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Abstract: Dielectric metasurfaces are important in modern photonics due to their unique
beam shaping capabilities. However, the standard tools for the computation of the phase
and transmission through a nanopillar-based metasurface are either simple, approximating the
properties of the surface by that of a single cylinder, or use full 3D numerical simulations. Here we
introduce a new analytical model for computing metasurface properties which explicitly takes into
account the effect of the lattice geometry. As an example we investigate silicon nanopillar-based
metasurfaces, examining how the transmission properties depend on the presence of different
modes in the unit cell of the metasurface array. We find that the new model outperforms the
isolated cylinder model in predicting the phase, and gives excellent agreement with full numerical
simulations when the fill fraction is moderate. Our model offers a waveguide perspective for
comprehending metasurface properties, linking it to fiber optics and serving as a practical tool
for future metasurface design.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Metasurfaces (MSs) operate by superposing the emitted waves of individual nanoscale elements
placed in a large-scale array, enabling complex shaping of optical beams in compact devices [1].
Recent works have demonstrated the use of MSs as lenses [2] to achromatically focus light on
either planar substrates [3] or optical fiber [4], to create, manipulate, and detect new optical states,
such as bound states in the continuum [5] or non-classical states of light [6]. Moreover, MSs
have been used for highly efficient nonlinear frequency conversion [7], and for the simultaneous
control of the intensity, polarization and phase of optical beams [8,9]. A common embodiment
of a MS is the dielectric metasurface array, consisting of a periodic array of high refractive
index (RI) contrast cylindrical nanopillars placed on a supporting substrate [10–14]. Here, the
individual nanopillar acts as a waveguide-based antenna with tailored radiation properties that,
when combined in a large-scale lattice, provide the desired MS functionality. In this geometry,
the transmission properties can be controlled by changing the physical dimensions (diameter,
height) of the cylinders, as well as by changing the properties of the array (i.e., lattice pitch and
geometry) in which they are arranged; we note that while changing the spectral response by
tuning the cylinders is a well-established approach, tuning the response by changing the lattice
properties has been much less commonly exploited, even though it represents a important degree
of freedom in designing MSs.

To model how such a MS will behave in a particular configuration, numerical tools such as
the Finite Element (FE) method [15] or Finite-Difference Time Domain (FDTD) method [16]
are usually used. However, it is often useful to supplement these full numerical simulations
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with analytical or semi-analytical models that can quickly and effectively predict important
quantities such as accumulated phase or transmission. These models can be used directly as
a tool in guiding fabrication, and can also lead to physical insight which further informs the
design. The most commonly-used of these analytical models is to approximate the transmission
through the array by the transmission of the excited mode through a single isolated cylinder. This
approach is directly related to the well-understood physics of modes in step-index optical fibers,
in which the modal dispersion can be found by solving a transcendental equation [17,18]. This
model is explicitly limited to sparse arrays in which the effect of the array-type arrangement
is negligible. However, as shown in the context of photonic crystal fibers [19,20], arranging
cylindrical waveguides in a lattice is known to have a substantial effect on the modes in terms of
phase and transmission, even for dilute systems of elements [21,22]. The fact that the cylinders
are finite in height further complicates the situation, because the 3D layer of cylinders gives
rise to discrete resonances that can dramatically change the transmission [23]. Semi-analytic
approaches that can handle this behaviour include the transfer matrix method [24], modal layer
formulations [25] and layer impedance modelling [26]; these methods take into account both the
geometry of the cylinder array as well as the finite cylinder height, but become very similar in
scale and complexity to full numerical simulations of the entire structure.

