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Abstract

Theory of Computing Point Spread Functions

Ratsimandresy Holinirina Dina Miora

Dissertation: PhD

2023

Incoherent imaging in fluorescence microscopy is mathematically formulated as a
convolution of the object with the optical response of the system, which is called
point spread function (PSF). This response occurs under certain imaging condition
invariances such as the shift-invariance and the Abbe sine condition. The image quali-
ty and resolution are limited by the numerical aperture of the system and the wave-
length of the emitted light, which in turn define the diffraction limit of the optical
system. The optical resolution and/or image quality can be improved either by de-
veloping an advanced imaging system with an inherently smaller PSF or by trying
to undo the convolution of the object with the PSF using a mathematical approach
called “deconvolution” under plausible assumptions about the object. A realistic and
accurate PSF model is required for an accurate and efficient deconvolution process.
In this thesis, we present a theoretical approach of computing PSFs in the field of
fluorescence microscopy under realistic acquisition conditions with a given set of
known and unknown imaging parameters. Four techniques for computing the PSFs
of a wide-field microscope have been developed. These PSF models, two of which
are completely new, are Fourier-based, easy to implement, suitable for tilted stratified
medium, and account for the vector features of light. The fast Fourier-transformation
is a practical tool to speed up PSF calculations, and its pitfalls are carefully avoided
in our computation. Our PSF models are compared to state-of-the-art PSFs in cur-
rent theoretical works, validated experimentally and tested for their deconvolution
efficiency. The models are demonstrated to be superior to existing state-of-the-art
PSFs. The deconvolution using our PSF models has been found to enable a contrast
improvement of up to 162×.
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Zusammenfassung

Theorie der Berechnung von Punktspreizfunktionen
Ratsimandresy Holinirina Dina Miora

Dissertation: Dr. rer. nat.

Dezember 2023

Das Bildgebungsverfahren mit inkohärentem Licht in der Fluoreszenzmikroskopie
ist mathematisch formuliert als Faltung eines Objekts mit der optischen Antwort
des Systems, der Punktspreizfunktion (PSF). Diese Antwort findet unter bestimmten
Bildgebunsbedingungen, wie z.B. der Verschiebungsinvarianz und der Abbe-Sinus-
Bedingung, statt. Die Bildqualität und Auflösung eines optischen Systems werden
durch die numerische Apertur des Systems und der Wellenlänge des emittierten
Lichts begrenzt, welche wiederum durch die Beugungsgrenze des optischen Sys-
tems definiert wird. Die optische Auflösung und die Bildqualität kann entweder
durch eine Weiterentwicklung des Bildgebungsverfahrens in ein Verfahren mit in-
härent kleinerer PSF oder durch die Umkehrung der Faltung des Objektes mit der
PSF durch einen mathematischen Ansatz namens “Dekonvolution” unter plausiblen
Annahmen verbessert werden. Für einen effizienten Dekonvolutionsprozess wird ein
realistisches und akkurates Modell der PSF benötigt. In dieser Doktorarbeit präsen-
tieren wir eine Theorie der Berechnung der PSF in der Fluoreszenzmikroskopie unter
realistischen Aufnahmebedingungen mit einer gegebenen Anzahl bekannter und un-
bekannter Bildgebungsparametern. Vier Ansätze zur Berechnung der PSF eines Weit-
feldsystems, von denen zwei gänzlich neu sind, werden entwickelt. Diese neuen
PSF-Modelle sind Fourier basiert, einfach zu implementieren, für gekippte strati-
fizierte Medien geeignet und beziehen die vektoriellen Eigenschaften des Lichtes
mit ein. Die schnelle Fourier-Transformation ist ein praktisches Verfahren zur Besch-
leunigung von PSF-Berechnungen und ihre Stolperfallen werden bei unseren Berech-
nungen sorgfältig vermieden. Unsere PSF-Modelle werden mit Modellen nach dem
aktuellen Stand der theoretischen Wissen-schaft verglichen, experimentell validiert
und auf ihre Dekonvolutionseffizienz getestet. Wir zeigen dass unsere PSF Modelle
besser als existierende Modelle sind. Die Dekonvolution mit unseren Modellen er-
lauben eine Kontrastverbesserungsfaktor bis zu 162.
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Nomenclature

Constants

ϵ0 = 8.854× 10−12 m−3 · kg−1 · s4 ·A2

µ0 = 4π×10−7kg ·m · s−2 ·A−2

Variables

(x, y, z) Cartesian coordinates in real space . . . . . . . . . . . . . . . . . [ pixels ]

(px, py, pz) Pixel pitch in (x, y, z)−direction respectively . . . . . . . . [ nm ]

(kx, ky, kz) Spatial frequency coordinates in Fourier space . . . . . . . . [ rad · nm−1 ]

(v, u) Radial and axial optical coordinate . . . . . . . . . . . . . . . . . . [ o.u. ]

θ Elevation angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ ◦ ]

ϕ Azimuthal angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ ◦ ]

r Radial position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ pixels ]

α Rotation angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ ◦ ]

λem Emission wavelength . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ nm ]

λ0 Emission wavelength in vacuum . . . . . . . . . . . . . . . . . . . . [ nm ]

λex Excitation wavelength . . . . . . . . . . . . . . . . . . . . . . . . . . . [ nm ]

k = 2π/λem Wave-number

NA Numerical aperture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ ]

M Radial magnification . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ ]

Φ Wavefront aberration . . . . . . . . . . . . . . . . . . . . . . . . . . . . [ nm ]

(n, m) Radial and azimuthal orders of wavefront aberration . . . . . . [ ]

Zm
n Zernike polynomials of order (n, m) . . . . . . . . . . . . . . . . . . [ nm ]

Cm
n Amplitudes or coefficients of Zm

n . . . . . . . . . . . . . . . . . . . . [ nm ]

nj Refractive index of the medium j

tj Thickness of the medium j . . . . . . . . . . . . . . . . . . . . . . . . [ nm ]

t(j)
m Transmission coefficient of m−polarized light at interface j, m = p for polar-

ization parallel to the plane of incidence, and s for polarization normal to
the plane of incidence
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NOMENCLATURE viii

Abbreviations in alphabetical order

AF Aplanatic Factor

AFP Actual Focus Position

ASF Amplitude Point Spread Function, also denoted by h⃗

ATF Amplitude Point Transfer Function

BFP Back Focal Plane

CZT Chirp-Z Transform

DC Design Condition of the optical imaging system

Exp-PSF Experimental Point Spread Function

FFT Fast Fourier Transform

FS Focal Shift

FT Fourier Transform

F-Shell Fourier Shell method

GS Gold Standard

LSI Linear Shift Invariant

LSV Linear Shift Variant

MRE Mean Relative Error

NCC Normalized Cross Correlation

NDC Non-Design Condition of the optical imaging system

NFP Nominal Focus Position

OL Objective Lens

OPD Optical Path Difference

OTF Optical Transfer Function, also denoted by h̃

o.u. Optical Unit

PSF Point Spread Function, also denoted by h

RI Refractive Index

SAF Supercritical Angle Fluorescence

Std Standard deviation

RW Richards and Wolf method

S Strehl ratio

Sinc-R Sinc-R method

SP-CZT Slice propagation method using the CZT

SP-FFT Slice propagation method using the FFT

WD Working distance



NOMENCLATURE ix

Vectors and Tensors

E⃗(r, t) Electric field evaluated at spatial position r and time t

B⃗(r, t) Magnetic field evaluated at spatial position r and time t

Subscripts

eff Effective

l Lens

i Immersion medium

g Coverslip

s Sample

Superscripts

* Variables in DC when paired with ns, ng, and ni

* Identifying the models described and developed in this thesis when paired
with SP-FFT, SP-CZT, F-Shell, and Sinc-R
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Chapter 1

Introduction

This chapter introduces the readers to the context and research question of the

study in this thesis. This study consists of investigating and modelling the im-

pulse response, known as the point spread function (PSF), of wide-field fluores-

cence microscopy. An overview of the state-of-the-art and of studies that have

been conducted in the direction of PSF calculation and their respective limitation

is given. This is followed by a summary of the contribution made in this thesis to

the field of super-resolution microscopy and the structure of the rest of the thesis.

1.1 Context and research question

Fluorescence microscopy is a well-used technical tool for research in the field of bi-
ology. It utilizes the multiplexing and specificity of fluorescence labels to image bi-
ological samples. The technique has been widely used as it enables high-resolution
imaging with high contrast, and offers the possibility of recording images of different
cell components with different colours [1].
Fluorescence emission can be explained in terms of energy absorption. The energy
that is associated with the photon is h̄µ, h̄ is the Planck constant and µ = c/λ, c being
the speed of light and λ the photon’s wavelength [1]. In the presence of external
illumination at a given wavelength λex, the fluorescent molecule is excited. A photon
is absorbed resulting in a transition from the ground state to a higher energy state.
The molecule in the excitation state can decay back to the ground state by fluorescing.
The emitted energy during the relaxation of the molecule is lower than the excitation
photons as some of the energy is lost to the molecular environment. Due to this
loss, the emission wavelength is larger than the excitation wavelength. This results
in a shift in the spectrum called the Stokes shift [1]. The Stokes shift is important
in fluorescence microscopy to separate the fluorescence emission from the excitation
light source. A filter cube containing excitation and emission filters, and a dichroic
beam splitter is used to filter out the excitation light from the fluorescence of the

1



CHAPTER 1. INTRODUCTION 2

molecules which is detected by a camera or eye to form the desired image of the
sample [2].
Fluorescence microscopy is an incoherent imaging technique. Fluorescence emission
fluctuates over time and is emitted at a random phase [2]. The coherence time of the
field, defined as the time under which two waves of different beams of light have
a constant phase between them, is short. The temporal resolution of the detector is
bandwidth limited so it is not able to detect the fluctuations of the intensity with
coherent phase. Hence the probability to detect coherence in intensity measurements
with a finite bandwidth detector is low. Given this, fluorescent emitters are assumed
to be incoherent light sources. The intensity which corresponds to the coherence
phase is negligible and can be discarded and the resulted intensity is the incoherent
sum of the intensities of each individual emitter.
An optical fluorescence microscope is characterised by the point spread function
(PSF). The PSF represents the response of a diffraction-limited system in the imag-
ing of a single point-source fluorescent emitter (see Fig. 1.1a and 1.1b).
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Figure 1.1: Display at γ = 0.2 of the cross section of the point spread function (PSF) along
the xy (a) and xz−plane (b) at z = 0 and y = 0 respectively, and the optical transfer function
(OTF) along the kxky (c) and kxkz−plane (d) at kz = 0 and ky = 0 from an optical system with
an oil immersion objective lens of numerical aperture NA = 1.4, emission wavelength λem =
532 nm.
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The incoherent imaging can be described mathematically as a convolution of the ob-
ject with the PSF where the shift-invariance properties in the system and law of su-
perposition hold [3].

⊗ =

⊗ =

Figure 1.2: Convolution of an object O with a PSF. First column: Object O. First row and
second column: in-focus PSF at z = 0. First row and third column: image formed by the
convolution of O with the in-focus PSF. Second row and second column: out-of-focus PSF at
z = 0.6 µm. Second row and third column: image formed by the convolution of O with the
out-of-focus PSF at z = 0.6 µm.

With a conventional fluorescence microscope, also called wide-field, the sample object
is illuminated uniformly. In a thick sample, the emitters at different depths contribute
to the light intensity of the detected focal plane. In effect, the frequency component
along the optical axis of the optical transfer function (OTF), equivalent to the Fourier
transform of the PSF, goes missing. This missing region is commonly referred to what
is called the “missing cone” (see Fig. 1.1d). The PSF is band-limited in frequency
space, yielding to the diffraction limit of the optical resolution called Abbe limit [3].
Finer features in the object that are smaller than this limit will be imaged as if they
are with the same size as the Abbe limit. The lateral passband of the PSF, and the
missing cone, are two main reasons of the blurring in an observed image when in and
out of focus (Fig. 1.2).
Many research studies are in search of ways to overcome the drawbacks of wide-field
microscopy by either developing an advanced imaging technique capable of achieving
an optical resolution beyond the Abbe limit and filling the missing cone region in the
OTF or improving the image quality and contrast of wide-field computationally using
the knowledge of the PSF.
An advanced imaging technique can be achieved in different ways such as structuring
the illuminating light [4], structured excitation in combination with a spatially sensi-
tive detection [5], switching off some fluorescence emission to reduce the width of the
PSF [6], statistically switching on and off the emitters and have its precise location to
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form a high resolution image [7]. These approaches can all be beneficial under par-
ticular conditions, but still have their respective drawbacks. The imaging can be time
consuming if it is point scanning the sample. Some advanced techniques may require
high excitation intensities that can damage the sample quickly due to phototoxicity
and photobleaching. Lastly, the equipment can also be costly.
The second approach which is done computationally is called “deconvolution”. It
consists of undoing the effect the PSF does in the convolution of the object to ob-
tain the best estimate of the object from the measured image. It can, in some cases,
achieve the same resolution as an advanced imaging and thus significantly improve
the image quality and contrast, since it makes plausible assumptions about the object
[5]. A realistic model of the PSF based on the unknown and known parameters of
the optical imaging, samples and image acquisition is however required for a success-
ful deconvolution. Calculating the PSFs is of interest not only for optical resolution
improvement, but also for predicting the resulting image under a given condition.
The PSF can also be experimentally reconstructed by averaging over several images of
beads with size smaller than the Abbe limit. Experimental reconstruction of the PSF
has the advantage of detecting aberrations that may be present in a system. However,
imaging a PSF under the exact acquisition condition as the specimen is not straight-
forward. A wrong estimation of the noise distribution in the PSF affects the quality
of the image reconstruction.
To contribute to the improvement of microscopic image data quality and respond to
the research question: “how to achieve a high resolution imaging with a good contrast while
avoiding the drawbacks of advanced imaging technique?”, we believe one answer consists
of developing effective ways for computing the PSF of a wide-field system under realistic
condition, and demonstrate the efficiency of the PSFs for image reconstruction.

1.2 Current state of the art

The first step to computing the PSF of a given optical imaging system consists of
studying the image formation, and thus the impulse response. This study has been
the focus of many research groups around the world since the days of Ernst Abbe
(1840 - 1905) [8, 9]. These studies range from the theoretical study and derivation of
the analytical expression of the impulse and frequency response of a system, to the
experimental study and validation of the theory. An analytical expression of the PSF
is derived theoretically under a given set of assumptions and approximations based
on the diffraction theory of light. The accuracy of each PSF model depends on these
assumptions and approximations.
Hopkins is among the first scientists to study the frequency response or optical trans-
fer function (OTF) of an optical system [10]. His work focused on a system which is
free of aberration other than defocusing effects. His calculation of the OTF is in terms



CHAPTER 1. INTRODUCTION 5

of Bessel functions. Hopkins’s model is valid under the Fresnel-Kirchhoff boundary
condition. This assumes that the field outside the pupil is zero and the diffraction
by the pupil itself can be neglected [10, 11]. The Rayleigh-Sommerfeld expression of
the diffraction represents the exact scalar amplitude field [12]. The Fresnel-Kirchhoff
solution to wave propagation is a paraxial approximation of the Rayleigh-Sommerfeld
solution [13, 14, 15, 16]. This corresponds to the scalar diffraction of light formed by
converging spherical waves.
Several followed the work of Hopkins in the investigation of the OTF such as Stok-
seth [17], Sheppard and Gu [11], and Hiraoka et al. [18]. These studies theoretically
and experimentally investigated properties of a defocused optical system with inco-
herent illumination [17], and in a more advanced technique using epifluorescence
microscopy [18]. The imaging models were compared to results from geometrical
optics. It is concluded that geometrical optic is a poor representation of an optical
system, and a diffraction theory of the imaging is required especially at high numer-
ical aperture (high NA). The need for a more accurate theoretical model was also
concluded as a large deviation of the theoretical model from the experimental was
observed [18]. A review of the diffraction pattern of a circular aperture based on pre-
vious findings, and the off-axis imaging for systems of low and large Fresnel number,
was conducted by Gibson and Lanni [19]. This investigation of the image formation
and off-axis imaging was established by describing the OTF of the system and the
frequency components of a 3D object that is transferred by a given optical system
based on Born-Wolf formulation [20]. It is concluded from this formulation that the
image formation is a convolution of the object distribution with the response of the
optical system.
Another study by Streibl was conducted in the year of 1985 to investigate the im-
age formation from a scattering object with partially coherent illumination under the
first-order Born approximation [21]. He discussed the limiting factor of the imaging
and the reasons for missing frequency components in the OTF. He found that the
high coherence in the illumination light worsens the image quality [21]. This demon-
strates the benefit of incoherent optical imaging such as fluorescence microscopy over
coherent imaging.
The phase aberration due to the non-design parameters was first introduced by Gib-
son and Lanni [22]. This phase aberration is calculated in terms of the optical path
difference (OPD) between the design and non-design conditions of the system. A
design condition represents the image acquisition condition at which the optical sys-
tem was designed for while non-design condition is the real acquisition condition.
The analytical finding calculated from Kirchhoff’s scalar diffraction model was tested
experimentally under the assumption of shift-invariance and linearity in the system.
The experiment has proven the model of the aberrations to be accurate [22]. Although
a scalar model is easy to implement, it does not account for the vector feature of light
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such as polarization and the direction of the energy flow [23]. Given the Fresnel-
Kirchhoff boundary condition in the model, scalar diffraction theory is also limited to
low NA.
Although Fresnel wave propagation is fast as it requires only one Fourier Transform
(FT) to compute, wave propagation under the Fresnel approximation is only accurate
in the paraxial approximation, i.e. for low NA systems [13, 14]. The angular spectrum
of plane waves (ASPW), also called Fourier propagation in different literature, is an
accurate technique for computing wave propagation [14]. However this technique can
be expensive in time as it requires two FTs to calculate the propagation operation. The
ASPW has also been proven to result to the same wave propagation as the Rayleigh-
Sommerfeld integral under the same boundary conditions [15]. ASPW is well suited
for high NA system. Engelberg explored the physical optics propagation to derive
a new efficient technique for wave propagation in high NA system by avoiding the
paraxial approximation relative to the propagation distance along the optical axis z in
the Rayleigh-Sommerfeld diffraction integral [16]. This new formulation goes beyond
the Fresnel approximation.
Although a solution can be found to accommodate high NA in a scalar diffraction for-
mulation, the polarization of light and the direction of energy flow cannot be taken
into consideration in a scalar formulation. Richards and Wolf calculated the vector
diffraction response of an aplanatic and aberration free optical system [23, 24]. Török
et al. reformulated the Richards and Wolf (RW) model to include spherical aberration
due to refractive mismatch with a planar interface and the transmission coefficients
of the interface [25]. A further study was developed later to derive an analytical so-
lution to the diffraction integrals and decomposition of the spherical aberration by
Zernike polynomials [26]. This aberration decomposition is of interest in understand-
ing any defect induced by the non-design parameters and aberrations. The model
was generalized to accommodate a stratified medium composed of N-layers of differ-
ent refractive indices [27]. The polarization state in the image plane and polarization
fluorescence microscopy were also investigated [28].
The RW model has been chosen by many as the ground truth for calculating the PSF
as it is the most rigorous among existing models so far, and is derived from Maxwell’s
equations [29, 30, 31, 32, 33]. The integrals in its formulation are however expensive
to compute. Several attempts have been made to speed up the computation by ap-
proximating the continuous integral in terms of series. Kant solves the diffraction
integral by expanding it into a series of Gegenbauer polynomials of the first kind
[29]. A review of other computational methods was drafted by Foreman [31]. In
this review, series representations of the model in terms of eigenfunctions, multi-
pole expansions and an approximation of the spherical wavefront into a paraboloidal
wavefront are presented. A trade-off between the accuracy and computation speed
is made. Although the computation using these approximations is fast and the con-
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vergence is rapid, its accuracy is correlated to the degree of the polynomials or the
number of expansions. There is however a threshold to this correlation. A very high
number of expansions can also over-approximate the model and worsen the fit in
the focal region. Another disadvantage of the approximation into developed series
and component-wise expansion is the fact that the Maxwell’s equations may not be
satisfied as each component of the electric field is expanded separately, and different
errors and approximations might be induced [31]. Lastly, these approximations in-
cluding the expansion of Kant [29], are valid such that the pupil plane is symmetric.
This means that any aberration that is not radially symmetric is not yet included in
these formulations.
Developing methods for computing an accurate and efficient PSF is still not a solved
problem, especially in the digital age. Li et al. implemented the scalar PSF model
based on the theory developed by Gibson and Lanni [22, 34]. The Fresnel-Kirchhoff
diffraction integral is approximated in terms of Bessel series and the computation is
found to be efficient in time [34]. The algorithm accounts for the spherical aberration
due to any refractive mismatch in the system and radial symmetry property of the
PSF. Thus, it does not consider any asymmetric aberration that may be present in the
system. The PSF models under the PSFGenerator toolbox developed by Kirshner et
al. [33], and based on the RW formulation [24] was used as state-of-the-art technique
to validate the model of Li et al. [34]. This state-of-the-art PSF model has been
widely used for deconvolution [35, 36]. Based on our experience, the software does
not support larger grids. In other words, it is not memory efficient. In this thesis,
these models will be used for comparison with newly developed methods.
Aguet et al. also developed a MATLAB MEX, a MATLAB function that calls a C code,
for calculating vectorial as well as scalar PSF models [37]. These methods exploit
a numerical integration based on Simpson’s rule to compute the diffraction integral
[37]. Samuylov et al. developed a technique for computing a PSF based on a sparse
Gaussian mixture [32]. This later model is obtained by combining several weighted
single Gaussian kernels shifted to different positions. Its efficiency and accuracy de-
pend on the number of Gaussian functions used. At the time of the submission of
this thesis, the PyFocus is the most recent package for computing a fully vectorial
numerical calculations of the PSF to the best of our knowledge [38]. The package was
written with Python programming language and in an open source format. Since this
package was only discovered during the final stage of the revision of the thesis, we
were not able to conclude about its pros and cons.
The quality of a model is measured in terms of its accuracy, computation time, its
vector features, and the computation method such as for instance inclusion of radial
symmetry. Analytical and theoretical PSF models are validated experimentally by
imaging beads of size smaller than the diffraction limit and averaging over the im-
ages of several beads. By investigating theoretically and experimentally the effects of
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refractive index mismatches in confocal microscopy, Hell et al. predicted a drop in
intensity in the PSF, focal shift and change of optical resolution due to refractive index
mismatches [39]. Sheppard and Török later investigated the same effects on confo-
cal imaging [40]. Haeberlé [41] conducted an experimental validation of the rigorous
vector formulation of the diffraction of an optical system by Török et al. model [26]
with the OPD formulated by Gibson and Lanni [22]. Ghosh and Preza extended the
experimental evaluation of the algorithm similar to the one formulated by Haeberlé in
[41] by accounting for stratified medium composed of more than one layer of sample
of a given refractive index and thickness in the sample region [42]. This consideration
is done over a given small block in space of the sample region, not the whole space.
This shift-invariance condition holds within that small block.
Many parameters of the PSF model in an experimental setting are unknown and a
realistic model which fits the reality is required. Each of the PSF models still has its
own pros and cons. Existing PSF calculations are either based on insufficient models
or contain inaccuracies such as a non-uniform integral close to the focus position. A
strategic and unified comparison of various ways to implement PSF generation models is still
missing in the field.
In this thesis, we analyse, in depth, the state-of-the-art in PSF calculation, their limitations
and present new efficient ways for calculating realistic PSFs. We also developed four PSF mod-
els, two of which are totally new to the best of our knowledge. The first two models
use the angular spectrum method to propagate the field in free space while the two
other methods use different techniques to propagate the field in three-dimensional
space. Three of the models are Fourier-based. The Fast Fourier-transform is a very
handy tool to speed up PSF calculations, but its pitfalls have to be carefully avoided (e.g.
caused by the cyclic borders and discrete sampling in Fourier space). One of the four
methods uses the chirp-Z method that has been used in the literature to avoid the pit-
falls of the FFT without any loss of accuracy [43, 44]. The theoretical models are validated
experimentally and their efficiency for image reconstruction is compared.
A tilt due to any misalignment, imperfection in the optical system or simply a poorly
mounted coverslip can change the PSF pattern and so the image quality dramatically.
A study of tilted plane, a tilted stratified medium to be more precise, has been in-
cluded in the optical diffraction calculation conducted by Matsushima et al. [45]. In
our work, we expand this study by including also the OPD induced by the tilted strati-
fied medium and account for the effect of the tilting in the 3D spectrum in Fourier space.
The OPD is decomposed into Zernike polynomials to quantify the single aberration present in
the system due to the tilt. This particular study is of a great interest in understanding
and predicting image formation. It can also be used for quality control of an optical
system.
The software code developed under this project for calculating the PSF of a wide-field
microscope under a realistic condition is written with MATLAB programming lan-
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guage. This code will be released with the first manuscript from this thesis in an open source
format. We believe this toolbox will contribute to the advancement of optical mod-
elling and image reconstruction. The source code is reproducible and can be easily
adapted to include different modes of the most advanced fluorescence techniques.

1.3 Outline of the thesis

The rest of the thesis is organized as follows:

Chapter 2: We discuss the theoretical background for studying and calculating PSF.
This background ranges from the description of optical apparatus and the different
imaging conditions that need to be satisfied, diffraction theory and propagation of
light to the description of image formation and image reconstruction.

Chapter 3: We present our newly developed techniques for calculating PSFs. We re-
port each necessary ingredient, including possible tilting in the optical system, for
drafting the algorithms for computing the PSFs. Additionally, we present the for-
mulation of a dipole emission PSF. Moreover, we extend the formulation of the PSF
to account for the space-variance property. A brief discussion of wide-field imaging
concludes this chapter.

Chapter 4: We analyse the sensitivities of the PSFs and OTFs to a deviation of its
parameters from the design conditions. A unified comparison of the newly developed
PSFs and the state-of-the-art is also conducted.

Chapter 5: Experimental validation of the theoretically developed PSF requires the
recording of experimental PSF, which is never aberration free. Here we present a
newly adapted phase algorithm to estimate the phase from experimental PSF in order
to adopt a proper comparison of the theory with experiment.

Chapter 6: The theoretical PSFs models developed under this project are validated
experimentally.

Chapter 7: We conclude the thesis with an overview of the methods discussed and
future work.



Chapter 2

Theoretical Background

For a better understanding of the underlying principles of light microscopy and

point spread function calculation, it is important to discuss the properties of light

itself and the mathematical formulation of image formation. This consitutes the

focus of this chapter.

2.1 Image formation

2.1.1 Optical apparatus of a wide-field fluorescence microscope

Optical microscopy is an important tool in scientific research. A microscope is a
device which can help to visualize an object that cannot be seen with naked eye
such as bacteria. It is basically composed of a sample stage holding the specimen, a
light source to illuminate or excite the sample, an objective lens (OL) to collect the
emitted light from the sample. Most modern fluorescence microscopes have a tube
lens to form the primary image of the sample and use a camera to record the image.
The camera converts photons into an electrical signal containing spatially-resolved
intensity information of the incident light. The digitized output of the camera is
then input into a computer to display the image of the sample. The image quality is
characterized by the optical system parameters: immersion medium and numerical
aperture NA of the OL, the emission wavelength λem of the emitter, the excitation
wavelength λex of the light source, the optical and physical properties of the sample,
and the sensitivities of the detector or camera. In fluorescence microscopy, a laser
is often used as an illuminating light source. Lasers are a source of a coherent and
monochromatic light. The sample to image is stained with fluorophores. In widefield
microscopy, the sample is illuminated uniformlly (see Fig. 2.1).
Fluorescence emission upon excitation of the fluorophores may be detected by a dig-
ital camera to form the image of the specimen.

10
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Figure 2.1: Diagram of an inverted wide-field fluorescence microscope [46]. The blue light
path represents the excitation light while the green channel represents the fluorescence emis-
sion in this figure. A dichroic mirror is used to filter out the excitation light from being
detected by the CCD camera.

2.1.1.1 Detection systems

To avoid artefacts due to photobleaching, and for live samples, phototoxicity, the sam-
ple is illuminated at a fairly low power. As a consequence, the fluorescence signal is
weak and can be difficult to detect [1]. A sensitive detection system is thus required to
acquire data with high signal-to-ratio (SNR). The choice of a detection system mainly
depends on its application. Some imaging would require high-speed detection but
usually at the cost of the spatial resolution, while other detection system might be
slow, but is more sensitive to weak signal. The characteristic parameters of detection
systems are its quantum efficiency (QE), gain, and spatial and temporal resolution.
The quantum efficiency indicates the ability of the detector to convert photons to elec-
tronic charge. It is wavelength dependent. The electronic charge is afterwards con-
verted to a voltage value which in turn is digitized to levels of brightness in the output
image. Weak fluorescence signal may contain useful and important information that
may need to be amplified before digitization. The gain of a camera characterizes this
signal amplification. The spatial and temporal resolution of a camera are also worth
considering. Its spatial resolution must match the optical resolution of the system to
detect the smallest feature that is present in the emitter and is resolved by the system.
An appropriate detection speed is important to temporarily resolve the occurence of
specific event from the emitter. A long exposure time may reduce the noise and en-
hance the present signal but may lead to losing information on events occurring on
time-scales smaller than the exposure time. In any type of imaging which requires a
scan over the sample or the image plane, this parameter is important.
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2.1.1.2 Statistical noise models

From photon emission to image digitization, the three most dominant types of noise
that can be detected, accumulated, and also digitized in fluorescence microscopy are
photon noise, electronic noise, and readout noise [47]. Photon noise is also called
fluorescence noise or shot noise. It is determined by the fluctuation of the photon
emission and its arrival at the detector. It follows the Poisson distribution. Electronic
noise arises in the detector. It includes noise accumulated over time due to thermal
vibration of electrons. This type of noise is also called dark current or dark noise in
other literature [48]. As the signal is transferred, noise is also transferred and gets
amplified with the signal. An additional noise called readout noise is added during
this process of quantization of the electronic signal.

2.1.2 The Abbe sine condition

There are different conditions that a system need to satisfy depending on the purpose
of the optical system [49]. In a perfect imaging system, a plane is imaged onto a
plane without acquisition of any phase aberration [3]. This is achieved by satisfying
the Abbe sine condition [3]. The Abbe sine condition ensures the image intensity
invariance along the lateral axis. Given this condition, the pupil in the back focal
plane (BFP) is evenly spaced when it is made discrete. If the optical system does
not satisfy this condition, the pupil gets distorted. To understand the concept, we
simplify the diagram in Fig. 2.1 with a simple 4 f -imaging system (see Fig. 2.2). We
assume a point-like object emitting light isotropically in 4π-direction as emitter. The
propagating spherical wave can be approximated by many finite plane waves. The
direction of a finite plane wave is given by the wave-vector k⃗ which forms an angle
θem about the optical axis (see Fig. 2.2). As the light propagates through the optical
system, the wave-vector in the detection side forms an angle θdet about the optical
axis.

𝜃em 𝜃det

𝑓1 𝑓1

BFP

𝑓2

lens 1 lens 2

ℎ

𝑓2

𝑘

Figure 2.2: Geometrical representation of a 4f-imaging system using the thin lens approxima-
tion. BFP stands for back focal plane. Here lens 1 with focal length f1 corresponds to the
microscope objective lens while lens 2 is associated with the tube lens with focal length f2.
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From the drawing in Fig. 2.2, the invariance is of tan θem/ tan θdet = f2/ f1, which
corresponds to the Helmholtz condition [49]. Under this condition, the equivalent
refractive locus is a plane, f1 and f2 being the focal lengths of the objective lens (lens
1) and tube lens (lens 2) respectively. This surface is defined as the wavefront at
the surface where the waves bend due to the lens from the surface normal to the
optical axis to the direction towards the focal point. The plane equivalent refractive
locus corresponds to the plane indicated by the position of lens 2 in Fig. 2.2. The
Helmholtz condition holds and of importance in paraxial optical systems.
For high NA imaging, the Abbe's sine condition is more accurate [3, 24, 49]. The
notion of Gaussian sphere is introduced to fulfill it. A Gaussian reference sphere is a
sphere of radius equal to the focal length and centred at the Gaussian points which
are either the emitter position in object plane or the nominal focus in image plane [3].
Here, the radius of the Gaussian sphere in the object and image planes are f1 or f2

respectively. Under this condition, the finite plane waves propagate to the Gaussian
reference sphere and get projected to the reference plane without acquiring any extra
phase. The same principle is applied in reverse to the tube lens (lens 2 in Fig. 2.3).

