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Abstract: Allometric equations are the most common way of assessing Aboveground biomass (AGB)
but few exist for savanna ecosystems. The need for the accurate estimation of AGB has triggered
an increase in the amount of research towards the 3D quantification of tree architecture through
Terrestrial Laser Scanning (TLS). Quantitative Structure Models (QSMs) of trees have been described
as the most accurate way. However, the accuracy of using QSMs has yet to be established for the
savanna. We implemented a non-destructive method based on TLS and QSMs. Leaf-off multi scan
TLS point clouds were acquired in 2015 in Kruger National Park, South Africa using a Riegl VZ1000.
The 3D data covered 80.8 ha with an average point density of 315.3 points/m2. Individual tree
segmentation was applied using the comparative shortest-path algorithm, resulting in 1000 trees. As
31 trees failed to be reconstructed, we reconstructed optimized QSMs for 969 trees and the computed
tree volume was converted to AGB using a wood density of 0.9. The TLS-derived AGB was compared
with AGB from three allometric equations. The best modelling results had an RMSE of 348.75 kg
(mean = 416.4 kg) and a Concordance Correlation Coefficient (CCC) of 0.91. Optimized QSMs and
model repetition gave robust estimates as given by the low coefficient of variation (CoV = 19.9%
to 27.5%). The limitations of allometric equations can be addressed by the application of QSMs on
high-density TLS data. Our study shows that the AGB of savanna vegetation can be modelled using
QSMs and TLS point clouds. The results of this study are key in understanding savanna ecology,
given its complex and dynamic nature.

Keywords: savanna; quantitative structure models; terrestrial laser scanning; aboveground biomass;
allometric equation

1. Introduction

Savanna ecosystems are characterized by the co-dominance of a continuous grass layer
and variable tree layer [1,2]. Savannas cover 20% of the land surface and play an important
role in the global carbon cycle by contributing 30% to gross primary productivity [3].
However, the inherent heterogeneity of savanna ecosystems due to the co-dominance of
different physiognomies poses a challenge in accurately quantifying the carbon contribution
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of savanna ecosystems to the global carbon pool, and their carbon sequestration potential
remains underestimated [4–6].

Aboveground biomass (AGB) is defined as “the total amount of oven-dried biological
material present above the surface in an area” [7] (p. 1). The AGB of savannas varies
spatially and temporally because of complex interactions of both biotic and abiotic drivers.
As a result, the vegetation structure in savannas is described as a function of rainfall
patterns combined with the effects of fire and herbivory [2,4,8,9]. Given the complex and
dynamic nature of savannas, it is therefore critical to find an efficient way to regularly
monitor and quantify AGB.

AGB across savannas is quantified by field measurements, which typically involve
allometric equations [10,11]. However, few allometric equations exist for savannas.
Allometric equations are mostly derived by measuring the diameter at breast height
(DBH) and tree height and seldomly include wood density [4,10,12]. Recent studies
across tropical and savanna ecosystems have shown that the inclusion of crown diameter
in the development of allometric equations provides more accurate estimates [11,13].
However, crown measurements are difficult to acquire due to inaccuracies and the pro-
cesses being labour-intensive and therefore are mostly omitted [14]. It is therefore critical
to understand the variation in individual tree architecture, especially in savanna biomes,
because tree crown structure varies significantly for a given DBH [15]. Allometries
also have a limitation in that they rely on data generated through destructive sampling
and large trees are usually underrepresented in the sample [16–18]. Accordingly, they
underestimate the actual biomass [19]. Furthermore, allometries assume that the AGB
depends directly on tree height and/or DBH, which is not the case [20]. Thus, trees with
the same DBH can have significantly different biomass, especially in savannas where
herbivory and other disturbances shape trees.

Terrestrial Laser Scanning (TLS) is an active remote sensing technology that uses a
laser to characterise vegetation structure at unprecedented scales [21,22]. TLS enables
estimates of individual tree and plot AGB which are independent of allometry, less biased
to tree size and reduce uncertainty in AGB estimation [23]. TLS scans collected over large
areas enable the calibration and validation of remote sensing AGB products. TLS has been
endorsed as crucial for the calibration of remote sensing biomass products [24]. TLS also
allows the improvement in allometric equations. For example, Lau et al. (2019) [13] and
Momo Takoudjou et al. (2018) [25] both developed allometric equations without destruc-
tive sampling for tropical forests that countered the limitations of allometric equations,
especially for large trees, using TLS data with Quantitative Structural Models (QSMs).
The ability to collect multi-temporal TLS scans makes it possible to assess the growth and
evolution of stands over time [26,27]. Thus, TLS offers a non-destructive approach and
provides accurate 3D information about vegetation structure that is difficult to obtain with
traditional methods [26,28].

The high-density point cloud together with reconstruction algorithms such as TreeQSM
has been used to quantify AGB with success in an Australian Savanna [29], boreal forest
of China [30], tropical forests of Peru, Indonesia and Guyana [31], and tropical forests
of eastern Cameroon [25] and to assess structural change [32,33]. QSMs are geometrical
models consisting of a collection of cylinders that describe a tree in a hierarchical order
and they can be used to reconstruct a 3D model of trees using point clouds to extract
various attributes [34,35]. QSMs have been described as the most accurate way to estimate
vegetation structure, volume and AGB as these are independent of tree size or shape [31].
QSMs have been shown to estimate AGB to within 10% accuracy as compared to destructive
data [36,37].
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Zimbres et al. (2020) [38] highlighted that building volume models such as QSMs
for savanna vegetation is a promising method to improve predictive models because
an accurate 3D volume fit of trees can be achieved which enables the shift from field
estimates or LiDAR metrices still dependent on calibration from allometric equations.
Also, allometric equations account for biomass of a certain DBH, usually 5 cm in
savanna woodland, whilst the application of TLS-QSM approach captures the whole
structure [38], including large trees which are usually not harvested resulting in large
absolute errors [29]. Thus, the TLS-QSM approach allows for the generation of biomass
models for whole plots [38].

