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A B S T R A C T   

Pancreatic ductal adenocarcinoma (PDAC) is a cancer that is usually diagnosed at late stages. This highly 
aggressive tumor is resistant to most therapeutic approaches, necessitating identification of differentially 
expressed genes to design new therapies. Herein, we have analyzed single cell RNA-seq data with a systems 
biology approach to identify important differentially expressed genes in PDAC samples compared to adjacent 
non-cancerous samples. Our approach revealed 1462 DEmRNAs, including 1389 downregulated DEmRNAs (like 
PRSS1 and CLPS) and 73 upregulated DEmRNAs (like HSPA1A and SOCS3), 27 DElncRNAs, including 26 
downregulated DElncRNAs (like LINC00472 and SNHG7) and 1 upregulated DElncRNA (SNHG5). We also listed 
a number of dysregulated signaling pathways, abnormally expressed genes and aberrant cellular functions in 
PDAC which can be used as possible biomarkers and therapeutic targets in this type of cancer.   

1. Introduction 

Pancreatic ductal adenocarcinoma (PDAC) is a cancer that is usually 
diagnosed at late stages, thus there is no chance of curative tumor 
resection [18]. This highly aggressive tumor is resistant to most thera-
peutic approaches, therefore there is a need for identification of differ-
entially expressed genes in this type of cancer to design new therapies. 
Microarray-based approaches have been used in PDAC samples to find 
new tumor biomarkers and potential therapeutic targets [12]. One of the 
most prevalent and widespread cell types in the mammalian embryo are 
endothelial cells. These cells develop near and frequently as a compo-
nent of various organs, including the kidneys, lungs, liver, and pancreas 
[26]. Islet endothelial cells interact physically and functionally with 
beta cells, and they also stimulate insulin gene transcription throughout 

islet progression, influence adult beta cell activity, encourage beta cell 
growth, and create a variety of growth factors. These cells also deliver 
oxygen and nutrients to endocrine cells [41]. More recently, the arrival 
of next-generation sequencing technologies, has revolutionized this 
field, since RNA sequencing (RNA-seq) is superior to microarray tech-
niques in terms of high sensitivity and its capacity to identify splicing 
isoforms and somatic mutations [35]. Transcriptome analyses of PDAC 
cells have been successfully accomplished in PDAC cell lines [16], tumor 
cells detected in the circulation [40] and paired tumor samples and 
adjacent non-tumoral samples [24]. The latter approach has revealed 
several differentially expressed genes and abnormally activated path-
ways [24]. Moreover, next-generation whole-exome sequencing has 
been used to uncover driver mutations and abnormally activated 
signaling pathways in this type of cancer [34]. However, the application 

* Corresponding authors. 
** Corresponding author at: Institute of Human Genetics, Jena University Hospital, Jena, Germany. 

E-mail addresses: Thomas.liehr@uni.med-jena.de (T. Liehr), s.ghafourifard@sbmu.ac.ir (S. Ghafouri-Fard), mohammad.taheri@uni-jena.de (M. Taheri).   
1 Contributed equally to this work 

Contents lists available at ScienceDirect 

Pathology - Research and Practice 

journal homepage: www.elsevier.com/locate/prp 

https://doi.org/10.1016/j.prp.2023.154614 
Received 3 May 2023; Received in revised form 3 June 2023; Accepted 10 June 2023   

mailto:Thomas.liehr@uni.med-jena.de
mailto:s.ghafourifard@sbmu.ac.ir
mailto:mohammad.taheri@uni-jena.de
www.sciencedirect.com/science/journal/03440338
https://www.elsevier.com/locate/prp
https://doi.org/10.1016/j.prp.2023.154614
https://doi.org/10.1016/j.prp.2023.154614
https://doi.org/10.1016/j.prp.2023.154614
http://crossmark.crossref.org/dialog/?doi=10.1016/j.prp.2023.154614&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Pathology - Research and Practice 248 (2023) 154614

2

of this method in PDAC is limited by the low tumor cellularity and strong 
desmoplastic reactions in this type of cancer [3]. Therefore, single cell 
RNA-seq has been suggested as an influential technique for identifica-
tion of the metabolic and clinical characteristics of this highly malignant 
tumor [3,9,11,27]. In the current study, we have analyzed single cell 
RNA-seq data with a systems biology approach to identify important 
differentially expressed genes in PDAC samples compared to adjacent 
non-cancerous samples. 