𝜃em 𝜃det

lens 1 lens 2

ℎ

Gaussian
reference sphere

Gaussian
reference sphere

''projection''

Figure 2.3: Introduction of the notion of the Gaussian reference sphere to warrant Abbe's
sine condition. “Projection” refers to direction of the beams at the connected surface without
acquiring any phase for the space in between the plane surface and the sphere.

For a small lateral shift ∆x in the object plane, the residual optical path difference
(OPD) between the change in path in the object plane and in the image plane, is given
as follows:

∆x = n1 f1 sin θem − n2 f2 sin θdet. (2.1.1)

We have n1 and n2 the refractive indices in the object and image space respectively,
and ∆x is the lateral displacement. The residual path ∆x must be zero to satisfy a
lateral shift invariance in a system. This yields to the Abbe sine condition which
relates the angles θdet and θem:

n1 sin θem

n2 sin θdet
=

f2

f1
= M, (2.1.2)

M being the magnification of the optical system.
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This introduction of Gaussian reference sphere requires the consideration of the en-
ergy conservation which is discussed further down in the next Section 2.1.3.

2.1.3 Aplanatic correction

In response to the imaging condition invariants, an aplanatic factor needs to be
taken into consideration. This factor corresponds to the apodization function (see
Eq. (2.2.24)). A system is aplanatic if it is free from spherical and coma aberration.
Any lateral displacement of the system inside an aplanatic region centered at the opti-
cal axis does not induce any aberration to the system [50]. An aplanatic system forms
a perfect image. While satisfying this condition, the energy must be conserved. In
reference to Fig. 2.4 for instance, integrating over the radial position r in the BFP must
yield to the same quantity of energy as integrating over the angle θ in the equivalent
refractive locus [49].
As discussed in Section 2.1.2, the corresponding equivalent refractive locus is a Gaus-
sian reference sphere of radius equal to the focal length of the lens for a system
satisfying the Abbe's sine condition. Under this condition, the apodization or apla-
natic factor (AF) is

√︁
cos(θ) [49]. Without loss of generality, we restrict ourselves to

the effect of a radial displacement from the optical axis of the beamlet.

2.1.3.1 Emission path

The aplanatic correction can be understood by considering once again transverse finite
plane waves propagating parallel to the optical axis and redirected to the nominal
focus which is at the centre of the Gaussian reference sphere. Assuming a lossless
system, the power P1 of an incident beamlet distributed on an elementary area A1

is projected onto a larger area A0 of the spherical area such that A1 = A0 cos θ (see
Fig. 2.4). This implies that the irradiance I1 of the beamlet measured at A1, which
is defined as the power per area, is proportional to I0/ cos θ, I0 being the irradiance
measured at A0.
The positive direction of z is indicated by the direction of the arrow in Fig. 2.4.
Towards this direction, we have an effect of concentrating irradiance to a smaller area
(A0 to A1). It corresponds to the emission path where the wave propagation occurs
from the object plane, defined to be at Ξ0, to Ξ1, a plane parallel to the pupil plane.
In the imaging of an isotropic emitter, the energy on the Gaussian reference sphere is
uniformly distributed. The electric field in the pupil plane therefore needs to be scaled
by 1/AF = 1/

√
cos θ to conserve the energy. The aplanatic effect in the detection path

can often be neglected due to the usually large magnification of the objective lens and
large focal length of the tube lens. This leads to small values of θdet compared to θem,
and the corresponding cosine tends to 1 (see right side of Fig. 2.3). In a demagnifying
imaging system, the detection angle θdet is significant compared to θem. The aplanatic
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Objective
lens

BFP
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S1

S0 𝜃
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𝜃

z

Ξ1Ξ0

Figure 2.4: Schematic illustrating the “aplanatism effect”. The two planes Ξ0 and Ξ1 are par-
allels and are perpendicular to the optical axis. The area A0 is a projection of the elementary
area A1 of the plane Ξ1 onto the Gaussian reference sphere.

factor cancels out and is equal to 1 if the magnification of the system is 1. The general
formulation of the aplanatic factor (AF) in amplitude field is given by:

AFamp =

√︄
cos θem

cos θdet
. (2.1.3)

The subscript amp simply indicates that the AF in Eq. (2.1.3) applies to amplitude field
not intensity. In Section 6.3, we validate experimentally the theory of the aplanatic
factor discussed in this section. In this experimental validation, the tube lens possesses
a larger focal length than the objective lens, which is the case of most modern optical
systems in the field of fluorescence microscopy [51].

2.1.3.2 Excitation path

However, to base the argument on the reciprocity theorem: a monochromatic optical
system in which a field (Ex0 , Ey0 , Ez0) at position S0 gives rise to a field (Ex2 , Ey2 , Ez2)

at position S2 in the image plane, will guarantee that generating (Ex2 , Ey2 , Ez2) at
position S2 results in a field of (Ex0 , Ey0 , Ez0) at position S0 [49]. For an excitation
point spread function (PSF), the excitation light is collected by the tube lens with a
low NA and is focused onto the sample by an objective lens with high NA. The beam
in the BFP can therefore be approximated to be parallel and uniform in the 2D pupil
plane. Its bijective correspondence to the 3D frequency sprectrum of the object plane
is uniform. The projection of this 3D frequency sprectrum onto the 2D pupil plane
leads to a factor 1/ cos θ on that plane. By passing by the objective lens (direction: S1

to S0 in Fig. 2.4), the aplanatic factor of the system which is equal to
√

cos θ applies.
The total factor that needs to be applied for a correct conservation of the energy is
therefore equal to

√
cos θ × (1/ cos θ) =

√︁
cos−1(θ).

These imaging condition invariants are necessary for a correct calculation of the PSF.
In the next section, the diffraction theory of light under these conditions are presented.
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2.2 Diffraction theory of light

2.2.1 Maxwell’s equations

In classical optics, the quantum effects such as particle and wave duality, and en-
tanglement are not considered. Light is an electromagnetic field and its behaviour
is governed by Maxwell’s equations. Light has the ability to change the property of
matter. Matter is optically characterized by its behaviour when an external field is ap-
plied to it and how the electric field propagates throughout it. The wave propagation
depends on the properties of matter and its interaction with light. The representation
of a light-matter interaction consists of a set of interaction with many point charges.
The effective macroscopic Maxwell’s equations are given as follows:

∇ · D⃗(r, t) = ρext(r, t) Gauss’s law (2.2.1)

∇ · B⃗(r, t) = 0 Gauss’s law for magnetism (2.2.2)

∇× E⃗(r, t) = −∂B⃗(r, t)
∂t

Faraday’s law of induction (2.2.3)

∇× H⃗(r, t) = J⃗(r, t) +
∂D⃗(r, t)

∂t
Ampere’s law (2.2.4)

where r and t are spatial and temporal position at which the fields are evaluated,
ρext is the source charge density, J⃗ is the macroscopic current density, D⃗ and H⃗ are
the electric and magnetic field flux density respectively [3]. The electric flux density
is proportional to E⃗ and the dielectric polarization P⃗d such that D⃗ = ϵ0E⃗ + P⃗d, ϵ0

being the dielectric constant of vacuum. The magnetic field and magnetic field flux
density are linked by the relation: B⃗ = µ0H⃗ in nonmagnetic material, with µ0 is the
magnetic permeability of vacuum. Gauss’s law describes that the flux density of the
electric field E⃗ is also proportional to the charge density of the enclosed surface. As
opposed to the electric field, Gauss’s law in Eq. (2.2.2) states that there is no mag-
netic monopole. The total magnetic flux is zero and the magnetic field B⃗ is always
attributed to a dipole. Faraday’s law of induction and Ampere’s law define the in-
terconnection between E⃗ and B⃗. A time-varying in B⃗ induces E⃗ and vice-versa. It
is also observed from the Ampere’s law that a change in the current per unit area
can influence the circulation density of B⃗ and so the electric field E⃗. Substituting the
expression of B⃗ in Faraday’s law of induction by the expression in the Ampere’s law,
we have the general wave equation which corresponds to the electric field as:

∇×∇× E⃗− µ0ϵ0
∂2E⃗(r, t)

∂t2 = µ0
∂ J⃗(r, t)

∂t
+ µ0

∂2P⃗d(r, t)
∂t2 , (2.2.5)

The right hand side (RHS) of Eq. (2.2.5) relates to the medium. The current density J⃗
and E⃗ are linked by Ohm’s law J⃗ = σE⃗, with σ being a tensor [3].
In the realm of linear optics, this current project primarily considers dielectric media
with no free charges which implies that there is no variation of ρext in time, σ = 0.
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Hence, J⃗ = 0⃗ and ∇ · D⃗ = 0. Thus, the wave equation described in Eq. (2.2.5) reduces
to the Helmholtz equation for a linear, isotropic, homogeneous and dispersive media:

∇2E⃗(r, t)− n2

c2
∂2E⃗(r, t)

∂t2 = 0, (2.2.6)

with c = 1√
ϵ0µ0

is the speed of light in vacuum, and n =
√

ϵ/ϵ0 is the refractive index
of the medium in which the wave is propagating, ϵ being the dielectric constant of
the medium. Two particular solutions to the Helmholtz equation for the electric field
are plane and spherical waves represented as:

E⃗(r, t) = R{ei(k⃗·r⃗−wt)}, plane wave; (2.2.7)

E⃗(r, t) = R{1
r

ei(∥k⃗∥·∥r⃗∥−wt)}, spherical wave; (2.2.8)

with R{x} being the real part of x, k⃗ the complex wavevector such that k2 = ∥k⃗∥2 =

k2
x + k2

y + k2
z, k = nk0 is the wavenumber in the medium of refractive index n, k0 =

2π/λ0 is the free-space wavenumber, λ = λ0/n is the wavelength and w the angular
frequency. Unless we talk about vector diffraction, we omit the arrow in the expres-
sion of E⃗ for simplicity in the following formulation. To understand the dispersion
relation of the wave, the proposed solution to the wave equation is inserted in Eq.
(2.2.6) and we obtain the dispersion relation:

k2
x + k2

y + k2
z =

w2n2

c2 . (2.2.9)

The refractive index n is function of the angular frequency w and can be complex.
Therefore, it defines the properties of k⃗. If the imaginary part of k⃗ is not zero, a decay
in the electric field is induced:

E(r, w) = ei(R{k⃗}·r⃗−wt)e−I{k⃗}·r⃗. (2.2.10)

This decaying factor e−I{k⃗}·r⃗ corresponds to evanescent waves. I{x} indicates the
imaginary part of x. The condition for an homogeneous and evanescent waves are
therefore given by:

If k2
z ≥ 0, k2

0 ≥ k2
x + k2

y : homogeneous wave (2.2.11)

If k2
z < 0, kz ∈ C : evanescent wave (2.2.12)

2.2.2 Propagation and diffraction of monochromatic waves

To describe the propagation and diffraction of monocrhomatic waves, let S0 be a
source of a plane wave placed at infinity, Ξa is the plane where an aperture of width
a is placed and P(x, y, z) is a point on a plane ΞP placed at a distance equal to ∆z
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Figure 2.5: Diffraction of planes waves through an aperture.

behind the aperture. The wave propagates the distance ∆z and the diffraction pattern
is evaluated at P (see Fig. 2.5).
From Huygens-Fresnel principle, each point of the wavefront at the aperture of Ξa

becomes secondary source of spherical wave. The diffraction pattern formed on ΞP

is a linear superposition of the Huygens wavelets: constructive and destructive inter-
ference depending on the phase difference between the waves. The first minimum of
the diffraction pattern is the position where the wave at the edge of the aperture and
the wave along the optical axis interfere destructively (position indicated by the point
P in Fig. 2.5). This process is mathematically a convolution between the electric field
at the boundary of the aperture and the Huygens wavelets [3]:

E(x, y, z) = E(x, y, za)⊗ KH, (2.2.13)

where za and zP are respectively the axial position at the aperture of plane Ξa and the
plane of observation, ΞP, where the point P is, ⊗ is the convolution operator, and KH

is the Kernel of the Huygens wavelets. A convolution in real space corresponds to the
multiplication of the Fourier transform of E(x, y, za), denoted by Ẽ(kx, ky, za), with the
transfer function which corresponds to the Huygens wavelets. The time-independent
beam diffraction can therefore be formulated as the angular spectrum of plane waves
given by:

E(x, y, z) =
∫︂∫︂ ∞

−∞
Ẽ(kx, ky, za)eikzzei(kxx+kyy)dkxdky, (2.2.14)

where eikzz = F{KH}(kz) is the transfer function which corresponds to the Huygens
wavelets, F{x} is the Fourier transform of x. This term is known as the propagator in
our formulation for calculating the PSF in Chap. 3. The term Ẽ(kx, ky, za) represents
the pupil field distribution.
From Eq. (2.2.14), the formulation and accuracy of the diffraction pattern depends on
the approximation used. This expression describes a scalar field. It can be generalised
to a vector formulation when the field polarization is considered.
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2.2.3 Scalar diffraction model

Scalar field approximation does not account for the vector feature of light. To differ-
entiate a scalar diffraction model from a vector model, let us consider the diagram
displayed in Fig. 2.6, which is a 3D display of Fig. 2.5. The image plane in Fig. 2.6
corresponds to the plane Ξp in Fig. 2.5. The plane Ξa of Fig. 2.5 is at the lens position
in z for a system satisfying the paraxial approximation and the Helmholtz condition
as described in Section 2.1.2. This is the case for a low NA system. If the system
satisfies the Abbe sine condition, the sphere on the right side of the lens represents
the equivalent refractive locus on which the field from the pupil plane gets projected
before it converges to the nominal point. In a scalar field approximation, the field is
assigned to point in space without consideration of its orientation (see Fig. 2.6). In a
vector field approximation, at each point in space, the polarization state of the electric
field can change and must be taken into consideration.

pupil plane image plane

lens 

𝜙 

z

𝑘𝑥 𝑥

𝑘y
y

𝜃
a

Figure 2.6: Field propagation from a circular aperture of diameter a. In a low NA system
satisfying the paraxial approximation, the waves follow the path indicated by the blue dashed
lines. With a high NA system where the Abbe sine condition needs to be satisfied, the waves
get projected onto the sphere and follow the red path instead.

In the paraxial approximation, the inclination angle, θ, from the object plane as well
as towards the image plane with respect to the optical axis, is assumed to be small
enough so sin θ = (k2

x + k2
y)/k2

0 ≈ θ (see Fig. 2.5). In this case, the spatial frequency

kz =
√︂

k2
0 − k2

x − k2
y can be approximated using the Taylor expansion of degree 2 to

obtain:

kz ≈ k0 −
k2

x + k2
y

2k0
. (2.2.15)

This approximation enables the derivation of paraxial-Fresnel near-field diffraction.
If the field is evaluated at a far distance i.e. z >> a2/λ from the aperture, the far-field
Fraunhofer diffraction is obtained [14]. The Kirchoff’s boundary condition, which
corresponds to the contribution of the field outside the opening of the aperture be-
ing neglected, can be applied if the width of the aperture is large compared to the
wavelength [14]. In this case, the limit of integrations reduces to the width of the
aperture.
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The representation of the scalar diffraction model for low numerical aperture systems
can therefore be approximated and derived by considering a circular aperture of di-
ameter a [19]. In other words this means that the pupil field distribution in Eq. (2.2.14)
is simply a disk of diameter a.
This results to the intensity distribution of the diffraction pattern being:

I(x, y, z) ∝
⃓⃓⃓⃓∫︂ a

0
J0

(︃
k0ρ′ρ

2z

)︃
eiΦ(ρ′)ρ′dρ′

⃓⃓⃓⃓2
, (2.2.16)

where ρ′ =
√︂

k2
x + k2

y is the radial position in the aperture, ρ =
√︁

x2 + y2 is the radial
position in the resulting diffraction pattern, and J0 is the Bessel function of the first
kind of order 0. The function Φ(ρ′) represents the wavefront aberration.
If the wavefront aberration is zero, the intensity I in Eq. (2.2.16) becomes proportional
to a Sombrero function:

I(ρ, z) ∝

⃓⃓⃓⃓
⃓ J1
(︁
k0

a
2 sin θ

)︁
k0

a
2 sin θ

⃓⃓⃓⃓
⃓
2

, (2.2.17)

where ρ/z = sin θ, and J1 is the Bessel function of first order. The smallest width,
dlim, in the aperture that can be resolved in the observation plane is determined by the
position of the first minimum of the intensity I. This smallest width is the diffraction
limit, and is given by:

dlim =

⎧⎨⎩1.22
π

λ0
n sin θ Rayleigh criterion

λ
2n sin θ0

Abbe resolution limit,
(2.2.18)

with λ0 is the vacuum wavelength and n is the refractive index of the medium. The
numerical aperture is defined as NA = n sin θ.

2.2.4 Vector diffraction

A scalar diffraction theory is simple to derive but it does not fit the reality of most
practical situations in optics. The polarization and vector diffraction can only be
accessed by considering the vector nature of the electric field (see Fig. 2.7).
Richards and Wolf investigated the rigorous vector diffraction of the electric field
[23, 24]. The diffraction pattern at a focal distance from the lens is calculated by con-
sidering a monochromatic point source of angular frequency w placed at a distance
infinity before the lens.
Starting from Eq. (2.2.7), Richards and Wolf firstly assumed that the system obeys the
Kirchoff’s boundary condition where any contribution from field outside the bound-
ary conditions of the circular aperture is neglected [23]. This is valid as the diffraction
of interest is in far-field as is the case of most microscopy techniques. However, the
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Figure 2.7: Vector field propagation from a circular aperture of diameter a through a high NA
system. e⃗s, e⃗p are unit vectors of s and p−polarization state, e⃗r represents the unit vector of
the p−polarization after the projection on the Gaussian sphere.

representation of the electric field even in a vector formulation is still an approxi-
mation because the exact boundary condition of the imaging still remains unknown
[23]. The second assumption adopts the principle of stationary phase. Sinusoids with
rapidly varying phase are cancelled out. This implies an asymptotic approximation
for large phase k⃗ · r⃗. Given those approximations, the expression of the electric field
evaluated at a point P(x, y, z), with spherical coordinates (rP, θP, ϕP), given in Eq.
(2.2.14), is reformulated as follows:

E⃗(r) = − ik0

2π

∫︂∫︂
Ω

a⃗(kx, ky)

kz
eik0[Φ(kx,ky)+k⃗·r⃗]dkxdky, (2.2.19)

with θP being the elevation angle and ϕP being the azimuthal angle, a⃗ is the strength
factor and Φ is the aberration function describing the wave deformation in the pupil
plane. Eq (2.2.19) is derived from the Helmholtz wave equation for a linear, isotropic,
homogeneous and dispersive media and satisfies Maxwell’s equations.
The components of E⃗ are found as:

Ex(P) = −iC(I0 + I2 cos(2ϕP)) (2.2.20)

Ey(P) = −iCI2 sin(2ϕP) (2.2.21)

Ez(P) = −2CI1 cos ϕP, (2.2.22)

where C = π f l0
λ0

is a constant, with f being the focal length of the lens in vacuum, l0
an amplitude factor and λ0 the wavelength in vacuum [23]. The three functions I0, I1

and I2 are respectively defined for q = 0, 1 and 2 by:

Iq =
∫︂ θmax

0
f (θ)Qq(θ)Jq(krP sin θ sin θP)eikrP cos θ cos θP dθ, (2.2.23)

such that θmax is the maximum angular aperture of the optical system, Jq is the Bessel
function of the first kind and order q, and f is an apodization function. This function
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is introduced to ensure the energy conservaton in the system. The general expression
of the apodization is given in [49] by:

f (θ) =
[︃

g(θ)g′(θ)
sin θ

]︃
with g′(θ) =

dg(θ)
dθ

being the first derivative of g. (2.2.24)

As seen in the previous Section 2.1.2, the imaging condition, supposedly a condition
which connects rays in the object space with rays in the image space, is g(θ) = sin θ

yielding to the apodization function f (θ) =
√

cos θ for a system obeying the Abbe
sine condition. On the other hand, the expression of Qq in Eq. (2.2.23) is defined as:

Qq(θ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sin θ(1 + cos θ) if q = 0,

sin2 θ if q = 1

sin θ(1− cos θ) if q = 2.

(2.2.25)

The expression of the electric field described until now corresponds to a system which
does not account for any interfaces that may be present in the system. In many exper-
imental situations, the system is formed by at least three media with two interfaces:
sample, coverslip and immersion medium. The sample can be a stratified medium.
Török et al. investigated the diffraction of light as it passes through different media of
different indices of refraction. The interfaces are planar and perpendicular to the op-
tical axis [25]. The integral represention of the field at the Nth medium is generalised
for a stratified medium and is given by:

IN
q =

∫︂ θmax

0
f (θ1)QN

q (θ1)Jq(k1rP sin θ1 sin θP)eikNrP cos θ2 cos θP dθ1, (2.2.26)

with

QN
q (θ1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sin θ1

(︂
T(N−1)

s + T(N−1)
p cos θN

)︂
if q = 0,

T(N−1)
p sin θ1 sin θN if q = 1

sin θ1

(︂
T(N−1)

s − T(N−1)
p cos θN

)︂
if q = 2.

(2.2.27)

T(N−1)
s and T(N−1)

p are the transmission coeffients through the (N − 1) interfaces at
the very last interface, which correspond to the s and p polarization of the electric
field. The refracted angles θ1, θ2, ..., θN are linked by the Snell’s law of refraction. The
light is propagating from medium with subscript 1 to medium N in this formulation.
The expression of TN−1

p and TN−1
s are given in Section 2.2.4.1.

2.2.4.1 Transmission coefficients

The complex valued transmission coefficient for a system with N homogeneous di-
electric media i.e. with (N− 1)-interfaces was derived by Török and Varga [27] based
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on the previous work of Born and Wolf [20] and is given by

T(N−1)
m =

t(N−1)
m

N−2

∏
j=1

t(j)
m exp(iσj+1)

1 + R(N−1)
m

, (2.2.28)

where R(N−1)
m is a recursive function of the transmission t(j)

m and reflection coefficients
r(j)

m at each interface (j), (j) ∈ [1, N − 1]. The function R(N−1)
m has a phase term and

is equal to r(1)m r(2)m exp(2iσ2) for N = 3 and σj = k0njtj cos(θj), nj being the refractive
index in medium j, tj the thickness of the j-th medium and θj the refracted angle at
(j− 1)-th interface and incident at (j)-th interface. The subscript m indicates p or s
polarization. The Fresnel amplitude transmission, t(j)

m , and reflection coefficients, r(j)
m ,

are expressed as follows:

t(j)
m =

2apj
m

pj
m + pj+1

m
with a =

⎧⎨⎩1 if m = s

nj/nj+1 if m = p
and r(j)

m =
pj

m − pj+1
m

pj
m + pj+1

m
,

(2.2.29)
with pj

s = nj cos(θj) and pj
p = 1

nj
cos(θj), j ∈ [1, N] and (j) ∈ [1, N − 1] [20].

Given the expression of σj and the same assumption as by Török and Varga [27]
and Haeberlé [41] in the reflection coefficients being much smaller than unity, the
denominator of Eq. (2.2.28) is rounded to unity and Eq. (2.2.28) can be rewritten as:

T(N−1)
m ≈

(︄
N−1

∏
j=1

t(j)
m

)︄
exp (ik0ψ) with ψ =

N−1

∑
j=2

njtj cos(θj). (2.2.30)

Eq. (2.2.30) is approximately true for a corrected objective lens where the light trans-
mission is enhanced hence low reflection [52]. The phase term ψ is compensated in the
lens system in many of the recent microscope objectives [52]. The phase difference
between the phase compensated by the lens system and the phase acquired in real
imaging represents the phase aberration of the system contained in Φ in Eq. (2.2.19).

2.2.4.2 Polarization

The three spatial components (Ex, Ey, Ez) of the diffraction field in Eq. (2.2.20), (2.2.21)
and, (2.2.22) are derived from a linearly polarized incident light oscillating along the
x−axis as it propagates [23, 24]. For an arbitrary polarization of the incident light,
the electric field in the observation plane can be expressed as a combination of those
three components (Ex, Ey, Ez). For a linearly polarized light making an angle α about
the x− axis, the components of the resulting field in the observation plane E⃗α is:

E⃗α =

⎛⎜⎝ cos α sin α 0
− sin α cos α 0

0 0 1

⎞⎟⎠
⎛⎜⎝Ex

Ey

Ez

⎞⎟⎠ . (2.2.31)
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The same principle can be applied for different polarization states. For instance,
propagating a circularly polarized incident light is similar to propagating separately
the components of the field and combining each propagated component of the fields
in a vector summation. This is true given the fact that Maxwell’s equations are linear
and the superposition principle holds.

2.3 Diffraction theory of aberration

In the presence of an aberration, the wavefront at the exit pupil departs from the ideal
Gaussian reference sphere. Some waves are delayed compared to others. Hence the
formulation of the diffraction is modified accordingly.

parallel waves

S0

z

p0 p1p2

Gaussian 
sphere GS

Deformed 
wavefront W

exit pupilentrance pupil

optical axisOp Oz

Figure 2.8: Geometry of wave aberrations. The blue line indicates the path travels by the wave
in a non-aberrant imaging and the red line indicates the optical path in a non design condition
aberrant system.

In Fig. 2.8, we illustrate an imaging of a plane to a plane of a single emitter S0 in
a 4f-system. A parallel wave arrives at a position p0 at the exit plan. In a perfect
imaging, this incoming wave is projected from p0 to p1 without acquiring any extra
phase before it focuses at the focal point Oz on the observation plane at a distance
z from the exit pupil (blue line). In an aberrant system, the ray acquire extra phase
to reach to the point p2 on the deformed wavefront before it focuses at Oz (red line).
This phase, denoted by Φ , is defined as the OPD between the deformed wavefront
denoted by W and the Gaussian reference sphere GS in Fig. 2.8 and is given by:

Φ(r, ρ, ϕ) = [S0p2]− [S0p1], (2.3.1)

with r being the object field coordinate, ρ the radial position at the pupil plane limited
by the maximum angular aperture, and ϕ the azimuthal angle [53]. Under the Abbe
sine condition, Φ depends on three rotationally invariant parameters r2, ρ2, rρ cos ϕ.
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A single aberration can be obtained by combining a power series of those three pa-
rameters. The primary transverse aberrations are obtained by differentiating the wave
aberration Φ about the pupil radial coordinates. These derivation have been discussed
in several textbooks and are not discussed any further in this thesis [20, 53, 54, 55].
In geometrical optic, only a single aberration, defined by the following general ex-
pression, might be detected:

blnmr2l+mρn cos(mϕ), (2.3.2)

with blnm being the aberration coefficient, l, n, m ∈ N3 such that n > m and n − m
is even [53]. The parameters n and m define the radial and azimuthal orders of the
wavefronts respectively. The parameter l defines the order of the aberration.
In diffraction theory, several single aberrations with given amplitudes, which can be
negative or positive, add up to form a small phase change in the wavefront [55]. The
linear representation of a set of single aberrations can be expressed in terms of the
Zernike polynomials [56]. The distortion caused in the pupil plane mathematically
corresponds to an additional phase in the complex amplitude electric field. This
phase change influences how the light will interfere in the observation plane and so
the diffraction pattern and the PSF.

2.4 Fourier imaging

As seen earlier in Fig. 1.2 of Section 1, the formation of an image by a given opti-
cal system can mathematically be described as a convolution of spatial fluorescence
intensity distribution, for instance created by a spatially varying fluorophore concen-
tration, with the PSF of the system. The PSF is derived from the rigorous vector
diffraction of light transmitted by a circular aperture. The PSF is mathematically the
intensity distribution which results from the square of the electric diffraction field.
The spatial intensity distribution of the object, denoted by O, can be interpreted as
the probability density of the light emitted from the object (the fluorophore) after
photo-excitation. We denote h⃗amp the complex amplitude spread function (ASF) and
h = |h⃗amp|2 without the subscript the corresponding intensity PSF.

2.4.1 Coherent imaging

In a coherent or partially coherent system, the electric fields from different point
source emitters can be in phase or out of phase. The phase coherent term is not zero.
The resulting image amplitude A⃗I is obtained as a convolution of the object field
amplitude, A⃗O, with the ASF:

A⃗I(r) = A⃗O(r)⊗ h⃗amp(r). (2.4.1)
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The image intensity is given by I(r) = A⃗I(r) · A⃗
∗
I (r), being the scalar product of A⃗I

with its complex conjugate A⃗
∗
I and r being the image spatial coordinate.

2.4.2 Incoherent imaging

In an incoherent imaging system, the phase between the electric fields of point emit-
ters fluctuate randomly and the pairing of the phase cannot be detected by the camera
due to the limited bandwidth of the detector [1]. The sources are independent and
uncorrelated. The time-average intensity of the superposition of the fields is phase in-
dependent. Thus, the convolution operation in the imaging applies for the intensity.
This is usually the case of fluorescence microscopy. Since fluorescence light emission
is a spectrum instead of being monochromatic, the PSF at each frequency adds to the
total intensity. The ideal detected image intensity is thus given by:

I(r) = O(r)⊗ h(r), (2.4.2)

The object intensity and the PSF coexist without affecting each other. In integration
formulation, this convolution process is represented as follows:

I(r) =
∫︂∫︂ +∞

−∞
O(r′)h(r− r′)dr′, (2.4.3)

with r being the image coordinates and r′ is the object coordinates.

2.5 Image reconstruction: deconvolution

The knowledge of the PSF can be used for many things such as a prediction model
or for characterization of a given optical system [57] and especially for image recon-
struction [35]. Image reconstruction, also called deconvolution, is of importance in
retrieving the best estimate of an object from a diffracted measured data given the
measured noisy image of the object. In other words, it consists of undoing the con-
volution of the object by the PSF during the imaging by minimizing a pre-defined
cost function. Deconvolution is an ill-posed problem [58]. The OTF is band-limited
as the system is diffraction-limited. It generally does not have an inverse and may
lead to an unstable solution in presence of noise [59]. Higher frequencies in the ob-
ject will be cut-off and lost during the imaging process. Important information in
the object along the axial frequency is removed and not contained in the recorded
widefield images due to the missing cone in the OTF. Retrieving the object from the
measured image may not give a solution or lead to non-unique results. A set of addi-
tional assumptions and parameters has to be adopted to avoid this indifference and
recover the object. This includes prior knowledge about the object to recover such as
non-negativity constraint and noise distribution [35, 60].
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Deconvolution is characterized by the loss or cost function which is to be minimized,
the minimization algorithm itself, the prior knowledge about the object to retrieve
and the associated noise model that is predicted to be contained in the measured data.
The choice of the regularizer is pivotal for the best restoration and it can speed up
convergence of the restoration [60]. Some deconvolution techniques and algorithms
assume a Gaussian distribution of noise while others assume the Poisson distribution
or a mixture of Gaussian and Poisson noise. If the noise level is significant, a Poisson
noise model can be approximated by Gaussian distribution. A trade-off between the
number of iterations and the quality of the reconstruction must also be considered
carefully as higher number of iterations may lead to noise amplification [35, 60, 61].
The cost function is given as follows:

C(I, O) = L(I, O) + γP(O), (2.5.1)

with I being the noisy measured image, O the object to estimate, L the negative likeli-
hood function, P the penalty or regularizer function which contains prior knowledge
of the object and γ the regularization parameter which determines the strength of the
regularization. Maximizing the probability of obtaining the best estimate of O, given
I, is equivalent to minimizing the negative log likelihood function in addition to the
penalty function (the regularization). The data term L(I, O) is given by the following
equations for a Gaussian and Poisson noise respectively:

LG(I, O) = ||h⊗O + b− I||2 Gaussian noise (2.5.2)

LP(I, O) = ∑ h⊗O− I log(h⊗O + b) Poisson noise, (2.5.3)

with h being the PSF, b the background light.
The penalty function with a Gaussian, entropy and Good’s roughness prior are given
as follows respectively [35, 60, 62]:

PG(O) = ∑ ||O||2 Gaussian prior, (2.5.4)

PE(O) = ∑ O log(O/m)−∑ O + ∑ m Entropy prior, (2.5.5)

PR(O) = ∑
|∇O|2

O
Good’s roughness, (2.5.6)

with m being an unknown parameter which assumes a knowledge of the shape of
the object. The operations in the two equations above are point-wise. Solving the
minimization problem using the cost function may or may not necessarily lead to an
analytical solution. Some techniques solve this problem in an iterative way instead
of using the analytical solution. An accurate PSF is required for a successful decon-
volution. If the PSF is unknown, the deconvolution is done blindly by estimating the
object and the PSF in parallel [63] or estimating the PSF blindly and proceeding to the
standard deconvolution using the estimated PSF afterwards. In this case, the recovery
process is becoming more complex and is called blind deconvolution.
The next chapter focuses on presenting efficient methods for calculating a realistic
and accurate PSF model.



