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A B S T R A C T   

COVID-19 is associated with dysregulation of several genes and signaling pathways. Based on the importance of 
expression profiling in identification of the pathogenesis of COVID-19 and proposing novel therapies for this 
disorder, we have employed an in silico approach to find differentially expressed genes between COVID-19 pa-
tients and healthy controls and their relevance with cellular functions and signaling pathways. We obtained 630 
DEmRNAs, including 486 down-regulated DEGs (such as CCL3 and RSAD2) and 144 up-regulated DEGs (such as 
RHO and IQCA1L), and 15 DElncRNAs, including 9 down-regulated DElncRNAs (such as PELATON and 
LINC01506) and 6 up-regulated DElncRNAs (such as AJUBA-DT and FALEC). The PPI network of DEGs showed 
the presence of a number immune-related genes such as those coding for HLA molecules and interferon regu-
latory factors. Taken together, these results highlight the importance of immune-related genes and pathways in 
the pathogenesis of COVID-19 and suggest novel targets for treatment of this disorder.   

1. Introduction 

COVID-19 caused by SARS-CoV-2 has produced a pandemic with 
heavy burden on health system all over of the world. Several in-
vestigations have been conducted to unravel the signaling pathways and 
gene expression patterns altered by this virus [1,2]. These studies would 
help in identification of the molecular mechanisms responsible for high 
mortality of this disorder and finding suitable markers for prediction of 
course of COVID-19. For instance, whole transcriptome analyses have 
revealed up-regulation of neutrophil-related transcripts and down- 
regulation of T cell related transcripts in SARS-CoV2-affected persons, 
particularly severely affected ones [3]. Moreover, single-cell and bulk 
RNA sequencing assays in these patients have revealed inflammatory 
mechanisms for COVID-19-associated organ damage [4]. In addition, a 
comprehensive assessment of transcriptome of organs affected by this 
virus has indicated the role of a group of myeloid-lineage cells with 
extremely inflammatory but distinctive expression profile in each part in 
the pathogenesis of COVID-19-related complications [5]. Based on this 

data, transcriptomic profiling has been suggested as a tool for identifi-
cation of the pathogenesis of COVID-19 in each affected individual [5]. 

Based on the importance of expression profiling investigations in 
identification of the pathogenesis of COVID-19 and proposing novel 
therapies for this disorder, we have employed an in silico approach to 
discover differentially expressed genes between COVID-19 patients and 
healthy controls and their relevance with cellular functions and 
signaling pathways. 

2. Methods 

2.1. Collection of RNA-seq data and evaluation of dataset quality 

In order to acquire the RNA-seq raw counts of GSE184610 (Illumina 
NovaSeq 6000 (Homo sapiens); GPL24676), we utilized the Gene 
Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/). A 
total of 138 negative control samples and 204 SARS-CoV-2 positive 
patient mucosa samples were chosen for further analysis. In Rstudio 
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software (version 4.0.4), we imported the dataset and assessed its 
quality. This step involves investigating raw counts and normalized 
counts boxplots and investigating dispersion estimate plot. 

2.2. The dataset preprocessing and DEGs analysis 

We analyzed raw counts data using DESeq2 package [6] and got 
DEGs using lfcShrink function via normal method. In addition, Bonfer-
roni was used to adjust the P value into the FDR. We used the FDR <0.05 
and |log2 FC| > 1 as the cutoff criteria for DEmRNAs and DElncRNAs. 

2.3. Gene ontology (GO) enrichment analyses 

We used the clusterProfiler R package [7] to accomplish Gene 
Ontology (GO) enrichment analyses to explore the function of the 
identified up-regulated and down-regulated DEmRNAs. The functional 
category criteria were established at an adjusted p-value of 0.05 or 
below. 

2.4. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis 

To determine the probable roles of these genes, KEGG pathway 
analysis [8] of significantly up-regulated and down-regulated DEGs was 
performed. 

2.5. PPI network construction and hub genes identification 

The PPI network for DEGs was built using the STRING database [9]. 
The interactions parameter was established using the highest level of 
confidence (confidence score >0.9). The interactions between the pro-
teins were shown using Cytoscape software version 3.9 [10]. The 
Cytohubba plugin of Cytoscape [11] and the degree method were finally 
used to identify the top 20 DEGs associated with hub genes. 