2. Methods 

2.1. Single cell RNA-seq data collection 

To obtain the raw counts of single-cell RNA-seq data from 
GSE212966 (Illumina NovaSeq 6000 (Homo sapiens); GPL24676), 
consisting of 12 samples, we accessed the Gene Expression Omnibus 
(GEO; http://www.ncbi.nlm.nih.gov/geo/) on 18 November 2022. This 
dataset includes 6 PDAC and 6 adjacent normal pancreatic tissue sam-
ples. For our analysis, we specifically chose GSM6567157 as the PDAC 
sample and GSM6567165 as the adjacent normal pancreatic sample. 

Fig. 1. Violin plots of gene number, count number and mitochondrial percentage in pancreatic ductal adenocarcinoma (A) and normal adjacent (B) sample. The 
dataset has been filtered out based on these violin plots. 

Fig. 2. Scatter plot of top variable genes in pancreatic ductal adenocarcinoma (A) and normal adjacent (B) sample. These plots display 10 top variable genes.  

E. Jamali et al.                                                                                                                                                                                                                                  



Pathology - Research and Practice 248 (2023) 154614

3

2.2. Data preprocessing and principal component analysis 

The NormalizeData function of the Seurat package (version 4.1.1) 
[14] was used to normalize the expression matrix. Using the FindVar-
iableFeatures function, the top 2000 highly variable genes were exam-
ined. The ScaleData function was then used to linearly scale the 
expression data. Finally, using the RunPCA function and the 2000 var-
iable genes, principal component analysis (PCA) was carried out. 

2.3. Cell cluster and annotation 

We chose the primary components with high standard deviations. 
Then, using the FindNeighbors and FindClusters functions of the Seurat 
package, a cell clustering analysis was carried out. T-distributed Sto-
chastic Neighbourhood Embedding (tSNE) and Uniform Manifold 
Approximation and Projection (UMAP) were used for dimension 
reduction through the use of the RunTSNE and RunUMAP functions. 
Then, after obtaining the markers for each cluster using the FindAll-
Markers function, we set an average log2FC > = 1 threshold to choose 
the best markers. Based on the best marker genes, cell types were an-
notated. We utiliezed GenemarkeR [25], azimuth (https://azimuth. 
hubmapconsortium.org/), Tabula Muris [28], UNCURL (https://uncurl. 
cs.washington.edu/db_query) and Single Cell Expression Atlas [8] da-
tabases and also singleR package (Version 1.10.0) [2] to annotate 
clusters. 

2.4. Dataset preprocessing, DEGs analysis and two-way clustering of 
DEGs 

We used the DESeq2 package (version 1.36.0) [21] to analyze raw 
counts data, and the lfcShrink function and normal method to obtain 
DEGs. In addition, The P value was also converted into the FDR using 
Bonferroni in the stats package (version 4.2.1). We used the FDR < 0.05 
and |log2 FC= > 1 as the cutoff criteria for DEGs between endothelial 
cells in PDAC and adjacent normal samples. Next, the whole list of 
lncRNA genes was obtained through approved HUGO Gene Nomencla-
ture Committee (HGNC) symbols [33]. Next, we measured the levels of 
gene expression for important DElncRNA and DEmRNAs. In order to do 
the two-way clustering based on the Euclidean distance, we used this 
data in the pheatmap package of R programming language (version 
1.0.12) [30]. 

2.5. Gene ontology (GO) enrichment analysis of DEGs 

Gene ontology (GO) enrichment analysis was performed using the 
clusterProfiler R package (version 4.4.4) [36] to look into the roles of the 
substantially up- and down-regulated DEGs. The threshold for the 
functional category was set at an adjusted p-value of 0.05 or less. 

Fig. 3. Plots of top 10 genes in top two principal component in pancreatic ductal adenocarcinoma (A) and normal adjacent (B) sample.  

Fig. 4. Elbow plot for selecting the best principal components in pancreatic ductal adenocarcinoma (A) and normal adjacent (B) sample.  
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2.6. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis 

To determine the specific roles of DEGs engaged in the pathways 
based on the KEGG database [17], KEGG pathway analysis of DEGs was 
conducted. The threshold was set at a p-value of 0.05 or less. 

2.7. Protein-protein interaction (PPI) network construction and hub genes 
identification 

The PPI network for DEGs was constructed using the STRING data-
base [32]. To construct the interactions parameters, the highest degree 
of confidence (confidence score > 0.9) and high FDR stringency (1%) 
were combined with experiments and database sources. The interactions 
between the proteins were viewed using the Cytoscape software version 
3.9 [29]. Finally, utilizing the betweenness centrality methode and the 
Cytohubba plugin [7] of Cytoscape, the top 20 DEGs associated with hub 
genes were identified. 

2.8. Regulatory Networks of miRNA-hub genes and TF-hub Genes 

The connections between the PPI hub genes, transcription factors 
(TFs) and microRNAs (miRNAs) were developed using the NetworkA-
nalyst database [43]. We next determined which TF and miRNA had the 
highest degree in the networks. 

