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Abstract: Methanobactin OB3b (Mbn-OB3b) is a
unique natural product with stunning affinity for copper
ions (Ka�Cu(I) 1034). Here, we report the first total
synthesis of Cu(I)-bound methanobactin OB3b featuring
as key transformations a cyclodehydration-thioacylation
sequence, to generate the conjugated heterocyclic sys-
tems, and a copper-templated cyclization, to complete
the caged structure of the very sensitive target com-
pound.

Living organisms have developed specific strategies for
regulating the transport and bioavailability of essential
transition metals[1] while protecting themselves against their
toxicity.[2] Relevant examples are methanotrophic bacteria,
which depend on copper-dependent enzymes to oxidize
methane, their vital energy source.[3] In case of a copper
deficit, these bacteria secrete chalkophores, the methano-
bactins (Mbns), to sequestrate copper ions from the environ-
ment and to import them.[4]

Among the Mbns,[5] Methylosinus trichosporium OB3b
methanobactin (Mbn-OB3b) (Scheme 1, apo-1) is probably
the most well characterized. It has an enormous affinity for
copper (Ka�Cu(I) 1034).[6] Its structure 1, that was initially
assigned by X-ray crystallography[7] and revised by NMR
spectroscopy,[4c] features two unique ene-thiol groups con-
jugated with oxazolone rings as chelating ligands for Cu(I).
The two chelating residues are embedded in an undecapep-
tide framework rigidified by a disulfide bond.

The biosynthetic machinery for the production of Cu-
Mbn-OB3b (1) has been described.[8] Interestingly, the Mbns
are ribosomally synthesized and post-translationally modi-
fied peptides (RiPPs), produced from the genetically
encoded peptide MbnA (Scheme 1). The peculiar oxazo-
lone-thioamides are oxidatively produced from two cysteine
residues.[8c] The chalkophore apo-1 seems to be completed
by cleavage of the leader peptide, oxidative transamination
of the N-terminal leucine,[8b] and disulfide bond formation.

Mbn-OB3b has shown encouraging data in investigations for
the treatment of Wilson’s disease.[9] However, the reported
acid sensitivity and temperature instability (37 °C) likely
limit its usefulness in therapeutic applications. Understand-
ing the structural features that govern copper selectivity
would be important for the development of novel treatment
options, and could likewise increase our understanding of
copper transport in methanotrophic bacteria.

In order to gain access by synthesis, we traced back Cu-
Mbn 1 to a protected open chain precursor 2 (Scheme 1)
that was disconnected into four segments: Tripeptide 6,
tetrapeptide 4, and oxazolone building blocks 3 and 5. The
latter were designed to carry phenolate leaving groups in the
β-position, in order to enable an addition-elimination
sequence (Scheme 2A) and to mask the thioamide group as
a conjugated vinylthioether 7. Tuning the reactivity of 7 by
using different aryl groups (Ar) seemed important, to
control stability and, possibly, 1,2 (7!9) vs. 1,4-addition
(7!8, Scheme 2A).[10]

Compared to products of an Erlenmeyer-Plöchl
synthesis[11] or its variants[12] (Scheme 2B), only limited data
are available on azlactone thioenols.[13] Z-stereochemistry
was expected, guided by H-bonding (8). For getting general
access (Scheme 2C), hippuric acid 10 was
cyclodehydrated[10e] to oxazolone 12, which was subjected to
soft enolization.[14] The bromomagnesium enolate such
generated was then successfully thioacylated with penta-
fluorophenyl thionocarbonate 13 and DMAP.[15] For stabiliz-
ing the vinylthioether, the MOM group was found suitable.
The stable vinylthioether 16 was obtained in 59% yield as
mixture of isomers (E/Z=1 :1). Preliminary experiments
indicated that 1,4-additions were possible for substrate 16.

For the leucine-derived oxazolone 3, TBS-protected acid
17[16] and glycine benzyl ester hydrochloride were coupled to
give amide 18 in 65% yield (Scheme 3). Deprotection of the
TBS group and oxidation of the resulting alcohol furnished
an α-ketoamide, but oxazolone synthesis employing this
ketone was unsuccessful. The cyclodehydratation and thio-
acylation of TBS-protected alcohol 18, after its debenzyla-
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tion, was successful. However, low yield and unsatisfying
regioselectivity of the successive aza-Michael addition
(Scheme 2A) rendered this compound unusable. Interest-

ingly, masking the ketoamide as an silyl enol ether was
found more promising. Upon selective cleavage of the
resulting benzyl ester, the surprisingly stable silyl-enol ether
20 was obtained in 65% yield. The acid 20 was then
subjected to the cyclization-thioacylation sequence for
providing the building block 3 in 62% yield. The proline-
derived oxazolone was synthesized in a similar fashion, by
converting L-proline (21) to the Alloc-protected[17] building

Scheme 1. Chemical structure of Cu(I)-methanobactin OB3b (1) and retrosynthetic considerations. Alloc=allyloxycarbonyl; Ar=aryl;
Dpm=diphenylmethyl; Fmoc=9-fluorenylmethyloxycarbonyl; MOM=methoxymethyl; PMP=p-methoxyphenyl; TBS= tert-butyldimethylsilyl;
Tr= triphenylmethyl.