Chapter 3

Point Spread Function Calculations

Practical approaches for calculating realistic PSFs for wide-field microscopy
are still lacking in the field and constitute the focus of this chapter. The
models are extended to account for a possible tilt of a plane which is a
common alignment issue or due to the sample property. Furthermore, the
computation of a dipole emission PSF and the consideration of the space-
variance property of an imaging in the PSF calculation are discussed. We
conclude this chapter by describing the limitation of wide-field imaging.

3.1 Introduction

The electric field’s amplitude derived from this study satisfies Maxwell’s equations
and is limited to propagating far-field waves. Four methods are discussed: slice-propagation
method using fast Fourier transform (SP-FFT) and chirp-Z transform (SP-CZT), Fourier
shell interpolation method (F-Shell) and Sinc-R method (Sinc-R). These methods share
as a starting point in the PSF calculation the computation of the three-dimensional
(3D) Fourier spectrum on the pupil plane, a segment of the k−sphere called Mc-
Cutchen pupil, which constitute the focus of Section 3.2 and 3.3. The four methods
differ in the ways they propagate the field in free space. In the first two methods,
SP-FFT and SP-CZT, the wave propagation are based on the angular spectrum meth-
ods. Although the original ideas of these two methods are not new and have been
discussed widely in the literature especially the SP-FFT, here we present a practical
approach taking into account the pitfalls of the mathematical operators (FFT and CZT) used
in the models and the ways around them that we believe have not been discussed
elsewhere in the literature to the best of our knowledge. These studies are in the
goal of achieving an accurate and efficient calculation. The F-Shell method uses the
iterative Fourier transformation algorithm to interpolate the necessary Fourier space
kernel forming the field propagator. The last method Sinc-R or sinc-shell is based on
the knowledge that the 3D Fourier transform of a complete spherical shell has a sinc
function solution in real space. The half of the 3D spherical shell is used to represent

28
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the field propagator in free space. These two last methods are totally new from the
idea conception to the implementation to the best of our knowledge.
A more realistic PSF model accounts for the vector features of light and the experi-
mental parameters. A tilt of one or many planes about the axis normal to the optical
axis is one those experimental parameters that is most probable to be present during
an image acquisition alongside of the refractive index mismatch in the sample and
immersion medium. The deformation in the McCutchen pupil and induced phase
aberration due to this tilting are discussed in details in this chapter. The particular
case of a tilted coverslip is considered. To the best of our knowledge, the approach
of using the tilted McCutchen pupil combined with the very first analytical expression of the
phase aberration from a tilted plane such as a coverslip through a stratified medium and the
linear decomposition of this phase into Zernike polynomials are new to the literature.
The above-mentioned consideration is for calculating the PSF of a wide-field micro-
scope from an isotropic emitter. We also present in this chapter the derivation of
the emission dipole PSF. These calculations are based on the assumption of a shift-
invariant system. In reality, the system may be shift-variant, for instance the case
when the sample refractive index is heterogeneous. As a response to this, we discuss
the shift-variance possibility of the PSF and conclude the chapter with a description
of the optical limitation of a wide-field imaging.
The MATLAB programming language is used for writing the codes. The calculation
generating the figures displayed in this thesis was done with MATLAB2018a on Win-
dows 10 64-bit, Intel Core i5-6200U CPU @ 2.30GHz, 8,0GB RAM, Intel HD Graphics
520. A MATLAB PSF toolbox is therefore an output from this study. The code can be
reproduced in any other programming languages such as Python.

3.2 The k−sphere

In Fourier space, each ray of a given wavevector k⃗W corresponds to a point on a sphere
of radius k0 (see Fig. 3.1b). The medium in the image space is usually air while
the medium in which the wave is propagating in the object space is the immersion
medium of the objective lens. The sphere is called the Ewald sphere or k−sphere
(see Fig. 3.1). Due to the limiting factor in the numerical aperture of the objective
lens, only a portion of the emitted light from the emitter is collected and transmitted
by the optical system. In a system with a stratified medium of N number of layers
where each layer in the object plane (sample, coverslip and immersion medium) has
different refractive index, the effective numerical aperture, NAeff, is the minimum
between the designed NA and the different refractive indices in the stratified medium
i.e. NAeff = min{NA, nj; j = 1, · · · , N}, nj being the refractive index of the jth layer.
This effective NA enables the block of any evanescence wave due to total internal
reflection to contribute to the final field. The 3D frequency spectrum in Fourier space
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is therefore only non-zero in a segment of the Ewald sphere delimited by this effective
NA. This segment is called McCutchen pupil or generalized aperture (thick solid line
in Fig. 3.1).
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Figure 3.1: (a) Coordinate system in Fourier space: θ and ϕ are the elevation and azimuthal
angles respectively. (b) Fourier space representation of a plane wave from a wavelet W at a
point source PW in the pupil plane called McCutchen pupil (thick cap). The ky−axis in (b) is
oriented towards the front plane of the paper.

3.3 The electric field on the k−sphere

To derive the 3D spectrum on the McCutchen pupil, let us firstly limit ourselves to a
scalar electric field before we consider the vector nature of the electric field.
The end goal is to calculate the focal field intensity of an objective focusing a spherical
wave to a low NA tube lens (see Fig. 3.2). The beam is entering the objective system
from the left side and is spatially limited by the entrance pupil of the optical system,
which represents the image of the aperture stop as created by the optics to the right
of the aperture in Fig. 3.2. Such a limit, “aperture stop”, is in practice either inten-
tionally introduced or effectively provided by the inner geometry of the objective, to
warrant the linear shift invariance performance of the system. It is also used to avoid
unwanted beams, which would introduce aberrations if propagating through the sys-
tem. At the aperture stop, every point, PW, on the wavefront is considered as a source
of a spherical Huygens wavelet [64].
Each of the wavelet denoted by W in Fig. 3.2 gives rise to a plane wave after the
tube lens. The plane waves are directed towards the nominal focus denoted by S,
belonging to the image plane. Due to the Abbe sine condition and the notion of
Gaussian reference sphere, the wavelets have to acquire exactly the same optical path
and interfere constructively at this nominal focus S. The plane waves superimpose to
form the spherical wave converging at S. This superposition is derived from Huygens-
Fresnel principle [64].
The pupil plane aperture stop gives rise to a 3D cap residing on the k−sphere in
Fourier space. A pupil position in real space exactly corresponds to the lateral com-
ponent (kx, ky) of the wave-vector k⃗ (see Fig. 3.2). The Fourier spectrum, which
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Figure 3.2: A monochromatic coherent plane wave formed by a high NA microscope objective
in the pupil plane is a source of Huygens wavelet which becomes a plane wave when focused
by a lens at a point S in the image plane.

corresponds to the field in the object as well as the image plane are illustrated in Fig.
3.3.
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Figure 3.3: Representation of the waves on the k−sphere in the object plane (left) and in the
image plane (right). The bold solid line represents the McCutchen pupil.

The above-mentioned formulation is for wave propagation from an emitter placed at
the focal length before the objective lens, a point-like emitter in focus. We assume a
perfect anti-reflection coated objective lens and all the energy is transmitted for such
a ray. As the tube lens is assumed to be with a low NA, its can be approximated
as a digital Fourier transform operation (FFT) in our calculation. The field obtained
from the FFT of the field on the k−sphere represents the field in the image plane. To
calculate the electric field on the k−sphere, let E⃗i = (Ex, Ey) be the transverse electric
field incident at the pupil plane. The field is polarized along the direction given by the
spatial components of E⃗i. The components of E⃗i are given in the coordinate system
of the 2D pupil of Fig. 3.4b. The field of the plane waves on the McCutchen pupil
is a 3D-projection E⃗k = (Ex, Ey, Ez) of E⃗i. The directional change of the electric field
is illustrated in Fig. 3.4. The coordinate (x, y, z) is the spatial position at which the
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Figure 3.4: Schematic diagram of the coordinate systems for the directional change of a wave
field Ei through an objective lens. (a) Adaptive coordinates on the McCutchen pupil. (b) 2D
pupil plane.

field is evaluated. It is however useful to consider a locally varying coordinate system
along azimuthal (e⃗s) and radial (e⃗p) directions respectively to facilitate the calculation.
The subscript p and s represent the polarization state of the vector quantity with p and
s stand for parallel and perpendicular (derived from the German word “senkrecht”)
to the plane of incidence.
The wave propagation is directed by the wave vector k⃗ (see Fig. 3.4a). The system is
assumed to fulfil the Abbe's sine condition, requiring the beams to change direction
at the Gaussian reference sphere. This changes the direction of the unit vector cor-
responding to the radial component e⃗p refracted by θ to become e⃗r. The azimuthal
component oriented along e⃗s however remains the same. The new coordinate system
is illustrated in Fig. 3.4 and the coordinates of the three above-mentioned unit vectors
are given by:

e⃗s =

⎛⎜⎝− sin ϕ

cos ϕ

0

⎞⎟⎠ , e⃗p =

⎛⎜⎝cos ϕ

sin ϕ

0

⎞⎟⎠⇒ e⃗r =

⎛⎜⎝cos ϕ cos θ

sin ϕ cos θ

sin θ

⎞⎟⎠ (3.3.1)

The field amplitude distribution at a point (x, y, z) which forms one point at the
spherical coordinate (k0, θ, ϕ) of the McCutchen pupil is therefore given by:

E⃗k(kx, ky, kz) = (E⃗i · e⃗p)e⃗r + (E⃗i · e⃗s)e⃗s. (3.3.2)

In N-layers of homogeneous dielectric stratified medium, the radial unit vector e⃗p is
rotated (N − 1)times before it gets into the final unit vector e⃗r in the N−th medium.
Taking into consideration the Fresnel coefficients and transmittance due to the inter-
faces, the field amplitude distribution is generalized as:

E⃗k(kx, ky, kz) = T(N−1)
p (E⃗i · e⃗p)e⃗rN + T(N−1)

s (E⃗i · e⃗s)e⃗s, (3.3.3)
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where T(N−1)
p and T(N−1)

s are the transmission coefficients for the N layers for p and s
polarization respectively (see Section 2.2.4.1). The expression of the radial unit vector
in the final medium near the Gaussian focusing point S is given by:

e⃗rN =

⎛⎜⎝cos ϕ cos θN

sin ϕ cos θN

sin θN

⎞⎟⎠ , (3.3.4)

θN is the elevation angle of the wavevector in medium N. It is linked to the elevation
angle in the other medium by the Snell’s law.
According to McCutchen, the 3D diffraction pattern obtained by imaging a point
source with a lens is the 3D-Fourier transform of the generalised aperture [65]. In
other words, the complex amplitude of the diffraction pattern in the image plane can
be derived from the 3D-Fourier transform of the McCutchen pupil. The methods
for computing the PSF that we describe in this study are based on this finding of
McCutchen. As the methods are therefore Fourier-based, it is important to firstly dis-
cuss the techniques that we adopt in the calculation in order to avoid the pitfalls that
may arise from the mathematical operators such as the digital Fourier transformation
before we discuss the techniques for computing the PSF from the knowledge of the
McCutchen pupil.

3.4 Digital Fourier transformation and its pitfalls

The digital Fourier-transformation, fast Fourier transform (FFT), is a very handy tool
to speed up PSF calculations, but its pitfalls must be avoided carefully.

3.4.1 Sampling condition

Experimentally speaking, the PSF is detected on a pixelated device, commonly CCD
or CMOS Camera. During the acquisition of the image, the signal is integrated in
each of the pixels of the detectors with weight defined by a pixel sensitivity function.
A numerical calculation of the PSF samples its continuous mathematical expression
predicting values on a delta-shaped grid. The local integration of the PSF in every
pixel by the detector can be described as a sampling on a regularly spaced grid of the
convolved PSF with the pixel sensitivity function.
In Fourier space, this corresponds to a multiplication of the OTF with the transfer
function of the camera which is given by:

TC(kx, ky) = sinc
(︂

πkx
px

2

)︂
sinc

(︂
πky

py

2

)︂
, (3.4.1)

where (px, py) are the pixels size along x and y−axis respectively. The transfer func-
tion of the camera is the Fourier transform of the pixel sensitivity function. Solving
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Eq. (3.4.1), the function TC is crossing zero if the spatial frequencies (kx, ky) are at
double the current sampling frequency (kx|samp = 1/px, ky|samp = 1/py) respectively.
It is also important to emphasize that a decrease in sensitivity of the camera may cause
the PSF for perfect circular symmetry (e.g. using circular or random polarization) to
lose its symmetry, especially along the diagonals.

3.4.2 Nyquist Shannon theorem

As mentioned earlier, the minimal resolvable spatial structure in lateral plane is given
by Eq. (2.2.18). Taking the simplest case where the pixel pitch is a square of width px,y,
the Abbe diffraction limit is given by px,y|min = λem/(2NA). As seen from the zero-
crossing of the pixel sensitivity function in the previous section, the maximal lateral
frequency component is given by kr|max = 1/px,y|min = 2NA/λem. According to the
Nyquist Shannon theorem, the highest frequency has to be sampled with at least two
positions per wavelength [66]. Spatial frequencies above this limit would come to be
outside the digital Fourier-space representation and then aliased to a wrong place
within it. To avoid aliasing, this implies that the pupil needs to fit into half the digital
Fourier-space representation such that its autocorrelation (i.e. the incoherent OTF)
fits in the digital Fourier space. The autocorrelation of the pupil corresponds to its
absolute square. The maximal pupil radius in Fourier space along x or y should be
lower than half the maximally represented frequency along kx or ky in our Fourier-
space representation.

3.4.3 Fourier sampling pitfall

Working with discrete data requires care when dealing with the digital Fourier trans-
form. A digital misrepresentation of the usually round pupil in Fourier space may
induce a severe artefacts especially if the number of pixels inside the jaggered repre-
sentation of a disk is few. The discontinuity at the edge of the pupil with the pixel
pitch being a square in most cases can cause a significant error in the calculation. To
illustrate this effect, let us consider a field distribution imaged through a high-NA op-
tical system with NA = 1.4 in a sample medium of refractive index equal to 1.518. The
emission wavelength is assumed to be λem = 580 nm. The pupil radius which corre-
sponds to the Nyquist theorem is λem/(2NA). We denote by kmax the radial frequency
coordinate at the edge of the pupil radius. To compare the effect of the pupil aperture
on the field distribution, we compute two hard apertures H1 and H2 with window
size 128× 128 and 1024× 1024 and radius kmax/8 respectively. The pixel size in real
space is chosen to be 80 nm which yields to kmax being at about 25 and 198 pixels from
the centre of the pupil for H1 and H2 respectively. The field distribution calculated
from the digital fast Fourier transform of the pupil H1 and H2 are displayed in Fig.
3.5a and 3.5c respectively.
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Figure 3.5: Illustration of the Fourier sampling pitfall. Field distribution calculated from the
Fourier transform of (a) a hard aperture of size 128× 128 pixels, (b) a jinc aperture aperture
of size 128× 128 pixels, (c) a hard aperture of size 1024× 1024 pixels cropped to 128× 128
pixels size for display and, (d) a jinc aperture aperture of size 1024× 1024 pixels cropped to
128× 128 pixels size for display. A DampEdge of 15 % is applied to the generated field (full
size) using the jinc-trick. Figures are displayed at tan−1(γE) and centered at the zero of the
display, E being the field distribution and γ = 20.

For symmetry reasons, one would expect those two fields in Fig. 3.5a and 3.5c to
be perfectly circular and symmetric. However, as seen in Fig. 3.5a, the field is not
circular as it should be. With H2, the discrepancy in the field has significantly been
reduced even though it still not perfectly round (see Fig. 3.5c). Computing the hard
aperture H2 is on average 5.6720 times slower than computing H1. The solution we
propose to remedy this issue is based on the fact that the Fourier transform of a disk
is given by a jinc function: jinc(r) = J1(krr)/(krr), J1 being the Bessel function of the
first find, kr and r the radial coordinate in Fourier and real space respectively. The
“ideal” representation of a disk in Fourier domain is calculated using a digital fast
Fourier transform (FFT) of a 2D jinc function. This “interpolated” disk can then be
appropriately modified with k-space dependent phase and magnitude alterations. We
call this method for computing a disk using a jinc function the “jinc-trick”. In Fig.
3.5b, we observe that at a smaller window size as 128× 128, the real space representa-
tion of the field distribution is perfectly circular and symmetric. The computation of
a jinc aperture of window size 128× 128 is only 1.496 times slower than the compu-
tation of an hard aperture with the same window size. This offers a high advantage
in accuracy and computation time. One pitfall of this technique that we should care
about is that the jinc-function possesses first order discontinuities in real space at the
border. This causes unwanted high-frequencies in the Fourier-transformation [67]. To
avoid this, the jinc-function is modified at the outer ends by appropriately smoothing
the 15% of its edges. The smoother function is called “DampEdge” in our toolbox.

3.4.4 Fourier wrap-around

The digital Fourier transformation also has periodic boundaries. There is a maximum
∆z range threshold under which the waves can still be inside the available lateral space
provided by the real-space grid. Outside this region, i.e. at higher depth, the wave
at higher lateral spatial frequency position will wrap-around and causes undesirable
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standing waves [68]. This problem is called Fourier wrap-around (see Fig. 3.6a and
3.6d). This effect can cause inaccuracy in PSF calculation. We present here three ways
that can help to avoid this effect.
Firstly, one can zero-pad the in-focus plane to provide space for the standing wave
to occur outside of the region of interest. However, the time complexity of a 2D
FFT operator is O(M × N log(M × N)), where M × N is the size of the image [68].
Zero-padding the initial image window by a factor q slows the calculation of FFT by
q2 ×M× N log(q2). Under MATLAB, doubling the initial image window size takes
on average 5 times longer than computing the FFT of the initial size. Zero-padding
is computationally expensive yet it can still lead to non-desirable artifact for typical z
range used in 3D PSF calculations.
Secondly, one can establish absorptive boundary conditions. In this regard, an ideal
absorptive boundary condition is applied to the edge and the propagation is carried
out by re-projecting the filtered field onto the pupil plane at every propagated slice
[69]. This has the disadvantage of sacrificing a good PSF for a portion of pixels
near the edge in the lateral surface xy sides of the calculation. In addition, every
propagation requires two Fourier transformations, instead of only one.
The last alternative consists of using another mathematical transform, the chirped-
Z transform (CZT) [70, 71]. With the help of CZT, we can increase the resolution
in Fourier domain by zooming onto the pupil. The zooming factor is function of
the required z−depth. Higher depth requires bigger zoom, but we limit the upper
bound of the zooming factor based on the available grid size in x and y directions.
This zooming process in the pupil plane serves two purposes: representing the pupil
better and expanding the range in the Fourier-transformed field.
If the z−depth is however significantly large and the grid size in x and y are small, a
zooming factor on the field in the pupil plane to be confined within the available space
may not be sufficient to avoid the Fourier wrap-around. An extension of the grid may
be necessary to confine all the necessary zoomed spectrum information in Fourier
space. This is still advantageous compared to the zero-padding as only the necessary
grid is calculated and used at each z−depth. If the window size is not changed but
kept constant throughout the field propagation, wrap-around artefacts may still be
present as we go from one space to another but the signal is more enhanced than a
standard FFT due to the zooming factor, reducing the effect of the artefacts.
The choice between a CZT and a zero-padded FFT mainly depends on the working
depth. On one hand, it is more practical to use CZT to calculate a volume field
with higher depth as a highly zoomed sampled pupil can be enough to propagate
the desired ranges while zero-padding can be costly in time and memory without
assurance that the artefact will be avoided. On the other hand, a simple FFT can be
sufficient to obtain a more accurate and faster computation of the field than the CZT
method while avoiding the wrap-around if only the computation of the field near the
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Figure 3.6: Wrap-around of using FFTs in PSF calculations. Profiles displayed at γ = 0.05 of
the PSFs calculated from the slice propagation method. (a, b, c) xy-plane at defocus position
7 µm. (d, e, f) xz-cut parallel to the optical axis at 3.5 µm away from the focus and with
∆z = 3.5 µm. (a, d) Using the standard FFT. (b, e) By zero-padding the image window size to
twice. (c, f) Using CZT. The parameters are NA = 1.4, immersion medium : water (n = 1.33),
polarization : circular; emission wavelength λem = 580 nm, voxel size 80 nm× 80 nm× 140 nm
and, window size : 256× 256× 25 pixel.

focal region is required and the working depth is not large.

3.4.5 Chirp-Z transform

For a 1D signal Xn, n ∈ [0, N− 1]∩N with N being the number of points of the signal
and N the set of natural numbers, the Z transform X̃z, z ∈ C is given as follows:

X̃zm = CZT(Xn) =
N−1

∑
n=0

XnZ−n
m , (3.4.2)

where Zm = AW−m, m ∈ N is a spiral path in Z−path with A being the starting
point and W = exp(−i∆Γ) the ratio of two consecutive points with a given angular
increment phase ∆Γ. For A = 1 and ∆Γ = 2πm/N, Zm is computed over an unit circle
and the CZT operation becomes a discrete FFT. To zoom the signal Xn in by a scalar
factor c, A = exp(−iπ/c) and W = exp(−i2π/Nc) [71]. Therefore, Eq. 3.4.2 can be
expressed in terms of convolution as follows [44]:

X̃zm = Wm2/2FFT−1
(︂

FFT
(︂

Xn A−nWn2/2
)︂
· FFT

(︂
Wn2/2

)︂)︂
. (3.4.3)

The inverse CZT of a signal X̃zm in a frequency-domain representation is defined as
the complex conjugate of the CZT of the complex conjugate X̃∗zm of X̃zm within some
scaling factor for a CZT operating on a unit circle [70].
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3.5 Methods for computing PSFs

Using the determined field on the McCutchen pupil, here we present the four meth-
ods that are mainly the output of this study, taking into account the techniques we
discussed in the previous section for avoiding the pitfalls of the FFT operator in the
calculation.

3.5.1 Angular spectrum method

The first two methods use the Fourier slice theorem to determine the field at a given
arbitrary axial position z [72]. Using this theorem, a z−slice in real space corresponds
to an integral of the amplitude over the axial spatial frequency kz in Fourier space.
The 3D McCutchen pupil is firstly multiplied by eikzz and the result is projected onto
the kxky−plane to obtain the field at the axial position z.
Since the McCutchen pupil is infinitely thin and we have a transversal wave prop-
agating along one direction, the z−axis, there is only a single value at each point
in the pupil which contributes to the 2D Fourier transform integral. A 1/ cos θ fac-
tor arises when projecting a thin shell to a plane. This establishes a direct corre-
spondence between the pupil plane amplitude and the two-dimensional (2D) Fourier
transformation of the xy−amplitude at the focus. The 3D Fourier transform of the 3D
McCutchen pupil to obtain the amplitude electric field in the image plane is reduced
to a 2D Fourier transform of the projected pupil. The factor eikzz is called propagator
and the propagating process is an angular spectrum method.
In addition to the above-mentioned theory, the energy must also be conserved and
considered in the PSF calculation to satisfy the imaging condition invariant (see Sec-
tion 2.1.2). The aplanatic factor discussed in Section 2.1.3 needs to be taken into
consideration in the calculation.

3.5.1.1 Slice propagation with FFT (SP-FFT)

We refer as “Slice Propagation” (SP) the angular spectrum method (ASM) for free
space field propagation as the method consists of propagating the wave slice by slice.
The method uses the acquired knowledge discussed earlier in Section 3.3. For a
system with a stratified medium with refractive index mismatch, the effective NA
described in Section 3.2 is considered in place of the nominal NA of the optical system.
The steps to follow are described in Algorithm 1.

3.5.1.2 Slice propagation with CZT (SP-CZT)

Using the CZT in order to avoid or reduce wrap-around effect of FFT operation, we
firstly need to calculate the zoom factor to apply on the pupil based on the desired
depth. A zoom-in factor c is calculated such that the pupil fits perfectly near the edge
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Algorithm 1 Slice propagation: SP-FFT

Input: NAeff, λem, z, px,y : lateral pixel pitch
Output: [h : PSF intensity; h⃗amp : complex amplitude field]

1: Define the 2D incident polarized transverse wave E⃗i = (Ex, Ey) at the pupil plane
2: With the knowledge of E⃗i, compute the field E⃗k(kx, ky, kz) ∈ McCutchen pupil

using Eq. 3.3.3 with the jinc-FT trick as an aperture delimiter
3: Apply the factor 1/AFamp for energy conversation and other phase modification:

E⃗
′
k(kx, ky, kz; Φ) = 1/AFamp · E⃗k(kx, ky, kz) · eiΦ

4: Calculate the propagator eikzz

5: Propagate the field to the desired z−position (sum over kz): h⃗amp(x, y, z) =

FFT−1
2D|xy

(︂
E⃗
′
k(kx, ky, kz; Φ) · eikzz

)︂
6: Calculate the PSF intensity: h = |h⃗amp|2

of the lateral window size. If the PSF at a given z−depth requires a bigger window,
a new window size N’xy is firstly calculated and the zoom-in factor c is calculated
using this new size. We therefore calculate the pupil with the new size N’xy and the
lateral pixel pitch which is c−times bigger than the given pitch. To calculate c, let us
consider a plane wave originating at the centre of the real space in focus-plane. The
maximum angle at which an oblique emission at this position will be propagating
is given by the maximum angular aperture of the optical system. The lateral radius
of this beam is therefore given by D (see Fig. 3.7). Given that the in-focus plane is
calculated over Nxy pixels, the PSF requires at least N’xy = 2(Nxy/2 + D) window size
to fit the PSF at a higher depth z without standing waves. The appropriate c factor
is calculated as c = (Nxy/2 + D)/(Nxy/2), where tan θmax = D/∆z in real space and
tan θmax = kxy/kz in Fourier space.

Nxy/2

real space in focus

real space at ∆z
D

𝜃max

∆z

x

z

Figure 3.7: Diagram of the wave propagation in real space for calculating the zoom factor c.

The ASM is adapted and described in Algorithm 2 with the use of CZT.

3.5.2 Fourier-shell interpolation method (F-Shell)

This method aims at representing the useful part of the McCutchen pupil directly in
3D-Fourier-space and projecting the two-dimensional pupil functions onto this three-
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Algorithm 2 Slice propagation: SP-CZT

Input: NAeff, λem, z, Nxy, px,y

Output: [h : PSF intensity; h⃗amp : complex amplitude field]
1: Calculate the desired window size N’xy and the zoom-in factor c
2: Define the 2D incident transverse wave E⃗i at the pupil plane under the required

window size N’xy and pixel pitch p′xy = c× px,y

3: Compute the field E⃗k(kx, ky, kz) ∈ McCutchen pupil using Eq. 3.3.3 with the jinc-
FT trick as an aperture delimiter

4: Apply the factor 1/AFamp for energy conservation and other phase modification:

E⃗
′
k(kx, ky, kz; Φ) = 1/AFamp · E⃗k(kx, ky, kz) · eiΦ

5: Calculate the CZT−1 of the result from Step 4 and zoom-out by the factor c from

Step 1 to obtain h⃗amp(x, y, z) = CZT−1
2D|xy

(︃
E⃗
′

k

)︃
6: Calculate the PSF intensity: h = |h⃗amp|2

7: Crop the needed h and h⃗amp within the desired initial window size Nxy

dimensional shell. The difficulty is that the shell, at each integer [kx, ky] position, has
a non-integer kz position which needs to be represented by interpolating along kz in
Fourier space.
As a credible representation of such a non-integer kz would require essentially the full
kz-range for its interpolation, an appropriate compromise to keep the computation
efficient is made. We aim to represent only the central part of the corresponding real-
space representation as faithfully as possible and label a border region as “don't care”
region (see Fig. 3.8b). This “don't care” region is limited by a chosen factor breg (here
it is chosen to include 8 pixels from both edges). The part of real space in this border
is iteratively updated, while the central part is forced to the expected values in each
iteration in this iterative Fourier transformation algorithm (IFTA).
In addition, a pre-defined cut-off frequency nkcut-off

is chosen. This cut-off frequency
limits the number of interpolation coefficients given by nz = 2nkcut-off

+ 1, which can
be used to fill the voxels along kz in Fourier-space adjacent to the one nearest to the
non-integer kz(kx, ky) position of the McCutchen pupil. The required interpolation co-
efficients are generated with the help of the IFTA [73]. We denote nsubpix the number
of sub-pixel positions along kz. As initialization, ideal exp(2πikzz) waves are gen-
erated in real space corresponding to the respective sub-pixel frequencies in Fourier
space. The ideal waves are then Fourier-transformed and only nz interpolator values
are kept while all others are set to zero. The result is transformed back to real space,
where the central area is replaced by the original perfect waves, but the “don't care”
region is not touched. This is repeated over N iterations (typically 500 times) until
convergence. The so-generated interpolation table of size nz × nsubpix is stored for
later use (see Fig. 3.8c).
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Figure 3.8: (a) Phase shift in the ideal wave exp(2πikzz). (b) Phase at a sub-pixel 0.25, indi-
cated by the horizontal white line in (a). (c) Interpolation table in Fourier space containing
the interpolator coefficients at 60 different sub-pixels. (d) Interpolation coefficients in Fourier
space along the 0.25 sub-pixel indicated by the horizontal white line in (a) and (c).

In the example presented here, nkcut-off
= 8 yielding nz = 17 interpolation coefficients

to be determined. An interpolation table of nsubpix = 60 sub-pixel positions of the
17 complex valued coefficients is pre-computed via IFTA. The inner part in the real
space regime which represents the “do care region” is about 66 % of the given z-
range. A typical example for the offset of 0.25 pixels is shown in real and Fourier
space in Fig. 3.8b and 3.8d respectively, overlayed with the ideal subpixel wave (solid
line which corresponds to the legend ‘Original signal’). The border of the “don't care
region” is indicated by the dashed vertical lines. A real space representation of the full
interpolation table is shown in Fig. 3.8a with the “don’t care region” also indicated
by the vertical red dashed lines.
The size of the border factor breg (in pixels) and the cut-off frequency nkcut-off

defining
the number of interpolation coefficients nz should be roughly the same. If the “don’t
care region” is far bigger than the “do care region”, there tend to be fewer interpo-
lation coefficients generated for the given region of support frequencies in Fourier
space. Only few interpolation coefficients can be used. This yields to the integrated
intensity of the PSF not uniform and increases the violation of missing cone which
will be further discussed in Section 3.9. A small “don’t care region” on the other
hand can lead to inaccuracies inside the “do care region” hence the region of support
frequencies in Fourier space. The principle of this PSF generation is summarized in
Algorithm 3.
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Algorithm 3 Fourier shell interpolation (F-Shell)

Input: NAeff, λem, z, Nxy, pxy, breg, nkcut-off
, nsubpix, N

Output: [h : PSF intensity; h⃗amp : complex amplitude field]
1: Generate the McCutchen pupil projections as described in Algorithm 1 Step 1-2

using the jinc-FT trick as an aperture delimiter (see Section 3.4.3)
2: Apply the factor 1/AFamp for energy conservation and other phase modification:

E⃗
′
k(kx, ky, kz; Φ) = 1/AFamp · E⃗k(kx, ky, kz) · eiΦ

3: Calculate kz(kx, ky) for every pixels within the pupil and round it to the nearest
1/nsubpix subpixel kz position

4: Generate a 3D index of the full k−sphere
5: Write the field E⃗

′
k calculated in Step 1 with the appropriate interpolation kernel

for the sub-pixel at the 3D index position of the k−sphere
6: Store the interpolation coefficients for future use
7: Perform a three-dimensional Fourier transformation of the result from Step 5 to

obtain the three-dimensional field distributions h⃗amp (with expected errors in the
“don't care region”)

8: Calculate the PSF intensity: h = |h⃗amp|2

This method can be performed fast and memory efficient as a single access opera-
tion in MATLAB by exploiting its indexed addressing capabilities. In this way, the
complex-valued 2D pupil can be rapidly filled into the appropriate Fourier space re-
gion with the optimized interpolation coefficients as described above and the “don't
care” region can be later removed. The required kz-range can be kept to a minimum.
This method was originally constructed to help with the reconstruction of coherent
tomography data, where each entirely different phase projections (shells) can then
directly added into Fourier-space without the need of any immediate propagation
(e.g. by the slice propagation method) for each projection, which saves an enormous
computational overhead.

