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Abstract: Identifying bacterial strains is essential in microbiology for various practical applications,
such as disease diagnosis and quality monitoring of food and water. Classical machine learning
algorithms have been utilized to identify bacteria based on their Raman spectra. However, con-
volutional neural networks (CNNs) offer higher classification accuracy, but they require extensive
training sets and retraining of previous untrained class targets can be costly and time-consuming.
Siamese networks have emerged as a promising solution. They are composed of two CNNs with
the same structure and a final network that acts as a distance metric, converting the classification
problem into a similarity problem. Classical machine learning approaches, shallow and deep CNNs,
and two Siamese network variants were tailored and tested on Raman spectral datasets of bacteria.
The methods were evaluated based on mean sensitivity, training time, prediction time, and the
number of parameters. In this comparison, Siamese-model2 achieved the highest mean sensitivity
of 83.61 ± 4.73 and demonstrated remarkable performance in handling unbalanced and limited
data scenarios, achieving a prediction accuracy of 73%. Therefore, the choice of model depends on
the specific trade-off between accuracy, (prediction/training) time, and resources for the particular
application. Classical machine learning models and shallow CNN models may be more suitable
if time and computational resources are a concern. Siamese networks are a good choice for small
datasets and CNN for extensive data.

Keywords: Siamese networks; machine learning; bacteria classification; Raman spectroscopy

1. Introduction

Bacteria analysis including bacteria detection, identification, discrimination, and an-
tibiotic resistance is important in food safety control, infectious disease prevention, and
environmental monitoring [1,2]. Culture-based methods are the most used methods in
bacteria detection and identification [3]. However, these methods are slow, labor-intensive,
and do not meet requirements for the rapid detection of bacteria. Improved analytical
methods such as polymerase chain reaction (PCR) [4,5] and immunological assays [6,7] have
been developed to reduce overall testing time with high specificity but have limitations for
field testing and require expensive reagents. Therefore, alternative methods to improve
testing efficiency are needed.

Raman spectroscopy is a powerful technique for the rapid, sensitive, and non-destructive
detection of bacteria. Raman spectroscopy is a powerful technique that uses scattered light
to provide a chemical fingerprint of the vibrational modes within the sample’s composing
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molecules [8,9]. The technique has been applied in numerous fields where identifying
unknown substances is crucial, including food quality control [10,11], pharmaceutical drug
characterization [12], forensic investigations [13], and bacterial detection [14–16]. However,
interpreting untargeted spectral data from Raman spectroscopy can be challenging due to the
complexity of the data and the properties of biological samples. To address this, chemometric
techniques are commonly used to analyze Raman data in the fields of chemistry, biology, and
biochemistry [17,18].

Within chemometrics, classical machine learning methods have been widely used
for data modeling such as unsupervised clustering, classification, and regression tasks.
Dimension reduction, often the initial step in data modeling is crucial in extracting valuable
features from the data. Principal component analysis (PCA) and partial least squares
(PLS) are two dimension reduction techniques utilized in data modeling [19]. Selecting an
appropriate number of components is critical in this area as too few components might not
adequately capture the underlying trends in the data. Conversely, an excessive number
of components might introduce noise, reducing the effectiveness of the model [20,21].
Following dimension reduction, the processed data can be used as input for various
classification models, including linear discriminant analysis (LDA), support vector machine
(SVM), and random forest (RF).

The LDA method is a widely utilized classification method that aims to maximize the
ratio of between-class variance to within-class variance, thereby enhancing class separability.
However, it encounters challenges with small sample sizes, where the number of samples
is less than the number of variables and is limited to modeling only linearly separable data.
The small sample size issue can be mitigated by applying PCA before LDA, a technique
known as PCA-LDA. To address non-linearity, where classes are not linearly separable,
kernel functions can be employed to extend LDA’s applicability [22,23].

SVM [24] uses kernel functions to handle nonlinear classification problems by max-
imizing the interval between samples and decision boundary. However, this method is
sensitive to missing data, which can affect its accuracy. Random forests (RFs) [25] are partic-
ularly adept at processing large datasets due to their ensemble approach, which combines
multiple decision trees to improve classification accuracy and handle noise. However, the
algorithm’s efficiency can be compromised by the increased training time associated with a
large number of decision trees, and it is possible that the model may overfit when dealing
with highly noisy data [26].

