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A B S T R A C T

Engineered photons from spontaneous parametric down-conversion (SPDC) are a
valuable tool for studying and applying photonic entanglement, as well as serving
as an effective source of single photons. In SPDC, a nonlinear crystal converts a
high-energy photon from a laser field into a photon pair, commonly known as signal
and idler. Both the theoretical and experimental research conducted by SPDC has
primarily focused on the paraxial regime, where the transverse momentum of photons
is referred to as the spatial degree of freedom (DOF), and frequency is considered as
the spectral DOF. Hence, this dissertation also considers the paraxial regime.
Photon pairs generated through SPDC inherently exhibit spatio-spectral coupling,
which implies that photons with different spatial DOFs possess varying spectra.
While quantum optics applications often focus on either spatial or spectral DOFs
independently, the correlation between them poses a fundamental challenge in
protocols involving entangled photon sources or single-mode photon states.
Theoretical studies on SPDC, that address both space and spectrum together, are
mostly limited to approximate wave functions of photon pairs or involve numerical
computations. Such theoretical studies usually consider either monochromatic signal
and idler photons (the narrowband approximation), loosely focused pump and
collection beams (the plane wave approximation), or infinitesimally thin crystals (the
thin crystal approximation).
This dissertation aims to bridge the gap between the fundamental theory of SPDC
and its practical applications. In particular, we have developed a comprehensive
theory that does not rely on a specific pump beam or nonlinear crystal and goes
beyond the common narrowband, plane wave, and thin crystal approximations. The
developed approach accurately describes the inseparability of spatial and spectral
DOF and applies to a wide range of experimental setups. Furthermore, we show that
the origin of the spatio-spectral coupling is closely related to the Gouy phase of the
interacting beams.
We utilize the developed theory, taking into account the spatio-spectral coupling
insights, to control the entanglement of photon pairs from SPDC. As an application,
we shape the spatial distribution of the pump beam to design an efficient source of
high-dimensional entangled states in the spatial DOF. In our second application, we
tailor simultaneously the effective nonlinearity of the crystal and spatial distribution
of the pump, to engineer single-mode photons.
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Z U S A M M E N FA S S U N G

Konstruierte Photonen aus der spontanen parametrischen Fluoreszenz (engl. SPDC)
sind ein wertvolles Instrument zur Untersuchung und Anwendung der photonischen
Verschränkung und dienen außerdem als effektive Quelle für Einzelphotonen. Bei
SPDC wandelt ein nichtlinearer Kristall ein hochenergetisches Photon aus einem
Laserfeld in ein Photonenpaar um, wobei die erzeugten Photonen als Signal und
Idler bekannt sind. Sowohl die theoretische als auch die experimentelle SPDC-
Forschung hat sich in erster Linie auf die paraxialen Nährung konzentriert, wobei
der Transversalimpuls der Photonen als räumlicher und die Frequenz als spektraler
Freiheitsgrad betrachtet wird.
Durch SPDC erzeugte Photonenpaare weisen von Natur aus eine räumlich-spektrale
Kopplung auf, d.h. dass Photonen mit unterschiedlichen räumlichen Freiheitsgraden
unterschiedliche Spektren besitzen. Während sich Anwendungen der Quantenop-
tik häufig entweder nur auf die räumlichen oder die spektralen Freiheitsgrade
konzentrieren, stellt die Kopplung zwischen ihnen eine grundlegende Herausfor-
derung bei Protokollen dar, die verschränkte Photonenquellen oder Einzelmoden-
Photonenzustände beinhalten. Theoretische Studien über SPDC, die sowohl den
Raum als auch das Spektrum berücksichtigen, beschränken sich meist auf Nä-
herungen der Wellenfunktion von Photonenpaaren oder beinhalten numerische
Berechnungen. In solchen theoretischen Studien werden in der Regel entweder
monochromatische Photonen (die Schmalbandannäherung), lose fokussierte Pump-
und Sammelstrahlen (die ebene Wellenannäherung) oder unendlich dünne Kristalle
(dünne Kristallannäherung) betrachtet.
Ziel dieser Dissertation ist es, die Lücke zwischen der grundlegenden Theorie von
SPDC und ihren praktischen Anwendungen zu schließen. Insbesondere haben wir
eine umfassende Theorie entwickelt, die sich nicht auf einen bestimmten Pumpstrahl
oder nichtlinearen Kristall stützt und über die üblichen Näherungen für Schmalband,
ebene Welle und dünne Kristalle hinausgeht. Der entwickelte Ansatz beschreibt
genau die Untrennbarkeit von räumlichen und spektralen Freiheitsgraden und ist auf
eine Vielzahl von Versuchsanordnungen anwendbar. Darüber hinaus wird in dieser
Dissertation gezeigt, dass der Ursprung der räumlich-spektralen Kopplung eng mit
der Gouy-Phase der wechselwirkenden Strahlen zusammenhängt.
Wir nutzen die entwickelte Theorie unter Berücksichtigung der Erkenntnisse zur
räumlichen und spektralen Kopplung, um die Verschränkung von Photonenpaaren
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aus SPDC zu kontrollieren. Als Anwendung manipulieren wir die räumliche Vertei-
lung des Pumpstrahls, um eine effiziente Quelle hochdimensionaler verschränkter
Zustände im räumlichen Freiheitsgrad zu schaffen. In unserer zweiten Anwendung
passen wir gleichzeitig die effektive Nichtlinearität des Kristalls und die räumliche
Verteilung des Pumpstrahls an, um unkorrelierte Einzelphotonen zu erzeugen.
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1

I N T R O D U C T I O N

Our understanding and perception of the world around us are deeply tied to the
interaction of light with matter. The origins of experiments on the light-matter
interaction can be traced back to the 17th century when the bright-minded scientist
Isaac Newton demonstrated that color is a property of light. He showed through his
experiments on the interaction of light with prisms that white light can be separated
into a color comb, such as a rainbow. Since then, the study of light-matter interaction
has remained at the forefront of the scientific inquiry.

Surprisingly, despite earlier observations of light diffraction by Francesco Grimaldi,
Newton proposed that light is composed of small corpuscles. However, this hypothe-
sis was eventually challenged by Thomas Young in 1802, who presented a compelling
evidence for the wave nature of light in his renowned double-slit experiment. Another
prominent figure, Augustin Jean Fresnel, further supported the wave nature of light
through his extensive research on light diffraction.

It was left to James Clerk Maxwell to complete the classical picture of light. Maxwell
built upon Michael Faraday’s earlier findings that a changing magnetic field creates
an electric field. He proposed a reciprocal relationship, suggesting that a changing
electric field should also create a magnetic field. This postulate immediately led to
the formulation of electromagnetic wave equations [5]. One truly remarkable aspect
of Maxwell’s theory was the prediction that the electromagnetic field propagates at
a constant speed, which turns out to be the speed of light. It was then concluded
that light is, in fact, a transverse electromagnetic wave. This idea aligned with the
theories of Fresnel, who also deduced that light must be a transverse wave, in order
to explain its polarization. This description of light as an electromagnetic wave was
experimentally demonstrated by Heinrich Hertz in 1888.

Nevertheless, a few observations were difficult to understand with the existing
wave theory of light. One of the most prominent experiments was the photoelectric
effect, namely the emission of electrons when light hits a material. In 1905, Albert
Einstein provided a successful explanation for the photoelectric effect by proposing
that light consists of discrete bundles, or quanta, of energy [6]. This reintroduction of
the particle nature of light differed from Newton’s corpuscles, which were understood
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2 introduction

as particles localized in space. Instead, the concept of Einstein emphasizes the discrete
nature of energy. This idea of energy quantization was not entirely new. A few years
earlier, Max Planck had addressed the issue of black body radiation by proposing
that thermal radiation is emitted and absorbed in discrete energy packets [7].

On one hand, light showed a wave character in the experiments of Young and
Fresnel, on the other hand, the black body radiation and the photoelectric effect
demonstrated the particle nature of light. In 1924, Louis de Broglie introduced the
concept of wave-particle duality to explain these observations. He highlighted that
particles can exhibit both, wave-like and particle-like characteristics. The capstone of
these developments was the arising of quantum mechanics, which took place in the
summer and winter of 1925 mainly through the works of Werner Heisenberg, Max
Born, Pascual Jordan, Paul Dirac, and Erwin Schrödinger.

A significant milestone in the experimental study of light-matter interaction was
the development of the laser by Maiman in 1960 [8]. A laser is a bright, coherent light
with a fixed and stable wavelength. Prior to the development of lasers, experiments
relied on incoherent light sources like sunlight, candlelight, sodium lamps, or light
bulbs. The development of lasers revolutionized numerous fields of science and
technology, spanning biotechnology, precision measurements, communication, and
remote sensing. Another important consequence of the laser invention was the
establishment of a new research field of light-matter interaction, referred to as
nonlinear optics [9].

Nonlinear optics encompasses the study of how the optical properties of a material
system can be altered by the presence of light. These processes are called nonlinear
since they occur when the response of a material system to an applied optical field
does not depend linearly on the field strength. There are various nonlinear processes,
and some fundamental examples include sum-frequency generation, where two
input frequencies ω1 and ω2 are mixed to generate a third photon at frequency
ω3 = ω1 +ω2, difference-frequency generation, where two input frequencies ω1 and
ω2 are mixed to generate a third photon at frequency ω3 = ω1 −ω2, SPDC, where a
single input frequency ω1 is spontaneously converted into two new frequencies ω1 =
ω2+ω3. Among these nonlinear processes, SPDC holds a special place, as the classical
theory of light cannot adequately explain the spontaneous appearance of two new
frequencies. Instead, a quantum description is required to fully understand the SPDC

process. Perhaps, SPDC represents the two main breakthroughs of research on light-
matter interaction, (i) the quantum interpretation of light and (ii) the development of
nonlinear optics through the invention of lasers.

In SPDC, a nonlinear crystal converts high-energy photons from a laser field into
photon pairs, commonly referred to as signal and idler [10] [see Fig. 1.1 (a) and (b)].
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Figure 1.1: Consider the plane formed by the optical axis of the crystal and the propagation
direction of the incident beam. The light is classified as orindinary polarized (o-
polarized) when its polarization is perpendicular to that plane, and extraorindinary
polarized (e-polarized) when its polarization is parallel to the plane. In type-I
phase matching [subfigure (a)], both the signal and idler beams are o-polarized and
form a single cone, while the pump beam is e-polarized. In type-II phase matching
[subfigure (b)], the pump beam is e-polarized, and the signal and idler beams
have different polarization, forming two cones. A third possible combination,
called type-0, is not shown in the provided figures. In type-0, all beams are o-
polarized. (c) The representation of the momentum vector as the sum of transverse
and longitudinal components. The paraxial regime is valid, if the transverse
momentum of the beam is much smaller than the longitudinal component, |q| �
kz. (d) Schematic correlations in SPDC. The blue lines represent the spatio-spectral
correlations of an individual photon, while the red line indicates the entanglement
between signal and idler photons. Decoupling of spatio-spectral correlation implies
that the blue lines should disappear. The additional requirement for a pure single-
mode photon state is the elimination of the red line.

The quantum nature of SPDC stems from its spontaneous occurrence, similar to the
radioactive decay. The splitting of a photon into a photon pair and the exact timing
of this event are inherently unpredictable. One of the notable experiments in the field
of SPDC was performed in 1995 when Kwiat et al. introduced and demonstrated the
first efficient source of polarization entanglement [11] in type-II phase matching, [see
Fig. 1.1 (b)]. This development marked a milestone in the exploration of entangled
photons.

Since then, photon pairs generated via SPDC have become an invaluable experimen-
tal platform for fundamental quantum science [12, 13]. They have played a prominent
role in various applications within quantum teleportation [14], quantum information
processing [15], including recent experiments in photonic quantum computing [16].
Photon pairs from SPDC have been demonstrated to exhibit entanglement not only in
the polarization degree of freedom (DOF) [11, 17–19], but also in time bins [20–23],
path [24], or in the transverse spatial DOF [25–29] depending on the interplay between
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the pump beam and the interaction geometry. In 2022, Anton Zeilinger received a
Nobel Prize for his groundbreaking experiments using entangled quantum states
from SPDC [30–32].

Theoretical and experimental studies of SPDC have mostly focused on the paraxial
regime, which assigns a well-defined direction to the pump, signal, and idler beams.
Assuming that the propagation is in the z direction, the momentum vector can be
presented as k = q + z kz(q,ω), where the magnitude of the longitudinal component
is given by kz =

√
(nω/c)2 − |q|2 [see Fig. 1.1 (c)]. In the paraxial regime, the

three-dimensional momentum vector is then fully described by the two-dimensional
transverse momentum vector q and scalar frequency ω, k = (q,ω). Within the
context of paraxial SPDC, the transverse momentum q of photons is usually referred
to as the spatial DOF, and the frequency ω as the spectral DOF of photons.

Quantum optics applications often focus on either the spatial or spectral DOF, where
each DOF is usually addressed independently by employing filtering techniques [33].
In the spatial DOF, much of the research has been motivated by improving fiber cou-
pling efficiency [34, 35] as well as exploring high-dimensional spatial entanglement
[26, 36, 37]. Unlike two-dimensional polarization entanglement, high-dimensional
entangled states are not limited to two levels but can possess an arbitrary number
of discrete levels. These states offer an increased information capacity and exhibit
enhanced robustness against background noise and potential hacking attacks in
quantum key distribution [38].

In the spectral DOF, the main objective has been to engineer single-mode photon
states, as they play a crucial role for protocols based on multiphoton interference
[39], measurement-based quantum computing [40, 41], photonic Gaussian boson
sampling (GBS) [33, 42] or photonic quantum repeaters [43]. Indistinguishable and
pure single-photon states have been generated either by tailoring the nonlinearity
of the crystal [3, 44–50] or by using counter-propagating photon pair generation
in periodically poled waveguides [51]. Here, the indistinguishability refers to the
identical quantum properties of photons, while the purity quantifies the degree to
which a single photon is isolated from the environment. A highly pure single photon
exhibits minimal correlation with its surroundings, which ensures its integrity as an
independent quantum entity.

Nevertheless, the spatial and spectral degrees of freedom (DOFs) of a single photon
generated in SPDC have been known to be coupled [see Fig. 1.1 (d)] due to the
X-shaped spatiotemporal correlations [52–54]. This coupling poses a fundamental
challenge in protocols involving entangled photon sources or pure single photons.
It introduces a vulnerability to entanglement and makes it more susceptible to
environmental influences. One such example is the generation of high-dimensional
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entangled states in the spatial DOF. Any presence of decoherence or noise in the
spectral DOF can spread to the spatial DOF and can cause a loss of entanglement or a
reduction in its quality.

Except for the spatio-spectral correlation of a single photon, the correlation between
photon pairs themselves is disadvantageous in protocols that require pure single-
photon states. To see this, suppose a measurement is performed only on the signal
photon, without considering the entire composite signal-idler system. In that case,
the measured signal photon will be in a mixed state due to its correlation with the
idler photon. It is worth noting that the generation of indistinguishable single-mode
photons has mostly been limited to the spectral DOF alone, while the impact of
engineering the nonlinearity of the crystal on spatial DOF remains largely unexplored.

A number of existing theoretical methods suffer from similar limitations, as they
also only consider either the spatial or spectral DOF of photons. For example, the
narrowband approximation assumes the generation of a single frequency for both
signal and idler photons [55, 56], which can not be achieved with any realistic filter.
Furthermore, the plane wave approximation assumes loosely focused pump and
collection beams for the signal and idler [52, 57], which results in only a single
spatial mode for both photons. Others assume the use of very thin nonlinear crystals
[58–63], which eliminates the spatio-spectral coupling. The work presented in [64]
utilizes a more realistic theory, but it is based on numerical calculations. Therefore,
it is of utmost importance to develop a general analytical theory that does not
rely on a specific pump beam or nonlinear crystal and goes beyond the common
narrowband, plane wave, and thin crystal approximations. Such a theory will ensure
its practical applicability in experimental settings, providing a more accurate and
versatile description of entanglement in SPDC. Challenges in developing such a theory
include a quantitative description of the spatio-spectral coupling, the consideration
of large Hilbert spaces, the use of complex structured pump beams etc.

This dissertation aims to bridge the gap between the fundamental theory of SPDC

and its practical applications. In Chap. 3, we develop a comprehensive theory that
encompasses the spatio-spectral characteristics of the quantum mechanical state of
photon pairs, also known as the biphoton state. This theory accurately describes
the inseparability of the spatial and spectral DOFs, and it applies to a wide range of
experimental setups. Furthermore, our approach is not limited to a single dispersion
relation in the crystal and captures all types of nonlinear crystals, which produce SPDC

photons in the quasicollinear regime (pump, signal, and idler photons propagating
in the same direction). Moreover, the developed theory is applicable to arbitrary
paraxial pump beams and effective nonlinearities of a crystal.
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In Chap. 3.5, the biphoton state is decomposed into an LG basis to simplify the state
construction. This decomposition allows for a mode-by-mode construction of the
state, which proves particularly beneficial when the experiment can only access a
part of the full state, referred to as the subspace state. The LG decomposition of the
biphoton state will also help us to understand a key aspect of the fundamental nature
of spatio-spectral coupling and demonstrate its close relationship with the Gouy
phase of the pump, signal, and idler beams [see Chap. 4].