3.5.3 Sinc-R method (Sinc-R)

This method is derived using the knowledge that the three-dimensional Fourier trans-
form of a complete spherical shell is a sinc(k0|r|) function, r the spatial radial coor-
dinate. To compute the k−sphere, we can determine the Fourier space which corre-
spond to this function. Given this, the sinc-shell method is described as follows:
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Algorithm 4 Sinc-R method

Input: NAeff, λem, r = (x, y, z), Nxy, pxy

Output: [h : PSF intensity; h⃗amp : complex amplitude field]
1: Generating a sinc(k0|r|) amplitude distribution in three dimensions in real space
2: Performing an appropriate DampEdge to the edge region of the image (e.g. 5 %

on each side of the image border) or extending the border of the desired window
size by 25% in both direction x and y

3: Fourier-transforming the distribution in Step 2
4: Setting all values at negative kz to zero (akin to a Hilbert-transform) or and/or

keeping only the kz-range which contains valid k⃗ vectors (yielding a change in
z-sampling and a phase ramp in real space, not affecting intensity values)

5: Calculating the three components of the field in the McCutchen pupil using Eq.
3.3.3 using the jinc-FT trick as described in Section 3.4.3 and including the apla-
natic factor for energy conservation

6: Projecting the 3D spectrum of the propagating sinc wave calculated from Step 4,
which correspond to a half of sinc-shell, onto the 3D McCutchen pupil in Step 5

7: Compensating for the curvature of the sinc-shell by applying a factor cos θ, θ being
the angular aperture that is previously defined

8: Performing a three-dimensional Fourier-transformation for each of the field com-
ponents to obtain the sought-after field components h⃗amp in real space

9: Calculate the PSF intensity: h = |h⃗amp|2
10: In Step 2, if The border was extended by 25% instead of being damped at the edge

then Extract the field within the desired window

This method has the attractive property that it does not suffer from the Fourier wrap-
around effect since the field was directly generated in real-space. A disadvantage is
each step has to be performed observing Nyquist sampling along kz for the full field
including its z-propagation. This method is also not readily applicable to a single slice
(in or out-of-focus).

3.6 Aberrant PSF

In the previous algorithms, we have already considered the optical aberration that
may be present in the system. The theory for computing the PSF that we have dis-
cussed so far is under the assumption that each interface and planes in the system
are normal to the optical axis. In reality however, one plane might be inclined from
the normal to the optical axis. A concrete example is an inclined coverslip. This of-
ten occurs when imaging biological sample especially with water-immersion objective
lens [74]. In the particular case study described in this thesis, we assume that each
medium’s plane in a stratified medium is parallel to the inclined coverslip. The thick-
ness of the immersion is not uniform at different lateral position. This inclination
induces aberration and change in the diffraction pattern itself. In the next section,
we will discuss the field on the k−sphere in the presence of a tilted plane such as an
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inclined coverslip. The computation of the optical path difference, hence the phase
aberration induced by refractive index mismatch and tilted coverslip, will follow the
discussion. These results will be summarized in the algorithm for calculating an aber-
rant PSF with tilted coverslip. Moreover, we will show an example of the resulting
fields in the pupil and the PSF intensity.

3.6.1 The k−sphere formulation in the presence of a tilted plane

As the Fourier transform operator is rotationally invariant [14], an elevation of one
plane, which is assumed to be at the coverslip plane, by an angle α about one axis
(e.g. x−axis) in real space rotates the McCutchen pupil by the same elevation angle
about the reciprocal axis (e.g. kx−axis) in Fourier space (see Fig. 3.9).
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Figure 3.9: 4f-imaging with a tilted object plane in real (a) and Fourier space representation
(b). Left: Emission path from the emitter in the object plane. Right: Detection path towards
the image plane.

Due to the tilt in the coverslip, some information that is supposedly transmitted in a
planar system (red cap in Fig. 3.9b of the McCutchen pupil which corresponds to the
object plane) will not be collected by the optical system and some information that is
usually not captured due to the limiting numerical aperture of the optical system will
be recorded by the system (black cap). The field in the image plane corresponds to
the superposition of the waves that are presented within the McCutchen pupil (blue
and black cap). This is however only true if a refractive index mismatch is present in
the system. In the case of an isotropic emitter and a non-aberrant system, this rotation
does not change the information that is being recorded by the system as the signal
is emitted uniformly in all directions from the point emitter. One one side (red cap)
some sample spatial frequencies of the electric amplitude distribution at the coverslip
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are lost, but one the other side some spatial frequencies (black cap) are gained. For
the incoherent 3D OTF, i.e. the autocorrelation of the pupil, this leads to a change of
its 3D shape corresponding to a rotation of the incoherent OTF.
Let us denote the k−sphere the McCutchen pupil which corresponds to the non-tilted
system with coordinate system (ky, kz) and k′−sphere the one which corresponds to
the tilted system, expressed under the coordinate system (k′y, k′z). To calculate the field
at a given image plane that is normal to the optical axis, the electric field belonging
to the k′−sphere is firstly calculated with consideration of the relevant Fresnel coef-
ficients of the field. Only the part of the field that is within the McCutchen pupil is
collected. The field on the 3D k′−sphere is propagated to the desired z−plane and
is projected onto the plane normal to the optical axis. In addition to the aplanatic
correction (see Section 2.1.3), the energy due to the tilting needs to be conserved. This
corresponds to the integrated intensity of the Fourier spectrum of the field in the ob-
ject plane having to be the same to the Fourier spectrum of the field in the image
plane in a lossless system. This implies that the superposition of the field in the pupil
plane to obtain the field in the image plane must be done over the coordinate system
(kx, ky). In addition, since the field in k′−sphere is expressed in the coordinate sys-
tem (k′x, k′y, k′z) and the field at frequency equal to (kx, ky, kz) is needed in the image
plane, a Jacobian factor, J, is required to change the integration limits (kx, ky) of the
projected field from the k′−sphere to be (k′x, k′y). This physically expresses the energy
conservation. We have (k′x, k′y, k′z) = M0|1(α, β){kx, ky, kz} with M0|1 being a rotation
matrix to go from k−sphere to k′−sphere and given by:

M0|1(α, β) =

⎛⎜⎝ cos β sin β 0
− sin β cos α cos β cos α sin α

sin β sin α − cos β sin α cos α

⎞⎟⎠ (3.6.1)

Eq. (3.6.1) is a general rotation matrix accommodating the azimuthal angle, β, of
rotation of the pupil about kz.
The same principle can be applied if instead the object plane is normal to the optical
axis but the image plane is inclined. This has been demonstrated to be true in [45]. In
this case, a special care needs to be taken in the definition of the coordinate system
in the object and image plane. The rotation matrix M0|1 and the limits of integration
in Step 11 of Algorithm 5 should be in the coordinate system of the inclined image
plane. Therefore, an appropriate Jacobian factor should be applied to conserve the
energy and to integrate the field in the coordinate system of the object plane in order
to obtain the field in the image plane.
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3.6.2 Aberration due to refractive index mismatch and tilted
coverslip

A refractive index mismatch in the sample and immersion medium and tilt in the
coverslip induce aberration into the system. The standard design condition (DC) for
conventional light microscope is such that the sample is placed at the sample-side
surface of the coverslip with a given thickness and imaged through a microscope
objective lens with a given immersion medium and working distance. This is how-
ever not the case in real life experiment. The optical path deviates from this DC to
a non-design condition (NDC) as the constant parameters (refractive index, sample
thickness) and acquisition parameter may differ from the desired parameters in the
DC. The optical path difference (OPD) between the DC and NDC is not zero and
represents the phase aberration in the system. To calculate this OPD at a given az-
imuthal angle ϕ and at a refracted angle θ in the back focal plane region, a vector
formulation of each ray at each interface is needed if the coverslip is tilted. If each
interface is perpendicular to the optical axis, a scalar formulation is sufficient to cal-
culate the OPD. In this calculation, we consider the general formulation of the OPD
in case the coverslip is tilted and the sample plane is parallel to the coverslip surface.
The present formulation is valid for one layer of the sample but it can be extended
to many layers of samples which are assumed to be parallel to the inclined coverslip.
For the calculation of the OPD, let us consider the Fig. 3.10. The optical path in the
DC follows the black path formed by the points O, B, C, and H while the optical path
in the NDC is formed by Os, A1, B1, and C1. The two optical paths are parallel and in
phase after the points H for the DC and C1 for the NDC. In the NDC, the coverslip is
tilted, hence the immersion medium - coverslip and coverslip-sample interfaces, κ1

im-cs
and κ1

cs-s respectively. The OPD is given by:

OPD = [Os A1B1C1]− [OBCH], (3.6.2)

The expression of the OPD which corresponds to a tilted coverslip with varying re-
fractive index if found to be:

OPD = niti∆z cos θi + OPDg + OPDs −OPD∗g −OPD∗i , (3.6.3)

with the first term niti∆z cos θi corresponds to defocus aberration, OPDg and OPDs

are the terms of the OPD which correspond to the variation in refractive index and
thickness of the coverslip and sample in non-design condition respectively, OPD∗g and
OPD∗s correspond to the terms of the OPD which are function of the refractive index
and thickness of the coverslip and the working distance in the design condition. The
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Figure 3.10: Illustration of the optical path at a given design condition (DC) and under an
arbitrary non-design condition (NDC) at a given azimuthal angle ϕ and refracted angle in the
lens system θ. [Os A1B1C1D1] : optical path in NDC (red line). [OBCD] : optical path in DC
(black line). [GFEH] : translation of the path [Os A1B1C1D1] : from C1 to C.

expressions of OPDj|j=g,s and OPD∗j|j=g,i are found to be as follow:

OPD∗j = n∗j t∗j

⎡⎣cos θ∗j −
(︄

ni

n∗j

)︄2

cos θi

⎤⎦ , (3.6.4)

OPDj = njtj

[︄
cos γj +

ni

nj

(︄
− cos γi +

(︄
1− ni

nj

)︄
cos θi

)︄]︄
. (3.6.5)

A detailed description of the derivation of Eq. (3.6.3), (3.6.4) and (3.6.5) is given in
Appendix A. By investigating the decomposition of the cosine terms of those equa-
tions in terms of Zernike polynomials (see Appendix A.2.3 and A.2.2), it is found that
the expression of the OPD throughout the sample (s), coverslip (g) and immersion (i)
medium can be linearized to:

OPD = ∑
j=s,g,g∗,i∗

njtj

{︄
C0

0 + C2
2Z2

2 + C−2
2 Z−2

2 +
N

∑
n=0

C0
nZ0

n +
N+1

∑
n′=1

C1
n′Z

1
n′ +

N+1

∑
n′=1

C−1
n′ Z−1

n′

}︄
.

(3.6.6)
Astigmatism (Z−2

2 and Z2
2) and coma aberrations (Z−1

n′|n′>1 and Z1
n′|n′>1) are induced

alongside with spherical (Z0
n>2), defocus (Z0

2) and tilt aberrations (Z−1
1 and Z1

1). A
piston or bias is contained in the constant C0

0 . The aberrations coefficients Cm
n and

piston C are functions of the refractive index ratio nij related to the medium j and the
immersion medium i, the tilt parameters α and β and η. A further investigation of the
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amplitude of each aberration and wavefront error with respect to the tilt angle and
refractive index mismatch is conducted in Chap. 4. In this investigation, the factor
njtj is included in the Zernike coefficients Cm

n . We regroup all the coefficients which
correspond to a given Zernike polynomial of order (n, m) in Cm

n . The coefficients are
therefore expected to vary linearly with the thickness tj but not necessarily with nj.
The coefficients are non-linear with the tilt parameters (α, β).

3.6.3 Algorithm for calculating an aberrant PSF with tilted
coverslip

Here we present one way for calculating an aberrant PSF with a tilted coverslip. This
method is based on the SP-FFT method described in Section 3.5.1.1. The Algorithm 1
is modified to accommodate the theory discussed in the previous sections 3.6.1 and
3.6.2 and obtain the result in Algorithm 5.

Algorithm 5 Slice propagation: SP-FFT with Tilt

Input: NAeff, λem, z, Nxy, px,y, α, β

Output: [h : PSF intensity; h⃗amp : complex amplitude field]
1: Calculate (kx, ky, kz) given NAeff, λem, z, Nxy, px,y

2: Calculate the rotation matrix M0|1(α, β)

3: Calculate (k′x, k′y, k′z) = M0|1(α, β){kx, ky, kz}
4: Calculate cos θ = k′z/k0 and sin θ =

√︂
k′2x + k′2y /k0, k0 = 2π/λem

5: Calculate the Jacobian J(k′x, k′y) =
∂kx
∂k′x

∂ky
∂k′y
− ∂kx

∂k′y
∂ky
∂k′x

6: Define the 2D incident polarized transverse wave E⃗i = (Ex, Ey) at the pupil plane

7: Project E⃗i onto the k′−sphere using Eq. 3.3.3 to obtain E⃗
′
k(0) ∈ McCutchen pupil

8: Apply the factor 1/AFamp

9: Propagate to the desired z−plane: E⃗
′
k(z) = 1/AFamp · E⃗

′
k(0) · eik′zz

10: Apply the phase aberration modification: E⃗
′′

k(z) = E⃗
′
k(z) · eiΦ

11: Project along kxky−plane (sum over kz) and apply the energy conservation due to

the tilt: h⃗amp = FFT−1
2D|xy

(︃
E⃗
′′

k(z)|J(k′x, k′y)|
)︃

12: Calculate the PSF intensity: h = |h⃗amp|2

The SP-CZT, F-Shell and Sinc-R methods can be modified in a similar fashion to
include the effect of a tilted plane. To illustrate the effect of the tilt aberration, we
simulate the three components of the electric field in the pupil plane (see Fig. 3.11)
and the corresponding PSFs at the focus and at a defocus position equal to u =

60 o.u., o.u. being the axial optical unit, using Algorithm 5. The radial and axial
optical coordinates are used to represent the spatial coordinates in scale of the optical
resolutions. They are dimensionless. Those coordinates will be used throughout this
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document and are defined as follows [75]:

v =
2πNA
λem

√︂
x2 + y2 radial optical coordinate (3.6.7)

u =
8πn
λem

sin2
(︃

θmax

2

)︃
z axial optical coordinate (3.6.8)

The optical system consists of a water immersion objective lens of NA = 1.2 and
working distance equal to 1.5·105 nm. The emission wavelength is 510 nm. The point
emitter is embedded in an embedding medium of the same refractive index as water
1.33 and the sample thickness is ts = 103 nm. The coverslip is of refractive index 1.518
and thickness 1.7·105 nm. Here, we visualize the effect of a 1◦ tilt about the y−axis
in the coverslip (Fig. 3.11(top line)) compared to a non-tilted plane (Fig. 3.11(bottom
line)).
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Figure 3.11: The three components (Ex, Ey, Ez) of the electric field in the pupil plane for a
non-tilted coverslip (top line) and a tilted coverslip by α = 1◦ (bottom line). o.u. stands for
optical unit.

The tilt induces periodicity, along the direction under which the system is tilted, in the
electric field pattern in the back focal plane. The radial symmetry in the PSFs is broken
due to the aberrations induced by the tilt in addition to the spherical aberration. The
center of the beam is also shifted from the centre of the figure (see Fig. 3.12). With just
a 1◦ tilt, the discrepancy in the PSF is already much more pronounced (Fig. 3.13(top
line) for tilt angle α = 0◦ vs Fig. 3.13(bottom line) for tilt angle α = 1◦).
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Figure 3.12: Display at γ = 0.2 of the lateral profiles of tilted PSFs at α = 1◦ about the x−axis
at the focus (left) and at a defocus position u = 60 o.u. (right).
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Figure 3.13: Display at γ = 0.2 of the yz-profiles of non-tilted PSF (left) and tilted PSF (right)

3.7 Dipole emission Point Spread Functions

A fluorescent emitter can radiate isotropically, but it can also behave like an electric
dipole emitter. It can rotate freely between the excitation and emission or be fixed
[28]. The PSF of an emitting dipole in the focal plane depends on the polarization
of the illumination light and the dipole orientation in space. To describe the dipole
emission, let µ⃗(θdip, ϕdip) denotes the transition dipole moment, which is function of
its zenith θdip about the x−axis and azimuth ϕdip about the optical z−axis angles. The
following steps describe how to accommodate a fixed dipole into the PSF calculation
with a non-polarized illumination light.
To calculate the intensity in the back focal plane of a dipole emitter with a given
transition dipole orientation, the same steps as described in Algorithms 1, 2, 3 or 4
are to follow but instead of taking the amplitude field in the image plane, the user is
to use the 3D amplitude field in the McCutchen pupil.
If the illumination light is non-polarized or circularly polarized, averaging over all
the transition dipole moment or summing over three different perpendicular dipole
orientations leads to the same resulted PSF of an isotropic emitter with a circular
polarization (see Appendix C). The resulting PSF of an isotropic emitter is:

hav =
1

4π/3

∫︂ 2π

0

∫︂ π

0
hdip sin θdipdθdipdϕdip. (3.7.2)

However, if the illumination light only contains a single linear polarization, averaging
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Algorithm 6 Dipole emission PSF

Input: NAeff, λem, z, Nxy, px,y, µ⃗
Output: hdip

1: Calculate the 3D field amplitude distribution h⃗x from an x−polarized incident
light in the image plane using Algorithm 1, 2, 3 or 4

2: Project h⃗x on the dipole orientation µ⃗ to obtain h⃗x · µ⃗
3: Calculate the absolute square of the scalar product to obtain the detected intensity

Ix = |h⃗x · µ⃗|2 as measured through an analyzer oriented along x
4: Repeat steps 1, 2 and 3 for an y−oriented analyzer leading to Iy = |h⃗y · µ⃗|2
5: Otain the PSF of the dipole emitter as the average intensity without analyzer:

hdip =
1
2
(Ix + Iy). (3.7.1)

over all the dipole orientations does not lead to a symmetric PSF. Further study in
polarization in fluorescence microscopy is found in [28].

3.8 Space-variant imaging

The last consideration in our PSF calculation in this study is the space-variance con-
dition. Formulating the optical imaging in terms of optical transfer function eases the
mathematical modelling of the system but does not necessarily reflect the real imag-
ing process. This formulation is based on the Abbe sine condition when imaging a
plane to a plane. The system is shift-invariant in the xy−plane, and linear, and it is
called a linear shift invariant system (LSI). Realistic imaging system might not nec-
essarily be space-invariant due to distortions that may be present in the system. The
refractive index of the immersion medium or the sample for instance may vary later-
ally. For this particular case, the McCutchen pupil formed by the k⃗−wavevectors from
an emitter placed at a radial position r′1 = (x′1, y′1) is different from the McCutchen
pupil from an emitter at a different position r′2 = (x′2, y′2) in the same z−plane. The
PSF is then different at different positions of the given object plane and the system
is no longer shift-invariant but linear shift variant (LSV). The image formation model
for a space-invariant system described in Eq. (2.4.3) becomes as follows if the system
is shift variant:

I(r) =
∫︂∫︂ +∞

−∞
O(r′)h(r, r′)dr′, (3.8.1)

where h(r, r′), the PSF in the image plane, depends on the emitter position r′ in the
object plane and r is the image coordinate. A LSV-PSF can be approximated using a set
of finite LSI-PSFs. An approximation to the LSV situation is obtained by windowing
the LSV-PSF to N sections i.e. h(r, r′) ≈ ∑N

n=1 hn(r− r′)wn(r′). The window function
wn is defined further down below. The resulting image is given as follows for a
LSV-imaging system:
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ILSV (r) =
N

∑
n=1

∫︂∫︂ +∞

−∞
[O(r′)wn(r′)]hn(r− r′)dr′, (3.8.2)

with

wn(r′) =

⎧⎨⎩1 if r′ ∈ [r′n, r′n+1]

0 otherwise

From Eq. (3.8.2), it is seen that the image formed from a LSV system can be approx-
imated by a set of subregions delimited by the coordinates r′n formed by a spatial
convolution of the object with singular LSI-PSF.

3.9 Limitation of wide-field microscopy

The PSF calculated and described until this point corresponds to the PSF of a wide-
field microscope, limited by the optical resolution: Abbe limit.
The resolution limit of a conventional microscope can be derived using its frequency
support, named optical transfer function (OTF). The OTF represents the three-dimensional
region that is transmitting signal through the system [14]. It can be obtained from the
2D Fourier transform of the PSF intensity normalized by its value at zero-frequency,
i.e. the integrated intensity or the total energy of the PSF over space which is equal
to the integrated intensity of the field in Fourier space according to Parseval theorem
[14]. For incoherent imaging, the OTF is the normalized autocorrelation of the am-
plitude transfer function (ATF). The ATF corresponds to the Fourier transform of the
amplitude spread function h⃗amp. It is the pupil distribution electric field, E⃗k, that is
represented on the McCutchen pupil. The mathematical expression of the wide-field
OTF is give as follows [14]:

H(kx, ky) =

∫︁∫︁ +∞
−∞ E⃗k(p + kx

2 , q + ky
2 )E⃗

∗
k(p− kx

2 , q− ky
2 )dpdq∫︁∫︁ +∞

−∞ |E⃗k(p, q)|2dpdq
. (3.9.1)

Eq. 3.9.1 enables the interpretation of the OTF as the union of two displaced pupil
functions centred at (kx/2, ky/2) and (−kx/2,−ky/2) respectively. In terms of con-
volution, this area corresponds to the convolution of the pupil function with itself
mirrored at the zero-frequency about the lateral space (see Fig. 3.14).
In Fig. 3.14, the resulting convolution of the field in the pupil plane (Fig. 3.14a) with
its mirror as previously described (Fig. 3.14b) forms a volume which represents the
OTF of the optical system (Fig. 3.14c). The OTF which corresponds to a radially
symmetric PSF with symmetric aberration or aberration-free, is real-valued. Only
the information within this frequency support (grey region in Fig. 3.14c) will be
transmitted throughout the imaging process. The frequency spectrum within the
region having the form of a cone centred at the zero-frequency will be lost (blue
region in Fig. 3.14c). This region is called the “missing cone”. This cone explains the
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Figure 3.14: Optical transfer function in a conventional incoherent imaging system. (a) ATF
in the pupil plane (red solid line). (b) Mirror of the pupil plane about the lateral space (black
solid line). (c) Convolution of the pupil function (red solid line) with its mirror (black solid
like) forming the OTF support (grey fill).

limitation of a conventional microscope to obtain a sharp image at a higher depth.
One of the goals of many advanced techniques is to fill this missing cone such that
high resolution imaging is achieved in lateral and axial direction [2, 5, 76, 77, 78, 79].
Using the frequency support, the cut-off frequency kx|max and kz|max are found to be:

kx|max =
4πn sin θmax

λem
and kz|max =

2πn(1− cos θmax)

λem
, (3.9.2)

with n being the immersion medium refractive index and θmax is the maximum angu-
lar aperture (see Fig. 3.14c). The spatial lateral and axial resolution in real space are
derived respectively as:

dxy|lim =
2π

kxy|max
and dz|lim =

2π

kz|max
. (3.9.3)

Fluorescence imaging methods have evolved rapidly in the last past decade to break
this limit and to fill the missing cone [8, 9, 79]. The PSF of those advanced imaging
techniques can be derived from the knowledge of the wide-field PSF. These advanced
imaging techniques can be advantageous in many ways but they can be costly, tem-
porally limited and may compromise the health of the samples [9]. They perform at
higher resolution than the wide-field imaging by filling the missing information in
the frequency support or extend it (e.g. [76]). Engineering the PSF in a particular way
can also yield to high resolution imaging [80].



Chapter 4

Theoretical Analysis of the Point
Spread Functions

The Point Spread Function (PSF) is estimated and modelled under a large set

of (often) unknown parameters. A numerical investigation on PSF sensitivity to

a change on its constant parameters such as coverlisp tilt and refractive index

mismatch is important to predict the extent at which an experimental validation

of the PSF model is accurate. This is one of the focus of this chapter. The newly

developed PSF models are also compared to the existing state-of-the-art PSFs to

demonstrate the theoretical pros and cons of each PSF model.

4.1 Introduction

The study of the PSF sensitivity to its constant parameters is important to estimate the
error and accuracy at which the experimental validation of the PSF is valid. In Section
4.2.1, we firstly investigate the sensitivity of the PSF to refractive index mismatch and tilt of
the coverslip. A non-aberrant PSF forms the reference in the analysis. In Section 4.2.2,
we examine the effects of these aberrations into the optical resolution by analysing the
OTF. It is also important to mention that the fluorescence emission typically comprises
of an entire spectrum, and not just one single wavelength. Therefore, assuming that
an experimental PSF is derived from the fluorescence emission at a single wavelength
is incorrect. In Section 4.2.3, we demonstrate the possible error that might occur given
this assumption of a single emission wavelength in the calculation of the PSF. In the last
investigation, we will determine the point at which the scalar field approximation is no
longer valid and a vector formulation of the PSF is necessary (see Section 4.2.4).
In the second part of this chapter, we compare the PSF models newly developed and dis-
cussed in Chap. 3 with the state-of-the-art PSFs. These newly developed methods will
be distinguished from the state-of-the-art PSFs in the comparison process by marking
their names with an asterisk (*). These regroup the SP-FFT*, SP-CZT*, F-Shell* and
Sinc-R*. Five different PSF models form the state-of-the-art in this investigation. The
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Richards and Wolf vector PSF from PSFGenerator is one of the state-of-the-art PSFs
that has been widely used in the literature [33]. This PSF is denoted by PSFGen and is
computed at the best accuracy setting of the software in our comparison. The second
state-of-the-art PSF model is a scalar PSF model based on the Gibson and Lanni study
and was computed by Li et al. using a linear combination of rescaled Bessel functions
[34]. We denote this model by GL. The third and fourth state-of-the-art PSF model
were developed by Aguet et al. [37]. These models use a numerical integration based
on Simpson’s rule to compute the scalar, denoted by sPSF, and vectorial diffraction
integral, denoted by vPSF. The fifth and last state-of-the-art PSF model is also based
on the Richard and Wolf findings. We denote this PSF by RW. The initial code for this
model was written using the C programming language by Peter Verveer and uses a
DIPimage Library. This software code can be called on MATLAB and is included in
our PSF toolbox. It is chosen as a gold standard in the comparison as its mathemat-
ical expression still remains the best representation of the diffraction-limited image
field. It avoids any fast Fourier transform (FFT), which could be prone to artefacts
and calculates the integrals directly in real-space. The pros and cons of each model
are discussed in depth in this section.
To complete the investigation, a list of image quality and similarity metrics need to
be priorly defined. This list regroups the standard deviation of a signal (Std), the
waveront error σW , the Strehl ratio S, mean relative error (MRE), and normalized
cross correlation (NCC). The wavefront error measures the deviation of the measured
wavefront from the wavefront in a design condition. The Strehl ratio quantifies the
amount of aberration in an aberrant PSF compared to an aberration-free PSF by mea-
suring the ratio of the intensity of the aberrant PSF at its centre spatial position and
the aberration-free PSF at the same position. The MRE measures the errors between
a ground truth and a given model. The NCC quantifies the similarities between both
ground truth and measured or theoretical model. The NCC is more meaningful over
the MRE when the spatial shift in the data is less important. The MRE is more sensi-
tive than NCC to record the error in small variation of intensities. The mathematical
expressions of those metrics are given in Appendix E.

4.2 PSFs sensitivities to parameter mismatch

4.2.1 Aberrations in PSFs

4.2.1.1 Simulated data

For this investigation, we simulate PSF data using the “Slice Propagation” technique
described in Algorithm 1. The imaging and PSF parameters are summarized in Table
4.1. The refractive index of the sample ns, the sample thickness ts, and the elevation
angle of the tilt in the coverslip are changed individually.



CHAPTER 4. THEORETICAL ANALYSIS OF THE POINT SPREAD FUNCTIONS 56

Table 4.1: Parameters for evaluating the sensitivities of the PSF to refractive index mismatch
and tilting in the coverslip

Parameters : Values
Calculation grid size (Nx, Ny, Nz): 512× 512× 50

Voxel size : 83× 83× 100 nm3

Emission wavelength : λem = 510 nm
NA : 1.2

Immersion medium RI in DC(∗) and NDC : n∗i = ni = 1.33
Coverslip RI in DC and NDC : n∗g = ng = 1.518

Sample RI : ns = ni + 0.002j, j ∈ [0 : 1 : 10]
Working distance : WD = 1.5×105 nm

Coverslip thickness in DC(∗) and NDC : t∗g = tg = 1.7× 105 nm
Sample thickness ts = aλ0, a ∈ [1 : 2 : 9, 50 : 50 : 250]

Tilt elevation angle : α ∈ [0◦ : 0.1◦ : 1◦]
Tilt azimuthal angle : β = 0◦

RI, DC and NDC stand for refractive index, design condition and non-design condi-
tion respectively and λ0 = λem/ns is the vacuum wavelength. We vary the refractive
index of the sample ns in step size of 0.002. This value represents the error precision
of most Abbe refractometers in measuring the RI of a medium. The step size of α is
chosen based on the findings from [74] where the PSF is shown to be sensitive to a
tilt of 0.1◦. Lastly, the range of ts is arbitrarily. It is chosen to accommodate a small
sample depth [1 : 2 : 9]λ0, usually assumed to be at the surface of the coverslip, and
larger sample depth [50 : 50 : 250]λ0. A water objective lens is chosen as it is mostly
used in the case of biological imaging of living samples.
Each calculated PSF is normalized by the integrated intensity of the 3D volume PSF.
This normalization statistically means that all photons have the same probability to
be anywhere in the available space and the total probability of having photons in all
of the 3D space is therefore equal to 1.

4.2.1.2 Tilt and spherical aberration

A small variation of the sample and imaging parameters can influence the PSFs. Fig.
4.1 illustrates this effect by displaying the yz−cross section of the PSFs generated with
different set of imaging parameters.
We simulate several aberrant PSFs under different constant parameters (ns/ni, ts, α)

and compare the resulting aberrant PSFs with non-aberrant PSFs to determine how
sensitive the PSF to the change in refractive index and the coverslip tilt is. One at a
time of those parameters is changed in the simulation. The details of these parameters
and imaging parameters are given in Table 4.1. We compute the wavefront error, the
MRE and NCC between the aberrant PSF and non-aberrant PSF and the Strehl ratio
using the formulas described in Appendix E. The detailed maps of the results for the
variation of each of these parameters are given in Appendix B.
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Figure 4.1: yz-cross section of aberrant PSFs with the imaging parameters: [ns/ni, ts, α] =
(a) [1.0015, 1λ0, 0◦], (b) [1.015, 50λ0, 0.1◦], (c) [1.015, 250λ0, 0.1◦], (d) [1.0015, 1λ0, 1◦], (e)
[1.015, 50λ0, 1◦], (f) [1.015, 250λ0, 1◦].