2.6. Receiver operating characteristic (ROC) curve analysis 

The area under the curve (AUC) values derived from receiver oper-
ating characteristic (ROC) curve analysis were used to assess the diag-
nostic efficacy of hub genes. 

Fig. 1. Boxplot of normalized counts. The median between the samples is not significantly different, according to this box plot.  

Fig. 2. Dispersion estimate plot. Gene-wise estimates, the fitted values and the final maximum a posteriori estimates used in testing are shown in black, red and blue, 
respectively. 
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Fig. 3. The 30 most highly expressed genes’ expression data shown as heatmap.  

Table 1 
The top 10 up- and down-regulated DEmRNAs between SARS-CoV-2 positive patient mucosa and negative control samples.  

Down-regulated Up-regulated 

DEmRNA Log FC Adjusted P value DEmRNA Log FC Adjusted P value 

CCL3 
RSAD2 
PLAU 
CCL2 
CCL4 
IFIT3 
FCER1G 
IFITM1 
C3AR1 
TNFAIP6 

−3.522198 
−3.277750 
−3.268583 
−3.256825 
−3.248852 
−3.219601 
−3.173030 
−3.167388 
−3.157713 
−3.015891 

6.05904939329508e−05 
3.53839507223347e−17 
2.8779631834047e−05 
4.22788513280451e−06 
1.83460110250716e−07 
7.64206271929218e−23 
5.47213646256583e−27 
3.64641305252621e−21 
1.53267505111211e−09 
1.26235650172001e−08 

RHO 
IQCA1L 
CCDC168 
FILIP1L 
PKD1L3 
ND6 
KCNJ6 
L1TD1 
ARC 
MUCL3 

5.999073 
2.755854 
2.638627 
2.582805 
2.572879 
2.422819 
2.402090 
2.388298 
2.341139 
2.251693 

5.06593453378896e−58 
1.79906859343439e−05 
1.46038298795042e−05 
1.08123055561509e−05 
2.72911233018633e−15 
5.06593453378896e−58 
0.000189331612680773 
2.34425812741455e−06 
9.09298952655054e−05 
0.000454333529852898  
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2.7. Regulatory network of miRNA-hub genes and TF-hub genes 

Finally, the Networkanalyst database [12] was used to create the 
relationships between the hub genes and the transcription factors (TFs) 
and microRNAs (miRNAs). 

3. Results 

3.1. Dataset quality assessment 

To normalize the raw counts, we utilized the DESeq2 package and 
the normalized counts transformation method. The boxplot of the 
normalized data for each sample is shown in Fig. 1. This boxplot shows 
that the data quality was acceptable. The dispersion estimate plot 
(Fig. 2) displays the gene-wise estimates, the fitted values, and the final 

maximum a posteriori estimates used in testing. This graphic demon-
strates that the DESeq2 model fits the data well. Heatmap of the count 
Table is shown in Fig. 3. In this figure, we used variance stabilizing 
transformation (VST) method to show the heatmap of top 30 genes. 

3.2. DEGs analysis 

Based on the RNA-seq data analysis between SARS-CoV-2 positive 
and control samples by DESeq2 package, we obtained 630 DEmRNAs, 
including 486 down-regulated DEGs (such as CCL3 and RSAD2) and 144 
up-regulated DEGs (such as RHO and IQCA1L), and 15 DElncRNAs, 
including 9 down-regulated DElncRNAs (such as PELATON and 
LINC01506) and 6 up-regulated DElncRNAs (such as AJUBA-DT and 
FALEC). Table 1 lists the top 10 down-regulated and up-regulated 
DEmRNAs. Table 2 lists down-regulated and up-regulated DElncRNAs. 

Table 2 
The significantly up- and down-regulated DElncRNAs between SARS-CoV-2 positive patient mucosa and negative control samples.  