Scheme 2. A) Reactivity of the general 5(4H)-oxazolone-thioamide
scaffold 7 toward primary amine nucleophiles (RNH2); B) Erlenmeyer-
Plöchl synthesis; C) thioamide building block synthesis. The insert
shows the general structure of the thioacylating reagents explored.
Reagents and conditions: (a) Ac2O, NaOAc, ΔT, PhCHO; (b) 2-chloro-
4,6-dimethoxy-1,3,5-triazine (1.2 equiv), NMM (1.2 equiv), THF, 25 °C,
3 h; (c) 13 (1.4 equiv), MgBr2·Et2O (2.5 equiv), i-Pr2NEt (3.0 equiv),
DMAP (0.2 equiv), 1,4-dioxane, 25 °C, 1 h; (d) MOMCl (3.0 equiv),
25 °C, 1 h. DMAP=4-(dimethylamino)pyridine; PG=protecting group.

Scheme 3. Synthesis of amino-acid-derived azlactones 3 and 5.
Reagents and conditions: (a) NH2-Gly-OBn·HCl (1.1 equiv), EDC·HCl
(1.2 equiv), i-Pr2NEt (3.3 equiv), CH2Cl2, 25 °C, 15 h; (b) 50% HF,
CH3CN, 6 h; (c) DMP (1.2 equiv), CH2Cl2, 0 °C!25 °C, 1 h; (d) TBSOTf
(2.0 equiv), Et3N (3.0 equiv), DMAP (0.2 equiv), THF, 0 °C!25 °C, 15 h;
(e) 1,4-cyclohexadiene, 10% Pd/C, EtOH, 25 °C, 3 h; (f) 2-Chloro-4,6-
dimethoxy-1,3,5-triazine (1.2 equiv), NMM (1.2 equiv), THF, 25 °C, 5 h;
(g) 13 (1.4 equiv), MgBr2·Et2O (2.5 equiv), i-Pr2NEt (3.0 equiv), DMAP
(0.2 equiv), 1,4-dioxane, 25 °C, 1 h, then MOMCl (3.0 equiv), 25 °C, 1 h.
Bn=benzyl; DMP=Dess Martin Periodinan; EDC=N’-(3-dimeth-
ylaminopropyl)-N-ethylcarbodiimide; NMM=N-methylmorpholine;
TBSOTf= tert-butyldimethylsilyl trifluoromethanesulfonate.
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block 5 by using reagent 14 (5 steps, 30%, Supporting
Information).

Tetrapeptide 4 was assembled on solid support starting
from Fmoc protected amino acids O-TBS-(L)-tyrosine,[18] S-
Tr-(L)-cysteine[19] and O-TBS-(L)-serine[20] in 70% yield
(Supporting Information). Tripeptide 6 required neutral or
mildly acid labile C-terminal protection. Here, the balance
of stability and lability of a Dpm ester was key for success.[21]

The N-terminal tripeptide 6 was synthesized in solution by
using Alloc-protected amino acids in 45% yield (Supporting
Information).

To achieve the assembly, solid-phase bound tetrapeptide
4 was Fmoc-deprotected, treated with Michael-acceptor 3,
and released from the support, to cleanly give the desired
product 22 (50% yield, Scheme 4). In contrast, the azlactone

5 underwent a sluggish reaction with amine 6, to obtain the
1,4-addition elimination product 24 (25% yield) together
with the 1,2-addition product (Supporting Information).
Apparently, the transformation benefits from an electron-
withdrawing substituent at C2, which is absent in compound
5. Still, the desired isomer 24 could be accessed on a gram
scale.

After selective removal of the silyl-enol ether 22 under
carefully controlled conditions (0.5% TFA in CH2Cl2), the
carboxyl group of resulting acid 23 was activated with
PyAOP (Scheme 5). In parallel, the N-terminal Alloc group
of peptide 24 was rapidly cleaved.[17] The resulting labile
amine 25 was immediately combined with activated acid 23,
to successfully obtain the linear peptide 2 as a single isomer
in 37% yield (Scheme 5).

With precursor 2 accessible, Tr- and Dpm-groups were
successfully deprotected by rapid treatment with 5% TFA
in HFIP and triethylsilane (TES). HFIP as the solvent
shortened the reaction time[22] and left the oxazolone rings
intact. Unfortunately, the free peptide thiol such obtained
was too labile (base, oxidation) or too unreactive (neutral)
to effect disulfide bond formation. These results suggested
that pre-organizing the peptide chain might be necessary. It
was then found that treatment of peptide 2 with Cu(I) salts
mildly deprotected the MOM groups, directly forming a
stable Cu(I)-cryptate. Its exposure to reagent 26 smoothly
installed the disulfide bond. The resultant Cu(I)-complex 27
was then briefly exposed to a buffered solution of hydrogen
fluoride pyridine complex with strict timing control, in order
to effect deprotection an minimal decomposition
(Scheme 5). Finally, preparative HPLC purification at con-
trolled pH allowed the successful isolation of pure Cu(I)-
Mbn-OB3b (1, Supporting Information). Several instabilities
and decomposition pathways were observed en route
(Supporting Information) and were difficult to be entirely
suppressed. The mass balance of the final steps particularly
suffered when rigorous purification was pursued.

