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Abstract
We improve known perturbation results for self-adjoint operators in Hilbert spaces and
prove spectral enclosures for diagonally dominant J -self-adjoint operator matrices.
These are used in the proof of the central result, a perturbation theorem for J -non-
negative operators. The results are applied to singular indefinite Sturm-Liouville
operators with L p-potentials. Known bounds on the non-real eigenvalues of such
operators are improved.

Keywords J -self-adjoint operator · J -non-negative operator · Relatively bounded
perturbation · Spectral enclosure

Mathematics Subject Classification Primary 47B50 · 47A55; Secondary 47E05 ·
34L15

1 Introduction

J -self-adjoint operators are special generally non-self-adjoint operators in Hilbert
spaces; they appear in various applications in mathematics and mathematical phy-
sics such as the Klein-Gordon equation [17, 18, 24, 40, 41] and other types of wave
equations [14, 21, 30, 31], PT-symmetry in quantum mechanics [8, 32, 42, 43, 46] &
[3, Sec. 7], and self-adjoint analytic operator functions [35, 37–39], just to name a
few.

They also occur naturally as realizations of indefinite Sturm-Liouville expressions
[5, 6, 12, 13, 29, 45, 48]. As a motivation, let us consider such an indefinite Sturm-
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Liouville operator:
A : f �→ sgn ·(− f ′′ + q f ) (1.1)

with a real-valued potential q ∈ L p(R), p ≥ 1, defined on the maximal domain

dom A = { f ∈ L2(R) : f , f ′ ∈ ACloc(R), − f ′′ + q f ∈ L2(R)}.

It is well known that the non-real spectrum of A is bounded and consists of isolated
eigenvalues, see, e.g., [5, 7], and it is of particular interest to find bounds on these
eigenvalues.

The first result in this direction has been established in [6] for q ∈ L∞(R). Later,
it was refined and immensely generalized to unbounded potentials and a large class
of weights in [7]. Recently, the bound on the imaginary part from [7] could be fur-
ther improved in [9]. The methods in [7] and [9], however, differ significantly from
those used in [6]. In fact, while the authors in [7, 9] work explicitly with the differ-
ential expressions and operators, the result in [6] follows from an abstract theorem
on bounded perturbations of J -non-negative operators. The idea is simple: we write
A = A0 + V , where

A0 : f �→ − sgn · f ′′, f ∈ dom A0 = H2(R), (1.2)

and V is the operator of multiplication with sgn ·q . If J further denotes multiplication
with sgn, then J = J ∗ = J−1 and A0 is J -non-negative, i.e., J A0 is self-adjoint and
non-negative. Hence, the abstract theorem can be applied.

Here, we proceed in a similar way as in [6]: we first prove an abstract theorem on
relatively bounded perturbations of J -non-negative operators and apply it to the above
situation. In this case, we require q ∈ L p(R) with p ∈ [2,∞] since these potentials
lead to relatively bounded perturbations of A0. As a consequence, we obtain bounds
on the non-real eigenvalues of A (see Theorem 6.2); these are of the same flavor as
those in [7], but surprisingly improve them significantly in the case q ≤ 0 (see Fig. 5).

Let us now touch upon the abstract situation in more detail. For this, let J 
= I
be a self-adjoint involution on a Hilbert space (H, (· , ·)), i.e., J = J∗ = J−1. A
linear operator A inH is called J -self-adjoint if the composition J A is a self-adjoint
operator in H. In contrast to self-adjoint operators, the spectrum of a J -self-adjoint
operator is not necessarily real. The only restriction, in general, is its symmetry with
respect to the real axis and it is not hard to construct J -self-adjoint operators whose
spectrum covers the entire complex plane (see, e.g., Example 5.4) or is empty. It
is therefore reasonable to consider special classes of J -self-adjoint operators—e.g.,
(locally) definitizable operators [26, 34], or, more specific, J -non-negative operators.
A J -self-adjoint operator A with non-empty resolvent set is called J -non-negative if
J A ≥ 0. It is well known [34] that a J -non-negative operator has real spectrum and
possesses a spectral function on R with the possible singularities 0 and ∞.

Several types of perturbations of J -non-negative operators have already been inves-
tigated in numerous works. Here, we only mention [1, 4, 23, 27] for compact and
finite-rank perturbations, [2, 3, 6, 22] for bounded perturbations and [25] for form-
bounded perturbations. Themain result in [6] states that a bounded perturbation A0+V
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of a J -non-negative operator A0 which satisfies a certain regularity condition can be
spectrally decomposed into a bounded operator and a J -non-negative operator. In par-
ticular, the non-real spectrum of the perturbed operator is contained in a compact set
K and bounds on K were given explicitly. We call such operators J -non-negative over
C \ K (cf. Definition 2.2).

Here, our focus lies on relatively bounded perturbations of the form A0 +V , where
A0 is J -non-negative and V is both J -symmetric and A0-bounded. Our main result,
Theorem 5.2, generalizes that of [6] and shows that whenever the A0-bound of V is
sufficiently small, then the operator A0 + V is J -non-negative over C \ K with a
compact set K which is specified in terms of the relative bounds of V .

A brief outline of the paper is as follows. First of all, we provide the necessary
notions and definitions in Sect. 2. In Sect. 3 we consider a self-adjoint operator S in a
Hilbert space and an S-bounded operator T with S-bound less than one and provide
enclosures for the set

KS(T ) := {λ ∈ �(S) : ‖T (S − λ)−1‖ ≥ 1}.

As a by-product, this result yields an improvement of spectral enclosures from [10]
for the operator S + T (cf. Corollary 3.5 and Remark 3.6). However, the main reason
for considering the set KS(T ) is Theorem 4.1 in Sect. 4 which states in particular that
the non-real spectrum of J -self-adjoint diagonally dominant block operator matrices
of the form

S =
(

S+ M
−M∗ S−

)
(1.3)

is contained in KS−(M) ∩ KS+(M∗) if both the S−-bound of M and the S+-bound of
M∗ are less than one. It is now a key observation that our main object of investigation
– the operator A0 + V – can be written in the form 1.3. A renormalization procedure
then allows us to derive the main result, Theorem 5.2. In Sect. 6 we apply Theorem 5.2
to singular indefinite Sturm-Liouville operators.

Notation: Throughout,H and K stand for Hilbert spaces. In this paper, whenever we
write T : H → K, we mean that T is a linear operator mapping from dom T ⊂ H to
K, where dom T does not necessarily coincidewithH nor dowe assume that it is dense
inH. The space of all bounded operators T : H → K with dom T = H is denoted by
L(H,K). As usual, we set L(H) := L(H,H). The spectrum of an operator T in H
is denoted by σ(T ), its resolvent set by �(T ) = C \ σ(T ). The set of eigenvalues of
T is called the point spectrum of T and is denoted by σp(T ). The approximate point
spectrum σap(T ) of T is the set of all λ ∈ C for which there exists a sequence ( fn) ⊂
dom T such that ‖ fn‖ = 1 for all n ∈ N and (T −λ) fn → 0 as n → ∞. Throughout,
for a set � ⊂ C and r > 0 we use the notation Br (�) := {z ∈ C : dist(z,�) ≤ r}.
For z0 ∈ C we also write Br (z0) := Br ({z0}) = {z ∈ C : |z − z0| ≤ r}. These sets
are intentionally defined to be closed.
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2 Preliminaries

Let J ∈ L(H) be a self-adjoint involution, i.e., J = J ∗ = J−1. The operator J
induces an (in general indefinite) inner product [· , ·] on H:

[ f , g] = (J f , g), f , g ∈ H.

An operator A in H is called J -self-adjoint (J -symmetric) if J A is self-adjoint
(symmetric, resp.). Equivalently, A is self-adjoint (resp. symmetric) with respect to
the inner product [· , ·]. The spectrum of a J -self-adjoint operator is symmetric with
respect to R, that is, λ ∈ σ(A) ⇔ λ ∈ σ(A). However, more cannot be said, in
general. It is easy to construct examples of J -self-adjoint operators whose spectrum
is the entire complex plane (see, e.g., Example 5.4 below). Therefore, the literature
usually focusses on special classes of J -self-adjoint operators or on local spectral
properties as the spectral points of positive and negative type which we shall explain
next.

Let A be a J -self-adjoint operator. The subset σ+(A) (σ−(A)) of σ(A) consists of
the points λ ∈ σap(A) for which each sequence ( fn) ⊂ dom A with ‖ fn‖ = 1 for all
n ∈ N and (A − λ) fn → 0 as n → ∞ satisfies

lim inf
n→∞ [ fn, fn] > 0

(
lim sup
n→∞

[ fn, fn] < 0, resp.
)
.

