Contents lists available at ScienceDirect

Pathology - Research and Practice

journal homepage: www.elsevier.com/locate/prp

Role of MAGI2-AS3 in malignant and non-malignant disorders

Mohammad Taheri^{a, b}, Arian Askari^c, Bashdar Mahmud Hussen^d, Soudeh Ghafouri-Fard^{e,*}, Fariborz Rashnoo^{f,*}

^a Institute of Human Genetics, Jena University Hospital, Jena, Germany

^b Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran

^c Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran

^d Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Iraq

^e Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran

ABSTRACT

pathophysiology.

f Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran

1. Introduction

ARTICLE INFO

Keywords:

lncRNA

Cancer

Expression

Biomarker

MAGI2-AS3

Long non-coding RNAs (lncRNAs) are a group of RNA molecules that share numerous features with mRNAs but they lack substantial open reading frames, therefore they do not produce functional polypeptides except for rare cases [14–17]. Being acknowledged as a new group of epigenetic regulators, lncRNAs regulate epigenetic modifications principally in the nucleus, and influence transcription of genes through modulation of histone or DNA modifications [46]. Recently, expression and function of several lncRNAs have been assessed in different contexts revealing their contributions in several aspects of cell physiology, particularly regulation of activity of signaling pathways [9,24].

MAGI2 Antisense RNA 3 (MAGI2-AS3) is an lncRNA being transcribed from a locus on 7q21.11 (Fig. 1). This lncRNA has been reported to be aberrantly expressed in a variety of malignancies in correlation with many clinical characteristics [40]. At least 48 transcripts have been identified for MAGI2-AS3 (https://asia.ensembl.org/Homo_sapiens/ Gene/Summary?g=ENSG00000234456;r=7:79452877-79471208).

This lncRNA is mainly expressed in the nucleus and within in extracellular compartments where it has low expression level [40]. Moreover, GeneCard online database (https://www.genecards.org) has shown high level of MAGI2-AS3 in the thyroid, heart, and kidney [40]. Abnormal expression of MAGI2-AS3 has been spotted in a variety of tumors as well as some non-malignant conditions congenital diaphragmatic hernia, Alzheimer's disease and intervertebral disc degeneration. The current review summarizes the role of MAGI2-AS3 in these conditions.

2. Malignant disorders

MAGI2 Antisense RNA 3 (MAGI2-AS3) is a long non-coding RNA (IncRNA) transcribed from a locus on 7q21.11.

This lncRNA has been described to be abnormally expressed in a variety of malignancies in correlation with

many clinical characteristics. Moreover, it might participate in the pathogenesis of congenital diaphragmatic

hernia, Alzheimer's disease and intervertebral disc degeneration. Mechanistically, MAGI2-AS3 can serve as a

molecular sponge for miR-142-3p, miR-424-5p, miR-15b, miR-233, miR-452-5p, miR-629-5p, miR-25, miR-155,

miR-23a-3p, miR-519c-3p, miR-374b-5p, miR-374a, miR-31-5p, miR-3163, miR-525-5p, miR-15-5p, miR-374a-5p, miR-374b-5p, miR-218-5p, miR-141-3p and miR-200a-3p to regulate expression of their mRNA targets. The current review summarizes the role of MAGI2-AS3 in different disorders to highlight its importance in their

2.1. Cell line studies

MAGI2-AS3 has been decreased in prostate cancer cells. Upregulation of MAGI2-AS3 in LNCaP and PC3 cells has inhibited proliferation ability, migration aptitude, and invasion of these cells. This lncRNA has been shown to target miR-142-3p in these cells [27]. Another study in prostate cancer has revealed that up-regulation of MAGI2-AS3 decreases cell viability and induces apoptosis in PC-3 and DU145 cells. Moreover, up-regulation of MAGI2-AS3 decreases STAT3 activity in mentioned cell lines. miR-424-5p, an inducer of STAT3 pathway, has been shown to be targeted by MAGI2-AS3 (Fig. 2). In fact,

* Corresponding authors. *E-mail addresses:* s.ghafourifard@sbmu.ac.ir (S. Ghafouri-Fard), fariborz.rashnoo@yahoo.com (F. Rashnoo).

https://doi.org/10.1016/j.prp.2023.154530

Received 14 March 2023; Received in revised form 6 May 2023; Accepted 8 May 2023 Available online 9 May 2023

0344-0338/© 2023 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Review

MAGI2-AS3 affects expression of miR-424-5p and its target mRNA COP1 in mentioned prostate cancer cell lines. IL-6-associated stimulation of STAT3 pathway can decrease the impact of MAGI2-AS3 in these cells [36].

Up-regulation of MAGI2-AS3 in clear cell renal cell carcinoma cells has reduced viability and migration of these cells. Moreover, upregulation of MAGI2-AS3 has inhibited vessel-like tube formation of HUVECs. Mechanistically, MAGI2-AS3 binds with HEY1 and decreases enrichment of HEY1 at the ACY1 promoter leading to up-regulation of ACY1 expression. Taken together, MAGI2-AS3 has tumor suppressor role and anti-angiogenic activities in this type of carcinoma through modulation of HEY1/ACY1 pathway [35].

Conversely, MAGI2-AS3 has been found to have a tumor-promoting role in pancreatic cancer cells promoting viability, migratory aptitude and invasion of these cells. miR-490-5p which targets this lncRNA has anti-cancer effect in these cells influencing epithelial-mesenchymal transition (EMT) [39].

In cervical cancer cells, up-regulation of MAGI2-AS3 has suppressed proliferative and invasive capacity of cells through influencing expression of miR-15b and subsequently affecting levels of its target mRNA CCNE1 [3]. Regulation of activity of miR-233/EPB41L3 axis is another identified mechanism for anti-cancer effects of MAGI2-AS3 in SiHa and HeLa [23]. On the other hand, MAGI2-AS3 has been reported to induce oncogenic roles in C-33A via up-regulation of CDK6 [25].

