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Abstract: Non-destructive and reliable radiation-based gauges have been routinely used in industry
to determine the thickness of metal layers. When the material’s composition is understood in
advance, only then can the standard radiation thickness meter be relied upon. Errors in thickness
measurements are to be expected in settings where the actual composition of the material may deviate
significantly from the nominal composition, such as rolled metal manufacturers. In this research, an
X-ray-based system is proposed to determine the thickness of an aluminum sheet regardless of its
alloy type. In the presented detection system, an X-ray tube with a voltage of 150 kV and two sodium
iodide detectors, a transmission detector and a backscattering detector, were used. Between the X-ray
tube and the transmission detector, an aluminum plate with different thicknesses, ranging from 2 to
45 mm, and with four alloys named 1050, 3050, 5052, and 6061 were simulated. The MCNP code was
used as a very powerful platform in the implementation of radiation-based systems in this research
to simulate the detection structure and the spectra recorded using the detectors. From the spectra
recorded using two detectors, three features of the total count of both detectors and the maximum
value of the transmission detector were extracted. These characteristics were applied to the inputs
of an RBF neural network to obtain the relationship between the inputs and the thickness of the
aluminum plate. The trained neural network was able to determine the thickness of the aluminum
with an MRE of 2.11%. Although the presented methodology is used to determine the thickness of
the aluminum plate independent of the type of alloy, it can be used to determine the thickness of
other metals as well.

Keywords: nondestructive testing; aluminum plate; thickness meter; RBF neural network; X-ray-based
detection system; alloy

1. Introduction

Despite the fact that they cannot precisely determine the metal thickness with a high
surface roughness and require a connection between the measuring tool and a moving sheet
of metal [1], contact thickness measures are generally reliable and can operate regardless
of the temperature of the metal. Metal sheet thickness has been measured using radiation
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gauges for quite some time. Radiation sources and detectors, which are on the opposite
ends of the sheet, make up the bulk of a radiation thickness gauge. By specifying the
material’s composition, a conventional radiation thickness meter may work correctly, as
stated by Lambert–Beer law, which suggests that photon attenuation is a consequence of
either the thickness of matter or its chemical makeup. Errors in thickness measurements
are to be expected in settings where the actual composition of the material may deviate
significantly from the standard composition or the nominal, such as in rolled metal manu-
facturers [2]. If reliable measurements of the thickness of different alloys are to be collected,
the circumstances described above require the use of a traditional thickness gauge that is
based on gamma radiation and requires periodic calibration. The principal disadvantages
of continuous calibrations are the time required for each calibration procedure and the ne-
cessity of many reference samples of each kind of alloy. Some studies on the non-calibrated
thickness measurement of metal sheets of different alloys have been conducted in recent
years. Research [2] put out an idea for a theoretical procedure that may be used to deter-
mine the thickness of a variety of alloy sheets. They used two detectors and two radiation
sources of varied energies, such as two X-ray tubes of varying voltages, one X-ray tube and
one gamma ray emitter source, or two gamma ray emitter sources of various energies. They
were able to detect a change in the composition of the sheet by analyzing the difference in
the ratio of coefficients of attenuation (µ) at the two energies. When they conducted this
analysis, they applauded their discovery. Changes in the ratio of the coefficient may be used
to modify results from two-energy-source thickness measurements. Rolling non-ferrous
metals into components of varying thicknesses, Artem’ev et al. [1] advocated using an X-ray
thickness meter in 2003 so that they could account for variations in the alloy composition
while making their measurements. An ionization chamber and an X-ray tube were among
their tools. Samples of copper alloys with varied thicknesses were ionized, and the resulting
signals were recorded. After giving the data that were associated with a single alloy type
as a reference, the team supplied a formulaic correction function that was based on the
value of reference in order to account for the influence that different alloy compositions
had on thickness measurement. While this approach helped to decrease systematic error
in measurements, the mathematical correction factor they used only applied to a single
alloy and hence was not suitable for online measurements of a wider variety of metals.
References [3,4] expand on the work of the aforementioned writers on the subject of metal
thickness meters. A straightforward and intelligent gamma-ray-based system that makes
use of AI was reported in [5] for the purpose of online thickness measuring of metal sheets
made of a variety of alloys. Aluminum sheets were the focus of the research in this article.
First, the MCNPX code was used to look at how well different configurations of the two
detection methods (dual energy and dual modality) worked so that the best configuration
for each could be found. Then, an experimental structure was made using the efficient
method found via simulations. Eventually, an ANN model was built and put into use for
gauging the thickness of aluminum sheets of varying compositions. X-ray tubes are very
popular among writers owing to their many benefits. X-ray tubes provide many benefits
over other types of sources, such as radioisotopes, which are discussed below. The X-ray
tube has the potential to alter the energy of the photons released by radioisotopes, even
if this energy does not vary. Although it is common knowledge that radioisotopes lose
their useful qualities with time, this is not the case with an X-ray tube. For the sake of the
individuals utilizing these equipment, having a way to turn the X-ray tube on and off is
essential. It is easier to carry them than radioactive materials [6–9].

