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Abstract: A circularly polarized (CP) beam propagating in a rotated anisotropic material
acquires an additional phase delay proportional to the local rotation angle. This phase delay is a
particular kind of geometric phase, the Pancharatnam-Berry phase (PBP), stemming from the
path of the beam polarization on the Poincaré sphere. A transverse gradient in the geometric
phase can thus be imparted by inhomogeneous rotation of the material, with no transverse
gradient in the dynamic phase. A waveguide based upon this principle can be induced when the
gradient accumulates in propagation, the latter requiring a longitudinal rotation in the optic axis
synchronized with the natural rotation of the light polarization. Here, we evaluate numerically
and theoretically the robustness of PBP-based waveguides, in the presence of a mismatch between
the birefringence length and the external modulation. We find that the mismatch affects mainly
the polarization of the quasi-mode, while the confinement is only slightly perturbed.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Dielectric optical waveguides confine light in a certain region of space via a gradient in the
refractive index - of infinite magnitude in the case of step-index waveguides- capable of tilting
inwards all the optical rays included in a given cone, the latter determining the numerical aperture
of the waveguide [1]. In wave terms, an exponential decay of the field in the transverse plane needs
to be ensured, using total internal reflection as in the previous example, or other optical effects
such as stop band-gap in periodic structures [2]. In all of these cases, a transverse modulation of
the dynamic phase of the field is required, and it is provided by a transverse gradient of some sort
in the refractive index. In 2014 a new way to trap light using a gauge field [3], the gauge field
being some kind of synthetic pseudo-magnetic field acting on the photons [4], was theoretically
proposed. The core idea is to maintain the local light dispersion (i.e., the refractive index), but to
shift it in the transformed domain by some kind of geometrical transformation. Experimental
demonstrations were provided in fiber loops [5,6], in the discrete case of waveguide arrays [7],
in photonic crystals [8], and in the case of twisted anisotropic material [9,10]. In the last case,
the gauge field can be identified with the local rotation of the dielectric tensor, providing an
additional phase contribution called the Pancharatnam-Berry Phase (PBP) [10,11]. The PBP
is a geometric phase [12–14] originating from the motion of the optical polarization on the
Poincaré sphere, as first demonstrated by Pancharatnam [15]. In a longitudinally (i.e., along the
propagation direction) homogeneous material, the PBP is periodic: it reaches a maximum equal
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to twice the rotation angle at half-wave plate (HWP) distance [16,17], but then goes back to zero
in the following HWP length [10]. The lack of accumulation of PBP allows optical waveguiding
only through the Kapitza effect [18]. A much stronger waveguiding can instead be achieved by
longitudinally modulating the dielectric tensor along the propagation direction in a perfectly
synchronized way with the polarization rotation due to the birefringence [9], with a mechanism
similar to quasi-phase matching in nonlinear optics [19]. This process has been experimentally
demonstrated in the linear regime with segmented waveguides [9] and in the nonlinear regime
with a continuously rotated liquid crystal [20]. An open and fundamental question is how much
the optical waveguiding is robust when there is a mismatch between the birefringence length and
the external modulation. For continuous wave or narrow bandwidth pulses, the point to assess is
how much the confinement depends on the wavelength. Here we address these problems using a
mix of theoretical and numerical simulations based upon an FDTD solver. We show how the
PBP waveguides are robust to changes in the period, the biggest change being in the transverse
profile and in the polarization structure.