In acute lymphoblastic leukemia cells, MAGI2-AS3 has antiproliferative and pro-apoptotic effects through modulating miR-452-5p/FOXN3 molecular route [39]. Moreover, it can inhibit glycolysis in these cells [39]. Besides, MAGI2-AS3 can constrains self-renewal ability of leukaemic stem cells through enhancing TET2-related DNA demethylation of the LRIG1 promoter in these cells [5]. Table 1 summarizes the effects of MAGI2-AS3 in different cancer cell lines.

Fig. 1. The structure and location of the lncRNA MAGI2-AS3 gene. After the splicing process, the mature lncRNA MAGI2-AS3 is created. This lncRNA has many roles, including protein-protein interactions, histone modifications, miRNA sponges, and regulation of the translation process.

2.2. Animal studies

Experimentations in xenograft models of different cancers are principally in favor of anti-tumor role of MAGI2-AS3 (Table 2) except for two studies in mice models of nasopharyngeal carcinoma [2] and colorectal cancer [29] which support an oncogenic role for this lncRNA. Besides, in nasopharyngeal carcinoma models, MAGI2-AS3 down-regulation has reduced resistance to cisplatin [2]. Therefore, this lncRNA can be regarded as a target for reduction of chemoresistance. Most importantly, an experiment in BALB/c nude mice model of acute myeloid leukemia has confirmed the role of MAGI2-AS3 in suppression of self-renewal capacity of leukemic stem cells [5].

2.3. Assays in clinical specimens

MAGI2-AS3 has been decreased while expression of miR-142-3p has been increased in sera of prostate cancer patients [24]. Moreover, expression levels of MAGI2-AS3 in prostate cancer samples have been inversely correlated with miR-424-5p levels, while positively correlated with COP1 levels [36]. MAGI2-AS3 and ACY1 expressions have been found to be downregulated in clear cell renal carcinoma samples, and down-regulation of MAGI2-AS3 has been associated with poor patient survival [35]. Similarly, expression of MAGI2-AS3 has been downregulated, while miR-15b levels have been upregulated in cervical cancer samples. More importantly, down-regulation of MAGI2-AS3 in cervical cancer patients has been associated with poor prognosis [3].

In brief, most of expression assays in clinical samples support downregulation of MAGI2-AS3 in malignant tissues compared with their nonmalignant tissues (Table 3). Exceptions to this finding have been observed in lung squamous cell carcinoma [32], pancreatic cancer [39], cervical cancer [25], and gastric cancer [4]. It is worth mentioning that other studies in lung [48] and cervical [3] cancers are in favor of the tumor suppressor role of this lncRNA.

Association between MAGI2-AS3 expression and clinicopathological data has been verified in different cancers. Most importantly, in breast cancer samples, expression levels of MAGI2-AS3 have been negatively associated with grade, TNM stage, hormone receptors expression, and Her-2 expression [42].

A large scale association study in patients with colorectal cancer and age- and gender-matched cancer-free control subjects has shown that GG genotype of rs7783388 within MAGI2-AS3 confers a higher risk of colorectal cancer compared with other genotypes. Mechanistical studies have shown that rs7783388 A > G decreases binding affinity of gluco-corticoid receptor to the promoter region of MAGI2-AS3, leading to lower transcriptional activity of its promoter [41].

ROC curve analyses have shown serum levels of MAGI2-AS3 can

Fig. 2. Alteration of MAGI2-AS3 expression and related signaling pathways in different types of cancer such as, breast, lung, liver, cervical, prostate and bladder cancers.

Table 1

Expression pattern of MAGI2-AS3 in cancer cell lines (Δ : knock-down or deletion, †: overexpression, \rightarrow : results in, EMT: Epithelial-mesenchymal transition, LSC: leukemia stem cell). Pathology - Research and Practice 246 (2023) 154530

Refs.