This study employed an X-ray tube to determine the thickness of an aluminum plate
regardless of the alloy it was made of, providing a solution to the issues associated with
employing radioisotopes. In the introduced system, there is an X-ray tube and two detectors;
one of the detectors is responsible for recording transmission photons and the other is
responsible for recording backscattering photons. In order to better interpret the data,
reduce the volume of calculations, and increase the accuracy of the presented system, three
characteristics of the spectra recorded using the detectors were recorded and applied to the
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inputs of the neural network. The RBF neural network was responsible for determining
the thickness of aluminum plates. The steps of the current research are as follows: 1. The
structure of the thickness measurement system will be provided in detail. 2. The recorded
signals will be analyzed and processed, and appropriate characteristics will be extracted
from the signals. 3. An RBF neural network will be trained using the extracted features.
4. The neural network results will be analyzed.

2. Simulation Setup

To kick off this inquiry, a model of the detecting system structure to determine the
thickness of aluminum layers of varied alloys was created in the Monte Carlo N-Particle X
version (MCNPX) software. The MCNPX algorithm is an effective resource for modeling
the propagation of many types of radiation (neutrons, gamma rays, electrons, etc.) [10].
Gamma/X-ray radiation-based measuring gauges [11–13], radiation shielding [14–16],
industrial imaging systems [17–19], etc., have all been evaluated using the MCNPX code
in recent years for their performance. In this research, aluminum was investigated in four
different alloys named 1050, 3105, 5052, and 6061 in 23 different thicknesses from 2 mm to
45 mm. Densities of 2.73, 2.71, 2.7, and 2.68 g/cm3 were found for the alloys 3105, 1050,
6061, and 5052 that were used to stand in for the aluminum sheet. Density and alloy type
were selected for the simulations based on what sheets were currently accessible in the
lab, bringing the practical results closer to the predictions. The proposed thickness gauge
structure includes an X-ray tube, activated at a voltage of 150 kV, as a source and two
sodium iodide detectors. One of the detectors is placed exactly in front of the source at a
distance of 420 mm from it to record the transmitted photons. Another detector is placed
next to the source at an angle of 45 degrees to the direction of X-ray emission to record
the backscattered photons. In this simulation, the test aluminum plates in this simulation
were positioned 140 mm from the light source. The detector was a cylindrical container
containing NaI with a density of 3.67 g/cm3; its dimensions were 7.62 cm (three inches)
in length and diameter. We counted pulses using the F8 setting. For a more accurate
simulation of the entire spectrum in the detector, the MCNPX approach may use an extra
card of tally F8, aptly dubbed FT8 GEB, that accounts for the Gaussian energy broadening
of the current detector in the laboratory. The values of a, b, and c listed on this card are
experimental parameters. Similar to the prior work [20], this study made use of the GEB
card in order to calculate the necessary a, b, and c parameters. This work proposes a
more feasible geometry for modeling a whole industrial X-ray tube using the MCNPX
code by replacing the traditional cathode (electron source) and anode (tungsten target)
inside a cylindrical housing with a photon source housed within a metal shield. Since
photon tracking in the MCNPX code is substantially quicker than electron tracking, only a
photon source embedded in a metal shield was investigated in the present inquiry instead
of modeling the cathode-anode buildup. Hernandez et al. [21] showed how to utilize the
open-source program TASMIC to determine the X-ray energy spectrum and to describe the
light source. Radiation shields for X-ray tubes, which are typically cylindrical in form, are
composed of steel or lead. The output window is an opening in the shield surface through
which naturally occurring X-ray photons may escape. In this investigation, the simulated
X-ray’s output window has a 5 cm radius. A 2.5 mm thick aluminum filter was inserted in
front of the output window to filter the low energy photons and reduce scattering. Ninety-
two different aluminum plates (4 types of alloys × 23 thicknesses) were examined in the
provided thickness detection system. The data recorded using the detectors were collected
and labeled. The structure of the thickness detection system simulated by the MCNP code
can be seen in Figure 1. The spectra recorded using the transmission detector for different
aluminum plate thicknesses are shown in Figure 2. The signals recorded using the detectors
have many dimensions, and their interpretation is very difficult. On the other hand, the
large volume of these data increases the volume of calculations applied to the system. To
solve this problem, we want to feature extraction techniques. Two characteristics were
extracted from the transmission detector with the names of total count and maximum value,



