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ABSTRACT 

Stereo imaging provides an easy and cost-effective method to measure 3D surfaces, especially 
due to the availability of extensive free program libraries like OpenCV. An extension of the 
application to the field of forestry was aimed at here in the context of a project to capture the 
elevation profile of forest roads by means of stereo imaging. For this purpose, an analysis of 
the methods contained in OpenCV for the successful generation of depth maps was carried out. 
The program sections comprised the reading of the image stream, the image correction on the 
basis of calibrations carried out in advance as well as the generation of the disparity maps by 
the stereo matchers. These are then converted back into depth maps and stored in suitable 
memory formats. A data set of the image size 1280x864 pixels consisting of 30 stereo image 
pairs was used. The aim was to design an evaluation program which allows the processing of 
the described steps within one second for 30 image pairs. With a sequential processing of all 
steps under the used test system and the usage of a local stereo matcher a processing time of 
4.37 s was determined. Steps to reduce the processing time included parallelizing the image 
preparation of the two frames of the image pair. Further reduction in total processing time was 
achieved by processing multiple image pairs simultaneously and using storage formats without 
compression. A total processing time of 0.8 s could be achieved by outsourcing the stereo 
matching to the graphics card. However, the tested method did not achieve the desired 
resolutions in depth as well as in the image plane. This was made possible by using semi-global 
matchers, which are up to 10 times slower but significantly more accurate, and which were 
therefore used for further investigations of the forest path profile. 

Index Terms - OpenCV, Stereo Imaging, Python 

1. INTRODUCTION

Early and targeted detection of road distress plays a crucial role in reducing costs and 
minimizing repair time. It also contributes to the enhancement of road safety by enabling timely 
prevention of further deterioration. The majority of studies and commercially utilized 
technologies focus on the assessment of paved roads used by thousands every day. A sensor 
system therefore not only has to be highly accurate to detect fine cracks but also fast enough to 
not obstruct the flowing traffic. This combination necessitates the utilization of rapid and costly 
measurement setups such as laser scanners [1], limiting the number of measurement vehicles. 
However, the extension of these measurement techniques to unpaved roads commonly found 
in forest environments is currently lacking in practice. Nonetheless, the evaluation and 
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maintenance of the forest road network are of utmost importance, particularly for efficient 
lumber removal, where heavy-loaded trucks must be able to traverse the roads safely.  

The main causes of pavement damage on forest roads are primarily ruts, which account for 
about 67 % of the total damage, followed by general erosion of the surface layer with 24 % and 
potholes with 3 % [2]. These types of damage characteristically have a greater width compared 
to their depth. On asphalt roads however, cracks characterized by a high depth to surface area 
ratio are the most common type of damage, accounting for about 68% [1,3]. In contrast potholes 
and ruts account for less than 4% of the damage types [3]. 

Although it is possible to apply the same technologies used for paved roads to unpaved forest 
roads, the absence of high traffic volume, lower speeds, and distinct distress characteristics in 
contrast to paved roads present an opportunity to utilize slower yet more cost-effective methods, 
such as stereoscopic 3D. Additionally, comprehensive and freely available software packages 
like OpenCV can be utilized to analyze and extract three-dimensional data from the captured 
two-dimensional image pairs. 

To develop a stereo system for this purpose we need to analysis the capabilities of the libraries 
provided by OpenCV in extend to their suitability in terms of accuracy, speed, and processing 
efficiency. The main focus is on achieving near real-time capability for path measurements and 
establishing the relationship between measurement speed and precision. The results of this 
analysis provide us with requirements and limitations for the mechanical setup. 

 

 
 

2. MATERIAL AND METHODS 
 
2.1 Hardware and Software Setup 
 
The present analysis of an evaluation program is based on Python 3.8.8 with OpenCV 4.5.4. To 
enhance the functionality of the OpenCV libraries, we incorporated additional community 
contributions and CUDA (Compute Unified Device Architecture) support. This enables access 
to the CUDA cores of NVIDA graphic cards and allows the offloading of various computations 
to the GPU (graphics processing unit) instead of the CPU (central processing unit). The tests 
were conducted on the Windows 10 operating system by Microsoft.  
 