As an application, we employ the developed theory and the understanding of the
spatio-spectral coupling to control the entanglement of photon pairs from SPDC. The
efficient control of the entanglement is achieved by modifying the effective nonlinear-
ity of a crystal and the spatial distribution of the pump. The primary focus is on the
creation of high-dimensional entangled states in the spatial DOF [see Chap. 5] and
the generation of pure single-mode photons [see Chap. 6]. Interestingly, these appli-
cations require contrasting approaches: Maximizing the correlation between photons
is essential for high-dimensional entangled state generation, whereas minimizing the
correlation between them is crucial for an efficient single-photon source.
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M AT H E M AT I C A L F R A M E W O R K A N D N O TAT I O N S

In this chapter, we introduce the mathematical tools and notations that will be utilized
in this dissertation. Our coverage will not be exhaustive, as it will be more convenient
to introduce and discuss some mathematical concepts in the respective chapters.

2.1 basic concepts

We adopt the bra and ket notation introduced by P. A. M. Dirac throughout this
thesis [65]. The state of a physical quantum system is represented by a ket vector
denoted by |a⟩. This state vector is postulated to contain complete information about
the physical system. Mathematically, it represents a vector in an abstract (complex)
Hilbert space H. In a n-dimensional vector space Cn, a ket vector can be identified
with a column vector

|a⟩ =


a1
...

an

 ,

where an are in general complex numbers. Various operations can be carried out on
kets. For instance, the addition of two kets results in a new ket |c⟩ = |a⟩+ |b⟩. We can
also multiply a ket state |a⟩ by a complex number α, which yields another ket, α |a⟩.

Similarly, the concept of the bra space can be introduced, which is the dual vector
space to the ket space. It is postulated that for every ket, there exists a corresponding
bra in the dual bra space. This relationship is denoted by |a⟩† = ⟨a|, where the bra
vector is obtained from the ket vector by taking the conjugate transpose. Consequently,
the bra vector ⟨a| can be represented in a n-dimensional vector space Cn as a row
vector

⟨a| =
(
a∗1 · · ·a∗n

)
.

7
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Within the bra and ket notations, an important mathematical operation known as the
inner product is defined. The inner product of a bra ⟨a| and a ket |b⟩ is denoted as
⟨a,b⟩. Two fundamental properties of the inner product should be mentioned. First,
the relation |a⟩† = ⟨a| implies that

⟨a,b⟩ = ⟨b,a⟩∗ .

Second, the inner product is a positive definite metric

⟨a,a⟩ ⩾ 0,

where the equality sign holds only if |a⟩ is a null ket, |a⟩ = 0. The inner product of
two vectors can be zero, even if none of them is a null ket

⟨a,b⟩ = 0.

In this situation, |a⟩ and |b⟩ are called orthogonal kets.
The properties of the inner product are essential for the probabilistic interpretation

of quantum mechanics. In that interpretation, it is also necessary for ket vectors to be
normalized. The normalization of the ket |ã⟩ can be achieved as follows

|a⟩ = 1

⟨ã, ã⟩
|ã⟩ .

Here, the normalized ket |a⟩ satisfies ⟨a,a⟩ = 1, where |ã⟩ is assumed to be a non-null
ket.

2.2 separability and entanglement of bipartite states

The quantum systems are usually not isolated from each other, instead, they interact.
The simplest scenario is the interaction of two systems A and B, with respective
Hilbert spaces HA and HB. The Hilbert space of the composite bipartite system
is the tensor product of the two Hilbert spaces HA ⊗HB. We introduce a complex
orthonormal basis set for each Hilbert space, denoted as |ai⟩ for HA and |bj⟩ for HB.
The most general state in the composite space Ha ⊗HB is then given by

|ψ⟩ =
∑
i,j

ψij |ai⟩ |bj⟩ , (2.1)

where ψ can be understood as the coefficient matrix of the composite state with matrix
elements ψij. The state Eq. (2.1) is called separable if it is possible to express the
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composite state as a product state from individual Hilbert spaces |ψ⟩ = |ψ⟩A ⊗ |ψ⟩B.
The individual states of a separable state are treated independently, i.e., measurements
on one system do not affect the outcomes of measurements on the second system.
However, this state cannot always be written as a product state, |ψ⟩ ̸= |ψ⟩A ⊗ |ψ⟩B

We observe correlations between the two systems from HA and HB, when the
composite state is not separable. The composite state needs to be treated as a whole,
and the individual systems cannot be considered independently anymore. A state
that is not separable is called an entangled state. Entangled quantum states are
not separable, regardless of the spatial separation of their components. This is a
manifestation of an aspect of quantum mechanics known as quantum nonlocality.

In order to clarify the concept of entanglement, we consider a system of a photon
pair with defined polarization. We assume that each photon can have two polarization
states, horizontal (H) and vertical (V), denoted by the states |H⟩ and |V⟩. We define
two composite states in the following way

|Φ⟩ = 1√
2
(|H⟩A |V⟩B + |V⟩A |V⟩B), |Ψ⟩ = 1√

2
(|H⟩A |V⟩B + |V⟩A |H⟩B).

Although they may initially appear similar, there is a crucial distinction between
these two states. The state |Φ⟩ is a separable state, while the state |Ψ⟩ is an entangled
state. In fact, the first state can be written as

|Φ⟩ = 1√
2
(|H⟩A + |V⟩A)⊗ |V⟩B , (2.2)

which is a separable state. The polarization measurement outcome of the second
photon is always vertical, |V⟩B, regardless of whether the first photon is measured in
the horizontal |H⟩A or the vertical state |V⟩A.
The state |Ψ⟩ is however, not separable. The polarization measurement of the second
photon is correlated with the measurement of the first photon. If the first photon
is measured in the horizontal state |H⟩A, the second photon would be measured
in the vertical state |V⟩B. Conversely, if the first photon is measured in the vertical
state |V⟩A, the second photon would be measured in the horizontal state |H⟩B. The
polarization measurement of one photon defines the polarization of the second
photon instantaneously, whereas neither of the photons possesses its well-defined
polarization prior to the measurement.
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2.3 schmidt number and purity

It is straightforward to identify that the state given in Eq. (2.2) is separable. However,
determining the separability of a state becomes increasingly challenging when the
state is more complex. The Schmidt decomposition of a bipartite state is a valuable
tool for identifying whether a state is separable or not [66–69]. In order to construct
the Schmidt decomposition of the bipartite state (2.1), we first have to diagonalize
the matrix ψ.

The diagonalization of ψ is possible when systems A and B have state spaces
of the same dimension. Consequently, the singular value decomposition theorem
[70] implies that the coefficient matrix ψ of the state (2.1) can be expressed in the
following form

ψ = UΛV†, (2.3)

where the matrices U and V have orthogonal columns, U†U = 1 and V†V = 1,
and the matrix Λ is diagonal with entries Λkk = λk and property λk ⩾ λk+1. These
diagonal matrix elements are also known as the singular values of the matrix ψ. The
number of nonzero singular values is called the Schmidt rank of the matrix.

It follows from Eq. (2.3) that the coefficients ψij can be represented as [66]

ψij =

r∑
k=1

λk Uik V
∗
jk,

where r is the Schmidt rank. We can now insert the coefficients ψij back into Eq. (2.1),

|ψ⟩ =
∑
i,j,k

λkUikV
∗
jk |ai⟩ ⊗ |bj⟩

=

r∑
k=1

λk

[∑
i

Uik |ai⟩
]
⊗

[∑
j

V∗
jk |bj⟩

]
,

and introduce two new bases, |uk⟩ =
∑
iUik |ai⟩ in the Hilbert space HA and

|vk⟩ =
∑
j V

∗
jk |bj⟩ in HB. We finally obtain for the composite state

|ψ⟩ =

r∑
k=1

λk |uk⟩ ⊗ |vk⟩ . (2.4)

Expression (2.4) is known as the Schmidt decomposition of the initial state (2.1) with
|uk⟩ and |vk⟩ being the Schmidt modes and λk the corresponding singular values. The
state (2.4) is the diagonal form of the state (2.1) and consists of a single summation.
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Consider now the quantity K = 1/
∑
k λ

4
k, known as the Schmidt number. We

have
∑
k λ

2
k = 1, since the state |ψ⟩ must be normalized. Consequently, the quantity∑

k λ
4
k is always smaller than one,

∑
k λ

4
k ⩽ 1, or equivalently, K ⩾ 1. This implies that

the K can be equal to one if and only if the first singular value is non-zero, namely
λ1 = 1, while λk = 0 for k = 2, 3, . . .. In this case, the state (2.4) becomes a separable
state

|ψ⟩ = |u1⟩ |v1⟩ .

Therefore, we can conclude that the condition K > 1 serves as a criterion for deter-
mining whether a state is entangled or separable.

In general, the Schmidt number is a transparent and experimentally direct measure
of entanglement. It can be interpreted as the average number of composite states
|un⟩ |vn⟩ involved in the composite state. The larger the value of K, the higher the
entanglement. Besides Schmidt number, various approaches have been developed
to experimentally detect and certify high-dimensional entangled states. For more
details, we refer to a review article [71].

2.4 reduced density operator and purity

2.4.1 Density operator of a pure state

As discussed earlier, the ket vector |a⟩ can be identified with a column vector in a
n-dimensional vector space Cn. We can equivalently describe the same state using
the density operator given by

ρ = |a⟩ ⟨a| . (2.5)

The operator ρ can be identified with a matrix acting on a n-dimensional vector
space Cn if the row and column vector representation of bra and ket are considered.
Therefore, the density operator is also referred to as a density matrix. The density
matrix of the form (2.5) possesses two important features. First, the trace of ρ is equal
to one, Tr(ρ) = 1, which follows from the normalization of the state |a⟩. Second, the
square of the density matrix (2.5) yields the same matrix

ρ2 = |a⟩ ⟨a| |a⟩ ⟨a| = |a⟩ ⟨a| = ρ. (2.6)
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The so-called purity of the state (2.5) is given by

Tr(ρ2) = Tr(ρ) = 1, (2.7)

where we used the relation (2.6) and the normalization of the state.
The density operator formulation is mathematically equivalent to the state vector

approach if the state of the physical system is well known. However, it provides a
much more convenient language for thinking about physical systems whose state
is not completely known. A quantum system whose state |a⟩ is known exactly is
said to be in a pure state with the corresponding density operator (2.5). Otherwise, ρ
describes a mixed state.

2.4.2 Density operator of a mixed state

A quantum mechanical experiment is usually performed on an ensemble, which
consists of collections of identically prepared physical systems. A collection of
physical systems is called a pure ensemble if every member of the ensemble is
characterized by the same ket vector. However, ensembles can also include mixtures
of different pure ensembles, each assigned with certain probabilities. For instance,
we have not yet discussed how to describe quantum-mechanically an ensemble of
physical systems for which some, say 70% are characterized by |a⟩, and the remaining
30% are characterized by some other |b⟩. This example is referred to as a mixed state,
also known as a statistical mixture. Mathematically, a mixed state is described with
the density operator as follows

ρ =
∑
i

pi |ai⟩ ⟨ai|, (2.8)

where pi represents the probabilities associated with each pure state |ai⟩. The density
operator (2.8) contains all the physically significant information we can possibly
obtain about the ensemble in question.

Similar to pure states, a mixed state must satisfy the normalization condition
Tr(ρ) =

∑
i pi = 1. However, we have a different situation for the purity (2.7). The

trace of ρ2 gives

Tr(ρ2) =
∑
i

p2i ⩽

(∑
i

pi

)2
= 1,

where equality holds if and only if the state is pure. Therefore, the purity Tr(ρ2)
serves as a criterion for determining how mixed the state is.
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2.4.3 Reduced density operator

An important utility of the density operator formalism is its applicability to describe
subsystems of a composite quantum system individually. Such a description is
provided by the reduced density operator. We again consider the bipartite state (2.4),
but this time in the density operator formalism

ρAB = |ψ⟩ ⟨ψ| =
r∑
k=1

r∑
k′=1

λk λk′ |uk⟩ |vk⟩ ⟨uk′ | ⟨vk′ | . (2.9)

Assume we are only interested in the properties and behavior of the subsystem
A, meaning that all measurements are performed on the subsystem A without
considering the entire composite system. Consequently, we need to calculate the
average outcome for each measurement on A by summing over all possible states of
the subsystem B. Mathematically, the averaging over B is obtained by tracing out the
subsystem B from the joint density matrix. The trace is independent of representation,
hence, we can use any basis |vn⟩ from the Hilbert space Hb in order to calculate it,

ρA = TrB(ρAB) =
∑
n

⟨vn| ρAB |vn⟩ =
r∑
k=1

λ2k |uk⟩ ⟨uk| .

The state of the subsystem A is now described by the reduced density matrix ρA. The
identification of ρA as a description for the state of the system A is not immediately
apparent. However, its physical justification lies in the fact that the reduced density
operator accurately predicts the measurement statistics obtained for the system A.
Similarly, The reduced density matrix of the subsystem B is derived as follows

ρB = TrA(ρAB) =
∑
n

⟨un| ρAB |un⟩ =
r∑
k=1

λ2k |vk⟩ ⟨vk| .

The reduced matrices ρA and ρB exhibit a similar structure to the density matrix of a
mixed state given by Eq. (2.8). They describe a statistical mixture of pure Schmidt
modes. To ascertain whether the reduced density matrix is genuinely mixed, we need
to evaluate its purity

Tr(ρ2A) = Tr(ρ2B) =
r∑
k=1

λ4k = 1/K. (2.10)

The relation (2.10) reveals the close connection between the purity of the reduced
matrix and the Schmidt number K. Especially, if the composite state is entangled
(K > 1), the reduced state of a subsystem will always be in a mixed state. In other
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words, when two subsystems are entangled, tracing over one system will result in
the second subsystem being in a mixed state, leading to a loss of information.
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T H E O RY O F S P O N TA N E O U S PA R A M E T R I C
D O W N - C O N V E R S I O N

We will develop a cohesive quantum description of photon pairs from SPDC within the
paraxial regime in this chapter. A simple-to-use closed expression will be presented
for the biphoton state, which encompasses the full spectral and spatial properties of
the signal and idler photons.
We will begin with an introduction to the theory of nonlinear optics, to lay the
groundwork for our analysis. This will provide the necessary knowledge for un-
derstanding the underlying principles of SPDC. Subsequently, we will adopt the
quantization of the electromagnetic field, in order to describe the quantum nature
of SPDC. Additionally, an experiment will be presented to support and validate the
theoretical framework.

Parts of the material presented in this chapter were published or submitted previ-
ously in the following references:

Generalized description of the spatio-temporal biphoton state in spontaneous parametric
down-conversion
B. Baghdasaryan, C. Sevilla-Gutiérrez, F. Steinlechner, and S. Fritzsche
PHYSICAL REVIEW A 106, 063711 (2022)

Spectral properties of transverse Laguree-Gauss modes in parametric down-conversion
C. Sevilla-Gutiérrez, Varun Raj Kaipalath, B. Baghdasaryan, Markus Gräfe, S.
Fritzsche, and F. Steinlechner
submitted to PHYSICAL REVIEW A, arxiv: doi: 10.48550/ARXIV.2209.01913

3.1 nonlinear optics

Light, as an electromagnetic field, is described in free space by the time and position-
dependent electric E(r, t) and magnetic H(r, t) fields, satisfying the Maxwell equations.
When an electromagnetic wave propagates inside a medium, the electric field acts on
each charged particle. The field displaces the positive charges in the direction of the

15
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field and the negative charges in the opposite direction. Consequently, the electric
field in the medium consists of the initial electric field E(r, t) and the induced field
arising from the electric dipoles. The electric and magnetic fields in the medium are
called the electric displacement D(r, t) and the magnetic flux density B(r, t). Here,
we are only interested in the electric field, since the contribution of the magnetic
component to the nonlinear processes is relatively weak.
The relationship between the initial electric field and the field in the medium is given
by

D(r, t) = ϵ0E(r, t) + P(r, t),

where ϵ0 is the vacuum permittivity, and P is called dielectric polarization density.
The dielectric polarization density describes the macroscopic sum of electric dipole
moments induced by the electric field. It depends on the medium and the applied
electric field. In the vacuum, the electric displacement D and the electric field E are
up to a constant identical, since the dielectric polarization density vanishes, P = 0.
The relationship between the dielectric polarization density P and the electric field E
is approximately linear if the electric field is weak. However, high-order contributions
to the dielectric polarization become significant, when the electric field strength
increases. If the energy of the electric field is conserved in the process, the dielectric
polarization density P in terms of the electric field E can be represented as a power
series in the field strength [9]

Pi = ϵ0(χ
(1)
ij Ej + χ

(2)
ijkEj Ek + χ

(3)
ijklEj Ek El + ...), (3.1)

where χ(n) are tensors of rank n, also known as the n-th-order susceptibilities of the
medium. The linear term in Eq. (3.1) with susceptibility χ(1) accounts for the linear
response of the medium to the applied optical field. It describes, for instance, the
refraction or dispersion characteristics of the pump field (laser beam) in the medium.
The higher-order terms in the expansion describe optical processes in which the
dielectric polarization density depends on the strength of the applied optical field in
a nonlinear manner.