Here, we present a semi-analytical model, which we denote the lattice dipole model, that can
be used as an extension of the single isolated cylinder model to include the effects of the array as
a whole. This model takes into account not only the coupling between adjacent cylinders but
also includes coupling between all the cylinders in the array. This is achieved via the inclusion
of lattice sums into the dispersion equation for a single cylinder; these sums depend solely on
the array parameters, and can be computed in a straightforward way [27]. Without limiting the
generality of the model, we focus in this work on square arrays of different pitches, and show
how the lattice parameters influence the phase transmission through the MS. In comparing with
full 3D FE simulations, we find that the phase predicted by the lattice dipole model is much
more accurate over a broad range of geometric parameters compared to the isolated cylinder.
Furthermore this model can be used in conjunction with a Fabry-Perot model to design MS
geometries that have close-to-unity transmission and a full 2π phase shift. We also explore the
physics of the transmission through the MS using a combination of a full 3D simulation and a 2D
mode-based model, and use this to gauge the limits of our analytic model. We find that the lattice
dipole model is accurate up to the appearance of sharp resonant features associated with the
lattice resonances of the 3D MS layer; we show that the regime where these resonances appear
can be predicted using a just one transcendental equation. The physical insight gained from the
combination of the analytical model and the FE simulations gives firm guidelines for the design
of nanopillar-based MSs.

2. Approximate models

We consider an array of dielectric nanocylinders with refractive index n1, height h and radius a,
aligned parallel to the z-axis and arranged in a two-dimensional array with lattice spacing Λ (see
Fig. 1(a)). Generally, the lattice can have any rectangular or triangular arrangement, with square
and hexagonal lattices being the most common; throughout this work, we consider a square array
of silicon nanopillars surrounded by air and located on a glass substrate. We denote the refractive
index of the material in the MS layer surrounding the cylinders by n2, and that of the substrate
ns. The cover material above the layer of cylinders we consider to be infinite in extent and of
refractive index nc. Light of frequency f = ω/2π or wavelength λ = c/f is incident normally
from the substrate side of the array; unless otherwise specified, we assume an incident free-space
wavelength of λ = 1.0µm, which defines the indices for the different materials at the operating
wavelength λ (ns = 1.5, nc = 1.0, n1 = 3.6, n2 = 1.0).
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Fig. 1. (a) Illustration of the metasurface structure, consisting of a 2D array of cylinders
of refractive index n1 placed on a substrate with refractive index ns. (b) Illustration of the
lattice dipole model, in which the accumulated phase and transmission through the layer is
determined by the guided mode of the central cylinder (blue) of the array.

2.1. Isolated cylinder model

In the isolated cylinder model, the transmission through the periodic array is computed under the
approximation that the light couples completely into one waveguide mode while passing through
the array layer. The usual assumption, derived from the symmetry of the fields, is that the mode
couples to the fundamental cylinder mode (hybrid HE11-mode), which is quasi linearly polarized
and dipolar in both axial field components Ez and Hz (one example of such a dipolar distribution
is shown in Fig. 2(b)). The effective mode index can be found for a given frequency by finding
the propagation constant β that solves the transcendental equation[︃ J ′1(U)

UJ1(U)
+

K ′
1(W)

WK1(W)

]︃ [︄
n2

1

n2
2

J ′1(U)

UJ1(U)
+

K ′
1(W)

WK1(W)

]︄
=

(︃
1

U2 +
1

W2

)︃ (︄
n2

1

n2
2

1
U2 +

1
W2

)︄
. (1)

Here J1(z) is the first-order Bessel function of the first kind, and K1(z) is the first-order modified
Bessel function of the second kind. The parameters U and W are the dimensionless transverse
wavenumbers defined as [17]

U = a
√︂

n2
1k2

0 − β
2, W = a

√︂
β2 − n2

2k2
0 (2)

in which k0 = 2π/λ is the vacuum wavenumber. The effective index of the mode is given by
neff = β/k0 and is correlated to the phase velocity of the mode through v = c0/neff . Finding
solutions of (1) is usually straightforward because in the absence of loss and dispersion all
quantities are real-valued.