Electronics 2023, 12, 4504 4 of 13

and one characteristic with the name of total count was extracted from the backscattering
detector. The extracted characteristics according to the thickness of the aluminum plate and
its type of alloy are shown in Figure 3. As is clear in this figure, the extracted features are
able to provide acceptable separability for the thicknesses of the aluminum plate; for this
purpose, these features have been used as the inputs of the neural network. The RBF neural
network will try to determine the thickness of the aluminum plate using the introduced
characteristics. In the next section, the description of the RBF neural network is provided
in detail.
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3. RBF Neural Network

Researchers in a wide variety of disciplines, including electronics [22], oil and petro-
chemicals [23,24], agricultural engineering [25,26], etc., have been interested in neural
networks due to their potential as useful tools. In the mentioned research, different neural
networks, different feature extraction methods, and different machine learning algorithms
have been used in different fields, which can inspire further research. Many scientists
have employed artificial neural networks to calculate a wide range of parameters. The
RBF neural network is widely used because it learns quickly and efficiently. The activation
function of this neural network is a radial basis function. In addition, there are just three
layers in this feed-forward type network [27–29]. Since it is a linear layer, the input layer’s
only function is to evenly disperse the inputs. The second layer uses the Gaussian function
to create a non-linear layer. Final outputs are a linear mixture of Gaussian distributions.
Since this neural network learns quickly, it may be used in real-time settings. The RBF
neural network’s second-layer radial basis function is represented by Equation (1) [29]:

ϕ(r) = exp
[
− r2

2σ2

]
(1)

where r represents a distance from the cluster’s center and σ represents the breadth of the
bell curve. The second layer contains computer units called hidden nodes. Central to each
hidden node is a parametric vector c, whose length is proportional to that of the input
vector x. The formula for determining the Euclidean distance between points c and x is as
follows (Equation (2)).

rj =
√

∑n
i=1

(
xi − wij

)2 (2)

The hidden layer’s jth neuron output is calculated using Equation (3).

