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A B S T R A C T   

Small nucleolar RNA host gene 8 (SNHG8) is a long non-coding RNA that has physiological roles in epithelial and 
muscle satellite cells. This lncRNA has been reported to be over-expressed in a variety of cancer cell lines. Its 
silencing has attenuated tumor growth in animal models of cancers. SNHG8 can be served as a molecular sponge 
for some miRNAs to regulate their target genes. miR-634/ZBTB20, miR-335–5p/PYGO2, miR588/ATG7, miR- 
152/c-MET, miR-1270/BACH1, miR-491/PDGFRA, miR-512–5p/TRIM28, miR-149–5p/PPM1F, miR-542–3p/ 
CCND1/CDK6, miR-656–3p/SERBP1, miR-656–3p/SATB1, miR-1270/S100A11 and miR-384/HOXB7 are ex
amples of molecular axes being regulated by SNHG8 in the context of cancer. Moreover, it can affect patho
genesis of atherosclerosis, chronic cerebral ischemia, acute gouty arthritis, ischemic stroke and myocardial 
infarction through modulation of a number of molecular axes such as SNHG8/miR-384/Hoxa13/FAM3A and 
miR-335/RASA1 as well as NF-κB signaling pathway. The current review aims at summarization of the role of 
SNHG8 in diverse human disorders.   

1. Introduction 

Long non-coding RNAs (lncRNAs) represent an important group of 
non-coding transcripts with several similar features with mRNAs, yet the 
vast majority of these transcripts do not produce functional polypeptides 
[10,12,27]. Instead, the RNA itself exerts regulatory effects on 
protein-coding genes [13,38]. LncRNAs can affect expression of genes 
via epigenetic mechanisms. They can also modulate gene expression at 
transcriptional, post-transcriptional and translational stages of gene 
expression [7,18]. They have tissue- and condition-specific signatures 
that imply that these transcripts can be used are potential biomarkers. 
Moreover, these types of expression pattern offer a basis to target them 
in the clinical settings [30]. 

Small nucleolar RNA host genes (SNHGs) are a group of lncRNAs 
with diverse biological roles [11]. They contribute to the pathoetiology 
of several disorders, especially cancer. SNHG8 is a member of this group 
of transcripts. This RNA gene is located on chr4:118,278,631–118,285, 
316 (GRCh38/hg38), plus strand and has 6686 bases. Alternatively 

named as LINC00060, it has at least 15 transcripts being produced by 
alternative splicing mechanisms. The largest transcript (SNHG8–207) 
has 6166 bp length. 

SNHG8 has important functions in the physiology of epithelial cells 
and muscle satellite cells. This lncRNA has been found to be closely 
related with epithelial-mesenchymal transition (EMT)-associated genes 
signature [3]. Moreover, its expression has been decreased by ZEB1 in 
the course of EMT progression. From a functional point of view, SNHG8 
silencing has induced EMT in epithelial cells via destabilizing CDH1 
transcripts via a mechanism which relies on a shared 17-nucleotide 
sequence by SNHG8 and CDH1 [3]. 

Another experiment aimed at screening of epithelial cell-enriched 
lncRNAs has reported SNHG8 as a chromatin-localized lncRNA with 
robust interaction and phase separation with histone H1 variants. 
Notably, SNHG8 has more powerful capacity to bind H1s compared with 
linker DNA. As a consequent, loss of SNHG8 has been shown to increase 
the quantity of H1s that bind to chromatin, induce chromatin conden
sation, and stimulate an epithelial differentiation-related gene signature 
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(Fig. 1). Taken together, high abundance of SNHG8 in epithelial cells 
preserves histone H1 variants out of nucleosomes and its loss is associ
ated with epithelial cell differentiation [15]. 

Besides, Snhg8 has also been reported to be a target of FoxM1 in the 
regulation of proliferation and survival of muscle satellite cells. Snhg8 
could sustain proliferation of these cells through enhancement of tran
scription of ribosomal proteins [4]. Table 1 summarizes the physiolog
ical roles of SNHG8. 

