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ABSTRACT 

This paper shows various approaches for determining acoustic (dis-)similarity based on room 
acoustic parameter values derived from real measurements. The similarity is calculated across 
different room configurations and/or between different microphone-loudspeaker positions 
within the same room configuration. We compare supervised (LDA, Random Forrest) and 
unsupervised techniques (PCA, SPPA) and pre-selected visualizations in terms of their ability 
to exhibit inter- and intra-room (dis-)similarities. The data set generated comprises spatially 
high-resolution room impulse responses obtained from multiple source-receiver positions 
within a room configuration.  The room acoustics are varied by introducing active walls and 
geometries accounting for specific room configurations. The results show that the separation of 
room configurations primarily relies on specific acoustic parameters, with the reverberation 
time playing an important role. Within a given room configuration, the acoustic parameters 
excluding the reverberation time mainly capture the orientation and distance between the source 
and receiver. 

Index Terms – room acoustics, acoustic similarity, dimensionality reduction, classification, 
feature selection, spatial audio 

1. INTRODUCTION

One application of spatial audio 
technology is the enrichment of a real 
physical room with additional virtual 
audio objects [1, 2]. The objects should 
fit seamlessly into the listener's spatial 
auditory perception of the room or 
environment. Therefore, there is a need to 
know the room acoustics of the real room 
to the extent that these can be reproduced 
for the virtual sound sources [3]. The 
calculation, evaluation, and comparison 
of acoustic parameters between different 
room configurations (inter-room 
similarity) and within a room 
configuration (intra-room similarity) is 
consequently purposeful as a basis for the 

Figure 1: Arrangement of movable walls in the listening lab 
of the TU Ilmenau with two loudspeakers and a robot with 

microphone array showing one configuration of a room 
labeled with HL05W 
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so-called auditory augmented reality (AAR) [4]. In addition to room acoustic simulation, the 
measurement of room impulse responses is an adequate approach to determine accurate room 
acoustic properties and parameters [5, 6]. With high-resolution spatial measurements in a room 
and variations of the room geometry, a data set can be created that represents to a high degree 
the real physical variance of the room acoustics within a room configuration and between 
different room configurations [7] (see Figure 1). To quantify the acoustic properties of a real or 
an auditory augmented room, a bunch of different parameters could be analyzed, each trying to 
represent different aspects of sound propagation and perception. However, the amount of data 
requires a time-consuming (dis-)similarity analysis. Therefore, we propose to use different 
machine learning techniques and methods, as well as data compressive visualizations of room 
measurements, to get a parsimonious data view to understand how room acoustic parameter 
combinations describe the (dis-)similarity between room configurations and within a room 
configuration. 
First, unsupervised and supervised data compression as well as classification and feature 
selection are applied to the measurements. We evaluate each approach with respect to its ability 
to separate the data set into classes. Furthermore, we determine which acoustic parameters and 
parameter combinations are useful for classification and with what importance. 
The paper provides insight into room acoustics data at various source-receiver combinations in 
Section 2. Section 3 briefly describes the room acoustic parameters used. Sections 4 and 5 
provide insight into the analysis methods used and a detailed analysis of the data set with respect 
to inter- and intra-room acoustic similarities. Section 6 concludes the paper with a summary 
and critical considerations for further work 
 

2. DATASET DESCRIPTION AND CREATION 
 
In this Section, we describe the data set used and its creation. First, the basic room and its 
subsequent modifications within the individual measurement series and the arrangement of the 
loudspeaker setup is explained. Subsequently, the microphone array used is discussed. Finally, 
automated measurement with a robot is explained in more detail. 
 
2.1 Room Variation and Speaker Setup 
The base room in which the measurements were made is the listening lab of the “Technische 
Universität Ilmenau”. The room measures 8.4m x 7.6m x 2.8m and is acoustically treated 
according to ITU-R BS.1116-3 [8].  
For each series of measurements, movable, highly reflective walls were added to the room to 
change its acoustic properties. The walls have a height of 2.48 m, so there is an air gap of  
0.3 m between the walls and the ceiling. A total of eight room configurations are considered, 
as shown in Figure 2. A room configuration is defined by a specific wall arrangement. 
Five R906 ME Geithain loudspeakers were used as sources. The acoustic center of all 
loudspeakers was at the same height of 1.73 m above the floor. The arrangement of the 
loudspeakers is also shown in Figure 2. On the one hand, measurements should be included 
where the source is not pointed directly at the receiver. On the other hand, sources excite the 
room differently, which can lead to higher variance between data within a room configuration. 
In addition, we want to have a high variance between source-receiver-room combinations.  
 
2.2 Microphone Array 
For the recording of the spatial room impulse responses (SRIRs), a custom microphone array 
suitable for the spatial decomposition method (SDM) was used [9, 10, 11]. It allows the 
estimation of the direction of arrival (DoA) of direct sound and reflections as well as the 
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synthesis of binaural room impulse responses (BRIRs). The microphone array consists of an 
Earthworks Audio M30 measurement microphone and six EM258 omnidirectional electret 
condenser satellite microphones [12]. The height of the measurement microphone during the 
measurements was 1.73 m.   
 
