1

j+3∑
l=k−1

2ls ‖Skf‖L∞(Rn) ‖Sjg‖L∞(Rn)

∼ ‖f‖L∞(Rn)

∞∑
j=3

2js ‖Sjg‖L∞(Rn) ≤ ‖f‖L∞(Rn) ‖g‖Bs
∞,1(Rn) . (3.30)

Combining the estimates (3.25) - (3.30) the claim in Lemma 3.12 follows. �
Based on the above lemmas, we next show Theorem 3.9.

Proof of Theorem 3.9. We first prove the necessity. Indeed, applying both Lemmas 2.15
and 2.12 with p := ∞, q := 1, and s := 0, we find that

M
(
B0

∞,1(Rn)
)

↪→ M
(

B̃0
∞,1(Rn)

)
= M

(
B0

1,∞(Rn)
)

.

By this and Proposition 3.10, we then have, for any f ∈ M(B0
∞,1(Rn)),

‖f‖B0
∞,1(Rn) + ‖f‖0 ∼ ‖f‖M(B0

1,∞(Rn)) � ‖f‖M(B0
∞,1(Rn)) , (3.31)

which completes the proof of the necessity.
Conversely, we now show the sufficiency. For this purpose, let f ∈ L∞(Rn) be such 

that ‖f‖B0
∞,1(Rn) + ‖f‖0 < ∞ and let g ∈ B0

∞,1(Rn). Then

‖fg‖B0
∞,1(Rn) ≤

3∑
j=1

‖ Πj (f, g)‖B0
∞,1(Rn) =:

3∑
j=1

Ij . (3.32)

To estimate I1, we use Lemma 3.4 and the well-known embedding B0
∞,1(Rn) ↪→

L∞(Rn). These yield

I1 � ‖f‖L∞(Rn) ‖g‖B0
∞,1(Rn) ≤ ‖f‖B0

∞,1(Rn) ‖g‖B0
∞,1(Rn) . (3.33)

Next, from Lemma 3.12 with s := 0 and the aforementioned embedding B0
∞,1(Rn) ↪→

L∞(Rn) it follows that

I2 �
[
‖f‖L∞(Rn) + ‖f‖0

]
‖g‖B0

∞,1(Rn) ≤
[
‖f‖B0

∞,1(Rn) + ‖f‖0

]
‖g‖B0

∞,1(Rn) . (3.34)

Finally, again by the embedding B0
∞,1(Rn) ↪→ L∞(Rn) and by Lemma 3.4, we con-

clude that

I3 = ‖ Π1 (g, f)‖B0 (Rn) � ‖g‖L∞(Rn) ‖f‖B0 (Rn) ≤ ‖f‖B0 (Rn) ‖g‖B0 (Rn) .

∞,1 ∞,1 ∞,1 ∞,1
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A combination of the estimates for I1, I2 and I3 yields the claimed inequality for 
‖fg‖B0

∞,1(Rn). This completes the proof of Theorem 3.9. �
Finally, we deal with M(Bs

∞,1(Rn)), s ∈ (−∞, 0).

Theorem 3.13. Let s ∈ (−∞, 0) and ‖ ·‖−s be the same as in (3.1) with s therein replaced 
by −s. Then f ∈ M(Bs

∞,1(Rn)) if and only if f ∈ L∞(Rn) and

‖f‖L∞(Rn) + ‖f‖−s < ∞.

Moreover, there exist two positive constants C1 and C2 such that, for any f ∈
M(Bs

∞,1(Rn)),

C1 ‖f‖M(Bs
∞,1(Rn)) ≤ ‖f‖L∞(Rn) + ‖f‖−s ≤ C2 ‖f‖M(Bs

∞,1(Rn)) .

Compared to s = 0, we need a modified estimate of Π3 (·, ·).

Lemma 3.14. Let s ∈ (−∞, 0). Then there exists a positive constant C such that, for any 
f ∈ L∞(Rn) and g ∈ Bs

∞,1(Rn),

‖ Π3 (f, g)‖Bs
∞,1(Rn) ≤ C ‖f‖L∞(Rn) ‖g‖Bs

∞,1(Rn) .

Proof. Applying both (3.7) and the Young inequality, we obtain, for any j ∈ Z+, f ∈
L∞(Rn), and g ∈ Bs

∞,1(Rn),

‖Sj ( Π3 (f, g))‖L∞(Rn) ≤
j+3∑

k=max{2,j−1}

∥∥Sj

(
[Skf ] Sk−2g

)∥∥
L∞(Rn)

�
j+3∑

k=max{2,j−1}
‖Skf‖L∞(Rn)

∥∥Sk−2g
∥∥

L∞(Rn)

� ‖f‖L∞(Rn)

j+1∑
l=0

‖Slg‖L∞(Rn) .