A point λ ∈ σ+(A) (σ−(A)) is called a spectral point of positive (negative) type of
A and a set � ⊂ C is said to be of positive (negative) type with respect to A if
� ∩ σ(A) ⊂ σ+(A) (� ∩ σ(A) ⊂ σ−(A), resp.). The notion of the spectral points
of positive and negative type was introduced in [36] (see also [33]). It is immediate
that λ ∈ σ+(A) implies that for each f ∈ ker(A − λ), f 
= 0, we have [ f , f ] > 0.
Hence, ker(A − λ) is a J -positive subspace. In fact, much more holds (see [36]): We
have σ+(A) ⊂ R and, if λ ∈ σ+(A), then

(1) there exists an open (complex) neighborhood U of λ such that each point in U is
either contained in �(A) or in σ+(A). In particular, U \ R ⊂ �(A);

(2) there exists a local spectral function1 E on U ∩ R such that for each Borel set �

with � ⊂ U ∩ R the projection E(�) is J -self-adjoint and (E(�)H, [· , ·]) is a
Hilbert space.

Roughly speaking, the part of the operator Awith spectrum inU∩R is a self-adjoint
operator in a Hilbert space. Similar statements hold for the spectral points of negative
type.

Definition 2.1 A J -self-adjoint operator A in H is said to be J -non-negative if
�(A) 
= ∅ and σ(J A) ⊂ [0,∞), that is, (J A f , f ) ≥ 0 for f ∈ dom A (equiva-
lently, [A f , f ] ≥ 0 for f ∈ dom A). The operator A is said to be uniformly J -positive
if it is J -non-negative and 0 ∈ ρ(A), i.e., σ(J A) ⊂ (0,∞).

1 For a definition of this notion we refer to, e.g., [44, Definition 2.2].
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It is well known that the spectrum of a J -non-negative operator is real and that
(0,∞) ∩ σ(A) ⊂ σ+(A) as well as (−∞, 0) ∩ σ(A) ⊂ σ−(A), see, e.g., [34].
Consequently, A possesses a spectral function E on R with the possible singularities
0 and ∞. The projection E(�) is then defined for all Borel sets � ⊂ R for which
0 /∈ ∂� and ∞ /∈ ∂�. The points 0 and ∞ are called the critical points of A. If
both ‖E([ε, 1])‖ and ‖E([−1,−ε])‖ are bounded as ε ↓ 0, the point 0 is said to be
a regular critical point of A. In this case, the spectral projection E(�) also exists if
0 ∈ ∂�. A similar statement holds for the point ∞. In the sequel, we agree on calling
a J -non-negative operator regular if its critical points 0 and ∞ both are regular.

As was shown in [6], the perturbation of a regular J -non-negative operator A0 with
a bounded J -self-adjoint operator V leads to a J -self-adjoint operator A = A0 + V
whose non-real spectrum is bounded and for which there exist r± > 0 such that
(r+,∞) is of positive type and (−∞,−r−) is of negative typewith respect to A. Hence,
the perturbed operator exhibits the same good spectral properties as a J -non-negative
operator in the exterior of a compact set. We call such an operator J -non-negative in
a neighborhood of ∞. The following definition makes this more precise. Here, for a
set � ⊂ C we define �∗ := {λ : λ ∈ �}. By C

+ we denote the open upper complex
half-plane. We also set R

+ := (0,∞) and R
− := (−∞, 0).

Definition 2.2 Let K = K ∗ ⊂ C be a compact set, 0 ∈ K , such that C+ \ K is simply
connected. A J -self-adjoint operator A inH is said to be J -non-negative over C \ K
if the following conditions are satisfied:

(i) σ(A) \ R ⊂ K .
(ii) (σ (A) ∩ R

±) \ K ⊂ σ±(A).
(iii) There exist M > 0 and a compact set K ′ ⊃ K such that for λ ∈ C \ (R ∪ K ′) we

have

‖(A − λ)−1‖ ≤ M
(1 + |λ|)2
| Im λ|2 . (2.1)

The relation (2.1) means that the growth of the resolvent of A at ∞ is of order at
most 2. The order is 1 if the fraction in (2.1) can be replaced by | Im λ|−1.

Remark 2.3 Note that the notion of J -non-negativity over C\K does not depend on J
explicitly, but only on the inner product [· , ·]. That is, if (· , ·)0 is an equivalent Hilbert
space scalar product on H such that [· , ·] = (J0·, ·)0 for some (· , ·)0-self-adjoint
involution J0, then an operator A in H is J -non-negative over C \ K in (H, (· , ·)) if
and only if it is J0-non-negative over C \ K in (H, (· , ·)0).

Due to (ii) a J -self-adjoint operator A that is J -non-negative over C \ K possesses
a (local) spectral function E on R \ K with a possible singularity at ∞. We say that A
is regular at ∞ if ∞ is not a singularity of E . By [6, Thm. 2.6 and Prop. 2.3] this is
the case if and only if there exists a uniformly J -positive operator W in H such that
W dom A ⊂ dom A.

In this paper we investigate relatively bounded perturbations of regular J -non-
negative operators. Recall that an operator T : H → K1 is called relatively bounded
with respect to an operator S : H → K2 (or simply S-bounded) if dom S ⊂ dom T
and

‖T f ‖2 ≤ a‖ f ‖2 + b‖S f ‖2, f ∈ dom S, (2.2)
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where a, b ≥ 0. The infimum of all possible b in (2.2) is called the S-bound of T .
It is often convenient to assume that the S-bound of T is less than one. Then, if S
is closed, also S + T is closed (see [28, Thm. IV.1.1]) and if S is self-adjoint and
T symmetric, the sum S + T is self-adjoint. The latter statement is known as the
Kato-Rellich theorem (see, e.g., [28, Thm. V.4.3]).

3 Perturbations of Self-Adjoint Operators

In this section, S always denotes a self-adjoint operator in a Hilbert space H and
T : H → K is an S-bounded operator, whereK is another Hilbert space. We note that
in this situation we have

[T (S − λ)−1]∗ = (S − λ)−1T ∗ ∈ L(K,H), (3.1)

whenever λ ∈ �(S). The following set will play a crucial role in our spectral estimates
in the subsequent sections:

KS(T ) :=
{
λ ∈ �(S) : ‖T (S − λ)−1‖ ≥ 1

}
.

Although its proof is elementary it seems that the following result is new.

Lemma 3.1 LetH andK be Hilbert spaces, let S be a self-adjoint operator inH, and
let T : H → K be such that

‖T f ‖2 ≤ a‖ f ‖2 + b‖S f ‖2, f ∈ dom S ⊂ dom T ,

where a, b ≥ 0, b < 1. Then

KS(T ) ⊂ BS(T ) :=
⋃

t∈σ(S)

B√
a+bt2(t). (3.2)

For λ /∈ BS(T ) we have

‖T (S − λ)−1‖ ≤ sup
t∈σ(S)

√
a + bt2

|λ − t | < 1. (3.3)

Proof Let f ∈ dom S2. Then

‖T f ‖2 ≤ (a f , f ) + (bS2 f , f ) = ‖(a + bS2)1/2 f ‖2.

If λ ∈ �(S), this implies

‖T (S − λ)−1‖ ≤ ‖(a + bS2)1/2(S − λ)−1‖ = sup
t∈σ(S)

φλ(t),
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where φλ(t) :=
√
a+bt2
|λ−t | . Therefore and due to limt→±∞ φλ(t) = √

b < 1, for ‖T (S−
λ)−1‖ < 1 it is sufficient that φλ(t) < 1 for each t ∈ σ(S). But the latter is just
equivalent to λ not being contained in the right-hand side of (3.2). ��
Corollary 3.2 Under the assumptions of Lemma 3.1 we have

KS(T ) ⊂
{
λ ∈ C : (Im λ)2 ≤ a + b

1 − b
(Re λ)2

}
. (3.4)

Proof Weprove that B√
a+bt2(t) is contained in the right-hand side of (3.4) for arbitrary

t ∈ R. For this, let λ = α + iβ ∈ B√
a+bt2(t), i.e., (α − t)2 + β2 < a + bt2, which

implies

β2 < a + 2αt − α2 − (1 − b)t2 ≤ a + b

1 − b
α2.