Down-regulated  Up-regulated 

DElncRNA Log FC Adjusted P value DElncRNA Log FC Adjusted P value 

PELATON 
LINC01506 
MIR223HG 
FTX 
ATP2B1-AS1 
NEAT1 
CYTOR 
NUP50-DT 
MIR4435-2HG 

−2.414951 
−2.189435 
−1.776585 
−1.672565 
−1.514810 
−1.343839 
−1.289805 
−1.222082 
−1.040226 

4.70603855680276e-06 
0.000276966532762493 
0.0136203042254115 
0.00233406934840649 
0.00521350099762486 
6.71027975173219e-07 
0.0105166377130368 
0.00826370673115181 
0.0359620111847791 

AJUBA-DT 
FALEC 
MZF1-AS1 
RNF139-DT 
LMO7DN 
SNHG31 

1.891883 
1.861288 
1.834784 
1.653451 
1.375112 
1.314847 

0.00145743231643265 
0.0277160449944691 
1.69156430996055e-05 
0.00229169343117678 
0.00377205696800783 
0.0394361017036223  

Fig. 4. The volcano plot of differentially expressed genes (DEGs); horizontal axis, log2(FC); vertical axis, -log10(adjusted P value).  
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The variations of lncRNA and mRNA expression between SARS-CoV- 
2 positive patient mucosa and negative control samples were visualized 
and assessed using volcano plot (Fig. 4). 

3.3. GO enrichment analysis of DEGs 

In this study, the considerably DEGs were enriched in 774 GO terms. 
We used Clusterprofiler package to perform analysis. In GO functional 
enrichment analysis, 774 GO entries satisfy Adjusted P value less than 
0.05, most of which are biological processes (BP), followed by cellular 
component (CC) and molecular function (MF). The first 30 entries are 
response to virus (BP), cytokine-mediated signaling pathway (BP), 
positive regulation of response to external stimulus (BP), secretory 
granule membrane (CC), response to lipopolysaccharide (BP), response 
to molecule of bacterial origin (BP), defense response to virus (BP), 
defense response to symbiont (BP), cellular response to biotic stimulus 
(BP), regulation of response to biotic stimulus (BP), cellular response to 
lipopolysaccharide (BP), cellular response to molecule of bacterial 
origin (BP), positive regulation of cytokine production (BP), leukocyte 
chemotaxis (BP), leukocyte migration (BP), myeloid leukocyte migra-
tion (BP), negative regulation of viral genome replication (BP), regula-
tion of innate immune response (BP), immune response-regulating 
signaling pathway (BP), granulocyte migration (BP), pattern recognition 

receptor signaling pathway (BP), cell chemotaxis (BP), positive regula-
tion of defense response (BP), neutrophil migration (BP), leukocyte 
mediated immunity (BP), regulation of viral genome replication (BP), 
negative regulation of immune system process (BP), myeloid leukocyte 
activation (BP), viral genome replication (BP) and neutrophil chemo-
taxis (MF). As a result, the majority of the terms are related to the im-
mune system and the body’s viral defense system. In this way, the 
outcomes support the GO enrichment analysis. Fig. 5 shows the barplots 
of top 10 enriched functions. 

Figs. 6 and 7 depict visualization of the dotplots of top 10 enriched 
functions and enriched GO induced graph, respectively. 

In Fig. 8, the UpSet plot visualizes the intersection between top 10 
GO terms. It highlights the gene overlap between several gene sets. 

Fig. 9 indicates the gene-concept network of top 5 GO terms (cyto-
kine-mediated signaling pathway, positive regulation of response to 
external stimuli, response to polysaccharides, response to molecules of 
bacterial origin and response to virus). 

3.4. Pathway analysis 

Using Pathview [13] and gage [14] packages in R, KEGG pathways 
analysis [15,16] of 486 down-regulated and 144 up-regulated DEmR-
NAs were performed to identify the potential functional genes (Fig. 10). 

Fig. 5. The barplots of top 10 enriched functions; BP (biological process), CC (cellular component) and MF (molecular function). X axis shows the count of geneset; Y 
axis shows the geneset function; Bar color represents the adjusted P.value, ranging from red (most significant) to blue (least significant). 
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Downregulated pathways are listed in Table 3 and Fig. 10. Pathways 
were related to immune system functions in a manner similar to what we 
saw in the gene ontology terms. 

3.5. PPI network construction and selection of hub genes 

A PPI network of DEGs (Fig. 11) with 204 nodes and 590 edges that 
was generated from STRING was put into the Cytohubba plugin of 
Cytoscape 3.9 to recognize the hub genes. The 20 hub genes with the 
highest degree of connectivity were HLA-A, IRF7, STAT2, ISG20, IFI6, 
XAF1, IFIT5, IFIT3, IFIT2, HLA-C, RSAD2, IFITM2, IFI35, IFITM3, 
IFITM1, HLA-B, MX2, MX1, IFIT1 and ISG15 (Table 4). 

