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ABSTRACT

In the design process of camera-based optical metrology systems numerous intricate and
seemingly distinct optimization tasks emerge. A frequently occurring but crucial task in design 
or calibration is to optimize the spatial degrees of freedom of system components. Of course, 
modelling the poses of rigid bodies is long solved using rotation matrices and translation 
vectors, but when it comes to optimizing, this choice of model gets quite tedious to handle. 
Useful concepts such as homogeneous coordinates or (dual) quaternions have been introduced 
to overcome this, which however – lacking a unified framework – can quickly become difficult 
to maintain.
As an alternative, in this contribution it is shown how the unifying methods of geometric 
algebra can be used as an advantage for gradient-based optimization of camera-based optical 
metrology and imaging systems – and how this can be done in a generalized way for seemingly 
different objectives with respect to system design and calibration.

1. INTRODUCTION AND STATE OF THE ART

Camera-based optical metrology systems such as stereo vision, fringe projection, deflectometry 
or light sectioning (Fig 1) are well-established and widely used in industrial applications for 
quality control and measurement of free-form surfaces.

light sectioningstereo vision

fringe projection deflectometry
Fig 1: Examples for camera-based optical metrology systems.
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However, when designing these systems, many complex and, at first glance, very different 
optimization tasks arise – for example, finding the best location of a customer specific specimen 
under test relative to a given sensor or, to a greater extent, finding an optimized geometry of 
the sensor itself for a specific measurement scenario. In addition, once the sensor is built, 
calibration parameters must be determined as accurately as possible – which can also be 
regarded as and obtained by the result of an appropriate optimization process.
A common yet important task when trying to reach these objectives that are often treated 
independently at the moment is to optimize the spatial degrees of freedom of a rigid body, e.g. 
the pose of a camera, a light source, a robot end-effector, or a specimen under test. Of course, 
modelling the pose of a rigid body is a long-solved problem and classically achieved by a 
rotation matrix and a translation vector, but when it comes to optimizing with respect to a given 
merit function, this choice of model gets quite tedious to handle, since rotation and translation 
are modelled differently and can suffer from gimbal lock and other needs for exception handling 
or optimization constraints that are hard to implement. To overcome this, useful concepts such 
as homogeneous coordinates [1] or dual quaternions [2,3,4,5] have been introduced in the past, 
which however due to their very distinct nature can quickly become extensive and difficult to 
maintain, especially in combination with optimizing complex models or intricate digital twins.
As an alternative, in this contribution it is shown how the unifying methods of geometric 
algebra can provide a consistent framework containing all the methods mentioned above, and 
can therefore be used as an advantage for gradient-based optimization of camera-based optical 
metrology and imaging systems. It is proposed how this can be done in a generalized way for 
seemingly different objectives with respect to system design, specimen placement, and 
calibration.

2. GENERALIZED FRAMEWORK FOR MODEL-BASED OPTIMIZATION TASKS

Rather than having to create a new optimization model for each of the objectives mentioned 
above, the seemingly different optimization tasks turn out to be closely related and can be 
generalized by the gradient-based optimization framework proposed in [6], given a differ-
entiable model of the system behavior.

In the specific configuration shown in Fig 2, the pose of a for instance planar specimen under 
test, observed by a metrology system indicated as a camera, is optimized with respect to a 
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Fig 2: Framework for generalized gradient-based optimization of camera-based optical metrology systems (in this 
example applied for optimizing the pose of the specimen for a fixed sensor geometry) [6].
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certain loss function depending on the actual measurement principle. However, by literally 
“connecting” the gradient-based optimization to the extrinsic calibration parameters describing 
the positions and orientations of the measuring system’s components, rather than to the pose of 
the specimen as shown in Fig 2, the geometry and layout of the sensor itself can be optimized 
for a given measurement scenario.
Alternatively, by changing the loss function to compare simulated and real measurement data 
of a given (this time fixed) sensor, the same optimization framework can even be used directly 
for system calibration (Fig 3). Note that the differentiable model of the metrology system itself 
does not need to be altered at all despite the substantial difference of the various optimization 
tasks. Only the parameters to be optimized as well as the specific loss function are changed.

In the following, it is shown how to realize and implement such a multi-purpose model of the 
geometric system behavior that is particularly well suited to provide this flexibility and ease of 
use. It may be differentiated, for example, automatically or numerically, e.g., using platforms 
driven by the current development in artificial intelligence (see section 5.5), or even analytically 
(see section 6).