∅j = exp

[
−

∑n
i=1
(
xi − wij

)2

2σ2

]
(3)

wij stands for the weights. Traditional approaches, such as the K-Mean algorithm [30] or
methods based on the Kohonen algorithm [31], may be used to obtain weights. However,
supervised training is used; the number of expected clusters (k) is selected in advance, and
the best fit is obtained using these techniques. When putting together a neural network, the
information is first divided into two categories: training data and test data. The training
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data are used to create a neural network, with the various retinal parameters tuned to
minimize error. After the training process is complete, the network’s performance should
be assessed with data it has never seen before. If a network makes it this far, it will be able
to function properly under real-world situations. In this study, the neural network was
trained and its parameters optimized using around 70% of the available data, while the
remaining data were used as input during the assessment phase. The RBF neural network
was trained and tested in MATLAB 9.5 R2018a for this study. Although there are several
pre-designed toolboxes in this software for training various neural networks, none were
utilized in this study. Instead, each step was carefully programmed from scratch. The
neural network was trained using the characteristics of the total count of both detectors
and the maximum value of the transmission detector as inputs, and the thickness of the
aluminum layer as the output. In an iterative process, we tested several configurations of
the hidden layer’s neurons until we found one that produced the fewest errors on both the
test data and the training data. It is important to tailor your optimization strategy to the
specifics of your data, which is why there are many different approaches. In this study,
the inputs and output data were transformed to lie within the interval [0, 1], and once the
network was trained, the transformed data were restored to their original values.

4. Results

In this research, an RBF neural network was trained to detect the thickness of the
aluminum layer. This neural network used the total count of both detectors and the
maximum value of the transmission detector as inputs. The network’s output was the
aluminum layer’s thickness in mm. The neural network was implemented after simulations
of different states of the aluminum layer by MCNP code. There were three neurons in the
input layer, ten in the hidden layer, and one in the output layer of the trained network.
After training and evaluating a variety of neural networks having anywhere from five to
thirty hidden neurons, it was determined that the newly introduced structure provided the
maximum accuracy. Table 1 shows the results from the evaluation of various RBF networks
from 5 to 30 neurons. As is clear from this table, with the low number of neurons, the error
of the training data is very high, which indicates that the neural network is not trained well.
Also, with the increase in the number of neurons, the error of the training data decreases,
but the error of the test data increases sharply, which shows that with the increase in the
number of neurons, the network has moved towards overfitting. Using 10 neurons in
the hidden layer has reduced the error of both training and testing data to an acceptable
amount, so this structure was introduced as the optimal structure. Figure 4 depicts the
organizational framework of this network. Table 2 displays the network’s specific features.
As was discussed before, the available data were separated into training and testing sets.
The division of these data is completely random so that the neural network can be trained
and tested from all data dispersions. Of the 92 available data, 64 were assigned to the
training section, and 28 were used for the final test. The division of training and test data
is completely random. The performance of the trained neural network was displayed
graphically with two regression and error graphs (Figure 5). A black line and purple circles
represent the regression plot. The black line shows the desired output, and the purple
circles are the outputs of the neural network. The closer they are, the better the trained
neural network will be. For each data point, the error graph displays the deviation from
the target output that was produced by the neural network. In order to calculate the error
rate of the neural network, three error parameters named mean relative error percentages
(MRE%), root mean square error (RMSE), and mean absolute error (MAE) were calculated
using equations 4 to 6. The RMSE calculates the average deviation between the values that
a statistical model predicts and the actual values. It is the residuals’ standard deviation in
mathematics. The difference between the regression line and the data points is represented
by residuals. The ratio of the measurement’s absolute error to the actual measurement is
known as the relative error. Using this technique, we can calculate the absolute error’s size
in terms of the measurement’s actual size. The difference between the predicted value and
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the actual value, expressed as an absolute number, is the absolute error. The MAE tells us
how much of an error we can typically anticipate from the forecast.

MRE% = 100 × 1
N ∑N

j=1

∣∣∣∣∣Xj(Exp)− Xj(Pred)
Xj(Pred)

∣∣∣∣∣ (4)

RMSE =

∑N
j=1
(
Xj(Exp)− Xj(Pred)

)2

N

0.5

(5)

MAE% =
1
N ∑N

j=1

∣∣Xj(Exp)− Xj(Pred)
∣∣ (6)

Table 1. Results from the evaluation of various RBF networks from 5 to 30 neurons.

