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Abstract: Previously, we demonstrated that renal denervation in pigs reduces renal glucose release
during a hypoglycemic episode. In this study we set out to examine changes in side-dependent renal
net glucose release (SGN) through unilateral low-frequency stimulation (LFS) of the renal plexus
with a pulse generator (2–5 Hz) during normoglycemia (60 min) and insulin-induced hypoglycemia
≤3.5 mmol/L (75 min) in seven pigs. The jugular vein, carotid artery, renal artery and vein, and
both ureters were catheterized for measurement purposes, blood pressure management, and drug
and fluid infusions. Para-aminohippurate (PAH) and inulin infusions were used to determine side-
dependent renal plasma flow (SRP) and glomerular filtration rate (GFR). In a linear mixed model,
LFS caused no change in SRP but decreased sodium excretion (p < 0.0001), as well as decreasing GFR
during hypoglycemia (p = 0.0176). In a linear mixed model, only hypoglycemic conditions exerted
significant effects on SGN (p = 0.001), whereas LFS did not. In a Wilcoxon signed rank exact test, LFS
significantly increased SGN (p = 0.03125) and decreased sodium excretion (p = 0.0017) and urinary
flow rate (p = 0.0129) when only considering the first instance LFS followed a preceding period of
non-stimulation during normoglycemia. To conclude, this study represents, to our knowledge, the
first description of an induction of renal gluconeogenesis by LFS.

Keywords: low-frequency renal nerve stimulation; hypoglycemia; glucose metabolism; diabetes
mellitus

1. Introduction

The renal plexus forms a mesh-like network of nerves that surrounds and runs along-
side the renal artery and comprises efferent and afferent sympathetic nerves from the
minor splanchic and lumbal nerves [1–3]. Until quite recently, it was thought that the
parasympathetic innervation of the kidneys, hailing from the truncus vagalis posterior,
does not form part of the renal plexus. Recently though, van Amsterdam et al. were able to
prove, based on a post-mortem histological investigation, the presence of parasympathetic
nerves running alongside the renal artery as well [4]. Regarding the specific spatial patterns
of sympathetic nerves around the renal artery in humans, there have recently been new
insights that point toward a greater distribution within the anterior and superior quad-
rants, as well as a preponderance of sympathetic innervation around the right renal artery
compared to the left [5].
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The effects of renal sympathetic nerves are mediated through release of ATP, neuropep-
tide Y, vasoactive intestinal peptide, and, principally, norepinephrine [2,6]. The release
of the aforementioned are, in turn, caused by the activation of adrenergic receptors (AR),
namely alpha-1, alpha-2, beta-1, beta-2, and beta-3 adrenergic receptors; the distribution of
which varies within anatomic structures, with alpha-1-AR primarily being found in the
arterioles, alpha-2-AR in the proximal tubules, and beta-ARs along the nephron segments,
as investigated, mainly, in a range of animal models [6–10]. Sensory nerves are primarily
comprised of mechano-and chemoreceptors and modulate a number of central and local—
through the reno-renal reflex—responses to varying states of intravascular pressures and
changes in pH [2]. Sympathetic signaling regulates renal vascular tone, sodium, water,
bicarbonate, and chloride reabsorption, as well as renal blood flow, the glomerular filtration
rate (GFR), and renin secretion [2,6,11–13]. Evidence for the effects of renal sympathetic
nerve activity (RSNA) has been accrued in a number of animal models, which for exam-
ple, showed renin release and the modulation of sodium and water reuptake by low to
mid-range frequency stimulation [14–17] and changes in renal blood flow (RBF) through
vasoconstriction with high-frequency stimulation, though the exact mechanisms of RBF
modulations and the influence of underlying oscillations in sympathetic tone on the renal
vasculature remain unclear at this point [13,18–21].

Through maladaptive processes in response to chronic pathological states or defective
signaling, chronic infections, or parenchymal damages, renal efferent sympathetic and sen-
sory nerves are known to represent crucial contributing factors in the pathogenesis of many
diseases, and are suspected to play a role in a further number whose pathophysiological
foundation remain the subject of ongoing investigations. Prominently, these pathologies
comprise, but are not limited to, hypertension, obesity, and insulin resistance, and conse-
quently, diabetes mellitus, metabolic syndrome (as a consequence of the higher incidences
of its singular pathologies), atrial fibrillation, cardiovascular disease, and renal inflamma-
tion and fibrosis itself [2,22–25]. Particularly due their share in the pathophysiology of
arterial hypertension—amongst other mechanisms via a release of renin with subsequent
increase in sodium and water reabsorption, decrease in renal blood flow and GFR, and
therefore, ultimately a blood pressure elevation [13,26,27]—renal nerves have become a
target for device-based interventions in treatment-resistant hypertension. Although in
the now nearly two decades since its first application in clinical practice the results of
studies on renal denervation in arterial hypertension have been ambiguous and, in some
cases, controversial [28], the new generation of well-designed, large multicenter studies
have been able to show a significant blood pressure reduction [29–32]. This led to a joint
statement from the European Society for Cardiology (ESC) and the European Association
of Percutaneous Cardiovascular Interventions that recommended (contrary to the ESC
guidelines of 2018 [33]) renal denervation for certain patient groups; for example, those
with treatment-resistant hypertension [34]. In subset analyses and animal studies, renal
denervation has also been proposed as a potential treatment for other pathologies such as
cardiovascular diseases and arrythmias [25,35–38], as well as insulin resistance, diabetes
mellitus, and metabolic syndrome as a whole [39–41].