For the given imaging parameters NA = 1.2 and λem = 510 nm, we observed from
the investigation that a NCC value between non-aberrant and aberrant PSF higher
than 0.9923 corresponds to a Strehl ratio higher than 0.8 of a PSF assumed to be
ideal. This means that in this condition an aberrant PSF which has a similarity as
high as 0.9923 with a non-aberrant PSF can assumed to be ideal. The sensitivity error
in measuring the medium refractive index 0.002 can also induce significant spherical
aberration distinguishing an aberrant from a non-aberrant PSF if the thickness of the
medium is greater than 50λ0. A PSF of water immersion objective lens is sensitive
to a tilt of α = 0.2◦ in the coverslip even if ns/ni = 1 due to the properties of the
coverslip itself. The aberration introduced by the tilt of the coverslip distorts the
image. This distortion can however be overshadowed and compensated by spherical
aberration. By investigating the different range of embedding depth (sample thickness
ts), we found that the PSF varies with the sample thickness for ts ∈ [1λ0, 9λ0] with a
maximum variation of 0.0154 at 9λ0 in the MRE. However, as long as ts is not zero and
the refractive index of the sample differs from the refractive index of the immersion
medium, a spherical aberration is induced in the PSF and the wavefront error varies
more with the coverslip tilt. At ts = 50λ0, the NCC is found to still be less dependent
of ns/ni but it becomes more sensitive to ns/ni when ts increases.

4.2.1.3 Focal shift and peak intensity

The focal position of a non-aberrant system is usually at the centre position of the
3D image. When there is no aberration, the waves mostly interfere constructively at
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this position. In an aberrant system, the wavefront on the Gaussian reference sphere
no longer has constant phase and the Huygens wavelets are not in phase, causing
partially destructive interference. Consequently, the irradiance at the centre, i.e. the
peak intensity drops compared to the case of a non-aberrant imaging.
In the presence of Zernike tilt aberration and its derivatives and spherical aberration,
the PSF is shifted from this centre position not only along the lateral axis, but also
along the axial axis, causing a “focal shift”. In the presence of spherically symmetric
aberration only, this shift is only along the optical axis. In Fig. 4.2, we display the
normalized relative intensity along the optical axis at the radial centre position. Each
figure corresponds to a given sample depth ts ranging from 50λ0, 150λ0 to 250λ0. The
intensity profiles at a given ts for different ratio ns/ni are displayed in each of the
figures. The normalization corresponds to the scaling of the aberrant PSF intensity
by the intensity value at the centre position of the non-aberrant reference PSF. The
intensity at zero-position and displayed in Fig. 4.2 therefore represents the Strehl
ratio at a given set of parameters ts and ns/ni. We assumed no coverslip tilt for this
particular study.
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Figure 4.2: Visualization of the focal shift and peak intensity along the optical axis at α = 0
for different ts ranging from 50λ0, 150λ0 to 250λ0 and ns/ni values, NA = 1.2, n∗i = ni = 1.33
and λem = 510 nm. The code color blue to red in each figure corresponds to different ns/ni
setting. The vertical black dashed line corresponds to the predicted focal position for the given
ts = 50λ0, 150λ0 and 150λ0 at ns/ni = 1.015. The parameters of the coverslip (tg, ng) are fixed.

The predicted focal position can be explained and derived from a simple imaging
diagram (see Fig. 4.3-upper row). In this diagram, we present the case study of
ns/ni > 1 where we have a light emission from a denser medium to a less dense
medium. This yields to a positive spherical aberration [39, 42]. From Snell’s law, as
ns becomes bigger than ni, the refracted angle about the normal of incidence in the
sample region becomes smaller than the incident angle from the immersion medium
(angle indicated by a the black spot in Fig. 4.3-upper row). The actual focus position
(AFP) therefore shifts from the nominal focus position (NFP) and yields to the focal
shift. The nominal focus corresponds to the focus position in the absence of aberra-
tion. This NFP is at the emitter position within the sample so NFP = ts. Due to the
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RI mismatch between the sample and the immersion medium, the focus position gets
scaled by a stretch factor ns/ni yielding to the value of the AFP = NFP×(ns/ni)

−1.
The pixel size in z is re-interpreted and the focal shift (FS) is given by:

FS = NFP−AFP = ts

(︃
ns/ni − 1

ns/ni

)︃
. (4.2.1)
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Figure 4.3: Upper row: Representation of the focal shift in a simple imaging diagram, case
study of ns/ni > 1 which corresponds to a positive spherical aberration. NFP: nominal focal
position when there is no aberration. AFP: actual focal position in the presence of aberration.
FS: focal shift. Lower row: yz-profiles of PSFs at α = 0◦. (a) ns/ni = 1 and ts = 1λ0. (b,
c, d) ns/ni = 1.015 and ts = 50λ0, 150λ0, 250λ0 respectively. The red lines indicate the focal
positions. The colorbar represents the range of the intensity values in all of the four figures
(a, b, c, d).

Fig. 4.3-lower row(a) represents the yz-profile of the non-aberrant reference PSF. The
red dashed lines in 4.3-lower row(a, b, c, d) correspond to the black dashed lines in
Fig. 4.2. In the case of light transmission from a less dense medium to a denser
medium, i.e. ns/ni < 1, we have a negative spherical aberration and the position of
the AFP is above the NFP within the sample medium (green region in Fig. 4.3-upper
row). The positive direction of z is pointed by the arrow in Fig. 4.3-upper row. By
quantifying these focal shifts, we found an estimate of 5.597 µm focal shift per λ0 or
0.1043 o.u. per λ0 in terms of the axial optical resolution.

4.2.2 Aberrant OTFs

The aberration present in the system also affects the optical resolution of the system
and the contrast in the recorded image. As mentioned earlier in Chap. 3, a plane
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wave, directed by a wavevector k⃗ in real space, corresponds to a delta function at a
position k⃗ on the McCutchen pupil in Fourier space. If the wavefront on the Gaussian
reference sphere deviates from being spherical, an additional phase Φ is added in
Fourier space by multiplying the field distribution on the pupil by eiΦ. For this reason,
the real part of the amplitude of the field in the pupil plane is reduced by the factor
cos(Φ). Computing the autocorrelation of the field in the pupil plane using Eq. (3.9.1),
an OTF with a possible negative value is obtained at Φ ̸= 0. Due to the Parseval’s
theorem, the energy is conserved in frequency as in real space. This explains the
contrast reversal in the recorded image and possible cut-off frequency of the OTF
support. In Fig. 4.4, we display the kykz-cross section of the real part of the aberrant
OTFs at γ = 0.5 under different imaging parameters.
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Figure 4.4: The influence of refractive index mismatch and coverslip tilt onto the OTF. The
kykz-cross section of the real part of the aberrant OTFs at γ = 0.5 with the imaging pa-
rameters: [ns/ni, ts, α] = (a) [1.0015, 1λ0, 0◦], (b) [1.015, 50λ0, 0.1◦], (c) [1.015, 250λ0, 0.1◦], (d)
[1.0015, 1λ0, 1◦], (e) [1.015, 50λ0, 1◦], (f) [1.015, 250λ0, 1◦].

Since the values of the OTF can be negative in the presence of aberrations, the gamma
display at 0.5 equals to sign(Real(OTF))× [abs(Real(OTF))]0.5. The abs(.) stands for
the absolute value of the input argument, Real(.) corresponds to the real part and
sign(.) is the sign.
To visualize the frequency component which corresponds to the field in focus in
real space along the y-axis at x = 0, the Fourier slice theorem is used and the 2D
kykz−section of the OTF is projected along kz-axis, i.e. summing along kz-axis (ku-
axis). The results under different imaging parameters are displayed in Fig. 4.5. These
figures enable us to visualize how much loss in resolution is induced by each parame-
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ter ns/ni, ts and the tilt angle α. It is predicted from these figures that the degradation
of the image is significant if there is a tilt in the imaging system.

(a) (b)

Figure 4.5: Projection of the real part of the OTF summing along kz-axis (ku-axis). (a) Variation
of the real part of the OTF with ts at fixed values of (ns/ni, α) : (i) (1.0015, 0.1◦), (ii) (1.015,
0.1◦), (iii) (1.0015, 1◦), (iv) (1.015, 1◦). (b) Variation of the real part of the OTF with α at fixed
values of (ns/ni, ts) : (i) (1.0015, 50λ0), (ii) (1.015, 50λ0), (iii) (1.0015, 250λ0), (iv) (1.015, 250λ0).

In most cases, the imaging parameters, especially the coverslip tilt angle α, are un-
knowns. The phase aberration is therefore only known through a phase retrieval pro-
cess of the recorded experimental PSF. The phase can easily be added into the pupil
plane. Deriving the constant parameters of the imaging from the retrieved phase is
not a trivial task. An error may be induced in the McCutchen pupil itself due to the
lack of knowledge of α (see Section 3.6). To illustrate this concept and estimate the er-
ror that may be induced, let us consider the aberrant PSF with constant parameters at
which the higher order spherical aberrations starts to be significant. That corresponds
to ns/ni = 1.0075 i.e. ns = 1.34, ts = 50λ0 and α = 1◦. We denote h1 the aberrant
PSF computed with a correctly oriented McCutchen pupil and the phase aberration
induced by the constant parameters and h2 is the aberrant PSF which only accounts
for the phase aberration and assumes a planar McCutchen pupil.
In this particular case, the errors in the PSFs were calculated to be fairly small and
the two PSFs look almost identical. However, the OTF support is slightly extended
due to this error and some artefacts can therefore be introduced into the system and
might be mistaken for an important information from the object (see Fig. 4.6c).
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Figure 4.6: Effects of the lack of knowledge of a tilt [α, β] = [1◦, 0◦] (elevation and azimuthal
angles respectively) on the OTF. (a) The in-focus PSFs displayed at γ = 0.1. In addition to the
induced phase, the tilt is considered in the McCutchen pupil of the PSF denoted by h1. The
PSF denoted by h2 is derived from the McCutchen pupil which corresponds to a non-tilted
plane with the additional phase induced by the tilting. (b) The XZ and YZ cross sections of
the corresponding OTFs displayed at γ = 0.1. (c) Real part of the cross sections of the OTFs
along kz = 0 at γ = 0.1. The spatial frequency is normalized by the cut-off frequency kxy|max
indicated by the black dashed line in (c) and four red dashed lines in (b).

4.2.3 Fluorescence emission band

In the above investigation, we assume a single emission wavelength in the PSF cal-
culation. An experimental PSF data is however recorded at an emission spectrum
not a single wavelength. The reconstructed PSF is obtained from an incoherent sum
of PSFs recorded at single wavelengths within the emission spectrum. The range of
the spectrum is delimited by the emission filter bandwidth (λem ∈ [λmin, λmax]). The
effective PSF is given mathematically as [81]:

heff(r) =
∫︂ λmax

λmin

ϵ(λem)h(r; λem)dλem, (4.2.2)

with r = (x, y, z) being the spatial coordinates at which the intensity PSF is evalu-
ated, ϵ being the emission spectrum of the emitter, λmin and λmax are the integration
bounds, and h(r, λem) is the PSF at a single emission wavelength λem. As the full-
width half maximum (FWHM) of a PSF is proportional to λem, a contribution of a
PSF at a longer or shorter λem broadens or narrows the effective PSF heff respectively.
To illustrate the broadening effect, we imitate the PSFs of two fluorescent emitters
that will be used in our experimental validation in Chap. 6: 0.2 µm FluoSpheres
Carboxylate-Modified microspheres with λex/λem = 505/515 [Thermo Fischer: F8811]
and 0.1 µm TetraSpeck microspheres with four distinct channels: λex/λem = 360/430
(blue), 505/515 (green), 560/580 (orange) and 660/680 (dark red) [Thermo Fischer:
T7279]. In this particular case, we use a Plan-Apochromat 63×/1.4 Oil DIC M27 ob-
jective lens. The system is magnified by 1.6× in the tube lens. The grid is of size
equal to 512× 512× 64 and the voxel size is 64.48× 64.48× 100 nm3. The sample is
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assumed to be embedded in a mounting medium of refractive index equal to ns = 1.46
and the coverslip is of a high performance with ng = 1.518 and tg =0.17 mm. These
parameters are chosen to showcase the minimum error that can be present in our
experimental validation.
We download from Thermo Fisher website the emission spectrum ϵ of each bead
[www.thermofisher.com]. The value of ϵ is normalized by the integrated intensity
over the effective region delimited by the bandwidth of the chosen emission filters.
This normalisation is done such that the probability of having photon anywhere over
the available space is equal, yielding to a total probability equal to 1. Using an emis-
sion filter [λmin, λmax] centred at λc, the lateral FWHM of the PSF calculated at a
single wavelength λc and the lateral FWHM of the effective PSF are estimated and the
results are summarized in Table 4.2.

Table 4.2: FWHM of effective PSF and PSF at a single wavelength

TetraSpeck bead
FluoSpheres bead Blue Orange

[λmin, λc, λmax] [498, 525, 551] [417, 450, 486] [565, 595, 637]
FWHM(λc) 192.02 157.9 222.49

FWHM([λmin, λmax]) 190.91 156.56 218.95

We also download from Omega Optical the values of the transmission coefficients
which corresponds to three optical filters: 525/45 [525QM45], 450/60 [450QM60],
595/60 [595AF60] to obtain a realistic values of the transmitted and recorded fluo-
rescent emission [www.omegafilters.com]. The FWHMs of the PSFs are calculated
and displayed in Table 4.2 to demonstrate the lateral broadening of the effective PSF.
Although this effect is fairly small in this particular case (less than 5 nm) and it may
suffice to compute the PSF at λc, the broadening effect can be important and not neg-
ligible if the emission filters have not been chosen carefully [81]. It is also important to
note that the data that has been used here correspond to the perfect case so the result
represent the minimal error that can be obtained. Here, the FWHMs of the effective
PSFs are calculated to be smaller than the FWHMs of the PSFs at the centre wave-
length λc because the emission spectrum distribution of each bead displays a positive
skewness. The PSFs at shorter wavelength have more contributions to the incoherent
summation than those at longer wavelengths.

4.2.4 Scalar field approximation

The scalar field approximation is valid in the region near to the optical axis where
the field dependence on the elevation angle θ is negligible (sin(θmax) ≲ 0.4 [82]).
At higher opening angle (sin(θmax) > 0.7 [82]), the vector features of the field such
as the polarization and bending of the rays are no longer negligible. We observed

www.thermofisher.com
https://www.omegafilters.com/
https://www.omegafilters.com/


CHAPTER 4. THEORETICAL ANALYSIS OF THE POINT SPREAD FUNCTIONS 64

by comparing the non-aberrant SP-FFT PSF (see Algorithm 1) with the state-of-the-
art scalar Gibson and Lanni model developed by Li et al. [34] that the scalar field
approximation holds with a MRE less than 0.0349 if NA ≤ 0.4. The vector PSF here is
computed with a circular polarization state. The scalar field approximation departs
from the vector formulation of the field distribution with a mean relative error (MRE)
of 0.0810 and NCC value of 0.9979 from NA ≥ 0.7. These values also hold for the
comparison of the scalar and vector state-of-the-art PSFs from [37]. By analysing
different PSFs with high NA using different immersion medium such that NA/ni ≥
0.95, we observe a loss of at least equal to 0.0103 in the NCC value between the scalar
and vector PSFs. In the presence of tilt and spherical aberrations at α = 0.2◦, ns/ni =

1.0015, and ts = 10λ0, this loss in NCC increases about 5 times to result into an NCC
value equal to 0.95 between a scalar and vector aberrant PSF.

4.3 Comparison of different computation methods

Now, let us compare the different methods for computing the PSFs and limit ourselves
to non-aberrant and noise free simulated PSF models. The Richard and Wolf (RW)
PSF model [23, 24] is chosen to be the gold standard of the comparison (GS) as it rep-
resents the best approximation of the light diffraction through a given optical imaging
system and does only rely on calculating integrals in real space. The RW-GS is sam-
pled 5× higher than a standard PSF sampling to avoid any sampling problem in the
PSF especially, near the focus position. It is down-sampled by binning 5 neighbour-
ing pixels, centred at the desired position, in both x and y. The standard sampling
consists of an xyz−grid of size 128× 128× 64 pixels. The voxel size is 83× 83× 100
nm3. Only 90% of the calculation grid 128× 128 is considered in the comparison to
avoid any artefacts that may be present at the border of the calculation region. The
same objective lens and emission wavelength for the evaluation of the PSF sensitivity
described in Table 4.1 are used: NA = 1.2, ni = 1.33 and λem = 510 nm.
The methods are compared based on the violation of the missing cone in the resulting
PSF, MRE and NCC to the RW-GS, wrap-around effect and calculation speed.

4.3.1 Intensity profile

To visualize the difference in intensity of the PSFs, we plot the radial mean intensity in
logarithmic scale (see Fig. 4.7). We can apply the radial mean here since the PSFs are
symmetric about the optical axis as only defocus aberration is present in the system.
The state-of-the-art routines that we compare to: PSFGen, GL, sPSF and vPSF are
not centered at the same center position as our PSFs models with even window size.
They are therefore calculated from an odd window and further clipped to get the
same window size as our PSFs models.
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Figure 4.7: Radial mean profiles at the focus position in logarithmic scale. RW-GS refers
to the Richards and Wolf gold standard PSF, RW to the Richards and Wolf PSF under a
standard sampling, Sinc-R* to the PSF derived from Algorithm 4, PSFGen to the vector PSF
from PSFGenerator at the best accuracy [33], SP-FFT* to the method described in Algorithm
1, SP-CZT* to the method employing Algorithm 2, F-Shell* to the Fourier shell interpolation
method in Algorithm 3, GL to the scalar PSF based on the Gibson and Lanni model [34], sPSF
and vPSF to the scalar and vector PSF from [37].

In Fig. 4.7, the discrepancy in the scalar PSF models are clearly visible. The vPSF
and PSFGen fit the gold standard RW-GS with a high precision. The profile of Sinc-
R* departs from RW-GS at the edge of the radial position. The profiles of SP-FFT*,
SP-CZT* and F-Shell* are also slightly off from the profile of the RW-GS.

4.3.2 Violation of the missing cone

One condition that a wide-field system satisfies is the missing cone condition. As
described in Section 3.9, this missing cone corresponds to the frequency spectrum
close to the kz−axis going missing due to the uniform illumination of the sample in
a wide-field system. Information within the missing cone is not transmitted by the
OTF and out-of-focus light is only spreading but not removed from the image. The
integrated intensity at each axial position remains constant as long as the PSF remains
confined well within the calculation grid.
A PSF model violates the missing cone problem when the integrated intensity of the
PSFs for each xy−plane along the axial axis is not uniform over defocus, especially
near the focus position. This violation of the missing cone often happens when the
PSF is wrongly sampled. As we are dealing with a finite grid with finite number of
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points, this issue must to be taken good care of. It contributes to the performance of
the PSF. A PSF which violates the missing cone may no longer represent a wide-field
imaging. To observe this property of a PSF model closely, the integrated intensity
over xy−plane at each axial position z is calculated and displayed in Fig. 4.8.
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Figure 4.8: Observation of the violation of the missing cone by calculating and presenting the
integrated intensity along z.

The effect is quantified by taking the standard deviation (Std) of the integrated inten-
sities within 20% of the z−range around the focus (see the bar graph in Fig. 4.8a).
This region of interest is indicated by the two vertical lines in each of the figures
representing the integrated intensity. Within this region, the Std of the SP-FFT* and
F-Shell* are very close to the Std of the highly sampled RW-GS while the SP-CZT*
performs better than the gold standard itself with the lowest value of Std. The newly
developed methods SP-FFT*, SP-CZT*, F-Shell* and Sinc-R* all have lower values of
Std compared to the state-of-the-art PSF: GL, sPSF, vPSF and PSFGen. The PSFGen
is in the highest position for violating the missing cone condition, followed by RW
computed with a standard sampling and the GL.
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4.3.3 Error analysis

To quantify the difference between each model with the predefined GS, denoted by
RW-GS, the MRE and NCC for each model are evaluated using Eq. (E.0.3) and (E.0.5)
respectively. The MRE and NCC at each z−position and in 3D are computed. The
results are displayed in Fig. 4.9 and 4.10.
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Figure 4.9: Mean relative error between the gold standard RW-GS PSF and PSFs models.

We observed from this investigation that the state-of-the-art vPSF has the least error
and highest similarity with the RW-GS. Most of the methods display a peak around
the focus position due to the difference in the integrated intensity related to missing
cone that was discussed in the previous section. Although the NCC with the RW-
GS of the scalar sPSF is at 0.99275 compared to the scalar GL PSF, the MRE errors
are more pronounced for those scalar PSFs, 0.1842 for GL and 0.1793. This is due
to the limitation of the scalar approximation. The similarities of those scalar PSFs
around the focal position are also significant. SP-FFT*, SP-CZT*, F-Shell* and Sinc-R*
are similar to the RW-GS with a NCC value higher than 0.99958 compared to a NCC
equal to 0.99897 for the PSFGen. In terms of MRE in the intensity however, the SP-
CZT* and PSFGen have close MRE values. This is because, the error in the PSFGen
is high around the focus but low in out-of-focus while the range of the error in the
SP-CZT* is smaller than the PSFGen, yielding to both methods to display a close MRE
values. The newly developed methods, SP-FFT*, SP-CZT*, F-Shell* and Sinc-R*, also
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Figure 4.10: Normalized cross correlation between the gold standard PSF and PSFs models.

display higher errors at higher z−position compared to the state-of-the-art PSFs. This
can be understood as still a possible presence of small amount of wrap-around in the
PSF at higher depth. This wrap-around quantity is discussed in the next section.

4.3.4 Wrap-around effect in the methods

It is known that Fourier transform operation can be decomposed into Fourier series of
periodic functions cosine and sine [14]. The Fourier transform (FT) of a signal is also
periodic. If the sampling grid is not fine enough for a given desired computation or if
the PSF is sampled wrongly and the Nyquist theorem is not satisfied, the FT operation
leads to a wrap-around of the waves from the border to the center of the image. The
wrapped information is an artefact that needs to be avoided as it approximates the
field distribution wrongly. Techniques that do not employ FT do not suffer from this
issue. As the models developed under this project are Fourier-based, it is necessary
to investigate the wrap-around effect of each model. In our calculation in Chap. 3,
we took this into consideration and we presented a way to go around it. As seen
from the previous quantification of the errors however, this effect may still not be
fully suppressed. To quantify the wrap-around effect, we calculate densely sampled
PSFs from each technique using a large calculation window, denoted by Wref and
given by the formula in Eq. (5.1.1). This PSF is denoted by href. A large amount of
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wrap-around effect should be avoided within this large computation grid Wref. In
order to quantify the wrap-around effect of each PSF model, we then compute the
PSF with different window W and compare it with the href with the window Wref. Let
us denote this newly computed PSF: hW . The wrap-around effect in hW in relative to
href is calculated in terms of MRE between hW and href within the smaller window of
W and Wref. No wrap-around effect is expected in hW for W > Wref. However, as the
window is bigger, the energy is spread over a larger grid. The difference between h
and href is not expected to be zero but is expected to converge to a constant for all
W > Wref.
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Figure 4.11: Quantification of the wrap-around effect in different window size in x and y. The
red dashed horizontal lines are references that represent the lines where the MREs from the
RW are calculated at a given window size.

The Wref was calculated to be 326× 326 in x and y. We compute different window
size in power of 2: 64× 64, 128× 128, 256× 256, 512× 512, and 1024× 1024. The
z−range is 64 and the rest of the parameters are the same as described previously in
the introduction of Section 4.3. The PSFGen runs out of memory for the last large
grid so a quantification of the MRE for this grid was not possible for this method.
We observe from Fig. 4.11 that the MRE of the scalar state-of-the-art GL and sPSF
PSFs fall far below the red dashed lines from the RW. The methods for computing
those PSFs, the vPSF, PSFGen, and RW do not employ any FT operator. The MRE
of the SP-CZT* falls on the same line as RW and vPSF in all different windows. The
Sinc-R* presents an MRE slightly above the red lines while SP-FFT* and F-Shell* fall
at about 0.05 above the red lines. This means the wrap-around effect in the SP-CZT*
has been completely suppressed while there is still some that remains in the SP-FFT*
and F-Shell* and possibly in the Sinc-R*. The MRE errors converge to a constant as
expected for window bigger than the reference window 326× 326.

4.3.5 Speed of the various algorithms

The estimation of the speed of the various algorithms in this section was done under
Windows 10 64-bit, Intel(R) Core(TM) i5-3570S CPU @ 3.10GHz, 8,0GB RAM, Intel
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HD Graphics. The profiles of the computation time per voxel for each technique at
four different window sizes are displayed in Fig. 4.12.
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Figure 4.12: Computational time of each technique per voxel in µs.

The RW model evaluate the three integrals in (2.2.26) numerically by exploiting a
cylindrical coordinate system for the integration. This numerical integration is com-
putationally advantageous since only the field in the centred radial axis versus the
axial position z is calculated. RW therefore employs a radial symmetry in its com-
putation, and has the disadvantage that non-spherical aberrations cannot easily be
represented. The accuracy of the RW model is a function of the steps of integration.
The 3D SP-FFT* PSF and SP-CZT* PSF are computed slice by slice in z. Using a code
profiler under Matlab, we concluded that about 70% of the computational time of the
SP-FFT* technique is dominated by the FFT operation. The algorithm complexity of
each 2D slice in the SP-FFT* is given by O(NxNy log(NxNy)). The computational time
per voxel therefore remains relatively the same. Larger calculation grid however will
require more time to compute.
On the other hand, reflecting on Eq. (3.4.3), the CZT operation requires 3 FFTs to
compute. In the SP-CZT* method, a new and bigger window is calculated such that
the field at higher depth would not have wrap-around effect issues from the FFT
operation. The running time depends on the lateral size and z−depth. This explains
the relative higher computational time per voxel in a SP-CZT* compared to SP-FFT*.
The Fourier shell method (F-Shell*) computationally depends on the interpolation of
the coefficients of kz at different sub-pixels. By analysing the algorithm with code
profiler under MATLAB, this interpolation process takes up about 70% of the total
computation cost. If the z−range becomes significantly larger, a large number of
coefficients also needs to be interpolated. The computation time therefore mainly de-
pends on the number of iteration and the kernel size. Those coefficients are stored on



CHAPTER 4. THEORETICAL ANALYSIS OF THE POINT SPREAD FUNCTIONS 71

the disk of the computer and can be accessed easily without any heavy computation,
reducing the computation time of a second run to up to 20×.
In the computation of the Sinc-R* PSF, the Fourier wrap around in the calculation of
wave propagation is avoided by calculating directly the 3D spectrum of propagating
wave to be half of a 3D shell which is derived from the 3D FFT of a propagating sinc
wave and projected on the 3D McCutchen pupil which correspond to the in-focus
field. Each of the three components of the electric field is on a 3D shell, forming a
4D field. The projection of the 3D sinc shell onto the 3D McCutchen pupil is in 4D.
To return the field in the image plane, this 4D field in the pupil plane is 3D Fourier
transformed. The only artefact that may still be present in the calculation is from the
edge of the grid during this 3D FFT. This can be avoided by damping the edge or
extending the window by 25%. The difference in the computation with or without
this 25% extension is not significant. It is advisable to consider it in the computation
as more information can be preserved by it. In the SincR method, the z−range also
needs to be highly sampled leading to an heavy computation, which is not required
for all the other propagation methods.
The state-of-the-art GL method discussed here is implemented using Bessel series
approximation of the GL method [34] over a single xz slice. A radial asymmetry in
the PSF is assumed and a piece-wise linear interpolation is used to compute the whole
3D volume PSF. The model computational time and accuracy are inversely dependent.
Both depend on the number of basis in the Bessel series and the sampling number.
The computation time of the PSF corresponds to the default number of basis which
is equal to 100 Bessel functions and number of coefficient parameters equal to 1000.
These make the GL PSF calculation the fastest method.
ScalarPSF and VectorPSF compute the numerical integration of the electric field in
the image plane using Simpson’s rule [37]. The methods are relatively fast and the
computational time per voxel seems to be independent of the z−range. Lastly, the
software PSFGen is the most expensive in time and in memory among the PSF models,
which we compare to.

4.3.6 Summary and outlook

To summarize, the SP-CZT* method satisfies the most the missing cone problem con-
dition in wide-field microscopy and has enabled the suppression of the Fourier wrap-
around effect. These advantages can however come at a high cost in time if a higher
depth is required. The state-of-the-art vPSF can still be a faster alternative and has
more similarity to the RW-GS than SP-CZT* but it violates more the missing cone con-
dition, which is a physical condition that must be satisfied. F-Shell* and SP-FFT* are
affordable methods in times and memory. They are good methods if a computation at
higher depth is not required. Sinc-R* is efficient and moderate in balancing the pros
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and cons of the PSF in terms of accuracy versus computation time. It is only suitable
for calculating a volume PSF.
The scalar GL PSF is the fastest method but is the least accurate among the methods.
The techniques used in its computation are attractive to speed up PSF calculation. It
however needs to be adapted to account for the vector features of light for it to be
usable in representing the PSF of a high NA system.
Although the PSFGen has been widely used in the literature, we observe from this
investigation that all the vector PSF models have surpassed this method in different
ways.
The state-of-the-art PSFs, RW, sPSF, and vPSF, also use radial symmetry in the compu-
tation. This means that they cannot account for non-symmetric aberration. The newly
developed methods, SP-FFT*, SP-CZT*, F-Shell* and Sinc-R*, can still be optimized to
be faster if radial asymmetry is not required in the computation.



Chapter 5

Phase Retrieval of High NA Point
Spread Function Data

Aberrations are common and unavoidable during image acquisition. A suitable

phase retrieval algorithm is required to retrieve and correct for aberration in

experimental PSF reconstructed on a smaller grid. Here, we describe a newly

adapted algorithm for such purposes and demonstrate the efficiency of the al-

gorithm for retrieving phase aberration from simulated PSF data with high NA

system.

5.1 Introduction

Aberrations are mostly unavoidable during image acquisition and their cause and
amplitude are often unknown. As discussed in Section 3.6.2, any given optical system
has a set of parameters for which it was designed for. Any deviation of the values
of the constant parameters from the design parameters induces aberrations. Most ex-
perimental activities are conducted without the exact knowledge of the experimental
parameters such us the thickness, the flatness of the sample and the refractive in-
dexes (RI) of each sample layer and immersion medium. These parameters are also
sensitive to the environment under which the experiment is conducted such as the
room temperature. The common approach to correct for the induced aberration is
to retrieve the phase from the measured PSF and estimate the aberration from the
retrieved phase.
Gerchberg and Saxton developed a powerful algorithm for phase retrieval [83]. This
algorithm uses the knowledge that imaging can well be described in both real and
Fourier space. It consists of going back and forth between both spaces until the
phase converges. The Gerchberg-Saxton algorithm however requires the intensity
distribution in both spaces, real and Fourier space, to be known [83].
Hanser and al. modified the Gerchberg-Saxton algorithm to account for this lack of
knowledge of the intensity distribution in Fourier plane by considering the data from

73
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a focal plane stack. The modified Gerchberg-Saxton algorithm has been proven to
be efficient for light microscopy data [84]. This method is however still not suitable
for our application. The algorithm presented by Hanser et al. does not account for
the small grid on which the measured data is presented and from which the phase
is to be retrieved. The reason is explained as follows. An experimental PSF, hexp, is
reconstructed by averaging over several beads over a grid Nx×Ny×Nz such that only
a single bead is contained in the grid. In this way, the signal-to-noise ratio is increased
by the square root of the number of conducted measurements. The reconstructed data
do no longer need to be pre-processed to reduce the present noise. However, the grid
is small for going iteratively back and forth between real and Fourier spaces. A severe
wrap-around effect may be induced. As a consequence, zero-padding hexp to obtain
a new size N′x × N′y × Nz is necessary such that the propagation of a field at higher
depth zmax will still be contained in the grid without wrap-around. We calculate this
grid using the following expression:

N′x = 2× 2×

⎛⎜⎝zmax
kx|max
kz|max

+ 1.3dx|lim

px

⎞⎟⎠ , (5.1.1)

with dx|lim being the resolution limit, px the pixel size and 1.3 is an heuristic factor.
The first factor 2 in the expression of N′x is considered to double the half window and
the second factor 2 is to sample the frequency space two times higher. The variables
zmax, px and dx|lim have the same units and N′x is expressed in pixels. The same
amount of padding is done along y−axis.
The zero-padding corresponds to a convolution of the measured PSF with a sinc func-
tion in Fourier space and needs to be handled with care. In effect, here we present a
different approach to solve the phase retrieval problem. The process is presented in Algo-
rithm 7. We modified the method developed by Hanser et al. to fit our problem and
approach the vectorial features of high NA microscopic data using the mathematical
formulation of the field in the pupil plane described in Algorithm 1. The algorithm is
tested on simulated data of PSF recorded with high NA system and a tilted coverslip in the
forward model.