QSMs are the key to improving savanna tree allometries and non-destructively as-
sessing biomass and how it changes over time [38]. They do not require DBH information
and show better agreement with reference data [13]. The QSM method does not rely on
a relationship with field data but it uses volume estimates based on 3D data and wood
density to derive AGB [29]. It, thus, allows AGB estimation based on the modelling of
single trees rather than using allometric models, which are based on empirical relationships
from a small sample of trees with limited structural parameters [31]. However, the accuracy
of using volume reconstruction algorithms for biomass estimation in African savannas has
yet to be established [39].

In this contribution, we aim to non-destructively estimate the woody biomass of
savanna vegetation through high-density TLS point clouds and QSMs. In addition, we also
establish the reliability of using QSMs in estimating the AGB by deriving the sensitivity
of the estimated volume for each reconstructed tree. This enables us to quantify and
identify the biases of working with TLS data in deriving AGB in African savannas which is
critical when scaling up to satellite AGB products. We present a workflow based on TLS
as an approach to estimate AGB of savanna vegetation with the potential of developing
accurate allometric equations for the savanna ecosystem. The main objectives of the study
are the following:

1. To derive the AGB of savanna trees through a non-destructive TLS-QSM based volume
approach;

2. To quantify the uncertainty of our approach;
3. To compare the TLS-QSM approach with results from allometric equations.

2. Materials and Methods
2.1. Study Site

The study was conducted in the Kruger National Park (KNP), an extensive protected
area in the Lowveld located in the North East of South Africa (Figure 1) and was focussed
on a test site around the Skukuza eddy covariance (EC) flux tower (23◦98′S, 31◦55′E,
365 m a.s.l.). The flux tower was set up in the year 2000 to investigate the land–atmosphere
interactions in a pristine savanna environment [40]. The landscape is undulating and
climate is semi-arid with summer rains occurring from late October to February, with a
mean of around 550 mm/yr [41]. Soils throughout the study area are derived from granite
and are characterized as nutrient-poor, coarse-textured, sandy soils [41]. The open savanna
vegetation is characterised by shrubs interspersed with taller trees. The most common
shrubs, woody plants greater than 0.5 m but less than 2.5 m tall, at the site are Grewia
flavescens, Grewia bicolor, Euclea natalensis, Euclea divinorum and Ormocarpum trichocarpum
and the tree community is dominated by Combretum, Sclerocarya [40] and Vachellia and
Senegalia species [42,43].
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Figure 1. Study area in the Lowveld of NE South Africa. Lidar data collected in September 2015
by Jussi Baade; elevation data from Heckel et al. (2021) [44], Copyright provided under Creative
Commons BY 4.0; https://creativecommons.org/licenses/by/4.0/ (accessed on 15 December 2023);
GIS data from SANParks Data Repository.

2.2. Three-Dimensional Vegetation Structure Data and Pre-Processing

The vegetation was mapped with multiple return TLS on five days in September 2015
using a Riegl VZ 1000 [45]. TLS derived AGB estimates require wood only points [25,46]
because it does not model foliage or needles, so in that regard we scanned in the late dry
season in 2015 to ensure reliable volume estimates and QSMs.

The TLS was mounted on a tripod, 2 m above ground and—where available—on
termite mounds to increase the elevation above the terrain, and data were collected using
angular sampling of 0.04◦ and 0.015◦. The Riegl VZ 1000 uses the near-infrared wavelength
and has an accuracy of 8 mm and a precision of 5 mm which ensures high accuracy.
TLS scans were collected from 28 scan positions arranged in a circular pattern around
the Skukuza Flux Tower covering 80.8 ha. A total of 81 temporary tie points (white
reflectors) were used for the precise georeferencing of the scans based on differential Global
Navigation Satellite System (dGNSS) position determinations using a Leica Viva GNSS
GS10 base station and a GS15 Rover (Leica, Wetzlar, Germany) tied to the South African
Trignet of permanently recording receiving stations. The 3D uncertainty of dGNSS point
measurements ranged between 0.008 and 0.02 m with a mean of 0.012 ± 0.003 m. The
number of tie points for single scan positions varied between zero and seven. Thus, a
few scan positions had to be coregistered with the other point clouds using the Riegl
RISCAN PRO Multi Station Adjustment (MSA) tool. The overall co-registration accuracy
was 0.03 m. Finally, the point cloud was filtered to remove isolated points, georeferenced to

https://creativecommons.org/licenses/by/4.0/
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the WGS84/UTM 36S coordinate system and exported to LAS format for further analysis
in LiDAR 360 software (v 5.4) (Green Valley International © 2022, Berkeley, CA, USA).
Figure 2 shows the detailed workflow of the 3D TLS point cloud data processing.
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Figure 2. Detailed workflow for the processing of TLS point cloud data.