2. SNHG8 in cancers 

2.1. Cell line studies 

SNHG8 expression has been upregulated in breast cancer cell lines. 
SNHG8 silencing has significantly reserved migration and invasion of 
these cells, and stimulated their apoptosis. SNHG8 has been found to 
serve as an inhibitor of miR-634 to enhance expression of ZBTB20. 
Taken together, SNHG8/miR-634/ZBTB20 axis has been shown to 

contribute to the pathogenesis of breast cancers (Fig. 2) [8,41]. More
over, SNHG8 expression has been found to be up-regulated in triple 
negative breast cancer cells where it has promoted their proliferation, 
migratory potential and EMT process. These effects are mediated 
through sequestering miR-335–5p to release PYGO2 from its suppressive 
effects [25]. 

SNHG8 expression has also been elevated in colorectal cancer cell 
lines. SNHG8 could facilitate proliferation and autophagy in these cell 
lines through modulation of expression of ATG7. More importantly, the 
effects of SNHG8 on autophagy in these cells have been shown to depend 
on the miR-588/ATG7 axis [3]. Moreover, direct sponging effect of 
SNHG8 on miR-663 has an important role in the oncogenic function of 
this lncRNA in colorectal cancer cells [40]. 

In cervical cancer cells, SNHG8 could accelerate proliferation and 
block apoptotic pathways via recruiting EZH2 to silence expression of 
RECK through epigenetic mechanisms [26]. In the endometrial carci
noma cell line AN3CA, SNHG8 silencing has decreased cell viability, 
while SNHG8 overexpression has enhanced the activity of cells. SNHG8 

Fig. 1. SNHG8 affects epithelial cell physiology. This lncRNA is linked to EMT-associated genes such as CDH1. SNHG8 interacts with histone H1 in chromatin. Loss of 
SNHG8 increases chromatin-binding H1, induces chromatin condensation, and stimulates epithelial differentiation. 

Table 1 
Physiological roles of SNHG8.  

Study type Cell type Regulator of SNHG8 Target of SNHG8 Function References 

Cell line study 
(MCF10A, MCF7, HT29, HEK- 
293 T cell lines) 

Epithelial cells ZEB1 (Zinc finger E-box-binding 
homeobox1) 

CDH1mRNA ΔSNHG8: 
↑EMT (epithelial-mesenchymal 
transition) 

[3] 

Cell line study 
(MCF10A, RWPE-1, HEK-293 T 
cell lines) 

Epithelial cells _ Histone H1 ΔSNHG8: 
↑chromatin condensation, ↑cell 
differentiation 

[15] 

Animal study 
(C57BL/6 mice) 

Muscle Satellite 
cells 

FoxM1 (Forkhead Box M1) Ribosomal protein gene 
transcription 

ΔSNHG8: 
↓proliferation 

[4]  
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has been shown to sponge miR-152 and increase expression of its target 
c-MET [35]. Table 2 summarizes the effect of SNHG8 over-expression or 
silencing in different cancer cell lines. 

3. Animal studies 

The impact of SNHG8 silencing on tumor growth has been assessed in 
xenograft models of esophageal [33], gastric [42], liver [6], lung [2], 
nasopharyngeal [32], bone [14] and ovarian [34] cancers. These studies 
have consistently pointed to the oncogenic effects of SNHG8, since its 
silencing has reduced tumor growth (Fig. 3) (Table 3). Moreover, in 
gastric cancer models, SNHG8 silencing has significantly enhanced 
chemosensitivity through inhibition of DNA damage repair [42]. 

4. Studies in human samples 

Over-expression of SHNG8 has been reported in a wide array of 
clinical samples obtained from different cancerous tissues (Table 4). In 
colorectal cancer, over-expression of SNHG8 has been associated with 
poor clinical outcome and higher rate of metastasis [40]. In endometrial 
cancer, up-regulation of SNHG8 not only has been associated with 
shorter survival time, but also with lymph node involvement, FIGO stage 
and histological grade [35]. In EBV-associated gastric cancer, 
up-regulation of SNHG8 has been found to indicate poor overall sur
vival, in association with larger tumor size and vascular tumor thrombus 
[44]. In hepatocellular carcinoma, over-expression of SNHG8 has been 
associated with recurrence of tumor but not overall survival of patients 
[6]. Although SNHG8 expression and T stage have been independent 
predictive factors for tumor recurrence, authors have been reported no 
relationship between SNHG8 up-regulation and assessed clinicopatho
logical features [6]. 