2.2. Lattice dipole model

The isolated cylinder model neglects contributions to the effective index from the cylinders in
the surrounding lattice. One can take these into account by computing the effective index of the
entire 2D array of cylinders infinitely extended along the z-direction. For such a computation
higher-order multipoles need to be included in the field expansion, which accounts for the light
scattered by neighboring cylinders. The general expansion for the longitudinal fields (along the
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Fig. 2. Details of the model discussed here. (a) Working principle of the individual
nanopillar element (light blue). The purple lines correspond to incident and scattered light
and the excited mode. The plot shows the phase accumulated while the mode propagates
through the cylinder. The yellow part on the right illustrates the Fabry-Perot oscillation. The
two right-handed contour plots show selected spatial field distributions of the fundamental
mode (top: longitudinal magnetic field component Hz. bottom: Poynting vector Sz). Note the
dipolar-type distribution of the longitudinal component. (b) Geometry of the periodic array
used in the lattice dipole model. Here a square lattice is shown, which forms the underlying
geometry used in the discussion of this work; more general arrays can be generated by
adjusting the lattice vectors Rp.

z-direction) in the medium external to the cylinders is [28]

Eext
z (r, θ) =

∞∑︂
m=−∞

[︁
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mKm(Wr/a)

]︁
eimθ ,

Hext
z (r, θ) =

∞∑︂
m=−∞

[︁
aH

mIm(Wr/a) + bH
mKm(Wr/a)
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Here the functions Im(z) and Km(z) are the modified Bessel functions of the first and second
kind; the expansion in terms of modified Bessel functions is needed for fields that are evanescent
in the medium outside the cylinders. The Im(z) functions, unlike the Km(z) functions, are
non-singular at the origin; in general, field sources are given by singularities at the source point,
and so the singular part of the field expansion in (3) given by the Km terms represents sources
from the central cylinder, whereas the non-singular terms given by the Im represent fields from
all the other cylinders in the 2D array. The coefficients aE,H

m can therefore be thought of as
representing, in polar coordinates, a transversely-incident field on the central cylinder, with the
bE,H

m representing the resulting scattered field.
The coefficients aE,H

m and bE,H
m are related in two ways. First, they are connected via the

boundary conditions at r = a on the central cylinder. Second, because all the cylinders outside
the central unit cell are sources of scattering, the non-singular field in the vicinity of the central
cylinder can be written as a sum of singular terms arising from the 2D lattice. This relation takes
the form (see Supplement 1):

aE,H
m =

∞∑︂
n=−∞

(−1)mS̃m−nbE,H
n . (4)

https://doi.org/10.6084/m9.figshare.24541123
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Such an identity is known as a Rayleigh identity [29,30]. The terms S̃m are lattice sums, and
can be written in dimensionless form as

S̃m(W) =
∑︂
p≠0

Km

(︃
WDp

Λ

a

)︃
eimθp , (5)

where the sum extends over the double index p = (p1, p2) which runs over the lattice, with
p = (0, 0) indicating the central cylinder. The vector Dp = (Dp, θp) is a dimensionless vector
describing a lattice of unit pitch: Rp = ΛDp (see Fig. 2) is the unscaled vector pointing to the
pth cylinder in the array. The summation in (5) extends over all cylinders, and so numerical
evaluation requires truncating it: a truncation to p = (m, n), m, n ∈ [−1, 1] would neglect all
contributions except from immediately adjacent cylinders. We have found that truncating the
sum at the first 5 surrounding layers of cylinders (so that p = (m, n), m, n ∈ [−5, 5]) is sufficient
to obtain convergence to visual accuracy, and a truncation to 10 layers evaluates the sums to
machine precision. We note here that the lattice sums (5) appear in a different form to lattice
sums as usually defined in the literature [27] (typically written as Sm). This is because the latter
are expressed as in terms of Hankel functions rather than modified Bessel functions; the two
definitions are related via Sm = 2im−1/πS̃m.

