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ABSTRACT 

In this work, a method for automatic analysis of natural aggregates using hyperspectral imaging 

and high-resolution RGB imaging combined with AI algorithms consisting of an intelligent 

deep-learning-based recognition routine in form of hybrid cascaded recognition routine, and a 

necessary demonstration setup are demonstrated. Mineral aggregates are an essential raw 

material for the production of concrete. Petrographic analysis represents an elementary quality 

assurance measure for the production of high-quality concrete. Petrography is still a manual 

examination by specially trained experts, and the difficulty of the task lies in a large intra-class 

variability combined with low inter-class variability. In order to be able to increase the 

recognition performance, innovative new classification approaches have to be developed. As a 

solution, this paper presents an innovative cascaded deep-learning-based classification and uses 

a deep-learning-based data augmentation method to synthetically generate images to optimize 

the results. 

Index Terms – petrography, deep learning, cascaded AI, data augmentation 

1. INTRODUCTION AND STATE OF THE ART

Mineral aggregates are an essential raw material for production of concrete for urban buildings. 

They are used as concrete aggregates and must be analyzed according to certain European 

standards, in Germany also according to relevant federal standards, for example [1] in Saxony-

Anhalt. Samples from natural mineral deposits must be taken at regular intervals in the deposits 

to analyze the mineral components. This petrographic analysis represents an elementary quality 

assurance measure for the production of high-quality concrete. Deposits that exceed the 

specified limits for the presence of certain minerals are not suitable for concrete production. In 

Germany and worldwide, numerous structural damages are caused by using constituents in 

natural aggregates that are harmful to concrete (for example opal sandstone, flint etc., see Figure 

1). Using alkali-silica reactive aggregate, which are harmful to concrete, leads to alkali-silica 

reaction (ASR). A selection of other critical classes is also shown in Figure 1. 
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Figure 1: Examples of critical aggregates in concrete production (from left to right: opal sandstone, flint, chalk, 

coal, pyrite / marcasite, brown iron) 

 

The state of the art for a petrographic analysis of natural aggregates is still a manual examination 

by specially trained experts (mineralogists or geologists). The manual process of petrographic 

analysis using a manual examination as well as scratch test and hydrochloric acid swab test for 

questionable stones. This procedure is time-consuming and error prone and their results depend 

on the individual experience of the inspector. Automatic routines can only be found for the 

analysis of a few specific mineral components (for example Calcite and Dolomite) by using the 

near infrared spectra (NIR) [2]. 

One publication by Wotruba et al. explains that the number of minerals, which can be 

automatically analysed in NIR, is limited because not all minerals showing diagnostic 

absorption features and very dark minerals can also cause problems by absorbing a high amount 

of the electromagnetic spectra [2]. The analysis of micrographs is another way for automatic 

classifying of natural aggregates [3]. This procedure is used for the inspection of grinding 

surface patterns of mineral plates and needs a costly mechanical preprocessing of the mineral 

surface. But for the classification of natural aggregates as untreated rock material, this type of 

procedure is much too complicated and therefore not suitable for the given task of automating 

a petrographic analysis.  

Our paper describes an automatic recognition routine for petrographic inspection by using 

image processing of hyperspectral imaging data and AI algorithms in the form of pre-trained 

convolutional neural networks in the SWIR spectrum.  

In our own previous studies, first we used image processing and machine learning based on 

color images in the spectrum of the visible wavelength range (VIS) [4], [5], [6] and later we 

used hyperspectral imaging data and deep learning (DL) [7], [8]. In our previous studies using 

RGB-color images as data base especially the differentiation of very similar classes and their 

correct assignment to the superordinated-classes of uncritical and two types of critical classes 

could not yet be solved sufficiently well. For this reason, further investigations in SWIR were 

continued in the form of hyperspectral data analysis using DL [7]. 