2.9. Constructing the ceRNA networks and hub genes identification 

We built a ceRNA network through the following steps: 1) Obtaining 
PDAC-related miRNAs from the miRCancer database [37]; 2) Finding 
the interaction between lncRNAs and miRNAs based on the 
PDAC-related miRNAs using miRcode (http://www.mircode. org/); 3) 
Application of miRDB (http://www.mirdb. org/) [6], miRTarBase 
(https://mirtarbase.cuhk.edu.cn/) [15], TargetScan (http://www.tar-
getscan.org/) [1] and miRWalk (http://129.206.7.150/) [31] for 

prediction of miRNAs-targeted mRNAs; 4) Identifying the intersection of 
the differentially expressed lncRNAs and mRNAs, and constructing 
lncRNA/mRNA/miRNA ceRNA network using Cytoscape v3.9 and 4) 
predicting hub genes using cytohubba plugin based on degree method. 

2.10. Validation of hub genes via expression values 

The expression profile of the hub genes of the PPI and ceRNA net-
works in PDAC and healthy tissues was assessed using ualcan [4]. In this 
case, TCGA-PAAD data was chosen. 

2.11. Survival analysis 

We used ualcan database to generate survival curves, which were 
stratified by the patients’ predictive value of hub genes with highest 
degree in PPI and ceRNA networks. The TCGA provided the clinical 
information for those with PDAC (TCGA-PAAD). Kaplan-Meier curves 
were used to evaluate univariate survival analyses. P-values < 0.05 were 
regarded as significant in statistics. 

3. Results 

3.1. Single cell RNA-seq dataset processing and clustering 

Using the R package Seurat, we first downloaded the raw data for 
quality control and data filtering for the single-cell dataset GSE212966 
and GSM6567157 and GSM6567165 samples. We filtered out cells based 
on count number, gene number and mitochondrial percentage that have 
been displayed in violin plots (Figs. 1A, 1B). We selected the top 2000 
highly variable genes in each sample after normalizing the scRNA data 
(Figs. 2A and 2B). ScRNA data was then linearly scaled and analyzed 
using PCA to reduce dimensionality. We screened the top two principal 
components for further investigation (Figs. 3A and 3B). Based on the 
elbow point, we recognized the optimal principal components in PDAC 

Fig. 5. Heatmaps showing the top 10 marker genes in each principal component in pancreatic ductal adenocarcinoma (A) and normal adjacent (B) sample.  
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Fig. 6. Clustering based on tSNE and UMAP dimension reduction in pancreatic ductal adenocarcinoma (A) and normal adjacent (B) sample.  

Fig. 7. UMAP plots demonstrating cell types recognized by marker genes. Each cell type was colored by a distinctive color in PDAC (A) and normal adjacent (B) 
sample using UMAP method. 

E. Jamali et al.                                                                                                                                                                                                                                  



Pathology - Research and Practice 248 (2023) 154614

6

Fig. 8. Violin plot, feature plot and heatmap of 8 endothelial cell unique marker genes in pancreatic ductal adenocarcinoma (A) and normal adjacent (B) sample.  
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Fig. 8. (continued). 
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and normal sample as 17 and 19 respectively (Figs. 4A, 4B). Heatmaps 
depicted the top 10 marker genes in each principal component (Figs. 5A, 
5B). With the UMAP and tSNE dimension reduction methods, PDAC and 
adjacent normal pancreatic samples were clustered into 21 and 18 
clusters, respectively (Figs. 6A, 6B). 

3.2. Identification of cell types and their marker genes across pancreatic 
endothelial cells 

First, we identified marker genes in each cluster using FindAll-
Markers function of Seurat package with average log2FC > 1 as a 
threshold. Then, we used GenemarkeR, azimuth, Tabula Muris, UNCURL 
and Single Cell Expression Atlas databases and also singleR package 
(version 1.10.0) to annotate each cell type (Figs. 7A and 7B). Pancreatic 
endothelial cell type was identified based on PLVAP, PECAM1, VWF, 
CDH5, RAMP2, RAMP3, CLDN5 and FLT1 gene markers (Figs. 8A and 
8B). Also, considering that most of the pancreatic tissues examined in 
these databases included pancreatic islets, the endothelial cells are also 
in the form of islet endothelial cells. 

Table 1 
The top 10 up- and downregulated DEmRNAs between PDAC and normal samples.  