2. Theory

2.1. Resonant case

We consider an uniaxial anisotropic material where the refractive indices are n⊥ and n∥ for
electric fields polarized normal and parallel to the optic axis, respectively. We also define the
optical birefringence ∆n = n∥ − n⊥. We introduce the unit vector n̂ parallel in each point to the
optic axis. The paraxial beams considered here are monochromatic with vacuum wave number
k0 = 2π/λ and propagate along z. To avoid any gradient in the extraordinary refractive index, the
optic axis is taken normal to the propagation direction (thus n̂ · ẑ = 0). The twisting angle θ is
the angle between the optic axis and ŷ, in turn providing n̂ = cos θŷ − sin θx̂ [see Fig. 1(a) for a
graphical definition]. For homogeneous θ and dubbing δ = k0∆nz the phase retardation, the PBP
∆φgeo for circular polarizations (CPs) and small enough θ is approximately

∆φgeo(δ) ≈ ±2θ sin2
(︃
δ

2

)︃
(1)

with respect to the untwisted case (θ = 0) [18,21]. The ± sign shows that positive or negative
phase delays depend on the handedness of the launched CP. As discussed in the introduction,
the PBP periodically vanishes, see the blue dashed line in Fig. 1(b). A net accumulation in
propagation requires a switch in the sign of θ at exactly half of each birefringence length,
Λbir = λ/∆n, see the red solid line in Fig. 1. This can be easily understood first remembering that,
at z = Λbir/2, the handedness of the CP is inverted; secondly, from Eq. (1) a change in the sign of
θ switches which of the CP undergoes a positive or negative phase accumulation. Summarizing,
longitudinal modulations of θ synchronized with the natural oscillation of the polarization yield
a monotonic behavior for ∆φgeo, in full analogy with QPM (Quasi-Phase Matching) in nonlinear
optics.

We are interested in the case of a more generic periodic function f (z) = f (z + Λbir) featuring a
vanishing average value, and a maximum and minimum equal to 1 and −1, respectively. The
twisting angle can thus be written as θ(x, z) = f (z)U(x), where the dependence on y is neglected
given we are interested in the simplest (1+1)D case. An example of optic axis rotation along x
leading to waveguiding is provided in Fig. 1(c). After defining n = (n∥ + n⊥)/2 as the average
refractive index, the propagation of the slow envelope ACP of CP light can be modelled via a
scalar Schrödinger equation [9]

i
∂ACP

∂z
= −

1
2nk0

∂2ACP

∂x2 ± V(x)ACP, (2)
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Fig. 1. Sketch of the geometry. (a) Direction of the optic axis -represented by the violet
ellipsoid- on the transverse plane xy. (b) Geometric PBP versus the retardation δ in the
case of a homogeneous material (blue dashed line) and when the optic axis is rotated at
each half-wave plate distance (red solid line). (c) Gaussian distribution along the transverse
direction of Γ(x), yielding a focusing effect in the case of half-wave plate, and a PBP-based
waveguide when the optic axis is periodically rotated along the propagation direction with a
period equal to the birefringence length Λbir.

where we introduced the photonic potential V(x) = 2πf1U(x)/Λbir with f1 being the fundamental
harmonic of the periodic function f (z), and where the ± depends on the handedness of the CP, see
Eq. (1). Equation (2) shows how the gradient in the twisting angle behaves like a potential acting
on the optical beam, thus capable of guiding the electromagnetic radiation for properly tailored
rotations. Equation (2) remains valid only in the case of perfect phase matching, Λ = Λbir. Here
we are interested in the behavior of light when the latter relation is broken. In the next subsection
we will generalize the potential V(x) provided by Eq. (2) by investigating how plane waves
propagate in the presence of a longitudinal modulation when the coupling between adjacent
transverse positions is neglected.