The medium is referred to as linear if all coefficients χ(n) except χ(1) are equal
to zero. A medium is called nonlinear when it possesses non-zero higher-order
susceptibility coefficients. Typically, the higher-order susceptibility coefficients χ(2)

and χ(3) are several orders of magnitude smaller than χ(1), making nonlinear processes
observable only at very high field strengths.
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3.2 hamiltonian of parametric down-conversion

In order to fully comprehend SPDC from a quantum-mechanical perspective, the
classical Hamiltonian of the electromagnetic field in the crystal should be derived
and subsequently quantized. The total energy density of the electromagnetic field in
the medium can be described as follows

D · E = Dn · En = ϵ0[En + χ
(1)
nj Ej] · En + ϵ0χ

(2)
njkEj Ek En, (3.2)

where we considered the polarization density up to the second-order term. The first
term in Eq. (3.2) is the contribution to the electromagnetic energy with the same initial
electric field response of the material. The second term describes nonlinear processes,
which involve the mixing of three fields. Spontaneous parametric down-conversion is
such a process where the mixing occurs between the pump, signal, and idler beams.
Therefore, we focus solely on the second-order contribution to the energy.

In general, the SPDC process depends on the polarization of the pump, signal,
and idler fields. However, we can simplify the analysis by considering only the
scalar fields. This simplification is possible since the polarization of the interacting
beams is typically fixed and remains constant in the experimental realizations of
SPDC. Usually, the polarization of the fields is fixed in a way that corresponds to
the dominating susceptibility in the crystal. There are three possible combinations
of linear polarization states for the three beams, which are determined by their
orientation with respect to the optical axis of the crystal. Thereby, one distinguishes
between type-0 [72], type-I [73], and type-II [74] phase matching conditions [for more
details see Fig. 1.1(a) and (b)].

When the directions of the beams are fixed, the susceptibility tensor operator
reduces to a scalar effective nonlinear coefficient, χ(2)psiepesei = χ

(2)
eff, where the unit

vectors denote the direction of the corresponding electric fields of the pump, signal
and idler beams. Hence, we can now express the interaction Hamiltonian as

HI(t) = ϵ0

∫
V

d3r χ(2)eff Ep(r, t)Es(r, t)Ei(r, t). (3.3)

Here, the integration extends over the volume V of the nonlinear medium, and
Ep(r, t), Es(r, t), and Ei(r, t) are the scalar electric fields of the pump, signal, and idler
beams, respectively. This interaction Hamiltonian captures the general expression
for the contribution to the total energy arising from second-order nonlinear optical
processes.
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It is mathematically convenient for further discussion to consider the electric field
in the momentum space, where it can be expressed as a superposition of plane waves,

E(r, t) = i
∫
d3k ϵk[ake

i(k·r−ωkt) − a∗ke
−i(k·r−ωkt)].

Here we distinguish between the positive and negative frequency parts of the field

E+(r, t) = i
∫
d3k ϵk ake

i(k·r−ωkt) = [E−(r, t)]∗,

where the factor ϵk ensures the appropriate unit of the electric field. We adopt
the method of the canonical quantization, in order to quantize the free electromag-
netic field. In this approach, the amplitude of the field is replaced with the photon
annihilation operator, denoted as ak → â(k),

Ê+(r, t) =
i

(2π)3/2

∫
d3k

√
 hωk

2ϵ0
â(k)ei(k·r−ωkt) = [E−(r, t)]∗.

The creation operator â†(k) creates a photon in the mode characterized by the
wavevector k, while the annihilation operator a(k) destroys a photon in that mode.
The creation and annihilation operators fulfill the common commutator relations for
continuous variables

[â(k), â†(k′)] = δ(k − k′). (3.4)

Alternatively, we can achieve the same quantized form of the electric field by express-
ing the classical field amplitudes as functions of the conjugate canonical variables
q and p. The canonical variables need to be then rewritten as operators with the
corresponding commutation relation. Finally, we need to express the field operator
in terms of creation and annihilation operators, leading us to an equivalent result
like in Eq. (3.4).

We can now insert the quantized electric fields into Eq. (3.3)

ĤI(t) = ϵ0

∫
V

d3r χ(2)eff [ Ê
+
p (r, t) + Ê−p (r, t) ] [ Ê+s (r, t) + Ê−s (r, t) ] [ Ê+i (r, t) + Ê−i (r, t) ].(3.5)

The resulting expression for the interaction Hamiltonian is a sum of eight different
terms. However, only the terms containing Ê+p Ê−s Ê

−
i and Ê−p Ê+s Ê

+
i lead to energy-

conserving processes and thus contribute appreciably to the down-conversion process.
The contributions due to the other six terms get averaged out when the interaction
Hamiltonian is integrated over time. Therefore, we neglect the contributions due
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to these other terms. Neglecting these contributions is equivalent to making the
rotating-wave approximation as in the case of treating atomic absorption and emis-
sion processes [75]. We note that these approximations hold only for second-order
nonlinear optical processes such as SPDC and that certain non-energy-conserving
terms may lead to important contributions for the higher-order nonlinear optical pro-
cesses beyond second-order [76, 77]. Thus, the effective interaction Hamiltonian for
the process of parametric down-conversion can be given by the following simplified
form

ĤI(t) = ϵ0

∫
V

d3r χ(2)eff Ê
+
p (r, t) Ê−s (r, t) Ê−i (r, t) +H.c., (3.6)

where H.c. refers to hermitian conjugate.

3.3 paraxial approximation

Experimentally, the SPDC process has been mostly investigated in the paraxial regime,
as most optical elements are designed to support paraxial beams. The theoretical
analysis has also predominantly focused on the paraxial regime, not only to align
with experimental conditions but also because it enables the derivation of analytical
expressions.

In the paraxial regime, beams are characterized by a well-defined direction of
propagation, where it is usually assumed to be the z direction. The momentum vector
can be written as k = q+kz(q,ω)z with the magnitude of the longitudinal component
kz =

√
(nω/c)2 − |q|2. Here, q is the transverse momentum, n is the refractive index

of the medium and ω is the frequency. Since the propagation direction is fixed, the
three-dimensional momentum vector can be fully described by the two-dimensional
transverse momentum vector q and scalar frequency ω, k = (q,ω).

The electric field operator in the paraxial regime reads

Ê+(r, t) =
i

(2π)3/2

∫
dqdω

√
 hω

2ϵ0
â(q,ω)ei(k⊥·r⊥+kz·z−ωt),

where ωk is replaced with ω due to the separate consideration of q and ω in the
paraxial regime. Here, the annihilation (creation) operator destroys (creates) a photon
in a plane-wave spatial mode with transverse wave vector q and frequency ω. The
transverse momentum q of photons is usually referred to as the spatial DOF and the
frequency ω to as the spectral DOF of photons.
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The full interaction Hamiltonian in the paraxial regime is now given by

ĤI(t) =ϵ0

∫
V

dr⊥ dz χ
(2)
eff

∫ ∫ ∫
dqpdqsdqi dωp dωs dωiAp(ωp)A∗

s(ωs)A
∗
i (ωs)

× ei(qp−qs−qi)·r⊥ ei(kp,z−ks,z−ki,z)·z e−i(ωp−ωs−ωi)t

× â(qp,ωp) â†(qs,ωs) â†(qi,ωi) +H.c., (3.7)

where the following notation is introduced

Aj(wj) =
i

(2π)3/2

√
 hω

2ϵ0
. (3.8)

3.4 biphoton state

3.4.1 Time evolution of the biphoton state

We have obtained the interaction Hamiltonian (3.7) for parametric down-conversion
in the paraxial regime, which can be used to describe the evolution of the biphoton
state. In the interaction picture, the time evolution of a state can be expressed using
the time-evolution operator

|Ψ⟩ = exp
(
−
i
 h

∫ t′
0
ĤI dt

)
|Ψinitial⟩ , (3.9)

where t′ is the interaction time. The state at t = 0, |Ψinitial⟩, consists of the initial
states of the pump, idler, and signal fields. The pump field is a strong paraxial laser
beam, which can be modeled as a multimode coherent state. The signal and idler
fields are both initially in the vacuum state. Therefore, the composite initial state is
given by

|Ψinitial⟩ = |V(q,ωp)⟩ |vac⟩ ,

where V(q,ωp) is the angular distribution of the pump, and |vac⟩ represent the
vacuum state.
It is known from experiments that the SPDC interaction is very weak. Hence, we can
use a series expansion of the time-ordered exponential in Eq. (3.9). We consider the
first order, which corresponds to the generation of a photon pair

exp
(
−
i
 h

∫ t′
0
ĤI dt

)
= 1−

i
 h

∫ t′
0
ĤI dt... .
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The second and the higher-order terms in the expansion are the states of four- and
higher-photon fields. The probability of generation of these fields can be neglected in
the low gain regime compared to photon pair generation. In the high gain regime,
when the laser intensity increases, higher photon number states become significant.
The biphoton state gains a simplified form

|Ψ⟩ = |vac⟩− i
 h

∫ t′
0
ĤI dt |V(qp,ωp)⟩ |vac⟩ , (3.10)

where the vacuum term is out of interest. We insert the interaction Hamiltonian from
Eq. (3.7) into Eq. (3.10) and arrive at

|Ψ⟩ =−
i
 h

∫ t′
0
dt ϵ0

∫
V

dr⊥ dz χ
(2)
eff

∫ ∫ ∫
dqpdqsdqi dωp dωs dωi

×Ap(ωp)A∗
s(ωs)A

∗
i (ωs) e

i(qp−qs−qi)·r⊥ ei(kp,z−ks,z−ki,z)·z e−i(ωp−ωs−ωi)t

× â(qp,ωp) â†(qs,ωs) â†(qi,ωi) |V(qp,ωp)⟩ |vac⟩+H.c. . (3.11)

We can make a few additional assumptions, to simplify the expression of the biphoton
state.
(i) The reduction in pump intensity due to the SPDC process is much smaller than
the average intensity of the pump beam itself. This implies that the quantum state of
the pump is effectively constant, i.e., the quantum effects of the pump beam can be
neglected in this treatment. Therefore, the annihilation operator of the pump photon
can be replaced with the field amplitude of the pump beam. This replacement can
also be justified by using the fact that the pump beam is modeled as a multimode
coherent state: a coherent state is an eigenstate of the annihilation operator, and the
action of â on it, â |V(qp,ωp)⟩ yields the amplitude of the field.
(ii) If the crystal is pumped by a pulsed laser, the interaction time is essentially
determined by the pulse duration. It is assumed that at the time, t = 0 the pump field
is zero inside the crystal. We restrict our attention to times t after the completion
of the interaction, t > t′, i.e., after the pulse has exited the crystal. The interaction
Hamiltonian is zero for times before t = 0 or after t′. Thus, the limits of integration
in Eq. (3.10) may be extended to infinity, giving rise to a Dirac delta function∫∞

−∞ dt ei(ωp−ωs−ωi)t → δ(ωp −ωs −ωi).

This condition ensures the energy conservation in SPDC. Since we are interested in
SPDC once a steady-state condition has been reached, the integration limits can be
extended to infinity for a steady continuous wave (CW) pump too.
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ws,iwp

L

Figure 3.1: Pump (blue line) and collection beams (red line) are all focused in the middle of
the crystal at z = 0.

(iii) The crystal and the pump beam have typical transverse cross-sections in the
order of millimeters and micrometers, respectively. Hence, we can assume that the
crystal compared to the pump beam is infinitely extended in the transverse direction.
This allows us to extend the integration limits in the x− y plane to infinity, yielding
again a Dirac delta function

∫
dr⊥ ei(qp−qs−qi)r⊥ → δ(qp − qs − qi).

Assuming the crystal has length L and it is placed at z = 0, the remaining spatial
integration in the z direction goes from −L/2 to L/2.
(iv) The pump and the collection beams propagate in the quasicolinear regime (close
to the z axis), and are assumed to be focused in the middle of the crystal (see Fig.
3.1).
(v) The function Aj(ωj) is slowly varying compared to the pump function and the
exponential term in Eq. (3.11). Therefore, we can approximate Aj(ωj) by its value at
the central frequency and take it out of the integrals.
These assumptions yield the biphoton state given by

|Ψ〉 ∝−
i
�h
ε0

∫+L/2

−L/2
dz χ

(2)
eff

∫ ∫
dqsdqi dωs dωi e

i(kp,z−ks,z−ki,z)·z

× V(qs + qi,ωs +ωi) â
†(qs,ωs) â

†(qi,ωi) |vac〉+H.c.,
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where we omitted the coherent state of the laser since it is in the product state with
the biphoton state. This indicates that there is no correlation between the remaining
pump field and generated signal, and idler photons.
The final expression for the biphoton state in the paraxial regime in a more compact
way reads

|Ψ⟩ =
∫ ∫
dqsdqi dωs dωiΦ(qs, qi,ωs,ωi) â†(qs,ωs) â†(qi,ωi) |vac⟩ , (3.12)

where the so-called biphoton mode function is given by

Φ(qs, qi,ωs,ωi) = N0 V(qs + qi,ωs +ωi)
∫+L/2
−L/2

dz χ
(2)
eff(z) e

i(kp,z−ks,z−ki,z)·z, (3.13)

withN0 being the normalization constant. The biphoton mode functionΦ(qs, qi,ωs,ωi)
contains the rich high-dimensional spatio-spectral structure of SPDC that arises from
the coupling between the wave vectors of the pump, signal, and idler beams.

To complete the specification of the biphoton mode function, we need to address
the spatial and spectral properties of the pump beam. We will employ an LG beam for
the spatial distribution of the pump. The advantage of this choice is that an arbitrary
paraxial optical beam can be expressed as a sum of LG beams

∑
p,ℓ ap,ℓ LGℓp. The

mode numbers p and ℓ of an LG beam are associated with the radial momentum and
the OAM projection of photons, respectively [78]. The theory developed for an LG

pump can be easily extended to SPDC with a specific pump configuration. To make
this point clear, consider an arbitrary pump beam, where the expansion coefficients
ap,ℓ of the decomposition

∑
p,ℓ ap,ℓ LGℓp are known. If the known state pumped by an

LG beam is denoted by |ψ⟩p,ℓ, the revised state will be just the linear superposition
with the same coefficients,

∑
p,ℓ ap,ℓ |ψ⟩p,ℓ.

Finally, the temporal distribution of the pump is modeled with a Gaussian envelope
of pulse duration t0, S(ωp) = exp [−(ωp −ω0,p)

2 t20/4] t0/
√
π [79], but which can be

extended to any arbitrary pump spectrum. Concluding, the paraxial pump beam
used in our derivation of the biphoton state is given by

V(qs + qi,ωs +ωi) = LGℓp(qs + qi) exp [−(ωs +ωi −ω0,p)
2 t20/4] t0/

√
π.

3.4.2 Phase mismatch in the z direction

The important component of the mode function (3.13) is the phase mismatch in the z
direction ∆kz = kp,z − ks,z − ki,z, which characterizes the differences in the energies
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and momenta of the signal and idler photons. Accurate determination of ∆kz is
essential for the quantitative description of SPDC, which we will undertake in the
following.

Experimentally generated light sources are usually not monochromatic and often
exhibit a frequency distribution. Consequently, apart from the central frequencies
satisfying the energy conservation ωp,0 = ωs,0 +ωi,0, a bandwidth of frequencies
is generated around the central frequency ω = ω0 +Ω. Here, we assume that the
magnitude of the deviation Ω from the central frequency is significantly smaller than
the central frequency itself, (Ω≪ ω0). Furthermore, in the paraxial approximation,
the modulus of the transverse momentum is much smaller than the modulus of
the momentum |q| ≪ k. Hence, we can apply the Taylor series on kz (Fresnel
approximation) to |q|/k and also on k(Ω) to small Ω,

kz = k(Ω)

√
1−

|q|2

k(Ω)2
≈ k+ Ω

ug
+
GΩ2

2
−

|q|2

2k
,

where k is the modulus of the momentum vector kj = njωj/c, n is the refractive
index, c is the speed of light in vacuum, ug = 1/(∂k/∂Ω) is the group velocity
and G = ∂/∂Ω (1/ug) is the group velocity dispersion, evaluated at the respective
central frequency. Here, we also assume that the propagation is along a principal
axis of the crystal, so we can ignore the Poynting vector walk-off of extraordinary
beams in the crystal. Spatial walk-off occurs only for a light beam with extraordinary
polarization, propagating at some angle against the optical axes, so that the refractive
index and the phase velocity become dependent on that angle. The walk-off angle
can then be calculated from the equation tan ρ = −∂ne/∂θ/ne. The derivative of the
extraordinary index is zero for θ = 0.