Hyperspectral data analysis also known as hyperspectral imaging (HSI) combines spectroscopy 

and computer vision (CV). HSI allows the analysis of both spatial and spectral properties of 

objects. A hyperspectral image contains information about the spatial distribution of materials 

within a sample. Each image pixel represents an individual point on the surface of the sample, 

which includes a quasi-continuous point spectrum of the material [7]. 
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There existing several techniques for capturing hyperspectral images. One of the popular 

techniques, which is also used in industrial context, is called a push broom imager. Using this 

technique, images are captured line by line as the object moves relative to the camera. These 

lines contain a spatial and a spectral dimension. To obtain a whole image, another spatial 

dimension is added by stitching these lines together [9].  

Overall, a hyperspectral image can be thought of as a stack of grayscale images where each 

grayscale image represents the spatial reflectance intensity per wavelength of a given sample 

(Figure 2).  

 

 
Figure 2: Hyperspectral images of given natural aggregate – Spatial and spectral characteristics [8] 

 

It is important to know, that some of these grayscale images contain redundant information. 

Therefore, it is important to reduce the dimension of the data using feature extraction and / or 

feature selection techniques. 

 

Another underlying problem of the given recognition task is that natural aggregates are already 

present within individual classes as mixed mineral components with specific chemical and 

spectral properties (a rock particle often contains several mineral components in its structure). 

Therefore, it is important to develop more complex Artificial Intelligence (AI) based 

recognition routines to reliably detect the large number and high intra-class variance of 

potentially occurring classes in a deposit as well as the presence of rock combination within a 

rock object. 

This explains why determining the class of rock particles using near infrared (NIR) and short-

wave infrared (SWIR) characteristics is much more complex than separating pure minerals. In 

the analysis of natural aggregates, the difficulty of the task lies in a large intra-class variability 

with simultaneously low inter-class variability. In terms, this means that the individual class 

shows strong variations in appearance and the differences in appearance between the classes 

are unfortunately often very small. This underlying characteristic of the given recognition task 

leads to possible confusion between several classes. In order to be able to increase the 

recognition performance despite the given complexity, innovative new approaches to 

classification have to be developed. As a solution, this paper presents an innovative AI based 

cascaded classification that builds on previous research [4], [5], [6] and [7] and combines 

different classifiers. 

Another problem prevalent in recognition of mineral aggregates, the under-representation of 

rare but reliably recognizable classes, is also addressed in this paper. This problem is of 

particular importance in the context of the application of powerful deep neural networks due to 
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the very large amounts of data required by a deep learning network for all classes to be 

recognized with high confidence.  

To solve the main problem of deep learning: the required large training data sets and 

underrepresented classes, different approaches have been developed from researchers in the 

past. While Transfer Learning [10] was introduced to solve similar recognition tasks using the 

same network and training of the fully connected classification layers, dataset augmentation 

techniques were developed to artificially increase the number of objects present by simulating 

and varying the objects in a virtual space using simple algorithms. This increase in the total 

number of objects within a dataset reduces the risk of overfitting when training a deep neural 

network and reduces the cost of creating a homogeneous dataset [11]. 

Classical methods of dataset augmentation include cropping, mirroring, scaling, random erasing 

[12], rotational or translational motion [13]. An innovative approach is the application of 

Generative Adversarial Networks (so-called GANs). These network architectures learn to 

simulate images based on a given dataset of real objects and thus generate new artificial images 

that take into account the specific characteristics of the given real dataset examples. GANs 

describes a supervised learning algorithm, used for data augmentation [14]. The algorithm 

consists of a pair of networks, the so-called Generator and Discriminator. Both work against 

each other while training process, the generator creates an image based on a random noise 

pattern while the Discriminator is given either the fake images created by the Generator or a 

real image from the dataset and decides whether the image given is real or fake. This decision 

is given as feedback to the Generator. Therefore, while the Generator learns to create more 

realistic images, the Discriminator becomes better in distinguishing between fake and real.  

This paper shows the solution of automated rock constituent recognition using intelligent 

cascaded classification and presents a possibility of recognition rate increase using an intelligent 

data augmentation method based on Deep Learning. In the paper, a comparison without data 

augmentation and with data augmentation is shown to highlight the possibilities and limitations. 

 

2. INVESTIGATIONS 

 

2.1 Image acquisition with push broom sensor in the wavelength range of 960 – 2500 

nm 

The hyperspectral images of various natural aggregates were taken in a selected spectral range 

on a hyperspectral workbench from the manufacturer HySpex / NEO (HySpex SWIR-384) 

(Figure 3). 