2.3 Autonomous Measurements 
The calculation of the SRIRs was based on sweep measurements. A logarithmic sweep from  
50 Hz to 22 kHz with a length of six seconds was used. The following two seconds after the 
sweep was also recorded. For the purpose of redundancy, three measurements were taken for 
each source-receiver combination. In addition to the sweep measurement, five seconds of noise 
floor was recorded for each position. For HL00W to HL04W, the measurement area is set to  
5 m x 6 m. For room configurations HL05W, HL06W and HL08W, the measurement area is 
reduced according to the room geometry. The spatial sampling resolution was set to 0.25 m 
along the x- and y-axis. This resulted in 188 - 466 positions to be addressed, depending on the 
measurement series. Due to the high manual measurement effort, a measurement robot, a TORY 
v2 from MetraLabs, was used. The microphone array, the microphone preamplifiers and a USB 
audio interface were mounted on this platform. The measurements could thus be performed 
autonomously. Details on the design and operation of the robot are described in [13]. A total of 
3,196 measurement positions were covered in all measurement series. For five loudspeakers, 
this results in a total of 15,980 measurements, which are included in the analysis in Section 5. 
Our data set provides a balanced number of room-specific measurements. Room configurations 
HL00W and HL01W provide 2330 measurements, each. Room configurations HL02W and 
HL03W provide 2225 measurements, respectively. Room configuration HL04W is associated 
with 2335, room configuration HL05W with 2060, room configuration HL06W with 1535 and 
room configuration HL08W with 940 measurements. 
  

Figure 2: Room configurations for the individual measurement series with marked added walls in red and 
speakers in blue. The room labels in the upper row (left to right) are HL00W, HL01W, HL02W and HL03W. The 

room labels in the lower row (left to right) are HL04W, HL05W, HL06W and HL08W 
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3 ROOM ACOUSTIC PARAMETERS 
 
For the room acoustics analysis in this study, several room acoustics parameters are extracted 
from the room impulse response recorded by a measurement microphone. The parameters used 
are explained below. 
The early decay time (EDT) is the time it takes for the energy decay curve (EDC) to drop from 
0 dB to -10 dB. It is related to the perceived reverberation time [14]. According to [14], the 
reverberation time is the time it takes for the sound pressure level in a closed room to decrease 
by 60 dB after the sound source is turned off. In this paper, the reverberation time DT20, 
according to [15] is used. When calculating the DT20, the direct sound is cut off and the 
reverberation time is averaged from several iterations by sampling the EDC over 20 dB decays. 
This minimizes the influence of the sound source, especially when the distance between the 
source and receiver is short and the source and receiver are not omnidirectional [15]. The 
definition index D50 and the clarity index C50 are related to the perceived transparency of sound 
and the syllable intelligibility of speech. The clarity index C80 is the equivalent for music 
reproduction. In addition to the definition and clarity index, the third parameter related to the 
perceived transparency of the sound or speech intelligibility is the center time TS. It describes 
the time in the RIR at which half of the signal energy is reached. Other parameters are the 
direct-to-reverberant-energy-ratio DRR, as well as the individual components of the direct 
energy ED and reverberant energy ER of the DRR. In addition, the inverse measure Grel is used 
according to [16], which is a loudness-related measure. A more detailed consideration of the 
general room acoustic parameters can be found in [17, 14]. The parameters are calculated for 
the single octave bands from 125 Hz to 16 kHz.  
 

4 ANALYSIS METHODOLOGY 
 
To gain insight into how combinations of room acoustic parameters describe the (dis-)similarity 
between different room configurations and within a room configuration, we use a data-driven 
approach to analyze the measurements more efficiently than the traditional approach. 
Specifically, we explore a data compression, classification and feature selection approach. In 
the data compression approach, we use Principal Components Analysis (PCA), Sparse 
Projection Pursuit Analysis (SPPA), and Linear Discriminant Analysis (LDA). LDA and 
Random Forests (RF) models are employed as classifiers, using the room acoustic parameters 
mentioned in Section 3. By examining the confusion matrices and the class-specific and macro-
average precision, recall and F1 scores, we gain insights into the (dis-)similarities between the 
room configurations from the perspective of both classifiers. To identify important features, we 
use a permutation feature importance wrapper heuristic. In this Section, we describe the 
methods used in our study. 
 
4.1 Data Compression 
In this section, we frame the estimation of the inter-room (dis-)similarity as a dimensionality 
reduction problem. We apply Principal Component Analysis (PCA), Sparse Projection Pursuit 
Analysis (SPPA) and Linear Discriminant Analysis (LDA) to standardized data. Each 
projection describes combinations of the room acoustic parameters, indirectly providing 
insights into the importance of these parameters in inter- and intra-room similarity. To visually 
identify patterns, we map the observations to exemplary room grids. The calculations of these 
methods were performed using MATLAB. 
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4.1.1 Principal Component Analysis 
Principal Component Analysis (PCA) is a statistical method used for dimensionality reduction 
in multi-variate data. It is an unsupervised technique that aims to identify the most important 
features in a data set and project them into a lower-dimensional space. PCA calculates principal 
components, which are orthogonal linear combinations of the original features and captures the 
maximum variance present in the data set. PCA can compress data, reduce noise, and thereby 
identify patterns. For a more detailed look at how PCA is calculated, please refer to [18, 4]. 
 