We can now substitute the corresponding kz of the pump, signal, and idler beams
into the phase mismatch ∆kz and use the relation ρ2p = ρ2s + ρ2i + 2ρsρi cos (φi −φs)
in the cylindrical coordinates q = (ρ,φ) to arrive at

∆kz = ∆Ω + ρ2s
kp − ks
2kpks

+ ρ2i
kp − ki
2kpki

−
ρsρi
kp

cos (φi −φs), (3.14)

where the frequency part ∆Ω is given by

∆Ω = Ωs+Ωi
ug,p

− Ωs
ug,s

− Ωi
ug,i

+
Gp(Ωs+Ωi)

2

2 −
GsΩ

2
s

2 −
GiΩ

2
i

2 . (3.15)

Here, we assumed the momentum conservation at central frequencies, ∆k = kp −

ks − ki = 0. The condition ∆k = 0 ensures a constructive interference in the crystal
between the pump, signal, and idler beams. The momentum conservation is usually
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performed with birefringent crystals [80] or more recently by periodic poling along
the crystal axis, kp − ks − ki − 2π/Λ = 0, where Λ is the poling period [81].

3.5 biphoton state decomposed in laguerre-gaussian basis

Both the transverse spatial [55, 82] and frequency DOFs [83] have been successfully
used in the continuous space for continuous variable information processing (dif-
ferent from quantum information processing associated with quadrature operators).
However, the continuous variable space is more often discretized using a set of
discrete modes in practical experimental settings. The reason is that discrete modes
are easy to manipulate and detect using efficient experimental techniques [84, 85].
The discretization of the biphoton state has been previously done by using Bessel
[86], Hermite-Gaussian (HG) [69, 87–89], LG [90–92], or Ince-Gaussian (IG) [93] modes.
The discretization of the biphoton state is also useful in those experiments, where the
focus is not on the complete biphoton state, but rather on its projection into a finite
Hilbert space, also known as a subspace state. In this scenario, only a finite number of
discrete modes are sufficient to fully describe the experiment.

3.5.1 Laguerre Gaussian decomposition

We discussed in the last subsection that the pump beam will be modeled with an LG

beam. The angular distribution of an LG beam in the momentum space is given by

LGℓp(ρ,φ) = e
−ρ2w2

4 eiℓφ
∑p
u=0 T

p,ℓ
u ρ2k+|ℓ|, (3.16)

where Tp,ℓ
u reads as

Tp,ℓ
u =

√
p! (p+|ℓ|)!

π

(
w√
2

)2u+|ℓ|+1
(−1)p+u(i)ℓ

(p−u)! (|ℓ|+u)!u! .

These LG modes are eigenstates of the OAM operator [94]. In the context of SPDC, the
projection of OAM is conserved during down-conversion if the paraxial and quasi-
colinear regimes are valid [25, 95, 96]. Therefore, it is convenient to decompose the
biphoton state into LG modes. Moreover, in many settings, the biphoton state shows
cylindrical symmetry. Hence, it becomes very easy to derive analytical expressions
for the LG decomposition of the biphoton state, since the LG modes are cylindrical
symmetric too.
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The biphoton state in the LG basis |p, ℓ,ω⟩ =
∫
dq LGℓp(q) â†(q,ω) |vac⟩ reads

|Ψ⟩ =
∫∫
dωs dωi

∞∑
ps,pi=0

∞∑
ℓs,ℓi=−∞C

ℓ,ℓs,ℓi
p,ps,pi(ωs,ωi) |ps, ℓs,ωs⟩ |pi, ℓi,ωi⟩ , (3.17)

where the coincidence amplitudes are calculated from the overlap integral Cℓ,ℓs,ℓi
p,ps,pi =

⟨ps, ℓs,ωs;pi, ℓi,ωi|Ψ⟩,

Cℓ,ℓs,ℓi
p,ps,pi(ωs,ωi) =

∫∫
dqs dqiΦ(qs, qi,ωs,ωi) [LGℓsps(qs)]

∗[LGℓipi(qi)]
∗. (3.18)

We used the notation Cℓ,ℓs,ℓi
p,ps,pi for the coincidence amplitudes, in order to indicate

the mode numbers of the pump (p, ℓ), signal (ps, ℓs), and idler (pi, ℓi) photons. The
construction of the biphoton state reduces simply to the calculation of Cℓ,ℓs,ℓi

p,ps,pi .
The summations in Eq. (3.17) run over all possible mode numbers. As we men-

tioned, ofthen only a finite number of modes are relevant to the system under
consideration. These summations can then be truncated at some reasonable value to
get an approximate state to the full biphoton state. This is what we call a subspace
state. Truncating the summations in this manner simplifies the mathematical analysis.
It allows, for instance, to construct the density matrix or to calculate the Schmidt de-
composition of the state very easily. The determination of the Schmidt decomposition
is a challenging task to solve for the full biphoton state.
Note, that we discretize here only the transverse spatial DOF, but in principle, it is
also possible to discretize the frequency DOF [97].

3.5.2 Derivation of coincidence amplitudes

In this subsection, we will present the detailed derivation of the integrals in Eq. (3.18)
for the coincidence amplitudes. We will also provide a concise summary at the end
of this subsection. An important step of the derivation, which is worth mentioning,
is that we will show the conservation of OAM in SPDC.
We first substitute Eqs. (3.13)-(3.16) into Eq. (3.18),

Cℓ,ℓs,ℓi
p,ps,pi =N0

p∑
u=0

ps∑
s=0

pi∑
i=0

Tp,ℓ
u (Tps,ℓs

s )∗ (Tpi,ℓi
i )∗

×
∫
dzdρs dρi dφs dφiΘ(z, ρs, ρi,φi −φs)eiℓφs ei(−ℓsφs−ℓiφi), (3.19)
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where the function Θ(z, ρs, ρi,φi −φs) is defined as

Θ(z, ρs, ρi,φi −φs) = χ
(2)
eff(z) [ρ

2
s + ρ

2
i + 2ρsρi cos (φi −φs)]

2u+(|ℓ|−ℓ)
2 ρ

|ℓs|+2s+1
s ρ

|ℓi|+2i+1
i

× exp
[
−

[ρ2s+ρ
2
i+2ρsρi cos (φi−φs)]w

2

4 −
ρ2s w

2
s

4 −
ρ2i w

2
i

4

]
× exp

[
iz

(
∆Ω + ρ2s

kp−ks
2kpks

+ ρ2i
kp−ki
2kpki

− cos (φi −φs)
ρsρi
kp

)]
× t0√

π
e−

t2
0
(Ωs+Ωi)

2

4 (ρs + ρi e
i(φi−φs))ℓ. (3.20)

In Eq. (3.20), the polar angle φ of the pump beam has been expressed as a function
of the signal and idler coordinates,

ei ℓφ = (cosφ+ i sinφ)ℓ =
eiℓφs

ρℓp
(ρs + ρi e

i(φi−φs))ℓ,

by taking into account the conservation of transverse momentum,

qp = qs + qi =

ρs cosφs + ρi cosφi

ρs sinφs + ρi sinφi

 .

The presentation of the coincidence amplitudes Cℓ,ℓs,ℓi
p,ps,pi in Eq. (3.19) with the function

Θ(z, ρs, ρi,φi−φs) follows the goal to show the OAM conservation in SPDC. To achieve
this, we expand the function Θ(z, ρs, ρi,φi −φs) as superposition of plane waves
with the phases exp [iℓ

′
(φi −φs)](Fourier series with complex coefficients),

Θ(z, ρs, ρi,φi −φs) =
∞∑

ℓ
′
=−∞

f
ℓ
′ (z, ρs, ρi)eiℓ

′
(φi−φs). (3.21)

Subsequently, we substitute Eq. (3.21) into Eq. (3.19) and perform the integrations
over the polar angles φs and φi,

∞∑
ℓ
′
=−∞

f
ℓ
′ (z, ρs, ρi)

∫2π
0

∫2π
0
eiℓφs ei(−ℓsφs−ℓiφi)eiℓ

′
(φi−φs)dφsdφi ∝ δℓ ′ ,ℓ−ℓsδℓ ′ ,ℓi .

(3.22)

As expected, the Kronecker delta functions appear in Eq. (3.22) which enforce the
conservation of OAM ℓ− ℓs = ℓi. This conservation holds in the quasicollinear paraxial
regime [98], where the spin-orbital angular momentum coupling is not significant [99].
However, in a noncollinear regime, the conservation of total angular momentum (TAM)
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becomes crucial, and studying this aspect can be an interesting topic for future
investigations.

Going back to the expression (3.19), we now calculate the integrals over polar coor-
dinates φs,i explicitly. For simplicity, we consider the coincidence amplitudes Cℓ,ℓs,ℓi

p,ps,pi

for positive OAM numbers of the pump beam ℓ ⩾ 0. The coincidence amplitudes
for ℓ < 0 are then given by Cℓ,ℓs,ℓi

p,ps,pi = (C−ℓ,−ℓs,−ℓi
p,ps,pi )∗, which follows from Eq. (3.18).

Furthermore, the brackets in Eq. (3.20) should be rewritten as finite sums by using
the binomial formula. For instance, the first bracket is written as

[ρ2s + ρ
2
i + 2ρsρi cos (φi −φs)]u =

u∑
m=0

(
u

m

)
(ρ2s + ρ

2
i )
u−m[2ρsρi cos (φi −φs)]m.

The cosine function can be expressed as the sum of two exponential functions by
using Euler’s formula, which should be again expressed as a Binomial sum. After
this step, the angular integration takes the form of the integral representation of the
Bessel function of the first kind [100]

1

2π

∫2π
0
einφ±iz cos (φ−φ′)dφ = (±i)neinφ

′
Jn(z).

Next, the sum representation of the Bessel function should be used

Jn(z) =

∞∑
r=0

(−1)r

r! Γ(r+n+ 1)

(
z

2

)2r+n
, (3.23)

which transforms the integration over the radial coordinates into

∫∞
0
dρρne−aρ

2
=
Γ(n+12 )

2a
n+1
2

.

The final result is achieved via summing over r from Eq. (3.23) by using the definition
of the Regularized hypergeometric function [101]. The coincidence amplitudes read
for ℓ ⩾ 0

Cℓ,ℓs,ℓi
p,ps,pi =N0 π

3/2 t0 e
−

t2
0
(Ωs+Ωi)

2

4 δℓ,ℓs+ℓi

p∑
u=0

ps∑
s=0

pi∑
i=0

Tp,ℓ
u (Tps,ℓs

s )∗ (Tpi,ℓi
i )∗

ℓ∑
n=0

u∑
m=0

(
ℓ

n

)(
u

m

) u−m∑
f=0

m∑
v=0

(
u−m

f

)(
m

v

)
Γ [h] Γ [b]

×
∫L/2
−L/2

dz χ
(2)
eff(z) e

iz∆Ω
Dd

Hh Bb
2F̃1

[
h,b, 1+ d,

D2

HB

]
, (3.24)
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and Cℓ,ℓs,ℓi
p,ps,pi = (C−ℓ,−ℓs,−ℓi

p,ps,pi )∗ for ℓ < 0. The function 2F̃1 is known as the regularized
hypergeometric function [101]. The coefficients of Eq. (3.24) are given by

H =
w2p

4
+
w2s
4

− iz
kp − ks
2kpks

, D = −
w2p

4
− iz

1

2kp
,

B =
w2p

4
+
w2i
4

− iz
kp − ki
2kpki

, d = ℓi +m−n− 2v,

h =
1

2
(2+ 2s+ ℓ+ ℓi + 2(−f+ u) − 2n− 2v+ |ℓs|),

b =
1

2
(2+ 2f+ 2i+ ℓi + 2m− 2v+ |ℓi|),

where wp, ws, and wi are the beam waists of the pump signal and the idler beams,
respectively.

The expression (3.24) for the coincidence amplitudes constitutes the main result of
this chapter. It allows the spatial and spectral emission profiles to be reconstructed
mode by mode and is applicable in any experimental setting that exhibits cylindrical
symmetry. It can be readily used to calculate many characteristics of SPDC: joint
spectral density, photon bandwidths, pair-collection probability, heralding ratio,
spectral and spatial correlation, and many more. Its novelty in comparison to previous
expressions known in the literature is expressed in the correct description of modal
spatio-spectral coupling under the non-degeneracy condition. Previously, these could
mainly be achieved through numerical calculations or for special cases with a limited
scope of applicability.

3.6 experimental verification

In this subsection, we present the results of the experimental verification of Eq. (3.24).
Two aspects have been tested: the LG mode decomposition of the biphoton state and
the joint frequency spectrum of several LG mode. Here, we will not go much into
detail about the realization of the experiment, but rather what has been measured
and how it compares with the theoretical predictions.

The experiment in Ref. [102] has been restricted to a collimated monochromatic
Gaussian pump (λp = 404.8nm)

V(qs + qi) =
wp√
2π

exp
(
−
w2p

4
|qs + qi|2

)
,

which has been focused by a lens (f1 = 200mm) into the center of a 20mm long type-II
periodically poled potassium titanyl phosphate (KTP) crystal producing SPDC around
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Figure 3.2: Spatial mode decomposition of the spectrally broadband SPDC emission in the
subspace of the LG basis ps,i = 0, 1, 2 and �′ = 0,±1,±2,±3 and for a pump waist
wp = 60 µm and a collection waist ws,i = 30 µm.

809.6nm. The resulting pump waist is wp ≈ 60µm. The fact of a CW laser S(ωp) ∝
δ(ωp −ω0,p) sets the condition Ωs = −Ωi := Ω. Additionally, OAM conservation
ensures �s = −�i = 0 := �′. Therefore, the biphoton state is simplified to

|Ψ〉 =
∫∫

dΩ

∞∑
ps,pi=0

∞∑
�′=−∞

C
|�′|
ps,pi(Ω) |ps, �′,Ω〉 |pi,−�′,−Ω〉 , (3.25)

where the coincidence amplitudes C
|�′|
ps,pi are given by

C
|�′|
ps,pi(Ω) ∝

ps∑
s=0

pi∑
i=0

wp√
2
(Tps,�′

s )∗ (Tpi,−�′

i )∗

∫L/2
−L/2

dz exp
[
iz

(
Ω

ui
−

Ω

us
−

Ω2

2
(Gi +Gs)

)]

D−|�′|

H1+s B1+i 2F̃1

[
1+ s, 1+ i, 1− |�′|,

D2

HB

]
. (3.26)

First, we consider the joint mode decomposition of the biphoton state into the LG

basis. The spatial mode decomposition has been performed by projecting the biphoton
states in different combinations of LG modes |�i,pi, �s,ps〉 〈�i,pi, �s,ps|. Specifically,
we focused on the subspace of the LG basis with ps,i = 0, 1, 2 and �′ = 0,±1,±2,±3.
The collection waists for both the signal and idler photons were fixed at ws,i = 30

µm. Figure 3.2 displays the experimental and theoretical mode correlation matrix
obtained in the broadband regime, without the use of frequency filters. The highest
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Figure 3.3: Illustration of the biphoton state decomposed into the LG basis. On the right side,
the joint spectrum of six modes of the LG decomposition is depicted. Experimental
measurements are shown with dotted curves taken from Ref. [102], while the
theoretical calculations are presented with solid curves.

amplitude is detected in the fundamental Gaussian mode. The theoretical correlation
matrix has been calculated with Eq. (3.26) by summing over the range of frequencies
Ω = 4 nm. As we can see, the mode decomposition of the biphoton state encoded in
amplitudes C

|�′|
ps,pi agrees remarkably well with the experimental observations.

The spectral dependence of each spatial mode can be analyzed by sending one
of the photons to a monochromator. This process automatically projects the idler
photon into the spectral state, ωi = ωp −ωs. Figure 3.3 shows the joint spectrum of
different spatial modes. The center wavelength of high-order modes is observed to be
shifted from the quasicollinear phase-matched wavelength due to the high transverse
momentum contributions. This observation is expected since high-order modes carry
a high average transverse momentum magnitude. Consequently, the phase mismatch
is compensated at different wavelengths. Here, we again can confirm the agreement
between the theory and the experiment. More realizations of the experiment were
performed for different crystal lengths, pump, and collection waists. All results show
very good agreement with the theoretical predictions.

It is evident from Fig. 3.3 that different spatial LG modes exhibit distinct spectra,
i.e., any modification to the spatial properties results in corresponding alterations
in the spectrum. This is called spatio-spectral coupling. We can conclude that there
are two distinct types of correlation in SPDC. The first is the correlation between
signal and idler photons, indicating that the phase matching function cannot be
factorized into signal and idler components, Φ(qs, qi,ωs,ωi) �= Φs(qs,ωs)Φi(qi,ωi).
The second is the correlation between spatial and spectral DOFs of a single photon,
Φ(qs, qi,ωs,ωi) �= Φq(qs, qi)Φω(ωs,ωi).
Our theoretical description of the biphoton state in the paraxial regime has been
successfully validated through experimental measurements. An advantage of the
expression (3.24) is its flexibility, as it does not specify the pump beam or the crystal
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nonlinearity in terms of χ(2). This opens up possibilities for exploring how different
pump beams and crystal configurations can affect the spatio-spectral coupling and
the entanglement between the signal and idler photons.

In more detail, the experimental work [102] aimed to address settings inaccessible
with previous theoretical works based on the narrowband and the plane wave
approximation.