For the hardware setup, we utilized an eight-core CPU (AMD Ryzen 7 4800H) with 16 available 
threads, operating at a maximum clock speed of 4.2 GHz. The GPU employed is an Nvidia 
GeForce GTX 1650 Ti, equipped with 1024 CUDA capable cores. Additionally, the system is 
equipped with 32 GB of Random-Access Memory (RAM). The hard drive used provided a read 
speed of 1278 MB/s and a write speed of 400 Mb/s. 
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2.2 Stereo-matcher in OpenCV  
 
To extract a 3D information from two 2D images some requirements must be met. Firstly, the 
individual cameras of the stereo setup must have the same setup in terms of focal length and 
sensor size. Secondly booth cameras need to be spaced apart when looking at a scene with an 
optional inclination. Due to the difference in viewing, objects in the scene shift between the two 
images, with an increase in shift the closer they are to the camera. To determine the dimension 
of the shift, we must detect the corresponding region in both images and calculate the difference 
in their position. This task is handled by the stereo matchers. There are two types of matching 
algorithms: global and local matchers. A global matcher tries to match each pixel in the left 
image with a corresponding pixel in the right image. A local matcher, on the other hand, reduces 
the processing time by only matching induvial image. However, the accuracy of the result 
decreases. OpenCV provides the local matcher developed by Kurt Konolige in the function 
cv2.stereoBM(). In this implementation the matching is done within a search block with a 
minimum size of 5x5 pixels. The search is conducted by scanning each line of the right image 
for a selected region of the left image. The matching of the search blocks is based on the 
decision criterion "Sum of Absolute Differences" (SAD). In this, the total absolute difference 
of each pixel within the search block is formed from the reference of the left image and the gray 
values of the search line in the right image. The area with the smallest added up difference in 
the search line is then assigned to the reference. Limitation of the algorithm are therefore areas 
on the search line where no gray value differences occur. This matcher works with a subpixel 
accuracy of 1/16 pixel. [4]. In addition to the CPU version, a CUDA-capable version is 
implemented. However, this has no subpixel accuracy and only limited search range for shifts 
of 192 pixels, limiting close distance detection capabilities and sensitivity to changes in depth.  
Instead of a pure global matching algorithm OpenCV includes a hybrid of the two types, the 
Semi-Global Block Matching (SGBM). The Approach is based on Heiko Hirschmüllers 
development of the Semi Global Matching (SGM), in which, the corresponding points are 
determined from 16 different direction for each individual pixel. The OpenCV Version allows 
a reduced processing time by using search block similar to the local matcher and different 
amounts of search lines. Depending on the selected mode the search is conducted by a minimum 
of 3 (mode=3), 5 (mode=0/default), 8 (mode=4) or 16 (mode=1) different angles. The amount 
of search lines increases processing time and memory requirements but theoretically allows for 
better matching results in complex scenes [4]. As with the local matcher, a subpixel accuracy 
of 1/16 is achievable. Similar to the local matcher, a CUDA capable version is also implemented 
here. However, this showed insufficient results for images larger than 840x640 pixels and was 
not considered for further investigations.  
 
To assess the accuracy in the matching result we applied the three stereo matchers (local-CPU, 
semi-global-CPU and local CPU) and their sub-variants on the Tsukuba image pair (Figure 1). 
The scene depicted in the image pair contains many areas challenging for stereo matchers, like 
the low-texture lamp, reflections and partially obscured background due to the view angles.  
In addition, a ground-truth disparity map (Figure 2) is provided which visualizes the calculated 
shifts an ideal stereo matcher would determine. The accuracy therefore can be determined by 
calculating the difference between the calculated disparities and the ground truth. A pixel was 
deemed correctly matched, if its disparity value between the calculated map and the ground 
truth was less than two pixels, which corresponds to a depth error of 2 cm at the maximum 
disparity of 80. For the setup of the matcher we, applied a block size of 5 x 5 pixel for both the 
local and semiglobal matcher. This selection is represented in the reduces size of the disparity 
map (Figure 2) in comparison to the original left image (Figure 1).  
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The processing time of the stereo matching was determined for the initial images size of the 
Tsukuba pair of 640 x 480 pixel. Additionally, we increase the size of the image up to 300% to 
1280 x 960 pixel by utilizing OpenCV resize functions to assess the influence of the image size 
on processing time.  
 
 
2.3 Pre- and post-processing 
 
The main focus of this study rests on the development and optimization of an evaluation 
program to extract depth information from two 2D images. For this purpose, we developed a 
base program that handles all necessary steps for the depth extraction from the image pairs. 
While the discussed stereomatcher handles the core function of this program, some preparatory 
steps are necessary for images sourced from cameras. 
 