 

 
Figure 3: Used push broom sensor HySpex SWIR-384 
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The used SWIR camera works on the push broom imaging principle and covers a spectral range 

from 960 nm to 2500 nm. The spectral resolution is about 5.45 nm with 288 image channels 

(spectral channels), a spatial resolution of 384 pixels per line and a frame rate from up to 400 

fps. The illumination in form of two halogen lamps covers a wavelength range from 400 nm to 

2500 nm. 

 

2.2 Image acquisition with high-resolution color camera line sensor in VIS 

 

 
Figure 4: Used RGB color line scan camera 

 

The RGB image partial data sets of the investigation were generated using an experimental 

setup consisting of a 3-fold color line scan camera with divisor prism as well as a suitable 

incident light illumination (see Figure 4). The lens used was an achromatically corrected macro 

lens. An LED line light with a high homogeneity along the line was used as the illumination 

device. The big advantage of the RGB color camera images in contrast to the HSI images is the 

significantly higher spatial resolution (2048 pixel per line), which offers an advantage for a 

supplementary classification based on the object textures, especially for classes that are difficult 

to separate. 

 

2.3 Acquired datasets 

In our research, we used a large HSI data set from our study in [7]. The examples of the different 

subclasses were collected by our partner at MFPA Weimar, recorded with the HSI Sensor, 

analyzed and structured. Table 1 gives an overview of the samples of collected natural 

aggregates in the 3 main classes (super-ordinated classes) and the 21 categories (sub-classes).  
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Table 1: Overview of the investigated categories of natural aggregates [7] 

 
 

The super-ordinated class “non-critical aggregates” consists of natural aggregates, which are 

harmless for production of concrete, “critical aggregates 1” consists of alkali-silica reactive, 

water-absorbing, and swellable inorganic compounds with the potential for concrete 

destruction, and “critical aggregates 2” consists of organic, ferrous and sulphur / sulfate 

compounds with critical potential, too.  

In Figure 5 the object numbers in individual categories of the large HSI data set are shown. 

Figure 6 shows the studied object number in individual categories for the classes category 7 

(Cat_07: non-porous limestone) and category 15 (Cat_15: light and porous limestone) of the 

RGB dataset, which are used for studies of dataset augmentation with GAN. 

Category Aggregates Name of class

1 Quarz

2 Siliceous slate (black, grey)

3 Quartzite

5

Other Palaeozoic sediments (quartzitic, 

clay, phyllitic schists)

6 Sandstone (dense) except group 16 

7

Limestone (marlstone), native except 

group 15**

8

Limestone (dolomite), Nordic except 

group 15**
10 Crystalline (granite, gneiss), Nordic 

11

Flint (dense), all varieties except group 

12*

4 Greywacke

9

Rhyolite, andesite, (porphyries, 

porphyrites), basic volcanic rocks

12 Chalk-crusted and porous flint (flint)*

13

Siliceous limestones, siliceous chalk, 

opaline sandstone

14 Chalk / Chalk Limes
15 Light and porous limestone and 

16

Sedimentary rocks with loose grain 

bonding (e.g. mudstone / siltstone / 

17 Brown coal

18 Charcoal wood, xylitol

21-1 Other - plastics, rubber, polystyrene

21-2

Other - organic material (plant parts, soil, 

...)

19 Brown iron encrustations, turf iron ore

21-3 Other - Goethite

21-4 Other - Haematite

21-5 Other - metals

21-6

Other - building materials (mortar, 

concrete, bricks,...)