2.2. Guiding in the presence of phase mismatch

On physical grounds, unidirectional light propagation of the electric field E = A exp (ik0nz) along
z in the paraxial limit can be expressed as the following first-order diffusion problem

i
∂A
∂z
= L̂diff · A + L̂inho · A, (3)

where L̂diff and L̂inho account for diffraction and for the point-dependent response of the
inhomogeneous material, respectively. Specialized to waveguides, L̂diff induces the beam
broadening due to the spatial dispersion in a homogeneous material. The second operator L̂inho
provides the point-dependent phase modulation capable of counter-acting the beam spreading. In
the case of twisted anisotropic materials, in first approximation we have L̂diff ≈ − (2nk0)

−1 ∂2
x ,

where k0 = 2π/λ is the vacuum wavenumber. The action of the operator L̂inho can be understood
in the plane wave limit, i.e., setting L̂diff = 0. In this limit, we can model the optical propagation
using the Jones formalism [22]. By modelling the z-dependent material as a stack of infinitesimally
thin layers of anisotropic material encompassing different rotation on the transverse plane xy, the
transmission of a slab of thickness z in the circular basis reads

Jtotal(z) = eink0z lim
N→∞

N∏︂
m=1

exp
{︃
−i

k0∆n [ŝ(θm) · σ]

2
z
N

}︃
, (4)

where θm is the twisting angle in each layer, ŝ(θ) = cos(2θ)x̂ − sin(2θ)ŷ, σ is the Pauli vector and
∆n = n∥ − n⊥ is the medium birefringence. Thus, A(z) = Jtotal(z) · A(z = 0). We are interested in
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a sinusoidal profile of period Λ for the twisting angle θ, θ(z) = θM sin (2πz/Λ). In the adiabatic
limit (small dθ/dz on a wavelength scale), the optical propagation can be normalized defining the
phase retardation δ = k0∆nz. We thus have θ(δ) = θM sin (δ/Γ), where Γ(λ) = ∆nΛ/λ = Λ/Λbir.
The synchronization parameter Γ determines how much the propagation of plane waves is
modified in comparison with the perfectly synchronized case (Γ = 1), either due to variations on
the wavelength λ or on the modulation period Λ.

In the case of waveguiding, the optical field will be periodic along z. The idea is to write
down the transmission function of the twisted material by finding numerically the eigenfunctions
and eigenvalues of Eq. (4), in turn providing the local polarization and phase delay, respectively.
The photonic potential acting in Eq. (2) will then be determined by the transverse distribution
of the phase delay, if Λ is much shorter than the Rayleigh distance of the mode. The period of
the optical field is not known a priori. Full numerical simulations based upon an FDTD code
(see next section) actually show that the period is given by the external modulation, thus Λ, for a
wide region around the perfect synchronization case. We will thus consider in our calculation
a periodicity of the optical field equal to Λ. Polarization evolution on the Poincaré sphere for
one of the eigenmodes family (due to the symmetry, the Stokes parameters of the other family
are simply of opposite sign) are shown in Fig. 2(a-c), for different values of Γ and θM [23,24].
For small θM [Fig. 2(a)] polarization paths are very close to circles featuring S1 constant. With
respect to Γ, the circles move from a small circle nearby (−1, 0, 0) for Γ = 0.5 to a small circle
nearby (1, 0, 0) for Γ = 1.5, becoming very similar to a meridian for Γ = 1. S1 scales almost
linearly for intermediate values of Γ. As θM gets larger [Fig. 2(b-c)], the polarization paths differs
more and more from simple circles, now tracing a full 3D line on the Poincaré sphere. Beyond
the full 3D trajectories, the closed path are not exactly centered around S2 = 0, larger the θM
value the larger the offset is. Remarkably, the slope of the trajectory is almost continuous (S2 and
S3 are almost perfectly matching, whereas a discrepancy pseudo-periodic with Γ is occurring on
S1) at the end of the loop (transition from blue to red points in the paths), the latter demonstrating
that our assumption on the period of the field works well in this range of values.