The observed beneficial effects of renal denervation on the glucose metabolism are not
unexpected as sympathetic innervation of renal glucose release has been proposed for a
number of years, though the exact mechanisms remain unknown. A number of decades
ago, Greven et al. was able to show the stimulation of renal glucose release through
exogenous epinephrine infusion [42]. More recently, Jiman et al. examined the effects of
electrical stimulation on urinary glucose excretion in rats, reporting an increase following
high-(kilohertz) frequency stimulation with a resulting blockade of action potentials, and a
decrease in urinary glucose excretion without a change in urinary glucose concentration
through low-frequency stimulation (LFS) [43].

The capacity of the kidneys—as the sole other organ beside the liver that can produce
significant amounts of glucose—for gluconeogenesis is of particular importance in con-
sidering the potential benefits, but also risks, of a renal denervation procedure. In recent
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decades, recognition of the importance of renal gluconeogenesis for glucose homeostasis
has increased and the concept of hepatorenal reciprocity—though not yet fully understood—
has been established to describe the fact that the proportion of the liver and the kidneys in
overall gluconeogenesis vary based on the current needs, energy demands, and metabolic
state of the other organ(s), respectively [44,45]. Renal gluconeogenesis is modulated by
receptor densities (SGLT1, SGLT2, and GLUT1), hormonal effects (cortisol, insulin, and
catecholamines), and substrate availability (amino acids, lactate, etc.), but also by sympa-
thetic nerves [46–48]. Our research group has previously shown that renal denervation
halves the renal gluconeogenic response to a severe hypoglycemic episode in pigs [49].
Furthermore, we were able to show that a prenatal administration of dexamethasone in
late-term pregnant sows induced both elevated baseline levels of ACTH and cortisol in the
offspring and heightened the increase in these respective hormones during a hypoglycemic
episode [50]. Interestingly, animals from the same litter who underwent a unilateral renal
denervation procedure exhibited only a 25% decrease in the renal gluconeogenic response
compared to the animals in the above-mentioned study that did not receive a prenatal
glucocorticoid administration [51]. This might be indicative of early life adaptive processes
that downregulate the share of sympathetic innervation in renal gluconeogenesis in favor
of other regulatory mechanisms in order to maintain glucose homeostasis.

Based on our previous investigations, we set out to further investigate the effects of
efferent sympathetic nerves on renal gluconeogenesis. Whereas our previous experimental
model showed a reduction of renal gluconeogenesis after the ablation of renal nerves, we
designed a positive-control study by innervating renal nerves with unilateral LFS and
measuring side-dependent renal net glucose release (SGN) and comparing the results with
the contralateral, non-stimulated organ.

2. Results

To investigate whether LFS alters SGN we subjected seven female pigs to LFS, emitted
by a pulse stimulator, during normoglycemia and a subsequent mild hypoglycemic episode
caused by a hyperinsulinemic–hypoglycemic clamp.

2.1. General Characteristics of the Experiment and Changes of Vital Parameters

Heart rate increased mildly from 104 ± 9 bpm at baseline to 113 ± 9 bpm during
normoglycemia (which was preceded by surgical instrumentation) and moderately to
169 ± 22 bpm during the hypoglycemic period. Blood pressure increased slightly from
106/64 ± 5/5 mmHg to 114/73 ± 8/7 mmHg at the end of the hypoglycemic period. Body
temperature decreased slightly from 37.8 ± 0.4 ◦C at baseline to 36.9 ± 0.3 ◦C at the end of
the hypoglycemic period. Some information regarding the characteristics of the animals
and basic vital parameters is provided in Table 1.

Table 1. Comprehensive data on the vital parameters of the animals during the experimental procedure.

Variables Parameters

Sex (nmale/nfemale) 0/7
Age (days) 85 ± 7
Weight (kg) 37 ± 4
Weight of left kidney (g) 97 ± 18
Weight of right kidney (g) 97 ± 21
Heart rate at baseline (bpm) 104 ± 9
Heart rate during normoglycemia (bpm) 113 ± 9
Heart rate at the end of hypoglycemia (bpm) 169 ± 22
Blood pressure at baseline (systolic/diastolic) (mmHg) 106/64 ± 5/5
Blood pressure at the end of hypoglycemia (systolic/diastolic) (mmHg) 114/73 ± 8/7
Body temperature at baseline (◦C) 37.8 ± 0.4
Body temperature at the end of hypoglycemia (◦C) 36.9 ± 0.3

Data are given as means ± SD, n = 7
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Hypoglycemia was established (as defined by our experimental conditions to be
≤3.5 mmol/L) after 90 min and was maintained for 75 min. Mean blood glucose decreased
from 8.9 to 2.1 mmol/L (27 out of 35 individual test values were below 3.0 mmol/L)
(Figure 1). Since there were slight variations in the time necessary to establish hypoglycemia,
all subsequent measurements refer to the first time a blood glucose level below 3.5 mmol/L
was measured.
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Figure 1. Mean blood glucose during hypoglycemic clamp after unilateral stimulation of renal
nerves. Mean blood glucose [mmol/L] measurements were performed every 15 min; means ± SD,
n = 7.

2.2. Effects of Examined Parameters in a Linear Mixed Model

We found that LFS significantly decreased urine volume (Figure 2, p = 0.0006). LFS
showed a significant effect on the PAH concentration (p = 0.004), whereas hypoglycemia
in itself and the interaction between LFS and hypoglycemia had no significant effect on
PAH in a linear mixed model (Figure 3A). Median plasma concentrations of PAH decreased
from 18 to 6 µg/mL (p = 0.0012) (Figure 3B). Neither hypoglycemia nor LFS had a signifi-
cant effect on SRP (Figure 3C). LFS and hypoglycemia had a significant effect on GFR
(p = 0.0176), while only hypoglycemia exerted significant effects on inulin clearance
(p = 0.0033) (Figure 4).