Down-regulated Up-regulated 

DEmRNA Log FC Adjusted P value DEmRNA Log FC Adjusted P value 
PRSS1 

CLPS 
CTRB1 
PNLIP 
CELA3A 
FABP5 
CPA1 
LIFR 
CD36 
PRSS2 

-6.52532161684 
-6.37876537760 
-5.92073932417 
-5.59818205342 
-4.99493696351 
-4.88901122343 
-4.86551713204 
-4.63543806465 
-4.58160781574 
-4.48498316768 

0.000109758154973103 
0.000452497346272236 
0.00435285966419554 
0.00913875754383048 
0.00968701976717365 
3.42938435789448e-47 
0.0396877209682425 
7.52973647505902e-53 
3.02373171520527e-12 
0.00603515779040049 

HSPA1A 
SOCS3 
FOSB 
LMNA 
JUNB 
C11orf96 
IGFBP5 
MIDN 
IER3 
SLC2A3 

3.22311028268 
2.63008472128 
2.62295638623 
2.62292614713 
2.33021819513 
2.28818983593 
2.19485320295 
2.17741775223 
2.14319792434 
2.04979590162 

1.40812407296933e-12 
4.67310460777748e-10 
5.73171133382851e-10 
9.28518464180237e-12 
5.04910773521695e-09 
8.61685367604722e-05 
0.00056205135512786 
2.34909923104221e-07 
1.10266740161394e-05 
1.26118994276069e-06  

Table 2 
The up- and downregulated DElncRNAs between PDAC and normal samples.  

Down-regulated Up-regulated 

DElncRNA Log FC Adjusted P value DElncRNA Log FC Adjusted P value 
LINC00472 

SNHG7 
LINC00342 
MIRLET7BHG 
MAPKAPK5-AS1 
PSMB8-AS1 
AC108134.3 
LINC00667 
MAP4K3-DT 
LINC01278 
CCDC18-AS1 
AL390728.6 
OTUD6B-AS1 
WAC-AS1 
GATA2-AS1 
EBLN3P 
AC005332.6 
BX284668.5 
HEIH 
PHF1 
SNHG14 
ILF3-DT 
NUTM2A-AS1 
OIP5-AS1 
LINC01116 
FTX 

-2.27381520663 
-1.99167974598 
-1.83568973995 
-1.72711278714 
-1.49343425398 
-1.47159920364 
-1.42422557735 
-1.40852076207 
-1.38960468297 
-1.32491766312 
-1.31517462665 
-1.30683815211 
-1.30320443121 
-1.29394903246 
-1.29227301928 
-1.27463318009 
-1.26328138827 
-1.23064201116 
-1.20450179993 
-1.16260788551 
-1.13553980662 
-1.07585682081 
-1.06276252610 
-1.06203290673 
-1.02748506731 
-1.02183015464 

6.87678108946863e-06 
8.09780009011294e-14 
0.00019503539112515 
0.00705657762480542 
0.00446347247191309 
0.0126938151760183 
0.0317427522947224 
0.00761175774901771 
0.0122715376278185 
0.0436713864832826 
0.0436713864832826 
0.0298113889177917 
0.00129179902407002 
0.0281810939950328 
0.0253911669360233 
0.00826503468046169 
0.0137568279997822 
0.0366268649533138 
0.0403796332773609 
0.0316204257893764 
0.0110210317274008 
0.0452350027780647 
0.0107633557184179 
0.0255665597172189 
0.0281810939950328 
0.00911212356827239 

SNHG5 1.6625652117840 7.75249089978102e-06  

Fig. 9. The volcano plot of DEGs; horizontal axis, log2(FC); vertical axis, 
-log10(adjusted P value). 
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Fig. 10. The two-way clustering of DEmRNAs between endothelial cells of PDAC and endothelial cells of normal samples; horizontal axis, the samples; vertical 
axis, DEmRNAs. 
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Fig. 10. (continued). 
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Fig. 11. The plots related to the analysis of gene ontology (GO) enrichment. A) The top 10 enriched functions are displayed as a bar plot, with the geneset count on 
the x-axis and the geneset function on the y-axis. The color of the bar represents the adjusted P.value, ranging from red (most significant) to blue (least significant). B) 
The top 10 enriched functions are shown as a dot plot, with the geneset count on the x-axis and the geneset function on the y-axis. The color of the dot reflects the 
adjusted P.value, ranging from dark blue (most significant) to red (least significant). The size of the dot indicates the GeneRatio, increasing as the gene ratio in-
creases. C) The top GO terms are presented as a GO graph visualization, with sub-graphs created using the top 10 GO terms in the "Cellular Component," "Molecular 
Function," and "Biological Process" categories. Significant terms are highlighted in colored boxes, ranging from dark red (most significant) to light yellow (least 
significant). D) The top 5 GO terms are visualized as a network, with the size of the dot representing the number of genes associated with the GO term. The genes are 
connected to the associated GO term with a distinctive color. E) An UpSet plot is used to represent subsets of 10 GO terms, with dots and lines showing the re-
lationships between them. 
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Fig. 11. (continued). 
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Fig. 12. Three upregulated pathways are visualized. genes that are upregulated are shown by red boxes and downregulated by green boxes.  
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Fig. 13. PPI network of DEmRNAs. A) Total PPI network, B) Subnetwork of hub genes.  
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3.3. DEGs Analysis 