To provide a more quantitative representation of the results, the behavior of the Stokes
parameters versus z in the interval Γ ∈ [0.4, 2] is provided in Fig. 2(d-f) for θM = 15◦ (the same
plots for θM = 5◦ and θM = 10◦ are provided in the Supplement 1). S1, which vanishes for θM = 0,
oscillates with a period Λbir/2. In the region near Γ = 1, S2 and S3 are slightly perturbed with
respect to the case θM = 0. For Γ larger than 1.5, an additional peak around the center appears:
such a peak grows up as Γ increases, until a quasi-sinusoidal profile of period Λbir/2 at Γ = 2 is
achieved. For Γ<1 the period stays constant, but at Γ ≈ 0.75 the oscillations are strongly damped
out, yielding an almost uniform distribution along z. On the other side, S1 follows an almost
linear behavior with Γ, with small oscillations superposed to the average value which behave
similarly to S2 and S3 in terms of periodicity (i.e., doubling of the period for Γ>1, dampening of
the oscillations for Γ<1). The overall behavior versus Γ is summarized in Fig. 2(g-i), where we
plotted the average Stokes parameters Si =

∫ Λ
0 Si(z)dz versus the synchronization parameter Γ. In

the phase-matched case (Γ = 1), S2 and S3 are vanishing, whereas S1 takes a small value, directly
proportional to θM . The condition Γ ≠ 1 affects S1 the most, see Fig. 2(d). The slope of S1 around
Γ = 1 is very abrupt, with S1 changing from −1 to 1. The curve tends to be a step function for
θM → 0, whereas it becomes smoother as θM increases. For Γ>1.5 a further drop towards zero is
observed. In a similar way, the other two Stokes parameters develop a non-null average when
Γ ≠ 1. but encompassing more complex and non-monotonic trends. The phase delay plotted in
Fig. 2(j), in turn being the quantity which determines the photonic potential and thus the profile
of the waveguides, has its maximum located in Γ = 1, the maximum phase delay being given by
πθM for small enough θM . It is important to stress that in the general case the transverse gradient
in the phase delay is given by a mixture of dynamic and geometric phase [25] given that there is
no more balance between positive and negative angles, as in the case for Γ = 1. Summarizing,

https://doi.org/10.6084/m9.figshare.24532930
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Fig. 2. Plane-wave model considering the optical propagation periodic, with a period Λ
fixed by the external modulation. Polarization evolution mapped on the Poincaré sphere
for (a) θM = 5◦, (b) θM = 10◦, and (c) θM = 15◦. The five circuits plotted in each sphere
correspond to Γ = 0.6, 0.8, 1, 1.2, 1.4, from right to left. The evolution of S1 (d), S2 (e) and
S3 (f) for θM = 15◦ plotted as a heatmap versus the normalized propagation z/Λ (horizontal
axis) and the parameter Γ (vertical axis). Averaged Stokes parameters (g-i) and phase delay
(j) versus the parameter Γ for one set of eigenfunctions (solid lines). Each curve corresponds
to a different angle θM , as reported in degrees by the legend in panel (h). The black dashed
line in (g-i) corresponds to the values for θM = 15◦ for the other set of eigenfunctions. The
dashed lines in panel (j) is the phase delay perceived by the other set of eigenfunctions.

the plane-wave model provides some insights on how the polarization of the quasi-mode should
behave, and how it differs from the cycle RCP-diagonal-LCP-anti-diagonal when the period is no
more synchronized with the birefringence length. The most relevant result is that a constant S1,
proportional to Γ − 1 in an interval near the resonance, should appear in the localized mode. At
the next order of relevance, the peaks in the oscillations of S2 and S3 should be modified as Γ
diverges from 1: for Γ<1, S2 and S3 tends to become uniformly distributed along z; for Γ>1, a
second peak arises, with the profile then continuously evolving towards a halving of the period,
achieved when Γ = 2.