4.1.2 Sparse Projection Pursuit Analysis 
Sparse Projection Pursuit Analysis (SPPA) is a statistical method used for dimension reduction 
and pattern recognition in multi-variate data. Unlike PCA, SPPA focuses on finding a linear 
combination of a few features. It aims to identify a small number of features that are most 
important in describing the data while disregarding the other features. SPPA is based on the 
concept of projection pursuit, which aims to find interesting projections of the data that 
emphasize underlying structures or patterns. For a more detailed look at how SPPA works, 
please refer to [19, 20]. In this study, we use the MATLAB implementation of SPPA as 
described in [20].  
 
4.1.3 Linear Discriminant Analysis 
Linear Discriminant Analysis (LDA) is a supervised statistical method for finding a linear 
combination of features that separate two or more classes. Unlike PCA, LDA considers the 
group membership or class labels in the data. LDA defines an objective function by considering 
the ratio of the between-class variance to the within-class variance. The goal is to find a 
projection direction that maximizes this ratio. In other words, LDA aims to maximize the 
separation between different classes while minimizing the variance within each class. For a 
more comprehensive understanding of how LDA is calculated, please refer to [21, 4]. 
 
4.2 Classification  
We approach the estimation of inter-room (dis-)similarity as a multi-class classification 
problem with eight classes, where each class corresponds to a specific room as depicted in 
Figure 2. To analyze the tendencies of the room similarities, we employ two classifiers. The 
first classifier we consider is Linear Discriminant Analysis (LDA) (see Section 4.1.3), which is 
suitable because the classes are partially linearly separable and have relatively balanced class-
specific feature distributions. The standardized values of the room acoustic parameters are used 
as input for the LDA classifier. For modeling complex decision boundaries, we opt for the 
Random Forests (RF) classifier as our second model. As the RF classifier is not sensitive to the 
scale of the features, we train it on the original data. To assess the classifiers' performance, we 
employ a stratified 5-fold cross-validation procedure [22]. Our classification report includes the 
confusion matrices and the macro-averages of precision, recall, and F1 score [23]. 
Random Forests (RF) is a supervised machine learning algorithm widely used for classification 
[24, 25]. It incorporates four key concepts: ensemble learning, bootstrap aggregating or 
bagging, feature randomness, and voting. The RF classifier is an ensemble of decision trees 
designed to mitigate the overfitting issue associated with a single decision tree [26]. Each 
decision tree in the ensemble is constructed by recursively partitioning a subset of the training 
data, based on selected features. To obtain homogeneous child nodes, each node split minimizes 
a specific impurity criterion, such as the Gini index [27]. The RF algorithm employs bootstrap 
aggregating, which involves training each decision tree on random samples with replacement 
from the original training set [28]. Additionally, at each node, a subset of features is randomly 
selected to determine the best split [28]. A trained RF model makes predictions by aggregating 
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the individual tree predictions through majority voting, where the predicted class is determined 
by the most frequently predicted class among the trees.  
We employ the RF classifier from the Scikit-learn library [29] with its default hyperparameter 
configuration. We use 100 decision trees in the ensemble. The node splits are determined based 
on the Gini index [25]. The tree nodes continue to split until all leaves become pure, and the 
minimum number of samples required at a leaf node is set to one. When searching for the best 
split, the RF classifier considers √# features features [30]. Each decision tree is built using 
bootstrapped samples. To evaluate the performance of the classifier, we calculate class-specific 
precision, recall, and F1 scores, as well as the macro-average of these metrics, based on the 
confusion matrices. Precision is computed as the ratio of true positives to the sum of true 
positives and false positives. Recall is the ratio of true positives to the sum of true positives and 
false negatives. The F1 score is the harmonic mean of precision and recall. 
 
4.3 Feature Selection 
In order to capture the importance of room acoustic parameters in automated room 
(configuration) discrimination, we employ wrapper feature selection with cross-validation [22]. 
Given the high dimensionality of the data and the presence of highly correlated features, we 
adapt a computationally efficient permutation feature importance wrapper heuristic  [31]. This 
heuristic evaluates the importance of a feature by measuring the change in a performance metric 
when a particular feature is randomly permuted while keeping the other features unchanged 
[31]. For this purpose, we leverage Scikit-learn’s [29] implementation of RF classification and 
permutation feature importance.  
In our study, the RF classifier is trained on non-standardized data. The wrapper heuristic 
employed is based on the mean decrease in F1 score, considering both type I and II errors in 
room (configuration) discrimination. To obtain reliable F1 scores with low variance, we 
perform a stratified 5-fold cross-validation. For each feature, we repeat the feature permutation 
500 times within each fold [31]. We obtain a total of 5 x 500 importance scores per feature. A 
feature is considered important if it consistently yields positive scores throughout the iterations 
[31]. Note that there may be features that have no "own" effect on the classification, but are 
associated with the prediction due to their correlation with important features [31]. 
 