3.6. Validation of hub genes 

We used graphpad prism 9.0 to construct ROC curves. The accuracy 
of the hub genes predictions was assessed using the ROC curve. The 
diagnostic values of these hub genes were compared using AUC. ROC 

curves and AUC values of dataset are shown in Fig. 12. The computed 
AUC values in this study varied from 0.7 to 1, which is considered to 
have high discriminative power. According to the ROC analysis, the 
expression levels of 9 hub genes showed high diagnostic value. 

3.7. Identification of the regulatory network of miRNA-hub genes 

The Networkanalyst online database was used to collect miRNAs that 
target hub genes (Fig. 13). Hsa-miR-146a-5p and has-miR-29b-3p were 
regarded as significant miRNAs since they interacted with hub genes at 
the greatest level (degree 3) possible (Fig. 14). 

3.8. Examination of the regulatory network of TF-hub genes 

We obtained TFs targeting hub genes from the Networkanalyst 
database (Fig. 13). The TF-hub gene network showed that the SPI1 
regulates six hub genes. 

Fig. 6. The dotplots of top 10 enriched functions. X axis shows the count of geneset; Y axis shows the geneset function; Dot color represents the adjusted P value 
ranging from dark blue (most significant) to red (least significant). Dot size represents the GeneRatio and the larger the size of the dot, the higher the value of the 
gene ratio. 
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Fig. 7. GO graph visualization of top GO terms enriched. (A) The top 10 GO terms in the category “Cellular Component” have generated a GO sub-graph. (B) The top 
10 GO terms in the category “Molecular Function” have generated a GO sub-graph. (C) The top 10 GO terms in the category “Biological process” have generated a GO 
sub-graph. Boxes indicate the most significant terms. From dark red (most significant) to light yellow (least significant), the color of the box indicates the relative 
significance. 
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Fig. 8. UpSet plot of top 10 GO terms.  

Fig. 9. Top 5 GO terms as a network plot. These GO terms were connected to genes in this graph. The connection of genes to the corresponding GO is marked with a 
special color. There are more genes for a specific GO term if the dot relating to it is bigger. 
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Fig. 10. Visualization of pathways. Green boxes are down-regulated genes and Red boxes are up-regulated genes.  
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4. Discussion 

COVID-19 has been shown to trigger strong alterations in the blood 
transcriptome. Most notably, recent studies have demonstrated associ-
ations between the severity of COVID-19 and remarkable alterations in 
the neutrophil- and T cell-related transcripts [3]. Expression of a variety 
of other transcripts has also been found to be altered in COVID-19 pa-
tients [1,2]. In the current investigation, we developed an in silico 
approach to find the most important altered genes and signaling path-
ways in COVID-19. Our analysis included both mRNAs and lncRNAs. 
CCL3, RSAD2, PLAU, CCL2, CCL4, IFIT3, FCER1G, IFITM1, C3AR1 and 
TNFAIP6 have been among the most significantly down-regulated 
mRNAs in COVID-19 patients. CCL3, CCL2 and CCL4 are among che-
mokines whose expressions are induced by IL-1 and TNF-α and are 
associated with viral infections [17]. C3AR1 is a receptor for C3a, an 

Fig. 10. (continued). 

Table 3 
Down- and up-regulated pathways.  

Down-regulated Up-regulated 

Pathway P value Pathway P value 

Chemokine signaling pathway 
Natural killer cell mediated cytotoxicity 
Phagosome 
Cytosolic DNA-sensing pathway 

0.002948037 
0.011685555 
0.020611266 
0.038850553 

– –  
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Fig. 11. PPI network of DEmRNAs.  

Table 4 
The information of hub genes in PPI network.  

Hub Gene Adjusted P.value Log2FC Clustering Coefficient Degree Closseness Centrality Betweenness Centrality 

HLA-A 
HLA-B 
HLA-C 
IFI35 
IFI6 
IFIT1 
IFIT2 
IFIT3 
IFIT5 
IFITM1 
IFITM2 
IFITM3 
IRF7 
ISG15 
ISG20 
MX1 
MX2 
RSAD2 
STAT2 
XAF1 