Using the DESeq2 package (version 1.36.0), we analyzed the endo-
thelial cells count matrix from PDAC and adjacent normal samples, 
resulting in the identification of 1462 DEmRNAs, consisting of 1389 

downregulated DEmRNAs (such as PRSS1 and CLPS) and 73 upregulated 
DEmRNAs (such as HSPA1A and SOCS3), as well as 27 DElncRNAs, 
comprising of 26 downregulated DElncRNAs (such as LINC00472 and 
SNHG7) and 1 upregulated DElncRNA (SNHG5) (Tables 1 and 2). 

We utilized the EnhancedVolcano package [20] in R to produce the 

Table 3 
Information about the PPI network’s hub genes.  

Hub Gene Clustering Coefficient Degree Closseness Centrality Betweenness Centrality 

STAT1 
AKT1 
MAPK3 
HSP90AA1 
HRAS 
HSPA8 
PIAS1 
CAMK2G 
CDKN1A 
RPS6 
RPS6KA3 
MDM2 
UBE2L6 
UPF1 
PLCG1 
CDKN1B 
PPARG 
CASC3 
CTNNBL1 
CCND1  

0.37471264367816093 
0.11462450592885376 
0.10294117647058823 
0.1568627450980392 
0.036923076923076927 
0.1111111111111111 
0.0 
0.022222222222222223 
0.2571428571428571 
0.4666666666666667 
0.0 
0.11764705882352941 
0.14102564102564102 
0.3 
0.12380952380952381 
0.24761904761904763 
0.06666666666666667 
0.2857142857142857 
0.0 
0.175  

30 
23 
17 
18 
26 
18 
12 
10 
15 
10 
2 
17 
13 
5 
15 
15 
6 
7 
2 
16  

0.30758524704244955 
0.2998643147896879 
0.2960482250502344 
0.30694444444444446 
0.28117048346055984 
0.2535857716580608 
0.2610750147666863 
0.2672309552599758 
0.28188775510204084 
0.1930131004366812 
0.23312236286919832 
0.26967663209273945 
0.2629387269482451 
0.21762678483505662 
0.23177766124803356 
0.27133210558624926 
0.23312236286919832 
0.18264462809917356 
0.20731707317073172 
0.2556390977443609  

0.21163987468166265 
0.1795588242960587 
0.16270832980448133 
0.1478725270758565 
0.14363173624104197 
0.13203852675424355 
0.07184884221214391 
0.07112843954762078 
0.07091765454549095 
0.06784306127029646 
0.06772750833361509 
0.06719352769762318 
0.06601242969573037 
0.06394331203590689 
0.05790741569410645 
0.05632434224413924 
0.05366431350962938 
0.05328888512766141 
0.050995010945633315 
0.04797144469337734  

Fig. 14. Analysis of functional enrichment for hub genes. Bar plot and Dot plot of enriched GO terms showing hub genes.  
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Fig. 15. Top 19 hub genes in the integrated miRNA-DEGs network. The 19 hub genes are represented by red circles, while miRNAs are represented by purple squares 
in the integrated miRNA-DEGs network shown in Fig. 15. A purple square with a red border is used to indicate miRNA with high connective properties to the 
hub genes. 
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Fig. 16. The network of TF-hub genes. Circles show the hub genes, while the diamonds represent TFs targeting the hub genes. The green diamond with red border 
indicates TF with high connective properties to the hub genes. 
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volcano plot that facilitated the analysis of discrepancies in mRNA and 
lncRNA expression in PDAC and normal samples (Fig. 9). Furthermore, 
our analysis demonstrated that we could discriminate 50 DEmRNA 
expression patterns that were significantly different between normal 
and PDAC samples using two-way clustering (Fig. 10). 