Indeed, the last inequality follows from ( α√
1−b

− t
√
1 − b)2 ≥ 0. ��

Remark 3.3 Let S and T be as in Lemma 3.1 and λ ∈ C\R. Let us consider the global
behaviour of the function

ϕλ(t) := a + bt2

|t − λ|2 . (3.5)

First of all, we always have ϕλ(±∞) = b. If b = 0, then ϕλ has no local minima but
a global maximum at t = Re λ. Let b > 0, Re λ 
= 0, and set

mλ := b|λ|2 − a

2b · Re λ
. (3.6)

Then we have ϕλ(mλ) = ϕλ(±∞) = b, and ϕλ has a global maximum and a global
minimum at

tmax = mλ + sgn(Re λ)

√
a

b
+ m2

λ and tmin = mλ − sgn(Re λ)

√
a

b
+ m2

λ,

respectively. Let b > 0, Re λ = 0. If (Im λ)2 > a
b , then ϕλ has no local maxima but

a global minimum at zero. If (Im λ)2 < a
b , then ϕλ has no local minima but a global

maximum at zero. In case (Im λ)2 = a
b , we have ϕλ ≡ b.

Corollary 3.4 Let H and K be Hilbert spaces, let S be a self-adjoint operator in H
which is bounded from above by γ ∈ R, and let T : H → K be such that

‖T f ‖2 ≤ a‖ f ‖2 + b‖S f ‖2, f ∈ dom S ⊂ dom T ,

where a ≥ 0, b ∈ (0, 1). Then

KS(T ) ⊂
⋃
t≤γ

B√
a+bt2(t). (3.7)
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Fig. 1 Indication of the
unbounded enclosure for KS(T )

in (3.7) with a = γ = 10 and
b = 0.4. The blue segment
represents the half-line (−∞, γ ]
(Color figure online)

If |λ| > γ +
√

γ 2 + a
b and Re λ ≥ 0, then

‖T (S − λ)−1‖2 ≤ b.

Proof We only have to prove the last claim, which follows from (3.3) if the function

ϕλ from (3.5) does not exceed the value b on (−∞, γ ]. Hence, let |λ| > γ +
√

γ 2 + a
b

and Re λ ≥ 0. Then also |λ|2 > 2γ |λ| + a
b ≥ 2γ (Re λ) + a

b . Assume that Re λ = 0.
Then (Im λ)2 > a

b , and Remark 3.3 implies that ϕλ(t) ≤ b for all t ∈ R. Let Re λ > 0,
Im λ 
= 0. Then |λ|2 > 2γ (Re λ) + a

b is equivalent to mλ > γ with mλ as defined in
(3.6). Note that ϕλ(mλ) = b and that tmax > mλ > γ . Hence ϕλ(t) ≤ b for all t ≤ γ .
For Re λ > 0 and Im λ = 0 the claim follows by continuity of μ �→ T (S − μ)−1

on �(S), which is an immediate consequence of T (S − λ)−1 − T (S − μ)−1 = (λ −
μ)

[
T (S − λ)−1

]
(S − μ)−1. ��

Figure 1 illustrates the situation in Corollary 3.4. A similar result holds for the case
where S is bounded from below. It follows from Corollary 3.4 by considering −S.

Let us briefly consider the situation where K = H and thus T : H → H. If
λ ∈ �(S) and ‖T (S − λ)−1‖ < 1, then

S + T − λ = [
I + T (S − λ)−1] (S − λ)

implies that also λ ∈ �(S + T ). By contraposition, σ(S + T ) ⊂ σ(S) ∪ KS(T ). This
immediately leads to the following corollary.

Corollary 3.5 Let H be a Hilbert space, let S be a self-adjoint operator in H, and let
T : H → H be such that

‖T f ‖2 ≤ a‖ f ‖2 + b‖S f ‖2, f ∈ dom S ⊂ dom T ,
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Fig. 2 The two boundary curves
in C

+ from [10] (green) and
(3.8) (orange) for a = 3 and
b = 0.9 (Color figure online)

where a, b ≥ 0, b < 1. Then

σ(S + T ) ⊂
⋃

t∈σ(S)

B√
a+bt2(t) ⊂

{
λ ∈ C : (Im λ)2 ≤ a + b

1 − b
(Re λ)2

}
. (3.8)

��
Remark 3.6 Corollary 3.5 improves and refines the first two parts of Theorem 2.1 in
[10]. The general spectral inclusion in [10] is

σ(S + T ) ⊂
{
λ ∈ C : (Im λ)2 ≤ a + b(Re λ)2

1 − b

}
.

In the case where a > 0 the spectral enclosure (3.8) is obviously strictly sharper.
However, both boundary curves have the same asymptotes so that the improvement of
the spectral inclusion only takes effect for |Re λ| ‘not too large’ (see Fig. 2 below). In
the second part of [10, Thm. 2.1] it was proved that if (σ−, σ+) is a spectral gap of S

such that σ ′− := σ− +
√
a + bσ 2− < σ+ −

√
a + bσ 2+ =: σ ′+, then {λ : σ ′− < Re λ <

σ ′+} ⊂ �(S + T ). This now follows immediately from the first enclosure in (3.8).

Example 3.7 We consider the massless Dirac operator H0 = −i(σ1∂x + σ2∂y) on
R
2 with Hermitian matrices σ1, σ2 ∈ C

2×2 as in [10, Section 5.1]. Its domain is
given by dom H0 = H1(R2)2 ⊂ L2(R2)2. As in [10] one shows that for a potential
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Fig. 3 The bounding curve γ

(orange) and the spectral
inclusion from [10] (green) in
the case p = 5 and ‖V ‖5 = 1.8
(Color figure online)

V ∈ L p(R2, C
2×2), p > 2, one has

‖V f ‖22 ≤ C
2p
p−2
p b− 2

p−2 ‖ f ‖22 + b‖H0 f ‖22, f ∈ dom H0,

for every b ∈ (0, 1), where Cp = ‖V ‖p

[2π(p−2)]1/p . By Corollary 3.5, we have

σ(H0 + V ) ⊂
⋂

b∈(0,1)

{
λ ∈ C : (Im λ)2 ≤ C

2p
p−2
p b− 2

p−2 + b

1 − b
(Re λ)2

}
.

The envelope of this set in the first quadrant is the curve γ (b) = (x(b), y(b)), b ∈
(0, 1), where

x(b) =
(
Cp

b

) p
p−2 ·

√
2

p − 2
(1 − b2) and y(b) =

(
Cp

b

) 2
p−2 · Cp ·

√
p − 2b2

p − 2
.

The spectrum of H0 + V is thus bounded by this curve. Figure 3 shows the curve γ

and the spectral inclusion from [10].
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4 Spectral Properties of Diagonally Dominant J-Self-Adjoint Operator
Matrices

In this section we consider a Hilbert space H = H+ ⊕ H− (where ⊕ denotes the
orthogonal sum of subspaces) and operator matrices of the form

S =
(

S+ M
−M∗ S−

)
, dom S = dom S+ ⊕ dom S−, (4.1)

where S+ and S− are self-adjoint operators in the Hilbert spacesH+ andH−, respec-
tively, and M : H− → H+ is S−-bounded such that also M∗ is S+-bounded. In
particular, dom S− ⊂ dom M and dom S+ ⊂ dom M∗. Such operator matrices are
called diagonally dominant (cf. [47, Def. 2.2.1]). It is clear that the operator S is
J -symmetric, where J is the involution operator

J =
(
I 0
0 −I

)
,

which induces the indefinite inner product

[(
f+
f−

)
,

(
g+
g−

)]
=

((
I 0
0 −I

)(
f+
f−

)
,

(
g+
g−

))

= ( f+, g+) − ( f−, g−), f±, g± ∈ H±.

The following theorem is essentially a generalization of [19, Thm. 4.3], where the
operator M was assumed to be bounded.

Theorem 4.1 Assume that both the S−-bound of M and the S+-bound of M∗ are less
than one. Then S is J -self-adjoint,

σ(S) \ R ⊂ KS−(M) ∩ KS+(M∗), (4.2)

and

(i) (R ∩ �(S−)) \ KS−(M) is of positive type with respect to S.
(ii) (R ∩ �(S+)) \ KS+(M∗) is of negative type with respect to S.

Moreover, if λ ∈ C \ R, setting

L+(λ) := M∗(S+ − λ)−1 and L−(λ) := M(S− − λ)−1,

we have

‖(S − λ)−1‖ ≤ 1

| Im λ| ·
⎧⎨
⎩

1+‖L−(λ)‖+‖L−(λ)‖2
1−‖L−(λ)‖2 if ‖L−(λ)‖ < 1

1+‖L+(λ)‖+‖L+(λ)‖2
1−‖L+(λ)‖2 if ‖L+(λ)‖ < 1.