A vital step in these classical machine learning methods is spectral pre-processing,
which varies depending on the spectrometer and its configuration, which could produce
different noise characteristics and artifacts. At the same time, the pre-processing of the
signal has the potential risk of introducing further errors and variability [27–30]. Therefore,
deep learning techniques in vibrational spectroscopy have been investigated in recent years.
Deep neural networks have many advantages compared to classical machine learning, such
as handling large datasets, both pre-process and without pre-processing and achieving
superior performance [30–32]. Application of different deep learning methods like artificial
neural network (ANN), convolutional neural network (CNN), auto-encoder, generative
adversarial network (GAN), recurrent neural network (RNN), etc. in Raman spectroscopy
data analysis can be found in previous studies [33,34].

The predecessor of deep learning is artificial neural networks (ANNs); however,
among deep learning techniques, convolutional neural networks (CNNs) have been com-
monly used for spectral matching since they can extract fingerprint characteristics effec-
tively, which leads to higher classification accuracy [33]. For example, a CNN is utilized to
rapidly identify Salmonella serovars [35], distinguish between live and dead Salmonella [36],
discrimination of clinically significant pathogens [37], discriminate between Carbapenem-
resistant and Carbapenem-sensitive Klebsiella pneumoniae strains [38], and identify antibiotic
resistance and virulence encoding factors in Klebsiella pneumoniae [39].
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CNNs are trained in a supervised manner and optimized directly for each reference
substance or class in the training database, and their performance strongly depends on the
amount of training data. Additionally, retraining is needed when the reference database
or the training set are modified, which induces impractical computational costs., i.e., the
addition of a new class or the availability of more training data [34,40,41]. To address
these limitations, a Siamese network has been proposed, which converts the classification
problem into a similarity problem and solves the issue of limited available data for training
CNNs [42–47], where, in many practical cases, only a few spectra are available per substance
or class.

Siamese networks aim to determine similarity or dissimilarity between pairs of data
points. Unlike CNN classification methods that rely on large datasets for training, Siamese
networks work differently. In the training process the model is presented with pairs of
examples with indications of whether they belong to the same class (similar) or different
class (dissimilar), and the model learns to generate a similarity score or distance measure
for each input pairs, providing a better understanding of how closely or distantly related
they are. This approach differs from classification strategies that focus on assigning singular
labels to individual instances. Siamese networks are more flexible and efficient when data
is limited.

Our Siamese network architecture consists of two identical convolutional neural
networks (CNNs) that share the same weights. The extracted features are fed into a final
dense layer that calculates the similarity metric between the two spectra. This function
can determine how similar or dissimilar two spectra are. In order to introduce CNNs, the
model description section aims to provide a comparison between classical machine learning
methods and deep learning techniques in Raman spectroscopy analysis. The comparison
includes the accuracy metrics and the computational costs of these methods. The paper
will also discuss potential future directions in Raman spectroscopy, mainly using Siamese
networks over conventional CNNs in tasks where data availability is limited.

2. Results and Discussion

In this study, different classical machine learning and deep learning methods for
analysis of Raman spectra from bacteria datasets are investigated. A workflow of this study
is shown in Figure 1.
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Figure 1. Bacteria Raman data analysis workflow. Different classical machine learning and
deep learning method performance is investigated. PCA-LDA: principal component analysis–
linear discriminant analysis; PLS-DA: partial least squares–discriminant analysis; PCA-SVM: PCA–
support vector machine; RF: random forest; CNN: convolutional neural network; SNN: Siamese
neural network.
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2.1. Classification on a Six-Bacterial-Species Dataset

This Raman spectral dataset contains 5420 single bacteria spectra, which include
six bacterial species and around 900 spectra per class showing a balanced dataset. The
samples were cultivated in nine independent biological replicates. We use two batches of
cross-validation to evaluate the stability of the results. In every cross-validation fold, the test
set contains two batches, and the rest is used as a training and validation set (70% training
and 30% validation). Table 1 presents the performance metrics of five different classical
machine learning models: PCA-LDA, PCA-SVM, PLS-DA, and PCA-RF as classical machine
learning models, and Shallow CNN, Deeper CNN, Siamese-model1, and Siamese-model2
as deep learning models. The models are evaluated based on sensitivity, specificity, training
time, and the number of parameters, where sensitivity is the ability of the model to identify
positive instances correctly and specificity indicates the false positive rate of the model.
The number of parameters in PCA-LDA, PCA-SVM, and PCA-RF shows the number of
principal components for dimensional reduction and in PLS-DA is the number of latent
variables in PLS decomposition.