Notably, the main effect of ‘hypoglycemia’ was found to be statistically significant
(t = 3.4292, p = 0.0010), indicating that the extent of ‘hypoglycemia’ is associated with a
significant change in the SGN. However, the main effect of ‘electrical stimulation’ did not
reach statistical significance (t = 1.6229, p = 0.1089) (Figure 5). The interaction term between
electrical stimulation and hypoglycemia nonetheless showed a trend towards significance
(t = −1.7898, p = 0.0776), implying a potential interaction effect between the two predictors.
This suggests that the combined influence of electrical stimulation and hypoglycemia on
renal net glucose release might differ from their individual effects, and this interaction
effect warrants further investigation and interpretation.

LFS decreased sodium excretion significantly in the linear mixed model, both during
normoglycemia and hypoglycemia (Figure 6). LFS caused no significant decrease in urinary
flow rate in the same statistical model both during normoglycemic and hypoglycemic
conditions (Figure 2).
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= 0.80) was found. 
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from experiments measuring PAH and SRP during hyperperfusion of the kidneys induced by a 
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Figure 2. Side-dependent urine volume over time after unilateral stimulation of renal nerves. The
side-dependent urine volume per 15 min interval during a hypoglycemic clamp with intermittent
unilateral low-frequency stimulation (LFS) of the renal nerves. White boxes represent the non-
stimulated side while grey boxes represent the stimulated side. Side-dependent urine production
was measured during a high-volume infusion inducing hyperperfusion of the kidneys. Samples for
measurements were taken every 15 min. Data are presented as box plots, showing medians, 25/75th
percentiles (boxes), and 10/90th percentiles (whiskers), n = 7. The linear mixed model showed a
significant effect of LFS (p = 0.0006) and hypoglycemia (p = 0.03), while no significant interaction
(p = 0.80) was found.
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Figure 3. Para-aminohippurate (PAH) (A) in urine; (B) in plasma and side-dependent renal
plasma flow (SRP) (C) responses to unilateral renal nerve stimulation: The figure presents data from
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experiments measuring PAH and SRP during hyperperfusion of the kidneys induced by a high-
volume infusion protocol. Samples were collected every 15 min under two conditions: normoglycemia
(0 to 75 min) and hypoglycemia (blood glucose ≤ 3.5 mmol/L, from 90 to 150 min). White boxes
represent the non-stimulated kidney; grey boxes the stimulated side. Panel A represents PAH
concentrations. Statistical analyses showed that LFS significantly increased PAH, while neither
hypoglycemia nor the interaction of hypoglycemia and LFS had a significant effect. Panel B illustrates
that plasma PAH concentrations obtained from carotid artery samples remained below the saturation
threshold for tubular secretion during the whole experimental procedure. Panel C represents the
SRP [mL/min] throughout the experiment. Neither LFS, hypoglycemia, nor their interaction term
significantly altered SRP [mL/min]. Data are presented as box plots, illustrating medians, 25th/75th
percentiles (boxes), and 10th/90th percentiles (whiskers). The sample size for these experiments was
n = 7, with a significance level of p < 0.05.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 6 of 20 
 

 

high-volume infusion protocol. Samples were collected every 15 min under two conditions: 
normoglycemia (0 to 75 min) and hypoglycemia (blood glucose ≤3.5 mmol/L, from 90 to 150 min). 
White boxes represent the non-stimulated kidney; grey boxes the stimulated side. Panel A 
represents PAH concentrations. Statistical analyses showed that LFS significantly increased PAH, 
while neither hypoglycemia nor the interaction of hypoglycemia and LFS had a significant effect. 
Panel B illustrates that plasma PAH concentrations obtained from carotid artery samples remained 
below the saturation threshold for tubular secretion during the whole experimental procedure. 
Panel C represents the SRP [mL/min] throughout the experiment. Neither LFS, hypoglycemia, nor 
their interaction term significantly altered SRP [mL/min]. Data are presented as box plots, 
illustrating medians, 25th/75th percentiles (boxes), and 10th/90th percentiles (whiskers). The sample 
size for these experiments was n = 7, with a significance level of p < 0.05. 

Notably, the main effect of `hypoglycemia` was found to be statistically significant (t 
= 3.4292, p = 0.0010), indicating that the extent of `hypoglycemia` is associated with a 
significant change in the SGN. However, the main effect of `electrical stimulation` did not 
reach statistical significance (t = 1.6229, p = 0.1089) (Figure 5). The interaction term between 
electrical stimulation and hypoglycemia nonetheless showed a trend towards significance 
(t = −1.7898, p = 0.0776), implying a potential interaction effect between the two predictors. 
This suggests that the combined influence of electrical stimulation and hypoglycemia on 
renal net glucose release might differ from their individual effects, and this interaction 
effect warrants further investigation and interpretation. 

LFS decreased sodium excretion significantly in the linear mixed model, both during 
normoglycemia and hypoglycemia (Figure 6). LFS caused no significant decrease in 
urinary flow rate in the same statistical model both during normoglycemic and 
hypoglycemic conditions (Figure 2).  