2.3. Tree Segmentation

Individual tree segmentation was applied to the point cloud using the comparative
shortest-path (CSP) algorithm [47] implemented in LiDAR 360 (v 5.4). The study area
was divided into 21 subplots of approximately 250 × 250 m2. The segmentation process
involved classification of ground points using the triangulation interpolation algorithm [48].
To eliminate the difference in vegetation height caused by elevation, classified ground
points were used to normalize the point cloud to height above ground. Automatic tree
segmentation was conducted on the normalised point cloud using a minimum tree height
of 1.5 m and DBH of 2 cm. The resulting segments were manually edited to correct for any
under or over-segmentation [49–51]. After manual segmentation, individual tree attributes
were recalculated, and the individual trees were extracted by Tree ID. The individual trees
were further processed in Cloud Compare (v 2.12.4) [52] to convert the global coordinates
to local coordinates before structural modelling.

2.4. QSM Reconstruction of Individual Trees

The woody volume of the trees was derived using the TreeQSM (v 2.4.0) developed by
Raumonen et al. (2013) [53] and implemented in MATLAB (v 2019a). The QSM method is
described in [30,31,54]. The algorithm covers the point cloud with small subsets (surface
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patches) for branch segmentation. The patch sizes are chosen based on the tree size, com-
plexity and point density and they are defined by three parameters: PD1 (=PatchDiam1),
PD2Min (=PatchDiam2Min), and PD2Max (=PatchDiam2Max). For each tree, optimum
values for these three parameters need to be selected, and we used three different values for
PD2Max and PD1 and four values for PD2Min, resulting in 36 combinations of parameters.
PD2Min is usually the most sensitive parameter and thus its value needs to be optimized
best. In this study, the values for PD1 and PD2Max were determined using a rough estimate
of the tree DBH, with an increment of 0.02 m. The values of PD2Min used ranged from 0.02
to 0.05 m based on the minimum resolution of the point cloud, which was 0.01 m, with an
increment of 0.01 m (Table 1). The criterion trunk + branch_mean_distance was used for the
optimization as it includes all parts of the tree in modelling but gives more weight to the
trunk which ensures the trunk of the tree is modelled accurately. This criterion minimizes
the distance between the cylinder surfaces and the point cloud by computing the mean
distance between a cylinder and the points closest to it so that the weighted average over
all the cylinders is minimized.

Table 1. Examples of patch sizes used in the reconstruction for selected trees. Values for PD1 and
PD2Max were derived by dividing the tree DBH by 6 and 4, respectively.

Tree ID DBH (cm) PD1 (m) PD2Min (m) PD2Max (m)

210 46 0.06
0.08
0.10

0.02
0.03
0.04
0.05

0.10
0.12
0.14

2108 54 0.07
0.09
0.11

0.02
0.03
0.04
0.05

0.11
0.13
0.15

2139 17 0.02
0.03
0.04

0.02
0.03
0.04
0.05

0.02
0.04
0.06

2154 37 0.04
0.06
0.08

0.02
0.03
0.04
0.05

0.07
0.09
0.11

2160 62 0.08
0.10
0.12

0.02
0.03
0.04
0.05

0.13
0.15
0.17

To estimate the variability in the resulting QSMs due to the stochastic behaviour of the
TreeQSM, ten repeated QSMs were reconstructed for the different parameter combinations
resulting in 360 QSMs per tree. The volumes and other attributes computed from the QSMs
are the means over the ten repeated QSMs with the optimal inputs. The uncertainty in the
ten model runs per tree was analysed by dividing the trees into three size classes based on
DBH; small (DBH ≤ 25 cm), medium (25 cm < DBH ≤ 50 cm) and large (DBH > 50 cm).
The uncertainty was then estimated by the average Coefficient of Variation (CoV) of the
total volume per diameter class.

The sensitivity of the optimal QSMs in terms of volumes to the choice of the optimal
PatchDiam-parameters was also estimated. Specifically, how robust would the resulting
volumes be if the values of the PatchDiam-parameters were chosen differently. For ex-
ample, if PD1 had values of [0.1 0.2 0.3 0.4 0.5] and the optimal value was 0.4, the values
0.3 and 0.5 are selected as they are closest to 0.4. The relative change in the input was
(0.5 − 0.4)/0.4 = (0.4 − 0.3)/0.4 = 0.1/0.4 = 0.25 = 25%. Then, the change in the attribute
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was calculated, e.g., if Vol_0.3 = 1000 L and Vol_0.5 = 1100 L and Vol_opt = Vol_0.4 = 1060 L,
the absolute changes were 1060 − 1000 = 60 and 1100 − 1060 = 40, and in this case 60 is
greater. Relative to the optimal value, 60/1060 = 5.66% was the relative change in volume.
The sensitivity is then the quotient of the two relative changes (relative change in the
volume/relative change in the input parameter) expressed as a percentage.

If 1.1% is the relative sensitivity of total volume to PD1 and the total volume of the
optimal QSMs is 1010 L, it means the total volume changes by 1.1% (or 11 L) when the
PD1 value changes by 100% (e.g., from 0.1 to 0.2). Therefore, low sensitivity implies that
the results are robust and vice versa. QSMs are data-driven, meaning that low-quality
point cloud data (low density) will result in badly reconstructed QSMs and thus inaccurate
volume estimates. Data quality is mainly affected by increasing beam size and decreasing
coverage with increasing distance from the scanner. Figure 3 shows examples of different
sizes, qualities and structures of savanna tree point clouds and the resulting QSMs.
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Tree 784: 452.51 points/m2 (b) Tree 875: 2140.94 points/m2 (c). On the QSM models, blue represents
the stem, green represents the 1st order branches, red represents 2nd order branches, etc.