At the end of this section, I would like to acknowledge Carlos Sevilla-Gutiérrez
and Varun Raj Kaipalath for the collection and analysis of the experimental data.
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S PAT I O - S P E C T R A L C O U P L I N G I N S P O N TA N E O U S
PA R A M E T R I C D O W N - C O N V E R S I O N

The usual applications in quantum optics utilize either the spatial or spectral DOFs,
neglecting the correlation between them. However, as already mentioned in the
introduction, the spatio-spectral coupling remains a fundamental issue in many
protocols based on entangled photon sources. This coupling introduces a vulnerability
to entanglement and makes it more susceptible to external influences. Therefore, it
is crucial to thoroughly understand how the decoupling between the spatial and
spectral DOFs of photons can be realized.

The most straightforward approach to achieve this decoupling is to employ filtering
techniques [33]. Spatial filtering is based on a single-mode fiber (SMF) that collects
photons in a Gaussian mode and blocks all photons with higher spatial modes.
Spectral filtering is achieved by the application of narrowband filters to select a
specific range of wavelengths for the signal and idler photons. Although filtering can
eliminate the spatio-spectral coupling, it is associated with high optical losses, which
could be problematic, especially considering the low conversion rate of SPDC.

The insights drawn from Fig. 3.3 illustrate that the SPDC photons can exhibit distinct
spectra when they are projected into different spatial LG modes. An alternative
technique to achieve the spatio-spectral decoupling is to ensure uniform spectra
across all modes of the LG decomposition (3.17). In that scenario, altering the spatial
modes will not result in different spectral responses, which indicates the decoupling
of the spatial and spectral DOFs. In this chapter, our main focus is to investigate under
which conditions different spatial modes exhibit an identical spectrum. Before delving
into that task, we will analyze the impact of spectral filters on the spatio-spectral
coupling and evaluate their efficiency.

33
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Parts of the material presented in this chapter were published previously in the
following reference:

Generalized description of the spatio-temporal biphoton state in spontaneous parametric
down-conversion
B. Baghdasaryan, C. Sevilla-Gutiérrez, F. Steinlechner, and S. Fritzsche
PHYSICAL REVIEW A 106, 063711 (2022)

4.1 spectral filtering

We have already discussed in Chap. 2.4.3 that tracing over the signal photon will
leave the idler in a mixed state if there is entanglement between the two photons.
Similarly, we can investigate the correlation between the spatial and spectral DOFs

of photons. Instead of tracing over the state of a single photon, we can perform a
trace operation over a specific DOF. For instance, the reduced spatial biphoton state is
obtained by tracing out the frequency DOF [103]

ρq = Trω(ρ) =
∫
dω′′

s dω
′′
i ⟨ω′′

s ,ω′′
i | ρ |ω

′′
s ,ω′′

i ⟩

=

∫
dqsdωsdqidωidq ′

sdq ′
i Φ(qs, qi,ωs,ωi)Φ∗(q ′

s, q ′
i,ωs,ωi) |qs, qi⟩ ⟨q ′

s, q ′
i| .

(4.1)

The correlation between the spatial and spectral DOFs can be determined by calculat-
ing the purity of the reduced spatial biphoton state

Tr(ρ2q) =
∫
dqs dωs dqi dωi dq ′

s dω
′
s dq ′

i dω
′
i

×Φ(qs, qi,ωs,ωi)Φ∗(q ′
s, q ′

i,ωs,ωi)Φ(q ′
s, q ′

i,ω
′
s,ω

′
i)Φ

∗(qs, qi,ω ′
s,ω

′
i).

(4.2)

The spatio-spectral correlation is absent, if and only if the condition Tr(ρ2q) = 1 is
ensured. Similarly, we can compute the purity of the reduced spectral biphoton state
by tracing out the transverse momentum ρω = Trq(ρ). However, the purity of the
reduced spectral biphoton state does not yield any new insights beyond what can
be obtained from the purity of the reduced spatial biphoton state, since we have
Tr(ρ2q) = Tr(ρ2ω).

The expression in Eq. (4.2) can be enormously simplified for the degenerate scenario
ks = ki = kp/2



4.1 spectral filtering 35

2 4 6 8 10

0.2

0.4

0.6

0.8

Figure 4.1: Purity of the reduced spatial biphoton state as a function of the bandwidth of
spectral filters.

Tr(ρ2q) ∝
∫
dωs dωi dω

′
s dω

′
i Sp(ωs +ωi)

2 Sp(ω
′
s +ω

′
i)
2

×
∣∣∣∣∫ dq− ϕ(q−,ωs,ωi)ϕ(q−,ω ′

s,ω
′
i)

∣∣∣∣2, (4.3)

where q− = qs − qi, Sp(ωs +ωi) is the temporal distribution of the pump, and the
phase matching function from Eq. (3.13) reads now

ϕ(q−,ωs,ωi) =
∫L/2
−L/2

dz χ
(2)
eff(z) exp

[
iz

(
∆Ω(ωs,ωi) +

|q−|
2

2kp

)]
.

The most remarkable aspect of the expression (4.3) is the absence of the spatial
distribution of the pump beam. This implies that the purity Tr(ρ2q) is independent
of the spatial pump beam. In other words, the spatio-spectral coupling cannot be
reduced by just changing the spatial distribution of the pump beam, when the full
biphoton state is considered. However, the pump shaping can be used to reduce the
spatio-spectral correlations in a given subspace, which is discussed in Sec. 5.2.

In general, the integrals in Eq. (4.3) have to go over all possible frequencies. The
use of spectral filters in front of signal and idler photons truncates the integration
over the frequency according to the bandwidth of the filter. Figure 4.1 illustrates
the relationship between the purity and the filter bandwidth expressed in terms of
wavelength. The calculations are performed with the same parameters, which have
been used in the experiment described in Sec. 3.6. Achieving a nearly pure state
necessitates the use of extremely narrow filters. In particular, a standard spectral
filter with a bandwidth of 1 nm would leave the state in a mixed state with a purity
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Figure 4.2: Brightness of the SPDC source as a function of the bandwidth of the spectral filter.
The curve is normalized in the range of ∆λ = 10 nm.

of 0.33. In order to achieve a purity of 0.99, a narrowband filter with a bandwidth of
∆λ = 0.001 nm is required, which is practically impossible.

We can conclude that narrowband filters are not effective in completely eliminating
the mixed nature of the state. Moreover, the filtering process significantly compro-
mises the brightness of the source. Figure 4.2 shows the normalized brightness as
a function of the filter bandwidth. The normalization has been done for ∆λ = 10

nm. As we can see, the total brightness is reduced up to 0.5 already for a very broad
filter of bandwidth ∆λ ≈ 8 nm. These findings illustrate that an alternative and more
robust technique is necessary to eliminate spatio-spectral correlations without mainly
relying on filtering.

Results in Fig. 4.2 are applicable only for this particular experiment. It is possible
to generalize the results by normalizing the filter bandwidth to the full width at half
maximum of plane wave collinear SPDC. However, the results displayed in Fig. 4.2
remain qualitatively the same.

4.2 spatio-spectral coupling and the gouy phase

We explore the possibility of achieving uniform spectra across different spatial modes
of the LG decomposition (3.17). This will ensure the decoupling of the spatial and
spectral DOFs for selected modes since the joint spectrum of photons will remain
constant when switching between these LG modes. To facilitate future discussion, it
is advantageous to emphasize that the shape of the spectrum of photons is intricately
linked to the Gouy phase of interacting beams.

The role of the Gouy phase in nonlinear processes has been investigated before.
For instance, in SPDC, the variation of the Gouy phase ψG(z) = (N+ 1) arctan(z/zR)
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within the propagation distance has been used to control the relative phase of two
different LG modes of the measurement basis [104, 105]. Here, N is the combined LG

mode number N = 2p+ |ℓ|, and zR is the Rayleigh length. Similarly, in the context of
four-wave mixing (FWM), the conversion dynamics between LG modes are profoundly
influenced by the Gouy phase [106]. The authors have observed that the presence
of a relative Gouy phase between modes with different mode numbers N leads to a
reduction in FWM efficiency.

We have a similar situation in SPDC. Assume pump, signal, and idler beams
have been projected into LG modes with different mode numbers N. This results
in different Gouy phases for the three beams while they propagate, inducing a
phase mismatch between them. The presence of a phase mismatch, in turn, leads
to a reduced efficiency of mode down-conversion. How large the reduction of the
efficiency is, depends on the phase mismatch. In other words, different relative Gouy
phases (phase mismatches),

ψG,R = ψG,p −ψG,s −ψG,i,

result in distinct efficiencies of spatial mode down-conversion. Since the spatial and
spectral DOFs are coupled, the spectrum of spatial modes will also be impacted
by ψG,R. In summary, the relative Gouy phases influence the spatial mode down-
conversion, and thus also the spectrum of the spatial modes due to the spatio-spectral
coupling. This statement can be proved analytically for the degenerate scenario
kp = 2ks and fixed zR,p = zR,i = zR,s, which we show next.

The condition zR,p = zR,i = zR,s matches the Gouy angle arctan(z/zR) for all beams.
Hence, the relative Gouy phase can be written as

ψG,p −ψG,s −ψG,i = (Np −Ns −Ni − 1) arctan(z/zR).

This equation demonstrates that ψG,R is now fully determined by the relative mode
number NR = Np −Ns −Ni. Hence, the relative Gouy phase should remain un-
changed, if NR is fixed.

If the Gouy phase is the only reason for the existence of different spectral depen-
dencies among spatial modes, the shape of the spectrum should remain the same for
a fixed ψG,R, or equivalently for a fixedNR. Indeed, after simplifying the expression of
the coincidence amplitudes from Eq. (3.24) under the degeneracy condition kp = 2ks,
we obtain

Cℓ,ℓs,ℓi
p,ps,pi(Ωs,Ωi) ∝

∫L/2
−L/2

dz eiz∆Ω
(i2z+ kpw

2
p)
NR

(−i2z+ kpw2p)
NR+1

. (4.4)
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Figure 4.3: Interplay of the Gouy phase with the spectral DOF. Consider a pump beam that
consists of a superposition of the LG modes LG−2

1 +LG0
0. We explore three distinct

mode combinations for the signal and idler, which could be generated in the
down-conversion process, each having the same relative mode number NR = −6.
The spectra corresponding to these three modes are all identical, differing only by
a constant factor.

We see from Eq. (4.4) that the spectral response of coincidence amplitudes
C
ℓ,ℓs,ℓi
p,ps,pi(Ωs,Ωi) encoded only in the term eiz∆Ω remains unaffected up to a constant

if NR is fixed. On the other hand, NR can be rewritten as

NR =
ψG,R

arctan(z/zR)
+ 1. (4.5)

Therefore, it follows from Eqs. (4.4) and (4.5) that the spectral response of spatial
modes is determined by the relative Gouy phase ψG,R. This confirms our initial
assertion. We would like to remind that the simplified form of Eq. (4.4) is a result of
the assumptions kp = 2ks and zR,p = zR,i = zR,s. The analytical proof for the general
case can require more effort, which we omit here.

The interplay of the Gouy phase with the spectral DOF can be illustrated in a
numerical example. Consider a pump beam, which is a superposition of the LG modes
LG−2

1 + LG00. Within this framework, we examine three possible mode combinations
for signal and idler, all having the same relative mode number NR = −6. The spectra
corresponding to these three modes are presented in Fig. 4.3. Remarkably, despite
utilizing distinct LG pump modes, a careful selection of signal and idler modes
leads to an identical shape of the spectrum for all three mode combinations, up to a
constant factor.
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H I G H - D I M E N S I O N A L E N TA N G L E D S TAT E S I N T H E S PAT I A L
D E G R E E O F F R E E D O M

The pioneer quantum-entanglement-based protocols, such as quantum cryptography
or quantum teleportation, relied on two-dimensional quantum systems called qubits.
In Sec. 2.2, we have already introduced the Bell state

|Ψ⟩ = 1√
2
(|H⟩A |V⟩B + |V⟩A |H⟩B),

which is a two-dimensional entangled state. Each system (qubit) in this state has
two levels, corresponding to vertical and horizontal polarization. Apart from two-
dimensional systems, we can also think of discrete high-dimensional quantum sys-
tems, also known as qudits. A qudit is a quantum system that is not constrained to
two dimensions but can have any number of discrete levels.

Qudits offer several advantages over qubits. First, they provide an increased
information capacity compared to qubits. Any additional orthogonal state used in
the encoding scheme increases the encoded information. In addition, qudit states
demonstrate an increased resilience against background noise and potential hacking
attacks. Therefore, the utilization of qudits in quantum cryptographic protocols can
enhance the security and resilience of quantum communication systems [38].

Orbital angular momentum states of photons are a promising candidate to im-
plement qudits. Unlike polarization, OAM can take on an infinite number of values,
ranging from minus infinity to plus infinity. Theoretical investigations have explored
entangled OAM state generation in SPDC in the context of the thin crystal approxi-
mation [107, 108]. Experimental advancements have gone beyond the thin crystal
regime and successfully generated high-dimensional entangled states in the OAM

DOF [37, 109]. The state generation in Ref. [109] has been achieved by employing a su-
perposition of LG modes as the pump source. The correct superposition for the pump
has been determined with a simultaneous perturbation stochastic approximation
algorithm [110].

39
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In this section, we also employ a superposition of LG modes for the pump, to
generate entangled states in the OAM basis. This includes the states generated in Ref.
[109]. Our method is very straightforward and requires no optimization algorithm.
In comparison to Refs. [107, 108], our approach addresses the impact of the spatio-
spectral coupling on high-dimensional entangled states and goes beyond the thin
crystal regime. In particular, in order to generate high-dimensional entangled states
in the spatial DOF, it is necessary to carefully select those modes that maintain the
same relative Gouy phase, as in the example of Fig. 4.3. Note that state engineering in
the thin crystal regime can be inefficient due to an infinite amount of spatial modes
generated in the down-conversion.

Parts of the material presented in this chapter were published previously in the
following reference:

Generalized description of the spatio-temporal biphoton state in spontaneous parametric
down-conversion
B. Baghdasaryan, C. Sevilla-Gutiérrez, F. Steinlechner, and S. Fritzsche
PHYSICAL REVIEW A 106, 063711 (2022)

5.1 pump beam engineering

5.1.1 Narrowband regime

As an illustrative example, we consider the subspace of the first four positive OAM

numbers ℓs, ℓi = 0, 1, 2, 3, referred to as S4. For simplicity, the radial modes are set to
ps = pi = 0. We first apply the narrowband regime Ωs = Ωi = 0, and later generalize
the approach to the broadband regime. Here we use the simplified notation,

|ps = 0, ℓs,Ωs = 0⟩ |pi = 0, ℓi,Ωi = 0⟩ := |ℓs, ℓi⟩ . (5.1)

Our goal is to engineer a four-dimensional maximally entangled state in this subspace.
We start with the discussion of a possible decoupling of spatial and spectral DOFs.

We have demonstrated that decoupling within a specific subspace becomes feasible
when all modes from that subspace possess the same relative Gouy phase. In S4,
all modes consist of only positive OAM numbers, which leads to the same relative
mode number NR = |ℓ|− |ℓs|− |ℓi| = 0, where ℓ = ℓs + ℓi. Consequently, all modes
exhibit the same relative Gouy phase or, i.e., the same spectrum when the condition
zR,p = zR,i = zR,s is satisfied. This ensures that any state in this subspace is separable
in terms of the spatial and spectral DOFs. Our attention can now be directed toward
the engineering process itself.
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The pump beam is modeled as a superposition of LG modes in the following way,

V =

6∑
ℓ=0

aℓ LGℓ0,

where the range of the summation is determined by the minimum and maximum
values of OAM in the subspace, ℓ = [min(ℓs + ℓi), max(ℓs + ℓi)]. The expansion coeffi-
cients aℓ are initially unknown and need to be determined. Since the pump function
appears in Eq. (3.17) linearly, the corresponding state in the subspace S4 can be
expressed as

|Ψ4⟩ =
3∑

ℓs,ℓi=0

( 6∑
ℓ=0

aℓC
ℓ,ℓs,ℓi
0,0,0

)
|ℓs, ℓi⟩ .

We can examine the matrix representation of the state |Ψ4⟩, to find the appropriate
coefficients aℓ. The matrix consists of 4× 4 elements and is given by the left-hand
side of the following expression

a0C0,0 a1C1,0 a2C2,0 a3C3,0

a1C0,1 a2C1,1 a3C2,1 a4C3,1

a2C0,2 a3C1,2 a4C2,2 a5C3,2

a3C0,3 a4C1,3 a5C2,3 a6C3,3

 →


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 , (5.2)

where we used the notation Cℓs+ℓi,ℓs,ℓi
0,0,0 = Cℓs,ℓi . The state becomes maximally entan-

gled in this subspace when the matrix takes the form of a permutation matrix (under
consideration of the normalization of the state): each row and each column contain
exactly one entry of 1 and the rest are 0. The permutation matrix ensures the linear
independence of the selected modes.

The right-hand side of the expression (5.2) is such a state that can be engineered if
we select a1 = 1/C0,1 ≈ 1/C1,0, a5 = 1/C2,3 ≈ 1/C3,2 and a0 = a2 = a3 = a4 = a6 = 0,
where we assumed degenerate SPDC, kp ≈ 2ks ≈ 2ki. This choice leads to the
(normalized) state

|Ψ4⟩ =
1

2
(|0, 1⟩+ |1, 0⟩+ |2, 3⟩+ |3, 2⟩).