20 Pyrite, marcasite

21-7 Other - gypsum

non-critical 

aggregates

critical 

aggregates 1 

(Water-

absorbent, 

swellable 

inorganic, alkali-

reactive)

critical 

aggregates 2
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Figure 5: Used HSI dataset with sub-classes / categories 

 

 
Figure 6: Used RGB dataset with sub-classes / categories (original and GAN) 

 

2.4 Image processing and cascaded AI recognition routine 

The image processing and AI recognition routine were developed and validated at TU Ilmenau 

and the following steps (chapter 2.5 – 2.9) were also done at TU Ilmenau. The first step is the 

acquisition of HSI Data. The second step is summarized as so-called pre-processing, which 

consists of: normalisation and baseline correction of the data, definition of an ROI in spatial 

and spectral dimension, and outlier analysis, a data reduction method and at the end the 

segmentation process. The pre-processing steps are necessary due to the high dimensionality of 

the hyperspectral data before applying a deep learning model. After pre-processing, one has to 

decide between a conventional classifier (e. g. Random Forest) or a Deep Learning classifier 

(CNN). When using a conventional classifier, the next steps are feature extraction, feature 

selection, classifier training, testing and validation. When using a DL classifier, on the other 

hand, feature extraction and selection are already part of the intrinsic DL algorithm, so no prior 

feature extraction or selection is required. 

Unfortunately, the HSI sensors available on the market still have only limited spatial resolution, 

in contrast to the available high-resolution color camera line sensors and despite their high 

price. However, since various preliminary investigations of our own revealed the importance 

of high spatial resolution for distinguishing classes that are phenotypically difficult to separate 

and can only be distinguished on the basis of their porosity (for example dense and porous 

sandstone), the chosen approach was to develop a cascaded hybrid detection routine. So we 
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want to use the benefit of a texture analysis in high-spatial resolution RGB images and the 

benefit of deep Learning in high-spectral resolution HSI images. 

In a cascaded recognition routine, there are two ways of implementation. The first possibility 

is to align the different sensor signals from the RGB sensor and the HSI sensor beforehand, so 

that one can perform feature extraction in both sensor data with the same spatial resolution and 

direct object assignment. Subsequently, the feature vectors extracted in both signals are fused 

and used in a common classifier (e.g., a support vector machine) as the classification basis. The 

main drawback of this method, however, is that one forfeits the benefits of extracting high-

resolution texture features as a classification basis in favor of a uniform resolution of both 

sensors, since one can reasonably achieve an approximation of the spatial resolution only to the 

smaller resolution available (without any real information gain). A second method, which is 

preferred by the authors of this paper, is to use the output signals in their original resolution in 

different stages of the recognition routine.  

Figure 7 shows possible strategies to realize a cascaded AI-recognition routine using a multi-

stage recognition process based on different sensors (multimodality). Thus, in a first step, either 

a CNN classification can be performed on the high spectral resolution HSI image data after 

prior application of an LDA or, alternatively, a CNN classification can be performed on the 

high spatial resolution RGB image data. In a second detection stage there are 3 alternatives: 

 

1) a classification using a conventional classifier (e.g.: Random Forest) based on the point 

spectra of the HSI data or 

2)  a classification by conventional classifier (e.g.: Random Forest) based on selected 

wavelength bands of the HSI data or 

3) a classification by conventional classifier (e.g.: Random Forest) based on a previous 

color/gray value and texture analysis of the RGB data. 

In this way, the respective advantages of the sensors can be optimally exploited in order 

to reliably distinguish even classes that are difficult to separate. 

 

 
Figure 7: Cascaded AI-recognition routine 

 

For example (see Figure 8), in a first step one can perform a deep-learning classification on the 

HSI data after applying an LDA, and for objects classified into a class with low confidence 

level (which are difficult to separate), in a further step we propose a texture feature analysis and 

classification with a conventional classifier (e.g., an SVM or a Random Forest) on the high 

spatial resolution color camera data. Considering the final result, the two classifiers then act 
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similar to an ensemble classifier and a hybrid determined classification result is obtained with 

a higher confidence level. 

 

 
Figure 8: Cascaded hybrid recognition routine on the specific example 

 

2.5 Dimensional reduction of hyperspectral data for the application of Deep Learning 

Within the scope of the investigations, the aim was to apply pre-trained CNNs to the acquired 

hyperspectral images for getting good results. Before the actual application of a CNN for the 

analysis of the aggregates, it is necessary to process the hyperspectral images with different 

pre-processing steps and to segment the actual object regions. A segmentation method was 

implemented using a pixel-based thresholding. The segmented aggregates are then transformed 

from a higher dimensional space to a three-dimensional space using various methods of 

multivariate data analysis (dimensionality reduction techniques) (resulting in 3-channel images) 

to make them useful for classification with pre-trained deep learning models. The 

dimensionality reduction methods investigated were principal component analysis (PCA), 

independent component analysis (ICA), and linear discriminant analysis (LDA). For the given 

application, linear discriminant analysis (LDA) shows the best results. 