Table 1 (continued)			
Tumor type	Targets/ Regulators	Cells	Function

LSC: leukemia sten	ı cell).	, iii, ziiiii zpiuio	iai incochenyinai u			Regulators			
Tumor type	Targets/ Regulators	Cells	Function	Refs.				miR-155) → \uparrow SOCS-1: ↓ proliferation	
Prostate cancer	miR-142-3p	PC-3 and LNCaP	↑ MAGI2-AS3 (which sponges miR-142-3p): ↓ proliferation	[24]		miR-23a-3p/ PTEN	A549, PC9, NCI-H441, and NCI-H1650	↑ MAGI2-AS3 (which sponges miR-23a-3p) → ↑ PTEN:	[21]
	miR-424- 5p/COP1/ STAT3	PC-3 and DU145	↓ migration ↓ invasion ↑ MAGI2-AS3→ ↓ miR-424-5p: ↑ COP1	[36]	Hepatocellular carcinoma	miR-519c- 3p/TXNIP	Huh7, Hep3B, SNU-182	 ↓ invasion ↑ MAGI2-AS3 (which sponges miR-519-3p): 	[22]
			↓ STAT3: ↓ proliferation					↑ TXNIP: ↓ proliferation ↑ apoptosis	
Clear cell renal cell carcinoma	HEY1/ACY1	786-O, KCC- 853, RCC- 9863, RLC-310 and Caki1	↑ MAGI2-AS3→↓ HEY1→ ↑ ACY1: ↓ viability ↓ migration ↓ invasion	[35]		miR-23a-3p/ PTEN	Bel-7402, Huh- 7, HepG2, and SMMC-7721	↑ MAGI2-AS3 (which sponges miRNA-23a-3p): ↑ PTEN: ↓ proliferation ↓ migration	[19]
Pancreatic cancer	miR-490-5p	PANC-1,	↓ EMT ↑ miR-490-5p→	[39]		DOOVO		↓ invasion ↑ apoptosis	[10]
		SW1990, AsPC- 1 and BxPC-3	↓ MAGI2-AS3: ↓ proliferation ↓ migration			ROCKZ	нерзв апо МНСС97-Н	↑ MAG12-AS3 \rightarrow ↓ROCK2: ↓ invasion	[12]
Queries la server	D. 15h (↓ invasion ↓ EMT ↑ apoptosis	[0]		KDM1A/ RACGAP1	HuH-7, HCCLM3, HepG2, BEL-	↑ MAGI2-AS3 (which recruits KDM1A to the	[28]
Cervical cancer	miR-15b/ CCNE1	HeLa, SiHa, and CaSki	↑ MAGI2-AS3 (which sponges miR-15b): $\rightarrow \downarrow$ CCNE1: \downarrow proliferation	[3]			7402, SK-HEP- 1, and SMMC- 7721	promoter of RACGAP1) \rightarrow demethylation of RACGAPP1 \rightarrow \downarrow RACGAP1:	
	miR-233/ EPB41L3	SiHa and HeLa	↑ MAGI2-AS3 (which sponges miR-233) → ↑ EPB41L3:	[23]		miD 274b	HopC2 Hop2B	 ↓ proliferation ↓ migration ↓ invasion ↑ apoptosis ↑ MACID AS2 	[42]
	CDK6	C-33A	 ↓ invasion ↓ migration ↓ MAGI2-AS3 → 	[25]		miR-374b- 5p/SMG1	HepG2, Hep3B, and MHCC- 97 H	↑ MAG12-AS3 (which sponges miR-374b-5p) → ↑ SMG1	[43]
Acute lymphoblastic leukemia	miR-452- 5p/FOXN3	Jurkat and Reh	↓ CDK6: ↓ proliferation ↑ MAGI2-AS3 (which sponges miR-452-5p): →	[39]				 ↓ proliferation ↓ migration ↓ viability ↑ cell cycle arrest 	
Acute myeloid	TFT2/J RIG1	LSCs	 ↑ FOXN3: ↓ proliferation ↓ glycolysis ↑ apoptosis ↑ MAGI2-AS3 	[5]	Breast cancer	MAGI2/ AKT/Wnt	MCF-7	↑ apoptosis ↑ MAGI2-AS3→ ↑ MAGI2 ↓ AKT/Wnt: ↓ proliferation	[38]
leukemia	1112) 11101		(which recruits TET2 to the promoter region of LRIG1) \rightarrow \uparrow demethylation of LRIG1 \rightarrow \uparrow	[0]		miR-374a/ PTEN	MDA-MB-231 and MCF-7	↓ migration ↑ MAGI2-AS3 (which sponges miR-374a) → ↑ PTEN: ↓ migration	[11]
Non-small-cell	miR-629-	Beas-2B, A549,	LRIG1: ↓ self-renewal of LSCs ↑ MAGI2-AS3→↓	[19]		Fas/FasL	MDA-MB-231 and MCF-7	↓ invasion ↑ MAGI2-AS3 → ↑ Fas/FasL: ↓ viability	[42]
lung cancer	5p/TXNIP	and H1299	miR-629-5p $\rightarrow \uparrow$ TXNIP: \downarrow proliferation		Pladder correct	MACIO	TOA 100 5405	 ↓ colony formation ↑ apoptosis ↑ MACI2 AS2 	[10]
	miR-25/ RECK	H1993	↓ invasion ↑ MAGI2-AS3 (which sponges miR-25) → ↑ BECK.	[31]	DIAUUEL CAUCEL	MAGI2/ PTEN	and RT4	I MAGI2-AS3→↑ MAGI2 & PTEN: ↓ migration ↓ invasion ↓ EMT	[10]
	miR-155/	H23	↓ migration ↓ invasion ↑ MAGI2-AS3	[1]		miR-31-5p/ TNS1	T24 and J82	↑ MAGI2-AS3 (which sponges miR-31-5p) → ↑ TNS1:	[33]
	SOCS-1		(which sponges					↓ proliferation (continued on ne	xt page)

M. Taheri et al.

Tumor type	Targets/ Regulators	Cells	Function	Refs.
	miR-15b- 5p/CCDC19	EJ, T24 and RT4	↓ migration ↓ invasion ↑ MAG12-AS3 (which sponges miR-15b-5p) → ↑ CCDC19:	[13]
Esophageal cancer	EZH2/ HOXB7	KYSE30, KYSE150 and KYSE450	↓ proliferation ↓ migration ↓ invasion ↓ colony formation ↑ MAGI2-AS3 (which recruits EZH2 to the promoter region of HOXB7) → ↓ HOXB7-	[7]
Colorectal cancer	-	RKO, SW480, and SW620	 ↓ proliferation ↑ apoptosis ↑ radiosensitivity ↑ MAG12-AS3: ↓ proliferation ↓ migration ↓ invasion 	[41]
	miR-3163/ TMEM106B	HCT-116, RKO, SW480, and HT-29	↑ apoptosis △ MAGI2-AS3 (which sponges miR-3163) → ↑ miR-3163 → ↓ TMEM106B: ↓ proliferation ↓ migration	[29]
Ovarian cancer	miR-525- 5p/MXD1/ MYC	SKOV3, SNU119, OVCAR-3, SUN8, Caov3	↑ apoptosis ↑ MAGI2-AS3 (which sponges miR-525-5p) → ↑ MXD1 & ↓ MYC: ↓ proliferation ↓ migration ↓ invasion ↓ apoptosis	[4]
High-Grade Serous Ovarian Carcinoma	miR-15-5p/ miR-374a- 5p/miR- 374b-5p	PEA1 and KURAMOCHI	<pre>↑ cell cycle arrest ↑ cell cycle arrest ↑ MAGI2-AS3 (which sponges miR-15-5p/miR- 374a-5p/miR- 374b-5p): ↓ migration</pre>	[18]
Nasopharyngeal carcinoma	miR-218- 5p/GDPD5/ SEC61A1	CNE1, SUNE1, HNE1, and 5- 8F	↓ viability △ MAGI2AS3→ ↑ miR-218-5p → ↓ GDPD5: ↓ proliferation ↓ migration ↓ EMT ↓ resistance to	[2]
Gastric cancer	BRD4/miR- 141-3p & miR-200a- 3p/ZEB1	MKN74, MKN45, KATO III, AGS, and HGC27	cispiann Δ BRD4 $\rightarrow \downarrow$ MAGI2-AS3 Δ MAGI2-AS3 (which sponges miR-141-3p & miR-200a-3p) \rightarrow \uparrow miR-141-3p and miR-200a-3p $\rightarrow \downarrow$ ZEB1: \downarrow migration \downarrow invariant	[4]
Lung squamous cell carcinoma	miR-374a- 5p/miR- 374b-5p/ CADM2	H2170, H226, SW900, SK- MES-1	↓ Invasion ↑ MAGI2-AS3 (which sponges miR-374a-5p & miR-374b-5p) → ↑ CADM2	[48]