 
Figure 4. Inulin (A) in urine; (B) in plasma and glomerular filtration rate (GFR) (C) after unilateral 
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Figure 4. Inulin (A) in urine; (B) in plasma and glomerular filtration rate (GFR) (C) after unilateral
stimulation of renal nerves. Samples for GFR measurements were taken every 15 min during high-
volume-infusion-induced hyperperfusion of the kidneys during normoglycemia (0 to 75 min sampling
time) and during hypoglycemia (blood glucose below 3.5 mmol/L, 90 to 150 min sampling time) was
established. (A) Inulin [µg/mL] in urine during experiments duration in the non-stimulated (white
boxes) and the stimulated (grey boxes) side (p = 0.23). (B) Plasma inulin concentrations in samples
drawn from the carotid artery during the experiment are well below the saturation concentration
for the tubular secretion system. (C) Decrease in GFR [mL/min] of the stimulated (grey boxes) side
compared to the non-stimulated (white boxes) side (p = 0.0176) during LFS (not depicted). Data
are presented as box plots, showing medians, 25/75th percentiles (boxes), and 10/90th percentiles
(whiskers), n = 7.
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Figure 5. Side-dependent renal net glucose release (SGN) after unilateral stimulation of renal
nerves. Samples for SGN measurements were taken every 15 min during high-volume-infusion-
induced hyperperfusion of the kidneys during normoglycemia (0 to 75 min sampling time) and
during hypoglycemia (blood glucose below 3.5 mmol/L, 90 to 150 min sampling time). White boxes
represent SGN [mmol/min] of the non-stimulated kidney; grey boxes the stimulated kidney. No
significant effect of SGN was observed in a linear mixed model (p = 0.11). Data are presented as box
plots, showing medians, 25/75th percentiles (boxes), and 10/90th percentiles (whiskers), n = 7.
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Figure 6. Urinary sodium concentrations after unilateral stimulation of renal nerves. Samples for
sodium excretion measurements were taken every 15 min during high-volume-infusion-induced
hyperperfusion of the kidneys in normoglycemia (0 to 75 min sampling time) and hypoglycemia
(blood glucose below 3.5 mmol/L, 90 to 150 min sampling time). Decrease in urinary sodium
[mmol/L] during the experiments in the non-stimulated (white boxes) and the stimulated (grey
boxes) side (p < 0.0001). Data are presented as box plots, showing medians, 25/75th percentiles
(boxes), and 10/90th percentiles (whiskers), n = 7.
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2.3. SGN, Sodium Excretion and Urinary Flow Rate in a Wilcoxon Signed Rank Exact Test

In a Wilcoxon signed rank exact test that only considered two time points in each
animal, respectively, and the first occurrence of a period of LFS being followed by a
preceding period of normoglycemia, and compared these with the contralateral, non-
stimulated organ (for raw data see Table 2), LFS caused a significant increase in SGN
(p = 0.03125) (Figure 7). Utilizing the same limitations and statistical model, LFS caused
a significant decrease in sodium (p = 0.0017), and in urinary flow rate (p = 0.0129) as well
(Figure 7). The supplementary Table S1 provides the raw data for side-dependent renal
glucose release during the whole duration of the experiments.

Table 2. Original data for urine volume, SGN, and urinary sodium after a single unilateral stimulation
of renal nerves.

Number of Animal
1 2 3 4 5 6 7

Body site of stimulation
left left left left left left left

Urine volume of stimulated kidney (mL)
Before stimulation 10 2 10 20 28 32 100
After 15′ of stimulation 16 4 15 18 26 32 32

Urine volume of non-stimulated kidney (mL)
No-stimulation 44 3 36 12 20 80 140
No-stimulation after 15′ 8 16 30 28 60 40 55

SGN of stimulated kidney (mmol/min)
Before stimulation 0.00536 0.0239 0.0049 0.0266 0.0043 0.0405 −0.0974
After 15′ of stimulation 0.02024 0.2046 0.0850 0.0012 0.0105 0.0356 0.0

SGN of non-stimulated kidney (mmol/min)
No-stimulation 0.03824 −0.0686 0.0194 0.0166 0.0068 0.0017 0.0472
No-stimulation after 15′ −0.00084 −0.0692 0.0548 −0.0343 0.0169 −0.0664 0.0021

Urinary sodium of stimulated kidney (mmol/L)
Before stimulation 114 82.8 84,4 116 111 98 115
After 15′ of stimulation 97 67.2 74.7 85 117 82 102

Urinary sodium of non-stimulated kidney (mmol/L)
No-stimulation 114.4 85.1 115.8 107 111 102 119
No-stimulation after 15′ 101.5 68.7 107.1 107 135 102 110
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LFS (first instance that LFS succeeded non-stimulation during normoglycemia) between the stimu-
lated side (ss) and the contralateral side (cs) (Wilcoxon test; p = 0.0129). (B) The same experimental
conditions as described above significantly increased SGN of the stimulated side (ss) compared
to the contralateral side (cs) (Wilcoxon test; p = 0.03125). (C) The same experimental conditions
as described above significantly increased urinary sodium of the stimulated side (ss) compared to
the contralateral side (cs) (Wilcoxon test; p = 0.0017). Samples for measurements were taken over
15 min. Data are presented as box plots, showing medians, 25/75th percentiles (boxes), and 10/90th
percentiles (whiskers), n = 7.

3. Discussion

In this study we examined the effects of LFS during normoglycemia and mild hy-
poglycemia in pigs. In a linear mixed effects model that incorporated measurements
and effects across all time points, electrical stimulation did not significantly change SGN.
SRP remained unchanged in the linear mixed model during all experimental conditions,
whereas LFS during hypoglycemia significantly decreased GFR. Consistent with prior
investigations, LFS caused a decrease in urinary flow rate and sodium excretion in the
linear mixed model [16,43]. Surprisingly, in the same statistical model, hypoglycemia
significantly increased SGN (p = 0.001). In the linear mixed model, there was a general
trend towards significance regarding the interaction effect of LFS and hypoglycemia as
incorporated in an interaction term.

Nonetheless, in the Wilcoxon signed rank exact test, LFS did significantly increase
SGN (p = 0.03) when comparing the first instance in which LFS followed a preceding period
of normoglycemia without stimulation with the same time points in the contralateral,
non-stimulated organ. Furthermore, sodium and urinary flow rate also decreased signif-
icantly in the Wilcoxon signed rank exact test that incorporated the same time points as
described above.

As in our previous examinations, we saw a moderate drop in body temperature despite
thermal management. Due to the mild nature of the hypothermia, we do not consider
the drop in body temperature to have exerted meaningful effects, thus confounding the
experimental results.