(4.3)
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Proof By assumption, there exist constants a±, b± ≥ 0, b± < 1, such that

‖M f−‖2 ≤ a−‖ f−‖2 + b−‖S− f−‖2, f− ∈ dom S− ⊂ dom M

and

‖M∗ f+‖2 ≤ a+‖ f+‖2 + b+‖S+ f+‖2, f+ ∈ dom S+ ⊂ dom M∗.

Define the operators

S0 :=
(
S+ 0
0 S−

)
and T :=

(
0 M

−M∗ 0

)

with dom S0 = dom S+ ⊕ dom S− and dom T = dom M∗ ⊕ dom M . Obviously, S0
is J -self-adjoint and T is J -symmetric. Also, for f = f+ + f− with f± ∈ dom S±
we have

‖JT f ‖2 = ‖M f−‖2 + ‖M∗ f+‖2 ≤ a−‖ f−‖2 + b−‖S− f−‖2
+ a+‖ f+‖2 + b+‖S+ f+‖2

≤ max{a+, a−}‖ f ‖2 + max{b+, b−}‖J S0 f ‖2.

Hence, JT is J S0-bounded with J S0-bound less than one. By the Kato-Rellich theo-
rem, J (S0 + T ) is self-adjoint, which means that S = S0 + T is J -self-adjoint.

For the proof of (4.2) let λ ∈ C\R such that ‖M(S− −λ)−1‖ < 1 (i.e., ‖L−(λ)‖ <

1).We have to show that λ ∈ ρ(S). For this, wemake use of the first Schur complement
of S which, for μ ∈ �(S−), is defined by

S1(μ) = S+ − μ + M(S− − μ)−1M∗, dom S1(μ) = dom S+.

We shall exploit the fact that λ ∈ �(S) follows if S1(λ) is boundedly invertible (see,
e.g., [47, Thm. 2.3.3]). Since ‖M(S− − λ)−1‖ < 1, the operator M(S− − λ)−1M∗ is
S+-bounded with S+-bound b+ < 1. Hence, S1(λ) is closed (see [28, Thm. IV.1.1]).
Now, for μ ∈ �(S−) we have (cf. (3.1))

S1(λ) − S1(μ) = μ − λ + M[(S− − λ)−1 − (S− − μ)−1]M∗

= μ − λ + (λ − μ)M(S− − λ)−1(S− − μ)−1M∗

= (λ − μ)
(
L−(λ)L−(μ)∗ − I

)|dom S+ .

From this it easily follows that S1(μ) is closed for every μ ∈ �(S−). We also have
S1(μ) ⊂ S1(μ)∗. Therefore, for f+ ∈ dom S+, ‖ f+‖ = 1,

Im (S1(λ) f+, f+) = 1

2i

(
(S1(λ) − S1(λ)) f+, f+

)
= (Im λ)

((
L−(λ)L−(λ)∗ − I

)
f+, f+

)
.
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But ‖L−(λ)‖ < 1. Hence, if Im λ > 0 (for Im λ < 0 a similar argument applies),
the numerical range W (S1(λ)) of S1(λ) is contained in the half-plane H := {z :
Im z ≤ −δ}, where δ := (1 − ‖L−(λ)‖2)(Im λ) > 0. Hence, for every μ /∈ H and
f+ ∈ dom S+, ‖ f+‖ = 1,

‖(S1(λ) − μ) f+‖ ≥ |(S1(λ) f+, f+) − μ | ≥ dist(μ, H) = Imμ + δ. (4.4)

This implies that for eachμwith Imμ > −δ the operator S1(λ)−μ is injective and has
closed range. Let us now prove that there exists r > 0 such that ri ∈ �(S1(λ)). Then
it follows (cf. [28, Ch. IV.5.6]) that 0 ∈ �(S1(λ)) and thus λ ∈ �(S). Set μ := λ+ ri .
Then

S1(λ) − ri = S+ − μ + L−(λ)M∗ = (
I + L−(λ)M∗(S+ − μ)−1)(S+ − μ).

By Lemma 3.1 the bounded operator M∗(S+ − μ)−1 has norm less than one for
sufficiently large r . This shows that S1(λ) − ri is boundedly invertible for such r .

Above we have concluded from ‖M(S− − λ)−1‖ < 1 that λ ∈ �(S). If ‖M∗(S+ −
λ)−1‖ < 1, one obtains λ ∈ �(S) by means of analogous arguments, using the second
Schur complement S2(λ) = S− − λ + M∗(S+ − λ)−1M .

Let us now prove the estimate (4.3) for the resolvent of S. For this, let λ ∈ C \ R

such that ‖L−(λ)‖ < 1 as above. By [47, Thm. 2.3.3] we have

(S − λ)−1 =
(

I 0
L−(λ)∗ I

)(
S1(λ)−1 0

0 (S− − λ)−1

)(
I −L−(λ)

0 I

)
. (4.5)

Denote the last factor by L . Then

‖L∗L‖ =
∥∥∥∥
(

I 0
−L−(λ)∗ I

)(
I −L−(λ)

0 I

)∥∥∥∥ =
∥∥∥∥
(

I −L−(λ)

−L−(λ)∗ I + L−(λ)∗L−(λ)

)∥∥∥∥
≤

∥∥∥∥
(
I 0
0 I

)∥∥∥∥ +
∥∥∥∥
(
0 0
0 L−(λ)∗L−(λ)

)∥∥∥∥
+

∥∥∥∥
(

0 L−(λ)

L−(λ)∗ 0

)∥∥∥∥ = 1 + ‖L−(λ)‖2 + ‖L−(λ)‖.

Note that, since (S− − λ)−1 is normal, we have

‖L−(λ)‖ = ‖M(S− − λ)−1‖ = ‖(S− − λ)−1M∗‖ = ‖(S− − λ)−1M∗‖
= ‖M(S− − λ)−1‖ = ‖L−(λ)‖.

Therefore, for the first factor in (4.5) we have the same estimate as for the last. For
the middle factor in (4.5) we obtain from (4.4) with μ = 0 that

‖S1(λ)−1‖ ≤ δ−1 = | Im λ|−1(1 − ‖L−(λ)‖2)−1
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and therefore (4.3) in the case ‖L−(λ)‖ < 1 follows. The estimate for the other case
can be derived similarly by using the second Schur complement.

In the following last step of this proof we shall show that (i) holds true. The proof
of (ii) follows analogous lines. Let λ ∈ R ∩ σ(S) ∩ �(S−) such that τ := ‖M(S− −
λ)−1‖ < 1. We have to show that λ ∈ σ+(S). For this, assume that ( fn) ⊂ dom S is
a sequence with ‖ fn‖ = 1 and (S − λ) fn → 0 as n → ∞. Let fn = f +

n + f −
n with

f ±
n ∈ dom S±. Then

−M∗ f +
n + (S− − λ) f −

n → 0, n → ∞,

inH−. Applying −(S− − λ)−1 gives (cf. (3.1))

[M(S− − λ)−1]∗ f +
n − f −

n → 0, n → ∞.

Set g−
n := [M(S− − λ)−1]∗ f +

n , n ∈ N. Since both (g−
n ) and ( f −

n ) are bounded
sequences, we conclude that εn := ‖g−

n ‖2 − ‖ f −
n ‖2 → 0 as n → ∞ and so

‖ f +
n ‖2 = 1 − ‖ f −

n ‖2 = 1 − ‖g−
n ‖2 + εn ≥ 1 − τ 2‖ f +

n ‖2 + εn,

that is, ‖ f +
n ‖2 ≥ 1

2(1+τ 2)
for n sufficiently large. Therefore, we obtain

[ fn, fn] = ‖ f +
n ‖2 − ‖ f −

n ‖2 = ‖ f +
n ‖2 − ‖g−

n ‖2 + εn ≥ (1 − τ 2)‖ f +
n ‖2

+εn ≥ 1 − τ 2

2(1 + τ 2)
+ εn

and thus, indeed, λ ∈ σ+(S). ��
Although (4.2) inTheorem4.1 is a fairly accurate estimate on the non-real spectrum,

it requires complete knowledge about the norms of M(S− −λ)−1 and M∗(S+ −λ)−1

for all λ ∈ C \ R. However, by making use of Lemma 3.1 we immediately obtain the
following theorem, where the spectral inclusion is expressed in terms of the spectra
of S− and S+ instead of parameter-dependent norms.