2.5. Selection of Wood Density

In order to convert the derived volume using the QSMs to AGB, we used a mean wood
density value of 0.9 recommended for common species found in KNP and representative
of species found at our test site. No species data were collected to enable us to use species-
specific estimates of wood density. Nonetheless, these too would have been limited due to
the tree internal variation of wood density in individual trees [55]. The value of 0.9 was
used for modelling because, in line with Colgan et al. (2013) [10], a mean wood density
of 0.9 ± 0.02 (mean ± SE; n = 88 samples) was determined using a total harvested wood
dry mass from more than 3000 stems. The mean wood density varied between species
from 0.55 for Sclerocarya birrea to 1.20 for Combretum imberbe. Thus, we considered using
the reported mean of Colgan’s large sample as a workable solution for the value of wood
density, since he worked just outside KNP, which has comparable environmental conditions
to our test site.
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2.6. Allometric Equations for Tree AGB Estimation

The individual AGB of each reconstructed tree was estimated using three allometric
equations. The first equation (Equation (1), Colgan destructive allometry) relates the dry
mass weight of trees to the stem diameter and tree height [10]. This equation was inferred
from destructive sampling in a savanna area adjacent to Kruger National Park. The tree
species sampled for this allometry were representative of the species found at our test site
with a defined wood density of 0.9 [10]:

m = 0.109D(1.39+0.14In(D))H0.73ρ0.80 (1)

where m (kg) is the tree dry mass, D (cm) is the field-measured basal stem diameter
measured at 10 cm above the ground, H (m) is the tree height and ρ is the wood-specific
gravity of 0.9. In this study, DBH was used because it could be easily measured from the
point cloud as the diameter of a cylinder fitted at 1.3 m above ground. Both the DBH and
tree height were estimated based on the QSMs. The substitution of the basal stem diameter
by DBH in Equation (1) implies an underestimation of tree dry mass calculated from this
allometric equation.

In addition, we used object-based allometry (Equation (2)) [10]. This function was
initially developed for airborne LiDAR and was used with TLS in this study:

In (m) = β0 + β1 In
(

Aobj

)
+ β2

(
In
(

Aobj

))2
+ β3 In

(
Hobj

)
(2)

where m (kg) is tree dry mass, Aobj (m2) is the projected crown area of a tree, Hobj (m) is
the maximum tree height, β0 is 0.115, β1 is 0.161, β2 is 0.252 and β3 is 1.73. Aobj and Hobj
were estimated using the QSMs. βx are linear model coefficients with β0 also including the
correction factor.

The third equation (Equation (3)) was developed by Jenkins et al. (2003) [56] for
temperate hardwoods with a maximum diameter of 230 cm. It was specifically designed
for use in large-scale forest carbon budget inventories:

AGB = e−2.01DBH2.43 × e
(0.236)2

2 (3)

where AGB is aboveground woody plant dry mass (kg), DBH is the diameter at breast

height (cm) and e
(0.236)2

2 is the error in the estimation of the logged woody biomass.
The individual tree AGB calculated from the three allometric equations was compared

to the TLS-QSM method, which is explained in the following.

2.7. TLS-QSM Derived AGB

The volume of individual trees (in litres) was derived through the reconstruction
of QSMs. The total volume was the average of the ten QSMs reconstructions. To obtain
individual-tree AGB (in kg), the resulting tree volume was multiplied by wood density.
In this study, a mean wood density value of 0.9 was used [10]. The derived TLS-QSM
AGB was compared against the allometric equations by calculating the R2 of the linear
regression model, the root-mean-square error (RMSE) to the 1:1-line, and the Concordance
Correlation Coefficient (CCC) [57], which computes the agreement of two different methods
on a continuous scale and ranges from perfect agreement (+1) to perfect disagreement
(−1) [29].

3. Results
3.1. Statistical Relationships of Tree Parameters Derived from QSM Reconstruction

The relationship between DBH and Crown Area and DBH and Tree Height is shown
in Figure 4a,b, respectively. The relationship between DBH and crown area had an R2 of
0.72 whilst the relationship between DBH and tree height had an R2 of 0.71.
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3.2. Relationship between Tree Parameters and AGB

Testing the tree attributes commonly used to develop allometric equations and analysing
their relationship with the derived AGB from the TLS-QSM method showed exponential
relationships of 0.80 and 0.81 R2 for DBH and height, respectively (Figure 5a,b). However, the
crown area showed a positive linear relationship, with an R2 of 0.81 (Figure 5c). Trees above
40 cm in DBH had large crowns (Figure 4a) and were taller (Figure 4b); thus, this explains the
high correlation between the tree parameters and the predicted AGB.
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3.3. Sensitivity of the QSMs to the Input Parameters

Sensitivity of the QSMs to the input parameters was modelled for all the 969 recon-
structed trees. A small value/low sensitivity implies the modelled volume changes by a
small magnitude if the value of the optimum parameter setting changes. Low sensitivity
thus implies a good estimate of the modelled volume for the individual tree and robust
results. The general observation is that trees with low point density showed the highest
sensitivity whilst trees with high point density showed low sensitivity.