To our knowledge, this is the first study that has investigated total renal glucose output
by measuring the difference of arterial and venous glucose concentrations as a marker of
SGN and its response to LFS.

Based on the findings of our prior investigations in models of renal denervation and
hypoglycemic clamp procedures in pigs, we expected an increase rather than a decrease
in SGN due to hypoglycemia, and furthermore, an increase in SGN due to LFS. The
latter could only be found in a Wilcoxon signed rank exact test that incorporated two
distinct time points—the first period of LFS that followed one of non-stimulation during
normoglycemia—but not in a linear mixed model. Formerly, we were able to show that
unilateral renal denervation decreases SGN compared to the non-ablated kidney, while
absolute renal glucose output still remained positive compared to normoglycemia [49],
and that this decrease is halved in specimens with an altered hypothalamic–pituitary–
adrenal axis (HPAA) due to late-gestational glucocorticoid injections [51]. Despite the very
circumscribed results for the effects of LFS on SGN that reached significance, this study
can in our estimation still be cautiously regarded as a positive control to our previous
investigations of the influence of renal denervation on renal glucose release.

The choice of the pig animal model was partly based on the fact that our preliminary
experiments on HPAA activation and renal denervation were carried out in the same animal
model, and thereby ensured comparability [50,51], and furthermore, because the pig animal
model is an established model used to carry out studies on metabolic processes, which,
due to the similarities of the respective physiological processes, can be approximated to
humans. In addition, it is also possible to imitate diabetic metabolic situations [50,51]. The
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position and shape of the kidneys in pigs also lend themselves to analogies with human
anatomy [50,51].

Importantly, this current study utilized a somewhat different experimental setup
than that of our previous investigations of the influence of sympathetic nerves on renal
gluconeogenesis. In our previous studies, we defined hypoglycemia as either below
3 mmol/L [51] or below 2 mmol/L [49], preceded by, respectively, a 24-h food withdrawal
prior to the commencement of the intervention. In this study, we decided on a closer
approximation to more frequently occurring episodes of mild hypoglycemia. Rather than
a 24-h food withdrawal, we conducted the experiments after a 4-h fasted period, which
resembles clinical reality more closely. The main significant effect of “hypoglycemia” in
the linear mixed model suggests that the extent of a reduction in blood glucose levels is
associated with meaningful variations in the resulting renal net glucose release. The share
of renal gluconeogenesis in overall glucose homeostasis is known to increase the longer a
fast endures [46,48]. Additionally, even if compared to our previous investigations, we did
not have to utilize glucose infusions to balance the extent of the induced hypoglycemia;
the necessary, if lower, insulin dosages to induce a hypoglycemic clamp might have, in
connection with the more attenuated hypoglycemic state, resulted in a different metabolic
situation since insulin is known to suppress renal gluconeogenesis [52,53]. Correspondingly,
the significant increase in SGN due to LFS in the Wilcoxon signed rank exact test in six
of the seven animals was observed right at (or at least reasonably close to) the beginning
of the experimental procedure. This corresponds with the period when the animals had
only received medium dosages of insulin and were still closer to their respective baseline
metabolic states. It is therefore likely that the effects of LFS we were able to observe
correlate with time points when the anti-gluconeogenic effects of the insulin had not
yet taken complete hold and the magnitude of the hypoglycemic stimulus was minor.
Nonetheless, as it was our intention to create an experimental condition comparable to the
clinical situation of insulin-induced hypoglycemia, at least in this study, we considered
insulin injections to be inevitable. Furthermore, the advantage of a unilateral experimental
model is that both the stimulated and non-stimulated kidney were subject to the same
global physiological conditions, so that at least to an extent the confounding influence of
insulin injections is mitigated by this fact.

It appears, therefore, that the mild hypoglycemic state employed in the experimental
setup induced renal cells to take up glucose rather than caused gluconeogenesis, and that
the induced hypoglycemia was not of sufficient severity in the pigs’ current metabolic
state to induce renal gluconeogenesis. Nonetheless, the trend towards significance in the
interaction term between LFS and SGN in the linear mixed model does indicate that the
effect of electrical stimulation on renal net glucose release might depend on the presence
of hypoglycemia, albeit of a severity that the experimental design did not replicate. Sub-
sequent studies should, therefore, examine the effects of LFS in a variety of metabolic
conditions; amongst them being more severe hypoglycemic states, and potentially, even in
normoglycemia without any hypoglycemic challenge. This, though, barring a significant
metabolic challenge from, for example, an extensive fast, might be difficult due to the
circumscribed share of renal gluconeogenesis in the non-fasted individual [46].

It is, furthermore, conceivable that, due to the length and gradual decrease in the
glucose levels, as well as the steady administration of insulin, at least in the late stages of
the experimental procedure, a response of the HPAA stress system and its effector hormone
cortisol, which is known to increase gluconeogenesis, could have served as a confounding
influence [54,55]. Our experimental setup, however, was not designed to register system-
wide adaptions to the hypoglycemic experimental conditions; for example components, of
hepatorenal reciprocity (changes in hepatic gluconeogenesis or glycolysis) [45,56] or shifts in
any of the other factors that are known to modulate renal gluconeogenesis such as substrate
availability (lactate, amino acids, etc.), hormone levels (glucocorticoids and catecholamines),
or receptor activity or density (GLUT1, SGLT1, and SGLT2) [46,48]. Furthermore, we did
not measure urinary glucose excretion and urinary glucose concentration as carried out
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by Jiman et al. [43]. However, the decreases in urinary flow rate and sodium excretion
we measured were in agreement with a number of previous studies that described similar
responses to LFS [16,57–60], which suggests that the absolute reduction in urinary glucose
(without a change in glucose concentration) reported by Jiman et al. is likely due to these
antidiuretic effects [43].

