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Development of a new 
antigen‑based microarray platform 
for screening and detection 
of human IgG antibodies 
against SARS‑CoV‑2
Sindy Burgold‑Voigt1,2*, Elke Müller1,2, David Zopf1,3, Stefan Monecke1,2,4, 
Sascha D. Braun1,2, Katrin Frankenfeld5, Michael Kiehntopf6, Sebastian Weis7,8, 
Thomas Schumacher9, Mathias W. Pletz7, Ralf Ehricht1,2,3 & The CoNAN Study Group*

Strategies to contain the current SARS‑CoV‑2 pandemic rely, beside vaccinations, also on molecular 
and serological testing. For any kind of assay development, screening for the optimal antigen is 
essential. Here we describe the verification of a new protein microarray with different commercially 
available preparations significant antigens of SARS‑CoV‑2 that can be used for the evaluation of the 
performance of these antigens in serological assays and for antibody screening in serum samples. 
Antigens of other pathogens that are addressed by widely used vaccinations were also included. To 
evaluate the accuracy of 21 different antigens or antigen preparations on the microarray, receiver 
operating characteristics (ROC) curve analysis using ELISA results as reference were performed. 
Except for a single concentration, a diagnostic sensitivity of 1 was determined for all antigen 
preparations. A diagnostic specificity, as well as an area under the curve (AUC) of 1 was obtained for 
16 of 21 antigen preparations. For the remaining five, the diagnostic specificity ranged from 0.942 to 
0.981 and AUC from 0.974 to 0.999. The optimized assay was subsequently also applied to determine 
the immune status of previously tested individuals and/or to detect the immunization status after 
COVID‑19 vaccination. Microarray evaluation of the antibody profiles of COVID‑19 convalescent and 
post vaccination sera showed that the IgG response differed between these groups, and that the 
choice of the test antigen is crucial for the assay performance. Furthermore, the results showed that 
the immune response is highly individualized, depended on several factors (e.g., age or sex), and was 
not directly related to the severity of disease. The new protein microarray provides an ideal method 
for the parallel screening of many different antigens of vaccine‑preventable diseases in a single sample 
and for reliable and meaningful diagnostic tests, as well as for the development of safe and specific 
vaccines.
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The current SARS-CoV-2 pandemic is the third major Betacoronavirus outbreak among humans within the last 
twenty years: These causative viruses of these outbreaks were SARS-CoV in 2002/20031, MERS-CoV since  20122, 
and, in the ongoing pandemic, SARS-CoV-23.

The latter originated from South Eastern Asia, and, as it was also the case for SARS- and MERS-CoV, a link 
to bats has been  implicated3. So far, four major protein receptors have been characterized that are responsible for 
binding the various coronaviruses to their host  cells4. SARS-CoV-2 binds, just like SARS-CoV and certain SARS-
related viruses of bats, to angiotensin-converting enzyme 2 (ACE2)  receptor4 resulting in a variety of pulmonary, 
vascular, hemostatic and neurological  symptoms5. High morbidity and mortality rates especially among elderly 
and patients with comorbidities in a variety of settings ranging from care homes over prisons to dormitories 
and cruise ships have been  observed6–8. However, a substantial proportion of infected individuals, especially, 
of younger, previously healthy individuals, did not presented with clinical symptoms at all, or experienced very 
mild, uncharacteristic  symptoms9. This has serious consequences as it complicates outbreak investigations and 
contact tracing. This, together with the constantly evolving high transmissibility of the virus, led to an explosive 
spread around the globe with about 360 million cases and 5.6 million deaths within 2 years (https:// www. world 
omete rs. info/ coron avirus/) and to an inestimably high economic damage. Studies even estimate the worldwide 
number of excess deaths to be twice or even four times this  figure10 up to 18.6 million  deaths11.

Unspecific and diverse clinical presentations make it impossible to identify potentially infective individuals 
by a simple use of thermal scanners or by screening for infection-associated symptoms. Tests for the detection 
of SARS-CoV-2/COVID-19 need to fulfill two very different tasks simultaneously. First, they need to be usable 
for diagnostics, i.e., for detecting the causative agent in clinically ill patients, in order to distinguish SARS-CoV-2 
infection from other respiratory syndromes. Second, they will be inevitably used, or abused, for screening pur-
poses, i.e., in order to find a more or less asymptomatic carrier among a high number of healthy individuals. 
When thus anticipating a need for serological tests to evaluate antibody levels, the advantages and disadvantages 
of test principles and platforms need to be discussed. Enzyme-linked Immunosorbent Assays (ELISA) work on 
serum samples, need laboratory infrastructure and can be automated allowing high throughput testing. Lateral 
flow (LF) technology can be employed as rapid antigen test to detect a SARS-CoV-2 infection but it also can 
be used to detect IgG antibodies against the virus in serum or in capillary blood, which is often much easier to 
obtain. LF assays can be performed virtually anywhere but they are not designed for high throughput applications.

For ELISA as well as for LF-tests, the choice of the test antigen is particularly  important12 especially given 
the high rate of mutation and variation of the virus and its antigens. Selection of test antigens can affect the test 
performance and is one reason, among others, why the performance of the various lateral flow tests and ELISA 
varies considerably between different sample cohorts and different commercial  tests13.

Despite all developments in the field of diagnostic  tests14, an effective, adaptable and safe vaccination is the 
most crucial tool in curbing Coronavirus disease. The fact that an increasing number of people might have been 
vaccinated using a wide range of different vaccines, or might be convalescent from possibly undetected Coro-
navirus disease, there is an increasing need for simple and rapid serological tests that might be used to detect 
human IgG antibodies against specific molecules of the SARS-CoV-2 virus after vaccination and/or disease, 
that might distinguish between both, and that might be employed to identify non-responders who need an 
further injection as well as immunocompromised subjects, people with waning  immunity15 or with fraudulent 
documentation on vaccination or recovery.

As microarrays allow discerning reactivities against a multitude of individual antigens and epitopes simultane-
ously, under identical reaction conditions within a single sample, they allow a more exhaustive characterization 
of the immunological response than conventional serological tests. They also permit to screen entire panels of 
antigens simultaneously, saving sample material and lab time. Besides, it is possible to use capillary rather than 
venous blood or serum samples which makes sample acquisition easier, especially in pediatric, outpatient or 
community settings.