Table 2 shows the average point densities and sensitivities per tree parameter class.
The tree parameters analysed were DBH, tree height, crown area and crown volume. The
sensitivity per input parameter is inversely related to the average point density for all
tree parameters. The sensitivity is generally high for the input parameter PD2Min which
is the most sensitive parameter for all tree parameters. The general observation is that
the medium and large trees among the different tree parameters had low sensitivity as
compared to the small trees.

Table 2. Average sensitivity per tree parameter class. DBH, TH, CA, and CV represent diameter at
breast height, tree height, crown area and crown volume, respectively.

Tree Parameter
Class No of Trees

Average
Point Density

(points/m2)

Average
Sensitivity

PD1
%

Average
Sensitivity

PD2Min
(%)

Average
Sensitivity
PD2Max

(%)

Small
(DBH ≤ 25 cm) 605 709 66.64 79 72.70

Medium
(25 cm < DBH ≤ 50 cm) 297 861 56.29 76.98 76.52

Large
(DBH > 50 cm) 67 701 62.36 61.60 87.79

Small
(TH ≤ 5 m) 270 723 74.79 72.09 76.80

Medium
(5 m < TH ≤ 10 m) 439 674 68.59 87.02 79.38

Large
(TH > 10 m) 260 925 41.96 66.17 65.41

Small
(CA ≤ 86.7 m2) 885 729 65.40 79.02 76.18

Medium
(86.7 m2 < CA ≤ 173.4 m2) 80 1049 41.12 57.84 61.40

Large
(CA > 173.4 m2) 4 577 11.75 79 65.25

Small
(CV ≤ 448 m3) 908 726 65.33 78.28 76.72

Medium
(448 m3 < CV ≤ 896 m3) 56 1226 32.03 60.40 47.23

Large
(CV > 896 m3) 5 756 19.2 82.2 56

Dividing our data into quartiles based on point density (Table 3), we were able to
further analyse the reliability of our method in estimating AGB of savanna trees. We
observed that point density is inversely related to the sensitivity, as we expected. Data
quality determines the quality of the QSMs generated. The most reliable estimates were
derived from trees with the highest point density. From Table 2 above, the large and
medium trees exhibited the lowest sensitivity regardless of the tree parameter class because
bigger objects would receive more hits from the laser as compared to smaller objects. A big
and a small tree at equal distances from the scanner would result in high point density from
the big tree as compared to the smaller tree and the point density decreases significantly
for the small trees with increasing distance from the scanner.
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Table 3. Point density and sensitivity. The values are the average values per quartile.

Point
Density

(Points/m2)
No of Trees Sens

PD1
Sens

PD2Min
Sens

PD2Max
QSM-AGB

(kg)

Destructive
Allometry

(kg)

Object-
Based (kg)

Jenkins
Allometry

(kg)

114.57 242 90 88.9 99.9 244.35 170.70 122.18 258.63
289.43 243 68.7 86.8 93.1 413.5 279.94 311.02 371.28
525.66 242 49.9 70.4 61.6 682.64 356.59 557.44 469.38
2091.72 242 43.9 62.9 44.9 886.39 346.06 675.42 439.20

3.4. Uncertainty of QSM Reconstruction

The uncertainty of the ten repeated models was analysed and Table 4 shows the
uncertainty per size class. The CoV for all the diameter classes was generally low, implying
that our results are robust. However, the average CoV increased with a decrease in the
diameter with small trees showing the highest CoV values, whilst the medium and large
trees had the lowest.

Table 4. Uncertainty derived from tenfold modelling runs on the QSM-predicted volume.

Diameter Class
Total

Volume
(L)

Average Volume
(L)

Average
Coefficient of
Variation (%)

Small
(DBH ≤ 25 cm) 94,059 152 27.5

Medium
(25 cm < DBH ≤ 50 cm) 364,522 1244 19.9

Large
(DBH > 50 cm) 151,891 2574 21.3

3.5. Aboveground Biomass Estimation

Of the 1000 trees segmented, 31 failed to reconstruct mainly due to low point density,
resulting in 969 successful TLS-QSM reconstructions. Using simple linear regression and
CCC, we compared the TLS-QSM-derived AGB to three allometric equations. The results
indicate that all allometric equations underestimated the AGB as compared to the TLS-QSM
method (Figure 6). Comparing individual allometric equations to the TLS-QSM-derived
AGB (mean = 556.6 kg), the best modelling results were achieved with the Colgan object-
based allometry (Equation (2)) (mean = 416.4 kg) (RMSE = 348.75 kg) and a CCC of 0.91.
Comparison with the Jenkins allometry (Equation (3)), (mean = 384.6 kg) resulted in an
RMSE of 562.89 kg and a CCC of 0.71. The lowest agreement was found in the comparison
with Colgan destructive allometry (Equation (1)), (mean = 288.3 kg), with an RMSE of
614.21 kg and a CCC of 0.63. With respect to the 1:1 line (Figure 6), most observations fell
above, showing an underestimation of the AGB by allometric equations especially for the
large trees when using Colgan destructive and Jenkins allometry. The results indicated
fewer deviations of the small trees from the reference as compared to the large trees.