To build a waveguide, we will consider the case where lim |x |→∞ U(x) = 0, i.e., the cladding
of the waveguide is made of untwisted material. To fix the ideas, we set U(x) = θ0g(x), where
the maximum of g(x) is equal to 1. Thus, θ0 is the maximum rotation angle with respect
to the cladding regions. We also consider a wavelength λ of 1 µm, and set n⊥ = 1.5 and
∆n = 0.2; these parameters are kept unvaried in the remainder of the article. Hereafter we take
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g(x) = exp
(︁
−x2/w2

D
)︁

with wD = 5µm. The behavior of V(x) versus x and the parameter Γ is
plotted in Fig. 3(a) for θ0 = 15◦, where the potential is reported in units of equivalent refractive
index changes δn by using the relationship V ≈ −δnk0. Figure 3(b) shows the corresponding
fundamental mode, which is subject to minimal changes for variations in Γ up to ±30%. The
white dashed lines delimit the region where a fundamental mode can be calculated using our
theoretical approach. Figure 3(c) finally shows the effective index neff [mode written in the
standard form ACP(x, z) = ψ(x) exp (ik0neffz)] versus the parameter Γ for three different values of
the maximum rotation angle θ0. Thus, the plane-wave predicts quite surprisingly the existence of
quasi-modes far away (variations almost up to ±50% in Γ) from the synchronization condition.
The size of the fundamental quasi-mode does not even change significantly for variations in Γ of
around ±20%, thus showing a seemingly counter-intuitive robustness for the optical confinement.
Remarkably, the model employed in this section is a simplification with respect to the actual
optical propagation, where diffraction and polarization rotation occurs together. In the next
section we thus resort to full numerical simulations of the Maxwell’s equations to verify the
validity range of the model we developed in this section.

Fig. 3. (a) Photonic potential and (b) the corresponding fundamental mode versus x and
phase-matching parameter Γ for θ0 = 15◦. The white dashed lines delimit the range of Γ
where the potential is monotonic, thus always supporting at least one guided mode. (c)
Effective index neff of the fundamental mode versus Γ for three different values of θ0 as
indicated in degrees by the legend.

3. FDTD numerical simulations

We performed the parametric study using the open-source software MEEP [26] implementing a
finite-difference time-domain (FDTD) algorithm to solve the Maxwell’s equations. The (1+1)D
approximation permits to perform a parametric investigation versus the period Λ in a reasonable
machine time. We started by investigating the propagation of the mode computed from Eq. (2),
i.e., a CP mode with a transverse shape dictated by the potential for Γ = 1 [see Eq. (2)]. Results
are plotted in Fig. 4. The period Λ of the longitudinal modulation is varied such that Γ ranges
between 0.3 and 5. Additionally, as the waveguiding mechanism is polarization dependent, both
circular polarizations are used as input conditions. The RCP quasi-mode is guided without
appreciable losses when propagated in a phase-matched PBP waveguide (Γ = 1). For 0.3<Γ<2,
light is confined after an initial radiation loss due to the mode mismatch. The mode mismatch
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includes also the polarization of the beam: Fig. 4(f-j) show that, for Γ away from 1, a significant
portion of light is trapped, even when the input is LCP. This is in agreement with Fig. 2(d), where
it is shown that for Γ ≠ 1 the average Stokes parameter S1 changes as the period moves away from
the synchronized case. Surprisingly, the numerical simulations predict that optical confinement
takes place over an interval of Γ even more extended than the range predicted by the theoretical
description presented in Sec. 2. For short periods, the plane wave model developed above fails
due to the kick-in of non-adiabatic effects. In the opposite limit of long periods (Γ ≫ 1), the
optical field is no more periodic withΛ, as visible in Fig. 2. ForΛ ≥ 2Λbir (corresponding figures
are provided in the Supplement 1) the emergence of a peak around x = 0 over the diffracting
background demonstrates a weak concentration of light. Some kind of focusing is thus occurring,
but the numerical resources (the optical propagation is computed up to z = 245 µm) does not
allow to establish the existence of a quasi-mode, which nonetheless should be very wide when
compared with the transverse size of the numerical grid.