Against this background, a protein microarray-based assay was developed in this study, which not only 
serves to determine serum reactivities against various SARS-CoV-2 antigens, but as proof-of-principle, screens 
in parallel also reactivities against antigens of other clinically relevant vaccine-preventable disease pathogens. 
Antigens for the detection of antibodies against, Clostridium tetani, Corynebacterium diphtheriae and the Morbilli 
virus, were thus included.

The aim of this study is to demonstrate that a new protein microarray platform allows simultaneous screen-
ing for the presence or absence of antibodies against different antigens of the SARS-CoV-2 virus and antigens of 
the above-mentioned pathogens. It also allows a direct comparison of different commercially available antigen 
preparations. The parallel, cost-effective and time-saving comparison of antigens will, against the background 
of the high mutation rate of SARS-CoV-216 and its  variants17, be indispensable in future to keep serological tests 
and vaccinations up-to-date.

Results
Verification of the new SARS‑CoV2‑VAC antigen microarray. A total of 101 serum samples from 
the CoNAN  study18 were tested with the SARS-CoV2-VAC antigen microarray. Details of the study protocol, 
population and results have been published  previously18.

The grey value distribution and the individual receiver operating curves (ROC) for each spotted concentra-
tion of, at least, 18 different SARS-CoV-2 antigen preparations and the lowest concentrations of the additional 
vaccination antigens are shown in Supplemental Figs. S1 and S2.

The results of the ROC analyses are summarized in Table 1 where the calculated areas under the curve (AUCs), 
threshold values, diagnostic sensitivities and specificities are shown for each immobilized antigen concentra-
tion. We showed that under the same reaction parameters, spotted and immobilized concentrations of different 

https://www.worldometers.info/coronavirus/
https://www.worldometers.info/coronavirus/
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Antigen 
manufacturer Antigen (graphic name) Antigen (original name)

Concentration 
(µg/µL)

Max 
Youden 
Index AUC 

Threshold 
(arb. u.)