To obtain a first approximation to the fields that incorporates the effect of the lattice, we assume,
as in the isolated cylinder case, that the dominant form of transmission through the MS layer
occurs via a mode that has the same symmetry as the fundamental HE11 mode of the isolated
cylinder, and can be regarded as a perturbation from it resulting from the presence of the lattice.
The validity of this assumption will be numerically verified in Section 4; this approximation is
expected to hold exactly in the limit that the filling fraction of the cylinders becomes small. For
such a mode we neglect all multipole orders m ≠ 1, and write Eq. (4) as

aE,H
1 = −S̃0bE,H

1 (6)

where S̃0 can be computed explicitly from Eq. (S.9) of the Supplement 1. Applying the dipolar
approximation to the field expansions (3), substituting (6) and applying continuity of the tangential
components of the fields at r = a, we obtain the following transcendental equation for the effective
mode index:[︄
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(7)

Equation (7) contains a dipolar correction to the isolated cylinder equation (1) in the form of
the term S̃0I1, which contains the influence of the lattice and forms a central part of the discussion
presented in this work. In principle it would be possible to incorporate higher-order multipole
corrections which would give better accuracy for more closely-packed cylinders, however
the inclusion of these additional terms (containing lattice sums S̃2, S̃4, etc.) requires solving
increasingly complicated transcendental equations, and begins to approach a fully numerical
treatment in terms of complexity. We therefore confine ourselves to the dipole approximation,
containing only S̃0, from this point forward. The equation (7) contains real quantities and can be
solved numerically to find the effective index neff of the layer. The evaluation of the lattice sum
S̃0 requires a sum over the lattice for each value of W via equation (5); provided W remains real,
this sum is rapidly convergent. Because the equation is of the same form as (1) the correction can
be readily incorporated into existing algorithms. It can be seen that S̃0 → 0 as Λ/a becomes
large, reducing the equation to that of the isolated cylinder case.

https://doi.org/10.6084/m9.figshare.24541123
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2.3. Phase and transmission

Once neff is found, the accumulated phase shift of the mode after propagating through the periodic
layer is determined by the equation Φ = neffk0h (Fig. 2(a)) This equation shows that, in addition
to the element’s height, the geometric dimensions of the nanocylinder, as well as the properties
of the lattice, can be used to adjust the phase of the emitted light through modulating neff . This,
for instance, was used in the work of H. Ren et al. [4] to generate an MS-based lens that is
achromatic across the entire telecommunications range.

The effective index neff also gives way of estimating the transmission through the MS: by
approximating the finite-height nanocylinder with a Fabry-Perot thin film with a central medium
having a RI equal to the effective mode index (ncentral = neff) (Fig. 2(b)), we find that the complex
amplitude transmission through the grating is given by

t =
tbtt exp(−iΦ)

1 − rbrt exp(−i2Φ)
(8)

where tb, tt, rb, and rt are the Fresnel reflection or transmission coefficients for perpendicular
incidence at the bottom or top boundary of the effective layer; these are found from the indices of
the substrate, layer, cover and mode via

tb =
2ns

ns + neff
, rb =

ns − neff
ns + neff

tt =
2neff

neff + nc
, rt =

neff − nc

neff + nc
.

(9)