5 RESULTS 
 
In this Section, we investigate the (dis-)similarity between room configurations and within a 
room configuration using the machine learning methods mentioned in Section 4. We first 
evaluate the data compression approach, followed by classification and feature selection. 
 
5.1 Data Compression 
In the subsequent analysis, we focus on the condensed approaches of Principal Component 
Analysis (PCA), Sparse Projection Pursuit Analysis (SPPA), and Linear Discriminant Analysis 
(LDA) in relation to room configurations. 
 
5.1.1 Principal Component Analysis  
Figure 3 shows the PCA plot, providing a 2D visualization of the samples based on their 
projections onto the first two principal components. The first component accounts for 61.07% 
of the variance, while the second component explains 11.78% of the total variance encompassed 
by all room-acoustic parameters. In the Figure 3, we mark each room configuration with a 
distinct color and shape. There is an order in the arrangement of observations based on room 
configurations, although overlap exists between the clusters. 
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Figure 4 shows the positive and negative weights of the room acoustic parameters in the first 
three principal components. In the first component, EDT, DT20 and TS as well as D50, C50 and 
C80, exhibit similar absolute weights. The remaining parameters show relatively lower 
(absolute) weights in the first component, but their (absolute) weights increase in the second 
and third components. These findings align with those reported in [4], validating the 
consistency of our results.  
Figure 5 depicts the projections of the samples onto each of the first three principal components 
for a specific loudspeaker position, considering their corresponding measurement positions in 
the room grid (rows one to three). Notably, clear spatial patterns are discernible in components 
one and two. These patterns reflect the orientation of the directed sound source, which varies 
across different room configurations, thereby manifesting in distinct value ranges. The first and 
second components capture the characteristics of both the source and the room, respectively. 
The representation of the third component on the room grid does not exhibit noticeable patterns. 

Figure 5: PCA grid plots showing the standardized room acoustic parameters projected onto the first three 
principal components (row one to three) for a specific loudspeaker placement across the room configurations. 

The red filled circle indicates the location of the loudspeaker in the room grid 

Figure 3: PCA plot showing the two-dimensional representation of the 
standardized room acoustic measurements using their projections onto the 
first two principal components C1 and C2 with explained variances. The 

room labels are marked by color and shape 

Figure 4: PCA plot showing the 
weightings of the standardized 

room acoustic parameters on the 
first three principal components. 
The weightings are based on all 
source-receiver combinations 
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The absence of patterns may be attributed to potential estimation errors. Similar patterns can be 
observed for the remaining loudspeaker positions. 
In Figure 6, we compare the absolute weightings of the acoustic parameters in the first 
component between the inter-room and intra-room conditions. The first column corresponds to 
the absolute values extracted from the first column of Figure 4. Notably, DT20 contributes only 
marginally to the component in the inter-room condition ("all rooms"), in contrast to its 
variation in the intra-room conditions. This observation indicates that the variance of DT20 
within a room configuration is small and does not contribute to the characterization of a room's 
properties. Instead, it primarily captures the variations between the room configurations, 
emphasizing its meaning in discriminating between different room configurations. The other 
room acoustic parameters also capture the variation between room configurations, but are more 
dependent on the source-receiver combination, so they show more variation within a room 
configuration than the DT20. 

 
An interesting exception in Figure 6 is the case of HL008W, where DT20 plays a significant 
role in the first principal component. This suggest that there is considerable scatter in DT20 
values within this particular room, contributing to the characterization of the source-receiver 
combinations. This scatter is likely attributed to the connection between two small room 
sections. Figure 7 provides further insight by displaying the samples projected onto the first 
component for the intra-room condition HL008W, considering each loudspeaker, in relation to 
their measurement positions in the room. With regard to the source-receiver combinations, two 
different areas can be distinguished in this room configuration: source and receiver within the 
same area or in different areas. An acoustically special case can be seen in the second subplot 

Figure 6: PCA plot showing the weightings of the standardized room 
acoustic parameters on the first principal component for both the 

inter-room and intra-room conditions 

Figure 7: PCA plot showing the standardized room acoustic parameters projected onto the first principal 
component for the intra-room condition HL008W with different loudspeaker locations in the room grid. The red 

filled circle indicates the location of the loudspeaker 
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with a loudspeaker radiating into both room areas simultaneously. Also, the loudspeaker outside 
the arrangement (shown in the third subplot in Figure 7) creates an acoustically special case.  
 