 

Figure 9 shows the false-colour representation of natural aggregates after application of the 

LDA with regard to the superordinated-classes “non-critical aggregates”, “critical aggregates 

1” and “critical aggregates 2”. 
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Figure 9: False-color representation of natural aggregates after application of the LDA with regard to the 

super-ordinated classes 

 

In Figure 10, the results of dimensional reduction using Linear Discriminant Analysis (LDA) 

are visualized in the form of the outlier-cleaned point spectra after LDA. 

 

 
Figure 10: Dimensional reduction using Linear Discriminant Analysis (LDA) visualized in the form of the 

outlier-cleaned point spectra after LDA [15] 

 

2.6 Training, validation and test of preselected CNN models on dimension-reduced 

hyperspectral images 

For the classification of the dimension-reduced hyperspectral images, different pre-trained 

deep-learning models in the form of so-called Convolutional Neural Networks (in short: CNNs) 

were first used (VGG-16, ResNet-50, CNN Halcon-enhanced and MobileNet), which were 

developed specifically for the classification of 3-channel image data [7], [8]. Thus, using a 

feature space transformation and dimension reduction by means of LDA and subsequent 

application of a DL network (ResNet50), a good overall recognition rate of 90.9% on 3 super-

ordinated classes ("uncritical", "critical_1" and "critical_2" could already be achieved so far 

(see Figure 11). 
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Figure 11: LDA+CNN - Results for the three super-ordinated classes [15] 

 

The goal was to further optimize the recognition performance beyond the 90.9% achieved by 

using additional classifiers for the objects that were classified with lower recognition 

confidence in the result of the CNN. The cascading of the recognition routine was aimed at and 

for this purpose further AI variants were investigated in order to be able to recognize classes 

that are difficult to separate reliably using an ensemble of classifiers. The cascaded recognition 

routine was successfully developed as program scripts. In the final data set, which is currently 

still to be recorded with the final demonstrator (described in chapter 2.10), the investigations 

carried out are to be repeated accordingly and the developed algorithms of the cascaded AI are 

to be adapted and optimized to the final sensor signals. 

 

2.7 GAN-based Data Augmentation 

To train deep learning networks, a large amount of data is needed to avoid overfitting and to 

allow the network to have a good generalization capability. Therefore, in addition to the 

uncritical objects, a large amount of critical class objects is especially needed. For recognition 

tasks, obtaining a balanced, sufficiently large data set for training presents a particular problem, 

especially with respect to rare (underrepresented) classes. The collection of underrepresented 

class examples is costly and time-consuming. However, cost reduction and optimization of 

recognition performance can be achieved, e.g., by the complementary application of artificial 

intelligence in the form of Generative Adversarial Networks (GANs) by using them to 

artificially generate images of underrepresented classes. After training, the GAN network 

architectures learn to simulate artificial images based on a given data set. 

Therefore, the goal was to investigate intelligent synthetic data augmentation to optimize 

evaluation algorithms in the form of optimized AI models.  

In our studies, we used a GAN to simulate synthetic images of the class cat_15 (light and porous 

limestone), which previously had a poor individual recognition rate due to a high confusion rate 

with the class cat_7 (non-porous limestone). The basis of the investigations is the RGB data set 

with high spatial resolution. We used StyleGAN3 [16] as official PyTorch implementation with 

an image size of the GAN of 256x256 and the graphic card NVIDIA GeForce RTX 2080 Ti 

with 11 GB. We started with a pre-trained model LHQ-256 [17] and needed 21 days and 21 

hours for getting the results in form of a finally trained GAN-Model (with Kimg 12640), which 

is useful for an intelligent data augmentation of cat_15. The process of investigation of the 

influence of data augmentation is explained below: 

 

1) In the test always the same original images were used to give a comparability of the 

recognition performance! The test images of the classes were already removed at the 

beginning as independent test partition for the comparative tests, the test images were 

also not used for training the GAN! 