3.4. Gene ontology (GO) enrichment analysis of DEGs 

Our analysis of differentially expressed genes (DEGs) utilized the 
clusterProfiler package to conduct gene ontology enrichment. To 
establish a background for our analysis, we utilized all the genes present 
in the clusterProfiler database. Our results yielded a total of 352 GO 
entries, where the majority of these entries were associated with bio-
logical processes (BP), followed by cellular component (CC) and mo-
lecular function (MF). All of these entries satisfied an Adjusted P value of 
less than 0.05. Totally, 265 of these terms are related to BP, 58 to CC, 
and 29 to MF. The first 15 entries were MHC protein complex (CC), 
antigen processing and presentation of exogenous peptide antigen (BP), 
antigen processing and presentation of peptide antigen (BP), lumenal 
side of membrane (CC), antigen processing and presentation (BP), an-
tigen processing and presentation of exogenous antigen (BP), integral 
component of lumenal side of endoplasmic reticulum membrane (CC), 
lumenal side of endoplasmic reticulum membrane (CC), MHC class II 
protein complex (CC), response to virus (BP), antigen processing and 
presentation of exogenous peptide antigen via MHC class II (BP), defense 
response to virus (BP), defense response to symbiont (BP), MHC class II 
protein complex binding (MF) and antigen processing and presentation 
of peptide antigen via MHC class II (BP). Fig. 11A and 11B display the 
top 10 enriched functions using a barplot and a dotplot, respectively. 
Fig. 11C provides a visualization of the enriched Gene Ontology (GO) 
induced graph, while Fig. 11D presents the gene-concept network for the 
top 5 GO terms, including antigen processing and presentation, antigen 
processing and presentation of exogenous antigen, antigen processing 
and presentation of exogenous peptide antigen, antigen processing and 
presentation of peptide antigen, and response to virus. Fig. 11E, on the 
other hand, illustrates the intersection between the top 10 GO terms 
using an UpSet plot. This plot showcases the gene overlap between 
several gene sets. 

3.5. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis 

To find the probable functional genes, KEGG pathways analysis of 
1389 DEGs with lower expression and 73 DEGs with higher expression 
were conducted in R using the pathview (Version 1.36.1) [22] and gage 
(Version 2.46.1) [23] packages. As a result, three pathways, including 
Protein processing in endoplasmic reticulum, Osteoclast differentiation, 
MAPK signaling pathway and Spliceosome, were obtained from pathway 
analysis with P-value less than 0.05, and all three of these pathways 
were upregulated in PDAC samples compared to normal samples 
(Fig. 12). 

3.6. PPI network construction and assortment of hub genes 

To identify the hub genes in the PPI network of DEGs (Fig. 13A), 
which consisted of 567 nodes and 1308 edges and was generated by the 
STRING, we used the Cytohubba plugin of Cytoscape 3.9 (Fig. 13B). The 
top 20 hub genes with the highest connectivity degree were identified 
and included CAMK2G, HSP90AA1, AKT1, RPS6, PIAS1, CTNNBL1, 
PPARG, HSPA8, CASC3, MDM2, RPS6KA3, HRAS, CDKN1B, UBE2L6, 
MAPK3, UPF1, STAT1, CCND1, PLCG1, and CDKN1A. Table 3 provides 
information on these hubs, which are ranked in order from the greatest 
degree of connectivity to the lowest. 

3.7. Analysis of hub genes 

The analysis of functional enrichment showed that there were 20 
main hub genes in the PPI network, which were mostly related to bio-
logical processes like signaling for DNA damage checkpoint and G1/S 
transition checkpoint in mitosis, promotion of cyclin-dependent protein 
kinase activity, regulation of epithelial cell proliferation, and G1/S 
transition of mitotic cell cycle. This information is presented in Fig. 14A 
and B. 

3.8. Examination of the regulatory network of miRNA-hub genes 

MiRNAs have diverse functions in regulating gene expression. The 
Networkanalyst online database was used to gather miRNAs that target 
hub genes (shown in Fig. 15), and the miRTarBase v8.0 database was 
utilized to identify hub-miRNA interactions. Interestingly, all the hub 
genes, except for UBE2L6, were found to be associated with miRNAs. 
Among them, Hsa-miR-16–5p had the highest level of interaction with 
the hub genes (degree 7), indicating that it could play a significant role 
in the development of PDAC. 

3.9. Examination of the regulatory network of TF-hub genes 

We obtained TF’s targeting hub genes from the NetworkAnalyst 
database (Fig. 16) and we chose ChEA database to discover the TFs that 
targets the hub genes. The TF-hub gene network showed that the E2F1 
regulates 15 hub genes and can be crucial for the development of PDAC. 