5.1.2 Sparse Projection Pursuit Analysis 
In the case of Sparse Projection Pursuit Analysis (SPPA), we perform dimensionality reduction 
to reduce the parameter space to five dimensions. In the subsequent analysis, we focus on the 
projection of the samples onto a single component, since we have seen that a multidimensional 
view does not yield additional insights. As described in [19], in SPPA, the starting point for 
each new run is chosen randomly, leading to different combinations of parameters. To account 
for this variability, we conduct 100 runs and examine the parameters that were chosen most 
frequently, as described in [19]. In Figure 8, we observe that DT20 emerges as the parameter 
that primarily characterizes the underlying structure in the data. To provide a more detailed 
illustration, Figure 9 displays the distributions of the samples of the individual room 
configurations over the component, representing one run. It can be seen that the data is 
separated into two distinct clusters: one comprising HL00W, HL01W and HL02W, and the 
other comprising HL04W, HL05W and HL06W. Furthermore, the HL03W and HL08W room 
configurations exhibit unique structures that differentiate them from the other room 
configurations. The distribution observed for HL08W shows two Gaussian-like components. 
This can be attributed to the positioning of the speaker outside the designated room 
configuration. As this loudspeaker is not placed within the room like the other loudspeakers, it 
introduces a different set of reverberation times. Consequently, there is a coupling effect 
between an additional acoustic environment (outside the room configuration) and the actual 
room configuration. In contrast to the other room configurations, the HL03W room 
configuration exhibits a wide and flat distribution. The variation in reverberation times depends 
on the specific source-receiver arrangement in relation to the room configuration. This is 
illustrated in Figure 10 for a particular loudspeaker arrangement for each room configuration. 
According to the SPPA, the main information of the data consists of the variations between the 
room configurations, which can be described mainly by the reverberation time DT20. 

Figure 9: SPPA plot showing distributions of the 
standardized room acoustic measurements of the SPPA 

component across all rooms with all loudspeaker-receiver 
locations 

Figure 8: SPPA plot showing the number of 
parameter selections for 100 SPPA runs. The number 

of selections is marked by the intensity level of red 

Figure 10: SPPA plot showing standardized room acoustic measurements projected onto the SPPA component 
for a specific loudspeaker location in the room grid. The red filled circle indicates the location of the 

loudspeaker 
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5.1.3 Linear Discriminant Analysis  
In this part, we evaluate the dimensionality reduction capabilities of LDA in uncovering room 
(dis-)similarity. Figure 11 illustrates the samples projected onto the first and second linear 
discriminant (LD). Unlike PCA, which identifies directions with the largest variances in the 
data (as shown in Figure 3), LDA projects the data onto a low-dimensional space while 
maximizing the between-class and minimizing the within-class variance (as depicted in  
Figure 11). The arrangement of individual room configurations on the first LD component 
resembles that of SPPA (refer to Figure 9). Figure 12 demonstrates that the first LD component 
is particularly weighted by the individual octave bands of the reverberation time. The first LD 
already explains 92.86% of the variance of the data. These findings align with the results 
presented in [4]. Figure 13 shows the samples projected onto LD one and LD two for a specific 
loudspeaker, highlighting their relationship to the measurement positions within the different 
room configurations. 

 
 

 

Figure 12: LDA plot showing 
the weightings of the 

standardized room acoustic 
measurements in the first two 
linear discriminant functions 

LD1 and LD1 

Figure 11: LDA plot of the first two linear discriminant functions LD1 and 
LD2 showing the room separation based on the standardized room acoustic 

parameters. The room labels are marked by color and shape 

Figure 13: LDA plots showing the room acoustic measurements projected onto the first two linear discriminant 
functions LD1 (upper row) and LD2 (lower row) for a specific loudspeaker location in the room grid. The red 

filled circle indicates the location of the loudspeaker 
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5.2 Classification 
We formulate the estimation of the inter-room (dis-)similarity as a multi-class classification 
problem with eight classes. Each class corresponds to a room shown in Figure 2. We use the 
LDA and RF classifiers with the room acoustic parameters mentioned in Section 3.  

Figure 14: Confusion matrix representing the result of 
performing an 8-class room classification using LDA. 

The blue color represents a high number of correct 
classifications. The red color represents a high 

number of misclassifications 

Figure 15: Confusion matrix representing the result of 
performing an 8-class room classification using RF. 
The blue color represents a high number of correct 

classifications. The red color represents a high 
number of misclassifications 

Table 2: Class-specific average and the macro-average scores for precision, recall, and 
F1 score of a RF classifier in a stratified 5-fold cross-validation using standardized 

room acoustic measurements 
Class (Room) Precision  Recall F1-Score  
1 (HL00W) 93.53 %  94.85 % 94.18 %  
2 (HL01W) 94.28 %  92.66 % 93.46 %  
3 (HL02W) 99.19 %  99.51 % 99.35 %  
4 (HL03W) 99.60 %  100.00 % 99.8 %  
5 (HL04W) 84.59 %  83.68 % 84.13 %  
6 (HL05W) 81.09 %  81.41 % 81.25 %  
7 (HL06W) 93.72 %  97.26 % 95.46 %  
8 (HL08W) 97.30 %  92.26 % 94.64 %  
Macro Avg. 92.91 %  92.13 % 94.64 %  

 