Whereas high-frequency (kilohertz) stimulation of the renal nerves can be considered
a (reversible and transient) equivalent to renal denervation [61–63], LFS has been shown to
induce a multitude of physiological effects, such as activation of the Na+/H+ exchanger
through activation of the AT1-receptor pathway [16], renin release [14,17], and changes
in the renal vasculature [13,15,19]. Recorded responses of renal blood flow (RBF) to LFS
have been more ambiguous across a multitude of studies; in a comprehensive review on
the dynamic nature of renal sympathetic nerve activity (RSNA) and its influence on RBF
control, Schiller et al. emphasizes the complexity of dynamically shifting RSNA pattern
and underlying baseline oscillations of nerve activity [20]. We were only able to measure
a significant increase in SGN in response to LFS if the stimulation was preceded by a
period of non-stimulation during normoglycemia, and then only once. It is conceivable,
therefore, that the one successful stimulation in each animal satisfied necessary underlying
conditions in RSNA patterns, the specificities of which the experimental model was neither
designed nor sufficient to uncover, or that subsequent stimulations disturbed physiological
equilibrium. Due to the low frequencies utilized we did not anticipate a stabilization
period between individual stimulations to be necessary, though retrospectively, this might
have been the case and should be considered in subsequent investigations. Similarly, a
depletion in transmitters cannot be ruled out as a reason for the subsequent failure of LFS to
induce gluconeogenesis.

Further limitations of this study have to be noted in regard to the stimulation protocol.
We used an automated randomization procedure, which entailed computer-automated
assignation of the length and time point of LFS (performed autonomously by the pulse gen-
erator), which has the advantage of preventing investigator bias and allowed for a spread
of “interventions” (LFS) over the periods of experimental conditions (normoglycemia and
hypoglycemia). Nonetheless, this led to a certain disparity between individuals, which
might have contributed to the wide inter-individual differences in the results. The exact
distributional range of the LFS was similarly randomly and automatically computed by
the pulse stimulator within the range of 2 Hz to 5 Hz. This protocol has the advantage of
covering a range of frequencies of stimulation which therefore increases the likelihood of
finding a frequency that most adequately replicates a physiological stimulus. Furthermore,
it reduces the number of experimental animals required, since otherwise, to cover a range
of frequencies, a much higher quantity of animals would be needed, if, as now appears
likely, stabilization periods are necessary and an interference with, or disturbance of, the
underlying transmission patterns of RSNA after a singular stimulation is to be ruled out.
Nonetheless, the obvious disadvantage of this approach, especially considering the rather
substantial periods of time (respectively 15 min) that resulted in a single value for the sta-
tistical analysis, lies in the impossibility of identifying a particularly efficacious frequency
of stimulation.

Another conceivable confounding influence in a unilateral experimental model is an
interference by the reno–renal reflex, first described in the 1980s [64]. Particularly in recent
years, many new insights have been gained into the anatomical distribution of renal afferent
nerves—running alongside the efferent sympathetic nerves in the renal plexus—as well as
their contribution to a number of pathophysiological states such as hypertension [1,65,66].
Renal afferents play a crucial role in the reno–renal reflex, which, in rats, has been shown to
cause increases in contralateral urine flow rate and urinary sodium excretion (in response
to ipsilateral decrease in sodium excretion, thereby preserving homeostasis) as well as a
decrease in efferent renal nerve activity through an increase in ipsilateral ureteral pressure
and concomitant activation of mechanoreceptors; furthermore, Hermansson et al. reported
a contralateral decrease in renal blood flow following an ipsilateral LFS of renal nerves [67].
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The reno–renal reflex has been studied most intensively in rats [68], but has also been
demonstrated in cats [69,70] and dogs [71]. To our knowledge, there has only been one
study performed in pigs, which concluded that pelvic distension and the hyperperfusion
of one kidney showed no evidence for a reno–renal reflex, considering diuresis of the
contralateral organ as an outcome parameter [72]. A confounding of the results through a
reno–renal interaction can nonetheless not be wholly ruled out, especially since our previous
results were based on an experimental setup utilizing renal denervation, which, since we
did not deliberately spare or identify afferent nerval tissues, would have presumably
not faced this particular variable. Whether there is a reno-renal interaction regarding
sympathetic activation of renal gluconeogenesis, and if so, to what extent and under what
conditions, remains nonetheless, to our knowledge, unknown.

One of the main pitfalls, or weaknesses, of the mathematical model we employed to
compute SGN is the necessity of incorporating SRP in the equation alongside the measured
arterio–venous glucose difference. Since urine volume over time is one of the variables
necessary to compute SRP, we have found in this study, as in our previous investigations
utilizing the same equations [50,51], a strong confounding influence of the inter-individual
differences in urinary flow rate due to individual physiologies. This resulted in large
standard deviations and a distinct vulnerability of the computed SGN to said variable.
Nonetheless, hyperperfusion was necessary to avoid the administration of catecholamines,
which would have obfuscated the examined physiological mechanisms to an even greater
extent. One possible way to avoid such vulnerability in the examined parameter, SGN,
is a different method of computation or detection. Gluconeogenesis can be measured
by the administration of a variety of tracers and isotopes; though, until now, there is
no gold standard, and these methods still allow only an approximation to physiological
mechanisms and exact values due to the complexity of potential confounding variables
(glycolysis, etc.), and often require complex imagery such as nuclear magnet resonance
spectroscopy [73].

Beside these ineluctable variables, we strove to isolate further confounding factors by
standardizing, for example, the size and age of the pigs and the experimental conditions
(such as heat maintenance and infusion protocols), and to prevent investigator bias by
utilizing the formerly described fully automated stimulation protocol.