↓ proliferation

↓ migration

Table 1 (continued)

	eu)			
Tumor type	Targets/ Regulators	Cells	Function	Refs.
			↓ invasion ↑ apoptosis	

Table 2

MAGI2-AS3 effect in carcinogenesis as seen in animal models of cancer (A: knock-down or deletion, LSC: leukemia stem cell, SPF: specific pathogen-free).

Tumor type	Animal models	Results	Refs.
Clear cell renal cell	BALB/c-nu/nu	↑ MAGI2-AS3:	[35]
carcinoma	mice	↓ tumor growth	
		↓ angiogenesis	
Acute lymphoblastic	BALB/c nude	↑ MAGI2-AS3:	[39]
leukemia	mice	↓ tumor growth	
Acute myeloid leukemia	NOD/SCID mice	↑ MAGI2-AS3:	[5]
		↓ self-renewal of LSCs	
		↑ survival rate	
Non-small-cell lung cancer	BALB/c nude	↑ MAGI2-AS3:	[19]
	mice	↓ tumor growth	
Hepatocellular carcinoma	BALB/c nude	↑ MAGI2-AS3:	[22]
	mice	↓ tumor growth	
	SPF nude mice	↑ MAGI2-AS3:	[28]
		↓ tumor growth	
	BALB/c nude	↑ MAGI2-AS3:	[43]
	mice	↓ tumor growth	
Bladder cancer	NOD/SCID mice	↑ MAGI2-AS3:	[10]
		↓ metastasis	
	BALB/c nude	↑ MAGI2-AS3:	[13]
	mice	\downarrow tumor volume and	
		weight	
Esophageal cancer	BALB/c nude	↑ MAGI2-AS3:	[7]
	mice	↓ tumor growth	
Nasopharyngeal carcinoma	BALB/c male	Δ MAGI2-AS3:	[2]
	mice	↓ tumor growth	
		\downarrow resistance to	
		cisplatin	
Colorectal cancer	BALB/c nude	Δ MAGI2-AS3:	[29]
	mice	\downarrow tumor growth	
Lung squamous cell	BALB/c nude	↑ MAGI2-AS3:	[48]
carcinoma	mice	\downarrow tumor growth	
		↓ metastasis	

separate prostate cancer patients from healthy subjects with AUC, sensitivity and specificity values of 0.953, 91.5 % and 84.7 %, respectively [24]. Other studies in serum or plasma samples of patients affected with diverse types of cancers have reported promising results for application of MAGI2-AS3 transcript levels as a diagnostic marker (Table 4). Moreover, an in silico analysis of TCGA datasets of paired breast cancer and adjacent non-cancerous tissues has shown high accuracy of MAGI2-AS3 levels for separation of these two sets of tissues [47].

2.4. Non-malignant disorders

Congenital diaphragmatic hernia, Alzheimer's disease and intervertebral disc degeneration are three disorders that are possibly associated with dysregulation of MAGI2-AS3. Mechanistical studies have been performed to identify the role of this lncRNA in two of these disorders (Table 5).

Plasma levels of MAGI2-AS3 have been found to be lower in intervertebral disc degeneration patients compared with controls. Moreover, expression levels of MAGI2-AS3 could effectively distinguish these patients from healthy controls. Most notably, plasma levels of this lncRNA have been elevated after treatment of patients. Mechanistically, upregulation of MAGI2-AS3 inhibits FasL expression in nucleus pulposus cells. Thus, MAGI2-AS3 has a role in the regulation of FasL expression in these cells [8]. Dysregulation of MAGI2-AS3 levels can alos participate in the pathogenesis of Alzheimer's disease, since this lncRNA has a role

Table 3

Abnormal levels of MAGI2-AS3 in clinical specimens (ANT: adjacent normal tissue, OS: overall survival, DFS: disease-free survival, RFS: relapse-free survival, BM: bone marrow, ER: Estrogen receptor, PR: progesterone receptor).