3. Comparison of models

We now compare the accumulated phase Φ through a silicon MS using the two approximate
models, and compare these with a full 3D finite element (FEM) simulation (details in Supplement
1). We consider square lattices of different pitch at an operating wavelength λ = 1000 nm, with
fixed cylinder heights (h = 500 nm). While direct comparison of the speed and computational
requirements between numerical and analytical models should be used with caution, for this
configuration the FEM model requires approximately 67000 degrees of freedom and 11GB of
RAM and solves a single frequency point in about 5s on a workstation (2 Xeon 8 core E5-2665
processors, 3GHz clock speed). The analytic models are of course practically instantaneous,
taking less than 50ms to find each point on a laptop-based MATLAB installation. Figures 3(a)-(c)
show the accumulated phase Φ transmitted through the MS by applying the isolated cylinder
model (black dashes, from solving 1) compared to the lattice dipole model (blue line, from
solving 7), for three different lattice pitches Λ. Note that the phase from the isolated cylinder
model does not change with the lattice pitch. It can be seen that the lattice dipole model gives
a far more accurate value for the phase over a greater range of cylinder radii than the isolated
cylinder model. In particular, for cylinders with small radius, the lattice dipole model and 3D
simulation overlap completely. The agreement continues for larger cylinder fill fractions, until
the appearance of sharply resonant features in the 3D results. These features we associate with
lattice resonances of the slab as a whole, incorporating scattering from the array in combination
with reflections from the cylinder end-facets along the z-direction; these resonances cannot be
accounted for in either of the approximate models. More details about the occurrence of these
resonances will be shown in the following section. It is important to note here that for the
correct operation of a MS, only phase shifts within the domain 0<Φ< 2π are required, which
is completely covered by the lattice dipole model, whereas the isolated cylinder model fails to
accurately predict the phase.

We also show the transmission (i.e., the real and imaginary parts of the complex amplitude
transmission) as functions of cylinder radius a through the MS in Fig. 3(d)-(f), comparing the

https://doi.org/10.6084/m9.figshare.24541123
https://doi.org/10.6084/m9.figshare.24541123
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Fig. 3. Comparison of models for phase difference and transmission across a square
metasurface array for different lattice pitches (red dots: 3D simulations, solid blue lines:
lattice dipole model, dashed-dotted black lines: isolated cylinder). (a)-(c) show the phase
difference Φ as a function of cylinder radius. (d)-(f) show the amplitude and phase of the
transmission T , with the radius plotted on the vertical axis. The projection indicates the
phase interval that can be covered by changing the radius.

full 3D simulations with the lattice dipole model combined with the Fabry-Perot equations
stated above (Eq. 8). The transmission is predicted by the lattice dipole model to within 10%
accuracy up until the appearance of the lattice resonances, and remains close to unity for the
entire 0<Φ< 2π range.

Within the small radius regime (a/Λ ≤ 0.3) the accumulated phase depends linearly on the
height of the silicon cylinder h, as confirmed by full numerical simulations (Fig. 4(a)-(c)). We
see that the slope, i.e., the constant of proportionality is given by the effective index neff , which
is accurately predicted by the lattice dipole approach in this regime. By contrast, the accuracy
of the isolated waveguide method varies with the radius of the cylinders and does not match
the predictions of full 3D simulations. It can also be seen in Fig. 4(d)-(f) that the magnitude of
the transmission is well predicted by both approximate models, with the lattice dipole model
giving a better estimate of the magnitude of the Fabry-Perot fringes. Note that the presence
of oscillations visible in Fig. 4(a)-(c) (particularly for a/Λ=0.4) overall justifies the use of the
Fabry-Perot model, i.e., the model confirms that both boundary surfaces of the nanocylinder must
be considered to fully describe the transmission behavior. The approximation of the entire MS
structure by a uniform slab neglects effects such as fringing fields that may become important
at longer wavelengths and as the slab thickness becomes small. However, the close agreement
between the lattice dipole model and the FEM simulations (e.g., positions of minima and maxima
and the slopes in Fig. 4(c)) indicates that this effect is practically negligible. This argument is
supported by the error analysis shown in Supplement 1 (Sec. S.5, Fig. S.6), also showing a good
match between model and FEM results.

https://doi.org/10.6084/m9.figshare.24541123
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Fig. 4. Phase difference for different nanopillar heights h, for a square array of pitch
Λ = 300nm, for three different cylinder radii in the low radius regime (red dots: 3D
simulations, solid blue lines: lattice dipole model, dashed-dotted black lines: isolated
cylinder). The top graph in each case shows the computed power transmission, while the
bottom graph shows the linear relationship with the layer thickness. The lattice dipole model
gives an accurate prediction of the phase in this region. The reference phase ∆Φ is the phase
at a height of 200nm, which is the minimum used for the Finite Element simulation.