Combining this, the Young inequality, the Tonelli theorem, and the assumption s ∈
(−∞, 0), we conclude that, for any f ∈ L∞(Rn) and g ∈ Bs

∞,1(Rn),

‖ Π3 (f, g)‖Bs
∞,1(Rn) � ‖f‖L∞(Rn)

∑
j∈Z+

2js

j+1∑
l=0

‖Slg‖L∞(Rn)

� ‖f‖L∞(Rn)

∑
2js

j+1∑
‖Slg‖L∞(Rn)
j∈Z+ l=0
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= ‖f‖L∞(Rn)

∞∑
l=0

‖Slg‖L∞(Rn)

∞∑
j=max{0,l−1}

2js

∼ ‖f‖L∞(Rn)

∞∑
l=0

2ls ‖Slg‖L∞(Rn) = ‖f‖L∞(Rn) ‖g‖Bs
∞,1(Rn) .

This completes the proof of Lemma 3.14. �
We now show Theorem 3.13.

Proof of Theorem 3.13. We first prove the necessity. Indeed, from both Lemmas 2.15
and 2.12 with p and q therein replaced, respectively, by ∞ and 1, we infer that

M
(
Bs

∞,1(Rn)
)

↪→ M
(

B̃s
∞,1(Rn)

)
= M

(
B−s

1,∞(Rn)
)

,

which, together with Theorem 3.1 with s replaced by −s, further implies that, for any 
f ∈ M(Bs

∞,1(Rn)),

‖f‖L∞(Rn) + ‖f‖−s ∼ ‖f‖M(B−s
1,∞(Rn)) � ‖f‖M(Bs

∞,1(Rn)) . (3.35)

This finishes the proof of the necessity. In addition, using Lemmas 3.4, 3.12, and 3.14, we 
find that, for any f ∈ L∞(Rn) with ‖f‖L∞(Rn) + ‖f‖−s < ∞ and for any g ∈ Bs

∞,1(Rn),

‖fg‖Bs
∞,1(Rn) ≤

3∑
j=1

‖ Πj (f, g)‖Bs
∞,1(Rn) �

[
‖f‖L∞(Rn) + ‖f‖−s

]
‖g‖Bs

∞,1(Rn) ,

which further implies that f ∈ M(Bs
∞,1(Rn)) and

‖f‖M(Bs
∞,1(Rn)) � ‖f‖L∞(Rn) + ‖f‖−s .

This finishes the proof of the sufficiency. By this estimate and (3.35), we conclude that, 
for any f ∈ M(Bs

∞,1(Rn)),

‖f‖M(Bs
∞,1(Rn)) ∼ ‖f‖L∞(Rn) + ‖f‖−s ,

which completes the proof of Theorem 3.13. �
4. The duality principle for multiplier spaces of Besov spaces

In this section, as an application of several characterizations of pointwise multipliers 
obtained in Section 3, we shall give now a proof of the duality principle for multiplier 
spaces of Besov spaces. Moreover, we show that the duality principle does not extend to 

quasi-Banach spaces by considering M(B
n
p −n

p,p (Rn)) and M(B0
∞,∞(Rn)).

To be precise, by the duality principle we mean the following theorem.
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Theorem 4.1. Let p, q ∈ [1, ∞] and s ∈ R. Then

M
(
Bs

p,q(Rn)
)

= M
(

B−s
p′,q′(Rn)

)
in the sense of equivalent norms.

Proof. Almost all work is done. We consider the following three cases.
Case 1) p, q ∈ [1, ∞). Because of Bs

p,q(Rn) = B̃s
p,q(Rn) and Lemma 2.12, we find that

M
(
Bs

p,q(Rn)
)

= M
(

B̃s
p,q(Rn)

)
= M

(
B−s

p′,q′(Rn)
)

.

Case 2) p = 1 and q = ∞ or p = ∞ and q = 1. In this situation, from Theorems 3.1, 
3.5, 3.9, 3.13 and Propositions 3.6 and 3.10 we further deduce that M(Bs

1,∞(Rn)) =
M(B−s

∞,1(Rn)).
Case 3) p = q = ∞. Case 1) yields M(B−s

1,1(Rn)) = M(Bs
∞,∞(Rn)). The proof is then 

complete. �
Remark 4.2. As mentioned above, generalizations need some care in view of

M
(

B̃s
∞,∞(Rn)

)
� M

(
B−s

1,1(Rn)
)

, s ∈ (0, ∞) ,

and (B̃s
∞,∞(Rn))′ = B−s

1,1(Rn), see Remark 2.13.