Theorem 4.2 Consider the operatormatrix S in (4.1)with self-adjoint diagonal entries
S+ and S− and assume that

‖M f−‖2 ≤ a−‖ f−‖2 + b−‖S− f−‖2, f− ∈ dom S− ⊂ dom M,

and

‖M∗ f+‖2 ≤ a+‖ f+‖2 + b+‖S+ f+‖2, f+ ∈ dom S+ ⊂ dom M∗,

where a±, b± ≥ 0, b± < 1. Then

σ(S) \ R ⊂
⎛
⎝ ⋃

t∈σ(S−)

B√
a−+b−t2

(t)

⎞
⎠ ∩

⎛
⎝ ⋃

t∈σ(S+)

B√
a++b+t2

(t)

⎞
⎠ . (4.6)
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Moreover, setting �±(t) := [t − √
a± + b±t2, t + √

a± + b±t2], we have
(i) R \ ⋃

t∈σ(S−) �−(t) is of positive type with respect to S.
(ii) R \ ⋃

t∈σ(S+) �+(t) is of negative type with respect to S.

Remark 4.3 If M is bounded (i.e., b± = 0 and a± = ‖M‖2), Theorem 4.2 implies
that σ(S) \ R ⊂ B‖M‖(σ (S−)) ∩ B‖M‖(σ (S+)), that R \ B‖M‖(σ (S−)) is of positive
type and R \ B‖M‖(σ (S+)) is of negative type with respect to S. This result was
already obtained in [6, Thm. 3.5] and more general spectral enclosures for σ(S) \ R

have recently been found in [19]. Analogous methods might also lead to more general
enclosures in the relatively bounded case. However, to avoid technical details we shall
not touch this topic here.

For a short discussion of (4.6), assume for simplicity that a := a+ = a− and
b := b+ = b−. Clearly, if, e.g., σ(S−) = σ(S+) = R, the intersection in (4.6) does
not improve the unions. On the other hand, if, e.g., S− is bounded from above by γ−
and S+ is bounded from below by γ+, we obtain from (4.6) that

σ(S) \ R ⊂
⎛
⎝ ⋃

t≤γ−
B√

a+bt2(t)

⎞
⎠ ∩

⎛
⎝ ⋃

t≥γ+
B√

a+bt2(t)

⎞
⎠ .

That is,

σ(S) \ R ⊂
⋃

t∈[γ+,γ−]
B√

a+bt2(t)

if γ+ ≤ γ− and

σ(S) \ R ⊂ B√
a+bγ 2+

(γ+) ∩ B√
a+bγ 2−

(γ−)

if γ+ > γ−. The following corollary treats the case where, in addition, γ− = γ and
γ+ = −γ for some γ ≥ 0, which becomes relevant in the next section.

Corollary 4.4 Consider the operator matrix S in (4.1) with S+ ≥ −γ and S− ≤ γ

with some γ ≥ 0 and assume that

‖M f−‖2 ≤ a‖ f−‖2 + b‖S− f−‖2, f− ∈ dom S− ⊂ dom M,

and

‖M∗ f+‖2 ≤ a‖ f+‖2 + b‖S+ f+‖2, f+ ∈ dom S+ ⊂ dom M∗,

where a, b ≥ 0, b < 1. Then the operator S in (4.1) is J -non-negative over C \ K,
where

K =
⋃

t∈[−γ,γ ]
B√

a+bt2(t), (4.7)

and is regular at ∞.

The following Fig. 4 illustrates the set K in equation (4.7) in a special case.
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Fig. 4 The set K in (4.7) with
a = γ = 10 and b = 0.4. The
blue segment represents the
interval [−γ, γ ] (Color figure
online)

Proof of Corollary 4.4 It follows directly from Theorem 4.2 and the preceding discus-
sion that the non-real spectrum of S is contained in K . Theorem 4.2 also implies that
R

+ \ K = (γ + √
a + bγ 2,∞) is of positive type and R

− \ K = (−∞,−γ −√
a + bγ 2) is of negative type with respect to S.
Let us prove that the growth of the resolvent of S at ∞ is of order at most 2 (cf.

Definition 2.2 (iii)). In fact, we prove that the order is 1. For this, let λ ∈ C\R such that

|λ| > γ +
√

γ 2 + a
b . If Re λ ≥ 0, then byCorollary 3.4we have ‖M(S−−λ)−1‖2 ≤ b.

Thus, from (4.3) in Theorem 4.1 we obtain

‖(S − λ)−1‖ ≤ 3

| Im λ| · (1 − ‖M(S− − λ)−1‖2) ≤ 3

1 − b
· 1

| Im λ| .

A similar reasoning applies to the case where Re λ ≤ 0.
The regularity of S at ∞ follows from [6, Prop. 2.3] (see also [11]) since J is

uniformly J -positive and leaves dom S invariant. ��

5 A Perturbation Result for J-Non-Negative Operators

Let J be a self-adjoint involution in the Hilbert space (H, (· , ·)) inducing the inner
product [· , ·] = (J ·, ·) and let A0 be a J -non-negative operator in H with spectral
function E . Assume that both 0 and ∞ are not singular critical points of A0 (i.e.,
A0 is regular) and 0 /∈ σp(A0). Then both spectral projections E± := E(R±) exist,
E+ + E− = I , and J0 := E+ − E− is a bounded and boundedly invertible J -non-
negative operator which satisfies J 20 = I . In particular, J0 is both self-adjoint and
unitary with respect to the (positive definite) scalar product (· , ·)0, where

( f , g)0 := [J0 f , g], f , g ∈ H.

By ‖ · ‖0 we denote the norm corresponding to (· , ·)0. Since ‖ · ‖0 is equivalent to the
original norm, (H, (· , ·)0) is a Hilbert space. According to [6, Lemma 3.8] we have

J0 = 1

π
· s-lim
n→∞

∫ n

1/n

(
(A0 + i t)−1 + (A0 − i t)−1

)
dt, (5.1)
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where s-lim stands for the strong limit. We set

τ0 := ‖J0‖. (5.2)

Note that from J 20 = I it follows that τ0 ≥ 1. In what follows, by T⍟ we denote the
adjoint of T ∈ L(H) with respect to the scalar product (· , ·)0.
Lemma 5.1 Let T ∈ L(H). Then

‖T ‖0 ≤ τ0‖T ‖.

Moreover for f ∈ H, we have

τ−1
0 ‖ f ‖2 ≤ ‖ f ‖20 ≤ τ0‖ f ‖2

as well as

‖E± f ‖20 ≤ 1 + τ0

2
‖ f ‖2 and ‖E± f ‖2 ≤ 1 + τ0

2
‖ f ‖20.

Proof Since the spectrum of a bounded operator is contained in the closure of its
numerical range, we have

‖T ‖20 = ‖T⍟T ‖0 = sup{|λ| : λ ∈ σ(T⍟T )} ≤ sup{|(T⍟T f , f )| : f ∈ H, ‖ f ‖ = 1}
≤ ‖T⍟‖‖T ‖.

Hence, from T⍟ = J0 JT ∗ J J0 we obtain ‖T⍟‖ ≤ ‖J0‖2‖T ‖ = τ 20 ‖T ‖.
Let now f ∈ H. Then we immediately obtain ‖ f ‖20 = [J0 f , f ] ≤ ‖J0‖‖ f ‖2 =

τ0‖ f ‖2 and, by the first claim,

‖ f ‖2 = [ f , J f ] = (J0 f , J f )0 ≤ ‖J‖0‖ f ‖20 ≤ τ0‖ f ‖20.

Moreover,

‖E± f ‖20 = (E± f , f )0 = 1

2
( f ± J0 f , f )0 = 1

2
[J0 f ± f , f ] = 1

2
(J0 f ± f , J f ).

Hence, ‖E± f ‖20 ≤ 1
2‖I ± J0‖‖ f ‖2 ≤ 1+τ0

2 ‖ f ‖2.
Let P± denote the orthogonal projection onto H± := E±H with respect to the

scalar product (· , ·). By [6, Lemma 3.9] we have P± J |H± = (E± J |H±)−1. Note that
P+ J |H+ is a non-negative self-adjoint operator in (H+, (· , ·)). Hence, we have

min σ(P+ J |H+) = [
max σ(E+ J |H+)

]−1 = ‖E+ J |H+‖−1 ≥ ‖E+‖−1

= ‖ 1
2 (I + J0)‖−1 ≥ 2

1 + τ0
.
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Therefore, for f+ ∈ H+,

‖ f+‖20 = [ f+, f+] = (J f+, f+) = (P+ J f+, f+) ≥ 2

1 + τ0
‖ f+‖2,

and consequently, ‖E+ f ‖2 ≤ 1+τ0
2 ‖E+ f ‖20 ≤ 1+τ0

2 ‖ f ‖20. A similar reasoning applies
to ‖E− f ‖2. ��

We can now state and prove the main theorem in this section.