42 high-dimensional entangled states in the spatial degree of freedom

809.5 810.0 810.5 811.0

-0.5

0.5

1.0

(a) (b) (c)

Figure 5.1: Normalized high-dimensional entangled states (a) |Ψd
4 ⟩ =

1
2(|0, 0⟩+ |1, 1⟩+ |2, 2⟩+

|3, 3⟩) and (b) |Ψ4⟩ = 1
2(|0, 1⟩+ |1, 0⟩+ |2, 3⟩+ |3, 2⟩). The state |Ψ4⟩ is maximally

entangled in the subspace ℓs, ℓi = 0, 1, 2, 3, but not |Ψd
4 ⟩ because of the ad-

ditional modes in the subspace. The state |Ψd
4 ⟩ is maximally entangled in a

smaller subspace, namely in the subspace consisting of only the four modes
{|0, 0⟩ , |1, 1⟩ , |2, 2⟩ , |3, 3⟩}. (c) The modes of the signal (idler) involved in the state
|Ψ4⟩ have the same spectrum (blue solid curve) compared to the modes out of the
subspace shown in the same color as corresponding bars (dotted curve for |2,−1⟩
and dashed curve for |3,−2⟩). These curves correspond only to the spatial modes
from (b).

Thus, the state engineering is finished, where the coefficients of the pump superpo-
sition {a1,a5} should be calculated with the expression (3.24). In the same way, the
diagonal four-dimensional state from Ref. [109],

|Ψd4 ⟩ =
1

2
(|0, 0⟩+ |1, 1⟩+ |2, 2⟩+ |3, 3⟩),

can be engineered if we select {a0,a2,a4,a6} to be equal to {1/C0,0, 1/C1,1, 1/C2,2,
1/C3,3} and a1 = a3 = a5 = 0.

The states |Ψd4 ⟩ and |Ψ4⟩ are presented in Figs. 5.1 (a) and (b) with the highest
bars, blue-colored on top. As we can see, the modes contributing to the states |Ψd4 ⟩
and |Ψ4⟩ represent just a part of the full OAM emission (spiral spectrum). Therefore,
the postselection should be the final step in the engineering process, where the
undesirable modes are sorted out. The generation of the state |Ψd4 ⟩ gives rise to
undesired modes even in the subspace S4, which will reduce the entanglement in
this subspace, as will be explained better later.

5.1.2 Broadband regime

In the broadband regime, we should account for the spectral dependence of the
coincidence amplitudes when calculating the coefficients aℓ of the pump beam. For
instance, the first coefficient in the narrowband regime from the preceding section is

a1 =
1

C1,0,10,0,0(Ω = 0)
.
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In order to generate the same state in the broadband regime, we need to calculate
the magnitude of the coincidence amplitudes over the measured frequency band

a1 =
1(∫

dΩ |C1,0,10,0,0(Ω)|2
)0.5 ,

where the integration is limited to the bandwidth of the spectral filter.

5.2 schmidt number and the purity of the subspace state

In order to evaluate the efficiency of the state preparation in the subspace S4, we
can calculate the Schmidt number and the purity of the presented states |Ψd4 ⟩ and
|Ψ4⟩. The calculations employ the same experimental parameters as in Ref. [109]: 15-
mm-thick periodically poled KTP crystal designed for a collinear degenerate type-II
phase matching, CW laser of wavelength 405 nm with beam waist wp = 25 µm and
detection beams of radius ws,i = 33 µm.

The modes {|0, 2⟩ , |2, 0⟩ , |1, 3⟩ , |3, 1⟩} in Fig. 5.1 (a) are non-desirable and lead to
a decrease of entanglement in S4. As a result, the state |Ψd4 ⟩ exhibits an azimuthal
Schmidt number of K = 2.04, which is less than the Schmidt number of 4 calculated
for the state |Ψ4⟩. Hence, the preparation of |Ψ4⟩ is more efficient within S4 compared
to |Ψd4 ⟩. Here the term azimuthal refers to the fact that only OAM modes are considered
and the radial modes are set to ps = pi = 0.

It should be noted that a Schmidt number of 4 is necessary but not sufficient for a
four-dimensional state to be classified as maximally entangled. To achieve maximal
entanglement in S4, the state |Ψ4⟩ must also be spatially pure, indicating the absence
of the spatio-spectral coupling.

As previously mentioned, all states generated in the subspace S4 are decoupled
in the spatial and spectral DOFs, as all modes in S4 possess the same relative Gouy
phase. In order to calculate the spatial purity of |Ψ4⟩ explicitly, we need the reduced
density matrix of the state. Since we consider only OAM of photons, the biphoton
state transforms into

|Ψ⟩ =
∫∫
dΩ

∑∞
ℓs,ℓi=−∞Cℓs,ℓi(Ω) |ℓs,Ω⟩ |ℓi,−Ω⟩ . (5.3)

The trace over the spectral domain of the density matrix ρ = |Ψ⟩⟨Ψ| yields

ρq =
∑
ℓs,ℓi

∑
ℓ̃s,ℓ̃i

A
ℓ̃s,ℓ̃i
ℓs,ℓi

|ℓs, ℓi⟩⟨ℓ̃s, ℓ̃i|, (5.4)
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where Aℓ̃s,ℓ̃i
ℓs,ℓi

=
∫
dΩCℓs,ℓi(Ω) [Cℓ̃s,ℓ̃i(Ω)]∗ is the overlap integral of the spectra of the

OAM modes. The equation (5.4) is very useful to calculate the purity of the reduced
spatial biphoton state in small subspaces in comparison to Eq. (4.1), where we have
integrals instead of summations.

We run the summations in Eq. (5.4) over ℓs, ℓi, ℓ̃s, ℓ̃i = 0, 1, 2, 3, renormalize the state,
construct the density matrix of the subspace ρq,s, and calculate the corresponding
purity Tr(ρ2q,s). Here the subscript s indicates the consideration of the subspace S4.
In fact, the states |Ψ4⟩ and |Ψd4 ⟩ are both pure, Tr(ρ2q,s) = 1, which aligns with our
previous argument. The spectra of the modes contributing to the state |Ψ4⟩, namely
|0, 1⟩ , |1, 0⟩ , |2, 3⟩ , |3, 2⟩, are identical and depicted by the blue curve in Fig. 5.1 (c).

5.3 schmidt number and the purity of the full state

The subspace S4 is a part of the full SPDC emission. In Fig. 5.1 (b), the first four
OAM modes out of the subspace, |2,−1⟩, |−1, 2⟩, |−2, 3⟩ and |3,−2⟩, possess different
spectra in contrast to the modes in S4, shown in Fig. 5.1 (c). The appearance of modes
with distinguishable spectra indicates the inseparability of the spatial and spectral
DOFs out of S4. The more distinguishable modes contribute to the state, the stronger
the spatio-spectral coupling. This, in turn, leads to a decreased purity for the reduced
spatial biphoton state.

In a small subspace such ℓs, ℓi = −3,−2, ..., 2, 3, the purity of the state from Fig. 5.1
(a) equals 0.81 and for the state from Fig. 5.1 (b) 0.72 . For a comparison, a fundamental
Gaussian pump beam leads to a purity of 0.6. However, these differences are valid
only for a finite size of subspaces. As we have already shown in Sec. 4.1 [see Eq.
(4.3)], the purity of the reduced spatial biphoton state is independent of the spatial
distribution of the pump beam. The only difference in the state preparation of the
states |Ψ4⟩ and |Ψd4 ⟩ is the pump beam. Therefore, the states |Ψ4⟩ and |Ψd4 ⟩ possess
overall the same purity when the whole Hilbert space is considered.

The Schmidt number of the full spatio-spectral biphoton state is also different in
comparison to the subspace state. The total Schmidt number can be calculated from
the reduced density matrix in space and frequency for the signal by tracing over the
idler ρsignal = Tridler(ρ) [103]

Tr(ρ2signal) =

∫
dqs dΩs dqi dΩi dq ′

s dΩ
′
s dq ′

i dΩ
′
s

×Φ(qs, qi,Ωs,Ωi)Φ∗(q ′
s, qi,Ω ′

s,Ωi)

×Φ(q ′
s, q ′

i,Ω
′
s,Ω

′
i)Φ

∗(qs, q ′
i,Ωs,Ω

′
i). (5.5)
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The Schmidt number is then given by K = 1/Tr(ρ2signal) [see Eq. (2.10)]. The number
of both spatial and spectral Schmidt modes in the range of frequencies 810± 10 nm
equals 140, where 810 nm is the central frequency for the signal and idler photons.
This high Schmidt number comes from the spectral entanglement since we consider a
CW pump. In contrast, if we consider only photons generated at the central frequency
810 nm (narrowband regime), the number of Schmidt modes is small and equals 5.8.
This is the average number of the spatial modes generated only at the frequency 810
nm.

Finally, a small remark about the thin crystal regime, which is achieved for L≪
zR,p [59]. In that regime, the signal and idler beams have a very broad frequency
bandwidth, which can be considered as a constant. Therefore, the biphoton state
effectively possesses only the spatial DOF leading to spatio-spectral decoupling. The
problem with this regime is that it gives rise to a huge amount of spatial modes.
Assume we keep all parameters the same as in Ref. [109], but change the crystal
length to L = 1 µm. The thin crystal regime is then well achieved according to Ref.
[59]. The state becomes spatially pure but possesses a large amount of Schmidt
modes, 107. This implies that if we are interested in only a few modes from the
whole Hilbert space, most of the modes should be sorted out, which makes the state
engineering in the thin crystal regime inefficient.

5.4 n-dimensional state in the oam basis

In the preceding sections, we have shown how to engineer and characterize four-
dimensional entangled states. A natural next step is the generalization of state
engineering to an N-dimensional Hilbert space. There are several ways, how an
N-dimensional state can be engineered. The main aspects that should be taken into
account are again the decoupling of the spatial and spectral DOFs and the efficiency
of the state preparation.

The simplest is to generate an N-dimensional state on the diagonal subspace, where
ℓs = ℓi. In this case, all modes on the diagonal share the same relative mode number,
as indicated by the relation

NR = |ℓs + ℓi|− |ℓs|− |ℓi| = |2ℓs|− 2|ℓs| = 0.
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Therefore, the modes in this subspace have the same relative Gouy phase (assuming
zR,p = zR,i = zR,s), which in turn leads to the decoupling of spatial and spectral DOFs.
In order to engineer an N-dimensional entangled state in a diagonal subspace Sd,

|ΨN⟩ =
1√
N

∑
ℓ∈ Sd

|ℓ, ℓ⟩ ,

the pump beam needs to have the following form

V =
∑
ℓ∈ Sd

1

Cℓ,ℓ
LG2ℓ0 , (5.6)

where the sum goes over the joint OAM modes included in Sd. The resulting state
is maximally entangled only within the subspace Sd. The coincidence amplitudes
are calculated according to our notation Cℓ,ℓ = C

2ℓ,ℓ,ℓ
0,0,0 with Eq. (3.24). For instance, to

construct the arbitrarily three-dimensional state,

|Ψ3⟩ =
1√
3
(|−2,−2⟩+ |1, 1⟩+ |3, 3⟩),

the corresponding pump beam has to be a superposition of three LG modes in the
following way

V ∝ 1

C−2,−2
LG−4

0 +
1

C1,1
LG20 +

1

C3,3
LG60. (5.7)

Figure 5.2 displays the mode distribution of the biphoton state in the LG basis for the
pump given by Eq. (5.7). As expected, the three modes |−2,−2⟩, |1, 1⟩ and |3, 3⟩ have
the same amplitude. However, many undesirable modes are generated outside the
considered subspace, which need to be filtered out in the postselection process. The
state |Ψ3⟩ is maximally entangled in the subspace consisting of only the same modes
contributing to the state, {|−2,−2⟩ , |1, 1⟩ , |3, 3⟩}.

The relative phase between modes is also straightforward to control. Assume that
the modes |−2, 2⟩ and |1, 1⟩ should have phase differences θ1 and θ2 compared to the
mode |3, 3⟩

|Ψ3⟩ =
1√
3
(eiθ1 |−2,−2⟩+ eiθ2 |1, 1⟩+ |3, 3⟩).

It is then easy to show that the pump beam should undergo a small adjustment

V ∝ eiθ1

C−2,−2
LG−4

0 +
eiθ2

C1,1
LG20 +

1

C3,3
LG60.
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Figure 5.2: Normalized three-dimensional entangled state |Ψ3⟩ = 1√
3
(|−2,−2⟩+ |1, 1⟩+ |3, 3⟩).

The state |Ψ3⟩ is maximally entangled in the subspace consisting of only three
modes {|−2,−2⟩ , |1, 1⟩ , |3, 3⟩}.

This just implies that the phase of the pump mode is transferred to the corresponding
generated mode.

The high-dimensional state generation in the diagonal subspace is one of the
possibilities. As we have already seen, it is possible to generate a four-dimensional
entangled state with off-diagonal modes [see the state |Ψ4⟩ = 1

2(|0, 1⟩+ |1, 0⟩+ |2, 3⟩+
|3, 2⟩) in Fig. 5.1 (b)]. We have also shown that the state preparation for |Ψ4⟩ is more
efficient than the preparation of the diagonal state |Ψd4 ⟩ = 1

2(|0, 0⟩+ |1, 1⟩+ |2, 2⟩+
|3, 3⟩). The reason is the appearance of modes outside the considered subspace, which
are more in the diagonal state engineering approach than in the off-diagonal case.
The appearance of more modes is the result of mixing four LG modes for the pump
beam in the case of |Ψd4 ⟩, while for the state |Ψ4⟩ only two pump modes are required.

It is also possible to generate off-diagonal entangled states in a five-dimensional
Hilbert space by keeping the condition of the same relative Gouy phase. The general
form of the five-dimensional state can be presented as follows

|ΨG5 ⟩ =
1√
5

(∣∣∣∣r− 12 ,
r+ 1

2

〉
+

∣∣∣∣r+ 12 ,
r− 1

2

〉
+

∣∣∣∣r+ 32 ,
r+ 3

2

〉
+

∣∣∣∣r+ 52 ,
r+ 7

2

〉
+

∣∣∣∣r+ 72 ,
r+ 5

2

〉)
,

where r is an odd integer number r = ±1,±3..., and the superscript G refers to the
term general. The degeneracy of the signal and idler photons is again assumed ks = ki.
The pump, which generates this state, reads

V ∝ 1

C r−1
2 , r+1

2

LGr0 +
1

C r+3
2 , r+3

2

LGr+30 +
1

C r+5
2 , r+7

2

LGr+60 .
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Figure 5.3: Normalized five-dimensional entangled state |Ψ5⟩ = 1√
5
(|−1,−2⟩ + |−2,−1⟩ +

|0, 0⟩+ |1, 2⟩+ |2, 1⟩).

For example, setting r = −3, we get for the pump

V ∝ 1

C−2,−1
LG−3

0 +
1

C0,0
LG00 +

1

C1,2
LG30,

which generates the state

|Ψ5⟩ =
1√
5
(|−1,−2⟩+ |−2,−1⟩+ |0, 0⟩+ |1, 2⟩+ |2, 1⟩). (5.8)

This state is displayed in Fig. 5.3. Note that we ignored in Eq. (5.8) the contribution of
the states |1,−1⟩, |−1, 1⟩, |2,−2⟩, and |−2, 2⟩, which are negligible compared to |0, 0⟩.

The generation of off-diagonal entangled states of dimensions higher than five
becomes challenging. There is no combination of modes that we can select to have
the same amplitude and fulfill the selection rule of the same relative Gouy phase
simultaneously.



6

S PAT I A L LY I N D I S T I N G U I S H A B L E S I N G L E M O D E P H O T O N S
F R O M D O M A I N - E N G I N E E R E D C RY S TA L

Quantum applications, such as measurement-based quantum computing [40, 41],
photonic Boson sampling [33, 42] and photonic quantum repeaters [43] share a com-
mon requirement: the availability of a sufficient number of perfectly indistinguishable
and pure single photons. Indistinguishability in this context refers to the identical
quantum properties exhibited by photons. Purity quantifies the degree to which a
single photon remains isolated from its environment. A highly pure single photon
displays minimal correlation with its surroundings, thereby ensuring its integrity as
an independent quantum entity.

Although single photons can be reliably sourced through SPDC, the process has
limitations in common bulk crystals due to its probabilistic nature. Not all photon
pairs are identical, they may be distinguishable. Moreover, we know from Sec. 5

that the photons exhibit high-dimensional entanglement in terms of both the spatial
and the spectral DOFs, which is not ideal for single-photon sources. Suppose a
measurement is performed only on a single photon, without consideration of the
entire composite system. In that scenario, the measured photon will be in a mixed
state as a result of the correlation with the second photon (see Sec. 2.4.3). Here, we
refer to the reduced mixed state of a single photon as a single-photon state. We also
distinguish between the spatial and spectral purity of the single-photon state, which
are associated with spatial and spectral correlations between signal and idler photons.
The single photon is denoted as pure, if no correlation exists with its partner photon.