Moreover, we should point out that this principle can not extend to quasi-Banach 
spaces. Here is a counterexample. In case p ∈ (0, 1) we know that(

B
n
p −n

p,p (Rn)
)′

= B0
∞,∞(Rn),

see Lemma 2.6(ii).

Theorem 4.3. Let p ∈ (0, 1). Then M(B
n
p −n

p,p (Rn)) is a proper subspace of M(B0
∞,∞(Rn)).

To show this theorem, we require the Fourier analytic characterization of the multiplier 
space M(B0

∞,∞(Rn)). Let b ∈ R. Recall that the Triebel–Lizorkin space F 0
∞,1(Rn) (resp. 

the Besov space with logarithmic smoothness B0,b
∞,∞(Rn)) is defined to be the set of all 

f ∈ S′(Rn) such that

‖f‖F 0
∞,1(Rn) := sup

j∈Z, m∈Zn

 

Qj,m

∞∑
k=max{0,j}

|Skf(x)| dx < ∞

(
resp. ‖f‖B0,b

∞,∞(Rn) := sup
k∈Z

(1 + k)b ‖Skf‖L∞(Rn) < ∞
)

.

+
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Then the following characterization of M(B0
∞,∞(Rn)) is just [15, Theorem 4].

Proposition 4.4. f ∈ M(B0
∞,∞(Rn)) if and only if f ∈ L∞(Rn) and

‖f‖

M(B0

∞,∞(Rn)) := ‖f‖L∞(Rn) + ‖f‖F 0
∞,1(Rn) + ‖f‖B0,1

∞,∞(Rn) < ∞.

Moreover, there exist two positive constants C1 and C2 such that, for any f ∈
M(B0

∞,∞(Rn)),

C1 ‖f‖M(B0
∞,∞(Rn)) ≤ ‖f‖


M(B0
∞,∞(Rn)) ≤ C2 ‖f‖M(B0

∞,∞(Rn)) .

Via this proposition, we now prove Theorem 4.3.

Proof of Theorem 4.3. Using Lemma 2.6(ii) and using Lemma 2.10 with X := B
n
p −n

p,p (Rn),
we have

M
(

B
n
p −n

p,p (Rn)
)

↪→ M
(
B0

∞,∞(Rn)
)

.

Next, we show that

M
(
B0

∞,∞(Rn)
)

\ M
(

B
n
p −n

p,p (Rn)
)

�= ∅. (4.1)

To do this, for any x ∈ Rn, let

f(x) :=
∑
j∈N

(1 + 5j)− 1
p ei25jx1 .

By this and the assumption p ∈ (0, 1), we find that

‖f‖L∞(Rn) ≤
∑
j∈N

1
(1 + 5j)

1
p

< ∞,

which further implies that f ∈ L∞(Rn). On the other hand, observe that, for any k ∈ Z+
and x ∈ Rn,

Skf(x) =
{

(1 + k)− 1
p ei2kx1 when k = 5j for some j ∈ N;

0 otherwise.
(4.2)

From this and the assumption p ∈ (0, 1) again, we deduce that

‖f‖F 0
∞,1(Rn) =

∑
j∈N

1
(1 + 5j)

1
p

< ∞

and
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‖f‖B0,1
∞,∞(Rn) = sup

j∈N

{
(1 + 5j)1− 1

p

}
< ∞.

These, combined with both the fact that f ∈ L∞(Rn) and Proposition 4.4, further imply

‖f‖

M(B0

∞,∞(Rn)) < ∞

and hence f ∈ M(B0
∞,∞(Rn)).

We now prove that f /∈ M(B
n
p −n

p,p (Rn)). Noticing that ϕ0 ∈ S(Rn) ⊂ B
n
p −n

p,p (Rn), 
we only need to show fϕ0 /∈ B

n
p −n

p,p (Rn). Indeed, applying [15, (5.4)], [28, Proposition 
4.4.2/4], and (4.2), we have

‖ Π1 (f, ϕ0)‖
B

n
p

−n

p,p (Rn)
� ‖f‖L∞(Rn) ‖ϕ0‖

B
n
p

−n

p,p (Rn)
< ∞

and

‖ Π2 (f, ϕ0)‖
B

n
p

−n

p,p (Rn)
� ‖f‖B0

∞,∞(Rn) ‖ϕ0‖
B

ε+ n
p

−n

p,p (Rn)
= ‖ϕ0‖

B
ε+ n

p
−n

p,p (Rn)
< ∞.