2) GAN (StyleGAN3 [16] - official PyTorch implementation) was trained on 300 original 

objects of cat_15, which were later also used for training and validation of the classifier 

to determine the recognition performance. The GAN was trained up to 12640 Kimg. 
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Using the learned GAN model, 700 GAN objects/images were synthetically generated 

for cat_15.  

3) Next, a CNN classifier was used (CNN of the Halcon software library [18]: 

pretrained_dl_classifier_enhanced and pretrained_dl_classifier_resnet50) to classify on 

the original images of the training and validation partition or on the original images of 

the training and validation partition plus the GAN images and compare the recognition 

performance. 

 

In Figure 12 different image examples as result of the data augmentation process are shown for 

sub-class 15 (on the left side the original images and on the right side the GAN-simulated 

images of cat_15). Already with the eye one recognizes the great similarity between original 

and GAN-simulated images and thus a qualitatively very well assessable authenticity of the 

artificially generated images both in terms of color and shape, as well as texture. Especially the 

difficulty of the simulation of an extremely realistic texture is to be emphasized here, which 

however succeeds extraordinarily well with the used GAN. 

 

 
Figure 12: Examples of original and GAN-produced images of category 15 (light and porous limestone) 

 

2.8 Statistical analysis of the quality of data augmentation 

In chapter 2.7 the quality of the synthetically, by means of GAN generated images was 

qualitatively evaluated by eye under evaluation of the gray value, color and texture similarity 

to original images of the class Cat_15. In this chapter, an approach is made to quantify this 

qualitative assessment by means of statistical evaluation and to make it measurable. For this 

purpose, first 123 features of gray value and texture of the two original classes cat_7 and cat_15 

(RGB data set) were calculated with Halcon [18] (because the two, visually similar classes 

differ more in color and texture than in form). The features were extracted on the basis of the 

HSI color space (components: hue (H), saturation (S), intensity (I) after a transformation from 

RGB to HSI color space. For example the feature “area_center_gray” was calculated in the 

three different HSI-channels (H, S, I). This function computes the area and center of gravity of 

a region in a gray value image and the results are: AreaH, AreaS and AreaI as gray value 

volumes of the region in channel H, S and I and the coordinates with Row and Column of the 

gray value center of gravity for each HSI-channel. 

Subsequently, the discriminant ability of the features was evaluated using the InfoGain ranker 

(feature selection method) procedure of the WEKA [19] software library. The ranking result 

using the 12 best features is shown in Table 2. All 12 best features are results of the gray value 

features “area_center_gray”, “elliptic_axis_gray” or the texture feature of Laws [20].  
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Table 2: 12 best features used InfoGain Ranker 

Info Gain Value number in 
feature vector 

Feature 
name 

Halcon function 

0.8652 123 rr texture_laws 

0.8146 122 rw texture_laws 

0.8146 2 AreaH area_center_gray 

0.8097 16 RaS elliptical_axis_gray 

0.7999 118 wr texture_laws 

0.7965 22 RaI elliptical_axis_gray 

0.7958 19 RaH elliptical_axis_gray 

0.7865 61 PerimeterS fuzzy_perimeter 

0.7293 23 RbI elliptical_axis_gray 

0.7226 17 RbS elliptical_axis_gray 

0.722 113 sr texture_laws 

0.7187 20 RbH elliptical_axis_gray 

 

In the next step, the feature distributions of the 12 features with the highest discriminant ability 

between both classes were examined more closely in their feature distributions under 

representation of their box-whisker plots. This type of presentation allows a quick overview of 

the median value, the skewness of the distribution underlying the data as well as occurring 

outliers. The features sorted in order of discriminant ability using InfoGain are shown by their 

box-whisker plot in Figure 13. The box plots of the original classes (without data augmentation) 

are labeled cat_07 and cat_15, the box plot of the data augmented class is labeled cat_15_GAN.  

 

 
Figure 13:Box-Whisker-Plots of the best 12 features with InfoGain-Ranker 

 

It is notable that for the grey value features AreaH, RaS, RaI, RaH, PerimeterS, RbI, RbS and 

RbH, there is consistently very high agreement in the box-whisker plots between the original 
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and data-augmented class of cat_15. Here, both the median values and the position of the boxes 

relative to each other differ only minimally (nearly the same median and skewness).  

