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Abstract

In this thesis we investigate a certain class of low-dimensional fermionic quantum field

theories with four-Fermi interactions. Such theories are commonly used as effective low-

energy models for quantum chromodynamics, the theory of strong interactions, and have

applications in the realm of condensed-matter physics as well. Four-Fermi theories are

well suited for the study of non-trivial phenomena within strongly-interacting quantum

field theories. For our purposes, their most important properties are the notion of chiral

symmetry as well as its spontaneous breakdown, which is why a major part of this thesis

is devoted to their study.

In our non-perturbative investigations, we mostly employ numerical lattice quantum

field theory simulations, but we also present a brief analytical study performed in the

mean-field limit. In particular, we are concerned with two major questions: On the

one hand, we investigate a certain two-dimensional four-Fermi theory, the so-called

chiral Gross-Neveu model, which has a continuous chiral symmetry group. We study

the possibility of the model at finite temperature and density to exhibit inhomogeneous

regions, where the order parameter for chiral symmetry breaking shows oscillatory

behavior with the spatial coordinate. In the light of numerous no-go theorems, this is

a non-trivial question. We find that remnant inhomogeneous structures can indeed be

found even beyond the mean-field limit, albeit likely only on short scales.

On the other hand, we consider a related theory with a discrete chiral group, referred

to as the Gross-Neveu model, in three space-time dimensions. There, we shall be

concerned with the influence of an external magnetic field on chiral symmetry and

its spontaneous breaking. While mean-field approaches predict a rich phase structure

for non-zero magnetic field and chemical potential, our simulations suggest that this

is not the case in the full quantum theory. For all parameter values within the region

of spontaneously broken chiral symmetry, we find the magnetic field to enhance the

symmetry breaking even further, a phenomenon referred to as magnetic catalysis. In

fact, a major goal of this thesis is to contrast the findings of our lattice simulations with

existing mean-field results in order to understand to which extent the latter are capable

of representing the full theory.
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Zusammenfassung

In dieser Doktorarbeit untersuchen wir eine gewisse Klasse von niedrig-dimensionalen

fermionischen Quantentheorien mit vier-Fermi-Wechselwirkungen. Theorien dieser Art

werden häufig als effektive Modelle für die Beschreibung der Quantenchromodynamik,

der Theorie der starken Wechselwirkung, bei niedrigen Energien verwendet, haben aber

auch Anwendungen in der Festkörperphysik. Vier-Fermi-Theorien sind hervorragend

geeignet für das Studium nicht-trivialer Phänomene innerhalb stark wechselwirkender

Quantenfeldtheorien. Deren für unsere Zwecke wichtigsten Eigenschaften sind der

Begriff der chiralen Symmetrie, sowie deren spontane Brechung. Beide werden uns in

einem Großteil dieser Arbeit begegnen.

Für unsere Untersuchungen jenseits der Störungstheorie verwenden wir hauptsäch-

lich numerische Simulationen aus dem Bereich der Gitterquantenfeldtheorie, präsen-

tieren aber auch eine kurze analytische Studie in der Molekularfeldnäherung. Im

Speziellen beschäftigen wir uns mit zwei Fragestellungen: Einerseits betrachten wir eine

bestimmte zweidimensionale vier-Fermi-Theorie, das sogenannte chirale Gross-Neveu-

Modell, welches eine kontinuierliche Symmetriegruppe aufweist. Wir untersuchen, ob

das Modell bei endlicher Temperatur und Dichte eine inhomogene Region aufweist, in

welcher der Ordnungsparameter der chiralen Symmetriebrechung in der räumlichen Ko-

ordinate oszilliert. Angesichts einer Anzahl von No-go-Theoremen ist diese Fragestellung

eine nicht-triviale. Wir finden, dass derartige inhomogene Strukturen tatsächlich auch

jenseits der Molekularfeldnäherung beobachtet werden können, allerdings vermutlich

nur auf kurzen Skalen.

Auf der anderen Seite untersuchen wir eine verwandte Theorie mit diskreter Symme-

triegruppe, das sogenannte Gross-Neveu-Modell, in drei Raumzeitdimensionen. Hier sind

wir an dem Einfluss eines äußeren Magnetfeldes auf die chirale Symmetrie und deren

spontane Brechung interessiert. Während die Molekularfeldnäherung eine komplizierte

Phasenstruktur bei endlichem Magnetfeld und chemischem Potential vorhersagt, lassen

unsere Simulationen darauf schließen, dass die volle Quantentheorie ein anderes Ver-

halten zeigt. Innerhalb der Region mit spontan gebrochener chiraler Symmetrie, finden

wir, dass das Magneteld die Symmetriebrechung nur noch verstärkt, ein Phänomen,

welches üblicherweise als magnetische Katalyse bezeichnet wird. In der Tat ist es eines

der Hauptziele dieser Doktorarbeit, die Erkenntnisse unserer Gittersimulationen mit ex-

istierenden Ergebnissen in der Molekularfeldnäherung zu vergleichen, um zu verstehen,

zu welchem Grad letztere in der Lage ist, die volle Theorie zu beschreiben.
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1 Introduction

According to our current understanding, the universe is governed by four fundamental

forces: the strong and weak interactions, the electromagnetic interaction and gravity.

From a theoretical point of view, the strong interaction is particularly challenging

since one cannot employ perturbation theory for its study at low energies but has to

resort to non-perturbative methods instead. The latter, however, tend to be far from

straightforward on a computational level, often involving large-scale simulations on the

most powerful supercomputers the world has to offer. This and related difficulties make

the strong interaction one of the most active topics of contemporary physics research

to this day, with a plethora of thus far unanswered questions. The three remaining

fundamental forces, while being equally important and interesting in their own right,

are less relevant in the present context and shall not be in the focus of what follows.

The theoretical framework underlying the strong interaction is quantum chromo-

dynamics (QCD), a highly non-trivial theory comprising fermionic fields, the so-called

quarks, and non-Abelian gauge fields, which are referred to as gluons. It describes, for

instance, how quarks interact with each other via the exchange of gluons to form bound

states like the protons and neutrons that make up atomic nuclei. One particular field of

research that is being studied intensely by present-day high-energy physicists is that of

QCD in extreme conditions, such as high temperature, high particle density or strong

magnetic fields. Its proper understanding would allow us to gain important insights into

complicated physical processes like collisions of heavy ions within particle accelerators,

the inner workings of compact stellar objects such as neutron stars and even the early

history of our universe. In all of these processes the strong interaction is believed to play

a dominant role [1, 2].

Of special importance for the context of this thesis is the study of QCD exposed to

background (electro)magnetic fields, which has received an ample amount of interest

in recent years for various reasons (see [3, 4] for reviews). For one, it has become

clear that magnetic fields produced in non-central heavy-ion collisions [5], e.g., in

the Large Hadron Collider (LHC) at CERN, can be of the order of several times the

squared pion mass, thus reaching energy scales relevant for QCD [6–12]. Magnetic

fields of this magnitude – should they persist for long enough during a collision – are

thus expected to have a significant impact on the outcome of such an experiment, i.e.,

on physical observables. A prominent example for observable phenomena induced

by strong magnetic fields is the so-called chiral magnetic effect [13, 14], for which

possible experimental evidence was found in [15, 16]. In the chiral magnetic effect

topological arguments predict the generation of an electric current along the direction of
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1. Introduction

the produced field, i.e., perpendicular to the reaction plane. Closely related phenomena

are known as the chiral separation effect [17], generating an axial current along the

direction of the field, and the chiral magnetic wave [18], arising due to the interplay

between the chiral magnetic and chiral separation effects (see also [19–22]).

Beyond heavy-ion collisions strong magnetic fields are believed to play a role in a

number of other strongly-interacting systems as well. For instance, it has been con-

jectured that a certain class of neutron stars – appropriately named magnetars [23] –

can feature in their interiors magnetic fields comparable in strength to those produced

at the LHC, as well as somewhat weaker ones on their surfaces [24, 25] (see [26–28]

for reviews). In fact, strong magnetic fields are thought to be capable of changing the

equation of state of neutron stars [24], lead to their deformation [29], and they have

been theorized to be responsible for so-called pulsar kicks [30]. Furthermore, it is likely

that extremely strong fields were produced during the cosmological phase transitions of

the early universe, possibly resulting in the galactic magnetic fields one observes today

[31–36]. We also mention the possibility for strong magnetic fields to turn the QCD

vacuum into a superconductor [37]. For an extensive review on the role of magnetic

fields in quantum field theory, covering all of the aforementioned phenomena and many

more topics as well as giving a more complete list of references, we refer to [3].

Let us now discuss a more technical aspect of investigations of QCD in extreme

conditions. The computational tool that has proven most successful in the study of

quantum field theories beyond perturbation theory is lattice field theory, i.e., the idea of

discretizing space and time to a finite lattice and computing physical observables from

first principles via Monte-Carlo simulations. In fact, lattice simulations have contributed

a major part of our current understanding of strongly-interacting matter at both zero and

non-zero temperatures, see, e.g., [38]. However, conventional Monte-Carlo techniques

based on importance sampling cannot be applied when attempting to study QCD at finite

baryon density, i.e., at non-zero chemical potential. This is due to the infamous complex-

action problem [39], which, despite countless attempts (see [40, 41] for reviews), has

not yet been overcome for the case of finite-density QCD [42, 43]. Still, for the proper

description of high-density phenomena, such as neutron stars and the physics of the

early universe, one requires a working theory that allows to make accurate and testable

predictions at finite chemical potential. Alternative approaches to the straightforward

application of importance sampling in lattice QCD are thus much needed.

One such alternative that allows for insights into the low-energy regime of QCD is

the use of effective theories. A prime example of an effective theory of QCD is chiral

perturbation theory (see, e.g., [44]), in which the elementary degrees of freedom are no

longer quarks and gluons, but instead hadrons such as pions. In this thesis, however, we

shall be concerned with a different class of low-energy theories of QCD, namely so-called

four-Fermi theories (4FTs). While originally postulated to describe the weak interaction

[45], 4FTs have since been employed with great success for the study of QCD. In fact, a

4



1. Introduction

large part of our knowledge about strongly-interacting matter at finite density is due to

results from effective models [46, 47]. Moreover, it has been shown that 4FTs, albeit in

a non-local form, arise more or less naturally from QCD after integrating out the gauge

fields [48]. Quite obviously, 4FTs are not capable of capturing all relevant features of

QCD faithfully, not even at low energies. An important example is the confinement of

quarks within hadrons, which purely fermionic theories do not describe.

On the other hand, there is also a plethora of properties of utmost importance to QCD

that certain 4FTs do have in common with their target theory [49]. Examples include, but

are not restricted to, asymptotic freedom (in two dimensions) [50], renormalizability (in

three dimensions or lower) [51], as well as dimensional transmutation [50]. We remark

that, while being non-renormalizable in four space-time dimensions, the interpretation

of 4FTs as effective theories makes possible the introduction of a finite momentum

cutoff below which they are assumed to be valid. For our purposes, however, the most

important parallels between 4FTs and QCD are the notion of chiral symmetry and its

spontaneous breakdown, resulting in the dynamical generation of mass [52, 53]. These

topics and some of the related subtleties shall be the main focus of this thesis.

It would be unfair to praise 4FTs only for their success in the context of high-energy

physics without also mentioning their accomplishments in the realm of condensed mat-

ter. In fact, there exist a number of low-dimensional materials whose quasi-particle

excitations are well described by the massless Dirac equation by virtue of their linear

dispersion relation, the Fermi velocity thereby playing the role of the speed of light.

Taking interactions between these quasi-particles into account, one often ends up with

4FTs as effective descriptions of their low-energy excitations. Indeed, employing a theory

with four-Fermi interactions led, for instance, to the successful description [54, 55] of the

phase transition between the solitonic and metallic phases in trans-polyacetylene, includ-

ing a correct result for the critical doping concentration [56]. Similarly, the experimental

observation of a magnetic-field-induced phase transition in a certain high-temperature

superconductor [57] was explained by modeling the system with a 4FT [58–60]. It can

hardly be overemphasized how remarkable it is to be able to compute observables in rel-

ativistic models that are in agreement with experiments of non-relativistic solids. Further

examples of 4FTs in the context of solid-state physics include their use as low-energy

theories for graphene [61–64]. In fact, there has been a remarkable cross-fertilization

between the two seemingly unrelated fields of high-energy and condensed-matter physics

over the years [65–71]. Parts of this development are summarized in [72].