5.2 Phase retrieval algorithm

An intensity measurement is conducted to record the volume PSF intensity. The
convergence of the technique is monitored using the sum of squares error between
the estimate of the PSF and the measured PSF.
We denote h′exp as the resulting zero-padded measured PSF. It is initially normalized
such that the total integrated intensity is equal to the length of its z−range. This is to
facilitate the tracking of energy conservation in both space, real and Fourier spaces. In
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experimental work, the property of widefield images which corresponds to the miss-
ing cone problem may not be reflected in the recorded images (see Section 3.9), due
to a fluctuating brightness and background that may occur during the measurement.
For this reason, the experimental PSF is scaled such that the integrated intensity along
the optical axis remains the same.
From this point onward, the grid for the phase retrieval is equal to N′x × N′y × Nz. To
initialize the phase retrieval, we set the initial guess of the phase Φ to retrieve to be
zero. The effective NA, NAeff, is given by the minimum between the known refractive
indices and the NA set by the manufacturer: NAeff = min{NA, ns, ni, n∗i , ng, n∗g}. This
is true as any field within the region ]NAeff, NA] are non-propagating waves leading to
total internal reflection. The 3D field distribution in the pupil plane delimited by NAeff

is calculated using Eq. 3.3.2 by setting each of the transmission coefficients Tp and
Ts to 1, applying the correct aplanatic factor for energy conservation and choosing
the correct polarization. If unknown, the polarization is set to be circular by default
as this corresponds to the resulting polarization of dipoles oriented in all directions
(see Appendix C). The pupil plane is propagated over the z−range corresponding to
the measured PSF and Fourier transformed to obtain the corresponding field in the
image plane. As only information in real space within the smaller grid Nx × Ny × Nz

is known, a real space constraint is enforced in the resulting complex amplitude field
within this region only. Outside this region, the field is kept as it is to conserve the
energy at each z−plane. The real space constraint consists of keeping the phase of the
field and changing the amplitude to be the square root of the measured PSF. Then,
we return to Fourier space and back propagate the field to obtain the corresponding
refocused field. Any extra phase which corresponds to the phase of the initial polar-
ized field in the pupil plane is discarded by multiplying the back propagated field in
the pupil plane by the complex conjugate of the initial pupil field.
Summing over the number of z−slices and the three different components of the
pupil plane, we obtain a new estimate of the phase Φk at the k−th iteration. This
corresponds to the argument of the summed pupil plane distribution. The sum of
squares error between the estimated PSF and the measured PSF is evaluated at each
iteration. This process is repeated until convergence or until the error is less than a
pre-defined threshold. The desired phase corresponds to the phase from the pupil
distribution at convergence. It is important to note that this retrieved phase does not
only represent the phase of the field within the region of interest Nx × Ny × Nz but
also contains information about the field outside this region.
In this study, we are particularly dealing with PSFs which represents the image of
beads whose sizes are smaller than the diffraction limit. Once the size of the bead is
bigger than the diffraction limit, we have to account for the convolution of the bead
shape with the PSF. This effect is not covered here but can be easily implemented
using the approach of Hanser in [84].
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Algorithm 7 Phase retrieval

Input: N, ϵ, hexp, pz, py, pz, z, Φ0, NA, λem, τd, τr
1: N : number of iterations
2: ϵ : threshold error
3: hexp : intensity measurement of volume PSF of size Nx × Ny × Nz
4: [pz, py, pz] : voxel size with the same unit as λem
5: z : z−range of propagation of length Nz
6: τd: regroups the RI in the design conditions {n∗g, n∗i }
7: τr: regroups the RI in the non-design conditions {ns, ng, ni}
8: Φ0 : initial guess of the phase to retrieve

Output: Φ = arg{P′′q }
9: [N′x, N′y]← desired grid calculated using Eq. 5.1.1

10: h′exp ← zero-pad of hexp to a size N′x × N′y × Nz

11: NAeff ← min{NA, ns, ni, n∗i , ng, n∗g}
12: E⃗k(kx, ky, kz)← field on the pupil plane calculated with NAeff, λem, τd, τr, and each

component of 2D size equal to N′x × N′y
13: for q = 0 : 1 : N − 1 do
14: Pq⃗ = E⃗k · eiΦq−1

15: h⃗amp,q ← FFT−1
(︂

Pq⃗ · e−ikzz
)︂

▷ Field propagation

16: hq ← |h⃗amp,q|2

17: h⃗
′
amp,q ← h⃗amp,q ×

√︂
h′exp/hq ▷ Real space constraint only within the smaller

grid Nx × Ny × Nz

18: error ← ∑xyz

(︂
hq − h′exp

)︂2
▷ MSE within the smaller grid Nx × Ny × Nz

19: if error > ϵ then
20: P′q⃗ ← FFT

(︂
h⃗
′
amp,q

)︂
· eikzz ▷ Back propagation

21: P′′q ← ∑Nk ∑Nz P′q⃗ · E⃗
∗
k , Nk being the three components of E⃗k ▷ Summation

22: Φq ← arg{P′′q } ▷ Retrieved phase
23: else
24: break
25: end if
26: end for
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5.3 Phase retrieval algorithm for a high NA PSF data

We evaluate the phase recovery algorithm on simulated data. Such analysis is nec-
essary to estimate and predict the precision under which the phase retrieval in the
experimental validation in Chap. 6 is conducted.

5.3.1 Forward model

We calculate the forward PSF model using the properties of an objective lens Plan-
Apochromat Oil HI DIC Corr M27 100x/1.57 [Zeiss: 420792-9771-000]. This objective
lens truly represents a high NA system. The emitter is assumed to be embedded in
ProLong Gold of RI equal to ns = 1.46 and is placed at 30 µm from the surface of the
coverslip. The emission wavelength is set to be equal to 525 nm. The coverslip and
immersion medium are assumed to meet the design condition and are of respective
RI ng = 1.518 and ni = 1.66. We choose a grid of size equal to 512× 512× 90 pixels
to avoid as much as Fourier wrap-around as possible. Due to the focal shift induced
by the RI mismatch, hence the spherical aberration, the forward PSF might go out of
the allowed z−range of the grid. An additional defocus aberration of Zernike order
[2 0] is added to shift the PSF axially to correct for the focal shift. The corresponding
focal shift associated with the (ts, ns) values is calculated to be −358.27 pixels using
Eq. (4.2.1). The peak value of the defocus aberration, Z0

2 , or Zernike coefficient that
needs to be considered is calculated to be C0

2 = 3.8546. This coefficient is calculated
using the formulation of Mahajan in Eq. (1-3d) of [85]:

C0
2 = − FS

8F2 with F =
rG − FS

2rp
being the focal ratio, (5.3.1)

and rG = nirp/NA being the radius of curvature of the Gaussian sphere, rp the pupil
radius, and FS, denoting the focal shift, represents the longitudinal defocus. To add
more level of complexity into the system, we add a coma aberration Z1

3 of order [3 1]
and peak value equal to π.
The voxel size is 40.625× 40.625× 65 nm3. We choose the “SP-FFT” method described
in Algorithm 1 to simulate the forward PSF. The polarization state is assumed to be
circular. The resulting PSF is cropped to a lateral size of 64× 64. The exact position
of the focal position is difficult to guess from the experimental PSF data. We therefore
axially shift again the cropped forward model such that the maximal intensity is at
the centre position of the grid. This is to imitate the practice we have adopted for
experimental PSF before we retrieve the phase. At this point, the forward PSF is
subsampled twice in z to reduce the computation cost. We denote h0 the resulting
forward PSF. Its size is reduced to 64× 64× 31 and its voxel size is 40.625× 40.625×
130 nm3. The phase of the electric field associated with h0 is displayed in Fig. 5.1 with
title Φ of h0. The PSF h0 is scaled such that the maximum number of photons is 1000.
This value is chosen arbitrary to imitate an experimental event.
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5.3.2 Backward models

We test the Algorithm 7 with two different grids: 1) same size as the forward model
h0: 64× 64× 31, and 2) a zero-padded grid of size 512× 512× 31. As a first guess of
the phase, we provide to the algorithm a phase distribution with spherical aberration
generated from (ts, ns) = (5 µm, 1.46) and defocus aberration associated to the focal
shift under these two parameters. In those two investigations, we assume a noise-free
image. We run the phase retrieval with 200 iterations. The phase retrieved using the
lateral grid 64× 64 and 512× 512 are displayed in Fig. 5.1 with the title Φ of h(64) and
Φ of h(512) respectively. The PSFs with these respective phases are denoted by h(64)

and h(512). To observe the efficiency of the algorithm in the presence of noise, we add

a Poisson noise to the forward model h0. This noisy model is denoted by hnoisy
0 . We

retrieve the phase from hnoisy
0 using the lateral grid of size 512× 512 and the resulting

PSF with the retrieved phase is displayed in Fig. 5.1 under the name hnoisy
(512) .
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Figure 5.1: Test of the accuracy of the phase retrieval algorithm using simulated data.
First row: xz-profiles sections of the forward model h0 with coma, defocus and spherical aber-
rations, the forward model with Poisson noise, the PSF h(64) with the phase reconstructed
from h0 using a lateral grid of 64× 64, the PSF h(512) with the phase reconstructed from h0

using a lateral grid of 512× 512, and the PSF hnoisy
(512) with the phase reconstructed from the

noisy hnoisy
0 using a lateral grid of 512 × 512. Second row: yz-profiles sections. Third row:

Phase aberrations of the electric fields which correspond to h0, h(64), h(512), and hnoisy
(512) respec-

tively (from left to right).

The NCC between the ground truth h0 and h(64) is equal to 0.8127 while the NCC
between h(512) with h0 equals to 0.9997. In the presence of Poisson noise in the forward

model, the NCC between hnoisy
(512) with h0 is reduced by 0.32% to 0.9965. The Algorithm

7 is therefore capable of retrieving the phase from a PSF with smaller grid with a
NCC to ground truth of at most 0.9997 or 0.9965 in presence of noise.



Chapter 6

Experimental Validation

A conclusive experimental validation of the Point Spread Function (PSF)
models under different imaging condition is conducted in this chapter.
The experimental ground truth is obtained by averaging the images of
several beads. The normalized cross correlation between the experimental
reconstructed PSF and simulation is chosen as a metric to demonstrate the
ability of each of our PSF models to represent real experiments. The PSFs
models are also validated in their efficiency, ability, and accuracy for image
reconstruction.

6.1 Experimental validation workflow pipeline

To conduct an effective experimental validation of our PSFs models, an workflow pipeline
needs to be well established. The ground truth PSF, denoted by Exp-PSF, of the
validation is formed by averaging over the images of several beads with physical size
smaller than the diffraction limit of the optical system. Each different setting of image
acquisition and parameters correspond to a ground truth.
At each stage of the experimental validation, an error may be induced. Firstly, an
error may occur in the acquisition of the experimental PSF itself, yielding to a wrong
assumption of a supposed to be “ground truth”. If the sample is not prepared with
care, some fluorescent or dirt background may add up to the signals during the imag-
ing. The imaging parameters, such as refractive index or/and emission wavelength,
may also be estimated wrongly due to its dependence to the condition of the working
environment.
Secondly, the PSF is modelled under a given imaging condition invariant. This has
been discussed as the Abbe sine condition (see Section 2.1.2) yielding to the adoption
of an aplanatic correction in the calculation (see Section 2.1.3). This is a physical
condition that the system needs to satisfy and is taken into consideration in the PSF
calculation. An error in the quantification and assumption of this aplanatic factor
leads to a major error in the investigation of the validity of the PSF.

79
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Thirdly, the quality of the Exp-PSF construction, hence the error, depends on the lo-
calization precision of each bead and the number of beads that are averaged. The
localization precision is function of the number of photons emitted by the bead emit-
ter while the number of beads influence the amount of noise in the reconstruction.
Averaging over several beads reduces the noise present in the measured PSFs. The av-
eraging can however suppress some non-symmetrical aberration yielding to a wrong
estimation of the aberration in the imaging system. It is important to choose measured
PSF data which is least affected by field-dependent aberration as averaging over beads
in the presence of these types of aberration yield a large error in the assumption of
the ground truth Exp-PSF itself.
Fourthly, since the exact values of the constants imaging parameters such as refractive
index and sample thickness are unknowns or can be estimated wrongly, the aberra-
tion contained in an Exp-PSF is retrieved computationally. The retrieved phase is
introduced in the simulated PSF models to enable a meaningful and realistic compar-
ison of the experimental and simulated data. An error in the phase retrieval algorithm
is therefore a plausible error that may also occur during the process of experimental
validation.
In summary, the accuracy of a simulated PSF data to represent the true PSF of a given
optical system is valid under the conditions that are previously mentioned. The total
and final error includes the error in the simulated PSF data itself, and the errors in
the assumptions of the ground truth, measured Exp-PSF.
Lastly, the simulated PSFs are used for deconvolving experimental images of spherical beads
with known diameter and C. Elegans embryo to test their efficiency, ability, and accuracy for
image reconstruction. This section concludes the experimental validation of the PSF.
The workflow of the experimental validation of the PSF is therefore summarized in
six different stages:

Stage 1: Sample preparation and image acquisition

Stage 2: Validation of the imaging condition invariant

Stage 3: Image processing and Exp-PSF construction

Stage 4: Phase estimation from Exp-PSF

Stage 5: Comparison of Exp-PSF with simulated PSFs

Stage 6: PSFs for image reconstruction

6.2 Materials and method for PSF measurement

6.2.1 Fluorescent emitter

Three parameters of a fluorescent emitter need to be considered when choosing the
most suitable emitter for PSF measurement:
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• The brightness plays a role in the localization precision of the particles. The
localization precision is a function of the number of emitted photons [86].

• The photostability determines the bleaching and blinking properties of the emit-
ters. A photostable emission is required for an effective measurement [1].

• The size of the particle is related to the resolution of the imaging. Particles with
size smaller than the resolution limit should be used. If the particle size is bigger
than the diffraction limit, the obtained image does no longer represent the PSF
of the system, but rather the convolution of the PSF with the particle emission
distribution [3, 14].

The fluorescent emitter used in this project satisfies those three conditions and can be
used as subresolution fluorescent source for measuring the PSF. It consists of 0.1 µm
TetraSpeckTM [ThermoFisher: T7279] and 0.2 µm FluoSpheres Carboxylate-Modified
[ThermoFisher: F-8811] microspheres. TetraSpeck microspheres are composed of four
fluorescent dyes with well-separated excitation/emission peaks λex/λem: 360/430 nm
(Blue), 505/515 nm (Green), 560/580 nm (Orange), 660/680 nm (Dark Red) while Fluo-
Spheres are with one channel 505/515 nm only.

6.2.2 Sample preparation

6.2.2.1 FluoSphere bead sample

To prepare this sample, a Zeiss cover glass of high performance with a thickness of
0.17 mm ± 0.005 mm is used [Carl Zeiss: 474030-9000-000]. The coverslip is left in
Poly-L-Lysine for about 10 min to enhance the electrostatic interactions between the
coverslip and carboxylate beads. The coverslip is afterward washed with deionized
water and dried off. A solution of beads with the desired concentration is placed
on the coverslip and air dried. A small amount of ProLong Gold mounting media is
placed on top of the sample and left to cure. The refractive index (RI) of the ProLong
Gold was measured to be 1.46 at room temperature. The samples and images were
prepared and taken by Maximilian Senftleben from the group of Prof. Dr. Sara
Abrahamsson, Baskin School of Engineering, University of California, USA (SaraLab).

6.2.2.2 TetraSpeck bead sample

The preparation of the sample and acquisition of the images from the TetraSpeck
bead solution were achieved within our research group, group of Prof. Dr. Rainer
Heintzmann, Friedrich Schiller University Jena, Germany (HeintzmannLab) and the
Central Analytical Facilities, Physiology laboratory, Stellenbosch University, South
Africa. Several measurement were carried out to obtain the best result with the least
experimental error.
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To prepare the TetraSpeck bead solution, a #1.5 coverslip and microscope slides are
firstly deep cleaned to remove any impurities and film of grease that may degrade the
quality of the sample and induce error in the measurements. The adopted cleaning
procedure is with sodium hydroxide base and it is described in Appendix D. Next,
we prepare a 105 dilution of TetraSpeck bead solution (see Appendix D.0.2). The
solution is vortexed for a few minutes to avoid any clusters. 15 µL of the solution is
spin-coated onto the coverslip. The sample is let to set for about 10 min to fully dry.
Next, we place a small drop of Dako mounting medium onto a microscope slide.
Then, we place the coverslip at an angle 45◦, sample facing the surface of the micro-
scope slide, and let it drop slowly on the mounting medium by allowing the medium
to spread evenly over the bead. The top surface of the coverslip is lightly pressed to
remove any trapped air. We seal the edge with thin layer of colourless nail polish.
The Dako mounting medium is colorless and suitable for fluorescent samples and
for in vitro diagnostic use [Agilent: Code S3023]. Its RI is measured to be equal
to 1.3744 in liquid state at room temperature equal to 18.3◦, and humidity 48%. A
calibrated Abbe refractometer [PCE: ABBE-REF1] is used to measure the RI at the
working temperature. The sensitivity error of the measurement is 0.002.
The Dako dries within several minutes, but we let it set for about 2 h before use to
ensure the sample and the nail polish completely solidify. Another alternative to
prepare the sample is to spin-coat the mounting medium on top of the spin-coated
bead. This method is quick and enables us to obtain a relatively flat surface with less
possibility of having bubbles. However, a special care needs to be taken. The reason
is explained as follows. Although the sample surface is relatively flat, it may not be
placed at the center of the coverslip. When placing the sample onto a microscope slide
a tilt in the coverslip may therefore be induced due to the position and the thickness
of the sample. This could yield to non-spherical aberrations.
The sample may be reused twice or three times depending on the laser power applied
on it and the sample conservation.

6.3 Factor for energy conservation

Before comparing the simulated PSFs models with an Exp-PSF, we firstly need to
investigate the validity of the energy conservation factor related to the aplanatic factor
discussed in Section 2.1.3.
To achieve this, we set up a system which enables the measurement of the back focal
plane (BFP) of the system. A fluorescent plane and uniform sample is required. In this
experiment, we use a thin slice of a chroma slide [Chroma Technology Corporation:
autofluorescent plastic slide, part No 92001]. We slice a chroma slide to 70 nm thick
layer using a microtome. This thickness falls below the axial resolution ( 800 nm) and
is the thinnest thickness that we could get without damaging the sample.
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The BFP is re-imaged with a system composed of a converging lens of 50 mm focal
length coupled with a Basler camera [acA4024-29um] placed at the position of the
eyepiece at the observation tube of the microscope [Zeiss Axio Observer, Objective
Plan-Apochromat 63× /1.4 Oil DIC M27] (see Fig. 6.1). The Basler camera is placed
at the focal position after the lens. An x-cite lamp is used as illumination light source.
The theoretical magnification of the pupil plane re-imaging system is unknown due
to the missing detailed information of each optical component inside the microscope
observation unit. It is estimated to be the ratio of the measured over the theoretical
pupil radius, and is equal to 0.446. Using the knowledge of the objective lens and
the pupil plane re-imaging system, the pupil is calculated to be 4.816 mm in diameter,
which is represented by 1160 pixels on the detector. The measured BFP, on the other
hand, is found to be with pixel size of 4.158 µm.

x-cite lamp

NA = 1.4
n = 1.518

63x tube lens

thin layer of
chroma slide

image
plane

BFP re-imaged

Basler
camera

lens
50 mm

50 mm

BFP

Figure 6.1: Back focal plane re-imaging system

Our model does not account for the effect of any form of supercritical angle fluores-
cence (SAF). This affects the pupil plane distribution and can completely change the
expected measured PSF if not corrected appropriately. Any SAF taking place during
the measurement has to be avoided. This is ensured by firstly avoiding any possible
back reflection that may reflect SAF into the system. To ensure this, we embed the
thin layer of chroma slide in the same oil as our immersion oil with refractive index of
1.518. The BFP re-imaging system is covered with long tube to avoid any background
light coming in the Basler camera. The optics is ensured to be properly aligned such
that the objective lens only collects fluorescence emission within the critical angle.
We calculate the field in the BFP at emission wavelength equal to 580 nm using Al-
gorithm 1, step 1 to 3, accounting for different values of η parameter such that
AFamp =

√︁
cosη(θ). The computation is done such that the pupil size matches the

size in the experiment. We also compute a BFP model taking into account the trans-
mission coefficient (TC) of the different interfaces in the object plane. The exact RI of
the chroma sample is unknown at the working temperature during the image acqui-
sition, but is known to be less than the refractive index of oil and is said to be about
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1.45 at room temperature [87]. The RI mismatch in the sample and the immersion
medium influences and reduces the transmission coefficient (see Eq. (2.2.28)), hence
the drop in intensity in the BFP at larger angular aperture θ. We therefore assume a
lower value of the RI of the sample, equal to ns = 1.4, in our simulation to observe
the effect.
The radial mean profile of each of the BFPs intensities, normalized by the intensity at
0 angle of incidence, are displayed in Fig. 6.2f.
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Figure 6.2: Measurement of the BFP for validating the energy conservation factor. (a) A
cropped image of the measured BFP intensity from the measurement of a 70 nm thin layer of
fluorescent chroma slide. The corresponding theoretical BFP with different factor

√︁
cosη(θ):

(b) η = −1, (c) η = −1 and consideration of the transmission coefficients (TC) from a stratified
medium composed of a sample of RI ns = 1.4 placed at the surface of the coverslip of RI
ng = 1.518 and thickness tg = 0.17 mm, oil immersion of RI ni = 1.518 and thickness ti
assumed to be the same as the working distance of the system equal to 0.15 mm. (d) η = 0 and
(e) η = 1. (f) Radial mean of the normalized BFP intensities.

The radial profiles of each of the BFP models are plotted in Fig. 6.2f. It is observed
from this figure and Fig. 6.2b that the curve of the BFP which corresponds to an
emission PSF with η = −1, i.e. the intensity scaled by cos−1(θ), is rising with the
elevation angle θ. The intensity profile which corresponds to the experimental BFP is
also rising with θ, but not as much as the theoretical emission BFP. By observing the
profiles of the intensity in the BFP where we consider the TC of the medium interfaces
in the calculation in addition to the η value being -1 (see Fig. 6.2c), we observed a
significant drop in intensity in comparison to what we observe in Fig. 6.2b. At larger
angles, the intensities of those three data are denser. This demonstrates the aplanatism
effect. High angular amplitudes in the BFP get enhanced rather than suppressed.
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The still discrepancy between Fig. 6.2c and the experimental BFP in Fig. 6.2f can
be explained by the photoselection of preferably in-plane transition-dipoles which
leads to a less pronounced emission along Ez components and thus less pronounced
higher angles. The experiments should be repeated with a thin volume of freely
rotating dipoles with a rotational correlation time far below the fluorescence lifetime.
A further effect could be due to infavourable reflection coefficients at higher angles
effectively dimming the light at high angles. It is also worth mentioning that the
spectrum of fluorescence emission from the thin slab of fluorescent plastic is a band
rather than a single wavelength [1]. Based on the result from this experiment and
those observations, we conclude the validity of the aplanatic factor

√︁
cos−1(θ).

6.4 PSFs under different imaging conditions

To now experimentally validate our PSF models, we consider different image acquisi-
tion conditions. Firstly, the resolution is proportional to the emission wavelength and
inversely proportional to the NA. Hence, varying one of those two parameters would
suffice. We compare Exp-PSFs acquired at different high NA systems with corre-
sponding simulated PSF data (Section 6.4.1). Secondly, the amplitude of the spherical
aberration in a given system is function of the refractive index and the thickness of
the medium. As seen in the previous chapter (see Chap. 4), the PSF is much more
sensitive to the refractive index mismatch. However getting a precise knowledge of
the refractive index of each medium is not straightforward due to the image acquisi-
tion environment. In addition, the exact thickness of the sample medium is unknown
and needs to be determined experimentally. In effect, we chose to alter the optical
path difference of the fluorescence emission by varying a known and precise value
parameter which is the coverslip correction collar setting on the objective. This is to
reduce the errors in the experimental validation. This process enables us to examine
the effect of increasing and decreasing spherical aberrations onto the PSF. This second
measurement is done with the same NA.
As we do not have a direct access to the fields in the pupil plane nor the amplitude
PSFs of the state-of-the-art PSFs, we only compare the PSFs that are developed under
this project to present a fair comparison. An exception is made for the RW model.
We have knowledge of the corresponding amplitude PSF, but not to the pupil plane.
We therefore inverse FFT the RW model to go to the pupil plane. This practice may
induce Fourier wrap-around error that is originally not in the RW PSF model.

6.4.1 High Numerical Aperture Imaging

Three different high NA imaging systems with objective lenses (OL) of NA = 1.3
[Olympus: UPLSAPO60XS2], 1.4 [Zeiss: Plan-Apochromat 420782-9900-799], and 1.57
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[Zeiss: Plan-Apochromat 420792-9771-000] from SaraLab and HeintzmannLab are
used. The OL are used with commercial Zeiss Axio Observer 7 microscope stand,
and a Hamamatsu Orca Flash 4.0 v3 camera with a 6.5 µm pixel size. A Zeiss Op-
tovar of a magnification equal to 1.6 is used for the systems with NA = 1.3 and 1.4.
The Olympus objective is used with a Zeiss tube lens of focal length equal to 165 mm
instead of being coupled with an Olympus tube lens of focal length equal to 180 mm.
This induces a factor of 165/180 in the total magnification. The pixel size in x and y
of the recorded PSF is therefore calculated to be 6.5/Mµm, M being the total lateral
magnification. The optical system is assumed to meet the design condition, except for
the properties of the sample.
The Exp-PSF is constructed by averaging over the images of several FluoSpheres
beads. The phase aberration present in the Exp-PSF is retrieved using Algorithm
7 described in Section 5. We use as a first guess parameter of the phase aberration
the spherical aberration from the sample of RI equal to 1.46 and thickness equal to
1 µm. As discussed in Section 4.2.1.3 and 5.3, this aberration induces a focal shift (FS)
in the PSF. We therefore add a defocus aberration with Zernike coefficient C0

2 into our
first guess to compensate for this shift. This way, the signal of the generated PSF will
be contained within the working z−range. The formulas given in Eq. (4.2.1) and Eq.
5.3.1 are used to calculate the focal shift and peak defocus aberration respectively. The
Exp-PSF from the system with NA = 1.4 appears to contain more coma aberration.
We therefore add a coma aberration of radial and azimuthal order [3 1] and coefficient
C1

3 = 1 into the first guess of the phase which corresponds to this system. The guess
of the phase aberration helps the algorithm to quickly converge. The effective NA for
the phase recovery is given by NAeff = min{NA, ni, ns, ng, n∗i , n∗g}.
The image parameters (NA and ni), the information about the constructed Exp-PSF
(pixel size, pixel pitch, number of averaged beads N◦beads, exposure time ET for the
image acquisition), and guess parameters for the phase aberration (ns, ts, C0

2 and C1
3)

are summarized in Table 6.1.

Table 6.1: Parameters corresponding to the data acquired with high NA imaging

System Information about Exp-PSF Guess parameters
NA ni Size/pix Pixel size/nm3 N◦beads ET/ms ns ts/µm t∗g/µm C0

2 C1
3

1.3 1.4 [80 80 31] [73.86 73.86 204] 42 80 1.46 1 161.5 -4.675 0
1.4 1.518 [50 50 33] [64.48 64.48 65] 9 100 1.46 1 170 2.2642 1

1.57 1.66 [80 80 28] [65 65 195] 11 150 1.46 1 136 2.2116 0

The retrieved phase from each Exp-PSF is added into the theoretical RW, SP-PSF*,
SP-CZT*, F-Shell* and Sinc-R* calculated withing a grid of 512× 512 in x and y and
at a single emission wavelength 525 nm. The theoretical PSFs are afterwards cropped
to match the size of the Exp-PSF given in Table 6.1. Each PSF is normalized by the
integrated intensity. The MRE and NCC between aberrant simulated PSFs and the
corresponding Exp-PSF are calculated. The results are displayed in Fig. 6.3 alongside
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with the initial guess of the phase and the retrieved phase which corresponds to each
system (first row: NA = 1.3, second row: NA = 1.4, and third row: NA = 1.57). We
also compare the MRE and NCC of the simulated aberrant PSF formed by the light
emission within the spectrum band [498, 551] using Eq. (4.2.2) with the Exp-PSF. The
same principle and same dataset which correspond to the emission band described in
Section 4.2.3 are used for calculating these incoherent effective PSF.
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Figure 6.3: Phases of Exp-PSFs recorded with high NA objectives, and NCC and MRE between
measured and simulated PSF data. (a) First guess and (b) retrieved phase. (c) NCC , and (d)
MRE between Exp-PSF and simulated aberrant PSFs with the retrieved phase in (b). (RSF
stands for relative spatial frequency, which is normalized by the lateral cut-off frequency.)
First row: NA = 1.3, Second row: NA = 1.4, Third row: NA = 1.57.

The xy-profiles of aberrant PSFs at three different z-planes (top, middle and bottom)
and the yz-profiles at x = 0 are displayed in Fig. 6.4, 6.5, and 6.6 for NA = 1.3, 1.4, and
1.57 respectively. The radial profiles of the intensity at Z2 = 0 and the axial profiles
of the intensity are displayed within these figures. The intensities for these latter
displays profiles are normalized by the intensity at the zero position in xyz to ease
the observation of their differences. We also display the intensity of the PSFs from a



CHAPTER 6. EXPERIMENTAL VALIDATION 88

spectrum band as previously described with the PSFs from a single center emission
wavelength 525 nm.
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Figure 6.4: Display at γ = 0.5 of the xy-profiles sections at three different z−plane and yz-
profiles at x = 0 of high NA Exp-PSF, NA = 1.3, and the corresponding simulated aberrant
PSFs calculated from different methods: RW, SP-FFT*, SP-CZT*, F-Shell*, and Sinc-R*. ‘PSF’-
525 represents the profile of the specific ‘PSF’ at a single wavelength 525 nm. The legend
without 525 on its name represents the corresponding PSF derived from the incoherent sum
of PSFs within a spectrum band. The relative intensity profiles along the green lines for each
of the PSFs at Z2 and along the axial axis are respectively are displayed at the bottom.

Contrary to the values of the MRE, the NCC values with the PSFs at a single emission
wavelength and the NCC values with the PSFs resulting from an emission band are
approximately equal (see Fig. Fig. 6.3c). This difference in MRE is due to the incoher-
ent summation and lack of knowledge of the emission spectrum of the sample and
the transmission coefficients of the filters. While the NCC tracks the similarity in the
shape of the results, the MRE displays the relative errors in intensity. The intensity
profiles of the simulated PSFs are also slightly off from the measured Exp-PSF (see
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Figure 6.5: Display at γ = 0.5 of the xy-profiles sections at three different z−planes and yz-
profiles at x = 0 of high NA Exp-PSF, NA = 1.4 and the corresponding simulated aberrant
PSFs calculated from different methods. The legend of the figure follows the same trend as in
Fig. 6.4.