5. Non-malignant disorders 

5.1. Cell line studies 

The importance of SNHG8 in the pathogenesis of atherosclerosis, 
chronic cerebral ischemia, acute gouty arthritis, ischemic stroke and 
myocardial infarction has been assessed in different cell lines (Table 5). 
To unravel the underlying mechanism of SNHG8 participation in the 
pathogenesis of atherosclerosis, SNHG8 expression has been suppressed 
in vascular smooth muscle cells. This intervention has led to inhibition 
of proliferation and migration of these cells. Mechanistically, SNHG8 
has been shown to promote proliferation and migration of these cells via 
sequestering miR-224–3p [5]. 

Up-regulation of Snhg8 has suppressed chronic ischemia-induced 
apoptosis of HT22 cells. Mechanistically, Snhg8 has been shown to 
bind with miR-384 through a sequence-specific manner to repress its 
expression. Most notably, a reciprocal repression mechanism has been 
detected between Snhg8 and miR-384. Up-regulation of miR-384 could 
impair expression of Hoxa13 through binding with its 3′UTR. Hoxa13 
could bind with FAM3A promoter and enhance its promoter activity, 
thus regulating apoptosis of neurons [21]. 

Another experiment in a human monocytic cell line has shown that 
SNHG8 sponges miR-542–3p, a miRNA that targets AP3D1 3′ UTR. This 
experiment has verified that the role of SNHG8 in acceleration of acute 
gouty arthritis is mediated through up-regulation of AP3D1 [9]. 

SNHG8 is also involved in the pathoetiology of ischemic stroke, since 
it can attenuate microglial inflammatory responses and blood-brain 
barrier injury via regulation of SIRT1/NF-κB signals through a miR- 
425–5p manner [31]. Moreover, activity of microglia and permeability 
of blood-brain barrier in this context can be regulated through the 
ponging effect of SNHG8 on miR-449c-5p and subsequent regulation of 

Fig. 2. Expression and function of SNHG8 lncRNA in various malignancies based on cell line studies.  
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Table 2 
Expression and function of SNHG8 in various malignancies based on cell line studies (TCL: tumor cell line, NCL: normal cell line, Δ: knockdown or deletion, EMT: 
epithelial-mesenchymal transition, NR: not reported).  

Tumor type Cell line Expression Targets/Regulators and 
Signaling Pathways 

Function References 

Breast Cancer TCLs: MCF7, Hs-578 T, ZR- 
75–30, HCC1973 
NCL: MCF-10A 

High (TCL vs. NCL) miR-634/ZBTB20 ΔSNHG8: 
↓ Proliferation 
↑Apoptosis 
↓ Migration 
↓ Invasion 

[8,41] 

Triple-Negative Breast Cancer TCLs: MDA-MB-231, MDA-MB- 
436, BT-549, HCC1937 
NCLs: MCF-10A, HEK-293 T 

High (TCL vs. NCL) miR-335–5p/PYGO2 ΔSNHG8: 
↓proliferation, ↓colony formation 
↓ Migration 
↓EMT process 

[25] 

Colorectal Cancer TCLs: HT29, HCT8, HCT116, 
SW480 
NCL: FHC 

High (TCL vs. NCL) miR588/ATG7 ↑SNHG8: 
↑proliferation 
↑Autophagy 

[3]  

TCLs: SW480, SW620, LOVO, 
HCT116, HT29 
NCL: HCoEpiC 

High (TCL vs. NCL) miR-663 ΔSNHG8: 
↓proliferation, ↓colony formation 
ability 
↓ Migration 
↓ Invasion 

[40] 

HPV-induced Cervical Cancer HeLa (HPV18 +), MS751 
(HPV45 +) 
SiHa and CaKi (HPV16 +) 
C33A(HPV-) 