While in earlier days effective fermionic models were predominantly studied in mean-

field approaches [73–80], where quantum fluctuations are suppressed and computations

are relatively straightforward, more recently there has been a surge of beyond-mean-field

approaches, including lattice simulations [81–89]. The broad picture that appears to

emerge is that, in general, the mean-field limit is capable of giving a reasonable intuition

about the physics one can expect to find in the full theory. In many cases, accounting
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1. Introduction

for fluctuations then only changes the situation on a quantitative level and we shall see

examples of this in later chapters of this thesis. Nonetheless, it is important to check

whether this observation is generically true or if one may also encounter situations where

mean-field approaches fail to give the correct picture even qualitatively. In fact, one such

case will be discussed later on as well.

In this thesis we shall be concerned with two different scenarios, which can be

thought of as first or intermediate steps in the direction of describing QCD from the point

of view of 4FTs beyond the mean-field limit, but may have applications in condensed-

matter physics as well. On the one hand, we consider one particular 4FT, the so-

called chiral Gross-Neveu (χGN) model, in 1 + 1 space-time dimensions. We study its

chiral condensate as an order parameter for the breakdown of chiral symmetry and

the way in which it is affected by external conditions, i.e., non-zero temperature and

density. In particular, we ask the question whether there exist regions (in the parameter

space spanned by temperature and chemical potential) where the chiral condensate

develops crystalline order, i.e., oscillates as a function of the spatial coordinate. Such

behavior was predicted in mean-field studies [90, 91] and, as we shall see, can also be

observed to some extent in our lattice simulations beyond the mean-field limit. Similar

phenomena are quite abundant in the condensed-matter literature. For instance, in

certain BCS superconductors [92] subjected to sufficiently strong magnetic fields, a novel

inhomogeneous state, the so-called Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase, was

discovered [93, 94] (see [95] for a review). Moreover, computations using functional

methods have found indications that inhomogeneous phases could also be of relevance

for QCD at high densities [96, 97] and they have been predicted to be present in its color-

superconducting phase as well [98]. Potential experimental signatures of inhomogeneous

phases in so-called moat regimes were identified in [99]. For a review on inhomogeneous

chiral condensates, including a more exhaustive list of examples, see [100].

On the other hand, motivated by the aforementioned implications that magnetic

fields can have on strongly-interacting matter, we are interested in the question of how

exactly they affect 4FTs as effective theories for both QCD and solid-state models. To this

end, we employ the Gross-Neveu (GN) model, a somewhat simpler version of the χGN

model mentioned above, in 2+1 space-time dimensions. We compute its phase structure,

again determined by the behavior of the chiral condensate at finite temperature and

density, and study how it is altered under the influence of a background magnetic field

both in the mean-field limit and beyond. Earlier mean-field studies revealed that the

model exhibits an extremely rich phase structure in the finite-density regime when the

magnetic field is non-zero [101]. We investigate whether this observation is merely

an artifact of the mean-field limit or still holds true when fluctuations are taken into

account. To this end, we perform extensive lattice simulations, the main finding of which

is that the phase diagram of the model looks much simpler in our study than it does in

the mean-field limit.
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1. Introduction

This thesis is structured as follows: In Chapter 2 we give a brief introduction into

4FTs, highlighting the particular models that we shall be concerned with in the sequel,

and discuss their symmetries, among which chiral symmetry is most important for our

purposes. Furthermore, we show how to partially bosonize such theories in order to

make them accessible for our later analytical and numerical treatments and address

some peculiarities that arise in low space-time dimensions.

We proceed with Chapter 3, in which we first discuss the important concept of Landau

levels and associated spectral properties of fermionic theories within magnetic fields. For

instance, we shall derive how the chiral condensate in a theory of massive non-interacting

fermions in a magnetic field is decomposed into contributions from low-lying and higher

eigenmodes of the corresponding Dirac operator. We then discuss analytical findings in

the mean-field limit of the (2 + 1) – dimensional GN model at finite density, temperature

and magnetic field. In particular, we compute phase diagrams in the space spanned

by these control parameters, as well as a few thermodynamic observables. While most

results of this chapter are obtained in an infinite volume, we also briefly discuss the

implications of considering finite volumes instead.

In Chapter 4 we then depart from the analytical part of the thesis and enter the more

numerically-oriented one. We introduce the idea behind lattice simulations of quantum

field theories on a general level and put a particular emphasis on how to discretize chiral

fermions, thereby discussing the so-called SLAC and overlap formalisms in more detail.

Moreover, we outline how to implement magnetic fields on the lattice and compare

different lattice discretizations of fermions to continuum computations in a simple setup

of non-interacting fermions for the purpose of testing.

The next two chapters then contain the main findings of this thesis in the form

of lattice simulation results. On the one hand, Chapter 5 deals with the search for

inhomogeneous structures in 4FTs. After summarizing the most important historical

developments in this field of research, both on the mean-field level and beyond, we

present our lattice results for the χGN model in 1+1 dimensions. We discuss the influence

of temperature and chemical potential on the observed inhomogeneities and investigate

how they are affected by approaching larger volumes or smaller lattice spacings. We also

address the problem of spontaneous symmetry breaking in low space-time dimensions in

some detail, thereby carefully distinguishing between perfect long-range and quasi-long-

range order.

On the other hand, Chapter 6 is concerned with strongly-interacting quantum field

theories in background magnetic fields. We give a brief account on the relevant existing

literature before performing a number of numerical tests on the overlap Dirac operator

employed in our simulations. We thereby put a particular emphasis on its spectral

properties, discussing the important index theorem as well as arising finite-size effects.

Afterwards, we present our simulation results for the (2 + 1) – dimensional GN model,

both for zero and non-zero magnetic field, predominantly investigating the fate of the
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1. Introduction

results of Chapter 3 beyond the mean-field limit. We also spend some time searching for

inhomogeneities in this three-dimensional model and compare our simulation results to

the existing literature.

Since parts of our findings are – perhaps – somewhat unexpected, we devote Chap-

ter 7 to a thorough discussion and critical analysis. We summarize our results and

attempt to make possible conclusions regarding their applicability in QCD where possi-

ble. Furthermore, we present ideas on how to improve on the models considered and

suggest directions for potential future research.

The compilation of this thesis is solely due to the author. However, a large part of the
presented results is based on work in collaboration with Julian Lenz and Andreas Wipf.
Parts of the content of Chapters 3, 5 and 6 were published as conference proceedings [102,
103]. The results of Chapter 5 were furthermore published in the journal article [104],
while some of the work of Chapters 3, 4 and 6 appeared in [105, 106]. All simulations
were performed using a codebase developed mainly by Björn Wellegehausen, albeit with
significant contributions from Daniel Schmidt and Julian Lenz, among others. The major
part of the simulations used computational resources provided by the University of Jena,
mainly the cluster ARA. Additional simulations were performed on the GOETHE cluster
of the University of Frankfurt and the SUNBIRD cluster of the University of Swansea. The
results of Sections 4.4 and 6.2 were computed using code written in collaboration with
Julian Lenz.
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2 Four-Fermi Theories

We begin this chapter by briefly presenting the notation and conventions that shall

be used throughout this thesis. Afterwards, we introduce 4FTs, discuss their symmetries

and outline how to make them amenable for our studies in later chapters.

2.1 Notation and conventions

For the entirety of this thesis we shall work in space-times with Euclidean signature

exclusively. This will be reflected by a few additional signs and imaginary units in places

where they are not present in Minkowski space-time. It also entails that we do not

distinguish between covariant and contravariant vector indices. Regardless, throughout

all of this thesis Einstein’s summation convention applies whenever an index occurs twice

in an expression, unless specified otherwise.

In a slight abuse of notation we may nonetheless refer to, say, a three-dimensional

Euclidean space-time as (2 + 1) – dimensional. The reason for this is as follows: We

are predominantly concerned with the study of fermionic fields, which obey periodic

boundary conditions in all spatial directions and anti-periodic ones in the (Euclidean)

time direction [107]. In our notation the “+1” simply indicates the presence of a

direction with anti-periodic boundary conditions for fermions. Apart from two exceptions

in Sections 4.4 and 6.2, where we consider (2 + 0) – dimensional theories for testing

purposes, we shall always assume that there is a Euclidean time direction in which

fermions are anti-periodic.

We refer to the total number of space-time dimensions as d and we shall use Greek

letters to label the components of d-vectors, e.g., xµ for the components of a vector x.

The zeroth component (e.g., x0) is reserved for the time direction, while we indicate

the spatial directions by Latin letters (e.g., xi) as well as bold symbols (e.g., x). For

space-times with no anti-periodic direction there is no zeroth component.

For most of this thesis we work on finite space-time volumes. We denote the extent

of the temporal direction as β and we always assume all spatial directions to have the

same extent, which we refer to as L. A finite space-time volume entails the discretization

of the corresponding momenta and we define

p0 =
2π

β

(︃
n0 +

1

2

)︃
, pi =

2π

L
ni , (2.1)

where the nµ are integers. We furthermore note that β plays the role of the inverse

9



2. Four-Fermi Theories

temperature, β = 1
T

. Throughout this thesis we use natural units in which the speed of

light, the reduced Planck constant and the Boltzmann constant are all set to unity, i.e.,

c = 1, ℏ = 1 and kB = 1.

We write z∗ to denote the complex conjugate of a complex number z. For a matrix or

operator A we shall denote its transpose as AT and its Hermitian conjugate as A†. The

commutator of two matrices or operators A and B is denoted as [A,B] := AB −BA and

their anti-commutator as {A,B} := AB +BA.

2.2 Four-Fermi theories and their symmetries

Let us now introduce 4FTs, which we will be concerned with in the entirety of this thesis.

The basic form of a 4FT is given by a Lagrangian of the following type:

L = iψ̄
(︁
/∂ +m

)︁
ψ +

∑︂
i

g2i
2Nf

(︁
ψ̄Miψ

)︁ (︁
ψ̄Miψ

)︁
. (2.2)

Here, ψ is a short-hand notation for the Grassmann-valued fermion fields ψa
α
(x), with a

labeling fermionic flavors and α being a Dirac index, m is the bare fermion mass, which

we assume to be identical for all flavors, the g2i denote coupling constants and the Mi

are matrices acting in flavor and Dirac space. Since we work in Euclidean space-time

we define ψ̄ = ψ† [108]. In (2.2) and in the remainder of this thesis we suppress the

explicit summations over the internal indices a and α. The former runs from 1 to the

number of fermion flavors, Nf , while the latter runs from 1 to the dimension of the

Clifford algebra, dc. As is discussed below, dc is determined by the space-time dimension

as well as the chosen Dirac algebra representation. Moreover, we have not indicated the

space-time-dependence of ψ explicitly in (2.2) and we shall continue to do so in most of

what follows. Lastly, we mention that the fermion fields could additionally be endowed

with another index, corresponding to degrees of freedom in color space. This, however,

shall not be of relevance for this thesis.

In Euclidean space-time the Dirac matrices γµ may be chosen Hermitian. There exists

one irreducible representation of γµ for even d, while there are two inequivalent ones,

γµ and −γµ, when d is odd. For now, we only discuss irreducible representations of Dirac

matrices, in which the number of spinor components is given by

dc = 2⌊
d
2⌋ , (2.3)

with ⌊.⌋ denoting the floor function. The intricacies involved in using reducible represen-

tations will be discussed in more detail in Section 2.2.4.

In even dimensions one may – in addition to the γµ – introduce another gamma

10



2. Four-Fermi Theories

matrix, denoted by γ∗ and defined as

γ∗ := −i⌊
d
2⌋γ0γ1 . . . γd−1 , (2.4)

which has the following properties:

γ†∗ = γ∗ , γ2∗ = 1 , {γ∗, γµ} = 0 for all µ . (2.5)

For d = 4 this definition coincides with the usual “fifth” gamma matrix γ5. On the

other hand, in odd dimensions (2.4) is proportional to the identity. When there exists a

non-trivial γ∗ we shall usually – unless specified otherwise – choose a basis in which it is

diagonal, such that spinors decompose into their right- and left-handed components:

ψ =

(︄
ψR

ψL

)︄
. (2.6)

As usual, one may define projection operators onto right- and left-handed spinor com-

ponents by PR := 1+γ∗
2

and PL := 1−γ∗
2

, respectively. In the following, we discuss the

symmetries of 4FTs in some more detail (see also [108–110]).