In contrast, however, their box-whisker plots differ strongly from the other class cat_07, 

indicating good separability. For the texture features by Laws (rr, rw, wr and sr), on the other 

hand, the box-whisker plots of the distribution of original and data-augmented class cat_15 

differ strongly. This indicates a not yet optimal simulation of the natural texture of class cat_15 

using GAN. 

Looking at the outliers, it is noticeable that there are more statistical outliers for the data-

augmented class than for the non-augmented class for individual grey value features (e.g.: RaS, 

RaI or RaH), which speaks for a certain uncertainty of the reproduction of the natural variance 

of these features. However, for texture features, without exception, there are significantly more 

outliers in the data augmented to the non-augmented class, again confirming that gray value 

features can be significantly better replicated/simulated with the GAN than texture features. 

 

Furthermore, the class-specific feature distributions were visualized in histogram representation 

in the software WEKA for the selected features with high discriminant power. Figure 14 shows 

the best 12 features in histogram form (cat_07 colored in blue, cat_15 colored in cyan and 

cat_15_GAN colored in red). In an optimal simulation of the data-augmented images, the two 

distributions for cat_15 and cat_15_GAN should be almost on top of each other and also clearly 

different from the distribution of cat_07. This is given for the gray value features. For the texture 

features, it can also be seen here that the distributions of the data-augmented and non-data-

augmented class of category 15 differ significantly with respect to position and amplitude, 

which speaks for a non-optimal reproduction of the natural texture using GAN. Since the 

distribution of the texture features of the GAN-augmented class cat_15_GAN even partly shows 

more similarity to the other class cat_07 than to the original class cat_15, it becomes quite clear 

here that a reliable distinction of the classes only using the texture features is not given here. 

 

 
Figure 14: Feature distributions of the best 12 features with InfoGain-Ranker (cat_07 in blue, cat_15 in cyan 

and cat_15_GAN in red) 

 

2.9 Performance increase of data augmentation 

In this chapter the performance increase of the intelligent data augmentation with GAN under 

the comparative examination on the example of the recognition rates of two different CNNs on 

a database with and without GAN data augmentation is shown. In the first investigation (see 

Table 3), the Halcon CNN "pretrained_dl_classifier_enhanced" was used on the non-

augmented partial data set, consisting of 1000 original RGB images of the class cat_07 as well 

as 300 original RGB images of the class cat_15 (without data augmentation) for training and 
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validation and 223 original RGB images of cat_07 and 92 original RGB images of cat_15 for 

the test. Furthermore, the same classifier was used in parallel on the GAN-augmented partial 

dataset, consisting of 1000 original RGB images of the class cat_07 as well as 300 original 

RGB images plus 700 GAN-augmented RGB images of cat_15 for training and validation as 

well as 223 original RGB images of cat_07 and 92 original RGB images of cat_15 for testing, 

were used. The results are shown in Table 3. The classifier "pretrained_dl_classifier_enhanced" 

showed an absolute recognition performance increase of 0.2% for cat_07 (not significant) and 

a significant absolute increase of 11.1% for category 15 using data augmentation with GAN.  

 
Table 3: Results with and without data augmentation using Halcon CNN (pretrained_dl_classifier_enhanced) 

 
 

In the second study, the Halcon CNN "pretrained_dl_classifier_resnet50" was also used on the 

above-described partial data sets non-augmented and GAN-augmented. The results are shown 

in Table 4. The classifier "pretrained_dl_classifier_resnet50" showed an even higher absolute 

recognition performance increase of 0.6% for cat_07 (not significant) and a significant absolute 

increase of 18.4% for category 15 using data augmentation with GAN. 

In both cases, data augmentation with GAN significantly improves the underrepresented class, 

which speaks for a clear optimization of the CNN model on the basis of balanced classes. 

 
Table 4: Results with and without data augmentation using Halcon CNN (pretrained_dl_classifier_resnet50) 

 
 

In summary, it can be said that an application of these new techniques for intelligent data 

augmentation can be applied in industrial practice and can be especially for unbalanced datasets 

with underrepresented, rarely occurring classes lead to significant increases in recognition rates. 