As discussed earlier in Sec. 4.1, the simplest approach to eliminate the correlation
between signal and idler photons is the utilization of spatial and spectral filtering
techniques [33]. Spatial filtering is usually very easy to implement by just projecting
photons into a SMF, allowing only photons in a Gaussian mode to pass through.
Spectral filtering is a more complex task, especially when one needs to isolate a
specific spectral state rather than just a range of frequencies. When considering both
the spatial and the spectral DOFs simultaneously, the use of filters to select a particular
single-mode state becomes less desirable due to the inherent spatio-spectral coupling

49
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in SPDC. The filtering process also introduces high optical losses, as mentioned in Sec.
4.1.

Recent studies have explored that domain-engineered crystals with a modified
effective nonlinearity χ(2)eff can minimize the spectral correlations between signal and
idler photons [3, 44–50]. Unlike traditional bulk crystals with a constant nonlinearity
χ
(2)
eff = const., domain-engineered crystals can offer a tailored Gaussian nonlinear

response, resulting in a spectral purity of approximately 99%. However, the studies
using the Gaussian nonlinearity have only considered the spectral properties of
photons. The photons have still been spatially filtered by employing a SMF.

Here, we show that crystals with a Gaussian nonlinear response partially reduce
the spatial correlations between photons. In order to fully eliminate the spatial
correlation, we employ a simultaneous engineering of the pump beam and crystal
effective nonlinearity. In particular, we will show that another nonlinear response
exists rather than the Gaussian, which improves the spatial purity of the single-
photon state. Subsequently, we will modify the spatial distribution of the pump
beam, in order to further enhance the spatial purity. The knowledge gained in this
chapter will take us a step closer to generating spatio-spectral pure photons from
SPDC without any filtering.

Parts of the material presented in this chapter were published previously in the
following reference:

Enhancing the purity of single photons in parametric down-conversion through simul-
taneous pump-beam and crystal-domain engineering
B. Baghdasaryan, F. Steinlechner, and S. Fritzsche
PHYSICAL REVIEW A 108,023718 (2023)

6.1 spatial biphoton state

Since we are interested only in the spatial properties of the biphoton state, we apply
the narrowband regime (Ωs = Ωi = 0) to the state from Eq. (3.12). Correspondingly,
the monochromatic biphoton state (see also [111, 112]) also referred to as the spatial
biphoton state reads

|Ψ⟩ =
∫∫
dqs dqiΦ(qs, qi) â†s(qs) â

†
i(qi) |vac⟩ . (6.1)

The biphoton mode function from Eq. (3.13) is simplified to

Φ(qs, qi) = N0V(qs + qi)
∫L/2
−L/2

dz χ
(2)
eff(z) exp

(
i∆kzz

)
, (6.2)
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which now contains only the spatial structure of SPDC. The phase mismatch in the z
direction also gets a simplified form

∆kz = ρ
2
s

kp − ks
2kpks

+ ρ2i
kp − ki
2kpki

−
ρsρi
kp

cos (φi −φs). (6.3)

The pump is again modeled by a common Gaussian beam profile

V(qs + qi) =
wp√
2π

exp
(
−
w2p

4
|qs + qi|2

)
,

with a beam waist wp, unless stated otherwise.
The purity of the signal-photon state is obtained by tracing out the signal photon

state from the joint state. We need only the spatial purity, therefore, Eq. (5.5) is
transformed to

P =

∫
dqs dqi dq ′

s dq ′
iΦ(qs, qi)Φ∗(q ′

s, qi)Φ(q ′
s, q ′

i)Φ
∗(qs, q ′

i), (6.4)

where we utilized Eqs. (6.1). Purity from Eq. (6.4) remains the same, if we interchange
the idler and signal photons, since Tr(ρ2idler) = Tr(ρ2signal). Generally, the purity of
the single-photon state is always equal to or less than one. A purity value of P = 1

indicates that there is no entanglement between the signal and idler photons, implying
that the biphoton state can be represented as a product state |Ψ⟩ = |Ψ⟩s |Ψ⟩i.

6.2 optimal parameters for high purity

The attainment of a high purity for the single-photon state requires careful selection
of the crystal and pump parameters. In our analysis, we will mainly analyze the
dependence of the purity on two parameters, the crystal length L and the pump
beam waist wp. Our calculations were based on a KTP crystal phase matched for
type-II SPDC. The pump operates at wavelengths λp = 775 nm. This process yields
two orthogonally polarized photons with a central wavelength of 1550 nm. Note
that the results presented in this chapter exhibit minimal variations across all phase
matching conditions. This is primarily due to the fact that the dispersion relations of
different phase matching conditions have a relatively weaker impact on the spatial
DOF compared to their influence on the spectral DOF.

Initially, we will analyze the spatial purity of the single-photon state in a standard
periodically poled KTP crystal. The presented results are also applicable for bulk
crystals, producing quasicollinear SPDC. Subsequently, we assess the performance of
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Figure 6.1: Periodically poled crystals consist of thin layers of a birefringent material. The
sign of the nonlinear coefficient χ(2)eff of each domain is flipped periodically with
the poling period Λ. The flip is achieved by applying a strong electric field to a
ferroelectric crystal via patterned electrodes on the crystal surface. This technique
enables to achieve the momentum conservation at the desired frequencies without
significant changes in the shape of the phase matching function.

KTP and bulk crystals in terms of purity relative to domain-engineered crystals with
a Gaussian and also with a more general nonlinear response.

6.2.1 Bulk and periodically poled crystals

Usual bulk crystals possess a uniform nonlinear coefficient χ(2)eff = const., which leads
to a sinc-shaped phase matching function

Φ(qs, qi) = N0V(qs + qi) L sinc(L∆kz/2). (6.5)

In contrast, periodically poled crystals are composed of thin layers of a birefringent
material, wherein the sign of the nonlinear coefficient χ(2)eff is periodically flipped in
each domain. This flipping occurs periodically with the poling period Λ, which is
a characteristic length scale defining the spatial periodicity of the crystal structure
[see Fig. 6.1]. Interestingly, periodically poling also gives rise to an approximate
sinc-shaped phase matching function, however with a reduced effective nonlinearity
with a factor of 2/π.

We can calculate the purity of the single-photon state by inserting the expression
(6.5) into Eq. (6.4). Figure 6.2 shows the spatial purity as a function of the beam waist
wp and the crystal length L. Notably, the purity remains approximately constant
along the curves L ∝ w2p. This is not surprising, since under the degeneracy condition
ks ≈ ki ≈ kp/2, the spatial biphoton state should depend only on the dimensionless
focusing parameter wp = wp/

√
λp L [59, 92] or, equivalently, the beam parameter

ξp = L/(kpw
2
p) discussed in Ref. [113]. The highest achievable purity, which is

P = 0.73, remains constant along the white dashed curve, corresponding to the beam
parameter ξp ≈ 1.42. This implies that we have the freedom to choose any pair (wp,L)
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Figure 6.2: Spatial purity as a function of the pump beam waist wp and the crystal length L

for standard periodically poled or bulk crystals. The maximum purity of P = 0.73
occurs along the white dashed curve, corresponding to the beam parameter
ξ = 1.42.

lying on this curve, without compromising the spatial purity of the single-photon
state.

Most SPDC experiments utilize a SMF, to collect single photons. It is essential
to achieve a high pair collection probability to ensure the efficiency of the setup.
Therefore, the choice of the proper pair (wp,L) along the curve in Fig. 6.2 can be based
on the optimization of the pair collection probability into the SMF. The projection
modes of the SMF are known to be approximately Gaussian [114]

U(q,w) =
w√
2π

exp
(
−
w2

4
|q|2

)
.

Therefore, the pair collection probability into the SMF is given by the expression

R(2) =

∣∣∣∣
∫∫

dqs dqiΦ(qs, qi)[U(qs,ws)]
∗[U(qi,wi)]

∗
∣∣∣∣
2

, (6.6)

where ws and wi are the collection waists of the signal and idler beams, respectively.
The integrals in Eq. (6.6) can be solved analytically for the degenerate scenario

ks = ki = kp/2 [113]. The authors of Ref. [113] demonstrated that the highest coupling
efficiency is achieved for the beam parameter ξs = ξi = ξp = 1.39 , resulting in a pair
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Figure 6.3: Pair collection probability as a function of the pump ξp and signal ξs beam
parameters, where the condition ξs = ξi is assumed. The highest pair collection
probability is achieved at the same beam parameter ξ = 1.42, which also maxi-
mizes the spatial purity.

collection probability into the SMF of approximately R(2) ≈ 82%. Figure 6.3 illustrates
R(2) as a function of the pump and signal (idler) beam parameters. In our numerical
calculations, we obtained similar values of ξp ≈ 1.42 and ξs = ξi ≈ 1.43, which
lead to R(2) ≈ 82.2 %. The slight deviation from the results of Ref. [113] is due to
birefringence in the type-II quasi phase matching configuration considered in our
work, where the degeneracy condition ks = ki = kp/2 is not perfectly satisfied.

Remarkably, the optimal values of ξp required to achieve maximum purity and
pair collection probability into the SMF are identical. In other words, the optimization
of the purity is equivalent to the optimization of the pair collection probability into
the SMF. This observation can be explained as follows: When we optimize the purity,
we effectively force the signal and idler photons to be more concentrated in a specific
mode. Consequently, this reduces the spread of the state across different modes. In
an ideal scenario with P = 1, each photon occupies a single-mode state, denoted as
|Ψ〉 = |Ψ〉s |Ψ〉i. It turns out that this single-mode state |Ψ〉s,i corresponds to a Gaussian
state, when the pump beam is Gaussian too. Therefore, the pair collection probability
into the SMF, which accepts only photons in a Gaussian mode, increases. However,
we will see in Sec. 6.4, that the single mode, where the state is mostly concentrated, is
the Gaussian state if the pump is also described by a Gaussian.
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Figure 6.4: The sign of the nonlinear coefficient χ(2)eff in each domain is intentionally flipped,
in order to achieve the desired effective nonlinearity. The width of each domain
equals lc, also known as the coherence length. It represents the distance over
which the phase between the pump and down-converted photons changes by π.

6.2.2 Gaussian nonlinear response

Except for periodically poled crystals, it is also possible to apply custom poling
(domain-engineering) of layers in the crystal, as shown in Fig. 6.4. This technique
can be used to shape the effective nonlinearity along the crystal. The custom poling
has been mostly used to engineer crystal with an approximate Gaussian nonlinear
response, modeled as χ(2)eff ∝ exp [−z2/(σ)2] (see Fig. 6.5). In this subsection, we
employ a Gaussian nonlinear response and investigate its impact on the purity
of the single-photon state. Subsequently, in the next section, we will employ an
optimized susceptibility function χ

(2)
eff(z) and compare its performance with the

Gaussian nonlinear response.
We can calculate the purity of the single-photon state for a crystal with a Gaussian

nonlinear response by inserting χ(2)eff ∝ exp [−z2/(σ)2] into Eq. (6.4). The eight integrals
over the transverse momentum can be solved analytically, while the four integrals
over z need to be performed numerically.

Here, we vary the width σ of the Gaussian response and the beam parameter
ξp, to optimize the purity. We can increase the maximum spatial purity to P = 0.95
for the parameters ξp ≈ 3 and σ ≈ L/4. The pair collection probability into the
SMF is enhanced up to R(2) ≈ 97 %. As we see, domain engineering proves to have
a profound impact on the spatial DOF of photons, much like its impact on the
spectral DOF: Domain-engineered crystals with a Gaussian nonlinear response reduce
the spatial correlations enormously, resulting in high spatial purity. However, the
achieved spatial purity of P = 0.95 is still not at the level of the spectral purity
P = 0.99 achieved in the previous works.

We might expect that using a narrower Gaussian function for the susceptibility
(σ < L/4) would lead to a higher spatial purity than 0.95. This expectation is based on
the idea that a narrower Gaussian function generates fewer spatial modes, potentially
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resulting in a higher spatial purity of the single-photon state. However, reducing
σ does not lead to an improvement in purity. While a Gaussian function with a
narrower width σ can further enhance the spectral purity, a more general function is
needed to improve the spatial purity of the single-photon state. The reason behind
this is that the phase-mismatch (6.3) in the z direction of the spatial biphoton state
is more complicated because of the quadratic terms than the phase-mismatch of
spectral biphoton state from Eq. (3.15), which includes mostly linear terms.

6.3 crystal engineering

6.3.1 Optimal susceptibility function

In this section, our goal is to explore a more general nonlinear response that can
deliver higher purity than the Gaussian nonlinearity. We expect the optimal suscepti-
bility function χ(2)eff(z) to exhibit symmetry with respect to the axis z = 0, since the
well-working Gaussian function is symmetric to that axis too. Therefore, we expand
χ
(2)
eff(z) into cosine series, similar to the Fourier series for even functions

χ
(2)
eff(z) =

N∑
n=0

cn cos (nz/σ), (6.7)

where the expansion coefficients cn are initially unknown and σ = L/4. The purity
as a function of cn, P = P(c0, c1, ..., cN), can be constructed by inserting Eq. (6.7) into
Eq. (6.4). We truncate the sum at N = 7 in our analysis. The following steps are
performed in order to find the optimal expansion coefficients cn. (i) Construct the
function P = P(c0, c1, ..., c7) and calculate its local maximum for the fixed beam pa-
rameter ξp = 1.42 (as determined in the preceding section). The function FindMaximum

from Wolfram Mathematica v. 12.3 [1] is used to calculate this local maximum. (ii)
Based on the calculated coefficients c0, c1, ..., c7, construct the susceptibility function
χ
(2)
eff(z). (iii) Optimize the purity as a function of the beam parameter, where the re-

constructed susceptibility function χ(2)eff(z) is used. (iv) Repeat the first three steps for
the replaced optimal beam parameter until the purity converges. The obtained results
are independent of σ, which only affects how rapidly the cosine series converges.

The final optimal value for the beam parameter is ξp = 3.67 and the corresponding
cn coefficients are −0.2904, 0.6799, −0.4851, 0.3903, −0.2195, 0.1242, −0.0440, 0.01487
for n = 0, 1, 2, 3, 4, 5, 6 ans n = 7, respectively. The calculated cosine series and
the Gaussian susceptibility functions are displayed in Fig. 6.5 for comparison. The
optimized susceptibility function indeed enhances the purity up to 0.98 and the pair
collection probability into the SMF up to R(2) ≈ 99 %. This indicates that the Gaussian



6.3 crystal engineering 57

0.2

0.4

0.6

0.8

1.0

Figure 6.5: Comparison of a normalized Gaussian nonlinear response (blue solid line) with
the cosine series nonlinear response (red dashed line). The optimized nonlinear
response ensures higher purity of the single-photon state compared to the Gaus-
sian response.

Parameter Sinc Gaussian Cosine
purity of the reduced state 0.73 0.95 0.98

coupling into the SMF 82% 97% 99%
heralding efficiency 99.4% 99.86% 99.98%

Table 6.1: Comparison of performances of different nonlinear responses in terms of purity,
pair collection probability into a single-mode fiber, and heralding efficiency. The
considered nonlinear responses are the common sinclike phase matching from
periodically poled or bulk crystals, and Gaussian and optimized cosine series from
domain-engineered crystals.

nonlinear response is not the most suitable choice to achieve high spatial purity
for the single-photon state. To demonstrate the convergence of the cosine-series, we
calculate the pair collection probability as a function of the number of terms N in the
series, as shown in Fig. 6.6.

Table 6.1 provides a summary of the crystal performances with different nonlinear
responses regarding the spatial purity, pair collection probability into the SMF, and
heralding efficiency. The heralding efficiency of the single photon is obtained by
tracing out the possible wave vectors of the partner photon (here idler)

η =

∫
dqi

∣∣∣∣∫ dqsΦ(qs, qi)U(qs,ws)
∣∣∣∣2. (6.8)
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Figure 6.6: Pair collection probability into the SMF as a function of the number of terms in the
cosine series for χ(2)eff(z). Surprisingly, we can achieve a high collection probability
of 99% even with a small number of terms, such as N = 5.