2.2.1 Space-time symmetries

We begin by considering continuous transformations on Euclidean space-time. In a

d – dimensional space-time with Euclidean metric the usual Lorentz symmetry is replaced

by invariance under SO(d) transformations Λµν ,

xµ ↦→ x′µ = Λµνxν , (2.7)

which act on Dirac spinors as follows:

ψ(x) ↦→ e−
i
4
ωµνσµνψ(x′) , ψ̄(x) ↦→ ψ̄(x′)e

i
4
ωµνσµν . (2.8)

Here, σµν = i
2
[γµ, γν ] represents the generators of SO(d) and ωµν is an anti-symmetric ten-

sor characterizing the rotation axes and angles of Λµν . Similarly, space-time translations

by a d-vector aµ,

xµ ↦→ x′µ = xµ + aµ , (2.9)

are represented on spinors by

ψ(x) ↦→ e−iaµPµψ(x) , ψ̄(x) ↦→ ψ̄(x)eiaµPµ , (2.10)

with the momentum operators Pµ generating the translations.

In addition to continuous space-time symmetries, 4FTs also enjoy a number of discrete

11



2. Four-Fermi Theories

symmetries, namely invariance under parity transformations, time reversal and charge

conjugation, only the former of which we discuss here exemplarily. We define a parity

transformation as the inversion of the last spatial coordinate,

xµ ↦→ x′µ = Pµνxν , where P = diag(1, . . . ,−1) , (2.11)

which is implemented on the fermion fields as

ψ(x) ↦→ Pψ(x) , ψ̄(x) ↦→ ηpψ̄(x)P
−1 , (2.12)

where we have introduced the parity matrix P. In even dimensions the latter can

be defined as P = iγ∗γd−1 with ηp = 1, while in odd dimensions a valid definition is

P = γd−1 but one has ηp = −1. The latter fact causes certain fermion bilinear operators

to transform differently in even and odd dimensions. We furthermore require

P−1γµP = ηpPµνγν (2.13)

in order for the action of massless non-interacting fermions to be invariant under (2.12).

More details about parity, as well as the other discrete symmetries, i.e., time reversal

and charge conjugation, including the associated intricacies that arise in Euclidean

space-time, can be found, e.g., in [109].

2.2.2 Internal symmetries

Having discussed the space-time symmetries of 4FTs, let us now turn to their internal

symmetries, all of which are global. First of all, all 4FTs are trivially invariant under the

U(1)V vector transformations

ψ(x) ↦→ eiαψ(x) , ψ̄(x) ↦→ ψ̄(x)e−iα , (2.14)

where α is a real parameter. Additionally, if for some model the matrices Mi in (2.2)

are trivial in flavor space, then that model also enjoys a SU(Nf)V symmetry, i.e., it is

invariant under

ψ(x) ↦→ eiαiTiψ(x) , ψ̄(x) ↦→ ψ̄(x)e−iαiTi , (2.15)

where the Ti (i = 1, . . . , N2
f − 1) denote the generators of SU(Nf) and the αi are, again,

real parameters. That this can be a symmetry is due to the fact that we always assume

all fermion flavors to be mass-degenerate. A non-trivial flavor structure in Mi breaks this

symmetry in general. However, there are also examples of theories for which this is not

the case, see, e.g., the NJL model (2.18) below. In this thesis we shall restrict ourselves

to theories with an intact SU(Nf)V × U(1)V vector flavor symmetry.

The vector transformations discussed up to now do not distinguish between left- and

12



2. Four-Fermi Theories

right-handed spinor components, as they act on both in the same way. However, when

the space-time dimension or Dirac algebra representation allows for the introduction

of γ∗, one may also consider axial rotations, under which the left- and right-handed

components transform oppositely. We define the action of U(1)A axial rotations on Dirac

spinors as

ψ(x) ↦→ eiαγ∗ψ(x) , ψ̄(x) ↦→ ψ̄(x)eiαγ∗ , (2.16)

while the corresponding SU(Nf)A transformations read (α and αi are not related to the

parameters of the vector transformations above)

ψ(x) ↦→ eiαiγ∗Tiψ(x) , ψ̄(x) ↦→ ψ̄(x)eiαiγ∗Ti . (2.17)

Invariance of a theory under both vector and axial transformations is referred to as chiral

symmetry, which plays a major role in the context of this thesis.

A theory of Nf flavors of free massless fermions is invariant under the full symmetry

group SU(Nf)V × SU(Nf)A × U(1)V × U(1)A. However, a fermionic mass term breaks

chiral symmetry explicitly, as it mixes left- and right-handed spinor components. For this

reason, we shall set the mass m in (2.2) to zero in most of what follows. Moreover, the

full chiral symmetry of free fermions is also commonly broken explicitly by four-Fermi

interactions. Thus, we shall find it useful at this point to introduce a few common models

and discuss their respective chiral symmetry groups.

2.2.3 Prominent four-Fermi theories

Perhaps the most famous 4FT is the Nambu–Jona-Lasinio (NJL) model [53], defined by

L = ψ̄i/∂ψ +
g2

2Nf

[︂(︁
ψ̄ψ
)︁2

+
(︁
iψ̄γ∗τ⃗ψ

)︁2]︂
, (2.18)

where τ⃗ is a vector of Pauli matrices acting in two-dimensional flavor (or isospin) space,

i.e., we assume Nf = 2 here. Similar to free fermions, this model is invariant under the

full SU(2)V × SU(2)A × U(1)V × U(1)A group.

A related theory, which is referred to here as the chiral Gross-Neveu (χGN) model

[50], is defined as

L = ψ̄i/∂ψ +
g2

2Nf

[︂(︁
ψ̄ψ
)︁2

+
(︁
iψ̄γ∗ψ

)︁2]︂
. (2.19)

In contrast to the NJL model, we may study (2.19) for arbitrary flavor numbers. It breaks

the SU(Nf)A symmetry (2.17), but is invariant under U(1)A rotations (2.16). Thus, its

full symmetry group reads SU(Nf)V × U(1)V × U(1)A. Notice that an equivalent model

for Nf = 1 had already been introduced in [52]. Nonetheless, we shall refer to (2.19) as

the chiral Gross-Neveu model. It is of great importance for this thesis and Chapter 5 is

devoted to its study.
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2. Four-Fermi Theories

Another well-known 4FT and perhaps the simplest relativistic theory of interacting

fermions is the Gross-Neveu (GN) model [50], defined by

L = ψ̄i/∂ψ +
g2

2Nf

(︁
ψ̄ψ
)︁2

. (2.20)

The absence of the
(︁
ψ̄γ∗ψ

)︁2 term breaks the χGN model’s U(1)A symmetry down a

discrete Z2 subgroup,

ψ(x) → iγ∗ψ(x) , ψ̄(x) → iψ̄(x)γ∗ . (2.21)

Thus, the chiral symmetry group of the GN model is SU(Nf)V × U(1)V × Z2. We shall

study it in detail in Chapters 3 and 6. While we focus on the GN and χGN models for

the remainder of this thesis, we also mention the Thirring model [111], which has a

vector-vector interaction channel, as another well-known example of a 4FT.

2.2.4 Reducible representations

In three space-time dimensions irreducible representations of the Dirac algebra are

two-dimensional according to (2.3), i.e., irreducible spinors are two-component objects.

However, there is no notion of chirality in this case due to the absence of a matrix γ∗
that would anti-commute with all γµ and allow for the distinction between left- and

right-handed spinor components as in (2.6). In order to nonetheless introduce such a γ∗,

we shall instead work in a reducible representation [112] of gamma matrices for parts of

this thesis, i.e., when we consider three-dimensional space-times. As is outlined below,

this allows for the definition of γ∗ and entails that spinors have four components instead

of two. As a matter of fact, this is commonly done in the condensed-matter literature.

For instance, in graphene the electronic modes near the two Dirac points, where the

dispersion relation is approximately linear, are each described by two-component spinors,

which one commonly combines into a single four-component object [113].

In order to outline the central idea behind the use of a reducible representation of

gamma matrices, let us consider a theory of fermions in d dimensions, where d is odd,

as well as one in d′ = d+ 1 dimensions. In what follows, primes indicate (irreducible)

gamma matrices in the d′ – dimensional theory. To define a reducible representation in d

dimensions we may simply set γµ = γ′µ, which doubles the number of spinor components

by virtue of (2.3). However, this leaves us with two gamma matrices that anti-commute

with all γµ instead of one, namely γ′d and γ′∗, each of which is a viable candidate for γ∗.

Indeed, they both generate U(1)A transformations of the form (2.16),

ψ(x) ↦→ eiαγ
′
dψ(x) , ψ̄(x) ↦→ ψ̄(x)eiαγ

′
d (2.22)
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and

ψ(x) ↦→ eiαγ
′
∗ψ(x) , ψ̄(x) ↦→ ψ̄(x)eiαγ

′
∗ , (2.23)

and analogously for the axial flavor rotations (2.17). A theory of free massless fermions

is invariant under both of these transformations. Moreover, the matrix γ′dγ
′
∗ commutes

with all other gamma matrices in the d-dimensional theory, giving rise to an additional

U(1)V symmetry (as well as the corresponding vector flavor symmetry) that was not

present before,

ψ(x) ↦→ eiαγ
′
dγ

′
∗ψ(x) , ψ̄(x) ↦→ ψ̄(x)e−iαγ′dγ

′
∗ . (2.24)

A mass term breaks both (2.22) and (2.23), but leaves (2.24) intact. We see that it

is indeed possible to introduce an analog of γ∗ – in fact, two such analogs – in odd

dimensions as well by working in a reducible representation of the Dirac algebra. For

more details, see, e.g., [114].

The ambiguity in the choice of γ∗ is not relevant for the GN model, however. The

reason for this is that the scalar-scalar interaction term in (2.20) breaks both axial

symmetries, (2.22) and (2.23), down to respective Z2 subgroups as in (2.21). These

resulting Z2 transformations can then be shown to be related to each other via (2.24).

This means that the GN model in a reducible representation is invariant under two

different SU(Nf)V × U(1)V groups, but only under one Z2 group, with a mass term only

breaking the latter. We remark that Nf denotes the number of reducible flavors here.

Despite the notion of chiral symmetry not being defined in odd space-time dimensions,

we shall nonetheless make use of that terminology throughout this thesis for reasons of

convenience. We also mention that the use of a reducible representation allows for a

parity transformation (2.12) with ηp = 1 and the definition of χGN and NJL models in

odd dimensions.

To demonstrate the concept, let us consider a (2 + 1) – dimensional theory as an

example. An explicit expression for the gamma matrices in a reducible representation is

given by

γµ =

(︄
τµ 0

0 −τµ

)︄
, (2.25)

where the τµ can be chosen as the conventional Pauli matrices, e.g.,

τ0 = σ3 , τ1 = σ1 , τ2 = σ2 . (2.26)

The block structure of (2.25) makes clear the fact that the reducible representation

consists of both of the two inequivalent irreducible representations (τµ and −τµ), which

we shall find useful in later chapters. Notice, however, that γ∗ is not diagonal in this

basis.

15



2. Four-Fermi Theories

2.3 Partition function and bosonization

Having discussed the symmetries of 4FTs we now define their partition functions and

outline how their computation can simplify due to the introduction of auxiliary fields.

With the (Euclidean) action of a theory specified by a Lagrangian L,

S =

∫︂
ddxL , (2.27)

the partition function of a 4FT is given by the fermionic path integral

Z =

∫︂
Dψ̄Dψe−S . (2.28)

Expectation values of observables O may then be computed via

⟨O⟩ = 1

Z

∫︂
Dψ̄Dψe−SO , (2.29)

where we suppress the explicit functional dependence of S and O on the fermion fields.