The Number of Hidden Layer Neurons RMSE Train RMSE Test

5 5.18 8.18
6 4.27 4.29
7 3.22 2.18
8 1.72 2.19
9 0.95 1.01
10 0.252 0.25
11 0.20 0.51
12 0.18 0.68
13 0.15 0.66
14 0.13 0.91
15 0.13 1.98
16 0.11 3.89
17 0.10 4.05
18 0.098 6.19
19 0.092 8.95
20 0.091 8.52
21 0.086 10.99
22 0.081 10.55
23 0.080 12.15
24 0.076 12.56
25 0.070 19.55
26 0.064 19.80

127 0.062 19.85
28 0.052 19.66
29 0.051 20.22
30 0.050 18.55
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Table 2. The specifications of the implemented neural network.

Type of Neural Network RBF

Goal if MSE 0
Spread 0.1

MATLAB function newrb
Input neurons 3

Hidden neurons 10
Output neuron 1
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N is the number of observations, X (Exp) and X (Pred) are the experimental and
projected (ANN) values, respectively. The calculated error parameters for all data—training
data and test data—can be seen separately in Table 2. As is clear in this table, the neural
network was able to calculate the thickness of the aluminum layer independent of the type
of alloy with an MRE of 2.11%, which is considered to be a suitable and high accuracy. The
neural network’s input data, target output, output calculated by the neural network, and
network error are shown in Tables 3 and 4.

Table 3. Calculated error parameters.

MRE% of all data 2.11%
RMSE of all data 0.25
MAE of all data 0.21

MRE% of train data 2.37%
RMSE of train data 0.25
MAE of train data 0.21
MRE% of test data 1.50%
RMSE of test data 0.25
MAE of test data 0.20

Table 4. The neural network’s input data, target output, output calculated by the neural network,
and network error.

Item
Total Count of
Transmission

Detector

Total Count of
Backscatter

Detector

Maximum Value
of Transmission

Detector

Target
Outputs

(mm)

Outputs of
Neural Network

(mm)
Error Type of

Alloy

1 0.7069 0.0013 0.0128 1 1.1483 −0.1483 1050
2 0.5339 0.0018 0.0101 3 2.9282 0.0718 1050
3 0.4297 0.0021 0.0086 5 4.9103 0.0897 1050
4 0.3563 0.0024 0.0075 7 6.7012 0.2988 1050
5 0.3002 0.0027 0.0064 9 8.6789 0.3211 1050
6 0.2559 0.0029 0.0055 11 10.8508 0.1492 1050
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Table 4. Cont.

Item
Total Count of
Transmission

Detector

Total Count of
Backscatter

Detector

Maximum Value
of Transmission

Detector

Target
Outputs

(mm)

Outputs of
Neural Network

(mm)
Error Type of

Alloy

7 0.2200 0.0031 0.0047 13 12.8167 0.1833 1050
8 0.1903 0.0032 0.0040 15 14.7766 0.2234 1050
9 0.3563 0.0024 0.0075 17 16.7012 0.2988 1050