In our opinion, unilateral denervation does not need to be stratified for a side-separated
consideration of renal glucose output because the statistical analysis also takes the side
difference into account. Nonetheless, in addition to side-separated stimulation, alternating
simultaneous or non-simultaneous stimulations could be investigated in further studies to
conclusively rule out unilateral differences as a potential confounding factor.

4. Methods
4.1. Experimental Animals, Surgical Procedures

The Saxony animal welfare committee (Leipzig; permission number TVV 64/15 from
12 February 2015 to 5 May 2021) approved the experimental procedures as described below.
The animals in this study were all pigs of the German landrace and were reared in a
conventional agricultural holding facility. The animals ranged in weight from 32 kg to
41.5 kg. All experimental and surgical procedures were conducted in strict accordance to
local standards and the “Guide for the Care and Use of Laboratory Animals” [74].

Immediately before the experiments commenced the animals underwent a four-hour
food withdrawal, albeit with ad libitum access to water. The surgical procedure was per-
formed under general anesthesia, in supine position and under strict sterile conditions.
Anesthesia was induced by intramuscular injection of 15 mg/kg ketamine hydrochloride
(Ketavet®, 100 mg/mL, Pharmacia Upjohn, Erlangen, Germany) and 0.2 mg/kg midazo-
lam hydrochloride (Midazolam-ratiopharm®, Ulm, Germany). Thereafter, 0.2–0.3 mg/kg
propofol (Disoprivan®, AstraZeneca, Wedel, Germany) was administered through a venous
catheter in the ear vein (Vasocan®, Braun Melsungen, Melsungen, Germany), followed by
orotracheal intubation (Trachealtubus, Rüsch, Kernen, Germany). Subsequent anesthetic
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maintenance was achieved through continuous inhalation of 1.5% isoflurane (Isofluran®,
DeltaSelect, Dreieich, Germany) and O2; analgesia was maintained via the application
of 0.003 mg/kg fentanyl per hour (0.05 mg/mL Fentanyl, Janssen). Dosages of up to
0.1 mg/kg pancuronium (Pancuronium-Actavis®, Actavis, München, Germany) were ad-
ministered for muscular relaxation. Corneal moisture was ensured with the application
of eye drops (Corneregel®, Bausch&Lomb, Berlin, Germany). To ensure a stable blood
pressure during anesthesia, the animals received isotonic saline infusions (Isotonische
Kochsalzlösung®, Fresenius, Bad Homburg, Germany). The carotid artery (Arteriofix®,
Braun, Melsungen, Germany) and the jugular vein (Certofix Trio®, Braun, Melsungen,
Germany) were catheterized for blood sampling and blood pressure measurement, as well
as for intrapoperative administration of fluids and drugs. A midline laparotomy was
performed to gain abdominal access, followed by an opening of the retroperitoneum. For
urine sampling, size 6 charier catheters (Actreen® Glys Cath, Braun, Melsungen, Germany)
were inserted into both ureters. Local blood sampling was facilitated via bilateral instru-
mentation of the renal veins with vascular catheters (Certofix® Trio, Braun, Melsungen,
Germany), which were kept in position with Liquiband® Flow Control (Advanced Medical
Solution, Devon, UK). To maintain body temperature, we used a water mat system (Hico-
Variotherm 555®, REF 550025; PFM Medical Hico gmbh, Köln, Germany); additionally, the
animals were covered with sheets where feasible. A simplified graphic representation of
the surgical instrumentation is provided in Figure 8.
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4.2. LFS

A nerve cuff electrode (supplied with isolated pulse stimulator, see below) was placed
around the plexus renalis without constricting or exerting pressure on the renal artery.
The electrode was connected to an isolated pulse stimulator (Model 2100, A-M Systems,
Loop Sequim, WA, USA). The stimulation amplitude was fixed at 10 V. For low frequency
stimulations, the isolated pulse stimulator was set to vary automatically between 2 Hz and
5 Hz, generating biphasic pulses. The stimulation pulse and amplitude were fixed at
0.5 msec and 10 V. The side of the stimulated kidney had been determined via a random-
ization list. Stimulation periods were similarly randomly ordered between trials across
all experiments in order to mitigate sequential effects. The duration of the individual
stimulation periods was 15 min. Further episodes were randomly determined by coin toss.
Due to the low frequencies utilized, we deemed no stabilization periods necessary between
individual values.

4.3. Induced Polyuria and Maintenance of Blood Pressure

To avoid obfuscation of the examined physiological mechanism and to avoid the
necessity of administration of exogenous catecholamines it was expedient to submit the
kidneys to a hyperperfusion, which was achieved with high volume infusions of sterile
isotonic saline with a subsequent polyuria exceeding 100 mL/h/kidney. The infusion
rates were adjusted according to the invasively measured blood pressure as well as urine
production, and varied between 1 and 2 L/h. With this method, no animals exhibited
a significantly decreased urine volume, and the administration of furosemide was not
necessary in any of the experimental animals.

4.4. Hypoglycemic Clamp

Hypoglycemia was established via administration of a bolus of 10 IU human regular
insulin (Actrapid®, Penfill®, 100 IU/mL, Novo Nordisk Pharma, Mainz, Germany). Hy-
poglycemia was defined as a blood glucose level below 3.5 mmol/L. In a mildly fasted
state after four hours of food withdrawal, we aimed for a slow drop in the blood glucose
levels. At intervals of 7.5 min, arterial blood glucose levels were monitored with a blood
glucose meter (Contour®, Bayer AG, Leverkusen, Germany). If necessary, further boli of
insulin were administered to induce hypoglycemia as formerly defined; individual insulin
dosages expedient to achieve the desired range varied between 10–60 IU of insulin (per
experimental procedure, respectively).