High 
(In HPV+ cell lines) 

EZH2/RECK ΔSNHG8: 
↓Tumor growth 
↑Apoptosis 
↓ Migration 

[26] 

Endometrial Cancer TCLs: 
Ishikawa, HEC1-A, HEC1-B, 
AN3CA, RL95–2 

Highest in AN3CA 
Lowest in Ishikawa 

miR-152/c-MET ↑SNHG8 (in Ishikawa): ↑Cell 
viability 
ΔSNHG8 (in AN3CA): ↓Cell 
viability 

[35] 

Esophageal Cancer TCLs: KYSE30, EC9706, TE-1 
NCL: Het-1A 

High (TCL vs. NCL) miR-1270/BACH1 ΔSNHG8: 
↓Proliferation 
↑Apoptosis 

[33] 

Gastric Cancer TCLs: MGC-803, AGS, SGC-7901, 
MKN-45 
NCL: GES-1 

High (TCL vs. NCL) miR-491/PDGFRA ΔSNHG8: 
↓Tumor growth 
↓Cyclin D1 expression 
↓invasion 

[37]  

TCLs: MKN45, AGS, SGC7901, 
GES1 
GC/CDDP cell lines (treated with 
cisplatin) 

High 
(GC/CDDP cell lines vs. 
GC cell lines) 

hnRNPA1-TROY ΔSNHG8: 
↑Apoptosis 
↑ chemotherapy sensitivity 
↓DNA repair 

[42] 

Epstein-Barr Virus-Associated 
Gastric Cancer 
(EBVaGC) 

TCLs: 
AGX-BX1(EBVaGC cell line) 
MKN-28 (GC cell line) 
NCL: GES-1 

High (in EBVaGC cell 
line) 

BHRF1 (regulator of 
SNHG8) 
miR-512–5p/TRIM28 

↑SNHG8: 
↑proliferation, ↑colony formation, 
↑G2/M cell cycle rrest,↑migration, 
↑invasion 

[44]  

TCLs: 
GT38, GT39 (EBVaGC cell line) 
AGS, SGC7901 (EBVnGC cell 
line) 
NCL: GES-1 

High (in EBVaGC cell 
lines) 

NR ΔSNHG8: 
↓proliferation, ↓colony formation 
ability 
↑Apoptosis 
↑G0/G1 cell cycle arrest 

[22] 

Hepatocellular Carcinoma TCLs: 
LO2, Huh6, Huh7, SK-hep1, 
HepG2, PLC5 

High (in HepG2 and 
PLC5) 
Low (in LO2) 

miR-149–5p/PPM1F ΔSNHG8 (in HepG2, PLC5): 
↓cell viability, ↓colony formation 
↓migration, ↓invasion 
↑SNHG8 (in LO2): 
↑proliferation, ↑colony formation 
↑migration, ↑invasion 

[6] 

Diffuse Large B-Cell 
Lymphoma 

TCLs: OCI-Ly10, OCI-Ly7, OCI- 
Ly3, U2932 
NCL: GM12878 

High (TCL vs. NCL) miR-335–5p ΔSNHG8: 
↓proliferation, ↓colony formation 
↑Apoptosis 

[19] 

Non-Small-Cell Lung Cancer TCLs: A549, H23, SPC-A1, NCI- 
H292 
NCL: 16HBE 

High (TCL vs. NCL) miR-542–3p/CCND1/ 
CDK6 
Caspase-3 

ΔSNHG8: 
↓Proliferation 
↑G0/G1 cell cycle arrest 
↑Apoptosis 

[2] 

Melanoma TCLs: A375, A875, M14, SK- 
MEL-5 
NCL: HEMa-LP 

High (TCL vs. NCL) miR-656–3p/SERBP1 ΔSNHG8: 
↓ Cell viability 
↓ Colony formation 
↓ Proliferation 
↓ Invasion 
↓ Migration 

[28] 

Nasopharyngeal Carcinoma TCLs: CNE-1, CNE-2 
NCL: NP69 

High (TCL vs. NCL) miR-656–3p/SATB1 ΔSNHG8: 
↓proliferation, ↓colony formation, 
↓ Invasion, ↓ Migration 
↑SNHG8: 
↑proliferation, ↑colony formation, 
↑migration, ↑invasion 

[32] 

(continued on next page) 
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the SIRT1/FoxO1 signaling [36]. Table 5 summarizes the identified 
mechanisms for involvement of SNHG8 in the pathophysiology of 
non-malignant conditions. 