Here ε ∈ (0, ∞) is arbitrary. Therefore, to prove fϕ0 /∈ B
n
p −n

p,p (Rn), it suffices to show 

Π3 (f, ϕ0) /∈ B
n
p −n

p,p (Rn). For this purpose, let ψ0, ψ1 ∈ S(Rn) be such that

1B(0,5) ≤ ψ0 ≤ 1B(0,6)

and

1B(0, 159
32 )\B(0, 33

32 ) ≤ ψ1 ≤ 1B(0,5)\B(0,1).

For any h ∈ S′(Rn) and k ∈ N, let

S̃0h := F−1 (ψ0F h) and S̃kh := F−1 (ψ1
(
2−k+1·

)
F h

)
. (4.3)

Observe that, for any k ∈ N,

suppF
(

S̃kf
)

⊂
{

x ∈ Rn : 2k−1 ≤ |x| ≤ 5 · 2k−1} .

By this, the local mean characterization of Besov spaces (see, for instance, [39, Theorem 
2.7]), (2.9), and (4.2), we conclude that

‖ Π3 (f, ϕ0)‖p

B
n
p

−n

p,p (Rn)

∼
∑

2ni(1−p)
∥∥∥S̃i ( Π3 (f, ϕ0))

∥∥∥p

Lp(Rn)

i∈Z+
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≥
∑
j∈N

25nj(1−p)

∥∥∥∥∥∥S̃5j

⎛⎝ 5j+4∑
k=5j−1

[Skf ] Sk−2ϕ0

⎞⎠∥∥∥∥∥∥
p

Lp(Rn)

=
∑
j∈N

25nj(1−p)(1 + 5j)−1
∥∥∥S̃5j

(
ei(25j ,0,...,0)·(·)S5j−2ϕ0

)∥∥∥p

Lp(Rn)
. (4.4)

Using (2.1), (2.2), and (2.3), we find that, for any k ∈ N ∩ [4, ∞),

supp φk ⊂ B(0, 3 · 2k−1) \ B(0, 2k−1) ⊂ [B(0, 8)]� ,

which, together with (2.1) again, further implies that, for any k ∈ N ∩ [4, ∞), supp φ0 ∩
supp φk = ∅ and hence φkφ0 = 0. From this and the fact that 

∑
k∈Z+

φk = 1, it follows 
that, for any j ∈ N,

F
(
S5j−2ϕ0

)
= (2π)− n

2

5j−2∑
k=0

φkφ0 = (2π)− n
2

∑
k∈Z+

φkφ0 = (2π)− n
2 φ0.

Combining this and (4.4), we obtain

‖ Π3 (f, ϕ0)‖p

B
n
p

−n

p,p (Rn)
�

∑
j∈N

25nj(1−p)(1+5j)−1
∥∥∥S̃5j

(
ei(25j ,0,...,0)·(·)ϕ0

)∥∥∥p

Lp(Rn)
. (4.5)

In addition, for any j ∈ N, we have

F
(

S̃5j

(
ei(25j ,0,...,0)·(·)ϕ0

))
= (2π)− n

2 ψ1
(
2−5j+1·

)
φ0

(
· −

(
25j , 0, . . . , 0

))
. (4.6)

Observe that, for any given j ∈ N and for any x ∈ Rn with |x − (25j , 0, . . . , 0)| < 3
2 , we 

have ∣∣2−5j+1x
∣∣ ≤ 2−5j+1 ∣∣x −

(
25j , 0, . . . , 0

)∣∣ + 2 <
3
32 + 2 <

159
32

and ∣∣2−5j+1x
∣∣ ≥ 2 − 2−5j+1 ∣∣x −

(
25j , 0, . . . , 0

)∣∣ > 2 − 3
32 >

33
32 .

From this and the assumption ψ11B(0, 159
32 )\B(0, 33

32 ) = 1, we infer that, for any j ∈ N,

ψ1
(
2−5j+1·

)
φ0

(
· −

(
25j , 0, . . . , 0

))
= φ0

(
· −

(
25j , 0, . . . , 0

))
,

which, combined with (4.6), (4.5), and the assumption p ∈ (0, 1), further implies that, 
for any j ∈ N,

S̃5j

(
ei(25j ,0,...,0)·(·)ϕ0

)
= ei(25j ,0,...,0)·(·)ϕ0
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and hence

‖ Π3 (f, ϕ0)‖p

B
n
p

−n

p,p (Rn)
� ‖ϕ0‖p

Lp(Rn)

∑
j∈N

25nj(1−p)(1 + 5j)−1 = ∞.

Thus, fϕ0 /∈ B
n
p −n

p,p (Rn) and therefore

f ∈ M
(
B0

∞,∞(Rn)
)

\ M
(

B
n
p −n

p,p (Rn)
)

.

The proof is then complete. �
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Data will be made available on request.
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