Malignancy	Samples	Expression (tumor versus normal)	Kaplan-Meier Analysis (Impact of MAG12-AS3 dysregulation)	Univariate/ Multivariate cox regression	Association of MAGI2-AS3 expression with clinical characteristics	Refs.
Acute myeloid leukemia (AML)	41 ALL BM + 12 healthy controls BM + GSE17054 dataset	Downregulated	-	-	-	[5]
Lung squamous cell	TCGA dataset + GSE29013, GSE30219, GSE37745 and GSE50081 datasets	Upregulated	-	-	-	[32]
carcinolia (1050)	41 LUSC paired ANT	Downregulated	Shorter OS			F/191
Clear cell renal cell carcinoma (ccRCC)	86 ccRCC + paired ANT	Downregulated	Shorter OS	-	- Associated with TNM stage, Fuhrman grade, and tumor size	[35]
Pancreatic cancer (PC)	20 PC + paired ANT	Upregulated	-	-	-	[39]
Cervical cancer (CC)/cervical squamous cell carcinoma (CSCC)	47 CC + paired ANT 60 CSCC + paired ANT	Downregulated Downregulated	Shorter OS -	-	- Associated with tumor diameter, HPV types and stages	[3] [23]
Acute lymphoblastic	64 CSCC + paired ANT 25 ALL BM + 25 healthy controls BM	Upregulated Downregulated	-	-	-	[25]
Prostate cancer (PCa)	109 PCa + paired ANT + GSE46602 and GSE55945 datasets + TCGA dataset	Downregulated	-	-	Associated with high Gleason score	[36]
	TCGA dataset, GSE17951, and GSE7076	Downregulated			-	[1]
Non-small-cell lung cancer (NSCLC)	GSE51852, GSE52248, and GSE81089 datasets	Downregulated	Shorter OS	-	-	[19]
	96 NSCLC + paired ANT	Downregulated	-	-	-	[30]
	78 NSCLC + paired ANT	Downregulated	-	-	-	[31]
	62 NSCLC + paired ANT	Downregulated	Shorter OS	-	-	[1]
	40 NSCLC + paired ANT	Downregulated	Shorter OS	-	-	[21]
	Plasma and platelets of 68	Downregulated in	-	-	Associated with TNM	[26]
	adenocarcinomas + 33 squamous cell carcinomas, + 60 healthy controls, GSE19188, GSE30219, and GSE27262 datasets	adenocarcinomas and squamous cell carcinomas			stage, lymph node metastasis and distant metastasis	
Ovarian cancer (OV)	GSE54388 and GSE74448 datasets + GEPIA	Downregulated	-	-		[37]
Henatocellular	27 HCC + paired ANT	Downregulated	-			[22]
carcinoma (HCC)	40 HCC + paired ANT	Downregulated	Shorter OS	-	Associated with tumor size, TNM stage, and metastasis	[19]
	68 HCC serum + 68 healthy controls serum	Downregulated	-	-	-	[12]
	58 HCC + 20 healthy controls + GEPIA + GSE45267, GSE49515 and GSE62232 datasets	Downregulated	Shorter OS	-	Associated with tumor size, clinical stage, and lymph node metastasis	[28]
	88 HCC + paired ANT	Downregulated	Shorter OS	Independent prognostic marker for HCC	Associated with tumor size, lymph node metastasis and TNM stage	[43]
Breast cancer (BC)	24 BC + paired ANT + TCGA dataset	Downregulated	Shorter OS	-	-	[38]
	TCGA dataset + GSE125677 + GEPIA	Downregulated	Shorter OS	-	Associated with lymph node metastasis	[47]
	30 BC + paired ANT	Downregulated	-	-	Negatively associated with histological grade, TNM stage, expression of ER, PR and Her-2	[42]
Triple negative breast cancer	GSE60689 and GSE64790 datasets	Downregulated	Poor RFS	-	-	[34]
(INBC) Bladder cancer (BCa)	80 BCa + 30 paired ANT	Downregulated	Shorter OS	-	Associated with tumor stage, number of tumors, tumor grade	[10]
	45 BCa + paired ANT + TCGA dataset	Downregulated	-	-	-	[33]
	58 BCa + paired ANT + TCGA dataset	Downregulated	Shorter OS	-	-	[13]
Esophageal cancer (EC)	92 EC + paired ANT + GSE45670 + GEPIA	Downregulated	•	-	-	[7]
Colorectal cancer (CRC)	200 CRC + paired ANT	Downregulated	-	-	-	[41]

(continued on next page)

Table 3 (continued)

Malignancy	Samples	Expression (tumor versus normal)	Kaplan-Meier Analysis (Impact of MAGI2-AS3 dysregulation)	Univariate/ Multivariate cox regression	Association of MAGI2-AS3 expression with clinical characteristics	Refs.
Gastric cancer (GC)	TCGA dataset + GSE54129, GSE62254 and GSE79973 datasets	Upregulated	Shorter OS/ shorter DFS	Independent prognostic factor for OS and DFS	-	[4]
	18 GC + paired ANT + TCGA dataset + GSE53137, GSE95667, and GSE111762 datasets	Downregulated in early stages compared to advanced stages (without statistical significance in 18 GC tissues)	Better OS in downregulated samples	Independent prognostic factor with OS	Associated with lymph node metastasis	[45]
Glioma	178 glioma tissues + paired ANT	Downregulated	Shorter OS	Independent prognostic factor with OS, WHO grade and KPS score	Associated with WHO grade and KPS score	[6]

Table 4

Diagnostic value of MAGI2-AS3 in diseases.

Disease type	Samples	Distinguish between	Area under curve	Sensitivity (%)	Specificity (%)	Refs.
Prostate cancer (PCa) Hepatocellular carcinoma (HCC)	Serum of PCa patients 68 HCC serum + 68 healthy controls serum	Patient vs. healthy Patient vs. healthy	0.953 0.9138	91.5 -	84.7 -	[24] [12]
Intervertebral disc degeneration (IDD)	66 IDD plasma $+$ 58 healthy controls plasma	Patient vs. healthy	0.90	-	-	[8]
Breast cancer	TCGA dataset + GSE125677 + GEPIA	Cancerous vs. non- cancerous tissues	0.985	-	-	[47]
Non-small-cell lung cancer	Plasma and platelets of 68 a denocarcinomas (AD) $+$ 33 squamous cell carcinomas (SCC) + 60 healthy controls	Patient vs. healthy	0.853 in platelets of AD + 0.866 in plasma of AD	-	-	[26]
			0.892 in platelets of	-	-	[26]

Table 5

Cell line studies on the role of MAGI2-AS3 in non-malignant conditions (Δ : knock-down or deletion, NP: nucleus pulposus).

Disease type	Interactions	Cell line	Function	Refs.
Alzheimer's disease	miR-374b- 5p	SH-SY5Y and BV2	↓ MAGI2- AS3→ ↑ miR-374b- 5p: ↑ viability ↓ inflammation	[44]
Intervertebral disc degeneration (IDD)	FasL	NP cells	↑ MAGI2-AS3 → ↓ FasL	[8]

in the regulation of amyloid- β associated neurotoxicity and neuroinflammation through sequestering miR-374b-5p [44] (Fig. 3). Finally, a comprehensive gene profiling experiment in congenital diaphragmatic hernia has revealed up-regulation of MAGI2-AS3 in this context (Table 6).