Table 1: Class-specific average and the macro-average scores for precision, recall, and 
F1 score of an LDA classifier in a stratified 5-fold cross-validation using standardized 

room acoustic measurements 
Class (Room) Precision Recall F1-Score Support 
1 (HL00W) 80.27 % 81.37 % 80.82 % 2330 
2 (HL01W) 75.55 % 73.99 % 74.76 % 2330 
3 (HL02W) 93.26 % 93.93 % 93.61 % 2225 
4 (HL03W) 99.96 % 99.91 % 99.93 % 2225 
5 (HL04W) 78.69 % 78.12 % 78.40 % 2335 
6 (HL05W) 75.14 % 73.79 % 74.46 % 2060 
7 (HL06W) 93.07 % 98.05 % 95.49 % 1535 
8 (HL08W) 96,93 % 94.15 % 95.52 % 940 
Macro Avg. 86.61 % 86.66 % 86.62 % 15980 
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By examining confusion matrices and class-specific and macro-average precision, recall and 
F1 scores, we gain insights into room (dis-)similarities from the perspective of both classifiers. 
The scores are based on the confusion matrix shown in Figure 14 for LDA and Figure 15 for 
RF. Tables 1 and 2 show the class-specific average and the macro-average values for the 
precision, recall, and F1 scores of an LDA and RF classifier.  
Both the RF and LDA classifiers exhibit a similar pattern in revealing room (dis-)similarity, 
with the RF demonstrating slightly better performance in room discrimination. In a stratified 5-
fold cross-validation, the RF classifier performs with macro-average precision, recall and F1 
scores exceeding 92 % each. The analysis of the confusion matrices obtained from cross-
validation highlights notable misclassifications between class 1 (HL00W) and 2 (HL01W), as 
well as between 5 (HL04W) and 6 (HL05W), indicating potential acoustic similarities between 
these room pairs. The decreasing room-specific average of precision, recall, and F1 scores 
shown in Table 1 and Table 2 support the increasing acoustic similarity in the mentioned order 
of room pairs. HL03W and HL02W emerge as the room configurations exhibiting the highest 
degree of acoustic distinctiveness when compared to the other room configurations, followed 
by HL06W and HL08W. 
 
5.3 Feature Selection 
By applying a hold-out permutation feature importance heuristic, we can determine the 
important and non-important room acoustic parameters for classification-based  
(dis-)similarities. Figure 16 shows the distribution of changes in the F1 score of a Random 
Forests classifier when a particular feature is permuted. The boxplots represent the aggregated 
changes in F1 score over five folds and 500 permutations per feature. The boxplots reveal 
features with importance scores of zero, indicating their non-importance for room 
(configuration) classification. Negative importance scores are caused by random feature 
variation leading to a slightly better F1 score. The corresponding features are likely irrelevant 
for room (configuration) discrimination. These results are consistent with the low feature 
weightings in the SPPA and LDA data compression approach. DT20 in the octave bands  
500 Hz, 1 kHz, 2 kHz, 4 kHz, 8 kHz and 16 kHz exhibit exclusively positive importance scores. 
These six features are associated with average decreases in F1 score of 2 %, 1.31 %, 6.25 %, 
2.96 %, 1.99 % and 2.92 %, respectively. The 2 kHz octave band of DT20 appears to be by far 
the most important feature for room (configuration) discrimination. These results are consistent 
with the high feature weightings in the SPPA and LDA data compression approach. 

Figure 16: Hold-out permutation feature (parameter) importance scores for all room acoustic parameters based 
on the RF room classification of acoustic measurements. Each parameter is permuted 500 times, yielding a total 
of 5 x 500 scores in each boxplot. The vertical axis shows the decrease in macro F1 score. The horizontal axis 
shows the room acoustic parameters in octave bands 125 Hz, 250 Hz. 500 Hz, 1 kHz, 2 kHz, 4 kHz, 8 kHz and 

16 kHz 
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6 CONCLUSION AND OUTLOOK 
 
This paper presents different approaches to determine the acoustic similarity between and 
within room configurations using room acoustic parameters extracted from real measurement 
data. The (dis-)similarities between the different room configurations as well as the  
(dis-)similarities within the configurations are investigated. For this purpose, unsupervised 
(PCA, SPPA) and supervised (LDA, RF) machine learning techniques are used, which can be 
further categorized in data compression (PCA, SPPA, LDA), classification (LDA, RF) and 
feature selection (wrapper heuristic) methods. These methods are applied to a room parameter 
set based on high spatial resolution room impulse responses recorded from numerous source-
receiver combinations in a total of eight room configurations (see Figure 2). 
The results of all applied methods show that the separation of room configurations, based on 
the selected room acoustic parameters, is largely due to the reverberation time (see Figures 6, 
8, 12 and 16). These results are similar to those reported in [4]. The PCA shows that within a 
room configuration, the reverberation time hardly contributes to the weighting of the first 
component (see Figure 6). We conclude that the reverberation time does not contribute any 
information to the similarity consideration within a room configuration. By mapping the room 
acoustic measurements projected onto the first two principal components in the PCA onto the 
room grid, it can be seen that the principal components contain information about the 
orientation and distance of the source-receiver combination as well as the differences between 
the room configurations (see Figure 5). The SPPA shows that by reducing the parameter space 
to 5 parameters, the reverberation time is mainly selected (see Figure 8). Thus, the method 
separates reverberant and non-reverberant observations based on the used data set. For the LDA 
and RF classification, the different room configurations were chosen as the target attribute. The 
confusion matrices (see Figures 14 and 15) clearly show that the incorrect prediction of the 
models occurs mainly in similar reverberant room configurations. The wrapper feature selection 
heuristic shows that the RF classifier exhibits the reverberation time as the most important 
feature for room (configuration) discrimination (see Figure 16), in line with the results of the 
data compression analysis (see Figures 6, 8, 12). 
For future considerations, several aspects can be considered, such as more measurements in 
other environments, more parameter extraction based on the SRIRs, or other analysis methods. 
A more important point, however, is linking the room acoustic parameter data with perception-
related listening tests. Our previous analysis uses a set of acoustic parameters. No explicit link 
is made between these parameter data and the perceptual evaluation or comparison from 
listening tests. Although the acoustic parameters relate to the perception of e.g. reverberation 
or speech intelligibility, the methods used do not make any link to perceptual distinctions 
between individual observations. For example, instead of using the individual room 
configurations as classes, as in this work, the results of listening tests on perceptual differences 
at different measurement points could serve as classification features. Linking perceptual 
ratings and acoustic parameters could be used for model generation to make predictions about 
perception based on acoustic parameters. Especially for mixed reality applications, such models 
could be used to embed virtual sources into real environments. 
 