4.5. Determination of Side-Dependent Glomerular Filtration Rate, Renal Plasma Flow
and Gluconeogenesis

Through a two-step process—which consisted of an initial bolus of 3.1 g para-
aminohippurate (PAH) (Sigma-Aldrich, Taufkirchen, Germany) and 0.55 g inulin (Sigma-
Aldrich, Taufkirchen, Germany), followed by a continuous infusion consisting of 3.3 g PAH
and 0.75 g inulin in a solution of sterile isotonic saline at a rate of 250 mL/h until the end of
the experimental procedure—PAH and inulin were adjusted to be near equilibrium. An
in-depth explanation of the procedure utilized is provided in our previous study [49].

Side-dependent renal plasma flow (SRP) was determined by use of the equation:
SRP [mL/min] = CUrinePAH [mg/L] × VUrineVolumeOverTime [mL/min]/CPlasmaPAH [mg/L]/
0.9 [75,76], for each kidney, respectively. For the analysis of CUrinePAH, urine specimens
were collected from each ureter via the established catheters. Blood specimens were drawn
from the carotid artery for analysis of CPlasmaPAH. Specimens of blood and urine analysis
were collected, respectively, every fifteen minutes. Urine collected from the ureter catheters
was used to measure VUrineVolumeOverTime; urinary volume was collected and analyzed
every fifteen minutes. GFR was calculated for each kidney via the following equation:
CUrineInulin [mg/L] × VUrineVolumeOverTime [mL/min]/CPlasmaInulin [mg/L] [77]. Urine spec-
imens for the analysis of CUrineInulin were collected from the catheters in both ureters. Blood
specimens drawn from the carotid arteries were used for determination of CPlasmaInulin.
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SGN was determined by use of the following equation: SGN [mmol/min] = SRP [L/min]
× (CVenousGlucose [mmol/L] − CArterialGlucose [mmol/L]). To measure CVenousGlucose, blood
specimens from the catheterized renal arteries were used. For the analysis of CArterialGlucose,
blood specimens were drawn from the carotid artery.

4.6. Pre-Analytical Methods

After collection, all plasma urine samples were aliquoted and stored until analysis.
Samples were thawed in a water bath and subsequently centrifuged and vortexed in a
microcentrifuge at room temperature to determine PAH. The resulting cleared supernatants
were utilized for additional analyses. All reagents were of analytical grade (acquired from
Roth, Karlsruhe, Germany).

4.7. Quantitation of Inulin

To allow for the use of a microplate reader, Roe et al.’s [78] quantitation method was
adapted by us according to the following protocol: a ten minute sample centrifugation was
succeeded by preparation of routinely diluted (1:10; urine) and undiluted (plasma) samples
for each animal and site of specific sample, respectively. A comprehensive explanation of
this quantitation method is supplied in our previous study [49].

4.8. Quantitation of PAH

For quantitation of PAH, we utilized the established method as described by Agarwal
et al. [79]; briefly, this refers to the use of a microplate assay relying on the reaction
of p-dimethylaminocinnamaldehyde (Sigma-Aldrich, Taufkirchen, Germany) with PAH,
which provides results that conform to a large degree with HPLC-based methods. A
comprehensive description of the method mentioned above is supplied in our previous
study [49].

4.9. Quantitation of Sodium Excretion

To determine sodium concentrations from urine samples, we utilized a routine
clinical procedure.

4.10. Statistical Analyses

For descriptive statistics summarizing the outcome parameters of the different mea-
surements, means ± standard deviation [SD] were used if all data sets were normally
distributed. Where at least one data set did not follow a normal distribution, box plots
were used. A linear mixed model was adapted to investigate the influence of the parameter
“hypoglycemia” and “electrical stimulation” on the renal gluconeogenesis of the stimulated
kidney. To detect possible interactions between the electrical stimulation and hypoglycemia,
an interaction term for both parameters was included in the model as well. Given the pres-
ence of repeated measurements from the same animals, we incorporated a random effects
structure to account for potential inter-animal variability. Specifically, a random intercept
was specified for each combination of animal and measurement number. All analyses were
performed with R 4.0.5. The linear mixed- models were fitted using the lme() function from
the nlme package in R. The fitted models allowed us to estimate the coefficients associated
with the main effects and interaction terms, along with their corresponding standard errors
and p-values. The supplementary Table S2 provides comprehensive data of the linear mixed
models. Additionally, a Wilcoxon signed-rank test was performed to assess the differences
between paired samples. The significance level was set to a = 0.05.

5. Conclusions

To our knowledge, this is the first study to investigate the effects of LFS on SGN. In
a linear mixed model, LFS did not significantly alter SGN either during normoglycemia
or hypoglycemia, though there was a general trend towards the statistical significance of
combined LFS and hypoglycemia. Hypoglycemia significantly lowered SGN, which might
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be due to the general experimental conditions which only consisted of a mild hypoglycemic
episode, and due to interferences of the necessary injection of insulin for the hypoglycemic
clamp procedure, which, conceivably, could also be the reason for the absence of an effect
of LFS on SGN. Further studies should analyze LFS in different experimental conditions
that do not entail the same confounding factors encountered by us; for example, during
different metabolic conditions, hypoglycemic conditions of greater severity, or utilizing
different means of calculating SGN, such as using tracers or isotopes, which are not as
vulnerable to inter-individual differences in basic physiologic parameters.

Nonetheless, we were able to demonstrate a significant increase in SGN due to LFS in
a Wilcoxon signed rank exact test that only considered the first instance of LFS followed on
a preceding period of non-stimulation during normoglycemia, which might be cautiously
considered as a positive control of our prior investigation on the influence of sympathetic
nerves on renal gluconeogenesis utilizing renal denervation. Nonetheless, further studies
are necessary to confirm and expand on these results and to elucidate the underlying
physiologic mechanisms.
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