Table 1. Mean sensitivity across 36 cross-validated models on a six-bacterial-species dataset, including
training time, prediction time for one sample, and the number of parameters.

Sensitivity
(%)

Specificity
(%)

Training
Time (s)

Prediction Time (s)
One Sample

Number
Parameters

PCA-LDA 79.85 ± 4.01 95.97 ± 0.80 1.79 0.0002 21
PCA-SVM 80.51 ± 4.75 96.10 ± 0.95 8.65 0.0002 21
PLS-DA 78.58 ± 3.81 95.72 ± 0.76 5.27 0.0002 21
PCA-RF 79.15 ± 4.80 95.82 ± 0.95 98.57 0.0003 21

Shallow CNN 82.80 ± 13.54 96.52 ± 0.89 800 0.040 14.7 K
Deeper CNN 84.13 ± 12.30 96.90 ± 0.83 800 0.047 19.6 M

k = 10 k = 50
Siamese
model1 82.65 ± 4.39 96.62 ± 0.82 2000 0.070 0.105 19.6 M

Siamese
model2 83.61 ± 4.73 96.75 ± 0.92 2000 0.072 0.185 19.6 M

The fitting time for the classical machine learning models cannot be compared directly
with the CNN models. Although we set the maximum number of epochs for all networks
to 200 with early stopping based on validation data and patience of 20 epochs, the actual
number of epochs required for convergence varies depending on several factors. Random
initialization, learning rate, batch normalization, and model complexity are among the
factors that can influence the number of epochs needed for convergence. Therefore, we
report the duration of an entire training model (200 epochs), it is essential to consider
that the actual number of epochs required may vary depending on the specific model and
its parameters.

The prediction time reported in Table 1 corresponds to the time needed to predict a
single bacteria spectrum. Classical machine learning model prediction is straightforward
and recommended when time is the most critical aspect as the prediction of a single
spectrum took only around 0.0002 s. Table 1 displays high specificity values for all models,
indicating correct identification of negative results. However, sensitivity is better with
any of the CNN methods as the mean sensitivity of classical machine learning methods is
approximately 80%.

Prediction times for the shallow and deeper CNN models are constant. However,
for the Siamese networks, during testing, we averaged N times over k-shots. This means
that for each test spectrum, k samples per class are randomly selected, this is repeated
N times, and the average is calculated. Table 1 presents the prediction time for two values
of k-shots for N = 1. Predicting 50 shots takes a significant amount of time as it involves
comparing our input spectrum 300 times with 50 samples for each of the six classes, which
becomes even more problematic when the number of classes is higher. However, we have
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found experimentally that the values of k can range between 10 and 30, with N equal to 1.
During our experiments, we observed that excluding the distance predictions (output of the
Siamese networks) falling below the 10th percentile and above the 90th percentile instead
of a simple mean value yields a more accurate prediction.

The number of parameters indicates the complexity of the models and should be
compared as well. Classical machine learning methods have only 20 principal components,
thus only 21 parameters are fitted, with 20 weights and the classification threshold, whereas
all other models have millions of parameters, except for the shallow CNN, which has
only 14.7 K parameters. The two highest sensitivity values are for the deeper CNN and
Siamese-model2. Although the CNN sensitivity is 0.52% higher than that of the Siamese
network, the standard deviation provides insight into the more general performance of the
model across the 36 different cross-validated models, indicating that Siamese-model2 has
a more stable behavior. In summary, the CNN-based approaches perform similarly, with
82.80 ± 13.54 (shallow CNN), 84.13 ± 12.30 (deeper CNN), 82.65 ± 4.39 (Siamese-model1),
and 83.61 ± 4.73 (Siamese-model2) mean sensitivity.

2.2. Pre-Training and Fine-Tuning on 15 Bacterial Strains

In this section, we utilized 50% of the classes from the public Raman spectra dataset [14]
to improve the visualization embeddings created by the Siamese network. Next, we tested
the effectiveness of our methodology by analyzing all 30 available in a balance and imbal-
ance scenario.

Siamese-model2 was employed due to its superior performance as determined by our
evaluation metrics and considerations, and to evaluate the effectiveness of our approach.
We pre-trained the Siamese network using only 50% of the available classes of the reference
dataset, which allowed us to emulate a more realistic scenario.