Theorem 5.2 Let A0 be a regular J -non-negative operator inH with 0 /∈ σp(A0) and
let τ ≥ τ0, where τ0 is as in (5.2). Furthermore, let V be a J -symmetric operator in
H with dom A0 ⊂ dom V such that

(1 + τ)τ‖V f ‖2 ≤ 2a‖ f ‖2 + b‖A0 f ‖2, f ∈ dom A0,

where a, b ≥ 0, b < 1. Then the operator A := A0 + V is J -self-adjoint.
Let ν := inf{(JV f , f ) : f ∈ dom V , ‖ f ‖ = 1} ∈ [−∞,∞). If v ≥ 0, then A is

a J -non-negative operator. Otherwise, the operator A is J -non-negative over

C \
⋃

t∈[−γ,γ ]
B√

a+bt2(t), (5.3)

where2 γ := min{
√

1+τ
2τ a,− 1+τ

2 v}. In both cases the operator A is regular at ∞. If

b < τ−1
2τ , then A is J -non-negative over

C \
⋃

t∈[−γ,γ ]
B√

1+τ
2τ (1−b) (a+bt2)

(t). (5.4)

Remark 5.3 If b < τ−1
2τ , then the bound in (5.4) is better than that in (5.3). If V

is bounded (i.e., b = 0 and a = (1+τ)τ
2 ‖V ‖2), we obtain from the second part of

Theorem 5.2 that A0 + V is J -non-negative over

C \ Br ([−d, d]),

where r = 1+τ
2 ‖V ‖ and d = − 1+τ

2 min σ(JV ), which is the same result as [6, Thm.
3.1].

The following example (cf. [6, Example 3.2]) shows that the assumption on the
regularity of A0 in Theorem 5.2 cannot be dropped.

Example 5.4 Let (K, (·, ·)) be a Hilbert space and let H be an unbounded selfadjoint
operator in K such that σ(H) ⊂ (0,∞).

2 If ν = −∞, we set γ =
√

1+τ
2τ a.
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Consider the following operators inH := K ⊕ K:

J =
(
0 I
I 0

)
, A0 =

(
0 I
H 0

)
, V =

(
0 −I
0 0

)
, and A0 + V =

(
0 0
H 0

)
.

It is easy to see that A0 is a J -non-negative operator and V is a bounded J -selfadjoint
operator.Moreover, as dom(A0+V ) = dom A0 = dom H⊕Kwe conclude ran(A0+
V − λ) 
= H for every λ ∈ C, that is, σ(A0 + V ) = C.

Proof of Theorem 5.2 Without loss of generality we assume that dom V = dom A0.
As τ ≥ τ0 ≥ 1, it follows from the Kato-Rellich theorem that A = A0 + V is
J -self-adjoint. Equivalently, A is J0-self-adjoint in (H, (· , ·)0).

Let ⊕0 denote the (· , ·)0-orthogonal sum of subspaces. Then we haveH = H+ ⊕0
H− anddom A0 = D+⊕0D−,whereH± := (E±H, (· , ·)0) and D± = dom A0∩H±.
Hence, V is defined on both D+ and D− and we can write A0 and V as operator
matrices

A0 =
(
A+ 0
0 A−

)
and V =

(
V+ M
N V−

)
,

where

A± = E±(A|D±), V± = E±(V |D±), M = E+(V |D−), and N = E−(V |D+).

Note that A0 is J0-non-negative in (H, (· , ·)0) which implies that ±A± ≥ 0 in H±.
Moreover, since V is J -symmetric (and hence J0-symmetric in (H, (· , ·)0)), we have
that N ⊂ −M⍟. Hence,

A =
(
A+ + V+ M
−M⍟ A− + V−

)
, dom A = D+ ⊕0 D−.

In particular, A± +V± is a self-adjoint operator inH±. For f± ∈ D±, we obtain from
Lemma 5.1 that

‖V± f±‖20 = ‖E±V f±‖20 ≤ 1+τ0
2 ‖V f±‖2 ≤ a

τ
‖ f±‖2 + b

2τ ‖A± f±‖2
≤ 1+τ

2τ

(
a‖ f±‖20 + b

2‖A± f±‖20
)
.

Hence, V± is A±-bounded (in H±) with bounds 1+τ
2τ a and 1+τ

4τ b. As 1+τ
4τ b < 1,

Corollary 3.5 implies that the operator A− + V− is bounded from above by γ1 :=√
1+τ
2τ a and A+ + V+ is bounded from below by −γ1 (both with respect to (· , ·)0).

Now, for f− ∈ D− we have

‖M f−‖20 + ‖V− f−‖20 = ‖V f−‖20 ≤ τ0‖V f−‖2 ≤ 2
1+τ

(
a‖ f−‖2 + b

2‖A− f−‖2)
≤ a‖ f−‖20 + b

2‖A− f−‖20
≤ a‖ f−‖20 + b · (‖(A− + V−) f−‖20 + ‖V− f−‖20

)
.
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Since b < 1, it follows that

‖M f−‖20 ≤ a‖ f−‖20 + b‖(A− + V−) f−‖20.

Similarly, for f+ ∈ D+ one obtains

‖M⍟ f+‖20 ≤ a‖ f+‖20 + b‖(A+ + V+) f+‖20.

As seen above, A+ + V+ is bounded from below by −γ1 and A− + V− is bounded
from above by γ1. Corollary 4.4 and Remark 2.3 thus imply that the operator A is
J -non-negative over C \ K1, where

K1 =
⋃

t∈[−γ1,γ1]
B√

a+bt2(t).

In particular, �(A) 
= ∅. Hence, if the lower bound v of JV is non-negative, the
operator A is J -non-negative. Assume that v < 0. Then for f+ ∈ D+ we have

((A+ + V+) f+, f+)0 ≥ (V+ f+, f+)0 = (V f+, E+ f+)0 = (V f+, J0 f+)0

= [V f+, f+] = (JV f+, f+) ≥ v‖ f+‖2 ≥ 1+τ
2 v‖ f+‖20,

and similarly ((A− + V−) f−, f−)0 ≤ − 1+τ
2 v‖ f−‖20 for f− ∈ D−. Thus, A is also

J -non-negative over C \ K2, where

K2 =
⋃

t∈[−γ2,γ2]
B√

a+bt2(t)

and γ2 = − 1+τ
2 v. This finishes the proof of the first part of the theorem. Since

A0 is regular at ∞, there exists a uniformly J -positive operator W in H such that
W dom A0 ⊂ dom A0 (see [11]). From dom A = dom A0 it follows that A is regular
at ∞.

For the second part of the theorem, let f− ∈ D−. Then we have

‖V− f−‖2 = ‖E−V f−‖2 ≤ 1+τ
2 ‖V f−‖20 ≤ (1+τ)τ

2 ‖V f−‖2.

Therefore,

1+τ
2 ‖V f−‖2 ≤ a

τ
‖ f−‖2 + b

2τ ‖A− f−‖2
≤ a

τ
‖ f−‖2 + b

τ
‖(A− + V−) f−‖2 + b

τ
‖V− f−‖2

≤
(

(1+τ)a
2τ ‖ f−‖20 + (1+τ)b

2τ ‖(A− + V−) f−‖20
)

+ 1+τ
2 b‖V f−‖2,

which implies

‖M f−‖20 = ‖E+V f−‖20 ≤ 1+τ
2 ‖V f−‖2
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≤ (1+τ)a
2τ(1−b)‖ f−‖20 + (1+τ)b

2τ(1−b)‖(A− + V−) f−‖20.

Similarly, for f+ ∈ D+ we have

‖M⍟ f+‖20 ≤ (1+τ)a
2τ(1−b)‖ f+‖20 + (1+τ)b

2τ(1−b)‖(A+ + V+) f+‖20.

We apply Corollary 4.4 and conclude that the claim holds if only (1+τ)b
2τ(1−b) < 1, which

is equivalent to b < 2τ
1+3τ . But since the first part of the theorem yields better bounds

for τ−1
2τ ≤ b < 2τ

1+3τ (e.g., b = 1
2 ), we require that b < τ−1

2τ ��
Since the A0-bound of an A0-compact operator is always zero (see [15, Corollary

III.7.7]), the next corollary immediately follows from Theorem 5.2.

Corollary 5.5 Let A0 be a regular J -non-negative operator inH with 0 /∈ σp(A0) and
let V be a J -symmetric operator inHwhich is A0-compact. Then the operator A0+V
is J -self-adjoint, J -non-negative over C \ K for some K , and regular at ∞.