 

2.10 Demonstrator 

In parallel to the software development at the TU, a new demonstrator was built at the project 

partner GFE - Präzisionstechnik Schmalkalden GmbH, which was realized with optimized 

components on the basis of the previous test results. Within the scope of the project HyPetro, a 

demonstrator was designed and set up at GFE GmbH for rock classification as a random sample 

tester (Figure 15). For this purpose, it was necessary to design a suitable mechanical separation 

for the strongly heterogeneous samples for individual batches of 5 - 10 kg. Special attention 

must be paid to the strongly varying densities of the individual sample components, as well as 

the strong abrasiveness and, in some cases, high porosity of the materials. Furthermore, it must 

be ensured that the sample components are presented to the VIS color camera and SWIR-HSI 

camera for data acquisition in a separated and, in particular, overlap-free manner. This will 
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ensure error-free and stable image acquisition for the generation of learning data sets for the 

development of the machine learning methods or for the training of the classifier models.  

In the final demonstrator, a different HSI camera than the one used in the HSI preliminary 

investigations (the SPECIM FX17 hyperspectral sensor {see Figure 16} with a wavelength 

range of 900 to 1700 nm) is used due to lower cost and higher spatial resolution.  

As shown in Figure 15, the demonstrator consists of feeding and separation device, conveyor 

belt, VIS-RGB camera, SWIR-HSI camera and sample discharge as well as the device software 

for controlling all components. 

 

 
Figure 16: SPECIM FX17 and display of 3-channel image cut-outs of different rock categories on the basis of 

HSI data 

 

The integration of the classification software developed by the TU Ilmenau is to be carried out 

in the scope of the project. 

 

3. CONCLUSION AND FUTURE WORK 

 

In this work, a method for the automatic analysis of natural aggregates using hyperspectral 

imaging and high spatial resolution RGB-Imaging in combination with AI algorithms in the 

form of an intelligent DL-based recognition routine, a hybrid cascaded recognition routine and 

a necessary demonstrator setup could be demonstrated. So far, a good overall recognition rate 

of 90.9 % on 3 superordinated classes ("uncritical", "critical_1" and "critical_2") could already 

be achieved using a feature space transformation and dimension reduction by means of LDA 

and subsequent application of a DL network (ResNet50). Furthermore, investigations for an 

application specific cascaded recognition routine by using complementary classifiers for the 

objects classified with lower recognition confidence in the result of the CNN, were performed 

Figure 15: Demonstrator for the 

detection of rocks in the size range 

8-32 mm using VIS-RGB camera 

and SWIR-HSI camera at GFE - 

Präzisionstechnik Schmalkalden 

GmbH 
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and in their result the use of a classifier ensemble was elaborated. As soon as the final data set 

acquired with the final demonstrator is available, there is a need for further optimization within 

the process chain for the cascaded AI recognition routine, concerning the image acquisition 

technique, the image pre-processing and segmentation as well as the dimension reduction the 

learning rate and the different steps of the cascaded routine. 

The paper presents different possibilities of cascading the recognition routine and explains their 

basic steps to be performed. Thus, it gives recommendations for dealing with difficult 

recognition tasks using multimodal data.  

In addition, the paper shows possibilities for dealing with underrepresented classes, which are 

a widespread problem. A possible performance enhancement of pre-trained deep learning 

models is shown for synthetic image dataset augmentation using Generative Adversarial 

Networks (GANs) based on selected investigations. Furthermore, an important aspect of the 

qualitative and quantitative evaluation possibility of the authenticity of artificially simulated or 

generated images is investigated and possible evaluation methods are shown. 

Further investigations are planned on optimal proportions of synthetically generated images for 

training in the context of the amount of real recorded images and in dependence on the 

complexity of the recognition task as well as on the homogeneity of the occurring classes. 

Further investigations on the evaluability of the image quality of GAN images are also planned. 

An intelligent synthetic data augmentation of underrepresented object classes will ultimately 

enable an effective and resource-saving use of the few available objects/instances and thus a 

more sparing use of resources and time. 
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