4. Modal investigation and lattice resonances

The two assumptions underlying the lattice dipole model are that the fields within each unit
cell of the metasurface layer remain dipolar, and that the fields of the finite MS layer can be
approximated by a single mode of the infinite structure. It can be seen in Fig. 3 that one of
these assumptions breaks down for large cylinder radii, as resonant feature appear. We therefore
employ 3D Finite Element modeling to investigate the modal behavior of the fields within the MS
layer, with the aim of understanding the transmission spectrum as a whole, as well as obtaining a
quantitative description of where the approximate models of the previous section can be applied.
We approach this as follows: first, 3D simulations are performed to obtain the fields within
the MS layer. Next, we obtain the modes of the layer by Maxwell’s equations for an array of
infinitely-extended cylinders. We then compute the numerical overlap between the 3D field and
the 2D modes to give us the magnitude of each mode field in the 3D simulation (for details see
Supplement 1).

The results of this numerical modal decomposition are shown in Fig. 5 for a square array
of lattice pitch Λ = 400nm and layer thickness of h = 0.5µm. A sharp resonance occurs at
cylinder radius a = 0.154µm, with a smaller resonant feature at a = 0.12µm. In Fig. 5(b) we
show the modal decomposition for six configurations, i.e., small radius (A), moderate radius
(B), as well as radii approaching and in close proximity to a resonance (C-F). We see that for
smaller radii (A-B) a single mode (labeled as ±1) appears, which entirely propagates in the
forward direction (A, labeled by +) or includes a small fraction of the same mode in the backward
direction (B, labeled by −). This mode is the dipolar-like mode of the lattice, and it has an
effective index close to that of the fundamental (HE11) mode of the isolated waveguide. For
larger radii (C) a second mode (labeled as ±2) appears, which grows in relative strength towards
the main resonance at a = 0.154µm (D). Close to that resonant peak, both modes are strongly
excited in both forward and backward propagating direction (E-F). The existence of the second
mode indicates the presence of a resonance of the lattice itself, in which the fields are strongly
enhanced in the MS layer. Such lattice resonances have been studied previously [23] and are a
known feature of MS arrays.

https://doi.org/10.6084/m9.figshare.24541123
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Fig. 5. (a) Power transmission computed using the Finite Element method for different
cylinder radii, for a square array of pitch Λ = 0.4µm and height h = 0.5µm. The lattice
resonance is visible at a = 0.154µm. (b) Numerically-extracted mode amplitudes at the
points labelled in (a). The modes are ordered on the horizontal axis by increasing effective
index; with positive modes being forward propagating. The vertical axis gives the power in
each mode relative to the power of the incident plane wave. A second mode appears at point
C, and becomes equally dominant with the first mode at the lattice resonance (E).

The second mode that gives rise to the lattice resonances has an effective index below that
of the light line of the matrix material (RI: n1) - unlike a waveguide mode, this new mode has
fields that are propagating, rather than being evanescent, in the x-y plane (defined in Fig. 1).
This mode arises from the second branch of the photonic band structure of the infinite 2D array,
and, like the fundamental waveguide mode, is also strongly dipolar [31]. These transversely
propagating lattice modes have been noted previously as being key to maximizing absorption in
nanostructured solar cell arrays [32]. We show the dependence of the effective index of these
modes in nanopillar radius a for different pitches in Fig. 6(a). Note that the dipolar mode (red)
does not exhibit a cut-off and approaches the index of the surrounding medium n2 for smaller
radii, while the second mode (blue) has a clear cut-off at which neff = 0. This is a clear indication
of a mode that exists only because of the lattice and does not occur for the isolated waveguide.
This effect is very prominent in hollow-core waveguide optics (e.g., [33]) and is responsible for
the resonances in the transmission spectra of these waveguides. Note that in contrast to isolated
systems, propagating modes in a periodic environment take the form of Floquet-Bloch modes
which, apart from a phase contribution, have identical field patterns in each unit cell. These
modes exist in regions below the RI of the cladding material. Thus, there is a clear connection
between the behavior of nanopillar-based MS and the modes in waveguides with transversely
periodic structures. It is evident from Fig. 6(a) that there is a nanopillar radius at which this
mode cuts off that depends inversely on the lattice pitch–at this cutoff the effective index (i.e.,
the propagation constant) is equal to zero. We can obtain a quantitative prediction of where the
cutoff of the propagating dipole mode occurs by adapting the lattice dipole method, with the
wavenumber W replaced by