6. Animal studies 

Animal studies have shown that up-regulation of Snhg8 in combi
nation with miR-384 silencing can reduce apoptosis of neurons, 
demonstrating the role of Snhg8/miR-384/Hoxa13/FAM3A pathway in 

the modulation of neuronal apoptosis triggered by chronic cerebral 
ischemia [21]. 

Experiment in an animal model of monosodium urate monohydrate 
(MSU)-induced acute gouty arthritis have shown up-regulation of 
SNHG8 following MSU treatment. Notably, SNHG8 silencing has 
reduced the MSU-induced paw swelling. Moreover, SNHG8 ablation has 
led to reduction of proinflammatory factors in animals [9]. 

Finally, independent studies in animal models of ischemic stroke 
have reported a protective role for SNHG8 in this condition [31,36]. 

Table 2 (continued ) 

Tumor type Cell line Expression Targets/Regulators and 
Signaling Pathways 

Function References 

Osteosarcoma TCLs: SaOS2, U2OS, MG63, HOS 
NCL: hFOB 1.19 

High (TCL vs. NCL) miR-876–5p ΔSNHG8: 
↓Tumor growth 
↓ Migration 

[14] 

Ovarian Cancer TCLs: SKOV3, HO8910, 
OVCAR3, A2780 
NCLs: IOSE, HOSE 11–12 

High (TCL vs. NCL) miR-1270/S100A11 ↑SNHG8: 
↑proliferation, ↑migration, 
↑invasion 
ΔSNHG8: 
↓proliferation, ↓ Invasion, ↓ 
Migration 

[34]  

TCLs: SKOV3, ES2, CaOV3, HG- 
SOC 
NCL: FTE187 

High (TCL vs. NCL) CAPRIN1/CTNNB1, Axin1 
Wnt/β-catenin pathway 

ΔSNHG8: 
↓proliferation, ↑apoptosis 
↓migration, ↓EMT process 
↓sphere formation ability, 
↓stemness 

[24] 

Pancreatic Adenocarcinoma TCLs: AsPC-1, BxPC-3, CFPC-1, 
PANC-1, Hs766T 
NCL: HPC-Y5 

High (TCL vs. NCL) NR ΔSNHG8: 
↓ Cell viability 
↑ G0/G1 cell cycle arrest 
↑ Apoptosis 
↑ Gemcitabine sensitivity 

[29] 

Prostate Cancer TCLs: LNCaP, PC3, DU145, 
VCap, 22RV1 
NCL: RWPE1 

High (TCL vs. NCL) miR-384/HOXB7 ΔSNHG8: 
↓proliferation 
↓ Invasion 
↓ Migration 

[1]  

Fig. 3. The significance of SNHG8 in the development of tumors is based on research conducted on animals.  
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Table 6 shows the effect of SNHG8 in animal models of non-malignant 
diseases. 

7. Human studies 

Expression levels of SNHG8 have been found to be higher in patients 
with atherosclerosis, while levels of miR-224–3p have been lower in 
these patients compared with controls. Notably, ROC curve analyses 
have indicated the ability of serum levels of SNHG8 in distinguishing 
atherosclerotic patients. Moreover, the levels of miR-224–3p have been 
negatively correlated with those of SNHG8 [34]. 

SNHG8 has also been identified as an important participant in the 
pathogenesis of acute myocardial infarction through an RNA-seq anal
ysis and subsequent construction of the lncRNA-miRNA-mRNA axes. 
This lncRNA has been shown to have significant diagnostic value for 
diagnosis of this disorder (Table 7) [43]. 