10 0.1446 0.0034 0.0030 19 19.1190 −0.1190 1050
11 0.1268 0.0035 0.0026 21 21.2518 −0.2518 1050
12 0.1116 0.0035 0.0022 23 23.2491 −0.2491 1050
13 0.0985 0.0035 0.0019 25 25.0947 −0.0947 1050
14 0.0871 0.0036 0.0017 27 27.0110 −0.0110 1050
15 0.0772 0.0036 0.0014 29 28.9580 0.0420 1050
16 0.0686 0.0036 0.0013 31 31.0588 −0.0588 1050
17 0.0611 0.0037 0.0011 33 33.1052 −0.1052 1050
18 0.0545 0.0037 0.0009 35 35.2162 −0.2162 1050
19 0.0486 0.0037 0.0008 37 37.3066 −0.3066 1050
20 0.0435 0.0037 0.0007 39 39.3638 −0.3638 1050
21 0.0390 0.0037 0.0006 41 41.3416 −0.3416 1050
22 0.0349 0.0037 0.0005 43 43.2192 −0.2192 1050
23 0.0314 0.0037 0.0005 45 44.9082 0.0918 1050
24 0.6922 0.0013 0.0123 1 0.7035 0.2965 3105
25 0.5143 0.0017 0.0099 3 3.2125 −0.2125 3105
26 0.4094 0.0020 0.0083 5 5.3920 −0.3920 3105
27 0.3367 0.0023 0.0072 7 7.2782 −0.2782 3105
28 0.2818 0.0025 0.0061 9 9.5102 −0.5102 3105
29 0.2387 0.0027 0.0051 11 11.6542 −0.6542 3105
30 0.2041 0.0028 0.0043 13 13.5342 −0.5342 3105
31 0.1755 0.0029 0.0037 15 15.4634 −0.4634 3105
32 0.1520 0.0030 0.0032 17 17.4814 −0.4814 3105
33 0.1324 0.0031 0.0027 19 19.4891 −0.4891 3105
34 0.1156 0.0032 0.0023 21 21.3380 −0.3380 3105
35 0.1014 0.0032 0.0019 23 23.1459 −0.1459 3105
36 0.0891 0.0032 0.0017 25 24.9402 0.0598 3105
37 0.0785 0.0033 0.0014 27 26.7927 0.2073 3105
38 0.0693 0.0033 0.0012 29 28.8627 0.1373 3105
39 0.0615 0.0033 0.0010 31 30.9216 0.0784 3105
40 0.0546 0.0033 0.0009 33 33.0684 −0.0684 3105
41 0.0485 0.0033 0.0008 35 35.1807 −0.1807 3105
42 0.0432 0.0033 0.0006 37 37.2869 −0.2869 3105
43 0.0385 0.0034 0.0006 39 39.3344 −0.3344 3105
44 0.0344 0.0034 0.0005 41 41.2112 −0.2112 3105
45 0.0308 0.0034 0.0004 43 42.9103 0.0897 3105
46 0.0276 0.0034 0.0004 45 44.5651 0.4349 3105
47 0.7052 0.0013 0.0127 1 1.0867 −0.0867 5052
48 0.5319 0.0017 0.0101 3 2.9564 0.0436 5052
49 0.4277 0.0021 0.0086 5 4.9563 0.0437 5052
50 0.3545 0.0024 0.0075 7 6.7492 0.2508 5052
51 0.2988 0.0026 0.0064 9 8.7379 0.2621 5052
52 0.2546 0.0028 0.0055 11 10.8987 0.1013 5052
53 0.2189 0.0030 0.0047 13 12.8419 0.1581 5052
54 0.1894 0.0031 0.0040 15 14.7669 0.2331 5052
55 0.1647 0.0032 0.0035 17 16.8500 0.1500 5052
56 0.1440 0.0033 0.0030 19 18.9809 0.0191 5052
57 0.1264 0.0034 0.0026 21 21.0569 −0.0569 5052
58 0.1112 0.0034 0.0022 23 22.9636 0.0364 5052
59 0.0982 0.0035 0.0019 25 24.7798 0.2202 5052
60 0.0869 0.0035 0.0016 27 26.6535 0.3465 5052
61 0.0770 0.0035 0.0014 29 28.5749 0.4251 5052
62 0.0685 0.0036 0.0012 31 30.6065 0.3935 5052
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Table 4. Cont.