We compared the average AGB per DBH class for all the four methods used in AGB es-
timation (Figure 7). It was observed that the TLS-QSM method estimated more biomass for
all the DBH classes except for the diameter class 60–80 cm. Jenkins allometry (Equation (3))
predicted the most biomass for the DBH-class 60–80 cm because the allometry was built to
estimate the biomass of large trees with a maximum DBH of 230 cm. Colgan destructive
allometry (Equation (1)) predicted significantly high biomass for the 60–80 cm DBH class be-
cause it was developed from a sample of trees with the largest having a diameter of 79.3 cm;
in this study, the largest DBH tree was 75 cm. Colgan Object allometry (Equation (2))
consistently predicted biomass in all DBH classes and performed relatively similarly to the
TLS-QSM method because the allometry was developed using the crown area as a predictor
variable, and thus, it was able to account for the biomass in the tree canopy.
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Figure 7. Aboveground biomass per DBH class for the four biomass methods.

The residuals ranged from −3000 kg to 4500 kg (the distribution of the AGB residuals
is shown in Figure 8). The residuals were close to the y = 0 line for small (<1000 kg)
AGB trees and as the AGB increased, the residuals deviated from the line. For the large
(>2000 kg) AGB trees, the residuals for the Colgan object-based allometry (Equation (2))
showed a smaller deviation from the line y = 0, indicating an agreement between the
TLS-QSM derived AGB with this allometry.
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trees from the y = 0 line for Colgan Object-Based Allometry (Equation (2)).

The TLS-QSM-derived AGB was compared to three allometric equations for the three
diameter classes to establish the performance of the model for the size classes. The best
modelling results were achieved for medium trees (Figure 9b). Colgan object-based allom-
etry (Equation (2)) gave the best results, with an RMSE of 440.72 kg, (mean = 872.2 kg)
and a CCC of 0.87 for the medium trees. Jenkins (Equation (3)) and Colgan’s destructive
allometry (Equation (1)) did not explain the variability in the estimated biomass, espe-
cially for the large trees (Figure 9c), with R2 of 0.03 and 0.15 and CCC of 0.11 and 0.19,
respectively. Most of the points fell above the 1:1 line, indicating an underestimation of
the AGB by the allometric equations, although most points for the Colgan object-based
allometry (Equation (2)) fell below the 1:1 line, indicating an overestimation for the small
trees (Figure 9a). For the three size classes, Colgan object-based allometry (Equation (2))
gave the best results.

We analysed the impact of parameter errors on the derived AGB using allometric equa-
tions, since the three allometric equations use DBH, height and crown area as parameters.
The DBH, tree height and crown area were derived from the QSM approach in this study.
The estimated errors for these parameters provided in the literature were 3% for DBH [29],
5% for tree height and 16% for crown area [58]. Crown area had a high error of 16% because
ground-based lidar in a relatively high-density stand would not give good estimates of
crown area predictions, because the clumped canopy reduces the laser penetration to higher
tree levels and thus results in large errors in estimating crown area [58].
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Figure 9. Comparison of the TLS-QSM derived AGB with AGB estimates from three allometric
equations for different size classes: (a) small trees (DBH ≤ 25 cm) (left—all small trees, right—square
a1 enlarged showing trees with an AGB of 1000 kg); (b) medium Trees (25 cm < DBH ≤ 50 cm); and
(c) large trees (DBH > 50 cm).

We calculated the change in the parameters, given the error margins for each of the
969 reconstructed trees (please refer to Supplementary Materials) and used these values to
compute the allometric equation predictions for the AGB. We observed that the predicted
biomass for all the three allometric equations was lower than the predicted AGB using the
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TLS-QSM approach (Table 5), implying that the TLS-QSM approach consistently predicts
more AGB as compared to the three allometric equations.

Table 5. Impact of parameter errors on the derived AGB using allometric equations. The predicted
AGB is the average per AGB method for the 969 reconstructed trees.

Colgan
Destructive
Allometry

(Equation (1))

Colgan
Object-Based

Allometry
(Equation (2))

Jenkins
Allometry

(Equation (3))
QSM-AGB

Positive error in
parameters 320.20 kg 530.27 kg 413.25 kg 556.57 kg

Negative error in
parameters 257.18 kg 316.72 kg 357.17 kg 556.57 kg

Best mean
estimate 287.50 kg 416.22 kg 384.61 kg 556.57 kg

The cumulative plot of AGB derived from the 969 trees using the four different
methods is shown in Figure 10. The cumulative biomass using the TLS-QSM method sums
up to over 500 t, whilst 400 t, 375 t and 275 t were calculated using Colgan object-based
(Equation (2)), Jenkins (Equation (3)) and Colgan destructive (Equation (1)) allometries,
respectively. The AGB estimation methods showed a small deviation for the small trees
(DBH ≤ 25 cm). However, the deviation started to increase from trees with a DBH of
30–50 cm. The deviation was even greater for trees, with a DBH of >50 cm, and an increasing
gap was observed when comparing the TLS-QSM method with the allometric equations.
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4. Discussion
4.1. Uncertainty and Limitations of the Approach

The TLS-QSM approach was not validated with destructive biomass estimates because
the investigation was conducted in the Kruger National Park, South Africa, a protected
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conservation area. This induces unknown uncertainty because the AGB calculated using
the TLS-QSM method cannot be compared to an actual value since true validation can only
be achieved by destructive sampling [23]. Acquiring destructive data is time-consuming,
expensive or in this case, not allowed. As a result, to date, very few studies have compared
TLS-QSM AGB with destructive estimates [59–61]. Demol et al. (2022) [37] reported plot
bias of ≤10% from eleven studies that compared TLS-QSM-derived AGB, with destructive
data across various scanning conditions, scanner types and reconstruction algorithms with
eight of the studies reporting a bias of ≤5% [36,37]. This confirms that the TLS-QSM derived
estimates agree with destructive estimates. In that regard, in the absence of destructive
data as in this study, TLS seems to be the best non-destructive estimate of individual tree
AGB [36].