For the particular case of the GN model (2.20), the partition function reads

ZGN =

∫︂
Dψ̄Dψe

−
∫︁
ddx

[︃
ψ̄i/∂ψ+ g2

2Nf
(ψ̄ψ)

2
]︃
. (2.30)

Now, consider the identity∫︂
Dσe−

∫︁
ddx

[︂
Nf
2g2

σ2+iσψ̄ψ
]︂
= e

−
∫︁
ddx g2

2Nf
(ψ̄ψ)

2

, (2.31)

where σ denotes a scalar field and we have absorbed an irrelevant prefactor into the

integral measure Dσ. Using (2.31), we can rewrite the partition function (2.30) as

ZGN =

∫︂
Dψ̄DψDσe−

∫︁
ddx

[︂
iψ̄(/∂+σ)ψ+ Nf

2g2
σ2

]︂
. (2.32)

With this so-called Hubbard-Stratonovich transformation [115, 116], we have thus

related the Lagrangian (2.20) to the following, partially bosonized, one:

Lσ = iψ̄
(︁
/∂ + σ

)︁
ψ +

Nf

2g2
σ2 . (2.33)

Since the integral (2.31) is Gaussian, the equivalence of (2.20) and (2.33) holds not

only on the classical level, but also in the full quantum theory. Notice, however, that in

order for (2.33) to retain its Z2 symmetry (2.21), we require σ to flip its sign under such
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a transformation. This means that the model (2.33) is invariant under

ψ → iγ∗ψ , ψ̄ → iψ̄γ∗ , σ → −σ . (2.34)

Analogous Hubbard-Stratonovich transformations can be applied to other four-Fermi

terms as well. As an example, the partially bosonized version of the χGN model (2.19)

reads

Lσ,π = iψ̄
(︁
/∂ + σ + iγ∗π

)︁
ψ +

Nf

2g2
(︁
σ2 + π2

)︁
, (2.35)

where π denotes another auxiliary field, which transforms as a pseudo-scalar. The U(1)A

symmetry of (2.35) then reads

ψ → eiαγ∗ψ , ψ̄ → ψ̄eiαγ∗ ,

(︄
σ

π

)︄
→

(︄
cos(2α) sin(2α)

− sin(2α) cos(2α)

)︄(︄
σ

π

)︄
. (2.36)

The Lagrangians (2.33) and (2.35) no longer contain the four-Fermi interaction terms,

as we have traded them off in exchange for the auxiliary fields. These Lagrangians are

particularly convenient to work with, since the fermion fields only enter them bilinearly

and can thus be integrated out entirely, as we shall discuss next.

As we have seen, a generic partially bosonized 4FT can be written in the form

L = iψ̄DNf
ψ + LB , (2.37)

where DNf
, which is referred to as the Dirac operator, describes the fermionic part of

the action including the interactions with the auxiliary fields and LB denotes the purely

bosonic contributions. One may now integrate out the fermions by using a well-known

result of Gaussian integration over Grassmann numbers,

Z =

∫︂
Dψ̄DψDσe−

∫︁
ddx[iψ̄DNf

ψ+LB] =

∫︂
Dσ det(DNf

)e−SB , (2.38)

where SB =
∫︁
ddxLB. If we assume the Dirac operator to have a trivial structure in flavor

space, which shall always be the case throughout this thesis, its determinant factorizes

into a product of Nf one-flavor Dirac operators D, i.e., det(DNf
) = det(D)Nf . In other

words, one ends up with a purely bosonic theory,

Z =

∫︂
Dσe−NfSeff , (2.39)

with an effective action

Seff = SB − ln detD , (2.40)

in which the scalar fields become dynamical via fermion loops, as dictated by the fermion

determinant. The convenient form (2.39) is the starting point for both the analytical and
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the numerical approaches to studying 4FTs that we pursue in this thesis. From now on,

we shall use the same symbol D for the one- and Nf -flavor Dirac operators for notational

convenience.

2.4 Spontaneous symmetry breaking

Let us now introduce a concept that shall be of central importance for this thesis, namely

that of the spontaneous breakdown of a symmetry. By that, we refer to a symmetry of

the classical theory, i.e., of its Lagrangian, which is broken by the vacuum or thermal

equilibrium state. It is in particular the spontaneous breakdown of chiral symmetry that

is of relevance for us. For its study, let us consider the expectation value of the scalar

fermion bilinear, ⟨ψ̄ψ⟩. This quantity, which we shall henceforth refer to as the fermion

or chiral condensate, behaves like a mass term under chiral transformations. Thus, if

a theory that is chirally invariant on the classical level develops a non-zero value of

⟨ψ̄ψ⟩, one may conclude that chiral symmetry is spontaneously broken. We mention

that the spontaneous breakdown of chiral symmetry and the associated dynamical mass

generation plays a major role in QCD, where it is responsible, e.g., for the fact that the

masses of nucleons by far exceed the combined bare masses of their quark constituents.

The computation of fermionic expectation values, such as ⟨ψ̄ψ⟩, drastically simplifies

with the introduction of auxiliary scalar fields in Lagrangians of the form (2.37). To see

this, let us consider as an example the GN model (2.33), where the following identity

holds: ∫︂
Dψ̄DψDσ δ

δσ
e
−
∫︁
ddx

[︂
iψ̄(/∂+σ)ψ+ Nf

2g2
σ2

]︂
= 0 . (2.41)

Using (2.29), we thus find that

⟨ψ̄ψ⟩ = i
Nf

g2
⟨σ⟩ , (2.42)

i.e., the chiral condensate is determined exactly by the expectation value of σ, the latter

usually being much more straightforward to compute. The same trick can also be applied

in the χGN model, where one may additionally perform an analogous variation with

respect to π to obtain ⟨︁
ψ̄γ∗ψ

⟩︁
=
Nf

g2
⟨π⟩ . (2.43)

These and similar Ward identities (or Dyson-Schwinger equations (DSEs)) facilitate the

computation of expectation values of fermionic bilinears considerably and we shall make

heavy use of them in the remainder of this thesis.
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We devote this chapter to an analytical study of fermionic theories exposed to

background magnetic fields. We shall first introduce the important concept of Landau

levels, which govern the physics of magnetized particles. In particular, we emphasize

the effect a magnetic field has on the density of fermionic energy states. Afterwards,

as the main focus of this chapter we investigate the (2 + 1) – dimensional GN model

in the mean-field limit. We provide a detailed discussion of its phase structure in the

three-dimensional parameter space spanned by temperature, chemical potential and

magnetic field and discuss thermodynamic observables. Finally, we outline the qualitative

differences that arise when considering the model in a finite spatial volume.

3.1 Landau levels

The energy levels of charged particles within a homogeneous magnetic field are quantized

in terms of so-called Landau levels [117]. In the following, we consider a theory of

non-interacting fermions in three space-time dimensions exposed to an external magnetic

field B perpendicular to the spatial plane. For simplicity, we consider an irreducible

representation of the Dirac algebra here, comprising two-component spinors. Using a

four-component representation instead only changes the results by a trivial factor of 2.

Denoting the fermion mass by m, the squared one-particle energies of non-interacting

fermions in a magnetic field are derived in Appendix A and read

E2
l = m2 + 2|eB|l , (3.1)

where e > 0 denotes the elementary electric charge and l is a non-negative integer

labeling the energy levels, which we refer to as Landau levels. The expression (3.1)

should be compared with the usual energy-momentum relation that holds when B = 0,

E2
p = m2 + p2 , (3.2)

with p denoting the vector of spatial momenta.

The momentum-independence of (3.1) gives rise to a degeneracy dl of the Landau

levels that is proportional to the magnetic flux through the spatial plane. Namely, as is

shown in Appendix A, if we assume space-time to have a finite volume V = L2β and
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impose the usual fermionic boundary conditions, then

dl =

⎧⎨⎩
|eB|
2π
L2 if l = 0

|eB|
π
L2 if l > 0

, (3.3)

i.e., the degeneracy of the lowest Landau level (LLL) is half of that of the higher levels.

This stems from the fact that only one of the two possible spin orientations is allowed in

the LLL, being energetically favored by the magnetic field. In comparison, all energies

in (3.2) have a two-fold degeneracy. It is quite obvious that the magnetic field has a

significant impact on the fermionic energy spectrum and in the following we shall work

out the consequences of this in more detail.

It is known that the magnetic flux through a two-dimensional torus is necessarily

quantized [118] (see also Appendix A), in order to ensure gauge-invariance and the

smoothness of the magnetic field across the boundary [119]. This means that one can

only have

eB =
2π

L2
b , (3.4)

where b is an integer that we shall refer to as the magnetic flux quantum number. From

this quantization condition one may already infer that the limit B → 0 cannot be taken

in a continuous manner without simultaneously approaching the limit L→ ∞.

Let us now consider the density of states that have an energy below some value ε ≥ 0.

In Appendix B we show that for B = 0 this integrated density of states is given by

ρ0(ε) =
2

L2

∞∑︂
n=0

r2(n)Θ

(︄
ε−

√︃
m2 +

4π2

L2
n

)︄
, (3.5)

where r2 is the sum-of-squares function defined in (B.19). For non-vanishing B (i.e.,

non-vanishing b, which we use as a label for ρ) the density reads

ρb(ε) =
|b|
L2

[︄
Θ(ε−m) + 2

∞∑︂
l=1

Θ

(︄
ε−

√︃
m2 +

4π|b|
L2

l

)︄]︄
. (3.6)

We show a comparison between these two functions for two different spatial volumes L2

in Fig. 3.1. One observes that, while the densities for different b approach each other

asymptotically for large ε, they differ substantially for low energies on small volumes.

In particular, the contribution of the lowest-lying modes at ε = m is different for B = 0

and B ̸= 0. When increasing the volume, this difference becomes negligible if one keeps

the magnetic flux (i.e., b) fixed in the process, but is still sizable if one instead fixes the

magnetic field (i.e., b/L2). This fact has important implications for observables, as we

shall demonstrate in the following, using the fermion condensate ⟨ψ̄ψ⟩ as an example.

In Appendix B we derive the following relation for the change in the condensate
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Figure 3.1: Densities of states from (3.5) and (3.6) two different volumes. Equal magnetic field
strengths are indicated by equal colors.

induced by the magnetic field:

∆⟨ψ̄ψ⟩ := ⟨ψ̄ψ⟩(B)− ⟨ψ̄ψ⟩(0) = −m
β

∞∑︂
n=−∞

∫︂ ∞

0

dε
1

ω2
n + ε2

[gb(ε)− g0(ε)] , (3.7)

where

ωn =
2π

β

(︃
n+

1

2

)︃
, n ∈ Z (3.8)

are the usual Matsubara frequencies, β = 1
T

is the inverse temperature and g(ε) = ∂
∂ε
ρ(ε)

denotes the density of states with energy ε, given by a sum of delta distributions. Here

and in the following we require that B ̸= 0. The sum over n can be found in sum tables

(see, e.g., [120]) and it gives

∞∑︂
n=−∞

1

ω2
n + ε2

=
β

2ε
tanh

(︃
εβ

2

)︃
. (3.9)

We now perform the integral over ε in (3.7) in order to split ∆⟨ψ̄ψ⟩ into contributions

from the lowest-lying modes (ε = m) and those from higher modes (ε > m),

∆⟨ψ̄ψ⟩ = ∆⟨ψ̄ψ⟩ε=m +∆⟨ψ̄ψ⟩ε>m , (3.10)

where the former is given by

∆⟨ψ̄ψ⟩ε=m = − 1

2L2
tanh

(︃
mβ

2

)︃
(|b| − 2) , (3.11)
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while the latter reads

∆⟨ψ̄ψ⟩ε>m = −m

L2

[︄
∞∑︂
l=1

|b|√︂
m2 + 4π|b|

L2 l
tanh

(︄
β

2

√︃
m2 +

4π|b|
L2

l

)︄

−
∞∑︂
n=1

r2(n)√︂
m2 + 4π2

L2 n
tanh

(︄
β

2

√︃
m2 +

4π2

L2
n

)︄]︄
.

(3.12)

We see that on finite volumes ∆⟨ψ̄ψ⟩ε=m changes its sign going from b = 1 to b > 2.