3. MODELLING THE SENSOR WITH PLANE-BASED GEOMETRIC ALGEBRA

Recently the use of plane-based [7,8,9,10] (or similar: projective [11]) geometric algebra (3D-
PGA) was proposed in computer science as a unifying and elegant approach for the 
representation of Euclidean space.
The basic idea behind geometric algebra (GA) [12], also known as Clifford algebra, is that both 
geometric primitives (like points, directions, lines, or planes) and transformations (like 
translations, rotations, reflections) become elements of an algebra that are directly amenable to 
computation. These algebras are generated by so-called geometric numbers1:

, , . (1)

1 Which are – completely analogous to the “invented” imaginary unit in the case of complex numbers –
themselves not part of the underlying real number field, but rather added as new entities in order to form a new 
algebra.
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Fig 3: The same framework (and model) now applied for calibration of a (given and in this case fixed) camera-
based optical metrology system. Only the parameters “connected to the optimizer” and the loss function
were changed [6].
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The signature  of the algebra indicates the set of used geometric numbers:  of the type 
,  of  and  of  elements [7,8]. 

Fundamental for GA is the geometric product. For two vectors  and  it can be written as 
[13,14] 

  . (2) 

In this case, the geometric product can be split into a (symmetric) inner and an (antisymmetric) 
outer product, denoted as “ ” respectively “ ”. For two vectors, the inner product corresponds 
to the classical scalar product and produces a scalar, while the outer (also called wedge) product 
spans a corresponding oriented plane segment, called a bivector. The resulting sum of such 
elements with multiple grades (like scalar, vector, bivector, trivector, …) is called a multivector. 
Note the similarity to complex numbers, which are generated from  and consist of a 
sum of real and imaginary part. In fact, complex numbers can themselves be considered as a 
low-dimensional geometric algebra  or as a subalgebra of higher-dimensional ones (e.g. 
the even subalgebra of ) [15]. 
By virtue of the geometric product, any analytic function (i.e. function that can be expressed as 
a power series like sqrt(), exp(), log() …) can be generalized to and therefore computed for 
multivectors, providing a very powerful mathematical tool.  
Based on the geometric product, the so-called sandwich product 

 (3) 

can be introduced2, which is essential for transformations: The operator, in general a 
multivector , is multiplied from the front and (reversed) from the back to the multivector 

 This structure is used in GA for applying all kinds of transformations to any 
primitive. 
As stated above, the specific geometric algebra with signature  called 3D-PGA [7,8,9,10] 
has emerged in recent years as a unifying approach for the representation of Euclidean space. 
Despite its small signature3, it naturally incorporates powerful concepts such as projective 
geometry or duality and allows unification of primitives and transformations. In plane-based 
geometric algebra, primitives exhibit the following forms ( , , 

 and “ ” denotes the duality operator) [7,8,9,10]: 

plane   (vector), (4) 
line   

 
(bivector), (5) 

point4    
 

(trivector). (6) 

  
 

2 Analogous to a group acting on itself via the inner automorphism forming the group conjugation. 
3 Resp. (relatively) low dimension when compared with other approaches like conformal geometric algebra, see 

[9,13,16,17,18,19]. 
4 The definition of the point can be best understood either as the dual of the plane defined by its component 

coordinates or as the “meet” of the three planes defined by ,  and . 
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Referring to (6), note that the point is the origin. A point without denotes a direction
(ideal, “at infinity”) rather than a finite position. Since primitives are homogeneous, a (non-
ideal) primitive (not “at infinity”) is normalized by

(7)

As a result, geometric constructions formulated in 3D-PGA become extremely elegant, can be 
implemented by concise programming code and are advantageous in many aspects, since 
Plücker coordinates, dual numbers, homogeneous coordinates, or even dual quaternions are 
inherently embraced.
Thus, 3D-PGA can be used beneficially for concise and flexible modelling of camera-based 
metrology and imaging systems, including 
geometric optics and ray tracing [20,21,22].
As a simple example, camera-based metrol-
ogy systems are commonly simulated by 
their inverted light ray path, called sight 
rays – given by the chief rays associated to 
each single pixel in the image plane. 
Intersecting the sight rays of a camera, 
which for instance are known from the 
camera calibration (see section 5), with a 
planar object is simply done by multi-
plying using the outer product (Fig 4):

. (8)

Analogous (or better said “dual”) to this, the points and optical center of the camera can 
be joined by the so-called regressive product (“ ”: dual), creating the sight ray :

(9)

This way, both the outer and regressive product have a direct geometric interpretation and are 
often referred as “meet” respectively “join”.
Please note that when using these operations, no exception handling is required in the code
whatsoever: the “meet” of two parallel planes will automatically be an “ideal” element denoting 
a line “at infinity” that still can be used for subsequent computations, e.g. be “rotated around” 
– see section 4. For a more complete introduction and definition of both GA and 3D-PGA see 
the listed references.