The QSM approach has an inherent uncertainty in its stochastic behaviour [61] and this
means that the QSM is random in model fitting and thus it is carried out multiple times and
the derived volume is the mean across several QSMs with an associated uncertainty [23,36].

TLS measurements also bring uncertainty in the modelled volume using QSMs; for
example, the quality of the point cloud or movement due to wind when scanning can lead
to uncertainty in the modelled volume. In particular, small branches in the crown whose
diameters are below 5 cm can be challenging for the TLS-QSM approach, which tends to
overestimate the volume modelled in the crown [62,63]. This is because a large laser beam
footprint produces uncertain hits that make the branches appear larger in the point cloud
than they truly are. A Riegl VZ 1000 used in this study has a beam divergence of 0.35 mrad
and an exit diameter of 7 mm, which results in approximately 21 mm beam at 40 m from
the scanner. Therefore, we can expect some overestimation of the volume and biomass of
smaller branches.

Another source of error is when the QSM-derived volume is converted to biomass
using wood density. In this study, we used the mean wood density of 0.9 recommended for
common species found in Kruger National Park [10] because no in-situ information was
available for the trees in our study area. Wood density varies both within and between
species, region and also with height in individual trees [55]. Basic density also varies within
the tree according to structure and size because density tends to be lower for smaller DBH
and higher for larger DBH [29]. Using species-specific wood density values seems like an
option but is also limited due to the tree internal variation of wood density in individual
trees [55].

The substitution of basal stem diameter with DBH for the estimation of AGB using
Colgan destructive allometry (Equation (1)) affects the estimation accuracy of the AGB
derived because basal stem diameters measured at 10 cm above the ground tend to yield
larger estimates as compared to measurements conducted at diameter at breast height [64].
However, for comparison purposes, it is recommended to convert all diameter data to a
common measurement point [64]. Thus, we used the diameter of the cylinder fitted at
1.3 measured from the point cloud using QSMs.

Field data, such as DBH, tree height, crown area and species information were not
collected in this study and thus posses a limitation in our approach. In particular, the
variation in species found in the study area would have been critical in the identification of
species-specific allometric equations and species-specific wood density values. However,
studies conducted in sparse environments have shown that TLS is able to retrieve tree
parameters with accuracy [65]. For deriving forest structural metrics, TLS has been dis-
cussed as a potential new standard [50] and was confirmed as an ideal data source for forest
AGB validation [66]. TLS-based AGB estimation is limited due to the variation in wood
density [55] and accurate volume estimation of small branches [37]; however, despite these
shortcomings, it is argued that in the absence of direct, destructive measurements, TLS
appears to be the best non-destructive estimate for individual tree AGB to date [36]. Demol
et al. (2022) [37] also reported a plot bias of ≤10% from eleven studies that compared
TLS-QSM-derived AGB with destructive data and this confirms that the TLS-QSM-derived
estimates agree with destructive data and, in the absence of destructive data, TLS seems
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to be the best non-destructive estimate of individual-tree AGB. Also, to add, regarding
field measurements, as always the truth may also be misleading and the validity of field
measurements should be carefully confirmed [67]. For example, practical difficulties when
measuring tree height, crown area and DBH lead to both systematic and random errors
in the data derived from field measurements [68,69]. However, Disney et al. (2018) [23]
emphasised that the true validation of tree estimates (volume, AGB, and tree and wood
components) can be achieved only by destructive sampling.

Individual-tree-based modelling is more valuable because they provide tree structural
and demographic information as compared to area plot-based approaches [70]. When
scaling up to total biomass at the plot level, the total AGB counting by individual trees
gives a better understanding of the sources of error and uncertainty. This is because the
errors in individual-tree identification and the extraction of tree parameters is transferred
into the AGB estimated at the plot level and results in systematic errors [71]. Thus, the error
is propagated as a result of errors from the tree parameter measurements and the errors
inherent in the allometric equations [70]. However, AGB estimation from individual trees
reduce the bias arising from spatial and temporal heterogeneity, making species-specific
biomass estimation possible [72], which is not possible in area-based approaches.

4.2. Terrestrial Laser Scanning and Tree Point Clouds

The trees with the lowest point density exhibited the largest sensitivity (Tables 2 and 3).
These discrepancies can be explained by the difference in point cloud density, noise, tree
structure and size (Figure 3). Moreover, the point density decreases and beam size increases
with an increase in distance from the scanner [73]. TLSs are limited in representing small
objects with an increase in distance from the scanner due to exit diameter and beam
divergence [74].

The accuracy of deriving DBH from the point clouds also decreases with point
density due to the distance of the tree from the scanner or as a result of occlusions.
Calders et al. (2015) [29] highlighted that accurate DBH estimation depends on partial
occlusions of the tree stems, which is the case in open savannas. Occlusions mainly stem
from understory vegetation and are inherent to the static nature of the TLS when collecting
data and cannot be completely removed [67,75]. Comparison of field the measured and
TLS derived DBH estimates have been established [65] and errors as less as 3% have been
reported. Demol et al. (2022) [24] further emphasized that where destructive measurements
are undesirable or impossible (urban and heritage trees, and protected or remote areas),
TLS is the only tested alternative to allometric scaling models. However, in this study, we
accounted for this error of deriving DBH from TLS by calculating how the error estimate
deviates from the best mean estimate (Table 5).