w = iW = a
√︂
ϵ2k2

0 − β
2 , (10)

and the modified Bessel functions replaced by Hankel functions of the first kind using Km(W) →

(πim+1/2)Hm(w). By again making the dipole approximation and applying the Rayleigh identity,
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we obtain an equation for the effective index of the mode which is of the same form as (7).
Applying the cutoff condition β = 0, we obtain the transcendental equation

ϵ1
U

J ′1(U)

J1(U)
−
ϵ2
w

H′
1(w) + S0J ′1(w)

H1(w) + S0J1(w)
= 0 (11)

where the lattice sum is given by

S0 =
∑︂
p≠0

H0

(︃
w
Λ

a
Dp

)︃
. (12)

Care must be taken while evaluating this sum since it is only conditionally converges; however,
it can be converted to a rapidly convergent sum in reciprocal space [27] (see Eq. S.10 in
Supplement 1). Figure 6(b) shows the behavior of the cut-off radius ac of the second mode
as a function of the pitch Λ for different wavelength λ, computed by solving (11). Note that
the curves are bound on the small pitch side (grey area in Fig. 6(b)) by the restriction that the
cylinders should not overlap. We observe that, for each operating wavelength, ac decreases as
the pitch increases: this implies that lattices with smaller pitch will possess a larger range of
cylinder radii a< ac where only one mode exists — it is within this region that sharp resonances
can be avoided. We also observe that the cut-off radii calculated by (11) agree well with the
predictions of the lattice dipole model (7) and with the full numerical simulations. The accuracy
of the lattice dipole model and the isolated cylinder model can be determined by comparing the
phase predicted by these models with the numerical results of the FEM (see Supplement 1 Sec.
S.5, Fig. S.6), assuming that the latter has converged to the "true" solution.

Fig. 6. (a) Computed refractive indices of for pitches Λ = 0.35µm, Λ = 0.4µm and
Λ = 0.5µm. The radius at which the second mode appears (the cutoff radius ac) is labelled
in each case. (b) Cutoff radius ac as a function of pitch Λ, computed using equation (11) for
different incident wavelengths.

5. Discussion of the model and future directions

The model presented in this work allows explanation of the transmission properties of MSs
in terms of modes of periodically-arranged waveguides. This represents an extension of the
isolated waveguide approach used so far (see e.g., [34]) and allows detailed understanding of
mode formation in periodically arranged cylinders, resulting in modes that are different from
those of isolated single cylinders. This sheds light on the operating principle of MSs from a

https://doi.org/10.6084/m9.figshare.24541123
https://doi.org/10.6084/m9.figshare.24541123
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mostly overlooked perspective, while also providing fundamental principles for the design of
MSs, which involves making various trade-offs.

From the application perspective, it is often crucial for a MS to cover the entire phase space
from 0 to 2π through structural modification that are straightforward to implement, while
maintaining transmission close to unity. In this context, the discussed model offers a direct and
straightforward approach to explore parameter spaces over a wide range.