8. Discussion 

SNHG8 has been shown to contribute to the pathogenesis of cancers 
via regulation of miR-634/ZBTB20, miR-335–5p/PYGO2, miR588/ 
ATG7, miR-152/c-MET, miR-1270/BACH1, miR-491/PDGFRA, miR- 
512–5p/TRIM28, miR-149–5p/PPM1F, miR-542–3p/CCND1/CDK6, 
miR-656–3p/SERBP1, miR-656–3p/SATB1, miR-1270/S100A11 and 
miR-384/ axes as well as Wnt/β-catenin pathway. Moreover, it can 
affect pathogenesis of atherosclerosis, chronic cerebral ischemia, acute 
gouty arthritis, ischemic stroke and myocardial infarction through 
modulation of a number of molecular axes such as SNHG8/miR-384/ 
Hoxa13/FAM3A and miR-335/RASA1 as well as NF-κB signaling 
pathway. 

SNHG8 has been found to affect patients’ prognosis in a variety of 
cancers, being associated with pathological characteristics that define 
the course of cancer progression. Therefore, this lncRNA can be used as a 
prognostic marker, particularly in cancers. However, the diagnostic 
value of SNHG8 has not been evaluated in the context of cancer. Another 

issues that complicate the application of SNHG8 as a diagnostic tool in 
cancers is the observed up-regulation of this lncRNA in non-malignant 
conditions such as atherosclerosis and acute myocardial infraction. 
This issue should also been considered when assessing the impact of 
SNHG8 dysregulation in the prognosis of patients with different types of 
cancers. 

Although tens of miRNAs have been found to be sponged by SNHG8, 
the comprehensive network between miRNAs and SNHG8 has not been 
illustrated yet. Moreover, the impact of transcription factors on 
expression of SNHG8 has not been evaluated. Therefore, it is necessary 
to conduct high throughput studies to find the SNHG8-interacting non- 
coding RNAs and mRNAs, depict the comprehensive overview of func
tional interactions between these transcripts and identify the mostly 
enriched cellular mechanisms and signaling pathways in this regard. 
These types of studies would help in design of more appropriate and 
effective treatment strategies, particularly for malignant conditions. 
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Table 3 
The role of SNHG8 in tumorigenesis based on animal experiments (Δ: knockdown or deletion, SCID: severe combined immunodeficiency).  

Tumor type Animal models Pathways Results References 

Esophageal Cancer Nude female mice - ΔSNHG8: 
↓Tumor growth 

[33] 

Gastric Cancer SCID mice miR-491/PDGFRA ΔSNHG8: 
↑Chemo-sensitivity 
↑PARP and caspase-3 cleavage 
↑γ-H2AX level 
↓DNA repair 

[42] 

Epstein-Barr Virus-Associated Gastric Cancer 
(EBVaGC) 

Zebrafish - ΔSNHG8: 
↓Tumor growth 

[44]  

Male BALB/c nude mice - ΔSNHG8: 
↓ Tumor weight, ↓Tumor growth 

[22] 

Hepatocellular Carcinoma Female immune-deficient nude mice 
(BALB/c-nu) 

miR-149–5p/PPM1F ΔSNHG8: 
↓Tumor volume, ↓ Tumor weight, 
↓Proliferative activity 
↓ Body weight, ↓ Lung weight, ↓ Lung 
metastasis 

[6] 

Non-Small-Cell Lung Cancer Male BALB/c nude mice miR-542–3p/CCND1/ 
CDK6 

ΔSNHG8: 
↓ Tumor weight, ↓Tumor growth 

[2] 

Nasopharyngeal Carcinoma Male BALB/c nude mice miR-656–3p/SATB1 ΔSNHG8: 
↓Tumor volume, ↓ Tumor weight, ↓Tumor 
growth 

[32] 

Osteosarcoma Male athymic BALB/c nude mice - ΔSNHG8: 
↓ Tumor weight, ↓Tumor growth 

[14] 

Ovarian Cancer BALB/c nude mice miR-1270/S100A11 ΔSNHG8: 
↓ Tumor weight, ↓Tumor volume 

[34]  

S. Ghafouri-Fard et al.                                                                                                                                                                                                                         



Pathology - Research and Practice 245 (2023) 154458

7

Table 4 
Level of SNHG8 expression in various cancers and its relation with disease prognosis using clinical samples (ANCTs: adjacent non-cancerous tissues, TCGA: the cancer 
genome atlas, GEPIA: gene expression profiling interactive analysis, EBVaGC: EBER positive GC, EBVnGC: EBER negative GC, OS: overall survival, PFS: progression- 
free survival, DFS: disease-free survival, FBG: fasting blood glucose, FIGO: international federation of gynecology and obstetrics, TNM: tumor-node-metastasis, PTA: 
pairs of tumor tissues and ANCTs).  