1.17405388074575e−09 
2.98101242818701e−10 
3.69143414621164e−11 
0.00640167112233584 
3.01430541463456e−08 
1.84638421809207e−10 
8.79161316577004e−06 
7.64206271929218e−23 
0.00707778449749948 
3.64641305252621e−21 
8.44762880149889e−13 
5.97268740910169e−15 
2.67513242124973e−09 
5.7319781821844e−19 
6.46627575844399e−08 
7.48158579565845e−11 
5.7837259618947e−07 
3.53839507223347e−17 
1.28468555594202e−05 
0.000652170971128252 

−1.2017269612983 
−1.2397535042883 
−1.4158897587374 
−1.2988153793527 
−1.6981280098013 
−2.7365819306463 
−2.0775489444141 
−3.2196014206250 
−1.4779750161670 
−3.1673883849525 
−2.0662886199984 
−2.0245315549745 
−2.1167282760516 
−2.9625688389390 
−1.6804788202611 
−1.6250252592217 
−1.6739982781717 
−3.2777509714946 
−1.4236338499166 
−1.2553337367898 

0.5060483870967 
0.9525691699604 
0.9525691699604 
0.9525691699604 
0.9525691699604 
0.7965367965367 
0.9525691699604 
0.9525691699604 
0.9525691699604 
0.9525691699604 
0.9525691699604 
0.9525691699604 
0.7538461538461 
0.8761904761904 
0.9525691699604 
0.7965367965367 
0.7965367965367 
0.9525691699604 
0.8033333333333 
0.9525691699604 

32 
23 
23 
23 
23 
22 
23 
23 
23 
23 
23 
23 
26 
21 
23 
22 
22 
23 
25 
23 

0.33568075117370 
0.30232558139534 
0.30232558139534 
0.30232558139534 
0.30232558139534 
0.30555555555555 
0.30232558139534 
0.30232558139534 
0.30232558139534 
0.30232558139534 
0.30232558139534 
0.30232558139534 
0.37434554973821 
0.30296610169491 
0.30232558139534 
0.30555555555555 
0.30555555555555 
0.30232558139534 
0.32426303854875 
0.30232558139534 

0.12130993483553777 
6.628294880535598E−5 
6.628294880535598E−5 
6.628294880535598E−5 
6.628294880535598E−5 
0.011495532937713914 
6.628294880535598E−5 
6.628294880535598E−5 
6.628294880535598E−5 
6.628294880535598E−5 
6.628294880535598E−5 
6.628294880535598E−5 
0.16382876903582366 
0.004010616268719467 
6.628294880535598E−5 
0.011495532937713914 
0.011495532937713914 
6.628294880535598E−5 
0.03551181801181966 
6.628294880535598E−5  
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anaphylatoxin produced during induction of the complement system. 
Our analyses also revealed down-regulation of a number of lncRNAs 

such as NEAT1 and CYTOR and up-regulation of AJUBA-DT, FALEC, 
MZF1-AS1, RNF139-DT, LMO7DN and SNHG31 lncRNAs. NEAT1 has 
been found to modulate innate immune responses during viral infections 
[18]. CYTOR is a tumor-associated lncRNA that can modulate inflam-
matory responses via epigenetic modifications [19]. 

GOE analysis of differentially expressed genes showed response to 
virus, cytokine-mediated signaling pathway, positive regulation of 
response to external stimulus and secretory granule membrane as the 
most important biological pathways enriched by these genes. Moreover, 
gene-concept network showed the importance of cytokine-mediated 
signaling pathway, positive regulation of response to external stimuli, 
response to polysaccharides, response to molecules of bacterial origin 
and response to virus in this condition. 

Finally, the PPI network of DEGs showed the presence of a number 
immune-related genes such as those coding for HLA molecules and 
interferon regulatory factors among hub genes with the highest degree 
of connectivity. 

Taken together, the in silico approach used in the current study 
highlights the importance of immune-related genes and pathways in the 
pathogenesis of COVID-19 and suggests novel targets for treatment of 
this disorder. 
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Fig. 12. Evaluation of the hub genes. ROC curves for 9 hub genes (HLA-A, HLA-B, HLA-C, IFITM2, IFITM3, IFIT3, STAT2, MX1 and IFITM1). The computed AUC area 
under the curve for dataset ranged from 0.7 to 1. 
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Fig. 13. The network of miRNA-hub genes. Circles represent the hub gene, while the squares represent miRNAs targeting the hub genes.  

Fig. 14. The network of TF-hub genes. Circles show the hub gene, while the diamonds represent TFs targeting the hub genes.  
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