Diagnostic 
sensivity

Diagnostic 
specificity

Biomapper Technol-
ogy Co., Ltd

Ag_Spike-01_0.1 S2_Spike_BioM_0.1 0.1 1 1 0.326 1 1

Ag_Spike-01_0.2 S2_Spike_BioM_0.2 0.2 1 1 0.374 1 1

Ag_Spike-01_0.5 S2_Spike_BioM_0.5 0.5 1 1 0.382 1 1

Ag_Spike-02_0.1 S2_Spike_BioM_ugp_0.1 0.1 1 1 0.380 1 1

Ag_Spike-02_0.2 S2_Spike_BioM_ugp_0.2 0.2 1 1 0.391 1 1

Ag_Spike-02_0.45 S2_Spike_BioM_ugp_0.45 0.45 1 1 0.383 1 1

Medix Biochemica

Ag_Spike-03_0.1 S2_Spike-S1_Med_0.1 0.1 1 1 0.436 1 1

Ag_Spike-03_0.2 S2_Spike-S1_Med_0.2 0.2 1 1 0.439 1 1

Ag_Spike-03_0.5 S2_Spike-S1_Med_0.5 0.5 1 1 0.435 1 1

Institut Virion\
Serion GmbH

Ag_Spike-04_0.1 S2_Spike-S1-S2_2.23.6.90_VS_0.1 0.1 0.942 0.993 0.059 1 0.942

Ag_Spike-04_0.2 S2_Spike-S1-S2_2.23.6.90_VS_0.2 0.2 0.981 0.998 0.225 1 0.981

Ag_Spike-04_0.45 S2_Spike-S1-S2_2.23.6.90_VS_0.45 0.45 1 1 0.615 1 1

Ag_Spike-05_0.2 S2_Spike-S1-S2_2.23.6.90_VS_ugp_0.2 0.2 1 1 0.587 1 1

Ag_Spike-05_0.27 S2_Spike-S1-S2_2.23.6.90_VS_ugp_0.27 0.27 1 1 0.628 1 1

Sino Biological Inc

Ag_Spike-06_0.1 S2_Spike-S1_Sino_ugp_0.1 0.1 0.962 0.986 0.394 1 0.962

Ag_Spike-06_0.2 S2_Spike-S1_Sino_ugp_0.2 0.2 0.962 0.992 0.455 1 0.962

Ag_Spike-06_0.5 S2_Spike-S1_Sino_ugp_0.5 0.5 0.962 0.992 0.475 1 0.962

Beijing DIAGREAT 
Biotechnology Co., 
Ltd

Ag_Spike-07_0.1 S2_S-RBD_DG_0.1 0.1 1 1 0.354 1 1

Ag_Spike-07_0.2 S2_S-RBD_DG_0.2 0.2 1 1 0.401 1 1

Ag_Spike-07_0.5 S2_S-RBD_DG_0.5 0.5 1 1 0.397 1 1

Medix Biochemica

Ag_Spike-08_0.1 S2_S-RBD1_Med_0.1 0.1 1 1 0.302 1 1

Ag_Spike-08_0.2 S2_S-RBD1_Med_0.2 0.2 1 1 0.291 1 1

Ag_Spike-08_0.5 S2_S-RBD1_Med_0.5 0.5 1 1 0.350 1 1

Ag_Spike-09_0.1 S2_S-RBD2_Med_0.1 0.1 1 1 0.421 1 1

Ag_Spike-09_0.2 S2_S-RBD2_Med_0.2 0.2 1 1 0.429 1 1

Ag_Spike-09_0.5 S2_S-RBD2_Med_0.5 0.5 1 1 0.419 1 1

Institut Virion\
Serion GmbH

Ag_nucleocapsid-01_0.1 S2_N_2.23.6.89_VS_0.1 0.1 1 1 0.534 1 1

Ag_nucleocapsid-01_0.2 S2_N_2.23.6.89_VS_0.2 0.2 1 1 0.598 1 1

Ag_nucleocapsid-01_0.5 S2_N_2.23.6.89_VS_0.5 0.5 1 1 0.625 1 1

Ag_nucleocapsid-02_0.1 S2_N_2.23.6.89_VS_ugp_0.1 0.1 1 1 0.616 1 1

Ag_nucleocapsid-02_0.2 S2_N_2.23.6.89_VS_ugp_0.2 0.2 1 1 0.591 1 1

Ag_nucleocapsid-02_0.5 S2_N_2.23.6.89_VS_ugp_0.5 0.5 1 1 0.594 1 1

Biomapper Technol-
ogy Co., Ltd

Ag_nucleocapsid-03_0.1 S2_N_BioM_0.1 0.1 1 1 0.639 1 1

Ag_nucleocapsid-03_0.2 S2_N_BioM_0.2 0.2 1 1 0.674 1 1

Ag_nucleocapsid-03_0.5 S2_N_BioM_0.5 0.5 1 1 0.710 1 1

Ag_nucleocapsid-04_0.1 S2_N_BioM_ugp_0.1 0.1 1 1 0.578 1 1

Ag_nucleocapsid-04_0.2 S2_N_BioM_ugp_0.2 0.2 1 1 0.574 1 1

Ag_nucleocapsid-04_0.5 S2_N_BioM_ugp_0.5 0.5 1 1 0.598 1 1

Medix Biochemica

Ag_nucleocapsid-05_0.1 S2_N_Med_0.1 0.1 1 1 0.596 1 1

Ag_nucleocapsid-05_0.2 S2_N_Med_0.2 0.2 1 1 0.557 1 1

Ag_nucleocapsid-05_0.5 S2_N_Med_0.5 0.5 1 1 0.552 1 1

University Zürich 
AG Aguzzi

Ag_nucleocapsid-06_0.1 S2_N_Pr.Ag_ugp_0.1 0.1 1 1 0.309 1 1

Ag_nucleocapsid-06_0.2 S2_N_Pr.Ag_ugp_0.2 0.2 1 1 0.541 1 1

Ag_nucleocapsid-06_0.3 S2_N_Pr.Ag_ugp_0.3 0.3 1 1 0.583 1 1

BioVendor
Ag_nucleocapsid-07_0.1 S2_N_Biov_ugp_0.1 0.1 0.962 0.996 0.536 1 0.962

Ag_nucleocapsid-07_0.2 S2_N_Biov_ugp_0.2 0.2 0.981 0.999 0.629 1 0.981

Beijing DIAGREAT 
Biotechnology Co., 
Ltd

Ag_nucleocapsid-08_0.1 S2_N_DG_0.1 0.1 0.980 0.999 0.680 1 0.980

Ag_nucleocapsid-08_0.2 S2_N_DG_0.2 0.2 1 1 0.673 1 1

Ag_nucleocapsid-08_0.45 S2_N_DG_0.45 0.45 1 1 0.675 1 1

GeneTex Inc

Ag_nucleocapsid-09_0.1 S2_N_Genet_0.1 0.1 0.865 0.974 0.019 1 0.865

Ag_nucleocapsid-09_0.2 S2_N_Genet_0.2 0.2 0.875 0.979 0.164 0.913 0.962

Ag_nucleocapsid-09_0.35 S2_N_Genet_0.35 0.35 0.981 0.986 0.493 1 0.981

Continued
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antigens lead to different performance parameters (Youden Index, AUC, threshold value) with respect to the 
potential use in a diagnostic test.

The SARS-CoV2-VAC antigen microarray results for the 101 CoNAN samples are shown in Fig. 1 (Raw data: 
Supplemental Fig. S3).

Microarray results for test sera with negative results in all six reference ELISAs (group A). Of all 52 CoNAN 
samples that were negative in all six commercial ELISA tests, 38 samples (73.1%) were also negative with all anti-
gens on the microarray. For ten samples of this group, reactivities were observed only against the immobilized 
Nucleoprotein (N) antigen preparations: Ag_nucleocapsid-07, Ag_nucleocapsid-08 and Ag_nucleocapsid-09 at 
all spotted concentrations. Four samples yielded positive signals with four of the spotted and immobilized Spike 
(S) antigens (i.e., Ag_Spike-04 at concentrations 0.1 µg/µL and 0.2 µg/µL and Ag_Spike-06 at all concentrations).

Microarray results for test sera, with positive results in all six reference ELISAs (group B). Twenty-three CoNAN 
samples were positive in all six commercially available ELISAs. Of these, 21 samples (91.3%) were positive for all 
antigens on the microarray. Only two samples were negative for the Ag_nucleocapsid-09 antigen at a concentra-
tion of 0.2 µg/µL. Sixteen of these 23 subjects reported strong to severe symptoms. That is, 30.4% of the patients 
with positive test results experienced either mild symptoms or remained asymptomatically.

Microarray results for test sera, with divergent results of the six reference ELISAs (group C). The remaining 26 
CoNAN samples yielded divergent results with the different ELISAs used, i.e., they yielded positive results in 
only one to five of these ELISAs. Among them, there were six samples that were positive in the microarray test 
only for the antigens with AUCs between 0.865 and 0.999 (Ag_Spike-04 and -06, as well as the Ag_nucleocap-
sid-07, -08 and -09, see above).

One patient (corresponding to sample J-052), reported strong to severe symptoms. However, no Anti-N IgG 
antibodies could be detected by microarray, despite of four positive ELISAs.

In four sera from this group with inconclusive ELISA results (J-068, J-069, J-070, and J-072), only IgG anti-
bodies against the N protein, but no IgG antibodies against the S protein of SARS-CoV-2 were detected. Since 
no symptoms were reported by these four donors, it is questionable whether these reactions should be attributed 
to COVID-19 infections or to cross-reactivity with other agents.

Five sera (J-074, J-075, J-095, J-096, and J-097) were positive with both, S and N antigens. Symptoms were 
reported by only 2 of 5 subjects.

One last serum (J-073) of this group was particularly interesting: the serum was tested positive only in one 
ELISA, and it was positive on the microarray only for the antigen Ag_Spike-07 at concentrations 0.2 µg/µL and 
0.5 µg/µL. Strong to severe symptoms were reported by the patient, particularly taste disturbance and odor 
disorder, which are COVID-19 specific.

Antigens Ag_Spike-04 and -06, as well as Ag_nucleocapsid-07, -08 and -09 were excluded from further 
analyses and array development because of their low specificity.

As a further, important result, it can be stated, that only 20 of 29 seropositive-tested individuals (69%) 
reported symptoms, whereas 7 of the 72 negative- or cross-reactive individuals (9.7%) did so as well.