Tumor type Samples Expression 
(tumor vs. 
normal) 

Kaplan-Meier analysis 
(impact of SNHG8 
overexpression) 

Prognostic factors 
(univariate/multivariate cox 
regression analysis) 

Association of SNHG8 
expression with 
clinicopathologic 
characteristics 

References 

Breast Cancer 16 PTAs High _ _ _ [8]  
30 PTAs High _ _ _ [41] 

Colorectal Cancer 286 tumor tissues 
and 41 normal 
tissues (TCGA data) 

High _ _ _ [3]  

40 PTAs + TCGA 
data 

High Poor prognosis _ Metastasis [40] 

Endometrial Cancer 60 tumor tissues, 25 
normal tissues 

High Shorter survival time _ Lymph node metastasis, FIGO 
stage, histological grade 

[35] 

Esophageal Cancer 20 PTAs + TCGA 
data 

High _ _ _ [33] 

Gastric Cancer (GC) 30 PTAs (15 males, 
15 females) 

High _ _ _ [37]  

42 PTAs + TCGA 
data 

High _ _ cancer stage [42]  

217 PTAs (follow up 
study) 

High 
(non survivors 
vs. survivors) 

Shorter survival time 
Poor prognosis (after 
radical gastrectomy) 

The interaction of SNHG8 
expression and FBG 
(predictive for cancer 
mortality) 

_ [20] 

Epstein-Barr Virus- 
Associated Gastric 
Cancer 
(EBVaGC) 

61 PTAs High Poor OS _ Tumor size, 
Vascular tumor thrombus 

[44]  

61 EBVaGC tissues 
20 EBVnGC tissues 

High 
(EBVaGC vs. 
EBVnGC) 

_ _ _ [44]  

39 pairs of EBVaGC 
tissues and ANCTs 
+ 49 EBVnGC 
tissues 

High 
(EBVaGC vs. 
ANCT and 
EBVnGC) 

_ _ _ [17] 

Hepatocellular 
Carcinoma 

23 PTAs 
TCGA data: 49 PTAs 
and 376 unpaired 
tumor samples 

High Higher recurrence rates 
(no association with OS) 

SNHG8 expression and T 
stage were independent 
predictive factors for tumor 
recurrence. 

No relationship with assessed 
clinicopathological features 

[6] 

Diffuse Large B-Cell 
Lymphoma 

337 tumor samples 
and 47 normal 
samples (GEPIA 
database) 

High _ _ _ [19] 

Non-Small-Cell Lung 
Cancer 

120 PTAs High Shorter OS and PFS 
Shorter survival time 

_ Lymph node metastasis, TNM 
stages 

[2] 

Melanoma 32 PTAs High Shorter OS _ _ [28] 
Nasopharyngeal 

Carcinoma 
21 tumor tissues and 
normal tissues 

High _ _ _ [32] 

Osteosarcoma 60 PTAs 
(37 males, 23 
females) 

High Shorter OS _ Increased tumor size 
Advanced Enneking stage 

[14] 

Ovarian Cancer 19 PTAs High Shorter OS _ No association with cancer 
grade 

[34] 

Pancreatic 
Adenocarcinoma 

40 PTAs 40 tumor 
tissues and 10 
normal tissues 

High Shorter OS _ Tumor stage 
Differentiation level 

[29] 

Prostate Cancer 53 PTAs + GEPIA 
data 

High Shorter OS and DFS _ Lymph node metastasis, TNM 
stage, Gleason score 

[1]  
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