Training first the sub-network of the Siamese network separately speeds up the process,
but it is also possible to train the network end-to-end. This subnetwork was trained using
the triplet semi-hard loss function, which utilizes triplets, where the negative example is
farther from the anchor than the positive one, to create an embedding vector separating
the classes. To identify these triplets efficiently, we used Semi-Hard online learning in each
batch, allowing us to optimize the subnetwork’s performance.

Figure S1a shows the learned embedding projections of three PCA components that
capture only 52% of the variance in the testing data, comprising 15 classes. Each point in
the plot is color-coded based on the ground truth label, and the corresponding number
is also shown. We further highlight some of the clusters that are well separated from the
other classes in Figure S1b,c. While it is possible to differentiate at least half of the classes
based on the embeddings, the variance between the other classes is low, and the intra-class
variance is high. Thus, even for similar Raman data trained on a comparable spectrum,
fine-tuning is necessary to achieve optimal performance.

After fine-tuning the subnetwork using half of the classes of the fine-tuning dataset,
we obtained a second embedding vector. Figure S2 displays the embedding projections of
three PCA components that capture 47% of the variance in the testing data. Each point in
the plot is color-coded based on the ground truth label, which may result in some colors
being repeated. We observe that the majority of the classes can be distinguished from each
other based on the embedding, indicating that the fine-tuning process has enhanced the
subnetwork. Figure 2 displays the confusion matrix derived from the testing dataset, where
the model was tested with ten shots. Analysis of the confusion matrix reveals an average
sensitivity of 72.0%, an average precision of 76.1%, and an F1 score of 0.71. The F1 score
integrates precision and sensitivity into a single metric to gain a better understanding of
model performance. The F1 score is calculated by:

F1 score =
2 × precision × sensitivity

precision + sensitivity
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Figure 2. Confusion matrix for the Siamese network. Testing data across the first 15 bacteria strains
of a 30-bacterial-strain dataset.

2.3. Classification on a 30-Bacterial-Strain Dataset

In this section, Siamese model2 is pre-trained using the reference data dataset [14], and
subsequently we examine two distinct fine-tuning scenarios. The initial scenario entails
pre-training on 30 classes, followed by training the Siamese network with a balanced
dataset, consisting of 100 spectra for each class. In contrast, the second scenario adopts
an unbalanced dataset approach, where half of the classes are represented by 100 spectra
each, and the remaining half by only 30 spectra each. Moreover, the pre-training process
incorporates only 50% of the classes, a strategy specifically designed to assess the model’s
proficiency in managing scenarios characterized by limited data availability.

Figure 3 showcases the confusion matrices for the two scenarios under investiga-
tion. This detailed representation highlights the classification outcomes when training
the model under balanced versus unbalanced conditions. For the testing phase, ten shots
were employed.

In the balanced scenario, utilizing the full dataset yielded a notable average sensitivity
of 80.0%, an average precision of 82.0%, and an F1 score of 80.0% For the unbalanced
scenario, the model achieved an average sensitivity of 73.0%, an average precision of
78.1%, and an F1 score of 72.9%. These results are particularly significant considering the
challenging conditions: the absence of certain classes during pre-training and the limited
sample size in the fine-tuning stage. Despite these constraints, the Siamese model attained
a commendable prediction accuracy of 73.0%. The Siamese model shows potential in
complex scenarios, indicating an ability to address new data classes and manage limited
data, which suggests its adaptability and robustness for practical applications.
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Figure 3. Comparative performance evaluation of Siamese model2: Detailed confusion matrices
illustrating classification outcomes in balanced (a) vs. unbalanced (b) training scenarios.