Firstly, images sourced from cameras may exhibit distortions from the lenses used. Secondly, 
the discussed stereomatcher assumes that matching points only show a shift on the horizontal 
lane. As this heavily relies on the mounting of the individual cameras and the relative position 
of their sensors inside the housing, this cannot be assured. Therefore, rectification of the images 
is necessary beforehand (Figure 3). The libraries needed for the correction are also provided in 
OpenCV with the functions "cv2.initUndistortRectifyMap" and "cv2.remap". The necessary 
coefficients for both intrinsic and extrinsic calibration were acquired by performing a 

Figure 1 left and right view of the Tsukuba pair.  

Distance between the cameras: 10cm, Focal length 615 pixel 
Figure 2 ground truth disparity 

map of the Tsukuba pair 

Figure 3 Preprocessing steps for stereo matching in OpenCV 
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preliminary calibration with a ChArUco target. As this calibration and the saving of the 
coefficients are done in advance, they are not part of this analysis.  
After applying the corrections, the stereo matching can be performed, and the disparity map 
can be calculated. The conversion of the disparity map back to the 3D depth map is performed 
by "cv2.reprojectImageTo3D". Lastly, we save the depth information in a suitable format. 
Initially, the image format "png" was chosen, with the depth information encoded across two 
of the three color channels with the third canal used to store the disparity map. 
 
In the starting configuration of this program, all described steps were performed in sequence. 
By analyzing the time required to process a dataset of image pairs, we further optimize the 
sequence in order to reduce the required time. The image set used for this purpose consisted of 
30 stereo images with a resolution of 1280 x 864 pixel from our calibration set. In contrast to 
the evaluation of the stereomatcher the disparity search range was increased to 192 with the 
block size remaining at 5x5. Our aim was to a achieve a processing time of the whole dataset 
in less than second to mimic a real time evaluation. 

  
 
 
  

Figure 4 Initial sequence of the evaluation program. All steps in 

order 
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3. RESULTS 
 

When comparing the calculated disparity maps of the Tsukuba pair among each other, a clear 
improvement of the SGBM (Figure 5, right) over the two local matchers (left and middle) can 
be determined. Especially the background and lamp shade are visually very close to the ground 
truth. When calculating the absolute difference (Figure 6) almost all larger areas show high 
compliance (dark areas). The disparity maps calculated with the local matcher in comparison 
show low compliances in these areas. Low compliance in both can mostly be found in areas 
concealed by the different angles of sight and the and areas with steep depth variations 
surrounding more homogeneous regions.  
The change in mode for the SGBM had no significant influence on the conformity, reaching 
around 75 % in all cases. The lowest conformity with the ground-truth demonstrated the GPU 
version of the local matcher with 38.6 %, while the CPU version achieved a conformity of 
42 %. Comparing them side by side its apparent that the variance between ground truth and the 
disparity map is higher in the GPU version.  
 

 

 

 
 

Figure 5 Disparity maps of the Tsukuba pair calculated with the local matcher via CPU (left) local matcher via 

GPU (middle), and the semi global matcher via CPU with the default 5 search directions(right) 

Figure 6 Differences between the calculated disparity map from Figure 5 and the ground truth from Figure 2 

SGBM-Mode_0
SGBM-Mode_1SGBM-Mode_2
SGBM-Mode_3

local-CPUlocal-GPU

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Conformity  (%)

Figure 7 Conformity of the calculated disparity maps with the ground-truth 
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Conversely, the influence on processing time is larger. Here both local matchers process the 
images within 0.0129 s with the GPU version being slight faster at 0.012 s. The SGBM modes 
show a larger increase in time, with each mode almost doubling the processing time. The three-
angle mode 2 processed the images within 0.027 s, while the five-angle mode achieves this in 
0.065 s. The eight and sixteen-angle mode result in times of 0.105 s and 0.163 s in comparison. 
 
With an increase in images size these processing times expectedly started to increase steadily 
with an increased images size. The increase to 200% more than doubled the time for the local 
matcher while tripling the default SGBM times for the CPU computations. The GPU version 
also doubled from 0.012 s to 0.025 s. A 400% increase in image size increased the processing 
time further to 0.072 s for the GPU version, while the CPU version of the same matcher 
increased to 0.16 s. The semi global matcher in its fastest configuration in contrast needed 0.7 s 
 
The second part of this evaluation factored in the necessary pre and post processing steps for 
the stereo matching. Based on the time analysis we initially utilized the CPU-version of the 
local block matcher. The sequential processing of these steps resulted in a total processing time 
for the 30 image of 4.37 s. With preprocessing is taking up 32 % and post processing 54 % of 
this time. The next steps to reduce processing time were to parallelize the process as much as 
possible, this included the parallel preprocessing of the image loading and rectification, halving 
their respective times (Figure 11, left) to a total of 3.67 s. A additional parallelization to process 
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Figure 8 Processing speed of the various block matcher types of OpenCV 

Figure 9 processing speed of the three fastest matcher types in relation to the size of the image 
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eight image pairs simultaneously cut the processing time further down to 1.56 s (Figure 11, 
right).  