Verification of additional vaccination antigens. Twenty-four ELISA-tested serum samples were used 
to verify the microarray-based assay. The results are shown in Table 1 and Fig. 2 (Raw data: Supplemental Fig. S4).

A parallel analysis for the reactivities towards antigens of Clostridium tetani and Morbilli virus for all 24 
subjects showed a full concordance between the array and ELISA results.

For the antigen of Corynebacterium diphtheriae, array and ELISA results were identical in 21 samples. Three 
samples yielded ambiguous ELISA results although they were by array clearly negative (Y-S013), or, respectively, 
positive (Y-Y0238 and Y-S039).

Application of the optimized SARS‑CoV2‑VAC antigen assay. The optimized assay was applied 
to determine the immune status of previously tested individuals. For the above-mentioned reasons, Ag_nucle-
ocapsid-07, Ag_nucleocapsid-08, Ag_nucleocapsid-09, Ag_Spike-04 and Ag_Spike-06 were excluded from the 
analysis.

Table 1.  Listed are the antigen manufacturer, antigen graphic and original names, calculated AUCs and 
Youden indices, threshold values, diagnostic sensitivities and specificities for each immobilized antigen 
concentration tested in the corresponding buffer.

Antigen 
manufacturer Antigen (graphic name) Antigen (original name)

Concentration 
(µg/µL)

Max 
Youden 
Index AUC 

Threshold 
(arb. u.)

Diagnostic 
sensivity

Diagnostic 
specificity

Institut Virion\
Serion GmbH

Ag_Diphtheria_Toxoid_VS_0.1 Ag_Diphtheria_Toxoid_VS_0.1 0.1 1 1 0.371 1 1

Ag_Diphtheria_Toxoid_VS_0.5 Ag_Diphtheria_Toxoid_VS_0.5 0.5 1 1 0.387 1 1

Ag_Measles_Virus_Premium_VS_0.2 Ag_Measles_Virus_Premium_VS_0.2 0.2 1 1 0.037 1 1

Ag_Measles_Virus_Premium_VS_0.5 Ag_Measles_Virus_Premium_VS_0.5 0.5 1 1 0.111 1 1

Ag_Tetanus_Toxid_VS_0.1 Ag_Tetanus_Toxid_VS_0.1 0.1 1 1 0.142 1 1

Ag_Tetanus_Toxid_VS_0.5 Ag_Tetanus_Toxid_VS_0.5 0.5 1 1 0.160 1 1
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131 sera from a total of 112 subjects were tested, with some of them donating multiple samples at different 
time points. Each array result is shown in one column in Fig. 3 (Supplemental Fig. S5). In the first three rows, 
available results of the Real-Time (RT)-PCR, SARS-CoV-2 Nucleoprotein (N) antibody lateral flow (LF) test and 
ELISAs are listed for comparison. The subsequent rows represent the concentrations of the different antigens.

Negative controls and negative samples (group D). Column 1 in Fig. 3 shows the result for the negative controls 
without serum; columns 2 to 4 show the results for the pre-2020 negative control sera. These samples were all 
tested negative for all COVID-19 antigen preparations on the microarray.

Patients who contributed samples S_094, S_103 and S_106 were hospitalized with severe symptoms possibly 
consistent with COVID-19. All three patients were negative in N antibody LF and ELISA. S_094 and S_103 
were also RT-PCR negative while RT-PCR testing was not performed for S_106. All three sera were negative 
on the array.

Sera with positive RT‑PCR test as reference (group E). For 14 subjects, only a positive RT-PCR result, but no 
SARS-CoV-2N-LF and no ELISA result was available (sera from the follow-up controls and known cross-reac-
tive sera were not included): S_005 to S_007, S_033, S_052 to S_059, S_089 and S_090. For four of these patients, 
serology by LF and/or ELISA was negative and for ten patients, no serological tests were performed. Of these 
14 sera, six were negative and seven were positive for all antigen preparations, except for the Ag_Spike-08 at the 
spotting concentration of 0.5 µg/µL for serum S_090. For one serum of this group, S_033, which gave a negative 
result in the LF-test, only antibodies against S antigens were detected with the microarray-based assay. Another 
conspicuous observation was that three of the six array-negative sera (S_052, S_054 and S_057) originated from 
patients who were hospitalized because of the severity of their disease.

Known cross‑reactive sera (group F). Sera S_009 to S_016 are cross-reactive sera purchased for verification of 
the new microarray (AbBaltis Ltd, Sittingbourne, UK). The results of the three reference tests were not known 
for these sera. Based on the array results, it can be determined that N antigens of the SARS-CoV-2 virus have a 
lower specificity than those of the S protein. For four out of eight of the known-cross-reactive sera in this group 
(S_011, S_012, S_014 and S_015), no cross-reactivity could be detected for any of the microarray antigens.

Figure 1.  Verification of the new SARS-CoV2-VAC-antigen microarray: 101 ELISA-tested sera from the 
CoNAN study were tested with a total of 14 antigens spotted at different concentrations and in different buffer 
conditions.



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8067  | https://doi.org/10.1038/s41598-022-10823-7

www.nature.com/scientificreports/

Sera with positive LF test as reference (group G). For patients who donated sera S_008, S_017 and S_025 (the last 
two with follow-ups after 5 months), S_022, S_026 and S_040, positive anti-N antibody LF tests were observed/
reported. Two (S_008 and S_017) of these six sera remained completely negative on the microarray, for S_017 
also in the follow-up. It can be assumed that the LF-test were false-positive. For two (S_022 and S_026) sera, 
only anti-N IgG antibodies were detected. S_040 was positive on the microarray with each single antigen. In one 
sample of this group, serum S_025, anti-N and anti-S IgG antibodies were detected in the first test, but only anti-
S antibodies were detected in a follow-up examination after 5 months.