In the limit L→ ∞, keeping B fixed, on the other hand, there is no such sign change as

the low-lying modes of g0 do not contribute in that limit. More concretely, one finds

∆⟨ψ̄ψ⟩ε=m −→
L→∞

b
L2= const.

−|eB|
4π

tanh

(︃
mβ

2

)︃
, (3.13)

where we have used (3.4). This means that on small volumes one may expect a change

in the fermion condensate’s monotonicity for the weakest magnetic fields allowed by

the geometry, while on large volumes this effect vanishes. For strong enough magnetic

fields the magnitude of ∆⟨ψ̄ψ⟩ should increase with B. Notice that we have ignored

the higher-lying modes (ε > m) in this discussion. However, while their contribution to

the fermion condensate may also change its monotonicity as b increases, this effect is

likely sub-dominant, which is further substantiated in Section 6.2.3 below, where we

encounter the same phenomenon in the discretized free theory.

3.2 Effective potential of the Gross-Neveu model

Having discussed non-interacting fermions in a magnetic field, we now turn towards

non-trivial theories. In the following – and in a large part of the remainder of this thesis –

we are concerned with the GN model (2.20) in 2+1 dimensions. In the next few sections

we shall derive its phase structure in the parameter space spanned by the temperature T ,

the chemical potential µ and the external magnetic field B in the mean-field limit.

The massless GN model in its partially bosonized form reads

Lσ = ψ̄iDψ +
Nf

2g2
σ2 , (3.14)

where the Dirac operator D is (up to an identity matrix in flavor space) defined as

D = /∂ + ie /A+ µγ0 + σ . (3.15)

Here, Aµ is a three-dimensional vector potential describing a constant and homogeneous

magnetic field, which we again assume to be perpendicular to the spatial plane and
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denote by B. More precisely, using the conventional definition of the field strength tensor

Fµν (A.3), the magnetic field in three dimensions is defined by B = F12 := ∂1A2 − ∂2A1.

Furthermore, we have introduced the chemical potential in (3.15) in the usual way,

coupling to the fermion number density operator ψ̄γ0ψ in the action.

In the following, we restrict the auxiliary scalar field σ to be homogeneous in both

space and time, which a priori is a simplifying assumption. In fact, this choice would even

lead to incorrect results in certain 4FTs, as they are known to exhibit inhomogeneous

phases where σ develops a non-trivial space-dependence [72, 90, 91, 121]. However,

for vanishing magnetic field such inhomogeneous phases are believed not to play a

role in 2 + 1 dimensions once the regulator is removed [122–124]. The presence of a

magnetic field B, on the other hand, is capable of inducing spatial inhomogeneities in

principle [125–128], but they can likely only form along the direction of B. Since in our

(2 + 1) – dimensional setup we only allow for propagation perpendicular to B, we think

it unlikely that there could be any inhomogeneities present, thus justifying the above

choice. In Chapter 5 we shall come back to the discussion of inhomogeneities in 4FTs

with more rigor.

Now, with the assumption σ(x) = σ = const., the effective action (2.40) takes the

following form for the GN model:

Seff(σ) =
V

2g2
σ2 − ln det(D) , (3.16)

where V denotes the space-time volume V = L2β, as before. As can be seen from

(2.39), in the limit Nf → ∞, henceforth referred to as the large -Nf limit [129], only

the global minimum of Seff contributes to the path integral by means of a saddle-point

approximation. One could then – in principle – compute corrections to this picture order

by order in 1
Nf

. These, however, shall not be of major importance for this thesis. In fact,

our non-perturbative approach discussed in later chapters includes all such corrections

automatically.

Denoting the minimum position of Seff as σmin, the field expectation value of σ in the

large -Nf limit is simply given by

⟨σ⟩ = σmin . (3.17)

In this sense the mean-field approximation, commonly used in the context of solid-state

physics, becomes exact in the limit of infinite flavor number. For convenience, we

introduce the effective potential

Veff =
Seff

V
, (3.18)

which is an intensive quantity in contrast to Seff , but shares the same σmin.

Due to the identity (2.42), relating ⟨σ⟩ to the chiral condensate, i.e., the order

parameter for chiral symmetry breaking, we can determine the phase structure of the GN
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model by minimizing Veff in (T, µ,B) space, which amounts to solving the gap equation

∂

∂σ
Veff(σ)

⃓⃓⃓⃓
σ=σmin

= 0 . (3.19)

The main computational difficulty is the calculation of the fermion determinant det(D),

which is divergent and needs to be regularized. One way to compute it is the zeta-

function regularization and renormalization technique [130] summarized in Appendix C.

Using this method, we compute Veff in Appendix D. For eB > 0, we find the result

(D.82):

V
(B)
eff = −σ0

2π
σ2 +

eB

2π
|σ| − (2eB)3/2

2π
ζH

(︃
−1

2
,
σ2

2eB

)︃
− eB

2πβ

∞∑︂
l=0

(2− δl0)
[︂
ln
(︂
1 + e−β(

√
σ2+2eBl+µ)

)︂
+ ln

(︂
1 + e−β(

√
σ2+2eBl−µ)

)︂]︂
,

(3.20)

where ζH is the Hurwitz zeta function (D.79) and l was introduced in (3.1). Moreover,

σ0 > 0 denotes the minimum position of the effective potential for vanishing T , µ, and B

given in (D.50). For the solution σ0 > 0 to exist, we work in the strong-coupling regime,

where g2 is larger than some critical value g2c (see Appendix D), throughout.

Notice that (3.20) is equally valid on finite and infinite volumes. The volume-

dependence only enters via the discretization of eB on a torus (3.4), restricting the

allowed values that the magnetic field can assume. If one is interested in taking the limit

B → 0 on a finite volume, a separate calculation is required, as was to be expected based

on the discussion in Section 3.1, and we discuss finite-volume effects in Section 3.6. In

the infinite-volume limit, the effective potential for B = 0 is given by (D.72):

lim
L→∞

V
(0)
eff = −σ2

2π
σ0 +

|σ|3

3π
+

|σ|
πβ2

[︁
Li2
(︁
−e−β(|σ|+µ)

)︁
+ Li2

(︁
−e−β(|σ|−µ)

)︁]︁
+

1

πβ3

[︁
Li3
(︁
−e−β(|σ|+µ)

)︁
+ Li3

(︁
−e−β(|σ|−µ)

)︁]︁
,

(3.21)

where Liν(z) denotes the polylogarithm of order ν (D.71).

3.3 Chiral condensate

With the mean-field effective potential (3.18) discussed in the previous section, we

may now study the combined influence of the external control parameters B, T , and µ

on chiral symmetry and its spontaneous breakdown as well as – in later sections – on

thermodynamic observables. The latter is possible due to the fact that in the large -Nf
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Figure 3.2: Order parameter ⟨σ⟩ for different magnetic field strengths.

limit the minimum of Veff is related to the relevant thermodynamic potential Φ via

Veff(σmin) = − 1

V
lnZ =

Φ

L2
. (3.22)

The first – and for our purposes the most important – quantity we compute is the

minimum position σmin of Veff , i.e., the expectation value of σ, as an order parameter for

chiral symmetry breaking. Let us first study the dependence of ⟨σ⟩ on the temperature

for µ = 0 and how this dependence changes when switching on a magnetic field B. The

corresponding result, obtained via numerically solving the gap equation (3.19), is shown

in Fig. 3.2a. At T = 0, µ = 0 and B = 0 chiral symmetry is spontaneously broken in the

strong-coupling regime we consider here. As the temperature increases, the condensate

decreases until it vanishes at T = Tc =
σ0

2 ln 2
, indicating a phase transition to a phase with

intact chiral symmetry, ⟨σ⟩ = 0. This phase transition is of second order. The magnetic

field then leads to an increase of the order parameter for all T < Tc, therefore enhancing

the breakdown of chiral symmetry, while at the same time increasing Tc itself. This is the

so-called magnetic catalysis scenario [131–134], the physical origins of which we shall

discuss in more detail in Section 6.1

Next, we consider the finite-density region of the GN phase diagram at µ ̸= 0 and

vanishing temperature, which is interesting from the point of view of QCD, where it is

inaccessible via conventional methods. In Fig. 3.2b, we show the µ-dependence of ⟨σ⟩ for

various magnetic field strengths. For B = 0, one observes a sharp phase transition from

⟨σ⟩ = σ0 to ⟨σ⟩ = 0 at a critical chemical potential µc = σ0. In fact, the behavior of σ

resembles what one would expect from a first-order phase transition. However, since the

effective potential is completely flat at the point (T = 0, µ = σ0) for |σ| ≤ σ0, one finds

at the same time phenomena associated with second-order transitions and should thus

be careful with the terminology. Hence, we rather refer to the transition as a degenerate

one.

What appears unusual is the behavior of the µ-dependence of ⟨σ⟩ once B is switched
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Figure 3.3: B-dependence of ⟨σ⟩ for vari-
ous T and µ.

on, as for weak magnetic fields one observes a pattern of multiple discontinuous jumps

of ⟨σ⟩ as µ is increased. A closer inspection of the effective potential reveals that these

transitions are actually of first order. The physical reason for this discontinuous behavior

is the Landau level structure, since a transition may occur whenever the Fermi level,

given by the chemical potential, crosses a Landau level and similar results have been

found in related model theories as well [135–144]. This highlights the fact that for weak

magnetic fields higher Landau levels play an important role in the correct description of

the phase structure. In particular, it means that the LLL approximation (corresponding

to the omission of all l > 0 in (3.20)) is – in general – not reliable in this region.

The effect the magnetic field has on the order parameter (and hence on chiral

symmetry) thus depends heavily on both temperature and chemical potential, as is

visualized in Fig. 3.3, where we show ⟨σ⟩ as a function of B for different combinations

of T and µ. While at µ = 0 magnetic catalysis takes place for arbitrary magnetic field

strengths and the critical temperature Tc grows monotonically as a function of B, the

situation is very different at finite density. Both ⟨σ⟩ and µc (with µc we refer to the critical

chemical potential of the chiral phase transition, i.e., the transition from some ⟨σ⟩ ≠ 0 to

⟨σ⟩ = 0) are non-monotonic in B for weak enough magnetic fields. What is particularly

curious is that within a certain parameter region ⟨σ⟩ may decrease as a function of B, as

this is in contrast to the magnetic catalysis scenario found at µ = 0. However, this inverse
magnetic catalysis phenomenon [145] can be understood as follows (see [146] for an

analogous argument in the context of the (3 + 1) – dimensional NJL model):

For the discussion we consider T = 0, where inverse magnetic catalysis is most

prominent. In this limit, (3.20) takes the form

lim
T→0

V
(B)
eff = −σ0

2π
σ2 +

eB

2π
|σ| − (2eB)2/3

2π
ζH

(︃
−1

2
,
σ2

2eB

)︃
−eB
2π

lmax∑︂
l=0

(2− δl0)
(︂
µ−

√
σ2 + 2eBl

)︂
,

(3.23)
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where the sum runs until lmax =
⌊︂
µ2−σ2

2eB

⌋︂
and thus only contributes when µ > |σ|. We

compute the difference in the thermodynamic potential between the symmetric phase,

where ⟨σ⟩ = 0, and the broken phase, where ⟨σ⟩ = M ̸= 0, M denoting a non-trivial

solution of the gap equation (3.19). Furthermore, we assume M > 0 without loss of

generality and focus on weak magnetic fields, eB ≪M2.