3.10. ceRNA network construction in PDAC 

As per the theory of ceRNA, it is proposed that lncRNA might act as 
an endogenous sponge and regulate mRNA production by sequestering 
miRNA [13]. To create the lncRNA-miRNA-mRNA ceRNA network, the 
researchers considered miRNAs that showed upregulation or down-
regulation, as well as lncRNAs or mRNAs with reverse associations with 
miRNAs in the miRNA-mRNA and lncRNA-miRNA interaction pairs 
[39]. To identify miRNAs related to pancreatic ductal adenocarcinoma 
(PDAC), we searched the miRCancer database using the specific phrase 
"pancreatic ductal adenocarcinoma". Next, we utilized miRcode to 
examine the link between lncRNAs and miRNAs, which showed that 

Table 4 
The interaction between 6 DElncRNAs, 13 DEmiRNAs and 32 mRNAs in ceRNA 
network.  

lncRNA miRNA mRNA 

SNHG5 hsa-miR-150 NR2F2 
LINC00324, OIP5-AS1, 

SNHG14 
hsa-miR-27b EML1, NR5A2 

LINC00324, OIP5-AS1, 
SNHG14 

hsa-miR-27a YAP1, SPATA13, TGOLN2, NF1, LIFR 

LINC00324, SNHG14, hsa-miR-31 RASA1 
OIP5-AS1, PHF1, 

SNHG14, SNHG7 
hsa-miR-107 RUNX1T1, OGT, SNCG, PPP6C, 

UBR3, PRR14L, NF1 
OIP5-AS1, SNHG14 hsa-miR- 

30b-5p 
ZDHHC17 

OIP5-AS1, SNHG14 hsa-miR-21 PAN3, SATB1, NFIB 
OIP5-AS1, PHF1, SNHG14 hsa-miR-212 POGZ, MECP2 
OIP5-AS1 hsa-miR- 

196a 
CPD 

OIP5-AS1, PHF1, 
SNHG14, SNHG7 

hsa-miR-34a CDK6, POU2F1, ANKS1A, PPP1R11, 
MDM4, ZC3H4 

OIP5-AS1, SNHG14, 
SNHG7 

hsa-miR-18a PNISR, STK4 

OIP5-AS1, PHF1, SNHG14 hsa-miR-194 ITGA9 
PHF1, SNHG14 hsa-miR- 

125a-5p 
LIFR, ADAM9  
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Fig. 17. CeRNA network in PDAC endothelial cells. Green nodes represent a low level of expression, whereas red nodes represent a significant level of expression. 
Protein-coding genes are shown by round rectangles, miRNAs are represented by diamonds, lncRNAs are represented by triangles, and interactions between lncRNAs, 
miRNAs, and mRNA are indicated by gray edges. 
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Fig. 18. Using a Sankey diagram, the ceRNA network in PDAC endothelial cells is shown. Each rectangle signifies a gene, and the degree of interaction between each 
gene is designated by the size of the rectangle. 
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eight of the 27 DElncRNAs might target 51 out of the 77 PDAC-specific 
miRNAs. We then employed miRWalk with miRTarBase, TargetScan, 
and miRDB filters, with a 0.95 confidence interval and 1% FDR strin-
gency, to determine the mRNAs that were targeted by these 51 miRNAs. 
After analyzing the data, we identified 32 miRNAs that are linked to 
PDAC and may target 299 of the 1482 mRNAs. To refine our results, we 
removed any miRNA-targeted mRNA that was not present in the 
differentially expressed mRNAs (DEmRNAs). Additionally, any 
connection between lncRNAs and miRNAs, as well as miRNAs and 
mRNAs, that showed an opposite expression pattern was removed in 
accordance with the ceRNA network theory. The final ceRNA network 
consisted of six lncRNAs, 13 miRNAs, and 32 mRNAs, and is detailed in 
Table 4. We utilized Cytoscape 3.9 to construct a ceRNA network 
comprising 13 miRNAs, 6 lncRNAs, and 32 mRNAs, as illustrated in 
Fig. 17. Our aim was to explore the effects of lncRNAs on mRNAs in 
PDAC through their interactions with miRNAs. To present these in-
teractions in a comprehensive manner, we generated a Sankey diagram 
employing the ggalluvial R package (version 0.12.3) [18], which is 
depicted in Fig. 18. The Sankey diagram visualizes the relationships 
between lncRNAs, miRNAs, and mRNAs in the ceRNA network, 
providing an intuitive and concise representation of the data. The top 15 
nodes in the network with the highest degree centrality were displayed 
after we calculated nodes degree centrality using the cytohubba plugin 
(Fig. 19). As 15 hub genes in the ceRNA network, we identified SNHG14, 
OIP5-AS1, PHF1, LINC00324, SNHG7, hsa-miR-107, hsa-miR-125a-5p, 
hsa-miR-194, hsa-miR-18a, hsa-miR-21, hsa-miR-212, hsa-miR-27b, 
hsa-miR-27a, hsa-miR-31 and hsa-miR-34a. 

3.11. Validation of hub genes via expression value 

The ualcan tool was used to assess the expression level of hub genes 
in both PPI and ceRNA networks. The analysis revealed that CCND1, 
CDKN1B, MAPK3, PLCG1, and PPARG showed strong statistical signif-
icance. These findings are presented in Fig. 20 and Table 5. 