Fig. 6.4, 6.6 and 6.5) in terms of the amplitudes. However, we observe a consistent
trend in the variation of the intensity with spatial position.
The NCC values from NA = 1.4 is lower compared to the NCC from NA = 1.3 and
1.57. We believe the reason this is because the Exp-PSF for NA = 1.4 contains more
noise than the the Exp-PSF for NA = 1.3 and 1.57 (see Fig. 6.5). As a result, the MRE
is lower for this dataset but the finer features that can be detected and quantified by
the NCC values are less similar with the Exp-PSF.
The SP-FFT* has more advantage compared to the other methods as the phase re-
trieval algorithm is based on this method. However for NA = 1.3 and 1.4, the SP-CZT*
has still shown to perform better than the rest of the methods. The F-Shell* displays
a very high similarity to the SP-FFT*. The Sinc-R* method is found to be the least ac-
curate among the techniques discussed here. We understand this as due to a possible
non-uniformity of the field in the sinc shell.
Overall, we observe that each computation method yields a PSF which is similar to
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Figure 6.6: Display at γ = 0.5 of the xy-profiles sections at three different z−plane and yz-
profiles at x = 0 of high NA Exp-PSF, NA = 1.57, and the corresponding simulated aberrant
PSFs calculated from different methods. The legend of the figure follows the same trend as in
Fig. 6.4.

the Exp-PSF at a NCC bigger than 0.97 (see Fig. 6.3c). This accuracy is similar to the
NCC between a non-aberrant simulated PSF and an aberrant PSF calculated with a
bead emitting at a ts = 5λ0 distance from the coverslip, λ0 = λem/ni and ns = 1.46.
The Strehl ratio of this simulated aberrant PSF is equal to 0.78 and is close to the
conventional Strehl ratio 0.8 of a system to represent an ideal system [88].

6.4.2 The effect of spherical aberration

In this second investigation, we introduce a spherical aberration into the system by
changing the coverslip collar, tcol,setting of the system. The coverslip thickness used
throughout the experiment remains the same. In our simulation, this corresponds to
a change in value of the coverslip thickness in the design condition, t∗g. The coverslip
thickness, t∗g, that the system is designed to correct for is linearly dependent on the
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setting of the correction collar, tcol, by the relation:

t∗g = 2t∗g|0.17 − tcol, (6.4.1)

with t∗g|0.17 = 0.17 mm being the standard coverslip thickness in a design condition.
Our imaging system consists of an EVOS M5000 with an air PLAN S-APO 40×
objective lens of NA = 0.95, and working distance of 0.18 mm [EVOSTM Olympus:
AMEP4754]. The pixel size in x and y is equal to 126 nm. The values of t∗g and the
step size, pz in z, at different tcol setting at which the PSF data were acquired, are
summarized in Table 6.2. The exposure time of each measurement is set to be 80 ms.
The data was acquired from the Physiology laboratory, Stellenbosch University.

Table 6.2: Thickness of the coverslip in design condition, t∗g, and the step size in z at tcol

tcol/mm : 0.19 0.18 0.17 0.16 0.15
t∗g/mm : 0.15 0.16 0.17 0.18 0.19
pz/nm : 120 120 130 130 130

The TetrasSpeck bead sample is used for this measurement (see Section 6.2.2 for sam-
ple preparation). The phase aberration from the data at t∗g|0.17 is retrieved using Algo-
rithm 7 and added to the simulated data at different values of t∗g.
The grid of the Exp-PSF at t∗g|0.17 is of size equal to 64× 64× 50 and is zero-padded
laterally to 512× 512× 50 for the phase estimation process. We have as a first guess
parameters for the phase: ns = 1.3744, ts = 31 µm, and peak of defocus aberration
C0

2 = −6.6116 to compensate for the focal shift induced by the spherical aberration.
The phase retrieval process is run over 100 iterations to lead to the best NCC value
between Exp-PSF and the simulated aberrant PSF at t∗g|0.17 equal to 0.9654.
The PSFs at different values of t∗g ranging from 0.15 mm to 0.19 mm as described
earlier are simulated. The retrieved phase from the Exp-PSF at t∗g|0.17 is added in the
pupil plane during the computation of each of the PSFs. The resulting aberrant PSFs
from different methods at different values of t∗g are displayed in Fig. 6.7.
We calculate the NCC values within the same z-range as the Exp-PSF. The NCC result
between the theoretical PSFs at different values of t∗g and the corresponding Exp-PSFs
is given in Fig. 6.8f along side with relative intensity profiles of the theoreticals PSFs
and Exp-PSF along the axial axis in Fig. 6.8.
By quantifying the values of the resulting NCC, we found that although the NCC are
very close for the RW, SP-FFT*, SP-CZT*, and F-Shell* methods, the SP-CZT* is found
to be superior to the rest of the methods. The NCCs for these four methods range
from 0.8564 to 0.9656. The Sinc-R* is been shown to have the least similarity with the
Exp-PSF with a maximum value of NCC equal to 0.9341 and minimum of 0.8564.
By investigating the profiles of the intensity in the PSFs with varying values of t∗g in
Fig. 6.8a, 6.8b, 6.8c, 6.8d and 6.8e, we observe that the theoretical PSFs acquire similar
trend as the Exp-PSF at different accuracy level.
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Figure 6.7: Display of the yz-profiles of the Exp-PSF, and the corresponding simulated aber-
rant PSFs calculated from different methods: RW, SP-FFT*, SP-CZT*, F-Shell*, and Sinc-R*
from NA = 0.95 at different values of t∗g.

6.5 PSFs for image reconstruction

6.5.1 Test images

Two sets of dataset are used to demonstrate the efficiency of the PSFs models for
image reconstruction. The first dataset consists of the images of InSpeck green fluo-
rescent bead of diameter 2.5 µm imaged with a widefield microscope, Olympus Cell
R, 63×/1.4 oil objective lens. This dataset is chosen as its feature enables an easy
quantitative demonstration of a deconvolution technique performance with a given
PSF model. Assuming that the deconvolution algorithm is appropriately optimized,
if a given PSF does not yield to a good reconstruction of the bead, the probability that
the PSF may not be suitable for reconstructing a more complex and finer object is high.
The images of the beads were acquired at an emission wavelength equal to 530 nm.
The voxel size of the images is 64.5 × 64.5 × 160 nm3 and grid is 256 × 256 × 256
voxels. The second dateset contains a more complex images of C. Elegans embryo
with three different channels: DAPI (λem = 477 nm), FITC (λem = 542 nm), and CY3
(λem = 654 nm) acquired from an Olympus Cell R microscope with an UPlanSApo
100×/1.4 oil objective lens. The voxel size is 64.5× 64.5× 200 nm3 and the grid is
cropped to a size of 256× 256× 256 voxels. The two dataset are experimental data
that are freely available online [89]. Each of them came with a simulated theoretical
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Figure 6.8: Relative intensity profiles of the theoretical PSFs and Exp-PSF along the axial axis
at different t∗g: (a) 0.15 mm, (b) 0.16 mm, (c) 0.17 mm, (d) 0.18 mm, and (e) 0.19 mm. (f) NCC
between Exp-PSF and the aberrant simulated PSFs data.
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PSF that we denote by PSF-DATA in this document.

6.5.2 Materials and methods

Two deconvolution process is done for each of the two dataset. The first process
consists of deconvolving the data with their respective PSF-DATA and non-aberrant
simulated PSFs. In the second process, we estimate the spherical aberration in the
data and proceed to the deconvolution with aberrant simulated PSFs. In both cases,
the goal is to quantify qualitatively and quantitatively how good each PSF is for a
reconstruction of a simple as well as a complex feature in a data.
The deconvolution technique method is described in Section 2.5. The two data, spher-
ical bead and C. Elegans embryo, are deconvolved using the Good’s roughness penalty
with an optimized regularization parameter, an assumption of a Poisson likelihood
function in the cost function, and a square positivity constraint.
The most dominant noise in fluorescence microscopy data has been shown to follow
a Poisson distribution [1, 75]. The Good’s roughness penalty smoothens low intensity
values, which usually correspond to light background, and has negligible effect on
high intensity values, which correspond to real signals from the object to estimate.
This attribute of the Good’s roughness penalty makes it well suited for reconstructing
fluorescence microscopy data [60]. A square positivity constraint is applied to avoid
reconstructing negative values of the intensity.
We choose the limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS)
as a minimization algorithm for its efficiency in large scale optimization [90]. This
method minimizes the cost function iteratively using a limited amount of computer
memory by storing a given number, smaller than the total number of iterations, of
differences between two consecutive iterates (estimate of the bead object) and differ-
ences between the derivative of the corresponding cost values. The approximation of
the Hessian matrix in the L-BFGS algorithm is updated using this information. The
negative value of inverse Hessian matrix and the gradient of the cost function guides
the line search of the best estimate of the object [90].
The deconvolution parameters for the first deconvolution process with non-aberrant
PSFs are optimized by devolving the data using their respective PSF-DATA. The non-
aberrant PSFs developed in this project, distinguished by * in their names (SP-FFT*,
SP-CZT*, F-Shell*, Sinc-R*), as well as the state-of-the-art RW, GL, sPSF, vPSF and PS-
FGen are used and compared. Each of the three channels are deconvolved separately
for the case of the C. Elegans embryo and the three deconvolved channels are com-
bined afterwards. In the second deconvolution process, we estimate the amplitude
of the spherical aberration in each of the data such that the resulting devonvolved
image bead is symmetric about the plane in the focal plane. We do the optimization
using the SP-FFT* aberrant PSF by measuring the symmetry in the xz and yz cross
sections in the spherical bead of 2.5 µm in diameter and by observing different spots
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in the same sections for the C. Elegans embryo dataset. The phase aberration is added
onto the PSFs and deconvolution with aberrant PSFs are compared. The resulting
parameters for the two process and two dataset are summarized in Table 6.3.

Table 6.3: Deconvolution parameters for the spherical bead and the C. Elegans embryo

Spherical bead C. Elegans embryo
PSFs N◦iter γ ns ts/µm N◦iter γ ns ts/µm

Non-aberrants 200 5×10−5 1.46 0 75 5×10−5 1.46 0
Aberrants 75 0 1.46 6.5 75 5×10−5 1.46 20

with N◦iter being the number of iterations, γ the regularization parameter, ns and ts

are the estimate optimized RI and thickness of the sample. Only the aberrant PSFs
in our toolbox are used for the second investigation for the similar reason described
in Section 6.4. The external software packages do not support the addition of the de-
sired phase aberration. The GL method calculates an incorrect optical path difference
(OPD) while the sPSF and vPSF are computationally expensive if an aberration due
to refractive index mismatch is considered in the models.

6.5.3 Results

6.5.3.1 Visual inspection of the deconvolved bead data

The results from the image reconstruction of the spherical bead are displayed in Fig.
6.9. We observe that the the reconstructed data from PSF-DATA looks more elongated
along z compared to the rest of PSFs, newly developed and state-of-the-art (see Fig.
6.9d). Its xz profile appears more symmetrical about the focal plane than the rest of
the deconvolved data. This can be well seen by displaying the axial profile of the
image of the recovered bead (see Fig. 6.10b).
The result with PSF-DATA does not seem realistic. A negative spherical aberration
is present in the image of the bead (see Fig. 6.9b), yet in the resulting deconvolved
image (see Fig. 6.9d), the asymmetry seems to be slightly resolved without the PSF-
DATA containing any negative spherical aberration information. In Fig. 6.10b, we
also observe that the axial intensity profile goes out of the bead size band. This is a
clear indication of the error that is present in the PSF-DATA. We do not possess any
additional information about the PSF-DATA to support this result.
From the see Fig. 6.9f to Fig. 6.9v, the reconstructed beads are observed to display
asymmetry in xz. We found this to be more realistic given the image to deconvolve
in Fig. 6.9b. The reconstructed beads from the scalar PSFs are however smaller than
all the other reconstructed beads (see Fig. 6.9p and 6.9r). From the axial and radial
profiles, it is clearly seen that the reconstruction with the scalar PSFs yields to a bead
with a size smaller than its theoretical size (see Fig. 6.10b). This is physically not
correct as it means that the bead gets compressed along the axial axis.
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Figure 6.9: Results from the deconvolution of the image of a spherical bead of diameter 2.5 µm
at 200 iterations. First row: xy−profile of the in-focus PSF displayed at percentile stretch of
DipPimage. Second row: xz−profile of the PSF at y = 0 displayed at percentile stretch of
DipPimage. Third row: xy−profile of the raw image of the bead and the deconvolved bead.
Fourth row: xz−profile of the image of the bead and the deconvolved bead. The PSFs used
for each respective column: PSF-DATA (theoretical PSF data which comes in the dataset), RW,
SP-FFT*, SP-CZT*, F-Shell*, Sinc-R*, GL [34], sPSF and vPSF [37], PSFGen at best accuracy
[33].

In Fig. 6.10a, we observe less ringing effect for the SP-FFT*, SP-CZT*, and F-Shell*
methods. Around the zero radial position, the artefacts in the SP-FFT* and F-Shell*
are observed to be significant. An edge artefact and Fourier-wrap around effects,
that can be mistaken as important information in the object, are also observed in the
SP-FFT* and F-Shell* methods (see Fig. 6.9g, 6.9h, 6.9k, and 6.9l).
Using the aberrant PSFs in our toolbox accounting for the phase aberration derived
from the sample constant parameters given in Table 6.3, the spherical bead is re-
constructed in all three spatial directions (see Fig. 6.13) after only 75 iterations and
without any need for a regularization. The symmetry in the relative axial profiles
intensities has fairly been resolved (see Fig. 6.10d).
A contrast improvement is also observed (see Fig. 6.10c). The contrast improvement
is quantified by calculating the steepness of the curve from the maximum intensity
to the center position of the images relative to the steepness in the initial image IMG
(Fig. 6.11a and 6.11b). The result is given in Table 6.4.

Table 6.4: Contrast improvement measured by the steepness calculated between the maximal
intensity and the intensity at the center of the image relative to the steepness in the initial
image (IMG)

IMG RW SP-FFT* SP-CZT* F-Shell* Sinc-R*
1 80 150 162 152 78
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Figure 6.10: Relative radial (a) and axial (b) intensity profiles of the recovered bead from
non-aberrant PSFs: PSF-Data, RW, SP-FFT*, SP-CZT*, F-Shell*, Sinc-R*, GL, sPSF, vPSF, and
PSFGen. The theoretical bead’s size is indicated by the region within the two vertical dashed
black lines in each figure. Relative radial (c) and axial (d) profiles of deconvolved data with
the aberrant PSFs: RW, SP-FFT*, SP-CZT*, F-Shell*, and Sinc-R*. IMG: image of the spherical
bead of diameter 2.5 µm.
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Figure 6.11: Results of the deconvolution of a spherical bead of 2.5 µm in diameter with
aberrant PSFs with sample constant parameters ns = 1.46 and ts = 6.5 µm at 75 iterations.
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All the methods, RW, SP-FFT*, SP-CZT*, F-Shell* and Sinc-R*, have shown a contrast
improvement more than 78 times better than the initial image IMG, SP-CZT* being
the best and Sinc-R* being the worse with an improvement of 162 and 78 times re-
spectively. The improvement by the SP-FFT* and F-Shell* are similar. The artefacts
and Fourier wrap around effect on the reconstructed images from these two methods
can still be observed (see profiles in Fig. 6.10c and 6.10d). The contrast improvement
with the RW method is similar to the Sinc-R* method. Since we do not have a direct
access to the pupil plane of the RW when adding the phase, an additional operation
using a Fourier transform to go from real to Fourier space is required. This process
may explain the low contrast improvement in the RW method.
Overall, we conclude that the our PSF models have performed well for image recon-
struction of an object with a simple shape. In the next section, we inspect a more
complex object to compare the efficiency of each model for image reconstruction.

6.5.3.2 Visual inspection of the deconvolved C. Elegans embryo data

In Fig. 6.12, we display the result from the deconvolution using the PSF-DATA and the
non-aberrant external state-of-the-art vPSF [37]. This later PSF is chosen for its feature
to show a high similarity to the newly developed methods in this project (see Section
4.3). The xz−profiles in Fig. 6.12d and 6.12f show the severe spherical aberrations
that are still present in the deconvolved data and not corrected by the PSFs.
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Figure 6.12: Results from the deconvolution of the C. Elegans embryo (a, b) with its corre-
sponding three channels PSF-DATA (g, h, i) and the non-aberrant state-of-the-art vPSF (j, k,
l) at the 75th iteration. (c, d) xy−profile at Z1 = 64 pixel and xz−profile at Y1 = 151 pixel
of the deconvolved data with PSF-DATA respectively. (e, f) xy−profile at Z1 = 64 pixel and
xz−profile at Y1 = 151 pixel of the deconvolved data with vPSF respectively.

Taking into consideration the phase aberration from the sample constant parameters
given in Table 6.3, the results from the deconvolution using the aberrant PSFs, RW,
SP-FFT*, SP-CZT*, F-Shell*, Sinc-R*, are displayed in Fig. 6.13. We observe that the
spherical aberration is fairly corrected (indicated by the cyan arrow in Fig. 6.13b).
A discontinuity is observed in the xz−intensity profile for the case of RW, SP-FFT*,
F-Shell*, and Sinc-R* (indicated by the red arrow in Fig. 6.13). The discontinuity is
due to the edge artefact and non-uniformity of the integrated intensity along the axial
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axis. It is much significant for the case of F-Shell* and Sinc-R* (see Fig. 6.13j and
6.13m) while not observed in the result of SP-CZT* (see Fig. 6.13h). This therefore
corresponds to the violation of the missing cone discussed in Section 4 where the
Sinc-R* was shown to be the least among the techniques discussed in this section to
satisfy (see Fig. 4.8a). This effect can be corrected if the PSF is sampled correctly and
the missing cone is satisfied accurately, such is the case of the SP-CZT*. The SP-CZT*
has proven to be the most accurate among the methods. Comparing the xy−profiles
in Fig. 6.13 with the xy−profiles in Fig. 6.12, we also observe a better reconstruction
of the small beads in the red channels. The contrast has also been improved. Due
to the lack of ground truth of the object, this conclusion and observation are simply
done qualitatively by eyes and not quantified.
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Figure 6.13: Results from the deconvolution of the images of C. Elegans embryo using aberrant
PSFs RW, SP-FFT*, SP-CZT*, F-Shell*, and Sinc-R* with sample constant parameters ns = 1.56
and ts = 20 µm at the 75th iterations. The xy and xz−profiles at γ = 0.1 of the respective
PSFs are displayed in the first and second row. (a-b) xy and xz-slices of the image (denoted
by IMG) to deconvolve. (c-d) deconvolved images using aberrant RW PSF. (e-f) with SP-FFT*.
(g-h) with SP-CZT*. (i-j) with F-Shell*. (l-m) with Sinc-R*.



Chapter 7

Conclusion

Throughout the thesis, we tried to respond in a concise and chronological way to the
central questions in high resolution imaging: “how to improve the image quality of an
optical system?”. Our contribution and response to this goal consist of presenting and
developing accurate and realistic estimate of the response, the point spread function
(PSF), of the optical system. Past findings in the field are discussed with their pros
and cons. Information about the novel methods that we develop under this thesis is
given in detail. The focus on this work concentrated on wide-field microscopy, but
the models can easily be extended to most of the advanced techniques in the field of
fluorescence microscopy. The newly developed methods of PSF computing are used
for image reconstruction, “deconvolution”, to improve the resolution of microscopic
data obtained by a conventional microscope.
Four methods (SP-FFT, SP-CZT, F-Shell, and Sinc-R) for computing the PSFs using
FFT are discussed, two of which (F-Shell and Sinc-R) are completely new. The two
first methods, SP-FFT and SP-CZT, are not new in the literature but we have made
progress in improving their computations and efficiency in this thesis. These four
PSF models account for the vector features of the electric field. They represent the
response of high NA optical imaging accurately with a NCC value higher than 0.97.
The four models are also found to satisfy better the physical condition property of a
wide-field imaging, the missing cone problem, compared to the existing PSFs in the
state-of-the-art.
The limitation of each method and the ways around them are discussed. One limi-
tation that may still occur in their computation is the Fourier wrap around problem,
especially in the computation of a volume PSF with a high sample depth. This wrap-
around can still be more significant for the case of SP-FFT and F-Shell at higher depth.
This problem is resolved at a high computation cost using the CZT-based approach.
The methods however have been demonstrated to be fast enough and memory ef-
ficient for their features in comparison to the state-of-the-art. As opposed to the
state-of-the-art PSFs discussed in this thesis, our methods do not use any radial sym-
metry. They can support any type of aberration, spherical and non-spherical. They
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can still be optimized to the same computation speed as the fast methods in the state-
of-the-art if radial asymmetry is not important and radial symmetry is exploited. The
Sinc-R method has been shown to be the least accurate among the four methods. The
method can compute a volume PSF but not a slice. Its pros however is such that it
does not suffer from the wrap-around problem.
Our models can also calculate the PSF from a tilted stratified medium. This feature of
the PSF is new in the literature to the best of our knowledge. The finding has however
not yet been validated experimentally. We aim to achieve this experimental validation
in the near future.
The PSF models have demonstrated a high efficiency to reconstruct two objects: a
spherical bead of 2.5 µm diameter and C. elegans embryo. The contrast improvement in
the bead is found to be up to 162 times for the SP-CZT method. In the deconvolution
of the C. elegans, which is a complex dataset recorded at three different channels,
the efficiency and particularity of each PSF model to reconstruct finer object and the
correction of the aberration was convincingly demonstrated.
A newly adapted phase retrieval algorithm that is suitable for noisy and strongly
aberrated experimental wide-field PSF data was also presented in this thesis. The
particularity of this algorithm is such that the experimental data from which the phase
is to retrieve is with a small lateral number of pixels, roughly the size of the image
of the bead at the given axial depth. The algorithm is proven to be efficient for such
purposes theoretically and experimentally.
Two manuscripts are in preparation from this thesis. The theory of computing the
novel PSF models are discussed in the first manuscript while the second manuscript
details the experimental validation of the models. The toolbox containing the MAT-
LAB codes will also be released and published openly with the first manuscript to a
wider evaluation of the findings from this thesis and to help the community who may
need it to advance their research.
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Appendix A

Detailed computation of the optical
path difference

A.1 Optical path difference

We show the detailed steps for calculating the OPD in Chap. 5 Section 3.6.2 in this
appendix. Some of the computation was done under the software Mathematica.
Let R0 = {O0, x, y, z} be the orthonormal coordinate system under which the electric
field is calculated with O0 being the center of the axis and z−axis represents the opti-
cal axis. The coverslip is firstly elevated by an angle α about the x−axis and is rotated
azimuthally in counterclockwise about the vector normal to the coverslip plane by an
angle β afterwards. A new orthonormal coordinate system R1 = {O0, u, v, n} is intro-
duced to facilitate the computation of the OPD in the system such that −→n is normal
to the inclined coverslip (See Fig. A.1).
The vectors u⃗, v⃗, n⃗ are respectively defined by:

u⃗ =

⎛⎜⎝cos β

sin β

0

⎞⎟⎠ ; v⃗ =

⎛⎜⎝− sin β cos α

cos β cos α

sin α

⎞⎟⎠ and n⃗ =

⎛⎜⎝ sin β sin α

− cos β sin α

cos α.

⎞⎟⎠ (A.1.1)

The rotation matrix which enables us to represent any vector defined in R1 in R0 is
as follows:

M1|0 =

⎛⎜⎝cos β − sin β cos α sin β sin α

sin β cos β cos α − cos β sin α

0 sin α cos α

⎞⎟⎠ (A.1.2)

The rotation matrix M0|1 from R0 to R1 is the transpose of M1|0.
The OPD is given by:

OPD = [Os A1B1C1]− [OBCH], (A.1.3)

where [OBCH] represents the path that the light travels from the sample placed at
the surface of the coverslip to the lens system under design conditions. O indicates

103



APPENDIX A. DETAILED COMPUTATION OF THE OPTICAL PATH DIFFERENCE 104

Figure A.1: Orthonormal coordinate system

the position of the emitter in design condition. In this case, the points A and B
belong to the immersion medium and coverslip interface (plane κ0

im-cs in Fig. 3.10)
and OA represents the thickness of the coverslip in design condition. If the system
does not meet the condition under which the system was designed for, the same
parallel ray

−→
CD in the lens region will focus at a different position G as indicated in

Fig. 3.10. Assuming the emitter is placed along the optical axis at the point Os at the
same depth as G from the coverslip-sample interface κcs-s and under the system same
arbitrary non-design condition. The emitted light follows the path indicated by the
vectors passing by the points Os, A1, B1, C1. The optical path [Os A1B1C1D1] is parallel
to GFECD and CD is parallel to C1D1 (see Fig. 3.10). The point Og is the intersection
of the optical axis with the interface κ1

cs-s in Fig. 3.10, and Oi is the intersection of the
optical axis with the immersion medium - coverslip κ1

im-cs interface. The immersion
medium and front surface of the lens is set to be at the origin O0 of the R0 axis to
facilitate the computation.
The thicknesses of the coverslip and the specimen are tg and ts respectively. The star
symbol is to indicate that the value of the thickness of the coverslip, t∗g, is in design
condition. At the lens and immersion medium plane interface κl-im, the beam arrives
at a different radial position C1 under the arbitrary condition illustrated here.
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A.1.1 Design condition

The black arrows in Fig. 3.10 indicate the path travelled by light when the system
meets the design condition. The incident ray

−→
OB is incident on the planar interface

κ0
im-cs and is deviated about the vector normal to the interface, which is parallel to the

z−axis, into ray
−→
BC due to the refractive index mismatch between the coverslip and

the immersion medium. The ray
−→
BC is on its turn deviated to get the vector

−→
CD which

is inclined by an angle θ about the z−axis. Those vectors form a plane of incidence,
named ζ0 which is perpendicular to the interfaces and placed at an angle ϕ from the
x−axis. The optical path in the design condition is given by:

[OBCH] = n∗gOB + n∗i BC + nCH, (A.1.4)

=
n∗gt∗g

cos θ∗g
+

n∗i t∗i
cos θ∗i

+ nCH (A.1.5)

where n∗g, n∗i and nl are the refractive index of the coverslip, immersion medium and
lens respectively. The parameter t∗i represents the working distance of the objective
lens. The angle θ∗g and θ∗i are elevation angles of the vectors

−→
OB and

−→
BC respectively.

They can be calculated using Snell’s law:

nl sin θ = n∗i sin θ∗i = n∗g sin θ∗g . (A.1.6)

The position of the point C in space is of importance to calculate the segment CH. It
is given by:

C =

⎛⎜⎝t∗g cos ϕ tan θ∗g + t∗i cos ϕ tan θ∗i
t∗g sin ϕ tan θ∗g + t∗i sin ϕ tan θ∗i

0

⎞⎟⎠ (A.1.7)

A.1.2 Non-design condition

The optical path in non-design condition on the other hand is expressed as follows:

[Os A1B1C1] = nsOs A1 + ng A1 + niB1C1, (A.1.8)

=
nsts

cos γs
+

ngtg

cos γg
+

nit′i
cos θi

, (A.1.9)

where t′i = ti − ∆ti is to be determined, ns is the refractive index of the sample, γg

and γs are the incident angle with respect to the normal vector −→n on the coverslip -
sample interface κcs-s and sample surface respectively. The constant parameters ts and
tg are the thickness of the sample and the coverslip respectively and ti is the thickness
of the immersion medium at the center of the xy−axis such that:

ti = ni

(︄
∆z
ni
−

tg

ng
− ts

ns
+

t∗g
n∗g

+
t∗i
n∗i

)︄
, (A.1.10)
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with ∆z being the shift along the axial axis from the focal plane due to defocusing.
The variable ∆ti is a change in the thickness of the immersion medium due to the tilt
parameters α and β.
To calculate the thickness t′i, the position of B1 is required. The expression of t′ is
equal to the absolute value of the z−coordinate of the point B1 along the optical axis
in R0. The position C1 at which the ray arrives at the κl-im interface in a non-design
condition enables the computation of the segment CH. To determine the position of
the points B1 and C1, we define a new coordinate system formed by the three unit
vetors: u′⃗ , v′⃗ and , n⃗. Let ζ1 be the plane of incidence of the inclined coverslip. The
plane ζ1 is formed by the vector n⃗ normal to the plane κ1

im-cs and the vector
−→
EC. The

vector
−→
EC has as unit vector û0−→

EC
defined inR0 and û1−→

EC
defined inR1. The two planes

of incidence ζ0 and ζ1 intersect on the vector
−→
EC (see Fig. A.2).

Figure A.2: Diagram illustrating the new coordinate system {u′⃗ , v′⃗ , n⃗} for calculating the im-
mersion medium thickness in non-design condition and the positions of B1 and C1.

The vector n⃗ was previously computed in (A.1.1). The vector u′⃗ is normal to the plane
of incidence ζ1 and the vector v′⃗ completes the new basis such that:

v⃗′ =
V⃗
∥V⃗∥

with V⃗ = û0−→
EC
− cos γin⃗, (A.1.11)

and, ∥V⃗∥ =
√︁

1 + cos2 γi − 2 cos γi(cos α cos θi + sin α sin θi sin(β− ϕ)).
We have

−−→
O0B1 =

−→
GE +

−−→
O0Os, (A.1.12)
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with
−→
GE = −(ts + tg)n⃗− (ts tan γs + tg tan γg)v′⃗ . The refracted angles satisfy Snell’s

law:

ni sin θi = nl sin θ ni sin γi = ng sin γg = ns sin γs, (A.1.13)

The angle γi can easily be calculated by expressing its unit vector û0−→
EC

in the reference

R1: û1−→
EC

= M0|1û0−→
EC

. Since R0 and R1 are both two orthonormal coordinate systems,

the third component of û1−→
EC

only contains the cosine of the elevation angle which
corresponds to γi. We have:

cos γi = cos α cos θi + sin α sin θi sin(β− ϕ). (A.1.14)

The position of C1 is given by:

−−→
O0C1 =

−→
GE +

−−→
B1C1 +

−−→
O0Os (A.1.15)

=
−→
GE +

t′i
cos θi

û0−→
EC

+
−−→
O0Os, (A.1.16)

with t′i = −zB1 being the immersion medium thickness at point B1 which is equal to
the negative z−coordinate of the point B1:

t′i = ti + fg + fs, (A.1.17)

with
f j = tj(1− cos α) +

tj tan γj

∥V⃗∥
(− cos θi + cos α cos γi) . (A.1.18)

A.1.3 Optical path difference

The last component of the OPD to be calculated is the segment CH. Both points C
and C1 belong to the same plane κl-im at z = 0 and the diagram A.3 is used for this
computation.
Using the diagram in Fig. A.3, we have:

CCb = CCa + CaCb, (A.1.19)

CCa =
xC1 tan ϕ− yC

sin ϕ
, (A.1.20)

CCb = CaC1 sin ϕ, (A.1.21)

CaC1 = (yC1 − yC)− (xC1 − xC) tan ϕ. (A.1.22)

Using the four equations above, we get

CCb =
xC1 tan ϕ− yC

sin ϕ
+
(︁
yC1 − xC1 tan ϕ

)︁
sin ϕ (A.1.23)

CH = CCb sin θ (A.1.24)



APPENDIX A. DETAILED COMPUTATION OF THE OPTICAL PATH DIFFERENCE 108

Figure A.3: Determination of the segment CH. The points C and C1 have coordinates
(xC, yC, 0) and (xC1 , yC1 , 0) respectively. The line (O0C) is a line formed by the point C with
the axis origin O0 and is at an azimuthal angle ϕ from the x−axis. The point Ca is the inter-
section of (O0C) with the line formed by (XC1 C1) and the point Cb is the intersection of the
perpendicular line of (O0C) passing by C1 with (O0C). The point Cd is the projection of D
onto the line parallel to the z−axis passing by C. The angle formed by D, C and Cd is equal to
θ and so the angle formed by Cb, C and H is also θ. The line (CD) and (C1D1) are parallel.