3. Discussion

MAGI2-AS3 can act as oncogene or tumor suppressor via modulation of multiple cancer-related signaling pathways. MAGI2-AS3 can also serve as a molecular sponge for miR-142-3p, miR-15b, miR-233, miR-452-5p, miR-629-5p, miR-25, miR-155, miR-23a-3p, miR-519c-3p, miR-374b-5p, miR-374a, miR-31-5p, miR-3163, miR-525-5p, miR-15-5p, miR-374a-5p, miR-374b-5p, miR-218-5p, miR-141-3p and miR-200a-3p to regulate expression of their mRNA targets. Several pathways including miR-23a-3p/PTEN, AKT/Wnt, Fas/FasL, and miR-3163/ TMEM106B have been shown to mediate the effects of MAGI2-AS3 in the carcinogenesis.

SCC

Several studies have revealed association between expression of MAGI2-AS3 and clinical features of malignancies as well as outcome of patients, emphasizing on the role of this lncRNA as a prognostic marker. Moreover, detection of MAGI2-AS3 expression in biofluids has suggested its possible application as a diagnostic marker.

An unexplored area in research about this lncRNA is association between genetic variants within or near *MAGI2-AS3* coding gene and risk of cancers. This information would facilitate prediction of risk of different cancers.

Among non-malignant conditions, congenital diaphragmatic hernia, Alzheimer's disease and intervertebral disc degeneration are disorders that are possibly associated with dysregulation of MAGI2-AS3. The mechanisms of involvement of this lncRNA in these conditions are less studied. However, miR-374b-5p and FasL have been found to mediate the effects of MAGI2-AS3 in this regard.

Taken together, MAGI2-AS3 is a putative diagnostic and prognostic marker in cancers. The application of this lncRNA as a diagnostic marker has been studied in prostate cancer, hepatocellular carcinoma, breast cancer and non-small-cell lung cancer. However, the impact of MAGI2-AS3-targeted therapies on the progression of tumors has not fully assessed. This field is being complicated by the dual roles of MAGI2-AS3 in the carcinogenesis.

CRediT authorship contribution statement

SGF wrote the draft and revised it. MT designed and supervised the study. FR, BMH and AA collected the data and designed the figures and

Fig. 3. Functional role of lncRNA MAGI2-AS-3 in patients with Alzheimer's disease. By sponging miR-374b-5p, MAGI2-AS3 affects the neurotoxicity and neuroinflammation caused by amyloid-β in Alzheimer's disease.

Table 6

Summary of human studies on the role of MAGI2-AS3 in non-malignant conditions.

Disease	Number of samples	Expression (case vs. control)	Association	Method	Refs.
Congenital diaphragmatic hernia (CDH)	$9 \; \text{CDH} + 1 \; \text{healthy control}$	Upregulated	Associated with diaphragm	High throughput sequencing, qRT-PCR	[20]
Alzheimer's disease (AD)	48 AD serum + 30 healthy controls serum	Upregulated	Severity of disease	qRT-PCR	[44]
Intervertebral disc degeneration (IDD)	66 IDD plasma + 58 healthy controls plasma	Downregulated	-	qRT-PCR	[8]

tables. All the authors read the submitted version and approved it.

Declaration of Competing Interest

The authors declare they have no conflict of interest.

Availability of Data and Materials

Not applicable.

Acknowledgement

The authors would like to thank the clinical Research Development Unit (CRDU) of Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran for their support, cooperation and assistance throughout the period of study.

Ethics approval and consent to Participant

Not applicable.

Consent of publication

Not applicable.

Funding

Not applicable.

References

- J. Cai, Z. Chen, X. Chen, H. Huang, X. Lin, B. Miao, Coexpression network analysis identifies a novel nine-RNA signature to improve prognostic prediction for prostate cancer patients, BioMed Res. Int. 2020 (2020) 4264291.
- [2] C. Cao, S. Zhou, J. Hu, Long noncoding RNA MAGI2-AS3/miR-218-5p/GDPD5/ SEC61A1 axis drives cellular proliferation and migration and confers cisplatin resistance in nasopharyngeal carcinoma, Int. Forum Allergy Rhinol. 10 (2020) 1012–1023.
- [3] Y. Chai, L. Wang, Y. Qu, Z. Hu, LncRNA MAGI2-As3 suppresses the proliferation and invasion of cervical cancer by sponging MiR-15b, J. Health Eng. 2022 (2022) 9707206.
- [4] H. Chang, X. Zhang, B. Li, X. Meng, MAGI2-AS3 suppresses MYC signaling to inhibit cell proliferation and migration in ovarian cancer through targeting miR-525-5p/MXD1 axis, Cancer Med. 9 (2020) 6377–6386.
- [5] L. Chen, X. Fan, J. Zhu, X. Chen, Y. Liu, H. Zhou, LncRNA MAGI2-AS3 inhibits the self-renewal of leukaemic stem cells by promoting TET2-dependent DNA

M. Taheri et al.

demethylation of the LRIG1 promoter in acute myeloid leukaemia, RNA Biol. 17 (2020) 784–793.