4. GRADIENT-BASED POSE OPTIMIZATION WITH 3D-PGA

In 3D-PGA, rigid body motions are described by so-called motors. Given a rotation axis 
(line through the origin), with angle of rotation , 

see (7), and a translation axis (ideal line at infinity), distance of 
translation , both represented by bivectors (5), the transformations can 
be uniformly written as

and . (10)
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z

Fig 4: Intersection of sight rays with a planar object [21].
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As mentioned above, the exponential function is defined by its power series using the geometric 
product (the same known e.g. from complex numbers or quaternions). Since in PGA 
transformations are built from consecutive reflections (according to the Cartan-Dieudonné 
theorem) [7,8,9,10,11],  and  are both bireflections, i.e., two consecutive reflections 
– hence the factor ½ in (10). As in (10) can clearly be seen, rotation and translation are unified 
in 3D-PGA and have six parameters (three each for rotation and translation axis) for six spatial 
degrees of freedom of a rigid body. The transformations can simply be combined by the 
geometric product to the motor 

  (11) 

and applied to any primitive by (3). In fact, this is isomorphic to (dual) quaternions, which turn 
out to be simply the even subalgebra of 3D-PGA. Thus, motors exhibit no gimbal lock and are 
inherently easy to interpolate, average, combine and invert. To make modelling of the pose 
even more concise, inferring from the Mozzi-Chasles theorem [23,24], the most general rigid 
body motion in 3D-PGA is a screw motion, which is a combined rotation and translation 
“along” one transformation axis (quadreflection) [25]. Thus, (11) can be written as [26] 

  (12) 

with the bivector, given by the transformation axis (line ), in general of the form5 (5) 

  . (13) 

The gradient-based optimization stated in section 2 can directly be “connected” to these 
bivector coefficients  for pose optimization. In summary, motors are ideal for 
optimization purposes, lead to interpretable gradients, and are at the same time versatile and 
intuitive to use. 

5. EXAMPLE: CAMERA CALIBRATION 

It is important to note that the following example of camera calibration is aiming to demonstrate 
the proposed modelling methods for optimization in a succinct manner. It is not intended to be 
a complete or novel calibration approach. Accordingly, the calibration process, data and results 
are presented in an illustrative rather than rigorous way. To focus on the essential, several 
simplifications are made for illustration purposes, regarding to which the calibration can be 
straightforwardly extended following the proposed modelling and optimization approach, in 
particular: 

- The calibration is performed by only one pose and acquisition of the calibration target. 
Of course, to increase the quality of the calibration, several should be used. 

- Modelled and optimized intrinsic calibration parameters are reduced to exemplary ones 
like radial lens distortion. Tangential lens distortion, skew distortion within the image 
plane due to pixel clock problems, etc. are not considered in this example (but could easily 
be incorporated). 

- The specific choice of gradient optimizer and its parameterization are not addressed here, 
which however may have a strong influence on the individual calibration result. 

 
5 Mind that due to the lack of commutativity of rotations and translations,  is in general not equal to . 

However,  for  and vice versa. 
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5.1 Calibration setup
For this example, the setup outlined in Fig 5
is used for calibration: A camera observes a 
uniquely decodable calibration target, in this 
case a planar display showing a phase-
shifted sinusoidal fringe pattern (Fig 6)
sequence. The resulting image of the real
camera is shown in Fig 7 (camera pixels 
corresponding to sight rays in Fig 5 are 
marked).
In the following, the model of the expected 
system behavior shown in Fig 5 is created,
which can be used to (rudimentary) simulate 
the system by tracing sight rays. Since the calibration parameters are at this state yet to be 
determined, the simulation can only be performed with (for this example quite poor) initial
values for the camera calibration, resulting in a clearly discernible deviation of the fringe pattern 
between real (Fig 7) and simulated (Fig 8, for the following illustrations, the simulated camera 
image is tinted green) camera images.

5.2 Extrinsic calibration model
The calibration target is given as plane (4) in world coordinates (Fig 4 and Fig 5). To describe 
the pose of the camera relative to world coordinates, the motor (11,12) is used referring to 
section 4, with which any primitive can be transformed between world and camera coordinates 
by sandwiching (3). For example, the calibration target in camera coordinates is .