3.12. Survival analysis 

Utilizing the UALCAN database and the pancreatic adenocarcinoma 
TCGA data (TCGA-PAAD), a survival analysis was conducted. In PPI and 
ceRNA networks, hub genes were used in a survival analysis. The dif-
ference had a log-rank P value below 0.05, indicating that it was sta-
tistically significant. Therefore, in patients with PDAC, HRAS, MDM2, 
PPARG, STAT1, UBE2L6, SNHG14, has-miR-21, has-miR-125a, and has- 
miR-212 showed a strong link with a shorter overall survival time 
(Fig. 21). 

4. Discussion 

PDAC is a highly heterogeneous tumor that is associated with high 
level of molecular complexity. Therefore, high throughput tran-
scriptome analyses particularly at the level of single cell are needed to 
identify novel molecules involved in its onset and progression. Herein, 
we used an in silico approach for analysis of single cell RNA-seq data to 
identify differentially expressed genes and pathways between PDAC 
samples and adjacent non-tumoral samples. Our approach led to iden-
tification of 1462 DEmRNAs, including 1389 downregulated DEmRNAs 
(like PRSS1 and CLPS) and 73 upregulated DEmRNAs (like HSPA1A and 

Fig. 19. Top 15 genes with highest degree centrality in ceRNA network.  
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Fig. 20. based on the TCGA box plots showing the gene expression of hub genes in pancreatic adenocarcinoma and normal samples, hub gene expression is displayed 
in pancreatic cancer and normal samples respectively as red and blue boxes. 
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SOCS3), 27 DElncRNAs, including 26 downregulated DElncRNAs (like 
LINC00472 and SNHG7) and 1 upregulated DElncRNA (SNHG5). Pre-
vious studies have revealed presence of PRSS1 intron mutations in pa-
tients with pancreatic cancer as well as those with chronic pancreatitis 
[10]. In fact, mutations in this gene has been regarded as a possible 
mechanism for pancreatic carcinogenesis [19]. Contrary to our results, 
SOCS3 has been shown to negatively regulate JAK-STAT, thus its 
down-regulation has been found to be associated with the oncogenesis of 
pancreatic cancer [38]. Finally, SNHG5 is an oncogenic lncRNA that 
promotes proliferation, migration and metastasis of colorectal cancer 
cells [42]. 

Among related CCs, BPs and MFs have been those related to immune 

responses such as MHC protein complex and antigen processing and 
presentation. This finding is in line with the observed immunosuppres-
sive microenvironment in PDAC, and attenuation of intratumoral ac-
tivity of immune response in by inhibitory signals that suppress immune 
effector functions [5]. 

Moreover, we detected up-regulation of three pathways, including 
Protein processing in endoplasmic reticulum, Osteoclast differentiation, 
MAPK signaling pathway and Spliceosome in PDAC. Besides, SNHG14, 
OIP5-AS1, PHF1, LINC00324, SNHG7, hsa-miR-107, hsa-miR-125a-5p, 
hsa-miR-194, hsa-miR-18a, hsa-miR-21, hsa-miR-212, hsa-miR-27b, 
hsa-miR-27a, hsa-miR-31 and hsa-miR-34a have been found to be 
involved in the construction of ceRNA network in PDAC. These signaling 
pathways and constituents of ceRNA network are possible candidates for 
design of anti-cancer therapies. 

Finally, HRAS, MDM2, PPARG, STAT1, UBE2L6, SNHG14, has-miR- 
21, has-miR-125a, and has-miR-212 have been demonstrated to be 
linked with a shorter overall survival time of patients with PDAC. 
Therefore, assessment of their expression can help in design of person-
alized strategies for management of PDAC. 

In brief, in the current study, we listed a number of dysregulated 
signaling pathways, abnormally expressed genes and aberrant cellular 
functions in PDAC which can be used as possible biomarkers and ther-
apeutic targets in this type of cancer. 

Table 5 
Statistical significance of hub genes based on sample types in pancreatic 
adenocarcinoma TCGA data.  

Hub genes Statistical significance of expression value* 

CCND1 1.09950004656412E-09 
CDKN1B 4.917600E-02 
MAPK3 5.91380000000141E-05 
PLCG1 2.678400E-02 
PPARG 1.62447832963153E-12  

* Low number (<10) of normal samples considered 

Fig. 21. The overall survival of pancreatic adenocarcinoma patients is related to the Kaplan-Meier survival curves of HRAS, MDM2, PPARG, STAT1, UBE2L6, 
SNHG14, has-miR-21, has-miR-125a and has-miR-212. 
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Fig. 21. (continued). 
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