2.4. Rank-2 Accuracy

Siamese network prediction conducts a comparative analysis for each sample against
ten distinct reference bacteria from each of the 30 classes. Figure 4 illustrates this comparison
through two misclassified spectra. It presents a grouped bar chart showcasing the weighted
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distance metric between the input spectra; specifically, (a) S. lugdunensis and (b) E. coli2, in
relation to all reference bacteria. In this chart, a greater distance signifies reduced similarity
between the spectra, whereas a smaller or negative distance denotes higher similarity.
Figure 4 uses green to denote the true class and red to indicate the incorrectly predicted
class. The model focuses exclusively on these two specific classes in the scenarios presented,
effectively disregarding the other 28. It is important to note that this model’s primary
function is not to classify data in the conventional sense but rather to compare input data
against a reference spectrum, as reflected in its selective identification process. Furthermore,
Figure S4 graphically presents the distribution of the weighted distance metric, contrasting
correct versus incorrect predictions. This visualization clearly demonstrates that samples
with incorrect predictions tend to cluster at higher distances, while those correctly classified
generally align with lower distance values.
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In the previous section, we described a model trained on a balanced dataset that
achieved a notable classification accuracy of 80%. However, given the complex and diverse
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nature of bacteria strains, we incorporated a refined metric called “Rank-2 accuracy”. It
considers the accuracy of the second-highest prediction along with the top choice. This
metric is relevant when using a Siamese network, which solves a similarity problem,
especially in scenarios with 30 different bacterial classes, because it better evaluates the
model’s performance. As summarized in Table 2 which also includes Rank-3 accuracy, Rank-
1 accuracy stands at 80.26% with 2408 correct classifications, Rank-2 accuracy enhances
the model’s precision to 90.26% for an additional 300 spectra, and Rank-3 accuracy further
elevates this metric to 93.46% for 96 spectra.

Table 2. Hierarchical accuracy metrics, Siamese model2 performance across Ranks 1–3. Shows
accuracy percentages and counts of classified instances. Testing data across the 30 bacteria strains.

Overall Accuracy Count

Rank-1 80.26 2408

Rank-2 90.26 300

Rank-3 93.46 96

3. Materials and Methods
3.1. Data Description

The dataset utilized in this study comprised Raman spectra obtained from six dis-
tinct bacterial species: Escherichia coli DSM 423, Klebsiella terrigena DSM 2687, Pseudomonas
stutzeri DSM 5190, Listeria innocua DSM 20649, Staphylococcus warneri DSM 20316, and
Staphylococcus cohnii DSM 20261. All bacterial species were obtained from Deutsche Samm-
lung von Mikroorganismen and Zellkulturen GmbH (DSMZ) and were cultivated in nine
independent biological replicates.

The Raman spectra were acquired using a Raman microscope (Bio Particle Explorer,
rap.ID Particle Systems GmbH). The spectral data were collected over a range of 240 to
3190 cm−1. The dataset contains 5420 preprocessed spectra with 584 wavenumbers. The
number of spectra per class is around 900 spectra showing a balanced dataset.
Figure 5 shows the mean spectra for each class. More details about samples and the
Raman spectrometer can be found in ref. [48].
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Prior to analysis, the Raman spectra underwent preprocessing steps, cosmic spikes
removal, wavenumber calibration, spectra alignment, and baseline correction. The prepro-
cessed spectra were then used as inputs for the classification algorithms. The efficacy of
various classification algorithms was evaluated utilizing cross-validated weighted accuracy.

We analyzed a second publicly available Raman spectra dataset [14], including 30 com-
mon bacterial pathogens. Table S1 describes the species name, label, and isolate code. These
pathogens were chosen as they are responsible for most infections observed in intensive
care units worldwide. The researchers deposited bacterial cells onto gold-coated silica
substrates to create the reference database. They collected spectra from monolayer regions
of each strain, ensuring high-quality Raman spectra with minimal interference.

The dataset comprises three subsets: a reference dataset, a reference-finetune dataset,
and a test dataset. The reference dataset contains 60,000 evenly distributed Raman spectra
from 30 bacterial strains, with 2000 spectra per class. These spectra were used to pre-train
machine learning models [14,45]. The reference-finetune dataset was employed to fine-tune
the models, while the test dataset was used to evaluate the performance of the models.
The reference-finetune dataset and a test dataset contain 3000 spectra representing all
30 bacterial strains with 100 spectra per class. Figure 6 shows the mean spectra for each
of the 30 bacterial strains. The spectral data were collected over 381.98 and 1792.4 cm−1,
distributed uniformly over 1000 wavenumbers. As preprocessing, the spectra intensity was
individually normalized between 0 and 1.
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3.2. One-Dimensional Convolutional Neural Network Model Description

One-dimensional convolutional neural networks (1D-CNNs) have become a popular
tool for processing and analysis of sequential data in various domains, such as speech
recognition [49], music analysis [50], and financial forecasting [51], for their ability to extract
relevant features from sequential data. In a 1D-CNN, the input data is represented as a
sequence of values.