Fig. 4. Intensity distribution of light propagating in a PBP waveguide with ∆n = 0.2, wD =
5 µm and θ0 = 15◦ when the quasi-mode computed for Γ = 1 is launched at the input. Each
column corresponds to a different period for the longitudinal modulation: Γ is 0.3 (a,f), 0.6
(b,g), 1 (c,h), 1.3 (d,i), 2 (e,j). Top (a-e) and bottom (f-j) rows correspond to RCP and LCP
inputs, respectively.

To gain more insights on the waveguide properties, we extract from the numerical simulations
the spatial distribution of the Stokes parameters S1, S2 and S3, the latter determining the light
polarization in each point. In Fig. 5 the behavior of three Stokes parameters is plotted over a span
of 20 µm, taken far enough from the input interface (z = 200 µm) to ensure that the stationary
regime is achieved. The images of the field in proximity of the interface can be found in the
Supplement 1. For Γ = 1 the polarization periodically flips from RCP to LCP and back to RCP,
passing through the diagonal and anti-diagonal states (|S2 | = 1) [9,27]. Unlike the ideal case
of alternate and longitudinally-homogeneous half-wave plates (i.e., when f (z) is a rectangular

https://doi.org/10.6084/m9.figshare.24532930
https://doi.org/10.6084/m9.figshare.24532930
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function), the component S1 is not vanishing, being in particular subject to a small-amplitude
oscillation around a negative value [27], in agreement with the plane wave model (Fig. 2). When
Γ ≠ 1, the polarization of the guided waves agrees well with the predictions of Fig. 2(a): S1
increases linearly with Γ, being at the same time subject to small oscillations with a period
comparable with the external modulation. The behavior of S2 and S3 is more complicated. First,
the periodicity actually depends on the transverse position x: the field in the core region shows a
period equal to the external modulation Γ, but on the edges the period is longer, and close to the
birefringence lengthΛbir. Up to Γ<1.3 the Stokes parameters are almost flat versus x in the core of
the waveguide, whereas an appreciable curvature along the transverse direction x is observed for
longer modulations, alongside with a strong deformation with respect to the sinusoidal oscillation.
In agreement with the plane-wave model [see Fig. 2(e-f)], the FDTD simulations also shows
a doubling of the periodicity when Γ = 2. For Γ approaching 2, the longitudinal profile of the
oscillation is quantitatively different from what plotted in Fig. 2(e-f), specifically being smoother
along the transverse direction x. As a matter of fact, the longitudinal profile in the plane-wave
limit strongly depends on θM [see Fig. 2(a-c)], in particular encompassing large deformations
-including a longitudinal shift of the peaks- with respect to a pure sinusoidal oscillation. Such a
discrepancy can be understood as a consequence of the point-wise interplay between diffraction
and the polarization motion on the Poincaré sphere, modelled as a gauge transformation in Ref.
[27]. In more detail, the transverse diffusion associated with the diffraction operator tends to
smooth out the polarization variations of the quasi-mode in the core region (see Fig. 5 for Γ up to
1.3).

Fig. 5. Cross-section (top row) of the intensity distribution in the stationary regime.
Distribution of the Stokes parameters S1 (second row), S2 (third row) and S3 (bottom row)
plotted in a portion of the xz plane far enough from the interface to ensure a stationary
behavior. Each column corresponds to a different period for the external modulation, i.e., a
different Γ, the value being reported at the top. The solid black line shows the longitudinal
modulation of the optic axis.