4.3. Comparison of the TLS-QSM Approach with Allometric Equations

Our study evaluated the performance of the TLS-QSM-based vegetation volume
approach for the estimation of biomass and demonstrates that the AGB of savanna trees
can be estimated using a non-destructive TLS-QSM approach. Optimized QSMs estimate
the biomass with reasonable accuracy and show a positive correlation with estimates based
on selected allometric equations. The AGB derived through a non-destructive TLS-QSM
approach was compared with allometric equations and demonstrates an underestimation
of biomass, especially for the large trees by the allometric equations. The Colgan object-
based allometry (Equation (2)) gave the best results compared to the TLS-QSM approach
(Figure 9), supporting the results by [13,76] who concluded that allometric models that
included crown diameter provide more accurate AGB estimates and are especially accurate
for large trees (Figures 6 and 8). Colgan et al. (2013) [10] also mention that the object-
based allometry gave more accurate predictions of biomass at plot level as compared to
field measurements because in open savannas tree height and crown parameters can be
estimated accurately with airborne lidar.
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TLS has been established as a reference to extract structural information on forests and
trees. Several studies have confirmed the accuracy of using the TLS-QSM approach for quanti-
fying AGB [25,31,61]. In all these studies, it was established that the TLS-derived estimates
provided better estimates as compared to allometric equations. Kükenbrink et al. (2021) [61]
achieved an RMSE of 556 kg when using the TLS-derived method, compared to an RMSE of
1159 kg with species-specific allometric equations. This is in line with results from other stud-
ies showing that allometries have a limitation in that they rely on destructive data and large
trees are usually underrepresented in the sample [13,17]. In our comparison, the use of Col-
gan destructive allometry (Equation (1)) provided the largest deviation from the TLS-QSM
approach. This might be explained by the observation that large uncertainties in AGB are
introduced in allometric equations because of the lack of large trees in the underlying sam-
ples [23]. This was also suggested by Chave et al. (2004) [16] and Colgan et al. (2013) [10],
who stated that an allometric model can only accurately predict biomass within the range of
the largest tree harvested. However, Jenkins allometry (Equation (3)) was developed using
a comprehensive sample of large trees (maximum DBH = 230 cm) [56] but its weakness
lies in that only DBH is used, resulting in underestimations because the biomass in the
tree crown is not accounted for. This also confirms a study by Nickless et al. (2011) [19]
which showed that allometric equations always underestimate biomass when compared to
destructive estimates.

We successfully showed that the AGB of savanna trees can be modelled accurately
with QSMs. This was achieved on 969 trees. The optimized reconstruction of the QSMs and
ten repeated model runs showed that our results were robust as shown by the low CoV
and sensitivity (Tables 2–4), implying better precision and less uncertainty in the modelled
volume using the QSM approach.

Our method was successful in the reconstruction of savanna trees, especially those
with a high point density. We have shown that volume reconstructions of TLS point clouds
are key to improving tree allometries and non-destructively estimate biomass. We have
also successfully established the reliability of our method in estimating the AGB of savanna
trees by quantifying the sensitivity of the modelled volume.

4.4. Future Outlook

The accurate estimation of AGB is pertinent for the savanna because the estimation
of AGB in the savanna still heavily relies on allometric equations, which have several
limitations. The shortage of large trees in allometric equations leads to large uncertainties
in AGB; thus, the application of TLS counters this limitation by providing estimates across
all tree sizes [23].

Using TLS and QSMs, future work should look at the development of species-specific
allometric equations for the African savanna. This can be achieved by developing allometric
equations based on tree height, crown diameter and DBH, and establishing the tree-specific
gravity of the species following the methods of [13,25], which have been successful in
tropical forests but have not been tested in open savannas.

The advancement of tree segmentation algorithms [47] makes the process of tree seg-
mentation faster and more accurate to segment large TLS scanned plots. The ability to
quantify the sensitivity of the modelled volume using the QSMs allows for fast accurate
estimation of AGB, with the aim being eventually to replace allometries with QSMs. How-
ever, more research needs to be conducted to determine whether TLS always provides
accurate AGB estimates and whether it could actually substitute destructive sampling with
time [13].

5. Conclusions

We demonstrate that we can successfully estimate the AGB of savanna trees through
the application of TLS point clouds and QSMs. We compared the derived AGB from the
TLS-QSM method with three allometric equations. The allometric equation that included
crown area as one parameter performed the best. Although we did not have destructive



Remote Sens. 2024, 16, 399 19 of 22

validation data, TLS provides the best non-destructive option to estimate individual-tree
AGB without destructive sampling. The use of high-density TLS with QSMs for quantifying
AGB has the potential of improving savanna tree allometries by incorporating big samples
and large trees. Given the dynamic nature of savanna ecosystems, the employment of
multi-temporal TLS scans with QSMs will allow the quantification of structural gains and
losses that could arise as a result of fire, drought, herbivory and other abiotic and biotic
drivers/disturbances.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/rs16020399/s1, Workbook S1: Impact of parameter errors on the derived
AGB using allometric equations.
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