Working at finite chemical potential in equilibrium, the appropriate thermodynamic

potential Φ in (3.22) is the grand potential, which we shall denote as Ω. In the symmetric

phase, we find
Ω

L2

⃓⃓⃓⃓
⟨σ⟩=0

=
(2eB)3/2

2π
c− eB

2π
µ , (3.24)

where c =
⃓⃓
ζ
(︁
−1

2

)︁⃓⃓
≈ 0.21, ζ denoting the Riemann zeta function. We have ignored the

contribution from the higher Landau levels l > 0, which might appear counter-intuitive

at first glance, since we are concerned with the low-B regime. However, we shall see

that inverse magnetic catalysis is, in fact, an LLL effect, such that this approximation is

justified and sufficient to capture the relevant physics [145]. We remark that the higher

Landau levels give a negative contribution to Ω. In the broken phase, the solution of the

gap equation for small eB is given by [132]

M ≈ σ0

(︃
1 +

(eB)2

12σ4
0

)︃
(3.25)

plus terms of higher order in eB
σ2
0

for all µ < M . To this order the grand potential density

in the broken phase thus reads

Ω

L2

⃓⃓⃓⃓
⟨σ⟩=M

≈ −σ3
0

6π
+

(eB)2

12πσ0
. (3.26)

Which phase is energetically favored can be determined by investigating the difference

between the thermodynamic potentials of the two respective phases,

∆Ω = Ω|⟨σ⟩=M − Ω|⟨σ⟩=0 . (3.27)

A negative value of ∆Ω indicates that the broken phase is energetically favored while for

∆Ω > 0 chiral symmetry is restored. We find

2π

L2
∆Ω = −σ

3
0

3
− (eB)3/2

(︄
23/2c−

√
eB

6σ0

)︄
+ eBµ . (3.28)

The first term on the right-hand side represents the energy gain due to the formation

of a condensate. The second term, which is negative for the weak magnetic fields for

which our approximation is valid, is the additional energy gain due to the magnetic field

favoring the spin misalignment between the particles and anti-particles that make up the
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Figure 3.4: Phase diagrams in the (µ, T ) plane for various magnetic field strengths.

condensate. This term is responsible for magnetic catalysis. The last term, on the other

hand, is the energy cost of forming a condensate at finite µ, i.e., when the Fermi surfaces

of particles and anti-particles are mismatched. This mismatch is enhanced even further

by the magnetic field. One may convince oneself that there exists a region in (B, µ) space

where this last term dominates, leading to a sign change of ∆Ω, such that the symmetric

phase becomes favored over the broken one as the magnetic field strength increases.

Thus, we have not only found a physical explanation for inverse magnetic catalysis, but

also that the latter is already present in the LLL approximation. The contributions of

higher Landau levels would then favor the symmetric phase even more.

3.4 Phase diagrams

Having minimized the effective potential (3.18) in (T, µ,B) space we are now in a posi-

tion to map out phase diagrams in planes given by various cuts of this three-dimensional

parameter space. To begin with, we show in Fig. 3.4 phase diagrams in the (µ, T )

plane for increasing magnetic field strengths. One observes how the phase structure is

deformed by the combined effects of magnetic catalysis and inverse magnetic catalysis

that are at play for finite µ and B. In particular, one can see the multiple phase transition

pattern at eB/σ2
0 = 0.7 and that it disappears at eB/σ2

0 = 1. For the latter, one finds the

curious situation where, starting in the symmetric phase, increasing the temperature
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Figure 3.5: Phase diagrams in the (B, T ) and (B,µ) planes at µ = 0 and T = 0, respectively. The
inset shows a close-up view of the intermediate phases – see the main text for details.

can actually break chiral symmetry. This phenomenon, however, also disappears for

asymptotically large magnetic fields.

In Figs. 3.5a and 3.5b, we show the phase structure along the coordinate axes µ = 0

and T = 0, respectively. It is apparent that the phase transition pattern is much simpler

in the first case, where ⟨σ⟩ and Tc both increase monotonically with B. For T = 0, on

the other hand, one observes the presence of intermediate phases, where the chiral

condensate is smaller in value than for vanishing µ, but still non-zero. Despite these

phases growing in size with increasing B, they disappear entirely at eB = σ2
0, where

the physics is governed by the LLL. We also mention that the multiple phase transitions

present in (B, µ) space become washed out when increasing the temperature but can

still be observed for low enough T ̸= 0. In Chapter 6, we investigate whether this

complicated structure is merely an artifact of the large -Nf limit or can be observed for

finite flavors number as well.

3.5 Thermodynamic observables

The interpretation of the GN effective potential (3.18) as a thermodynamic potential via

(3.22) allows for the study of various thermodynamic observables, such as the particle

number and magnetization, but also various others not considered here. In the context

of the grand-canonical ensemble in statistical mechanics, the average particle number is

defined as

⟨N⟩ = − ∂

∂µ
Ω , (3.29)

where Ω once more denotes the grand potential. To compute the particle density ⟨N⟩
L2 , we

thus have take the µ – derivative of Veff and evaluate the result at σ = σmin. The result

is shown as a function of µ for zero temperature and various magnetic field strengths
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Figure 3.6: Thermodynamic observables as functions of µ for T = 0 and different B.

in Fig. 3.6a. While for B = 0 the density vanishes up to the critical chemical potential

µc = σ0, a behavior commonly referred to as the Silver Blaze phenomenon [147], and

has a smooth µ-dependence beyond, it shows step-like behavior once the magnetic field

is switched on. This can once more be explained by the successive filling of Landau

levels, whose degeneracy (and thus, by extension, the step size) increases with B.

Similarly, the average magnetization can be defined as

⟨M⟩ = − 1

L2

∂

∂B
Ω , (3.30)

with an equally straightforward computation. We show its µ-dependence at vanishing T

in Fig. 3.6b. For small chemical potential the magnetic field has the expected effect of

increasing the magnetization (in magnitude), but this picture changes for larger µ, as the

B-dependence of ⟨M⟩ becomes non-monotonic and even exhibits oscillatory behavior.

These oscillations with the magnetic field are tightly related to the well-known de Haas –

van Alphen oscillations of the magnetic susceptibility of diamagnetic metals [148], as

well as the Shubnikov – de Haas oscillations observed in the electric conductivity of

certain materials [149]. For more details about magnetic oscillations in 4FTs, see, e.g.,

[150]. We find it remarkable to which extent footprints of the discrete Landau levels can

be found even in an interacting theory.

3.6 Finite volume

After the discussions in Sections 3.3 to 3.5, which implicitly assumed the spatial extent

of space-time to be infinite, L = ∞, we shall now briefly investigate the mean-field

GN model in a finite (2 + 1) – dimensional box. As was discussed in Section 3.2, for

non-vanishing magnetic field the effective potential has an identical form irrespective of

the volume and one only has to take into account the quantization condition (3.4) for

finite L. For B = 0, on the other hand, this is no longer true, as one has to replace the
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Figure 3.7: Phase diagram in the (L, µ)
plane at T = 0 and B = 0. The reason
that some lines appear wiggly is the poor
resolution. Notice that σ0 was computed
in the limit L→ ∞.

integrals over spatial momenta p in the derivation of Veff by discrete sums, resulting in

the finite-volume effective action (D.66),

V
(V )
eff = −σ2

2π
σ0 +

|σ|3

3π
+

|σ|
L2π

∑︂
k∈Z2

′
e−L|σ||k|

1

k2

(︃
1 +

1

L|σ||k|

)︃
− 2

V

∑︂
p

[︂
ln
(︂
1 + e−β(

√
σ2+p2+µ)

)︂
+ ln

(︂
1 + e−β(

√
σ2+p2−µ)

)︂]︂
,

(3.31)

where the prime in the sum over k indicates the omission of the term for k1 = k2 = 0.

Here and in the remainder of this section, σ0 denotes the minimum position of the

effective potential at T = 0, µ = 0 and B = 0 in the infinite-volume limit, (D.50), and

not its finite -L counterpart. The first sum in V (V )
eff is a finite-size correction, vanishing as

L → ∞, while the second sum is the analog of the last term in (3.20) for B = 0. The

striking similarity between these two sums for B = 0 and B ̸= 0 can be best appreciated

when inserting the quantization laws for the magnetic field and the spatial momenta,

(3.4) and (2.1), respectively.

In particular, it should be noted that the discretized momenta play a role similar to

that of the Landau levels in that both give rise to a fully discrete energy spectrum, see

(3.1) and (3.2). One can thus conjecture that similar physical effects will be at play in

a theory at B = 0 on a finite volume as in a theory in a weak magnetic field. That this

is indeed the case can be seen in Fig. 3.7, where we show the phase diagram in (L, µ)

space at zero temperature and magnetic field, obtained via numerical minimization of

(3.31). We observe that, similar to the B ̸= 0 case, there are multiple phase transitions

between the phase of spontaneously broken chiral symmetry at µ = 0 and the symmetric

phase at large µ. Depending on the spatial extent the emerging intermediate phases

differ in size, generically shrinking on larger volumes. Notice the resemblance between

Fig. 3.7 and Fig. 3.5b. We emphasize that the phase transitions observed in (L, µ) space

at T = 0 can be of genuine first order, in contrast to the degenerate phase transition

present in the infinite-volume limit.

31



3. The Mean-Field Gross-Neveu Model

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
/ 0

0

1

2

3

4

5
3 0V

ef
f

1e 4

/ 0 = 0.99999, L 0 =
/ 0 = 0.98743, L 0 = 10
/ 0 = 1.16237, L 0 = 5

Figure 3.8: Effective potential V (V )
eff from

(3.31) at T/σ0 = 0.1 for two finite vol-
umes and the L→ ∞ limit. Notice that σ0
was computed in the limit L→ ∞.

Interestingly, this can even happen at finite temperature. To see this, we show in

Fig. 3.8 the effective potential (3.31) at the critical chemical potential of the chiral phase

transition, µ = µc, for T/σ0 = 0.1 and three different spatial extents. We clearly observe

the presence of three different minima for the finite volumes, whereas the potential is

almost flat in the infinite-volume limit. Thus, while the phase transition for L→ ∞ is of

second order at finite temperature, on a finite volume one finds first-order transitions as

well. Notice that the notion of proper phase transitions on finite volumes only makes

sense due to large -Nf limit, since Nf plays a role similar to that of the volume in the

path integral. It shall be interesting in later chapters to study to which extent – if at all –

this observation holds beyond the mean-field limit. We mention that finite-size effects in

4FTs have also been investigated in [151].
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4 Lattice Field Theory

In this chapter we briefly introduce the concept of lattice quantum field theory as a

whole to lay the foundation for the two extensive lattice studies presented in Chapters 5

and 6, respectively. We put a particular emphasis on the problem of finding a suitable

lattice discretization for chiral fermions and discuss two solutions, the SLAC derivative

and the overlap operator, in more detail. Besides outlining how they are employed

in Chapters 5 and 6, we also compare how they perform in comparison with other

discretizations.

4.1 Basic concepts

The powerful method of lattice quantum field theory allows – in principle – for a direct

computation of the path integrals defining the observables of a quantum field theory. A

generic path integral of a theory describing a quantum field Φ is given by an integral over

all classical field configurations of Φ, which can formally be understood as the product

of integrals over Φ(x) at every space-time point x,∫︂
DΦ =

∏︂
x

∫︂
dΦ(x) . (4.1)

This product over continuous space-time, however, is not mathematically well defined

as it stands. In order to arrive at a well-defined expression, one typically discretizes

(Euclidean) space-time to a lattice with finite lattice spacing a. Then, the path integral

(4.1) reduces to the product of integrals on a countable number of lattice points and the

original expression is recovered by taking the continuum limit a→ 0.

In this thesis, however, we shall use lattice field theory rather as a computational tool.

The central idea is to approximate the expectation value of an observable O[Φ],

⟨O⟩ = 1

Z

∫︂
DΦO[Φ]e−S , Z =

∫︂
DΦ e−S , (4.2)

via a Monte-Carlo simulation, i.e., the generation of randomly distributed lattice con-

figurations of Φ. Since these configurations contribute to the path integral according

to the Boltzmann weight e−S, only configurations with low actions will give significant

contributions. One thus commonly employs the technique of importance sampling, where

the configurations are drawn from a probability distribution given by e−S

Z
instead of, e.g.,

a uniform distribution. For an ensemble {Φ} comprising N configurations generated
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in this way, an estimator for the expectation value of O is then simply given by the

ensemble average,

⟨O⟩ ≈ 1

N

∑︂
Φ∈{Φ}

O[Φ] . (4.3)

A necessary requirement for this procedure to work is that the Boltzmann factor e−S

can be properly interpreted as a probabilistic weight, meaning that it has to be real and

non-negative. If the Euclidean action S has a non-vanishing imaginary part, however,

this is no longer true. In this case one is confronted with a so-called complex-action or

sign problem, which renders conventional simulation algorithms based on importance

sampling inapplicable, see, e.g., [39]. A prominent example of a theory with a sign

problem is QCD at finite density, i.e., non-vanishing chemical potential [43].