Another crucial consideration is ensuring that the operating range of the MS remains far from
resonances, thereby guaranteeing correct device operation even in the presence of manufacturing
inaccuracies. The present study reveals that lattice resonances occur when the cylinder radius
falls within the two-mode region. To avoid these resonances, which are absent in isolated systems,
the radius should be selected well below the cutoff radius specified by the cut-off condition (11).
In the case of the square lattice examined here (with an operating wavelength of 1 µm), this
implies that the radius must be smaller than 280 nm. Choosing a small cylinder radius, with
designed effective index given by (7), might appear to be the best option. However, one should
also balance the need to achieve the required phase shift, as a low index will require unfeasibly
tall cylinders.

The engineering of modal dispersion is a vital aspect in numerous photonic applications. In this
regard, the model presented here enables the direct calculation of group delay and group velocity
dispersion of the dipolar mode within the lattice geometry, without the need to consider the height
of the nanopillars. Such capability becomes particularly significant for applications involving
spectral dependence, including broadband achromatic metalenses, dispersion compensation
devices, and manipulation of broadband ultrashort optical pulses.

It is important to note that the waveguide approach used in this work is not necessarily
limited to on-axis, cylindrical systems and can potentially be extended to off-axis incidence and
more complex cross-sections. A non-normally-incident beam can, in principle, be specified by
including a phase term (in the form of a non-zero Bloch vector) in the lattice sum expression
of (5). This may lead to enhanced coupling to the resonances of the slab. In addition, square
and rectangular cross-sections, in addition to coating the nanopillars with dielectric films, can
be effectively treated using waveguide models of the type presented here [35]. In cases where
multiple waveguides are present within a single unit cell, the well-established coupled mode
theory, widely used in the field of fiber optics, can be used to compute the waveguide modes [17].

Furthermore, our model is not restricted to a specific material system, thus enabling investi-
gations into MSs with lower refractive index contrast [4], or even, depending on the geometry,
those composed of entirely different materials such as metals [36]. For metallic inclusions, we
expect that the model can be applied for long cylinders that are capable of supporting long-range
Surface Plasmon Polariton (SPP) modes, since these are very similar to the dipolar waveguide
modes discussed here [37]. Our model would not, however, be applicable to geometries (such
as short cylinders or plates) supporting localised resonances such as localized surface plasmon
resonances (LSPR), since these structures consist of subwavelength resonators for which there is
no propagating mode.

An interesting question arises when considering the inversion of refractive indices: In the field
of fiber optics, such a structure can form waveguides which exhibit only one optical mode for all
wavelengths: the endlessly single mode fibers [38]. This effect primarily relies on the control of
the fundamental space-filling mode, which, in the context of MSs, has not yet been thoroughly
explored. The presented model serves as a valuable tool to enhance our understanding of the
formation of this type of mode.

6. Conclusion

We have introduced a mathematical model that elucidates the operational principles of metasur-
faces in terms of periodically-arranged dielectric waveguides modes. Unlike the isolated cylinder
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model, our model encompasses the effects of the lattice as a whole, thereby providing a more
accurate representation for various practical scenarios. The model relies on lattice sums, which
are computable straightforwardly and solely depend on the array’s geometry.

Our investigation focuses on the transmission properties of a silicon nanopillar-based metasur-
face. By understanding mode formation in conjunction with a Fabry-Perot approach, we are able
to accurately compute both the radiated phase and transmitted power. A key aspect of our findings
is a semi-analytic expression for the dominant dipolar mode existing within the nanopillars,
which greatly influences the behavior of the metasurface within the relevant parameter range. We
demonstrate that the dipolar approach remains valid below a certain threshold radius, allowing
to cover a full 2π phase space. Beyond this threshold, an additional mode, with a substantial
portion of power confined within the inter-cylinder region, emerges. This mode induces distinct
resonances in the transmission spectrum and corresponds to a higher-order photonic crystal mode
of the lattice.

Overall, this model provides a waveguide perspective for understanding metasurface properties,
establishing a direct connection to the field of fiber optics. Furthermore, it represents a novel
and practical tool that can be readily employed for the design of future metasurface devices with
complex functionalities.
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