By replacing the x and y component of C and C1 using Eq. (A.1.7) and Eq. (A.1.16),
with the help of the software Mathematica, we have:

CCb = t∗g tan θ∗g + t∗i tan θ∗i + ti tan θi + CCb|tg + CCb|ts (A.1.25)

such that

CCb|tj
=tj [sin α sin(β− ϕ) + (1− cos α) tan θi]

+
tj tan γj cos γj

∥V⃗∥
[sin α sin(ϕ− β) + cos α tan θi] ,

(A.1.26)

where j = g corresponds to coverslip and j = i to the immersion medium in the
non-design condition.
Using Eq. (A.1.3), (A.1.5), (A.1.9), the Snell’s law for design and real condition in Eq.
(A.1.6) and (A.1.13) respectively and replacing the expression of CCb in the expression
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of CH using Eq. (A.1.26), we have:

OPD =
niti

cos θi
− niti sin θi tan θi (A.1.27)

+
ngtg

cos γg
− ni sin θiCCb|tg +

ni fg

cos θi
(A.1.28)

+
nsts

cos γs
− ni sin θiCCb|ts +

ni fs

cos θi
(A.1.29)

−
(︃

n∗i t∗i
cos θ∗i

− n∗i t∗i sin θ∗i tan θ∗i

)︃
(A.1.30)

−
(︄

n∗gt∗g
cos θ∗g

− n∗gt∗g sin θ∗g tan θ∗g

)︄
(A.1.31)

Replacing the immersion medium thickness ti by its expression in Eq. (A.1.10) and
regrouping the terms which commonly have the same thickness parameters, we ob-
tain:

OPD = ni∆z cos θi + OPDg + OPDs −OPD∗g −OPD∗i , (A.1.32)

such that,

OPD∗j =

(︄
n∗j t∗j

cos θ∗j
− n∗j t∗j sin θ∗j tan θ∗j

)︄
−

n2
i

n∗j
t∗j cos θ∗i (A.1.33)

= n∗j t∗j

⎡⎣cos θ∗j −
(︄

ni

n∗j

)︄2

cos θi

⎤⎦ , (A.1.34)

OPDj =
njtj

cos γj
− ni sin θiCCb|tj

+
ni f j

cos θi
−

n2
i

nj
tj cos θi. (A.1.35)

The expression of OPDj can be simplified by replacing ∥V⃗|, CCb|tj
and f j by their

expressions in Eq. (A.1.11), (A.1.26) and (A.1.18) respectively. Given the expression of
cos γi in Eq. (A.1.14), ∥V⃗∥ = sin γi and we have:

OPDj =
njtj

cos γj

− ni sin θitj [sin α sin(β− ϕ) + (1− cos α) tan θi]

− ni sin θi
tj tan γj

sin γi
[cos γi (sin α sin(ϕ− β) + cos α tan θi)]

+
ni

cos θi
tj(1− cos α) +

ni

cos θi

tj tan γj

sin γi
(− cos θi + cos α cos γi)

−
n2

i
nj

tj cos θi.

(A.1.36)



APPENDIX A. DETAILED COMPUTATION OF THE OPTICAL PATH DIFFERENCE 110

OPDj =
njtj

cos γj

− nitj [cos γi − cos θi]

+ nitj
tan γj

sin γi
cos2 γi

− nitj
tan γj

sin γi

−
n2

i
nj

tj cos θi.

(A.1.37)

Further simplification using the equality tan γj = ni
nj

sin γi
cos γj

reduces the expression of
OPDj to:

OPDj = njtj

[︄
cos γj +

ni

nj

(︄
− cos γi +

(︄
1− ni

nj

)︄
cos θi

)︄]︄
(A.1.38)

By replacing cos γi by its expression in Eq. (A.1.14) and using the normalized radial
coordinate ρ = sin θi

η with η being the sine of the maximum angular aperture, we have:

OPDj = njtj

[︄
cos γj +

ni

nj

{︄(︄
1− ni

nj
− cos α

)︄
cos θi + η sin α

(︂
Z1

1 sin β− Z−1
1 cos β

)︂}︄]︄
,

(A.1.39)
where Z−1

1 and Z1
1 are the Zernike polynomials of order 1 which corresponds to the

tilt about x and y axis respectively (see Appendix A.2.1). If the elevation tilt angle α

of the coverslip is 0, γj = θj and Eq. (A.1.39) reduces to:

OPDj = njtj

⎡⎣cos θj −
(︄

ni

nj

)︄2

cos θi

⎤⎦ , (A.1.40)

with nj sin θj = ni sin θi satisfying Snell’s law.
The general expressions of OPDj|j=g,s and OPD∗j|j=g,i in cosine terms are given and
summarized as follow:

OPD∗j = n∗j t∗j

⎡⎣cos θ∗j −
(︄

ni

n∗j

)︄2

cos θi

⎤⎦ , (A.1.41)

OPDj = njtj

[︄
cos γj +

ni

nj

(︄
− cos γi +

(︄
1− ni

nj

)︄
cos θi

)︄]︄
. (A.1.42)

The angle γj equals to θj when the tilted angle is zero and the expression of OPDj in
Eq. A.1.42 simplifies to become similar as of A.1.41. Eq. A.1.41 and A.1.42 can be
linearized by decomposing their cosine terms into Zernike polynomials. This decom-
position is the focus of the rest of this Appendix.
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A.2 Decomposition of the phase aberration into
Zernike polynomials

A.2.1 Linear representation of aberrations

Optical aberrations can be decomposed into a set of orthogonal polynomials. The
most common basis that has been used to represent optical aberrations is the set of
Zernike polynomials formed by continuous and orthogonal polynomials over a unit
circle [56]. The limitation of Zernike polynomials lies on their orthogonality over the
whole circular pupil only. They are no longer orthogonal for a noncircular pupil [56].
Zernike polynomials are mathematically represented as follows:

Zm
n (ρ, ϕ) =

⎧⎨⎩Rm
n (ρ) cos(|m|ϕ) if m ≥ 0,

Rm
n (ρ) sin(|m|ϕ) otherwise,

(A.2.1)

where ρ ∈ [0, 1] is the normalized radial coordinate, |m| the absolute value of m and
ϕ is the azimuthal angle measured clockwise from the x−axis in any computation of
the Zernike polynomial in this thesis. The radial function Rm

n is defined as follows:

Rm
n (ρ) =

(n−|m|)/2

∑
l=0

(−1)l(n− l)!
l![n+m

2 − l]![n−m
2 − l]!

ρn−2l. (A.2.2)

The orthogonality of the Zernike polynomials is given by:

∫︂ 2π

0

∫︂ 1

0
Zm

n (ρ, ϕ)Zm′
n′ (ρ, ϕ)ρdρdϕ =

πϵm

2n + 2
δnn′δmm′ , ϵm =

⎧⎨⎩2 if m = 0

1 otherwise,
(A.2.3)

with δnn′ = 1 if n = n′ and 0 otherwise [56].
The phase map can be represented as a linear superposition of a sequence of Zernike
polynomials:

W(ρ, ϕ) = ∑
n,m

Cm
n Zm

n (ρ, ϕ), (A.2.4)

with Cm
n defines the amplitude or coefficient of the given Zernike polynomial with

the same radial and azimuthal orders. This decomposition has its importance in
identifying and correcting for the most dominant aberration contained in a recorded
data.

A.2.2 Decomposing cos θj into Zernike polynomials

Let G : R −→ R be the function defined by G(θj) = cos θj. Introducing a normalized
radial coordinate ρ = sin θi

η , η being the sine of the maximum angular aperture and
using the Snell’s law at the interface:

nj sin θj = ni sin θi, (A.2.5)
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we have

cos θj =

⌜⃓⃓⎷1−
(︄

ni

nj

)︄2

sin2 θj (A.2.6)

=
ni

nj
η

√︄(︃
nj

niη

)︃2

− ρ2. (A.2.7)

Firstly, let us define an arbitrary function Ψ(ρ, ϕ) with normalized radial coordi-
nate ρ and azimuthal angle coordinate ϕ. The function Ψ can be represented into
a combination of Zernike polynomials Zmp

n of radial order n and azimuthal order m;
n ≥ m ≥ 0, (n, m) ∈N2:

Ψ(ρ, ϕ) = ∑
n,m

Am
n Zmp

n (ρ, ϕ). (A.2.8)

The parameter p is indicative of the parity of Z over ϕ. It raises Zm
n into power of 1 if

Z is even and −1 if Z is odd. To find the Zernike coefficients Am
n , the orthogonality

properties of the Zernike polynomials are used and we obtain:

Am
n =

2(n + 1)
πεm

∫︂ 2π

0

∫︂ 1

0
Ψ(ρ, ϕ)Zmp

n ρdρdϕ, (A.2.9)

with εm =

⎧⎨⎩2 if m = 0

1 otherwise
is called Newmann’s factor.

Since G does not contain any azimuthal dependence, it can be fitted into circular
Zernike polynomials of kind zero and order n, Z0

n(ρ) = R0
n(ρ). The method used

here to find the Zernike coefficients A0
n which correspond to G is similar of the one

developed by Török et al. [26]. We have:

G(ρ) =
∞

∑
n=0

A0
nR0

n(ρ), n = 2l and l ∈N (A.2.10)

Using the general formulation in (A.2.9), the Zernike coefficients are given by

A0
n =

n + 1
π

∫︂ 1

0
G(ρ)R0

n(ρ)ρdρ (A.2.11)

Introducing a change of variable x = 2ρ2 − 1, ρ2 = x+1
2 ; dx = 4ρdρ

If ρ = 0, x = −1 and ρ = 1, x = 1.
The expression of g becomes as follows in terms of x:

G(x) =
ni

nj
√

2
η

√︄
2
(︃

nj

niη

)︃2

− 1− x (A.2.12)

Setting l = n/2, l ∈N i.e. n = 2l in Eq. ((A.2.11)), we have

A0
2l =

2l + 1
π

∫︂ 1

0
G(ρ)R0

2l(ρ)ρdρ. (A.2.13)
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Using the expression of the Legendre polynomials Pl of the first kind and order l
defined in Eq. (34) of [26],

R0
2l(ρ) = Pl(2ρ2 − 1), (A.2.14)

With change of variables ρ =
√︂

1+x
2 :

R0
2l

(︄√︃
1 + x

2

)︄
= Pl(x) (A.2.15)

We obtain:

A0
2l =

2l + 1
4π

∫︂ 1

−1
G(x)Pl(x)dx; (A.2.16)

Substituting the expression of G in function of x in Eq. (A.2.12) into Eq. (A.2.16),
we have the expression of the Zernike coefficients which corresponds to the cos θj in
medium j:

A0
2l|j =

2l + 1
4π
√

2

(︄
ni

nj

)︄
η
∫︂ 1

−1

√︄
2
(︃

nj

niη

)︃2

− 1− x Pl(x) dx, (A.2.17)

=
2l + 1
4π
√

2

(︄
ni

nj

)︄
ηKl

[︄
2
(︃

nj

niη

)︃2

− 1

]︄
, l ∈N (A.2.18)

Török et al. solved analytically the above integral in Eq. (A.2.17) [26]. The expression
of Kl which was defined in Eq. (45) of [26] can be reformulated as:

Kl[X] = −
√

2
(2l − 1)(2l + 1)

D1/2−l
[︃

1− 2l − 1
2l + 3

D−2
]︃

, (A.2.19)

with D = X +
√

X2 − 1.

A.2.3 Decomposing cos γj into Zernike polynomials

Let G : R −→ R be the function defined by G(γj) = cos γj. According to Snell’s law,
we have at the interface of media i and j:

nj sin γj = ni sin γi. (A.2.20)

So,

G(γj) =

⌜⃓⃓⎷1−
(︄

ni

nj

)︄2

(1− cos2 γi). (A.2.21)

Let us define F(γi) = cos2 γi. Replacing the expression of cos γi by Eq. (A.1.14) and
using the previously defined normalized radial coordinate ρ, we have the expression
of F in function of ρ and ϕ:

F(ρ, ϕ) = (1− η2ρ2) cos2 α + 2 cos α
√︂

1− η2ρ2ηρ sin(β− ϕ) + η2ρ2 sin2(β− ϕ).
(A.2.22)
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Expanding this expression, we obtain:

F(ρ, ϕ) = −η2

2
{ cos(2α)F1(ρ) (A.2.23)

− 4 cos α sin βF2(ρ, ϕ) (A.2.24)

+ 4 cos α cos βF3(ρ, ϕ) (A.2.25)

+ sin(2β)F4(ρ, ϕ) (A.2.26)

+ cos(2β)F5(ρ, ϕ)} (A.2.27)

Using the same decomposition technique of the square root as in Section A.2.2, the
expression of F1, F2, F3, F4, and F5 are as follows in terms of the corresponding Zernike
polynomials:

F1(ρ) = ρ2 =
1
2

(︂
Z0

2(ρ) + 1
)︂

(A.2.28)

F2(ρ, ϕ) =

√︄
1
η2 − ρ2ρ cos ϕ =

(︄
∞

∑
n=0

B0
nR0

n(ρ)

)︄
Z1

1(ρ, ϕ) (A.2.29)

F3(ρ, ϕ) =

√︄
1
η2 − ρ2ρ sin ϕ =

(︄
∞

∑
n=0

B0
nR0

n(ρ)

)︄
Z−1

1 (ρ, ϕ) (A.2.30)

F4(ρ, ϕ) = ρ2 sin(2ϕ) = Z−2
2 (ρ, ϕ) (A.2.31)

F5(ρ, ϕ) = ρ2 cos(2ϕ) = Z2
2(ρ, ϕ) (A.2.32)

(A.2.33)

where the expression of the Zernike coefficients B0
n in Eq. (A.2.29) and (A.2.29) is

similar as of the expression of A0
n in Eq. (A.2.18):

B0
n =

n + 1
4π
√

2
Kn/2

[︃
2
η2 − 1

]︃
, n = 2l is even, l ∈N (A.2.34)

A.2.4 Linear expression of the OPD in terms of the Zernike
polynomials

Using the findings in Appendix A.2.2 and A.2.3 for the decomposition of cos θj and
cos γj respectively, we found the following:

cos θi =
N

∑
n=0

B0
nR0

n(ρ) (A.2.35)

cos θj|j ̸=i =
N

∑
n=0

A0
n|j(ni, nj)R0

n(ρ) (A.2.36)

cos γi = cos α
N

∑
n=0

B0
nR0

n(ρ) + η sin α
(︂

Z1
1(ρ, ϕ) sin β− Z−1

1 (ρ, ϕ) cos β
)︂

(A.2.37)
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cos γj|j ̸=i = (1− n2
ij (A.2.38)

−
n2

ijη
2

2

[︃
cos(2α)

2

(︂
Z0

2(ρ) + 1
)︂

(A.2.39)

− 4 cos α sin β

(︄
N

∑
n=0

B0
nR0

n(ρ)

)︄
Z1

1(ρ, ϕ) (A.2.40)

+ 4 cos α cos β

(︄
N

∑
n=0

B0
nR0

n(ρ)

)︄
Z−1

1 (ρ, ϕ) (A.2.41)

+ sin(2β)Z−2
2 (ρ, ϕ) (A.2.42)

+ cos(2β)Z2
2(ρ, ϕ)

]︂)︂1/2
, (A.2.43)

with η being the sine of the maximum angular aperture, ρ the normalized radial
coordinate, nij = ni/nj, N is the finite number of the sequence of Zernike polynomials
and A0

n|j is the Zernike coefficients of radial order n which corresponds to the medium

j (see Eq. A.2.18). The Zernike coefficient B0
n is a particular case of A0

n|j which is

independent of the refractive index i.e. B0
n = A0

n|i.
By investigating the decomposition of the cosines terms above, we observe that a
tilt in the coverslip with varying refractive index system breaks the radial symmetry
in the wavefront. The terms R0

n(ρ)Z1
1(ρ, ϕ) and R0

n(ρ)Z−1
1 (ρ, ϕ) in Eq. (A.2.40) and

(A.2.41) can be proven to be proportional to a Zernike polynomial of a radial order
n′ = n + 1, n = 2q and q ∈N and azimuthal order 1 and -1 respectively.
By replacing the cosine terms in Eq. (A.1.41) and (A.1.42) with their corresponding
Zernike decomposition, the expression of the OPD in Eq. (A.1.32) throughout the
sample (s), coverslip (g) and immersion (i) medium can be simplified and linearized
as follows:

OPD = ∑
j=s,g,g∗,i∗

njtj

{︄
C0

0 + C2
2Z2

2 + C−2
2 Z−2

2 +
N

∑
n=0

C0
nZ0

n +
N+1

∑
n′=1

C1
n′Z

1
n′ +

N+1

∑
n′=1

C−1
n′ Z−1

n′

}︄
(A.2.44)



Appendix B

Visualisation of the effects of
aberrations on PSFs

In this appendix, detailed figures from the analysis of simulated aberrant PSFs in
comparison to the reference non-aberrant PSFs are shown. Aberrant PSF are sim-
ulated with a set of varying variables [ns/ni, ts, α]. The parameters of the coverslip
(tg, ng) are fixed in all the simulations described here. The details of the captions of
the figures are given below.

Fig. B.1: the result from the comparison of an aberrant PSF at ts ranging from 1λ0

to 9λ0 with the reference non-aberrant PSF is shown. Row (a): Wavefront error σW in
wave unit (λ0). Row (b): MRE. Row (c): NCC. Row (d): Strehl ratio S. First column:
Wavefront error σW , S, MRE and NCC between the reference non-aberrant PSF and
the aberrant PSF at varying ns/ni and α and fixed value of sample thickness ts = 1λ0

and h1 = h(ns = ni, ts = 1λ0, α = 0). Second to fourth column: Difference in the
wavefront error σW , MRE, NCC and S from h(ns/ni, ts = 1λ0, α) with the non-aberrant
reference PSF and the σW , MRE, NCC and S from h(ns/ni, ts > 1λ0, α) with the non-
aberrant reference PSF, h being the aberrant PSF.

Fig. B.2: Comparison of an aberrant PSF at ts ranging from 50λ0 to 250λ0 with the
reference non-aberrant PSF. Row (a): Wavefront error σW in wave unit (λ0). Row (b):
MRE. Row (c): NCC. Row (d): Strehl ratio. First column: ts = 50λ0. Second column:
ts = 100λ0. Third column: ts = 150λ0. Fourth column: ts = 200λ0. Fifth column:
ts = 250λ0.

Fig. B.3: Zernike coefficients Cm
n in wave unit λ0 obtained with varying ns/ni at

fixed values of ts and α (first row), α at fixed values of ns/ni and ts (second row) and
different sample depth ts ∈ [50 : 50 : 250]λ0 (third row).

Fig. B.4: the Zernike coefficients Cm
n which corresponds to Fig. B.3 and having values

greater than 0.075 are displayed. These figures have binary values such that 0 (white)
corresponds to Cm

n ≥ 0.075 and -1 (black) correspond to Cm
n < 0.075.
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Figure B.1: Wavefront error σW in wave unit λ0, MRE, NCC and Strehl ratio S of an aberrant
PSF at varying sample thickness ts ranging from 1λ0 to 9λ0 in comparison with the reference
non-aberrant reference PSF



APPENDIX B. VISUALISATION OF THE EFFECTS OF ABERRATIONS ON PSFS 118

5
0

0

1.0015

1.0045

1.0075

1.0105

1.0135

n
s/n

i

0

0
.5 1

(a)

 / 
°
 

1
0
0

0

1.0015

1.0045

1.0075

1.0105

1.0135

n
s/n

i

0

0
.5 1

 / 
°
 

1
5
0

0

1.0015

1.0045

1.0075

1.0105

1.0135

n
s/n

i

0

0
.5 1

 / 
°
 

2
0
0

0

1.0015

1.0045

1.0075

1.0105

1.0135

n
s/n

i

0

0
.5 1

 / 
°
 

2
5
0

0

1.0015

1.0045

1.0075

1.0105

1.0135

n
s/n

i

0

0
.5 1

 / 
°
 

5
0

0

1.0015

1.0045

1.0075

1.0105

1.0135

n
s/n

i

0

0
.5 1

(b)

 / 
°
 

1
0
0

0

1.0015

1.0045

1.0075

1.0105

1.0135

n
s/n

i

0

0
.5 1

 / 
°
 

1
5
0

0

1.0015

1.0045

1.0075

1.0105

1.0135

n
s/n

i

0

0
.5 1

 / 
°
 

2
0
0

0

1.0015

1.0045

1.0075

1.0105

1.0135

n
s/n

i

0

0
.5 1

 / 
°
 

2
5
0

0

1.0015

1.0045

1.0075

1.0105

1.0135

n
s/n

i

0

0
.5 1

 / 
°
 

5
0

0

1.0015

1.0045

1.0075

1.0105

1.0135

n
s/n

i

0

0
.5 1

(c)

 / 
°
 

1
0
0

0

1.0015

1.0045

1.0075

1.0105

1.0135

n
s/n

i

0

0
.5 1

 / 
°
 

1
5
0

0

1.0015

1.0045

1.0075

1.0105

1.0135

n
s/n

i

0

0
.5 1

 / 
°
 

2
0
0

0

1.0015

1.0045

1.0075

1.0105

1.0135

n
s/n

i

0

0
.5 1

 / 
°
 

2
5
0

0

1.0015

1.0045

1.0075

1.0105

1.0135

n
s/n

i

0

0
.5 1

 / 
°
 

5
0

0

1.0015

1.0045

1.0075

1.0105

1.0135

n
s/n

i

0

0
.5 1

(d)

 / 
°
 

1
0
0

0

1.0015

1.0045

1.0075

1.0105

1.0135

n
s/n

i

0

0
.5 1

 / 
°
 

1
5
0

0

1.0015

1.0045

1.0075

1.0105

1.0135

n
s/n

i

0

0
.5 1

 / 
°
 

2
0
0

0

1.0015

1.0045

1.0075

1.0105

1.0135
n

s/n
i

0

0
.5 1

 / 
°
 

2
5
0

0

1.0015

1.0045

1.0075

1.0105

1.0135

n
s/n

i

0

0
.5 1

 / 
°
 

W
/

 
0

7
.6

0
5

7
6

.8
4

5
6

.0
8

4
4

5
.3

2
3

7
4

.5
6

3
1

3
.8

0
2

5
3

.0
4

1
8

2
.2

8
1

2
1

.5
2

0
6

0
.7

5
9

9
1

0
.0

3
8

0
6 M

R
E

1
4

.6
5

4
1

3
.2

0
0

5
1

1
.7

4
7

1
1

0
.2

9
3

6
8

.8
4

0
2

7
.3

8
6

8
5

.9
3

3
3

4
.4

7
9

9
3

.0
2

6
5

1
.5

7
3

0
.1

9
3

7
2 N

C
C

0
.9

9
9

9
7

0
.9

7
3

7
8

0
.9

4
7

5
9

0
.9

2
1

4
0

.8
9

5
2

1
0

.8
6

9
0

2
0

.8
4

2
8

3
0

.8
1

6
6

4
0

.7
9

0
4

5
0

.7
6

4
2

6
0

.7
3

9
4

S
1

0
.8

9
9

9
9

0
.7

9
9

9
8

0
.6

9
9

9
7

0
.5

9
9

9
7

0
.4

9
9

9
6

0
.3

9
9

9
5

0
.2

9
9

9
4

0
.1

9
9

9
3

0
.0

9
9

9
2

0
.0

0
5

0
2

Figure B.2: Wavefront error σW in wave unit λ0, MRE, NCC and Strehl ratio S of an aberrant
PSF at varying sample thickness ts ranging from 50λ0 to 250λ0 in comparison with the refer-
ence non-aberrant reference PSF
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Figure B.3: Zernike coefficients Cm
n at different ns/ni, α and ts
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Figure B.4: Binary images which corresponds to Fig. fig:ZCoeff all higher depth representing
the Zernike coefficients Cm

n ≥ 0.075λ0



Appendix C

Averaging over the dipole orientations

In this Appendix, the PSF obtained from the averaging over all possible dipole ori-
entations is shown to be proportional to the PSF from a circular polarized light. We
denote h⃗x and h⃗y the three-dimensional field amplitude distribution in the image
plane that are derived from x and y−polarized incident light respectively. Given
the linearity of the Maxwell equations, the vector wave equation can be decoupled.
Propagating two linearly perpendicular polarized light and combining the propa-
gated fields is equivalent to propagating a circularly polarized light. Mathematically,
h⃗circ(x, y, z) =

√
2

2

(︂
h⃗x(x, y, z) + ih⃗y(x, y, z)

)︂
. The PSF intensity from a circularly polar-

ized light is therefore given by:

hcirc(x, y, z) =
1
2

(︂
h2

xx + h2
xy + h2

xz + h2
yx + h2

yy + h2
yz

)︂
, (C.0.1)

such that (hxx, hxy, hxz) and (hyx, hyy, hyz) are the respective components of h⃗x and h⃗y.
On the other hand, the dipole orientation is given by:

µ⃗(θdip, ϕdip) =

⎛⎜⎝sin θdip cos ϕdip

sin θdip sin ϕdip

cos θdip

⎞⎟⎠ (C.0.2)

with θdip and ϕdip being the elevation and azimuthal angles of µ⃗ respectively. The
expression of the dipole emission PSF described in Algorithm 6 can be expanded to:

hdip =
1
2

(︂[︁
hxx sin θdip cos ϕdip + hxy sin θdip sin ϕdip + hxz cos θdip

]︁2 (C.0.3)[︁
hyx sin θdip cos ϕdip + hyy sin θdip sin ϕdip + hyz cos θdip

]︁2)︂ (C.0.4)

The integration of hdip over all the possible dipole orientations equals to (4π/3)hcirc

i.e. ∫︂ 2π

0

∫︂ π

0
hdip sin θdipdθdipdϕdip = (4π/3)hcirc. (C.0.5)

The possible orientations formed a volume sphere. This implies that the average of
dipoles PSF over all the possible dipole orientations, hav, given in Eq. (3.7.2) is equal
to hcirc.
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Appendix D

Sample preparation protocol

Cleaning procedure

It is important to wear gloves and laboratory coats when handling chemical products.
To clean a coverslip or/and a microscope slide, the reagents and equipment stated in
Section D.0.1 are needed and the steps mentioned in Section D.0.2 are followed.

D.0.1 Materials

• Hydroxide of potassium (KOH) solid
• Distilled water
• Coverslips and coverslip rack
• Alcohol (> 70%)
• Glass beaker
• Waste disposal for KOH and alcohol
• Storage container with cover

D.0.2 Method

1. Prepare 2N solution of KOH by dissolving 8.6 g of KOH pallets in 80 mL of distilled
water.
2. Place the coverslips on a rack and submerge it in the KOH solution for 2 h. A lab-
oratory glassware such as a glass beaker can be used for this purpose. An alternative
for this step consists of sonicating the solution for 20 min at temperature equal to 30◦.
3. Rinse the coverslips with a lot of distilled water by replacing the liquid which sub-
merges it at least three times.
4. The coverslips are ready to use and they can be stored in room temperature by sub-
merging them in alcohol solution of at least 70%. The container needs to be covered
on top to avoid any dust coming in and the alcohol to evaporate.
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5. Before use, remove the coverslip from the alcohol and let it dry in air or burn it
with propane for about 1 s.

Bead solution

D.0.3 Materials

• 0.1 µm TetraSpeck microspheres with beads density equal to d0 = 1.8× 1011 particles/mL
• Distilled water
• 2 mL eppendorf centrifuge tubes
• Micropipette and pipette tips

D.0.4 Method

1. Vortex the concentrated beads solution to uniformly suspend it.
2. Take a 2 mL eppendorf centrifuge tube and dilute 5 µL of bead solution to 500 µL
with distilled water for a 5 : 500 or 102 dilution. We denote this solution S1 and it
contains N1 = 5 µL×d0

V0
= 9× 108 particles, with V0 = 0.5× 103 µL being the volume of

the initial solution in Step 1.
3. Vortex S1 for 5 min to break the beads and avoid clusters.
4. Take another 2 mL eppendorf centrifuge tube and dilute 1 µL of bead solution S1

to 103µL with distilled water for a 1 : 1000 or 103 dilution and a total 105 dilution. We
denote this solution S2. It contains N2 = 1 µL×N1

V1
= 1.8× 106 particles, with V1 = 500

µL being the volume of the solution S1.
5. Vortex S2 for 5 min to break the beads and avoid clusters.
6. The beads solution is ready to use. Store it in the dark at temperature 2◦ and
always vortex for 5 min before use.

Using the same calculation as in Step 2 and 4, a 15 mL solution from S2 contains about
27×103 particles. Given the surface area of a coverslip (200 µm×200 µm), the estimate
average maximum number of beads that we obtain per surface area (1 µm2) is less
than or equal to 1 (0.675 beads per unit area to be exact) which is acceptable as the
solution will be concentrated at the center of the coverslip first and many of the beads
split out from the coverslip during spin-coating. It is advisable to use a total dilution
of 106 if the sample is dried coat onto the coverslip instead of spin-coated.



Appendix E

Image quality metrics

Wavefront error: σW

The wavefront error quantifies the spread of the deviation of the optical imaging from
the design condition. It is statistically defined as the standard deviation of the OPD
over the pupil area:

σW =

(︄
1

πr2
p

∫︂
pupil

[︁
OPD(ρ, ϕ; τd, τr)−OPD

]︁2
ρdρdϕ

)︄1/2

, (E.0.1)

with rp is the pupil radius, τd and τr represent the set of parameters in design and
non-design condition respectively and OPD being the average OPD over the pupil
area.

Strehl ratio: S

Strehl ratio is defined as the ratio of the intensity of the aberration-free PSF at its
centre position with the intensity PSF at the same position when it gets aberrated
[85]. As the maximum wave interference occurs at the centre of the PSF, this ratio
is used to quantify the amount of aberration as well as a way to balance the present
aberration. The empirical expression of the Strehl ratio, denoted by S, is given as
follows [85]:

S =
I(0)|Φ ̸=0

I(0)|Φ=0
≈ exp

[︂
−
(︁
2πσ′W

)︁2
]︂

, (E.0.2)

with σ′W = σW/λ0 is the wavefront error scaled by the wavelength given in unit
of full phase, I(0) being the image intensity at the center position in focal plane
and Φ the wave aberration. A Strehl ratio bigger or equal to 0.8 is conventionally
assumed to correspond to an ideal diffracted limited system [85, 88]. In other words,
the aberration present at this Strehl ratio can be tolerated. This value corresponds
to σ′W ≈ 0.075 (Std of phase aberration) and departure distance equal to a λ0/4 of
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the actual sphere from the Gaussian reference sphere (Rayleigh’s quarter wave rule).
The S metric will enable to determine the tolerable values of the tilt and imaging
parameters and also the corresponding tolerance in terms of NCC.

Mean Relative Error: MRE and Mean Square Error: MSE

MRE( f , g) =
∑j[g(j)− f (j)]

∑j |g(j)| Mean relative error, (E.0.3)

MSE( f , g) =
∑j |g(j)− f (j)|2

∑j j
Mean Square Error, (E.0.4)

with f being the estimate of the gold standard or ground truth data g and j the spatial
position.

Normalized Cross Correlation: NCC

The NCC at a given lag position l is defined as follows:

NCCl( f , g) =
∑j

{︂
[ f (j)− f l][g(j− l)− g(j)]

}︂
√︂

∑j[ f (j)− f l]
2 ∑j[g(j− l)− g(j)]2

, (E.0.5)

with f being the estimate of the gold standard or ground truth data g and f l is
the mean value of f at the same range as g. The numerator of Eq. (E.0.5) can be
computed easily using the formulation of cross-correlation with Fourier transform. It
is proportional to the convolution of f with the flipped version of g. This corresponds
to:

NCCnum
l ( f , g) = F−1 {F { f } · F ∗ {g}} − f l ∑

j
[g(j− l)− g(j)], (E.0.6)

whereas the denominator is a normalization factor that can be computed using a run-
ning sum [91]. An algorithm has been implemented on MATLAB under the function
named normxcorr3 [92] to compute Eq. (E.0.5) efficiently. Eq. (E.0.5) can be applied
to a 2D as well as a 3D data. NCCl( f , g) refers to the NCC of the two data f and g at
a lag shift l. A shift of l = 0 means the two data are on top of each other. A value of
NCC equal to 0 means zero-correlation, -1 anticorrelation and 1 is maximum correla-
tion. If detecting any possible shift between the measured or estimate and reference
data f and g respectively is not of interest, NCC is more advantageous over MRE.
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