The theories that are of predominant interest to us throughout this thesis are 4FTs.

For this particular class of theories the dynamical degrees of freedom that one generates

configurations of in lattice simulations are the auxiliary scalar fields that arise in the

bosonized theories after performing Hubbard-Stratonovich transformations and inte-

grating out the fermions, see (2.39). As one might expect, the bottleneck of a lattice

simulation of a 4FT is the computation of the fermionic determinant in the lattice equiv-

alent of (2.40). For this purpose, we use a standard rational hybrid Monte-Carlo (rHMC)

algorithm [152] in all simulations discussed in this thesis. For details on the precise

implementation we refer to [153].

Let us now introduce some notation and conventions that we shall use throughout,

thereby staying as close as possible to the continuum notation established in previous

sections. We denote by Nt the number of lattice points in the temporal direction, in

which we again impose anti-periodic boundary conditions for fermions and periodic ones

for the scalar fields. The inverse temperature is then given by the temporal lattice extent

in physical units, β = aNt. Similarly, Ns denotes the number of sites in each spatial

direction, which we assume to have equal extents L = aNs. All fields considered obey

periodic boundary conditions in the spatial directions. We denote the lattice itself by Λ

and its volume is given by V = βLd−1. The lattice spacing a is always assumed isotropic,

i.e., equal in each direction. In our simulations of the GN and χGN models we control a

by varying the four-Fermi couplings g2 in (2.33) and (2.35), respectively. Lastly, unless

stated otherwise, the lattice points in each direction shall be counted starting from zero,

i.e., x0 ∈ {0, a, . . . , β − a} and xi ∈ {0, a, . . . , L− a}.

4.2 Lattice discretization of fermions

In this section we discuss different ways of discretizing fermions on a lattice, putting a

particular emphasis on the preservation of chiral symmetry in the discretized theory.
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4.2.1 The problem of chiral lattice fermions

The lattice discretization of fermions, represented by the Dirac operator D in (2.40), is

a non-trivial issue, as there is no single discretization of D that one may reliably use

for every possible application. In practice, one chooses a lattice Dirac operator based

on how suitable it is for addressing a particular problem while at the same time being

computationally affordable. In our case, we are predominantly interested in studying

chiral symmetry and so we would like to employ a lattice Dirac operator that preserves

chiral symmetry in the best possible way. In the following we shall briefly discuss a few

fermion discretizations that are commonly used in the literature and outline some of

their advantages and disadvantages.

The most intuitive discretization giving rise to an anti-symmetric covariant derivative

operator is the – appropriately named – naive discretization. The resulting naive Dirac

operator is defined as

/Dnaive :=
1

2
γµ
(︁
∇∗
µ +∇µ

)︁
, (4.4)

where the action of the forward and backward covariant difference operators ∇µ and ∇∗
µ

on some function ψ(x) with support on the lattice is given by

∇µψ(x) =
1

a
[Uµ(x)ψ(x+ aµ̂)− ψ(x)] ,

∇∗
µψ(x) =

1

a

[︁
ψ(x)− U †

µ(x− aµ̂)ψ(x− aµ̂)
]︁
.

(4.5)

In these definitions µ̂ denotes the unit vector in the direction of xµ and we have further-

more introduced the gauge link variables

Uµ(x) = eieaAµ(x) , (4.6)

with e and Aµ defined as in Section 3.2, albeit the generalization to non-Abelian gauge

fields is straightforward. The use of group-valued gauge degrees of freedom ensures the

gauge invariance of the fermionic action [154, 155]. Note the – perhaps counter-intuitive

but nonetheless common – definition of Uµ(x) as the parallel transporter from the point

x+ aµ̂ to the point x instead of the other way around.

The naive discretization (4.4) gives rise to chiral lattice fermions but comes with

a major drawback. Namely, it suffers from the infamous fermion-doubling problem,

as it gives rise to 2d − 1 unphysical poles of the fermion propagator on the edges of

the first Brillouin zone, the so-called fermion doublers. Needless to say, there are

countless attempts to get rid of these spurious degrees of freedom to be found in the

literature. For instance, the fact that for vanishing gauge field 1
2

(︁
∇∗
µ +∇µ

)︁
reduces to

the usual symmetric difference operator might raise the question as to why one does

not simply employ a one-sided difference instead, since this would cure the problem of
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doublers [156]. The reason is that a one-sided difference operator violates reflection

positivity [156] (see [157] for a definition) and could even lead to the theory losing

renormalizability [158]. It is thus usually discarded.

Another idea, dating back to Wilson [159], is to introduce an irrelevant (i.e., vanishing

in the limit a → 0) term proportional to the discretized Laplacian operator into /Dnaive,

which results in the removal of the doublers due to their mass diverging with the inverse

lattice spacing. The ensuing Wilson operator reads

/DW :=
1

2

[︁
γµ
(︁
∇∗
µ +∇µ

)︁
− a∇∗

µ∇µ

]︁
. (4.7)

While the naive action arising from (4.4) is invariant under chiral transformations (2.16),

the extra term added in (4.7) explicitly breaks chiral symmetry, and thus Wilson fermions

cannot be used for our purposes in a straightforward way (i.e., without fine-tuning the

bare masses, see, e.g., [160], or [161] for the context of 4FTs).

These observations are, in fact, consequences of a general theorem formulated by

Nielsen and Ninomiya [162–164] (see also [165]), stating – in essence – that it is

impossible to construct a chiral fermionic lattice derivative that is local (in the sense

that it is continuous in momentum space) and free of doublers. This no-go theorem is at

the root of most difficulties in choosing appropriate discretizations for chiral fermions.

Nonetheless, there are ways to circumvent it, two of which we shall outline in the

remainder of this section.

4.2.2 SLAC fermions

The first such method is the so-called SLAC derivative [166, 167], the underlying idea of

which is to apply the derivative in momentum space. To illustrate this, let us consider

a function ψ(x) that is defined on the lattice and obeys fermionic boundary conditions.

The Fourier decomposition of ψ(x) reads

ψ(x) =
1

V

∑︂
p∈Λ̃

ψ̃(p)eipx , ψ̃(p) = ad
∑︂
x∈Λ

ψ(x)e−ipx , (4.8)

where ψ̃(p) is the Fourier transform of ψ(x) and the elements of the reciprocal lattice Λ̃

are the discrete momenta (2.1) with the integers nµ restricted to n0 ∈
{︁
−Nt

2
, . . . , Nt

2
− 1
}︁

and ni ∈
{︁
−Ns−1

2
, . . . , Ns−1

2

}︁
, respectively. Here, we have chosen Nt to be even and Ns

to be odd for reasons that will become clear below.

The SLAC derivative of ψ(x) with respect to xµ is now defined in analogy to the

continuum as the multiplication with ipµ:

∂(SLAC)
µ ψ(x) :=

1

V

∑︂
p∈Λ̃

ipµ ψ̃(p)e
ipx =

∑︂
x′∈Λ

ψ(x′)δ(SLAC)
µ (x− x′) , (4.9)
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where we have introduced

δ(SLAC)
µ (x− x′) :=

1

N

∑︂
p∈Λ̃

ipµ e
ip(x−x′) (4.10)

and N = V
ad

denotes the total number of lattice points. Our earlier choice of even Nt

and odd Ns ensures that the SLAC derivative is a real and anti-symmetric operator like

the continuum derivative. We also note that δ(SLAC)
µ (x− x′) vanishes if either xµ = x′µ

or xν ̸= x′ν for any ν ̸= µ. The crucial observation, however, is that the SLAC derivative

is non-local, as it includes contributions from every lattice point in xµ-direction. This

becomes especially clear after evaluating the sum in (4.10), yielding [168, 169]

δ(SLAC)
µ (x− x′) =

⎧⎨⎩0 if xµ = x′µ or xν ̸= x′ν for any ν ̸= µ

π
Lµ

(−1)
(xµ−x′µ)/a

sin(π(xµ−x′µ)/Lµ)
else

, (4.11)

where L0 = β and Li = L. SLAC fermions avoid the Nielsen-Ninomiya theorem due to

this non-locality. Indeed, the SLAC Dirac operator, defined as

/DSLAC := γµ∂
(SLAC)
µ , (4.12)

gives rise to chiral lattice fermions that are free of doublers. A mass (or Yukawa-like)

term or a chemical potential can then be added just like in the continuum.

In many ways /DSLAC resembles the continuum Dirac operator as closely as possible,

as it, e.g., reproduces the continuum dispersion relation of a free fermion correctly by

construction [167], which naive and Wilson fermions are not capable of. The important

difference is that the discretized theory gives rise to Brillouin zones, i.e., a momentum

cutoff |pµ| < π
a
, across which the SLAC dispersion relation is discontinuous due to the

non-locality. This implies that SLAC fermions are bound to be problematic for theories

that probe the Brillouin zone edges. Indeed, it has been shown that their use can lead

to violations of Lorentz symmetry in gauge theories [170, 171]. However, for theories

without local symmetries, such as supersymmetric Yukawa models [172, 173] or 4FTs

[174, 175], SLAC fermions have repeatedly proven to be competitive with – if not better

than – their alternatives.

4.2.3 Ginsparg-Wilson fermions

Another approach entirely was initiated by Ginsparg and Wilson [176], who departed

from the continuum-inspired idea that any valid discretized derivative operator obeying

chiral symmetry must necessarily anti-commute with γ∗ and instead proposed that a
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suitable Dirac operator DGW should be a solution of

{DGW, γ∗} = aDGWγ∗DGW , (4.13)

using renormalization group transformations for its derivation. The reason why Ginsparg-

Wilson fermions can evade the Nielsen-Ninomiya theorem is that they make use of an

alternative definition of chiral symmetry, replacing the continuum chiral transformation

(2.16) by the non-local expression [177]

ψ → eiαγ∗(1−
a
2
DGW)ψ , ψ̄ → ψ̄eiα(1−

a
2
DGW)γ∗ . (4.14)

As in the continuum, this symmetry should be explicitly broken by a mass term. While

for naive, Wilson, and SLAC fermions one may simply add a mass term of the form

mψ̄ψ to the lattice action, in the Ginsparg-Wilson formalism massive fermions are less

trivial, because such a naive mass term transforms incorrectly under (4.14). Instead, the

mass term with the correct transformation behavior contains yet another irrelevant term

and reads mψ̄
(︁
1− a

2
DGW

)︁
ψ [178]. One may thus define a Dirac operator describing

massive Ginsparg-Wilson fermions by

Dm = DGW +m
(︂
1− a

2
DGW

)︂
. (4.15)

As a consequence, the definition of the chiral condensate is altered as well in the

Ginsparg-Wilson formalism. It reads

⟨ψ̄ψ⟩GW := −
⟨︂
ψ̄
(︂
1− a

2
DGW

)︂
ψ
⟩︂
, (4.16)

where the negative sign is purely conventional. Notice that Eqs. (4.13) to (4.16) each

approach their respective continuum counterparts in the limit a→ 0, as they should.

While over the years a number of solutions to (4.13) have been found (see, e.g.,

[179]), we shall focus here on one in particular, namely the so-called overlap operator

devised by Narayanan and Neuberger [180–184]. The overlap Dirac operator in the form

we shall use throughout was introduced in [185] and can be written as

D(0)
ov :=

1

a

[︃
1+ AW

(︂
A†

WAW

)︂−1/2
]︃
, (4.17)

where AW is just the Wilson operator (4.7), but with a negative mass,

AW = a /DW − 1amW , amW ∈ (0, 2) . (4.18)

Unless specified otherwise, we shall always set amW = 1 in the sequel. Notice that the

definition (4.17) does not make use of γ∗, which means that there is no obstruction
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against employing the overlap operator in odd dimensions [186, 187], where there is no

γ∗ if one works in an irreducible representation of the Dirac algebra, see Section 2.2.

Overlap fermions are free of doublers, a property that they share with SLAC fermions.

However, in contrast to the SLAC derivative the overlap operator is local, falling off

exponentially at large distances [188]. It is not ultra-local, though, which means that it

connects all possible pairs of lattice sites. In fact, this is a generic property of doubler-free

solutions of (4.13) [189], rendering them much more expensive numerically than ultra-

local formulations. We see that the modified symmetry transformations (4.14) indeed

allow for a lattice discretization of fermions that is chiral, local, and free of doublers.