Item
Total Count of
Transmission

Detector

Total Count of
Backscatter

Detector

Maximum Value
of Transmission

Detector

Target
Outputs

(mm)

Outputs of
Neural Network

(mm)
Error Type of

Alloy

63 0.0611 0.0036 0.0011 33 32.6834 0.3166 5052
64 0.0544 0.0036 0.0009 35 34.7513 0.2487 5052
65 0.0486 0.0036 0.0008 37 36.8039 0.1961 5052
66 0.0435 0.0036 0.0007 39 38.8587 0.1413 5052
67 0.0390 0.0036 0.0006 41 40.8243 0.1757 5052
68 0.0349 0.0036 0.0005 43 42.6907 0.3093 5052
69 0.0314 0.0036 0.0004 45 44.4360 0.5640 5052
70 0.7073 0.0013 0.0128 1 1.1634 −0.1634 6061
71 0.5343 0.0018 0.0101 3 2.9220 0.0780 6061
72 0.4301 0.0021 0.0086 5 4.8987 0.1013 6061
73 0.3568 0.0024 0.0075 7 6.6871 0.3129 6061
74 0.3009 0.0027 0.0064 9 8.6485 0.3515 6061
75 0.2564 0.0029 0.0055 11 10.8200 0.1800 6061
76 0.2206 0.0031 0.0047 13 12.7792 0.2208 6061
77 0.1909 0.0032 0.0041 15 14.7359 0.2641 6061
78 0.1660 0.0033 0.0035 17 16.8661 0.1339 6061
79 0.1452 0.0034 0.0030 19 19.0688 −0.0688 6061
80 0.1273 0.0034 0.0026 21 21.1638 −0.1638 6061
81 0.1121 0.0035 0.0023 23 23.1178 −0.1178 6061
82 0.0990 0.0035 0.0019 25 25.0342 −0.0342 6061
83 0.0875 0.0036 0.0017 27 26.8872 0.1128 6061
84 0.0776 0.0036 0.0015 29 28.8727 0.1273 6061
85 0.0690 0.0036 0.0013 31 30.8978 0.1022 6061
86 0.0614 0.0037 0.0011 33 32.9820 0.0180 6061
87 0.0548 0.0037 0.0009 35 35.0459 −0.0459 6061
88 0.0489 0.0037 0.0008 37 37.1411 −0.1411 6061
89 0.0438 0.0037 0.0007 39 39.1852 −0.1852 6061
90 0.0392 0.0037 0.0006 41 41.2230 −0.2230 6061
91 0.0352 0.0037 0.0005 43 43.1059 −0.1059 6061
92 0.0316 0.0037 0.0005 45 44.8042 0.1958 6061

The present study determined the aluminum layer thickness without regard to alloy
composition. While this technique was developed for use with aluminum plates, it has
broad applicability for determining the thickness of other metals. Furthermore, a neural
network was unable to distinguish between various aluminum plate alloys in this study;
however, future studies will be able to do so by utilizing a variety of feature extraction
approaches, including time, frequency, wavelet transform, etc. To further improve the
precision of the thickness detection system, it is also feasible to analyze the efficiency of
several neural networks like MLP, GMDH, etc.

5. Conclusions

The purpose of this study was to introduce a technique that uses X-rays to precisely
measure the thickness of aluminum plates. The structure of the proposed detection system
consisted of an X-ray tube and two sodium iodide detectors. The aluminum plate with
different thicknesses and four different alleles was placed in this detection system, and the
recorded signals using the scattering and transmission detectors were collected and labeled.
In order to reduce the volume of calculations, increase the accuracy, and better interpret
the collected data, three characteristics were extracted: the total count of transmission and
backscattering detectors and the maximum value of the transmission detector. Although
these characteristics did not have the ability to distinguish different alloys well, they
separated the thicknesses of the aluminum layer well. These characteristics were applied
to the inputs of an RBF neural network to determine the thickness of aluminum. Of the
92 available samples, 64 were utilized to train the neural network, while the remaining
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data were used as test data to make sure the network was working as intended. After
investigating the architecture of many neural networks to determine the most accurate one,
researchers discovered that an RBF neural network with 10 neurons in the hidden layer
can accurately predict the value of the target parameter. The result of the neural network’s
performance was determining the thickness of the aluminum plate with an MRE of 2.11%,
which is a very small error. In future research, the use of different neural networks and
methods based on feature extraction may be on the agenda of researchers in this field, who
will try to improve the structure and increase the accuracy of the detection system.
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