Figure 7 illustrates the network architecture for the two 1D-CNN models that are used
in this study. In the case of Raman data, the input contains the entire spectrum, where each
point represents an intensity in a specific wavenumber. The network then applies a set of
filters (kernels) to the input data, with each filter moving across a small window of adjacent
data points at a time. The filters perform convolutions, which extract important features
or patterns. These features are then passed through additional convolutional layers to
create increasingly complex representations of the original input sequence. Additionally,
a non-linear activation function (Leaky ReLU) introduces nonlinearity to the model after
each layer. Finally, the output of the last convolutional layer is fed through a set of fully
connected layers, which perform the final classification followed by SoftMax activation that
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normalizes the k-dimensional output vector of real values with different dynamic ranges to
real values in the range [0,1], that sum to 1 and can be viewed as a probability output.

Figure 7. CNN architecture for Raman spectrum classification. It is composed of a set of convolu-
tional layers that extract features, followed by fully connected layers that perform the classification.
Above: shallow CNN with one convolutional and one dense layer, below: deeper CNN with three
convolutional and three dense layers.

Figure 7 presents the general concept of a 1D CNN. However, the selection of the
optimal values of the hyperparameters, such as the number of layers, kernels, kernel size,
dropout value, activation function, batch normalization decay, and momentum, depends
on the dataset. Typically, those values are selected through trial and error. We report the
results for two configurations, a shallow CNN model (Figure 5 above) composed of a
convolutional layer and a dense layer, and a deeper CNN formed by three convolutional
layers and three dense layers (Figure 5 below). A more detailed review of these CNN
architectures which were built based on Tensorflow framework in Python is shown in
Table 3. The shallow CNN model includes a convolutional, a pooling, and a dense layer.
The Raman spectrum as input imported into the 1D-CNN model. The convolutional kernel
with size 10 × 1 and step size 5 are used for feature extraction. This procedure is followed
by a batch normalization (BN) layer. The Leaky ReLU function is used as the activation
function, which can help the network learn complex data, improve nonlinear modeling
capabilities of the network, and provide more accurate predictions. The pooling layer
reduces the dimensionality of the feature vector, enhances the robustness of the network,
and obtains lower resolution feature data. The data from pooling layer are input to a fully
connected (Dense) layer for classification. The difference between shallow CNN and deeper
CNN models is in the number of convolutional, pooling, dense layers, and kernel size.
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Table 3. Comparison of the architectures of the deep learning models used within this article.

Convolutional Layers Fully Connected Layers

Shallow CNN Conv (10,5)
BatchNorm + LeakyReLU + pooling

Dense (16)
BatchNorm + LeakyReLU + Dropout

Deeper CNN 3 × Conv (64,5)
BatchNorm + LeakyReLU + pooling

2 × Dense (512) + Dense (256)
BatchNorm + LeakyReLU + Dropout

Feature vector embedding Learnable distance metric

Siamese model1 Deeper CNN Dense (1)
Sigmoid

Siamese model2 Deeper CNN Dense (64) + Dense (16) + Dense (1)
Sigmoid

3.3. One-Dimensional Siamese Network Model Description

The Siamese network is a type of deep learning architecture specifically designed for
solving problems related to similarity and distance. Figure 8 shows that the architecture of
this network consists of two identical sub-networks with the same weights and architecture.
Each sub-network takes in a Raman spectrum as input and produces feature vector embed-
ding that captures the essential information in a higher dimensional space. The two feature
vectors f 1 and f 2 are then compared using a learnable weighted distance metric:

d = wT ·∥ f1 − f2∥

where the weights of the metric are learned from data during the training process. In our
network, it is implemented using a fully connected layer followed by a sigmoid activation.
In other words, the metric is not fixed but can adapt to the specific characteristics of the
data being analyzed. It measures the distance or similarity between two spectra, the output
of the Siamese network is a binary classification, which reveals whether the two input
spectra belong to the same class or not.
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Figure 8. The conceptual architecture of a Siamese network. The inputs are two Raman spectra that
analyzed by two identical CNN models. The convolution network is the deeper CNN model that
was introduced in previous section. The extracted features are compared using a learnable weighted
distance metric and followed by a sigmoid function which predicts the probability between the
range of 0 and 1. The output determines whether the two inputs belong to the same class or not (the
two inputs are similar or not).

3.4. One-Dimensional Siamese Network Model Training

Since the dataset size is small, we decided not to create a paired spectra dataset and
instead generated them randomly during training, which allowed us to reduce overfitting.
Given spectrum xi, another reference spectrum xj is randomly selected from the training
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data set with its corresponding class label. The paired label yi is generated as follows: if
the input spectra belong to the same category, yi is set to zero, indicating poor distance
and similarity. On the other hand, if the input spectra belong to different classes, yi is set
to one, indicating significant distance and negative similarity. In this way, the problem is
transformed into a binary classification in which we use the binary cross entropy as the
loss function.