Follow‑up controls (group H). In addition to the above-mentioned follow-up controls, the dynamics of post-
infection antibody development were tested for three additional subjects at different time points: S_024 three 
times (sampling interval: 5 months), S_035 five times, and S_034 six times (for the latter two were the intervals of 
sampling dates between the first three, or four sampling points 4–6 weeks, at the penultimate date three months, 
and at the last date six months). While donors of S_024 and S_034 showed mild symptoms, the infection for 
S_035 was asymptomatic although detectable anti-S and anti-N IgG antibodies were produced. At timepoint T1, 
antibodies against all S and N antigens of the microarray could be detected for serum S_024. At time point T2, 
N antibodies had already decreased significantly and at time point T3, neither reactivities against S, nor against 
N antigens were detectable. A comparable time course in antibody decrease was found for sera S_034 and S_035: 
while the array-pattern was still very similar at times T1 and T2, the positive signals at T3 were already markedly 
reduced. For S_034, no antibodies could be detected from T4 onwards. For S_035, S antibodies were no longer 
detectable from T4 on and less N antibodies could already be observed at timepoint T5.

Sera with two and three positive reference tests (group I). For 65 sera, at least two of the three reference tests were 
positive (serial samples of group H and known cross-reactive sera not included). For 64 sera, the microarray 
results were also clearly positive. Only in serum S_062, no antibodies were detectable, whereby it must be noted 
that the ELISA test was also negative. For serum S_019, only anti-S antibodies could be detected, for sera: S_071, 
S_074, S_080, S_081 and S_105 only anti-N antibodies could be detected. For 32 out of 65 of these sera (49%), 
reactivities to all antigens were detected.

Subjects 107–112 were hospitalized patients for whom RT-PCR and ELISA testing were performed twice. The 
first serum sampling time was 2–3 days after the positive RT-PCR, and the 2nd serum sampling was 20–30 days 
later. ELISA at the first sampling time was negative for four subjects (S_108, S_110, S_111, and S_112), ambigu-
ous for S_107, and already positive for S_109. This ELISA result for S_109 completely coincides with the array 
result: anti-S and anti-N IgG antibodies were already present at the same time point. In the other five sera, no 
anti-S IgG antibodies were detectable at T1, in three of five sera, anti-N antibodies could be detected. At time T2, 
ELISAs were positive for five of six subjects, and the one for sample S_108 was ambiguous. This result was 100% 
consistent with the results of the array: only for S_108 reactivities were not detectable for all tested S antigens of 
the microarray. For the other five samples, antibodies against N and S antigens were detected on the microarray.

Reactivity towards other antigens. Reactivity to the tetanus toxoid was detected for all 112 subjects, whereas no 
antibodies to the measles virus antigen were detectable on the microarray for 12 (11%), and to the diphtheria 
toxoid for 17 (15%) subjects.

Figure 2.  Verification of the additional vaccination antigens on microarray: 24 ELISA-tested sera were tested 
on the new microarray, 3 typical vaccine antigens were evaluated and used for further analyses.
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Analysis of post‑vaccination sera. The SARS-CoV2-VAC antigen microarray was also used to detect 
the immunization status after COVID-19 vaccination. The results are shown in Fig. 4 (Raw data: Supplemental 
Fig. S6).

Out of 35 subjects, 27 (V01–V27) received BioNTech/Pfizer’s Comirnaty vaccine (subjects aged 20 to 82 years) 
and 8 (V28–V35) received AstraZeneca’s Vaxzevria vaccine (subjects aged 24 to 64 years).

For 12 subjects (V01–V05, V06, and V28–V34), a serum or a capillary blood sample was taken prior vaccina-
tion. For all 12 subjects, no anti-S antibodies could be detected. Subject V30 showed strong cross-reactivity for 
N antigens in both, the pre- and post-vaccination samples. The only N antigen that did not react in this sample 
was Ag_nucleocapsid-06 at all spotted concentrations.

Sera taken 2 weeks after 1st vaccination. Sampling was performed approximately 14 days after the first vac-
cination (11–17 days) for 15 subjects (V07–V21). All of them received BioNTech/Pfizer’s Comirnaty. For  five 
subjects (V07, V08, V10, V11 and V15), antibodies could not be detected after this period. All five were tested 
again four weeks after the 2nd vaccination and were then found to be positive for anti-S antibodies. In sera from 
another seven subjects, antibodies against all S antigens could be detected. For the remaining three subjects, 
reactivities with all antigens but one (Ag_Spike-08) were observed.

Sera taken 3 weeks after 1st vaccination. 16 sera of 35 subjects were tested at approximately 3 weeks after the 
1st vaccination. Anti-S antibodies were detected for 14 of 16 subjects (V01–V06, V22–V24, V28–V34), noting 
that for all BioNTech/Pfizer’s Comirnaty vaccinated subjects up to age 61, antibodies against all preparations of S 
antigens were also detected at all concentrations. For two subjects (V06 and V33), aged 82 and 60 years, no anti-
bodies could be detected after three weeks after the first vaccination. Three weeks after the second vaccination, 
antibodies against all S antigens were detectable for subject V06. V33 has not been tested again.

For the subjects vaccinated with AstraZeneca’s Vaxzevria (V28–V34), antibodies against all tested S antigens 
could only be detected for two of seven subjects. Most of the other sera, no antibodies directed against antigens 
Ag_Spike-05 and Ag_Spike-08 were found.

Later sampling. One sample (V35, AstraZeneca’s Vaxzevria vaccine) was taken 4 weeks after the first vaccina-
tion, three samples (V25-V27, BioNTech/Pfizer’s Comirnaty) after the 2nd vaccination. For all three BioNTech/
Pfizer Comirnaty vaccines, antibodies against all selected S antigens could be detected, whereas for the Astra-

Figure 3.  Shown are the results of the new SARS-CoV2-VAC antigen microarray and the available results of 
real-time (RT)-PCR, lateral flow (LF) and ELISA tests for a total of 112 sera tested, with some subjects tested 
multiple times, at different time points.
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Zeneca’s Vaxzevria sample no antibodies could be detected against Ag_Spike-08 even four weeks after the first 
vaccination.

Discussion
In a pandemic situation with a new infectious disease, it is—among other issues—enormously important to 
develop as quickly as possible specific and sensitive diagnostic tools, to adapt these tools to emerging variants 
of the  pathogen17,19,20 and, if possible, to develop highly effective vaccines.