ACKNOWLEDGMENT 
 
The presented work is funded within the projects "Multiparties" in the framework "KMU-
innovativ: Interactive Technologies for Health and Quality of Life" of the Federal Ministry of 
Education and Research (BMBF), Germany, and "Mittelstand-Digital Zentrum Magdeburg, 
Teilvorhaben: IT-Strategien und Sicherheit" of the Federal Ministry for Economic Affairs and 
Climate Action (BMWK), AiF, Germany. 



© 2023 by the authors. – Licensee Technische Universität Ilmenau, Deutschland. 14 

REFERENCES 
 
[1]  G. C. Stecker, T. M. Moore, M. Folkerts, D. Zotkin and R. Duraiswami, "Toward 

Objective Measures of Auditory Co-Immersion in Virtual and Augmented Reality," in 
Audio Engineering Society Conference: 2018 AES International Conference on Audio 
for Virtual and Augmented Reality, 2018.  

[2]  A. Neidhardt, C. Schneiderwind and F. Klein, "Perceptual matching of room acoustics 
for auditory augmented reality in small rooms-literature review and theoretical 
framework," Trends in Hearing, vol. 26, p. 23312165221092919, 2022.  

[3]  S. Werner, F. Klein, A. Neidhardt, U. Sloma, C. Schneiderwind and K. Brandenburg, 
"Creation of Auditory Augmented Reality Using a Position-Dynamic Binaural Synthesis 
System - Technical Components, Psychoacoustic Needs, and Perceptual Evaluation," 
Applied Sciences, vol. 11, 2021.  

[4]  L. Treybig, S. Saini, S. Werner, U. Sloma and J. Peissig, "Room acoustic analysis and 
BRIR matching based on room acoustic measurements," in AES 2022 International 
Audio for Virtual and Augmented Reality Conference, August 2022.  

[5]  F. Brinkmann, L. Aspöck, D. Ackermann, S. Lepa, M. Vorländer and S. Weinzierl, "A 
round robin on room acoustical simulation and auralization," The Journal of the 
Acoustical Society of America, vol. 145, pp. 2746-2760, April 2019.  

[6]  S. Pelzer, M. Aretz and M. Vorländer, "Quality assessment of room acoustic simulation 
tools by comparing binaural measurements and simulations in an optimized test 
scenario," in Proc. Forum Acusticum Aalborg, 2011.  

[7]  G. Georg, S. J. Schlecht, A. M. Ornelas and V. Pulkki, "Autonomous Robot Twin 
System for Room Acoustic Measurements," J. Audio Eng. Soc, vol. 69, p. 261–272, 
2021.  

[8]  International Telecommunication Union Rec. ITU-R BS.1116-3, "Methods for the 
subjective assessment of small impairments in audio systems," 2015. 

[9]  S. Tervo, J. Pätynen, A. Kuusinen and T. Lokki, "Spatial decomposition method for 
room impulse responses," Journal of the audio engineering society, vol. 61, pp. 17-28, 
January 2013.  

[10]  S. V. Amengual Garí, J. M. Arend, P. T. Calamia and P. W. Robinson, "Optimizations 
of the spatial decomposition method for binaural reproduction," Journal of the audio 
engineering society, vol. 68, pp. 959-976, December 2021.  

[11]  N. Meyer-Kahlen, S. Amengual Garí and T. Lokki, "What the Spatial Decomposition 
Method can and cannot do," in ICA 2022 proceedings, 2022.  

[12]  L. Treybig, S. Werner, U. Sloma and G. Stolz, "Measure - Analyze - Auralize: From 
room impulse response to room classification and binaural reproduction," Fortschritte 
der Akustik - DAGA 2022; Deutsche Gesellschaft für Akustik e.V. (DEGA), pp. 1405-
1408, March 2022.  