5.3 Intrinsic calibration model
Assuming the widely used pinhole camera 
model [27] (Fig 9), with the camera constant

as calibration parameter, the imaged 
(world) point is projected onto the 
image plane , see (4), by

(14)

with the sight ray corresponding to 

. (15)
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Fig 6: Phase-shifted pattern shown
on display used as uniquely de-
codable calibration target.
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With the camera pixel size  in u- and v-direction as well as the principal point  
respectively  in camera pixels, the undistorted image point  is calculated by 

  and  . (16) 

Finally, lens distortion (in this example for simplicity only radial distortion with coefficients 
, , ) is added [28,29,30,31,32]: 

  with  . (17) 

5.4 Raytracing model 
In this example, raytracing the system outlined in Fig 5 can be performed fairly simply: The 
sight rays  known from the intrinsic camera model in camera coordinates are traced by meeting 
with the calibration target  in world coordinates, resulting in (world) points , see (8): 

 . (18) 

5.5 Differentiable model and gradient-based optimization 
For gradient-based optimization, the model of system behavior must be implemented in a 
differentiable manner, i.e., for all parameters leading into the model, the gradient with respect 
to the loss function must be known. 
From an implementation point of view, implementing the model using platforms driven by the 
current development of artificial intelligence can be very advantageous, as those models are 
typically trained using gradient descent, therefore providing suitable means to calculate the 
required gradient (e.g. backpropagation for a (deep) neural network used in supervised 
learning). Thus, tools for (automatically) determining the gradients like automatic differen-
tiation are deeply incorporated in and provided by those platforms. Furthermore, with the 
modularity provided by concepts like layers, trainable weights, etc., these platforms are well 
suited for implementing the generalized flexible framework proposed in section 2 for 
optimizing camera-based optical metrology and imaging systems [6]. 
Of course, the gradients can also be calculated otherwise, for example by further exploiting the 
possibilities of geometric algebra, as outlined in section 6. 

5.6 Optimization 
With the real measurement data  from section 5.1 obtained by decoding the calibration 
target in the camera image (Fig 7) and the simulated data  calculated by the model of 
system behavior from sections 5.2 to 5.4 using equation (18), a loss function for optimizing the 
system’s calibration parameters can for example be formulated as the root of the mean of the 
squared deviation (RMS) between the real target points  and the simulated target points 

 corresponding to the same camera pixel: 

  (19) 

For the camera pixel marked in Fig 7, this loss function is exemplarily plotted in Fig 10. 
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With real (Fig 7) and simulated (Fig 8) data, the differentiable model (Fig 5) and a loss function
(19), all prerequisites are in place to set up the framework shown Fig 3. To illustrate the 
calibration result, the simulated camera image (tinted in green, Fig 8) is superimposed on the 
real camera image (Fig 7) resulting in various Moiré-like patterns due to the mismatch of the 
imaged fringe patterns caused by the (yet) unknown calibration parameters of the model (Fig 
11).

Conversely, the disappearance of these “Moiré-effects” means that the calibration parameters 
have been successfully optimized.
First, the gradient based optimization is literally “connected” to the bivector coefficients (12,13) 
of the motor of the camera, optimizing the extrinsic calibration parameters. During 
optimization, the optimizer tries to vary the “connected” model parameters according to the 
gradient (in this case only the pose of the camera) until real and simulated camera images 
coincide as best as possible. The optimization result is illustrated in Fig 12, where, as might be 
expected, obvious distortions remain at the margins and corners of the image.
Therefore, in addition to the extrinsic parameters, the lens distortion parameters (17) are 
“connected” for optimization according to Fig 3. Again, starting from the initial values of Fig 
11, the optimization result is shown in Fig 13. Since no more “Moiré-effects” resulting from 
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the superposition are present, optimized calibration parameters were successfully found (Fig 
14).
As mentioned at the beginning, the quality 
of the calibration can be enhanced without 
further ado by using more than one calibra-
tion target pose or by extending the model 
according to the proposed approach. Due to 
the generalization proposed in section 2, the 
developed model can be used directly for 
other optimization tasks (see Fig 2 and [6]), 
for example to find just these best possible 
poses of the calibration target for future 
calibrations.

6. CONCLUSION AND OUTLOOK

In conclusion, it was shown how seemingly different optimization tasks with respect to system 
design (optimization of system hardware) and calibration (optimization of software parameters) 
of camera-based optical metrology and imaging systems can be generalized using the same
model of system behavior. For modelling, the unifying methods of geometric algebra can be 
used in an advantageous way, especially in combination with gradient-based optimization. This 
approach was applied, as a simple example, to calibrate a camera.
However, this beneficial dovetailing of geometric algebra and gradient-based optimization need 
not end here: Since 3D-PGA contains dual numbers6, automatic differentiation and thus the 
determination of the model’s gradients can also be performed directly within the algebra. 
Furthermore, due to the formal simplification provided using geometric algebra, depending on 
the individual model, it may even be possible to calculate the corresponding gradients to a 
certain extent analytically, allowing for an efficient implementation as well as a deeper 
understanding of the gradients, the model, and the optimization process itself.
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