The basis for the emergence of the different variants of the SARS-CoV-2 virus is the high mutation rate that 
single-stranded (ss)RNA viruses accumulate as they  replicate21. These mutations, individually or in combination, 
can give the virus a distinct advantage in terms of replication, transmissibility and ability to escape the immune 
system. For SARS-CoV-2, viral mutation rates and the genetic diversity of virions in a single infected host as a 
function of viral load are now  predictable22, but the results published to date in relation with the SARS-CoV-2 
infection demonstrate the complexity of characterizing a new virus and drawing conclusions about the course of 
infection, disease severity and the potential immune response. Thus, even almost 2 years after the beginning of 
the pandemic, we are still collecting and evaluating data on how strongly or weakly our immune system reacts 
to a SARS-CoV-2 infection or vaccination, which epitopes are recognized at all and which antibody titers are 
protective over which period of  time15. This depends, among other factors, very much on the individual immune 
response of a person.

For the development of reliable and meaningful diagnostic tests and safe, ever-adapting vaccines, the determi-
nation of the optimal antigen under specific reaction conditions is essential. Here, a specific protein microarray 
technology, with which up to 85 antigens (see “Material and methods”, section: “Microarray production”) or 
peptides can be screened simultaneously, offers an ideal method.

In addition, it is of great medical importance to distinguish the reactivity patterns following natural infections 
from those resulting from vaccination containing, e.g., only the spike protein in case of currently used mRNA 
vaccines. A comparative analysis of sera from patients with different clinical presentations or severities is also 
important, as is the screening of sera from patients with a known history of other coronavirus infections or 
exposures for possible cross-reactive antibodies. Complementing the complexity is T-cell immunity, which, as 
mentioned above, was not analyzed in this work. As described by Andreas et al.23, one participant in the CoNAN 
 study18 who had PCR-confirmed mild SARS-CoV-2 infection did not develop a measurable antibody response. 
This result was also confirmed by its testing on the microarray (J-028). Even after vaccination of this patient, 

Figure 4.  The SARS-CoV2-VAC antigen microarray was used to investigate immunization status after COVID-
19 vaccination. Shown are the results of 35 subjects tested who received BioNTech/Pfizer’s Cormirnaty vaccine 
and 8 subjects tested who received AstraZeneca’s Vaxzevria vaccine. Sera taken prior vaccination.
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serological tests remained negative. However, Interferon gamma (IFNγ) and tumor necrosis factor (TNF) could 
be detected in respective tests for this subject 6 weeks after infection. This T-cell immunity persisted for months 
after infection and was enhanced by  vaccination23. This case report demonstrates that evaluation of prior infec-
tion or vaccine response based on antibody detection alone is limited in individual patients and confirms that 
evaluation of cellular and humoral immune responses is essential to assess overall immunity.

Analyses of ROC curves for the antigens included in the study and subsequent verification revealed insuf-
ficient specificities for the antigen preparations Ag_Spike-04 and -06 as well as Ag_nucleocapsid-07, -08 and 
-09, which precluded their use for further analysis as well as for further development of the SARS-CoV2-VAC 
antigen microarray.

Furthermore, it could be shown that antigen selection for the detection of convalescent and vaccine IgG 
response might be different. For the detection of the former, the antigens Ag_Spike-05, -07 and -09 could be 
identified. Serum J-073 was particularly interesting in this context: it was tested positive in only one of the 
six ELISAs, and was positive on microarray only for the antigen Ag_Spike-07. The patient reported strong to 
severe COVID-19 specific symptoms, particularly taste and odor disturbances. Therefore, it is assumed that this 
patient had COVID-19 and that antigen Ag_Spike-07 is the most sensitive of all antigens tested for detecting 
convalescence here.

In contrast, it was found that Ag_Spike-05, as well as Ag_Spike-08 are unsuitable for the detection of vaccine-
generated antibodies. With regard to the problem of cross-reactivity, it was shown on the basis of the tested, 
known cross-reactive sera and the identification of cross-reactive sera within our test pool that the spike protein 
and its receptor binding domains (RBD) are more virus-specific than the N protein. Antigens for which no cross-
reactivity was detected are: Ag_Spike-05, Ag_Spike-07 and Ag_Spike-09 as well as the Ag_nucleocapsid-08, at 
all concentrations tested. This result is due to the fact that the N protein of SARS-CoV-2 has a relatively high 
degree of homology to the N sequences of the other human coronaviruses, while the S protein is very specific to 
SARS-CoV-2. These observations demonstrate the criticality of antigen selection and urge caution in the use of 
poorly performing preparations as test antigens in diagnostic tests.

Another important point could be shown on the basis of the results is the interpretation of missing reac-
tivities despite a positive RT-PCR or despite a vaccination. As the test results for sera S_052, S_054 and S_057 
(Fig. 3) and sera V06 and V35 (Fig. 4) show, the time of sampling plays a decisive role: for IgM, seroconversion is 
reached after a median of 10–13 days after the first symptom or vaccination, for IgG after 12–14 days. Maximum 
seroconversion is achieved for IgM after 2–3 weeks and for IgG after 3–6  weeks24,25. In addition, the possibility 
of a lack of reactivity due to individual disposition, such as age or pre-existing immunosuppression, should not 
be disregarded.

Our data for convalescent sera further shows that occasionally, in the context of the individual immune 
response, only reactivities against a single antigen are detectable. (see samples S_011, S_012, S_014, S_015, S_022, 
S_026 and S_033, Fig. 3). The fact that both, ELISA assays and IgG antibody LF tests usually use only one antigen 
to capture serum antibodies contributes to a certain error rate of these tests (as already shown for S_008, S_017 
and S_033, Fig. 3). As analyzed for several commercially available tests by Manalac et al.26, a parallel use of N and 
S proteins as capture molecules in antibody LF tests and ELISAs is recommended. This would also allow in most 
cases to distinguish between post-inoculation and post-infection reactivities. Cases for which this distinction is 
not possible are those that have been vaccinated with a vaccine made from inactivated virus (e.g.  CoronaVac27) 
or have been vaccinated and convalescent.