 
In this context, the loading and saving time remain significant factors influencing the overall 
processing time. The implementation of multithreading requires all 30 image pairs to be loaded 
before distributing them across the threads. Therefore, the adjustable factors for optimization 
are limited to the saving format and block matcher. 
 
Initially, the PNG format was chosen due to its small data size of a few kilobytes. However, to 
further minimize processing time, we investigated different saving formats without 
compression. These formats allowed us to directly save the floating-point depth maps. As a 
result, we switched to the ".tiff" image format, which reduced the saving time from 0.645 s to 
0.045 s. It is important to note that these alternative formats generate larger file sizes. In the 
case of depth maps, the file size increased from 409 KB to 4.21 MB per depth map. 
 
This optimization effort enabled us to achieve a processing time of 1.06 s using only the 
standard CPU libraries, falling just slightly short of our objective of one second (Figure 12, 
left). By leveraging the faster GPU version of the local matcher, we were able to further reduce 
the processing time to 0.8 s (Figure 12, right). 

  
Figure 11 Averaged processing time for each step. 

Left: with parallelization of the loading and rectification, processing time:3.67 s 
Right: with parallelization of the rectification to savings across 8 threads, processing time:1.43 s 
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Figure 10 Averaged processing time of the 30 image pairs with sequential 

program flow, combined time: 4.37 s 

0.598 s

0.802 s

0.6 s

0.3 s

2.07 s

Loading images

Rectify

Calculating disparity

Reprojection

Saving



© 2023 by the authors. – Licensee Technische Universität Ilmenau, Deutschland. 9 

  
Figure 12 Final averaged processing time for each step. 

Left: CPU only processing with improved save time by switching from png to tiff, processing time:1.06 s 
Right: same optimization as left but utilizing the GPU version of the stereo matcher, processing time:0.8 s 

 
 
 

4. DISCUSSION 
 
In our assessment, we successfully achieved a significant reduction in the processing time 
required for 30 pairs of images to nearly one second or less. This performance holds the 
potential for near real-time evaluation of the forest path. However, the conditions under which 
we achieved these low processing times present obstacles to practical implementation. 
 
First, we were only able to achieve these low processing times by relying on the local matchers, 
as even the fastest implementation of the semiglobal matcher has double the processing time 
compared to the local matchers at an image size of 640 x 480 pixels, and triple at a larger 
resolutions like 1280 x 960 pixels (Figure 9). These implementations are shown to be of low 
accuracy, especially at larger distances as shown in Figure 6. Since the GPU version in the 
middle lacks the 1/16 subpixel resolution of the CPU version, these errors are additionally 
amplified, resulting in the lowest conformity of 38% and higher deviations from the ground 
truth. The lack of sub-disparities severely limits the depth gradations that can be mapped when 
back-projecting the disparities onto a 3D map, resulting in a loss of geometric information.  
 
The semiglobal block matchers on the other hand, all achieve high compliance rates of around 
76% and exhibit minimal errors in the background and on homogeneous surfaces. The 
negligible differences observed among the subtypes may be a consequence of the small image 
size and the absence of larger homogeneous surfaces, thereby limiting the significance of the 
number of search directions. 
 
For practical implementation, these factors imply that the semiglobal matchers are more 
effective at greater distances to the target. Consequently, we can position the cameras at a higher 
altitude on a test vehicle while preserving the depth gradation. However, a system using the 
GPU version would need to be positioned roughly 16 time closer to the ground to achieve the 
same depth gradation as the CPU variants. This closer proximity could require the use of 
additional cameras to cover the entire forest trail. It also increases the risk of the lenses being 
hit by gravel, depending on the distance to the ground. 
 