L = − 1
N

N

∑
i=1

yilog pi + (1 − yi)log(1 − pi)

where N is the number of paired spectra, pi is the outcome of the Siamese network and yi is
the paired label. The models were trained with the Adam optimizer with a learning rate
of 6 × 10−5 and batch size of 64. We report the results for two configurations. For both
cases, the feature extraction part is identical. The difference lies in the learnable distance
function. In the first case, we use only one dense layer, and in the second configuration, we
use a more complex function that uses three dense layers, as shown in Table 3.

4. Conclusions

As discussed earlier, to utilize Raman spectroscopy in real world applications like
diagnostics, chemometrics and machine learning are needed. In this contribution different
classical machine learning concepts are compared, which feature different properties.
Table 1 presents the results of several classical machine learning models trained and
evaluated on a six-bacterial-species dataset, including PCA-LDA, PCA-SVM, PLS-DA,
PCA-RF, shallow CNN, deeper CNN, and two variants of the Siamese model. The models
were compared based on mean sensitivity, training time, prediction time, and number of
parameters. Based on the application scenario, the restrictions of the application and the
available data different models perform best.

If the goal is to maximize model performance, the best choice would be the Siamese
model 2, which achieved the highest mean sensitivity of 83.61 ± 4.73. However, if time and
computational resources are a concern, the classical machine learning and shallow CNN
models would be more suitable, as they required significantly less training and prediction
time and contained fewer parameters than the deeper CNN models. Additionally, if the
dataset is small, the shallow CNN model may be a better option, as it achieved reasonable
accuracy while requiring less training time and having fewer parameters than the deeper
CNN and Siamese models. Overall, the choice of model should depend on the specific
trade-off between model performance, training/prediction time, and resources that are
most important for a particular application [52].

In addition, Siamese-model2 was utilized to classify 30 bacterial strains. The sub-
network was pre-trained separately using the triplet semi-hard loss function to generate
an efficient embedding vector to separate the classes. We learned the learnable weighted
distance metric using the fine-tuning dataset, which improved the model’s ability to
differentiate between bacterial strains converting the classification problem into a similarity
problem. To better emulate real-world conditions, only half of the available classes from
the reference dataset were utilized to pre-train the model. We fine-tuned Siamese-model2
using a limited and highly unbalanced dataset. This presented a challenging task, as
15 classes had 100 samples each, while the remaining 15 classes only had 30 samples each.
Nevertheless, such situations are often encountered in medical diagnostics. Despite these
difficulties, Siamese-model2 demonstrated remarkable performance, achieving a prediction
accuracy of 73%. Our findings highlight the model’s ability to generalize to new classes
and handle limited data scenarios effectively. These properties make Siamese-model2 a
versatile and robust tool, with immense practical applications. Furthermore, using all
available data, we obtained a significantly higher accuracy of 80.04% for 30 classes, further
underscoring the potential of Siamese-model2 in bacterial strain identification. With further
improvements and optimizations, this approach could lead to more accurate and efficient
bacterial classification, aiding in the field of microbiology and disease diagnosis.
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Supplementary Materials: The supplementary material can be downloaded at: https://www.mdpi.
com/article/10.3390/molecules29051061/s1. Figure S1. Pre-trained Embedding projections of three
PCA components that capture only 52% of the variance in the testing data. (a) 15 classes clusters,
(b,c) some of the clusters that are well separated from the other classes. Figure S2. Fine-tuned
Embedding projections of three PCA components that capture only 47% of the variance in the
testing data. (a) 15 classes clusters, (b,c) some of the clusters that are well separated from the other
classes. Figure S3. Mean spectra and standard deviation from training data for three bacterial strains.
Figure S4. Distribution of Weighted Distance Metric for Correct vs Incorrect Predictions. Testing
Data Across the 30 Bacteria Strains. Table S1. The species name, figure label, isolate code, and
empiric antibiotic treatment. Data sourced from “Rapid identification of pathogenic bacteria using
spectroscopy and deep learning”, HO, Chi-Sing, et al. Nature communications, 2019 [14]. Table S2.
Confusion matrix of different classification methods for six bacteria species dataset.
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