Since the approval of the first COVID-19 vaccines, there have been legitimate questions if these vaccines will 
cover emerging strains of the SARS-CoV-2 virus and provide protection to those  vaccinated15. In addition to 
those already mentioned above, numerous studies have been conducted on  recombination28 and mutation rates 
of the SARS-CoV-2 virus. Vilar et al. have  shown29 that the proteins the virus consists of mutate at different rates. 
Particular attention was paid in this study to the main targets of COVID-19 vaccines, therapeutic antibodies and 
diagnostic tests, i.e., to the spike and nucleocapsid proteins, which exhibit the highest mutational  variability29. 
Mutations in the spike proteins at viral domains of host receptor binding are of particular importance, as they 
could lead not only to an expansion of the host spectrum, but also to changes in transmissibility and possible 
immune  evasion30. The currently dominating SARS-CoV-2 Omicron variant, caused more than one million infec-
tions in over 100 countries. It also infects people who are fully vaccinated or recovered from infection with previ-
ous strains. In contrast to earlier virus variants, a lower mortality rate and generally milder infections have been 
recorded in South Africa, although the spread of infection is much faster than with the delta variant, as a very 
high viral load is  reached31. Because the Omicron variant has been shown to replicate more in the bronchi and not 
affect lung cells, respiratory distress, oxygen requirements, and hospitalization occur at a very low rate, whereas 
the Delta variant causes extensive inflammation in the lungs, leading to respiratory distress and often requiring 
hospitalized oxygen  therapy32,33. While for the Delta variant no immune escape and neutralization by antibod-
ies was possible as a result of vaccination, Omicron infection, due to 32 mutations of the spike protein near the 
epitope binding sites for neutralizing or human monoclonal antibodies, results in up to a 40-fold decrease in 
neutralizing activity. Of particular note is the insertion mutation (ins214EPE). The nucleotide sequence encod-
ing for ins214EPE may indicate recombination after co-infection with seasonal coronavirus, e.g. HCoV  229E34. 
Despite the reduced effect of the neutralizing antibodies, robust T-cell immunity was demonstrated for Omicron, 
protecting against severe courses. Diagnostically, deletion mutations in both the spike and nucleoprotein result 
in specificity and sensitivity impairments for both, RT-PCR and rapid antigen assays.

Future monitoring of mutations is essential for the development of effective vaccine variants and reliable 
serological and molecular tests. In addition to viral genome sequencing, protein microarray technology provides 
a low-cost, effective and time-saving platform for monitoring mutation rates by allowing reactivity against a 
variety of antigens to be tested and monitored simultaneously.
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Material and methods
Sampling. For the verification of SARS-CoV2-VAC antigen microarray, 101 plasma/serum samples from 
the CoNAN  study18 were included. This was an exploratory, population-based cohort study in 2020, investigat-
ing antibody responses using six different serological assays in a fully RT-PCR-tested community following a 
large-scale COVID-19 outbreak in the Thuringian village Neustadt am  Rennsteig26.

Samples were selected out of the total serum panel collected for the CoNAN study (n = 626)18, based on the 
following criteria:

• Positive in PCR, clinical signs, positive in one or more ELISAs.
• Positive in PCR, without or with very weak clinical symptoms, positive or negative in one or more ELISAs.
• Negative sera, negative in PCR (or without PCR test), without clinical signs, negative in ELISAs.
• Sera that were positive in one or more ELISAs although no positive PCR and no clinical symptoms were 

recorded.

For ROC analysis it was specified to include at least 20 sera with unambiguously positive results, i.e. positive 
in all six out of six ELISAs and at least 20 sera with unambiguously negative results, i.e. negative in all six out of 
six ELISAs. (see “Statistical analysis” for details).

The symptoms given in Fig. 1 were recorded within the CoNAN study. Symptoms were considered severe if 
they were greater than 5 on a scale of 1–10 or lasted longer than 7 days. Symptoms were rated as strong if they 
were reported by the subjects but lasted less than 7 days and/or were rated 5 or less. None of the subjects required 
hospitalization.

Following the verification of the new assay, capillary and venous blood samples were obtained from volun-
teers with known clinical histories. Venous blood samples were centrifuged at 3000×g for 5 min. The plasma 
supernatants were transferred to screw cap micro tubes (Fisher Scientific, Schwerte, Germany) and stored at 
− 20 °C for further analysis.

Subjects in this group who had no symptoms were indicated as asymptomatic, subjects with symptoms as 
mild, and patients who required hospitalization as hospitalized (Fig. 2).

Additional blood samples for this study (usually capillary) were donated by volunteers.

ELISA analysis. The selected CoNAN samples were ELISA—tested at the Jena University Hospital, Frie-
drich Schiller University Jena, Germany. All ELISAs used in the study were designed and licensed to detect IgG 
and IgM antibodies against different antigens of the SARS-CoV-2 virus in routine laboratory  praxis18. ELISAs 
from six different manufacturers were used based on convenience and kit availability and served as reference for 
the array verification.

Ethics statement, data protection and data management. The study protocol for the CoNAN 
study was approved by the Medical Ethics Research Committee of the University Hospital Jena, Germany, where 
the study was conducted. Informed written consent was obtained from each study participant, including all vol-
untary donors. Confidentiality and personal privacy were respected at all levels of the study. Data associated with 
the sample were anonymized. All methods used in this study were performed in accordance with the relevant 
guidelines and regulations of the Medical Ethics Research Committee of the University Hospital Jena, Germany.

Study design. The verification of the new SARS-CoV2-VAC assay was performed according to the follow-
ing scheme (Fig. 5).

Using known ELISA results for subjects in the CoNAN  study18, threshold values for antigens of clinically 
relevant pathogens in addition to SARS-CoV-2 antigens were established by ROC analysis. The threshold values 
thus generated were applied to the array data of the known sera. For assay optimization, additional sera from 
voluntary donors were tested and results were compared to data sets of Real-Time (RT)-PCR, IgG antibody 
lateral flow (LF) and ELISA.

Antigen selection and SARS‑CoV2‑VAC antigen microarray layout. The SARS-CoV2-VAC anti-
gen microarray contained antigens of clinically relevant pathogens in addition to SARS-CoV-2 antigens: SARS-
CoV-2 Nucleoprotein N and SARS-CoV-2 Spike S antigens, including S1 and S2 domains.

SARS-CoV-2 nucleocapsid protein (N) is the major structural protein that binds the viral RNA genome. The 
spike protein (S), a transmembrane protein, consists of two subunits, S1 and S2. S1 mainly contains receptor 
binding domains (RBD) responsible for cell surface receptor recognition. S2 contains elements necessary for 
membrane fusion.

The selected antigens were obtained from several manufacturers and were spotted in different concentrations, 
as presented in Table 2.

To simplify graphical mapping, SARS-CoV-2 antigen preparations were named with sequential numbers 
(Table 1).