6 An Application to Singular Indefinite Sturm-Liouville Operators

In this section we apply the abstract Theorem 5.2 to indefinite Sturm-Liouville oper-
ators arising from differential expressions of the form

L( f )(x) = sgn(x)
( − f ′′(x) + q(x) f (x)

)
, x ∈ R ,

with a real-valued potential q ∈ L p(R), 2 ≤ p ≤ ∞. The maximal domain corre-
sponding to L is given by

Dmax = {
f ∈ L2(R) : f , f ′ ∈ ACloc(R), − f ′′ + q f ∈ L2(R)

}
,

where ACloc(R) stands for the space of functions f : R → C which are locally
absolutely continuous. The maximal operator A associated with L is defined as

A f := L( f ), dom A := Dmax. (6.1)

We also define the corresponding definite Sturm-Liouville operator T by

T f := J A f = − f ′′ + q f , dom T := Dmax,

where J : L2(R) → L2(R) is the operator of multiplication with the function sgn(x).
Note that J = J−1 = J ∗ and hence J is a fundamental symmetry.

If q ∈ L p(R), 2 ≤ p ≤ ∞, it is well known that the operator T is self-adjoint and
bounded from below. In fact, this holds for muchmore general differential expressions
(cf. [7, Thm. 1.1]). Consequently, the operator A = JT is J -self-adjoint and it was
shown in [5, Thm. 4.2] that A is non-negative over C\K for some compact K = K ∗.
In particular, the non-real spectrum of A is contained in K . It is also known (cf.
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[5]) that the non-real spectrum of A consists of isolated eigenvalues which can only
accummulate to [μ,−μ], where μ is the infimum of the essential spectrum of T .
However, the set K could not explicitly be specified in [5].

Recently, in [7] spectral enclosures for the non-real spectrum have been found:
σ(A) \ R ⊂ K ′. However, this does not mean that the operator A is non-negative
over C \ K ′ for K ′ might be much smaller than K . In Theorem 6.2 below, we provide
explicit bounds on the compact set K , thereby improving the bounds from [7] if q ≤ 0.

The following lemma sets the ground for the applicability of Theorem 5.2 to the
problem. In its proof wemake use of the Fourier transform. Here, we use the definition

F f (ω) = f̂ (ω) =
∫
R

f (x)e−2π i xω dx, ω ∈ R,

for Schwartz functions f . The Fourier transform F is extended to a unitary operator
in L2(R) in the usual way. By Hm(R)we denote the Sobolev space of regularity order
m > 0 on R, i.e.,

Hm(R) = {
f ∈ L2(R) : (1 + ω2)m/2 f̂ ∈ L2(R)

}
.

Recall that for f ∈ H1(R) we have f̂ ′(ω) = 2π iω f̂ (ω) and thus, for f ∈ H2(R),
f̂ ′′(ω) = −4π2ω2 f̂ (ω).

Lemma 6.1 Let p ∈ [2,∞]. Then for any g ∈ L p(R) and any f ∈ H2(R) we have
f g ∈ L2(R) and for any r > 0 the following inequality holds:

‖ f g‖2 ≤ (2r)1/p
(

‖ f ‖2 + 1

2
√
3π2 pr2

‖ f ′′‖2
)

‖g‖p.

Proof We first observe that for f ∈ H2(R) we have ω2 f̂ ∈ L2(R) and hence, for
r > 0,

‖ f̂ ‖1 =
∫ r

−r
| f̂ (ω)| dω +

∫
|ω|>r

(4π2ω2)−1 · |4π2ω2 f̂ (ω)| dω

≤ √
2r ‖ f̂ ‖2 +

(
2
∫ ∞

r

dω

16π4ω4

)1/2 (∫
|ω|>r

|4π2ω2 f̂ (ω)|2 dω

)1/2

≤ √
2r ‖ f ‖2 +

√
2

4
√
3π2

r−3/2‖ f ′′‖2 = √
2r Cr ( f ),

(6.2)

where Cr ( f ) := ‖ f ‖2 + 1
4
√
3π2r2

‖ f ′′‖2. Thus, for g ∈ L2(R) we obtain

‖g f ‖2 ≤ ‖ f ‖∞‖g‖2 ≤ ‖ f̂ ‖1‖g‖2,

which yields the desired inequality for p = 2. For p = ∞ the inequality is evident.
Now, let p ∈ (2,∞) and fix f ∈ H2(R). Set T f g := f g. Then T f is bounded both

as an operator from L∞(R) to L2(R) (with norm ‖ f ‖2) and from L2(R) to L2(R)
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(with norm ≤ √
2r Cr ( f )). By the Riesz-Thorin interpolation theorem (see, e.g., [16,

Thm. 6.27]), T f is also bounded as an operator from L2/θ (R) to L2(R), θ ∈ (0, 1),
with norm

‖T f ‖L2/θ (R)→L2(R) ≤ ‖ f ‖1−θ
2

(
(2r)1/2Cr ( f )

)θ = (2r)θ/2‖ f ‖2
(
1 + ‖ f ‖−1

2 ‖ f ′′‖2
4
√
3π2r2

)θ

.

Now, the claim follows from setting p = 2/θ and the simple inequality (1 + c)θ ≤
1 + cθ , which holds for θ ∈ (0, 1) and c > 0. ��
Theorem 6.2 Let q ∈ L p(R), p ∈ [2,∞), and set

sp := 4 − 3
√
2 − 5p + 4

√
2p +

√
44 − 31

√
2 − 88p + 62

√
2p + 57p2 − 40

√
2p2

f (s) :=
√
2

(17 + 12
√
2)s + 4 + 3

√
2

(3 + 2
√
2)s − 1 − √

2
,

as well as

Cp := (1 + √
2)

√
3 − 2

√
2
√

2p
2p−1

(
16·√2(3+2

√
2)2

3π4 p
sp
) 1

4p−2
.

Then the singular indefinite Sturm-Liouville operator A from (6.1) with potential q is
J -non-negative over C \ K, where

K :=
{
λ ∈ C : | Im λ| ≤ Cp f (sp)‖q‖

2p
2p−1
p , |Re λ| ≤ Cp

(√
6 + 4

√
2 + f (sp)

)‖q‖
2p

2p−1
p

}
.

(6.3)

Proof The differential operator A0, defined by

A0 f := − sgn · f ′′, dom A0 := H2(R),

is J -self-adjoint. In fact, A0 is J -non-negative and neither 0 nor∞ is a singular critical
point of A0, see [13]. Also, obviously, 0 /∈ σp(A0).

Step 1. (Calculation of τ0) We have τ0 = ‖J0‖, where (see (5.1))

J0 = 1

π
· s-lim
n→∞

∫ n

1/n

(
(A0 + i t)−1 + (A0 − i t)−1

)
dt,

According to [6, Proof of Thm. 4.2] for f ∈ L2(R) we have

[J0 f , f ] = ‖ f ‖22 + 1

π
· lim
n→∞Re

∫ n

1/n

√
2
t · [φt , f ][φt , f ] dt, (6.4)
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where φt (x) = e(i−sgn(x))x ·√t/2. Setting f1(x) = f (x) and f2(x) := f (−x), we
obtain

[φt , f ] =
∫ ∞

0

(
e−√

t
2 (1−i)x f1(x) − e−√

t
2 (1+i)x f2(x)

)
dx,

and thus

[φt , f ][φt , f ] =
2∑

j,k=1

(−1) j+k
∫ ∞

0

∫ ∞

0
e−z j,k (x,y)

√
t
2 · f j (x) fk(y) dx dy,

where z jk(x, y) = x + y + i((−1) j x + (−1)k y). Taking into account that

lim
n→∞

∫ n

1/n

√
2
t · e−z

√
t/2 dt = 4

z

for any z ∈ C with Re z > 0, an application of Fubini’s theorem and the dominated
convergence theorem yields

lim
n→∞

∫ n

1/n

√
2
t · [φt , f ][φt , f ] dt = 4

2∑
j,k=1

(−1) j+k
∫ ∞

0

∫ ∞

0

f j (x) fk(y)

z j,k(x, y)
dx dy.

Taking real parts, we find that (see (6.4))

[J0 f , f ] = ‖ f ‖22 + 2

π

∞∫
0

∞∫
0

[
f1(x) f1(y) + f2(x) f2(y)

x + y

−2(x + y)

x2 + y2
Re( f1(x) f2(y))

]
dx dy.