A quantitative comparison between FDTD simulations with a RCP input and the corresponding
theoretical results [plotted in Fig. 2(d-j)] is shown in Fig. 6. We compare both the average
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values (Si) and the maximum values of the three Stokes parameter once a stationary regime is
achieved, see Fig. 6(a). The agreement between the two approaches is quite good for all the three
parameters, especially when Γ does not significantly differ from unity. The second comparison is
carried out in Fig. 6(b) with respect to the width w of the guided modes (red lines, defined as
2
√︂∫

I(x)x2dx/
∫

I(x)dx; I(x) is the intensity distribution) and the amount of guided power in the
twisted region (blue lines, integral of the intensity in the interval [−10, 10]µm). The variations
versus Γ of the quasi-mode size computed via the FDTD code (input unvaried with Γ and given
by the mode for Γ = 1) and the theoretical results stemming from Fig. 3(b) are in good agreement
for 0.8 ≤ Γ ≤ 1.5. For the same input field, the coupled power is sharply peaked around the
condition Γ = 1 itself, reaching a value of around 70% at the borders of the region where theory
ensures the existence of at least one guided mode.

Fig. 6. (a) Comparison of the Stokes parameters S1 (top row), S2 (middle row) and S3
(bottom row) between theory (black dashed line) and FDTD simulations (connected colored
circles and triangles) versus Γ when the input is RCP. Left and right column correspond to
the average and the maximum value computed over the interval z ∈ [200, 240]µm in the mid
section x = 0. (b) Ratio of the guided power (left axis, blue color) and beam radius (right
axis, red color) versus Γ. Blue and red solid lines with circles are the coupling efficiency
to the waveguide core and the field radius at the output when the input mode is circularly
polarized with intensity profile calculated in the case Γ = 1. Blue dashed line with diamonds
is the coupling efficiency computed via the FDTD when the mode is given by the data plotted
in Fig. 3(b) but circular polarization. The dashed line with red diamonds is the mode width
calculated directly from Fig. 3(b). The blue dash-dotted line with triangles is finally the
coupling efficiency derived from FDTD simulations when also the polarization is varied
according to the theoretical results plotted in Fig. 2(d-i).

In a second step we computed the guided power once a Gaussian beam of width identical to
the theoretical predictions from Fig. 3(b) is launched into the structured material, but keeping the
input polarization right circular. The main results for this excitation are depicted by the blue
line with diamonds in Fig. 6(b). The coupling efficiency is almost unvaried: the waveguide at
Γ = 1 is strongly guiding (up to 5 modes), and variations in the input beam width yields larger
breathing period, but this does not affect significantly the coupled power (see Supplement 1).
This behavior agrees with the strong spin-orbit interaction responsible for the optical confinement
in twisted anisotropic materials: the correct polarization and the correct intensity profiles need to
be launched at the entrance facet of the waveguide to achieve the best coupling efficiency.

To further test the spin-orbit nature of the light guiding, we finally simulated the optical
propagation when the input is matched with the theory both in intensity profile (noteworthy, we
are slightly simplifying the problem by taking a Gaussian profile of width equal to the theoretical

https://doi.org/10.6084/m9.figshare.24532930
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mode) and in polarization. We set the input polarization to be equal to the output one that is
obtained directly from the FDTD simulations plotted in Fig. 4. The aim is to test the amount of
diffraction losses for the quasi-modes emerging from the numerical simulations; indeed, from
Fig. 4 we evince that light undergoes trapping -i.e., a negligible amount of diffraction losses
per unit length- after a certain distance, even for Γ away from unity. The input polarization is
supposed to be homogeneous along the cross-section, and equal to the value taken in x = 0. As
certified by the dashed-dotted blue lines with triangles in Fig. 6(b), the coupling is improved
for each value of Γ ≠ 1, with a very improvement for Γ away from the synchronized case. The
coupling efficiency never goes below 90%. When the plane wave solutions from Fig. 2 are used
as input conditions, small differences in the polarization are observed: the coupling efficiency is
slightly worse (around 10% less) than in the previous case (see Supplement 1), but the beam
undergoes a very similar breathing dynamics and the polarization is identical, once the stationary
regime is achieved. The possible existence of a quasi-mode subject to lower oscillations remains
an open question.