[13]  G. Stolz, S. Werner, F. Klein, L. Treybig, A. Bley and C. Martin, "Autonomous Robotic 
Platform to Measure Spatial Room Impulse Responses," Fortschritte der Akustik - 
DAGA 2023; Deutsche Gesellschaft für Akustik e.V. (DEGA), pp. 59-61, ISBN: 978-3-
939296-21-8, URL: https://pub.dega-akustik.de/DAGA_2023, March Berlin, 2023.  

[14]  DIN EN ISO 3382-1:2009-10, Akustik - Messung von Parametern der Raumakustik - 
Teil 1: Aufführungsräume (ISO 3382-1:2009); German version EN ISO 3382-1:2009, 
2009-10.  



© 2023 by the authors. – Licensee Technische Universität Ilmenau, Deutschland. 15 

[15]  L. Treybig, S. Werner, F. Klein and A. G. S. V. Gari, "Robust reverberation time 
estimation for audio augmented reality applications," in 154 AES Convention, Aalto, 
Finland, May 2023.  

[16]  N. Meyer-Kahlen, S. Schlecht and T. Lokki, "Clearly audible room acoustical 
differences may not reveal where you are in a room," The Journal of the Acoustical 
Society of America 152(2), pp. 877-887, August 2022, DOI:10.1121/10.0013364.  

[17]  H. Kuttruff, Room Acoustics, 5 ed., Spoon Press, 2009.  
[18]  I. T. Jolliffe, Principal Component Analysis, New York: Springer, 2. edition, 2002, 

ISBN 978-, 2002.  
[19]  S. P. Driscoll, Y. S. MacMillan and P. D. Wentzell, "Sparse Projection Pursuit Analysis: 

An Alternative for Exploring," Analytical Chemistry, 92 (2), pp. 1755-1762, DOI: 
10.1021/acs.analchem.9b03166, 2020.  

[20]  S. P. Driscoll, Sparse Projection Pursuit Analysis (SPPA), URL: https://github.com/S-
Driscoll/SparseProjectionPursuit.  

[21]  K. Backhaus, B. Erichsons, W. Plinke and R. Weiober, Multivariate Analysemethoden, 
Berlin Heidelberg: Springer-Verlag, 2018, ISBN 978-3-662-56654-1.  

[22]  R. Kohavi and G. H. John, "Wrappers for feature subset selection," Artificial 
Intelligence, vol. 97, p. 273–324, 1997.  

[23]  D. C. Blair, "Information Retrieval, 2nd ed. C.J. Van Rijsbergen. London: 
Butterworths;," Journal of the American Society for Information Science, vol. 30, p. 
374–375, 1979.  

[24]  T. K. Ho, "Proceedings of 3rd International Conference on Document Analysis and 
Recognition," in Proceedings of 3rd International Conference on Document Analysis 
and Recognition, 1995.  

[25]  L. Breiman, "Random Forests," Machine Learning, vol. 45, p. 5–32, 2001.  
[26]  T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning, New, 

York: Springer New York, 2009.  
[27]  L. Breiman, Classification And Regression Trees, New, York: Routledge, 1984.  
[28]  T. G. Dietterich, "An Experimental Comparison of Three Methods for Constructing 

Ensembles of Decision Trees: Bagging, Boosting, and Randomization," Machine 
Learning, vol. 40, p. 139–157, 2000.  

[29]  F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, 
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. 
Brucher, M. Perrot and É. Duchesnay, "Scikit-learn: Machine Learning in Python," 
Journal of Machine Learning Research, vol. 12, p. 2825–2830, 2011.  

[30]  P. Geurts, D. Ernst and L. Wehenkel, "Extremely randomized trees," Machine Learning, 
vol. 63, p. 3–42, 2006.  

[31]  S. Janitza, E. Celik and A.-L. Boulesteix, "A computationally fast variable importance 
test for random forests for high-dimensional data," Advances in Data Analysis and 
Classification, vol. 12, p. 885–915, 2018.  

 
CONTACTS 
 
M.Sc. Lukas Treybig   email:  lukas.treybig@tu-ilmenau.de 
M.Sc. Juliane Höbel-Müller  email: juliane.hoebel@ovgu.de 

mailto:lukas.treybig@tu-ilmenau.de
mailto:juliane.hoebel@ovgu.de

	1. INTRODUCTION
	2. DATASET DESCRIPTION AND CREATION
	2.1 Room Variation and Speaker Setup
	2.2 Microphone Array
	2.3 Autonomous Measurements

	3 ROOM ACOUSTIC PARAMETERS
	4 ANALYSIS METHODOLOGY
	4.1 Data Compression
	4.1.1 Principal Component Analysis
	4.1.2 Sparse Projection Pursuit Analysis
	4.1.3 Linear Discriminant Analysis

	4.2 Classification
	4.3 Feature Selection

	5 RESULTS
	5.1 Data Compression
	5.1.1 Principal Component Analysis
	5.1.2 Sparse Projection Pursuit Analysis
	5.1.3 Linear Discriminant Analysis

	5.2 Classification
	5.3 Feature Selection

	6 CONCLUSION AND OUTLOOK