- [6] X.D. Chen, M.X. Zhu, S.J. Wang, Expression of long non-coding RNA MAGI2–AS3 in human gliomas and its prognostic significance, Eur. Rev. Med. Pharm. Sci. 23 (2019) 3455–3460.
- [7] W. Cheng, X. Shi, M. Lin, Q. Yao, J. Ma, J. Li, LncRNA MAGI2-AS3 overexpression sensitizes esophageal cancer cells to irradiation through down-regulation of HOXB7 via EZH2, Front. Cell Dev. Biol. 8 (2020), 552822.
- [8] S. Cui, Z. Liu, B. Tang, Z. Wang, B. Li, LncRNA MAGI2-AS3 is down-regulated in intervertebral disc degeneration and participates in the regulation of FasL expression in nucleus pulposus cells, BMC Musculoskelet. Disord. 21 (2020) 149.
- [9] A. Dianatpour, S. Ghafouri-Fard, The role of long non coding RNAs in the repair of DNA double strand breaks, Int. J. Mol. Cell. Med. 6 (2017) 1.
- [10] Q. Du, X. Ye, S.-R. Lu, H. Li, H.-Y. Liu, Q. Zhai, B. Yu, Exosomal miR-30a and miR-222 derived from colon cancer mesenchymal stem cells promote the tumorigenicity of colon cancer through targeting MIA3, J. Gastrointest. Oncol. 12 (2021) 52.
- [11] S. Du, W. Hu, Y. Zhao, H. Zhou, W. Wen, M. Xu, P. Zhao, K. Liu, Long non-coding RNA MAGI2-AS3 inhibits breast cancer cell migration and invasion via sponging microRNA-374a, Cancer Biomark. 24 (2019) 269–277.
- [12] G. Fang, J. Wang, X. Sun, R. Xu, X. Zhao, L. Shao, C. Sun, Y. Wang, LncRNA MAGI2-AS3 is downregulated in the distant recurrence of hepatocellular carcinoma after surgical resection and affects migration and invasion via ROCK2, Ann. Hepatol. 19 (2020) 535–540.
- [13] Y. Fang, S. Chen, Z. Liu, W. Ai, X. He, L. Wang, P. Xie, B. Jiang, H. Fang, Endothelial stem cells attenuate cardiac apoptosis via downregulating cardiac microRNA-146a in a rat model of coronary heart disease, Exp. Ther. Med. 16 (2018) 4246–4252.
- [14] S. Ghaforui-Fard, R. Vafaee, M. Taheri, Taurine-upregulated gene 1: a functional long noncoding RNA in tumorigenesis, J. Cell. Physiol. 234 (2019) 17100–17112.
- [15] S. Ghafouri-Fard, A. Abak, S.F. Talebi, H. Shoorei, W. Branicki, M. Taheri, N. Akbari Dilmaghani, Role of miRNA and lncRNAs in organ fibrosis and aging, Biomed. Pharmacother. = Biomed. Pharmacother. 143 (2021), 112132.
- [16] S. Ghafouri-Fard, A. Askari, K. Behzad Moghadam, B.M. Hussen, M. Taheri, M. Samadian, A review on the role of ZEB1-AS1 in human disorders, Pathol. Res. Pract. 245 (2023), 154486.
- [17] S. Ghafouri-Fard, H. Shoorei, F.T. Anamag, M. Taheri, The role of non-coding RNAs in controlling cell cycle related proteins in cancer cells, Front. Oncol. 10 (2020), 608975.
- [18] P. Gokulnath, T. de Cristofaro, I. Manipur, T. Di Palma, A.A. Soriano, M. R. Guarracino, M. Zannini, Long non-coding RNA MAGI2-AS3 is a new player with a tumor suppressive role in high grade serous ovarian carcinoma, Cancers 11 (2019).
- [19] J. Gong, L. Ma, C. Peng, J. Liu, LncRNA MAGI2-AS3 acts as a tumor suppressor that attenuates non-small cell lung cancer progression by targeting the miR-629-5p/ TXNIP axis, Ann. Transl. Med. 9 (2021) 1793.
- [20] K. Gürünlüöğlu, M. Dündar, T. Unver, N. Akpınar, I.K. Gokce, S. Gürünlüöğlu, M. Demircan, A. Koc, Global gene expression profiling in congenital diaphragmatic hernia (CDH) patients, Funct. Integr. Genom. 22 (2022) 359–369.
- [21] X.Z. Hao, K. Yang, LncRNA MAGI2-AS3 suppresses the proliferation and invasion of non-small cell lung carcinoma through miRNA-23a-3p/PTEN axis, Eur. Rev. Med. Pharm. Sci. 23 (2019) 7399–7407.
- [22] Q. He, A. Ye, W. Ye, X. Liao, G. Qin, Y. Xu, Y. Yin, H. Luo, M. Yi, L. Xian, Cancersecreted exosomal miR-21-5p induces angiogenesis and vascular permeability by targeting KRIT1, Cell Death Dis. 12 (2021) 1–14.
- [23] A. Hou, Y. Zhang, Y. Fan, Y. Zheng, X. Zhou, H. Liu, LncRNA MAGI2-AS3 affects cell invasion and migration of cervical squamous cell carcinoma (CSCC) via sponging miRNA-233/EPB41L3 axis, Cancer Manag. Res. 12 (2020) 4209–4216.
- [24] B.M. Hussen, R.K. Kheder, S.T. Abdullah, H.J. Hidayat, H.S. Rahman, A. Salihi, M. Taheri, S. Ghafouri-Fard, Functional interplay between long non-coding RNAs and Breast CSCs, Cancer Cell Int. 22 (2022) 233.
- [25] Q. Liu, S. Liu, X. Wang, J. Zhang, K. Liu, LncRNA MAGI2-AS3 is involved in cervical squamous cell carcinoma development through CDK6 up-regulation, Infect. Agent Cancer 14 (2019) 37.
- [26] C.L. Luo, Z.G. Xu, H. Chen, J. Ji, Y.H. Wang, W. Hu, K. Wang, W.W. Zhang, C. H. Yuan, F.B. Wang, LncRNAs and EGFRvIII sequestered in TEPs enable blood-based NSCLC diagnosis, Cancer Manag. Res. 10 (2018) 1449–1459.
- [27] A. Mohammadzadeh, N. Dastmalchi, B.M. Hussen, M.A. Shadbad, R. Safaralizadeh, An updated review on the therapeutic, diagnostic, and prognostic value of long non-coding RNAs in gastric cancer, Curr. Med. Chem. 29 (2022) 3471–3482.