Summarizing our results, we found out that polarization needs to be adjusted in order to
achieve a good input coupling away from the resonant case Γ = 1. Whereas in the monochromatic
or quasi-monochromatic regime this implies the introduction of a set of waveplates to adjust
the Stokes parameters of the incident field, in the case of ultrashort pulses a strong distortion
in the beam spectrum is induced due to the resonant-like response plotted in Fig. 6(b). This
point is further stressed out in Fig. 7 where the optical evolution is shown in the two cases
discussed above: i) a purely RCP beam with intensity distribution computed for Γ = 1; ii) an
input polarization sharing the same handedness of case (i) but determined by the plane wave
model, plus a transverse intensity distributions as provided by Fig. 3. A comparison of the beam
cross-sections at z = 245 µm in the two cases is provided in Fig. 7(a-f) for six different values
of Γ covering all the validity interval of the theory. The coupling is much improved using the

Fig. 7. (a-f) Intensity cross-sections versus x for six different values of Γ (labelled at the top
of each pane) at z = 245 µm. In all the panels the solid lines correspond to FDTD simulations
when the input intensity profile is computed at Γ = 1 and polarization is right circular;
dashed lines is instead the case when the input intensity profile is taken from Fig. 3(b) and
the polarization is chosen according to the theoretical predictions. Insets: the corresponding
intensity profile on the plane xz when the input polarization is modified according to the
theoretical predictions.

https://doi.org/10.6084/m9.figshare.24532930
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theoretical polarization as input, but the shape of the mode itself does not drastically change.
Away from the synchronization (see e.g. Γ = 0.5 and Γ = 1.5), side lobes appear in the theoretical
case, but they are connected to the breathing the optical beam undergoes, see the insets. As
expected, the breathing is minimum near Γ = 1, where our theory is more accurate. These results
suggest that a quasi-mode with a complicated polarization structure exists for any modulation
period, but such structured waveform can be found only by using more advanced theories than
the simplified model we are using here.

Last, we want to discuss potential experimental realizations of these waveguides. Inscribing an
anisotropic structure possessing a point-dependent rotation of the optic axis is challenging, but
new technologies capable of achieving this goal emerged in the last few years. Potential candidates
are femtosecond-writing of anisotropic structures in glass [28], two-photon polymerization of
liquid crystals [29,30], stack of metasurfaces based upon geometric-phase [31,32]. With respect
to already established technologies for integrated circuits, a potential venue is to exploit the
rotation of the optic axis via the electro-optic effect in thin-film waveguides based upon Lithium
Niobate by using patterned electrodes [33].

4. Conclusion

We investigated theoretically and numerically the robustness of the PBP waveguide with respect
to deviations from the phase matched condition, that is, when the external modulation is not
synchronized with the natural rotation of the polarization. We demonstrated numerically that
the mode computed in the synchronized case retains a large degree of confinement (guided
power larger than 50%) for wide variations of the external modulations (from 30% to 200%).
Theoretically, we modelled the optical propagation exploiting the idea of operator splitting and
using the plane wave propagation in longitudinally-modulated anisotropic materials to calculate
the phase delay imparted by the inhomogeneous twisting angle. Such a model captures the
dependence of the essential ingredients of the waveguiding, such as the Stokes parameters
spatial distribution and the size of the guided beam, on the mismatch between the two periods.
More importantly, the quasi-modes calculated with our approach are well guided by the twisted
anisotropic materials even far away from the phase-matched condition, showing how the PBP
waveguides on one side are robust to the geometrical parameters, and on the other side potentially
allow the full (polarization and intensity) engineering of the guided mode [34].

Summarizing, our work demonstrates that the optical confinement in the Pancharatnam-Berry
waveguides does not depend critically on the period of the modulation, but that a mismatch
actually provides an additional degree of freedom in controlling the polarization structuring of
the quasi-modes. Our results can be readily extended to the propagation of different wavelengths
in a fixed geometry, thus permitting to understand how optical dispersion affects the propagation
of ultrashort pulses in this type of electromagnetic waveguides.
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