For g, h ∈ L2(R+) and a measurable symmetric kernel L : R
+ × R

+ → [0,∞)

satisfying the homogeneity condition L(t x, t y) = t−1L(x, y) formally define the
sesquilinear form

〈g, h〉L :=
∫ ∞

0

∫ ∞

0
L(x, y)g(x)h(y) dx dy.

By [20, Thm. 319], the form 〈· , ·〉L : L2(R+) × L2(R+) → C is well-defined and
bounded if ‖L‖∗ := ∫ ∞

0 L(x, 1)x−1/2 dx < ∞. In this case, its bound is given by
‖L‖∗. Here, we shall consider the kernels

L1(x, y) = 1

x + y
, L2(x, y) = 2(x + y)

x2 + y2
, and L3 = 2L1 + L2.
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For thesewe have the bounds ‖L1‖∗ = π , ‖L2‖∗ = 2
√
2π , and ‖L3‖∗ = 2(1+√

2)π .
Thus,

[J0 f , f ] = ‖ f ‖22 + 2
π
(〈 f1, f1〉L1 + 〈 f2, f2〉L1 − Re 〈 f1, f2〉L2)

≤ ‖ f ‖22 + 2
(‖ f1‖2L2(R+)

+ ‖ f2‖2L2(R+)
+ 2

√
2‖ f1‖L2(R+)‖ f2‖L2(R+)

)
≤ (3 + 2

√
2)‖ f ‖22,

and therefore

τ0 = ‖J J0‖ = sup{(J J0 f , f )2 : ‖ f ‖2 = 1} = sup{[J0 f , f ] : ‖ f ‖2 = 1} ≤ 3 + 2
√
2.

On the other hand, if we choose functions f ∈ L2(R) with f2 = − f1, we obtain

[J0 f , f ] = ‖ f ‖22 + 2

π

∫ ∞

0

∫ ∞

0

(
2

x + y
+ 2(x + y)

x2 + y2

)
f1(x) f1(y) dx dy

= ‖ f ‖22 + 2
π
〈 f1, f1〉L3 .

For ε > 0, choosing a function f1 ∈ L2(R+), f1 ≥ 0, with ‖ f1‖2L2(R+)
= 1

2 (i.e.,

‖ f ‖2 = 1) and 〈 f1, f1〉L3 ≥ 1
2 (‖L3‖∗ − πε) leads to [J0 f , f ] ≥ 3 + 2

√
2 − ε,

showing that

τ0 = 3 + 2
√
2.

Step 2. (Estimation of the exceptional region K ) Let the operator V be defined by

V f := sgn ·q · f , dom V = { f ∈ L2(R) : q f ∈ L2(R)}.

By Lemma 6.1 we have dom A0 ⊂ dom V and, for any r > 0 and f ∈ dom A0,

‖V f ‖2 ≤ (2r)1/p
(

‖ f ‖2 + 1

2
√
3π2 pr2

‖A0 f ‖2
)

‖q‖p.

This implies that for all r , κ > 0 and all f ∈ dom A0 we have

‖V f ‖22 ≤ ‖q‖2p4
1
p (1 + 1

κ
)r

2
p ‖ f ‖22 + (1 + κ)4

1
p ‖q‖2p

12π4 p2
r

2
p −4 ‖A0 f ‖22. (6.5)

In particular, A0 + V is J -self-adjoint by the Kato-Rellich theorem. By [7, Thm. 1.1]
the same is true for the operator A. And since dom(A0 + V ) = H2(R) ⊂ Dmax =
dom A, it follows that A0 + V ⊂ A and thus A0 + V = A.

From (6.5) we get that with τ := τ0 = 3 + 2
√
2 we have

(1 + τ)τ ‖V f ‖22 ≤ 2αr ,κ‖ f ‖22 + βr ,κ‖A0 f ‖22, f ∈ dom A0,



14 Page 26 of 30 F. Philipp

where

αr ,κ = (1+τ)τ
2 ‖q‖2p4

1
p (1 + 1

κ
)r

2
p and βr ,κ = (1 + τ)τ (1 + κ)4

1
p ‖q‖2p

12π4 p2
r

2
p −4

.

We have βr ,κ < τ−1
2τ if and only if r > rκ := (

τ 2(1+τ)(1+κ)41/p

6(τ−1)π4 p2
‖q‖2p)1/(4−2/p).

Therefore, for s > 1 we set rκ,s := (
τ 2(1+τ)(1+κ)41/p

6(τ−1)π4 p2
‖q‖2ps)1/(4−2/p) as well as

aκ,s := αrκ,s ,κ = (1+τ)τ
2

(
8τ 2(1+τ)

3(τ−1)π4 p2

) 1
2p−1 ‖q‖

4p
2p−1
p (1 + 1

κ
)(1 + κ)

1
2p−1 s

1
2p−1 ,

bs := βrκ,s ,κ = τ−1
2τ ·s and γκ,s :=

√
1+τ
2τ aκ,s .

The minimum of (1 + 1
κ
)(1 + κ)

1
2p−1 is attained at κ = 2p − 1 and equals

2p
2p−1 (2p)

1/(2p−1). We choose this κ and obtain as = Mps1/(2p−1), where

Mp := (1+τ)τ
2

(
16τ 2(1+τ)

3(τ−1)π4 p

) 1
2p−1 2p

2p−1‖q‖
4p

2p−1
p = 4τ 2

1+τ
s
− 1

2p−1
p ‖q‖

4p
2p−1
p C2

p,

as well as γs =
√

1+τ
2τ as . Now, the second part of Theorem 5.2 implies that for each

s > 1 the operator A = A0 + V is J -non-negative over C \ Ks , where

Ks :=
⋃

t∈[−γs ,γs ]
B√

1+τ
2τ (1−bs )

(as+bs t2)
(t).

For any λ ∈ Ks we have

| Im λ|2 ≤ 1+τ
2τ(1−bs )

(as + bsγ
2
s ) = 1+τ

2τ− τ−1
s

(
1 + τ 2−1

4τ 2s

)
as = 1+τ

4τ 2
Mp f (s)

2s
1

2p−1 .

The minimum of s �→ f (s)2s1/(2p−1) on (1,∞) is attained at sp. Choosing s = sp,
we find that A is J -non-negative over C \ K ′, where K ′ := Ksp , and we have just
proved the claimed bound on | Im λ| for λ ∈ K ′. Furthermore, for λ ∈ K ′ we have

|Re λ| ≤ γsp +
√

(1+τ)(asp+bsp γ 2
sp )

2τ(1−bsp )
=

√
1+τ
2τ

√
4τ 2
1+τ

‖q‖
4p

2p−1
p C2

p + Cp f (sp)‖q‖
2p

2p−1
p

= Cp
(√

2τ + f (sp)
)‖q‖

2p
2p−1
p ,

and the theorem is proved. ��

Remark 6.3 (a) The bound on the real part in (6.3) can be further slightly improved by

minimizing the expression γs +
√

1+τ
2τ(1−bs )

(as + bsγ 2
s ), where τ = 3 + 2

√
2.
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(b) In [6] it was proved that τ0 ≤ 9. In the proof of Theorem 6.2 we have now
shown that τ0 = 3 + 2

√
2.

(c) Estimates on the non-real spectrum of singular indefinite Sturm-Liouville oper-
ators have been obtained in [7] for various weights and potentials. In the case of the
signum function as weight and a negative potential q ∈ L p(R) the enclosure in [7,
Cor. 2.7 (ii)] for the non-real eigenvalues λ of A reads as follows:

| Im λ| ≤ 2
2p+1
2p−1 · 3 · √3 ‖q‖

2p
2p−1
p and |λ| ≤

(
2

2p+1
2p−1 · 3 · √

3 + 2
3−2p
2p−1 · 9

)
‖q‖

2p
2p−1
p .

(6.6)
A direct comparison shows that the enclosure for the non-real spectrum of A in The-
orem 6.2 is strictly better in the sense that the region K in (6.3) is properly contained
in that described by (6.6) (see Fig. 5). This is remarkable inasmuch as our bound
(6.3) was mainly obtained by applying the abstract perturbation result Theorem 5.2,
whereas in [7] the authors work directly with the differential expressions. It is also
noteworthy that the estimates in [7, Cor. 2.7 (ii)] are of the same form C‖q‖2p/(2p−1)

p
as in (6.3).

(d) Recently, the bound on the imaginary part of the eigenvalues of A could
be further significantly improved in [9] by using a Birman-Schwinger type prin-
ciple. However, the bounding region in [9] is not compact. To be precise, it was

shown that each eigenvalue λ of A in (6.1) satisfies 2
3
2p −1|λ| 1p | Im λ|1− 1

p ≤ (|λ| +
|Re λ|) 1

2p ‖q‖p, which implies

| Im λ| ≤ 2

(
3
√
3

16

) 1
2p−1

‖q‖
2p

2p−1
p .
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