- [28] J. Pu, J. Wang, H. Wei, T. Lu, X. Wu, Y. Wu, Z. Shao, C. Luo, Y. Lu, lncRNA MAGI2-AS3 prevents the development of HCC via recruiting KDM1A and promoting H3K4me2 demethylation of the RACGAP1 promoter, Mol. Ther. Nucleic Acids 18 (2019) 351–362.
- [29] H. Ren, Z. Li, Z. Tang, J. Li, X. Lang, Long noncoding MAGI2-AS3 promotes colorectal cancer progression through regulating miR-3163/TMEM106B axis, J. Cell. Physiol. 235 (2020) 4824–4833.
- [30] J. Song, S. Zhang, Y. Sun, J. Gu, Z. Ye, X. Sun, Q. Tang, A. Radioresponse-Related, IncRNA biomarker signature for risk classification and prognosis prediction in nonsmall-cell lung cancer, J. Oncol. 2021 (2021) 4338838.
- [31] Y. Sui, W. Chi, L. Feng, J. Jiang, LncRNA MAGI2-AS3 is downregulated in nonsmall cell lung cancer and may be a sponge of miR-25, BMC Pulm. Med. 20 (2020) 59.
- [32] Q. Sun, Y. Gao, Y. Zhang, H. Cao, J. Liu, S.Y. Neo, K. Chen, Y. Bi, J. Wu, Prognostic profiling of the EMT-associated and immunity-related LncRNAs in lung squamous cell carcinomas, Cells 11 (2022).
- [33] C. Tang, Y. Cai, H. Jiang, Z. Lv, C. Yang, H. Xu, Z. Li, Y. Li, LncRNA MAGI2-AS3 inhibits bladder cancer progression by targeting the miR-31-5p/TNS1 axis, Aging 12 (2020) 25547–25563.
- [34] T. Tian, Z. Gong, M. Wang, R. Hao, S. Lin, K. Liu, F. Guan, P. Xu, Y. Deng, D. Song, N. Li, Y. Wu, Z. Dai, Identification of long non-coding RNA signatures in triplenegative breast cancer, Cancer Cell Int. 18 (2018) 103.
- [35] G. Wang, H. Li, Y. Hou, LncRNA MAGI2-AS3 inhibits tumor progression and angiogenesis by regulating ACY1 via interacting with transcription factor HEY1 in clear cell renal cell carcinoma, Cancer Gene Ther. 29 (2022) 585–596.
- [36] X. Wei, Y. Hou, Y. Zhang, H. Zhang, Z. Sun, X. Meng, Z. Wang, Long non-coding RNA MAGI2-AS3 inactivates STAT3 pathway to inhibit prostate cancer cell proliferation via acting as a microRNA-424-5p sponge, J. Cancer 13 (2022) 343–353.
- [37] Z. Wu, J. Guo, Y. Zhang, J. Liu, H. Ma, Y. Tang, MiR-425-5p accelerated the proliferation, migration, and invasion of ovarian cancer cells via targeting AFF4, J. Ovarian Res. 14 (2021) 138.
- [38] X. Xu, X. Yuan, J. Ni, J. Guo, Y. Gao, W. Yin, F. Li, L. Wei, J. Zhang, MAGI2-AS3 inhibits breast cancer by downregulating DNA methylation of MAGI2, J. Cell. Physiol. 236 (2021) 1116–1130.
- [39] Z. Xu, Z. Chen, M. Peng, Z. Zhang, W. Luo, R. Shi, L. Wang, Y. Hong, MicroRNA MiR-490-5p suppresses pancreatic cancer through regulating epithelialmesenchymal transition via targeting MAGI2 antisense RNA 3, Bioengineered 13 (2022) 2673–2685.
- [40] C. Xue, G. Li, J. Lu, J. Luo, J. Jia, Novel insights for lncRNA MAGI2-AS3 in solid tumors, Biomed. Pharmacother. 137 (2021), 111429.
- [41] X. Yang, S. Wu, X. Li, Y. Yin, R. Chen, MAGI2-AS3 rs7783388 polymorphism contributes to colorectal cancer risk through altering the binding affinity of the transcription factor GR to the MAGI2-AS3 promoter, J. Clin. Lab. Anal. 34 (2020), e23431.
- [42] Y. Yang, H. Yang, M. Xu, H. Zhang, M. Sun, P. Mu, T. Dong, S. Du, K. Liu, Long noncoding RNA (IncRNA) MAGI2-AS3 inhibits breast cancer cell growth by targeting the Fas/FasL signalling pathway, Hum. Cell 31 (2018) 232–241.
- [43] Z. Yin, T. Ma, J. Yan, N. Shi, C. Zhang, X. Lu, B. Hou, Z. Jian, LncRNA MAGI2-AS3 inhibits hepatocellular carcinoma cell proliferation and migration by targeting the miR-374b-5p/SMG1 signaling pathway, J. Cell. Physiol. 234 (2019) 18825–18836.
- [44] J. Zhang, R. Wang, Deregulated IncRNA MAGI2-AS3 in Alzheimer's disease attenuates amyloid-β induced neurotoxicity and neuroinflammation by sponging miR-374b-5p, Exp. Gerontol. 144 (2021), 111180.
- [45] X. Zhang, Y. Jiang, Y. Xie, X. Leng, F. Song, Comprehensive analysis of lncRNAs associated with the pathogenesis and prognosis of gastric cancer, DNA Cell Biol. 39 (2020) 299–309.
- [46] X. Zhang, W. Wang, W. Zhu, J. Dong, Y. Cheng, Z. Yin, F. Shen, Mechanisms and functions of long non-coding RNAs at multiple regulatory levels, Int. J. Mol. Sci. 20 (2019).
- [47] X. Zhang, J. Zhuang, L. Liu, Z. He, C. Liu, X. Ma, J. Li, X. Ding, C. Sun, Integrative transcriptome data mining for identification of core lncRNAs in breast cancer, PeerJ 7 (2019), e7821.
- [48] Q. Zhou, J. Guo, W. Huang, X. Yu, C. Xu, X. Long, Linc-ROR promotes the progression of breast cancer and decreases the sensitivity to rapamycin through miR-194-3p targeting MECP2, Mol. Oncol. 14 (2020) 2231–2250.