Furthermore, the investigated image resolutions of 1280 x 864 pixels are relatively low for a 
system of this nature. A sensor with these dimensions imposes constraints on either the cameras 
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field of view or the resulting image resolution. Particularly when utilizing local matchers, it 
becomes crucial to employ a high-resolution setup to effectively capture the coarse-grained 
texture present on the forest road. Insufficient resolution and the resulting blur, leads to the loss 
of these fine textures resulting in a decline in matching accuracy, similar to the reduction 
observed in homogeneous surface. Therefore, to ensure optimal performance of local matchers, 
it is essential to maintain a sufficiently high resolution that preserves the fine details and 
textures found on the forest road. Achieving this would require either the utilization of more 
cameras or larger sensors. However, increasing the sensor size contradicts our real-time goal, 
since all investigated matcher types roughly doubles their processing time when the resolution 
is increased from 1280x960 pixels to 1920x1440 pixels (Figure 9).  
 
Finally, our optimization strategy focused on maximizing the parallelization of processes. This 
approach resulted in a heavy utilization of the CPU during the calculations and achieved a 
utilization rate of 90-100%. Consequently, there is minimal available capacity for integrating 
additional components required to process the image stream directly from the cameras instead 
of reading it from memory beforehand. Since even the GPU version of our implementation 
showed performance spikes, adapting our program to less powerful systems such as the Jetson 
TK, which only has a quad-core 2.32 GHz processor, does not seem practical without further 
optimization and reliance on the integrated GPU and multiple systems. This approach would 
also depend heavily on the less accurate GPU stereo matcher. 
 
 

5. CONCLUSION 
 
The results of the study show that real-time forest path recognition in three dimensions is 
possible with OpenCV libraries. However, this performance depends on using the fastest 
matcher in OpenCV and low-resolution images. Despite the advantage of improved processing 
speed, the disadvantages appear in the form of significantly lower matching accuracy compared 
to the slower semi-global matcher. In addition, the lack of subpixel disparity further affects the 
quality of the results, as the achievable depth resolution is limited. Furthermore, increasing the 
camera resolution or integrating additional cameras is not possible without additional high-
performance hardware. 
 
In our particular case, opting for the slower semiglobal block matchers, with processing speed 
up to ten times lower, allows us not only to achieve the desired matching accuracy and depth 
resolution, but also to focus on a stereo setup with high spatial and depth resolution while 
having complete flexibility in the configuration of the measurement setup. Therefore, we 
decided to abandon the goal of real-time evaluation of the forest path and evaluate the path after 
the measurement run. This approach gives us the opportunity to perform further post-processing 
steps on the generated depth maps, such as correcting the slope position and merging the 
individual 3D maps into a continuous path profile. 
 

6. ACKNOWLEDGMENTS 
 
This project was funded by the Federal Ministry of Food and Agriculture based on a resolution 
of the German Bundestag. The work is related to the project “Contura-TU-I” (2220NR061B). 
 
  



© 2023 by the authors. – Licensee Technische Universität Ilmenau, Deutschland. 11 

REFERENCES 
 
List and number all bibliographical references at the end of the paper. The references can be 
numbered in alphabetic order or in order of appearance in the document. When referring to 
them in the text, type the corresponding reference number in square brackets. 
 
[1]  Mathavan, Senthan; Kamal, Khurram; Rahman, Mujib, “A Review of Three-Dimensional 

Imaging Technologies for Pavement Distress Detection and Measurements”, IEEE 
Transactions on Intelligent Transportation Systems, Institute of Electrical and Electronics 
Engineers Inc , New York, pp. 2353–2362, May 2015 
 

[2]  Girardin, Patricia; Valeria, Osvaldo; Girard, François,” Measuring Spatial and Temporal 
Gravelled Forest Road Degradation in the Boreal Forest”,Remote Sensing, MDPI, Basel, 
p.457, 2022, Nr. 14(3) 

 
[3]  Loprencipe, Giuseppe; Pantuso, Antonio, “A Specified Procedure for Distress 

Identification and Assessment for Urban Road Surfaces Based on PCI”, MDPI, Basel, 
p. 65, 2017, Nr. 7(5), S. 65 

 
[4] Kaehler, Adrian; Bradski, Gary,”Learning OpenCV 3. Computer Vision in C++ with the  
      OpenCV Library”.O’Reilly Media, Sebastopol, 2017 
 
 

CONTACTS 
M.Sc. Martin Richter     email: richter.martin@tu-ilmenau.de 
       
Dr. Ing. Maik Rosenberger     email: maik.rosenberger@tu-ilmenau.de 
        
 
 
 

mailto:richter.martin@tu-ilmenau.de
mailto:maik.rosenberger@tu-ilmenau.de