Scheme 4. Synthesis of C- and N-terminus. Reagent and conditions: (a)
1. 20% piperidine in DMF (2×10 min), 25 °C; 2. 3 (1.0 equiv), CH2Cl2,
25 °C, 7 h; 3. 30% HFIP in CH2Cl2 (2×30 min), 25 °C; (b) 0.5% TFA in
CH2Cl2, 25 °C, 1 h; (c) 5 (1.0 equiv), CH2Cl2, 25 °C, 5 days; (d)
[Pd(PPh3)4] (0.2 equiv), N,N’-DMBA (3.0 equiv), CH2Cl2, 25 °C, 3 min.
DMF=N,N’-dimethylformamide; N,N’-DMBA=1,3-dimethylbarbituric
acid; HFIP=hexafluoroisopropanol; TFA= trifluoroacetic acid.

Scheme 5. Completion of Cu-Mbn-OB3b synthesis. Reagent and conditions: (a) 23 (1.2 equiv), PyAOP (1.2 equiv), HOAt (0.12 equiv), 2,6-lutidine
(2.4 equiv), CH2Cl2, 25 °C, 30 min then 25 (1.0 equiv), CH2Cl2, 25 °C, 45 min; (b) 5% TFA, HFIP/Et3SiH (95 :5), 25 °C, 5 min; (c) CuI (3.5 equiv), 3%
2,6-lutidine, CH2Cl2/CH3CN/EtOH (5 :5 :2), 25 °C, 10 min, then 26 (0.65 equiv), 25 °C, 1 h; (d) 70% HF-Py/2,6-lutidine (1 :1), HFIP/Et3SiH (2.8 :1),
25 °C, 6 min. HOAt=1-hydroxy-7-azabenzotriazole; PyAOP= (7-azabenzotriazol-1-yloxy)trispyrrolidinophosphonium hexafluorophosphate.
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The NMR data of synthetic 1 compared favourably to
reported data (Supporting Information).[4c] High resolution
mass (HR-MS) and diamagnetic NMR analysis confirmed
the presence of a Cu(I) ion (Supporting Information),
supported by the characteristic isotopic pattern of copper.[23]

Interestingly, HR-MS analysis of Cu-Mbn-OB3b (1) in
acidic medium showed an additional signal of the apo-ligand
ion[7] (Supporting Information), indicating the acid lability
that complicated its isolation. UV/Vis spectra displayed the
distinctive absorbance pattern of natural Cu-Mbn-OB3b (1)
in the 350–390 nm region (Supporting Information).[7b,24]

Cyclic voltammetry (Figure 1 and Supporting Information)
confirmed the copper oxidation state. In the anodic
direction, a quasi-reversible Cu(I)/Cu(II) redox couple
centred at +60 mV (vs. ferrocenium/ferrocene, Fc+/Fc) was
observed, indicating the oxidation state of copper as +1.
Lastly, the unit cell parameters of synthetic Cu(I)-Mbn-
OB3b (1) obtained by X-ray diffraction of microcrystals
confirmed the chemical structure and identity (Supporting
Information).[24]

In conclusion, the total synthesis of Cu(I)-Methanobac-
tin OB3b (1) was accomplished by 1) novel construction of
the unprecedented azlactone-thioamide rings in a masked
form, 2) assembly of the Mbn-peptide sequence by means of
1,4-addition-elimination and fragment condensation, 3)
copper templated cyclization, and 4) a controlled final
deprotection optimized to afford pure material. We specifi-
cally note that many other assembly variants failed in our
hands, that masking the thioamide sulfur atoms was key,
and that many advanced intermediates showed pronounced
sensitivity. Preorganization by chelation - and not by the
disulfide bond - seems to shape and stabilize the peptide
scaffold. While Mbn may be biosynthesized and transported
in its apo-form,[8a] additional stabilization in cellulo of this
chemically labile entity must be suspected. Interestingly, we
have found that the two azlactone rings display distinct
chemical stability and reactivity. This observation warrants

further investigation, because, the methanobactins found in
nature have a variable N-terminal heterocycle, whereas the
C-terminal oxazolone stays invariant.[4a] Considering that
Mbn is a superb ligand for copper ions,[24] chemical
modifications of the ligand itself might be ultimately
involved in effecting Cu-uptake and -release, either directly,
or by conformational reprogramming.[25] The successful
development of synthetic methodology for the Cu-Mbn-
OB3b structure (1) will enable further studies along this
line.
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