6.3.2 Custom poling

The effective nonlinearity of the crystal accessible in the experiment is encoded in the
phase matching function. The phase matching function of a crystal with susceptibility
given by Eq. 6.7 takes the form

φtarget(∆kz) =

∫L/2
−L/2

dz

7∑
n=0

cn cos (nz/σ) exp
[
i∆kzz

]

=
L

2

7∑
n=0

cn [sinc(2n−∆kzL/2) + sinc(2n+∆kzL/2)]. (6.9)

The susceptibility χ
(2)
eff is modeled as a continuous function of z in this theoretical

treatment. However, we should account for the discontinuous manner of the suscep-
tibility in a crystal in the practical implementation of crystal engineering. Specifically,
the poling function can take only on values of ±χ

(2)
eff,0, where χ

(2)
eff,0 is the modulus

of the susceptibility χ
(2)
eff. We employ a domain-engineering process, wherein the

nonlinear medium consists of M domains of birefringent material, each with a length
of lc, as shown in Fig. 6.4. These domains can be oriented in either the up or the down
direction. Consequently, the phase matching function for the entire crystal becomes a
linear superposition of individual phase matching functions for each crystal domain
[3]

χ
(2)
eff(z) = χ

(2)
eff,0

M∑
m=1

sm rect
(
z− zm

lc

)
,
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Figure 6.7: Comparison of the normalized target phase matching function calculated by Eq.
(6.9) (blue solid line) with the phase matching function of a custom poled crystal
(red dashed line). Indeed, custom-poled crystals are capable of producing highly
intricate and well-designed target phase matching functions.

where sm takes on a value of either 1 or −1 depending on the orientation of the
domain and zm = (m− 1/2)lc − L/2 specifies the positions of the mth domain. The
corresponding phase matching function is given by

ϕs(∆kz) = χ
(2)
eff,0

M∑
m=1

sm

∫∞
−∞ dz rect

(
z− zm
lc

)
exp

[
i∆kzz

]

∝ χ(2)eff,0lc sinc
(
∆kzlc

2

) M∑
m=1

sm exp
[
i∆kzzm

]
. (6.10)

The task is to find the crystal alignment sm which yields a phase matching function
ϕs closest to the target function ϕtarget [the susceptibility function χ(2)eff shown in
Fig. 6.5]. Here, we utilize the code provided by Dosseva et al. [3], to determine the
customized poling of the crystal. The blue solid line in Fig. 6.7 represents the target
phase matching function given by Eq. (6.9), and the red dashed line corresponds to
the phase matching function of the custom poled crystal (6.10) obtained through the
code from Ref. [3]. Our calculations involve 1300 domains, each with a length of 23
µm, resulting in a total crystal length of L = 29.9 mm. As demonstrated in Fig. 6.7,
the complex phase matching function described by Eq. (6.9) is excellently reproduced,
thereby confirming its suitability and applicability in real experimental setups.

Overall, an engineered crystal typically exhibits a lower effective nonlinearity
compared to a periodically poled crystal of the same length. Despite this drawback,
in many experimental settings, the benefits of enhanced purity in the generated signal
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and idler photons outweigh the cost of reduced efficiency. Furthermore, practical
solutions exist to address this limitation. For instance, the reduced nonlinearity can
be compensated by increasing the power of the laser source or employing a longer
crystal, thereby maintaining a sufficient pair generation rate.

A logical progression for further research would be to incorporate both spectral and
spatial DOFs of photons into the optimization scheme. This approach aims to design
a source of pure spatio-spectral photon pairs from SPDC that requires no spectral
or spatial filtering. The achieved purity of P = 0.98 using the optimized nonlinear
response is a significant improvement but it is still quite far from unity. Considering
the additional impact of the spectral DOF, this value would decrease vastly. Therefore,
achieving a spatio-spectral purity close to unity solely with domain-engineered
crystals poses a challenging task.

6.4 pump engineering

In this section, we explore the possibility of enhancing the spatial purity of the single-
photon state through pump engineering. Pump engineering has previously been
utilized to control spatial correlations in SPDC [36, 109, 115–117]. In our approach, we
consider an ansatz involving a superposition of LG modes for the pump

V =
∑
p,ℓ

ap,ℓ LGℓp. (6.11)

The fundamental approach remains unchanged: We aim to determine the optimal
set of coefficients ap,ℓ that maximizes the spatial purity. However, This is a more
difficult task than crystal engineering, since the eight-dimensional integral in Eq. (6.4)
should be solved fully numerically because of the complex function for the pump
from Eq. (6.11). This calculation requires high numerical accuracy, which makes it
computationally expensive. Therefore, we need to simplify the task to some extent.

For simplicity, we can employ the biphoton state decomposed into the LG modes
from Eq. (3.17) in the narrowband regime

|Ψ⟩ =
∞∑

ps,pi=0

∞∑
ℓs,ℓi=−∞ Cℓ,ℓs,ℓi

p,ps,pi |ps, ℓs⟩ |pi, ℓi⟩ , (6.12)

and truncate the infinite summations in Eq. (6.12) at reasonable mode number values
to consider a subspace state. If the pump beam is given by Eq. (6.11), the coincidence
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amplitudes are updated to a similar linear superposition,
∑
p,ℓ ap,ℓ C

ℓ,ℓs,ℓi
p,ps,pi . This

truncation enormously simplifies our calculation. The subspace state reads then

|Ψs⟩ =
H∑

ps,pi=0

U∑
ℓs,ℓi=−U

(∑
p,ℓ

ap,ℓ C
ℓ,ℓs,ℓi
p,ps,pi

)
|ps, ℓs⟩ |pi, ℓi⟩ .

where H and U are the boundaries of the subspace.
We use the optimized phase matching from Sec. 6.3 and construct the purity as a

function of the coefficients ap,ℓ, P = P(ap1,ℓ1 ,ap2,ℓ2 , ...,apn,ℓn). The summation over
the pump beam modes is performed in the range of p = 0, 1, 2 and ℓ = −3,−2, ..., 3.
We achieve purity of P ≈ 0.99 by optimizing the coefficients ap,ℓ within this restricted
range. This is an improvement to the purity P = 0.98 from the preceding section.
However, there are trade-offs with respect to the pair collection probability and the
heralding efficiency. The pair collection probability drops to 0.64, and the heralding
efficiency reduces to 99.3%, mainly due to the fact that the generated single mode is
no longer the fundamental Gaussian mode.

Figure 6.8 illustrates the decomposition of signal and idler photons in the LG basis
for the Gaussian and engineered pump. The engineered pump symmetrizes the
mode distribution but it comes at the cost of the Gaussian mode. While the single
mode generated by the Gaussian pump remains close to the fundamental Gaussian
mode, the single mode generated by the engineered pump is now a superposition
of LG modes. This is the reason, why the pair collection probability into the SMF is
decreased in the case of an engineered pump.

Despite the reduction in pair collection probability into the SMF, this type of
source could be particularly intriguing for experiments that prioritize the purity of
photons in certain interference setups rather than the pair collection efficiency. In
such cases, the ability to control and enhance the purity of the photons through
pump engineering may outweigh the limitations in collection efficiency, making
the engineered pump a valuable tool for specific quantum optics experiments and
applications.

6.5 efficiency of pump engineering

We have demonstrated that a shaped pump beam can enhance the spatial purity of
the generated photons. A natural question arises: Does the use of a shaped pump
come at the cost of reducing the pair creation probability? In general, the efficiency of
pair generation will not be significantly affected when transitioning from a Gaussian



62 spatially indistinguishable single mode photons from domain-engineered crystal

Figure 6.8: Joint mode distribution of the biphoton state in the LG basis for (a) a Gaussian
beam and (b) for an engineered pump beam. The corresponding beam profiles
and phase distributions are presented at the bottom of the figure. The calculations
were performed based on the phase matching function derived in Sec. 6.3.

to an engineered pump, as long as the laser intensity remains constant. This statement
can be proved by calculating the total pair collection probability

Rtotal =

∫∫
dqs dqi |Φ(qs, qi)|

2. (6.13)

These integrals are very easy to solve in the degenerate scenario, ks = ki = kp/2. If
we use the notation q− = qs − qi and q+ = qs + qi, the biphoton mode function in
the degenerate scenario becomes

Φ(q+, q−) = N0V(q+)φ(q−),

where the phase matching function φ(q−) reads

φ(q−) =

∫L/2
−L/2

dz χ
(2)
eff(z) exp

[
i
|q−|

2

2kp
z

]
.
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The integrals in Eq. (6.13) can then be simplified to

Rtotal =
1

4
N20

∫
dq− |ϕ(q−)|

2, (6.14)

where it is assumed that the pump profile is normalized
∫
dq+|V(q+)|

2 = 1. It is
evident from Eq. (6.14) that the total pair collection probability is independent of
the pump beam profile, as long as the intensity of the laser remains constant. The
total rate becomes dependent on the pump beam profile only if the crystal produces
nondegenerate SPDC. Nonetheless, this dependence is relatively weak based on our
calculations.

It is important to acknowledge that in our analysis, we have not accounted for
possible losses that may arise from experimentally transforming the Gaussian pump
beam into an engineered pump beam profile. These losses can be in principle elimi-
nated by using recent beam shaping approaches, such as multi-plane light conversion
techniques using custom computer-generated holograms [118, 119].





7

C O N C L U S I O N S A N D O U T L O O K

In this dissertation, we investigated the process of SPDC in bulk and domain-
engineered crystals driven by spatially structured laser fields. Our study yielded four
prominent accomplishments.
The first achievement is the formulation and subsequent experimental validation
of a comprehensive closed-form expression for the spatio-spectral biphoton state
decomposed into the LG basis [see Chap. 3, Eq. (3.24)]. The expression reveals the
dependence of the modal LG decomposition of the biphoton state on the frequency
and thus correctly describes the spatio-spectral coupling in SPDC. The developed
theory captures all types of nonlinear crystals, which produce SPDC photons in the
quasicollinear regime. Moreover, the formalism is applicable to arbitrary paraxial
pump beams and effective crystal nonlinearities. Various essential parameters and
aspects of SPDC can be computed with the expression (3.24), such as the joint spectral
density, photon bandwidths, pair-collection probability, heralding ratio, spectral and
spatial correlations, Schmidt decomposition, Schmidt number of the state and many
more.

The established link in Chap. 4 between the Gouy phase and the spatio-spectral
coupling in SPDC is the second accomplishment of the thesis. We demonstrated that
the spectral characteristics of the down-converted photons are determined by the
relative Gouy phase shared among the pump, signal, and idler beams. The decoupling
of the spatial and spectral DOFs is only feasible when the down-converted photons
possess the same relative Gouy phase. Nonetheless, this proves challenging due to the
probabilistic nature of SPDC. The spatio-spectral coupling can be decreased through
strategic employment of pump and crystal engineering for a truncated subspace state.
This is especially achieved by constraining the biphoton state into modes that carry
the same relative Gouy phase.

Next, in Chapter 5, we constructed high-dimensional entangled states in the OAM

basis by employing spatially shaped pump beams. The state engineering was based
on the interplay between the relative Gouy phase and the spatio-spectral coupling.
Specifically, the OAM modes that contribute to the high-dimensional state need to

65
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be spectrally indistinguishable, otherwise, the distinguishability arising from the
spectral DOF reduces the coherence of the state.
Another challenge of state engineering in the OAM basis involves the appearance of
undesired side modes, which do not contribute to the high-dimensional entangled
state. The more side modes are generated, the less efficient the source. Within
this context, a possible extension of our work will be the employment of domain-
engineered crystals to suppress these undesired side modes.

Finally, in the preceding Chap. 6, we studied the impact of crystal domain engi-
neering on the spatial properties of SPDC. In particular, we demonstrated in Sec. 6.2
that the spatial purity of the single-photon state can be increased by using domain-
engineered crystals. Moreover, we found that a general nonlinear response rather
than the Gaussian one exists [see Fig. 6.5] that improves the spatial purity of the
single-photon state, the pair collection probability into the SMF, and the heralding
efficiency. We also showed in Sec. 6.4 that the spatial purity can be further enhanced
by spatially shaping the pump beam but at the cost of the pair collection probability
into the SMF.
Overall, it is not clear whether generating spatially pure single photons from domain-
engineered crystals is more efficient than the spatially filtered photons produced
in bulk crystals. It is known that engineered crystals are preferred for generating
spectrally pure photons due to the significant challenges associated with spectral
filtering. Therefore, the use of filters is not preferable in SPDC setups, where both
spatial and spectral DOFs are considered simultaneously. As such, engineered crystals
offer a more practical solution.
The ultimate future goal is the generation of spatio-spectral pure photons without any
spatial and spectral filtering. This task is very challenging compared to the generation
of pure single-photon states only in one DOF due to the spatio-spectral coupling. The
task of spatio-spectral pure photons can be solved by employing non-paraxial pump
beams, where the spatial and spectral DOF cannot be treated separately. Till now, we
employed only paraxial beams, which do not possess spatio-spectral coupling.

The presented results in this thesis improve our understanding about the correla-
tions in SPDC. However, there are still many interesting topics and open questions
that can be addressed in future works. A few of them are presented in the following:

(i) We demonstrated in Sec. 3.5.2 that only photons satisfying the OAM conservation
can be created. This is not the only selection rule for the spatial modes, in which
photon pairs can be produced. In particular, when the ratios of the collection modes
to the pump mode are set as ws/wp = wi/wp =

√
2, only modes satisfying the

condition Ns +Ni ⩾ NP can be produced through SPDC. Here N is the combined
mode number, N = 2p + |ℓ| of an LG mode. To demonstrate the validity of the
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Figure 7.1: Correlation between radial mode numbers of signal ps and idler pi photons for
�s = �i = 0. Since the pump is an LG beam with p = 4 and ws/wp = wi/wp =

√
2,

no radial modes are generated with ps + pi < 4.

condition Ns +Ni � NP, we examine an LG pump beam with p = 4 and � = 0.
Furthermore, we presume the signal and idler photons have zero OAM, �s = �i = 0,
simplifying the condition Ns +Ni � NP to ps + pi � p.
Figure 7.1 displays the correlations between the radial modes of the signal and idler
photons. As we can see, no modes are generated that do not satisfy the condition ps+

pi � p. The further investigation of this observation will improve our understanding
of spatial correlations in SPDC. Moreover, it is interesting to examine if the condition
Ns +Ni � NP is linked to the spatio-spectral coupling in SPDC and to the Gouy
phase.

(ii) The results presented in this dissertation are confined within the boundaries of
the paraxial and quasicollinear regimes. The existing framework for nonparaxial and
noncollinear geometries primarily relies on numerical computations. However, the
prospect of transforming these approaches into an analytical framework holds the
potential to unveil novel dimensions of SPDC. This analytical extension could shed
light on aspects that might otherwise remain obscured by the intricacies of numerical
approaches.

(iii) The violation of OAM conservation in SPDC is a prominent consequence of the
nonparaxial and noncollinear regimes. If the conditions for paraxial propagation
are not met, then the spin and orbital angular momentum components of light will
become coupled and cannot be measured separately [120]. Thus, the conservation of
a distinct physical quantity comes to the forefront, namely TAM of light.
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Figure 7.2: Normalized spectra of the signal photon for three CW pump beams with different
κ and their normalized superposition.

An effective way to study the conservation of TAM is by using nonparaxial Bessel
beams as the pump source for the crystal. These beams are eigenstates of the TAM

operator, and their utilization in experiments can serve to assess TAM. In situations
where the paraxial regime is not guaranteed, TAM can be a reliable alternative for
encoding and transmitting information through free space.

(iv) Bessel beams can also be used to generate very broadband SPDC, which is
highly relevant for frequency multiplexing [121]. The Bessel beam in the momentum
space under the paraxial regime reads

aκℓ(q) =

√
2π

κ
(−i)ℓeiℓφqδ(q−κ), (7.1)

where κ = |q| is the modulus of the transverse momentum. When applying the
SPDC process with a Bessel pump beam, the delta function in Eq. (7.1) transforms the
expression (3.14) of the phase mismatch in the z direction into

∆kz = ∆Ω +
ρ2s
ks

+
ρ2i
2ki

−
κ2

kp
. (7.2)

The term κ2/kp in Eq. (7.2) induces a constant shift in the spectrum of down-
converted photons. Therefore, Bessel beams with different κ induce different shifts of
the spectrum. If we use a superposition of pump beams with various κ, a broad, flat
spectrum of SPDC photons can be generated. Figure 7.2 depicts the spectra generated
by three separate pump beams, each with varying κ values, as well as the spectrum
produced by their normalized combination.

(v) Another physical quantity that can be studied for the conservation in a non-
collinear SPDC is the mode number pIG of IG beams. IG beams represent the exact,
complete, and orthogonal solutions of the paraxial wave equation in elliptical coordi-
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nates. Along with pIG, a photon in a IG mode is described by the ellipticity parameter
ϵ, and the quantum number m. IG beams encompass a broader class of paraxial
beams, as they converge to the LG modes when ϵ→ 0 or HG modes when ϵ→ ∞. In
particular, the following relations hold between the quantum numbers of the IG and
LG modes for ϵ→ 0

m = ℓ, and pIG = 2p+ ℓ. (7.3)

The quantum number pIG may function as a more fundamental quantum observable,
encoding information about both the radial mode and OAM numbers. To comprehend
the physical significance of pIG, it is crucial to derive the corresponding operator, as it
has been performed for the radial mode number of LG beams [122]. Subsequently, the
observable associated with that operator need to be examined for the conservation in
SPDC.

(vi) In Chapter 6, we introduced a SPDC setup designed to yield spatially pure
and indistinguishable photon pairs. The investigations were performed for the low
gain regime, where the dominance lies with the two-photon field. If the intensity of
the laser is increased (high gain regime), the contribution of higher photon number
states becomes significant. In that context, it is unclear whether the purity and
indistinguishability of photons are preserved when the laser intensity increases. This
question underscores the need for further investigation.
In the high gain regime, the signal and idler beams appear as squeezed light states,
which have been ingeniously employed in experiments based on GBS [42]. The
squeezed light states utilized in GBS must also exhibit high photon indistinguishability
and purity. These applications aim to demonstrate the quantum computational
advantage, often referred to as quantum supremacy.

Summarizing, significant effort is still required to develop reliable and high-
performance sources to generate single-photon or maximally entangled states. Nev-
ertheless, the groundwork for these advancements has already been established.
Parametric down-conversion has the potential to fulfill this role as an efficient source
of distinct quantum states, provided that its inherent probabilistic nature, photon
number purity, and challenges related to spatio-spectral coupling are effectively
tackled.
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