Each SARS-CoV-2 antigen was spotted in up to three concentrations by adding a spotting buffer to the 
antigen prior to the spotting process. For most antigens, 0.5 µg/µL was used as highest concentration, unless the 
original preparation was provided by the manufacturer at a lower concentration. Some antigens were re-buffered 
in order to remove potentially interfering additives. The Sino RBD-Protein antigen (spots 29–31, Supplemental 
Fig. S7) was excluded from further testing because of false positive signals in negative controls without serum 
during early testing.
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In addition, the new SARS-CoV2-VAC antigen microarray contained a group of typical vaccine antigens, i.e. 
the antigens from Clostridium tetani, Corynebacterium diphtheriae and the Morbilli virus (Table 3).

In addition, the new array also contained peptides that were not evaluated in this study. Different concen-
trations of human IgG and human IgM were spotted as hybridization controls. An HRP (horseradish peroxi-
dase)—labeled protein was spotted as a positive control, to confirm substrate addition, and a buffer was spotted 
as a negative control.

Each antigen concentration was spotted in triplicates. All replicated spots were evenly distributed across the 
microarray. The complete layout of the microarray is shown in Supplemental Fig. S7.

Microarray production. The microarrays used in this study were manufactured by INTER-ARRAY (fzmb 
GmbH, Research Centre for Medical Technology and Biotechnology, Bad Langensalza, Germany).

All antigens were covalently immobilized directly onto the epoxy-coated plastic surface in the bottom of 
eight-well microtiter strips (see Supplemental Fig. S7). The spotted area is 3.2 mm by 3.2 mm. The microarray 
accommodates 289 spots with an average diameter of approximately 120 µm.

After manufacturing, each single 8-well strip was sealed under argon atmosphere and stored at 4 °C until use.

Microarray test procedures. Antibody detection using these protein microarrays was performed to 
the following previously optimized protocol. The microarrays were first incubated twice with washing buffer 
(1xPBS/0.05%; Tween 20/0.25%; Triton X 100) at 37 °C and 400 rpm for 3 min. Afterwards, protein arrays were 
incubated with blocking buffer (1xPBS/0.05%; Tween 20/0.25%; Triton X 100 and 2% milk powder) at 37 °C 
and 300 rpm for 5 min in order to block unspecific binding sides. Subsequently diluted serum samples (1:100, 
in buffer) were incubated for 30 min at 37 °C and 300 rpm. After a washing step as described above (37 °C, 
400 rpm, 5 min), the protein microarrays were incubated with a diluted (1:1000) HRP-coupled anti-human IgG 
antibody (Sigma-Aldrich, Steinheim, Germany) at 37 °C and 300 rpm for 30 min. Then the protein microarrays 
were washed twice with washing buffer (37 °C, 400 rpm, 3 min). Finally, the microarrays were incubated with 
the substrate SeramunGrün chip (Seramun Diagnostica GmbH, Heidesee, Germany) for exactly 10 min at 25 °C, 
without shaking.

Microarray image analysis. The protein microarrays were read out by the ArrayMate device and data 
were analyzed using IconoClust software according to the manufacturer’s specifications (both by Abbott Rapid 
Diagnostics Jena GmbH, Jena, Germany).

Relative signal intensities of defined regions (at predefined spot coordinates) on the microarray were deter-
mined during read out. The normalized intensities (NI) of the spots were determined as NI = 1 − (M/BG), where 
M is the average intensity of the spot and BG is the intensity of the local background. Hence, NI values ranged 
between 0 (no signal) and 1 (maximal intensity).

Statistical analysis. The analysis of the determined grey value signals of each individual antigen was per-
formed by an in-house-developed script in the programming language R (version 4.0.2)35.

The receiver operator characteristics (ROC) curve analysis were created using the pROC package (version 
1.16.2). For the SARS-CoV-2 antigens, the ELISA results of the CoNAN study served as reference. Patient samples 
were classified as “positive” only if all six separate ELISA results of the CoNAN study were positive, and classified 
“negative” only if all six ELISA results were negative. Patient samples exhibiting mixed ELISA test results were 
excluded from ROC analysis. The analysis using Clostridium tetani, Corynebacterium diphtheriae and Morbilli 
virus antigens was more straightforward using positive/negative ELISA tested reference sera (Institut Virion\
Serion GmbH, Würzburg, Germany) for ROC analyses. It should be noted that the ROC analysis of the spotted 
Clostridium tetani and Corynebacterium diphtheriae antigens was performed with microarrays containing a three 
times lower concentration of tetanus and diphtheria antigens (Ag_Tetanus_0.1 and Ag_Diphtheria_0.1) than 
the microarrays used for further analyses (Ag_Tetanus_0.3 and Ag_Diphtheria_0.3).

The area under the curve (AUC), diagnostic sensitivity, and specificity for each antigen were calculated to 
evaluate the accuracy of the individual antigens on the SARS-CoV2 VAC-antigen microarray. According to 
Gardener  200636, an AUC of 0.5 to 0.7 is interpreted as less accurate, 0.7 to 0.9 as moderately accurate, and 0.9 
to 1 as highly accurate. The perfect discrimination is achieved if the AUC for an antigen had a value of 1.037.

The cut-off values of each antigen were set to the maximum Youden-Index38. The signal thresholds thus 
determined were applied to the corresponding antigen grey levels of the different samples discriminating posi-
tive and negative test results. All grey values greater than the corresponding threshold were considered positive. 
Grey values that were less than or equal to the signal threshold were classified as negative. The cut-off values of 
the positive and negative controls, HRP-labeled-protein_0.2 and buffer, were computed employing the CoNAN 
study data. First, the median values of the grey values of the HRP‑labeled‑protein_0.2 (median_HRP) and buffer 
(median_buffer) were calculated across all CoNAN samples. The threshold for the positive and negative controls 
was then defined as median buffer value plus 50% of the difference between median_HRP and median_buffer 
(median_buffer + 0.5 (median_HRP − median_buffer)).

Data visualization was performed by the plotROC package (version 2.2.1) and ggplot2 package (version 3.3.2).

Data availability
All datasets generated and analyzed during the current study are provided within the manuscript, or as Sup-
plemental Files and are available from the corresponding author on reasonable request.
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Figure 5.  The verification of the new SARS-CoV2-VAC microarray was carried out according to the steps 
indicated in the scheme.
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