Next, we discuss how to introduce a chemical potential µ in the overlap formalism.

One way to do so is by adapting the usual assignment [190] of factors eµ (e−µ) to the

forward (backward) temporal hopping terms of the Wilson operator (4.7) and then using

the resulting /DW in the definition of the kernel (4.18) entering (4.17) [191]. Despite

this overlap operator obeying the Ginsparg-Wilson relation (4.13), however, the ensuing

action is not invariant under (4.14) [192]. The same holds true as well when attempting

to introduce µ as for SLAC fermions via a – more intuitive – linear coupling to the number

density operator in analogy to the continuum [193]. In order to preserve lattice chiral

symmetry, we instead employ another prescription that was introduced by Gavai and

Sharma [194]. The overlap operator in this setup, including the symmetry-breaking

mass term, reads

Dov(µ) := Dov + µγ0

(︂
1− a

2
D(0)

ov

)︂
, (4.19)

where

Dov = D(0)
ov +m

(︂
1− a

2
D(0)

ov

)︂
, (4.20)

see (4.15). We note that the quadratic divergence of the fermion number susceptibil-

ity that ensues with this choice once the cutoff is removed is not considered to be a

problem as it also arises for free fermions in the continuum and may simply be sub-

tracted [195]. We compare the definition (4.20) with the other aforementioned possible

implementations of µ within the overlap formalism in Section 4.4.

4.3 Magnetic fields on the lattice

Let us now briefly discuss how to implement an external magnetic field on the lattice.

From (3.4) we know that a constant and homogeneous magnetic field perpendicular to

a torus is quantized in terms of an integer b and we have to take this fact into account

in our simulations. With the application in Chapter 6 in mind we only consider a

(2 + 1) – dimensional space-time in this section.
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4.3.1 Formulations using link variables

For lattice formulations using compact gauge degrees of freedom, such as naive, Wilson,

and overlap fermions the inclusion of a magnetic field appears to be a straightforward

task. One might be tempted to simply employ the gauge

A0(x) = 0 , A1(x) = 0 , A2(x) = Bx1 (4.21)

in the definition of the link variables (4.6). After all, in the continuum this definition of

Aµ gives rise to a constant and homogeneous magnetic field, perpendicular to the spatial

plane and with a magnitude B, as desired. On the lattice, however, this naive procedure

would give rise to a vanishing total magnetic flux.

One may overcome this problem by introducing suitable correction terms for Aµ on

the lattice boundary [196], i.e., by defining (see also [105] for a discussion)

A0(x) = 0 , A1(x) = −Bx2Nsδx1,L−a , A2(x) = Bx1 . (4.22)

The resulting U(1) link variables then take the modified form

U0(x) = 1 ,

U1(x) =

⎧⎨⎩e2πibx2/L if x1 = L− a

1 else
,

U2(x) = e2πiabx1/L
2

.

(4.23)

This prescription indeed leads to a lattice theory which is physically equivalent to one

with a non-zero magnetic flux of 2π
e
b, as desired. It is furthermore necessary in order to

ensure gauge invariance, as otherwise the physical magnetic field at the lattice boundary

would have different magnitudes for different gauges.

Notice that the use of compact link variables entails that the lattice formulation and

thus all physical observables are periodic in b with a period of N2
s . This introduces an

effective upper bound for the magnetic field strengths we can simulate on the lattice,

|eB| < 2π
a2

. In practice, this bound is reduced even further due to discretization effects

[197, 198]. In order to study continuum physics one thus conventionally introduces by

hand a suitable upper bound for b.

While SLAC fermions are not commonly used in combination with gauge links due to

the problems discussed in Section 4.2.2, a straightforward generalization of the SLAC

derivative (4.9), now including link variables Uµ is given by [170]

∇(SLAC)
µ ψ(x) :=

∑︂
x′∈Λ

ψ(x′)δ(SLAC)
µ (x− x′)

x′∏︂
y=x

Uµ(y) , (4.24)
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where the product is to be understood in such a way that

x′∏︂
y=x

Uµ(y) :=

⎧⎨⎩
∏︁x′µ−a

yµ=xµ
Uµ(y) if L

2
≥ x′µ − xµ > 0 or xµ − x′µ >

L
2∏︁xµ−a

yµ=x′µ
U †
µ(y) if L

2
≥ xµ − x′µ > 0 or x′µ − xµ >

L
2

, (4.25)

while we require that yν = xν = x′ν for all ν ̸= µ. In the case where xµ = x′µ or

xν ̸= x′ν the covariant SLAC derivative vanishes due to the properties of δ(SLAC)
µ , see

(4.11). The definition (4.25) ensures that the product of gauge links is taken along

the shortest possible path on the lattice, taking into account (anti-)periodic boundary

conditions. This choice is by no means unambiguous, however. In fact, in the definition

given in [170] the lattice boundary is never crossed, such that the boundary terms

introduced in (4.23) would not have any effect. The expression (4.24) is gauge invariant

by construction. However, the idea of taking the product of link variables, which amounts

to exponentiating the vector potential summed up along a straight line by virtue of (4.6),

in the definition of the Dirac operator might appear somewhat unnatural.

4.3.2 Formulations based on minimal coupling

As an alternative, one may consider employing the following continuum-inspired minimal

coupling prescription for the covariant SLAC derivative:

∇(SLAC)
µ = ∂(SLAC)

µ + ieAµ . (4.26)

Since this formulation does not make use of compact link variables, there is no periodicity

in b. This also entails, however, that the total magnetic flux through the lattice can

no longer be kept finite by introducing appropriate boundary terms. Moreover, gauge

invariance is lost as well. One could only hope for (4.26) to give reasonable results

for very weak magnetic fields such that ieAµ could be viewed as a perturbation. Since

the vector potential is x-dependent, however, it is questionable how justified such an

assumption really is. In particular, large values of eAµ will give rise to momenta close

to the Brillouin zone edge, where the SLAC derivative is known to be problematic. In

order to investigate this issue in more detail, we shall compare the definition (4.26) and

variations thereof to the one given in (4.24) in the next section.

4.4 Numerical tests

Having introduced a number of different lattice discretizations for the Dirac operator

in Sections 4.2 and 4.3, we shall now study some of their properties in more detail. In

particular, we are concerned with their applicability in fermionic theories in two and

three space-time dimensions, as these are the situations we shall be confronted with in
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Chapters 5 and 6. To this end, we compute in this section the fermion condensate ⟨ψ̄ψ⟩
in a simplified setup, namely a theory of massive non-interacting fermions. We compare

results for ⟨ψ̄ψ⟩ obtained using naive, Wilson, SLAC and overlap fermions, respectively,

with corresponding finite-volume continuum results. In particular, we investigate how

well the dependence of the condensate on the external control parameters µ and B is

reproduced by the various lattice discretizations.

To this end, let us introduce the massive naive, Wilson and SLAC Dirac operators,

Dnaive = /Dnaive + 1m , DW = /DW + 1m , DSLAC = /DSLAC + 1m , (4.27)

with the massless operators defined in (4.4), (4.7) and (4.12), respectively. We compute

the lattice condensate as the trace of a suitable lattice propagator,

⟨ψ̄ψ⟩latt =
1

V

1

ndof

tr
[︂
D̃

−1
]︂
, (4.28)

where we have defined

D̃ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Dnaive for naive fermions

DW for Wilson fermios

DSLAC for SLAC fermions

Dov

(︂
1− a

2
D

(0)
ov

)︂−1

for overlap fermions

. (4.29)

The massless and massive overlap operators D(0)
ov and Dov were introduced in (4.17) and

(4.20), respectively. Note that the modification of the overlap propagator is necessary

to conform with the definition (4.16) of the condensate for Ginsparg-Wilson fermions.

Moreover, ndof in (4.28) denotes the total number of fermion degrees of freedom includ-

ing doublers, i.e., ndof = 2d for naive fermions and ndof = 1 otherwise. Notice that simply

dividing by ndof gives the correct result here since we work in a free-theory setup, but

would not work in a simulation of an interacting theory.

In order to compare the different discretizations among each other as well as with

the continuum, we define for the following investigations the difference

∆⟨ψ̄ψ⟩(X) := ⟨ψ̄ψ⟩(X)− ⟨ψ̄ψ⟩(0) , (4.30)

where X stands for either µ or B. Moreover, we also study the relative deviation between

⟨ψ̄ψ⟩latt and the condensate in the continuum ⟨ψ̄ψ⟩cont (with the absence of a minus sign

in (4.28) appropriately taken into account),

∆⟨ψ̄ψ⟩rel(X) :=

⃓⃓⃓⃓
∆⟨ψ̄ψ⟩latt(X)−∆⟨ψ̄ψ⟩cont(X)

∆⟨ψ̄ψ⟩cont(X)

⃓⃓⃓⃓
. (4.31)
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The computation of the continuum condensate proceeds as follows: Since we consider

a non-interacting theory, the condensate is defined as (see (B.25))

⟨ψ̄ψ⟩cont = − 1

V

∂

∂m
ln detD , (4.32)

with D denoting the appropriate continuum Dirac operator. We may now compute

ln detD using the zeta function formalism of Appendix C – in fact, we have already done

so for the three-dimensional case in Appendix D. Taking the derivative with respect to

m is then straightforward. The calculations in two dimensions proceed along the same

lines as in Appendix D and we shall not repeat them here.

4.4.1 Two dimensions

We start by considering a (1 + 1) – dimensional theory for vanishing magnetic field but

non-zero chemical potential. On the lattice side, we do not only consider the respective

most obvious choices implementation of the chemical potential, but instead compare a

number of alternatives for the sake of completeness.

First of all, we employ a linear coupling as in the continuum, i.e., we define

Dlatt(µ) = Dlatt + µγ0 , (4.33)

where Dlatt can be Dnaive, DW, DSLAC or Dov as defined above. Secondly, we employ the

more conventional exponential coupling [190], which is commonly used to avoid certain

divergences that appear with the definition (4.33). To this end, we replace

U0(x) → eµU0(x) , U †
0(x) → e−µU †

0(x) (4.34)

in the definition of the covariant difference operators (4.5). However, we only consider

this prescription for naive and Wilson fermions. For the overlap operator we instead

employ the chirally symmetric prescription (4.19) due to Gavai and Sharma (GS), while

for SLAC fermions we only use (4.33). The resulting µ-dependent operators are then

used within (4.29) to compute the lattice condensate (4.28).

We show the µ-dependence of ∆⟨ψ̄ψ⟩ and ∆⟨ψ̄ψ⟩rel for the different formulations in

Fig. 4.1. One observes that, generically, the agreement between lattice and continuum

results becomes worse for larger µ, which is expected due to discretization artifacts.

Moreover, we see that the continuum-inspired linear µ-coupling gives rise to substantial

deviations from the continuum result for Wilson and overlap fermions, while it works

much better for the other discretizations. The overall best agreement is achieved with

overlap fermions and the GS prescription. Naive fermions lead to reasonable results,

independent of the way the chemical potential is introduced, while Wilson fermions with

an exponential coupling as well as SLAC fermions yield acceptable agreement as well.
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(a) ∆⟨ψ̄ψ⟩ from (4.30).

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
/m

10 3

10 2

10 1

100

re
l

(b) ∆⟨ψ̄ψ⟩rel from (4.31).

Figure 4.1: µ-dependence of ⟨ψ̄ψ⟩ for SLAC (blue), naive (orange), Wilson (green) and overlap
(red) fermions, employing linear (circles), exponential (squares) and GS (diamonds) couplings,
as well as a comparison with the continuum result (black crosses) in 1 + 1 dimensions – see the
main text for details. Ns = Nt = 32 (Ns = 31 for SLAC fermions), am = 0.0512.

Although we do not show it here, we have also performed continuum extrapolations

(amounting to increasing Ns while keeping m fixed) of these results, confirming that the

relative deviation decreases with smaller a, albeit at a different rate for each formulation.

Next, we investigate the B-dependence of the chiral condensate. To this end, we

stay in two dimensions but impose periodic boundary conditions in both directions

and refer to the ensuing space-time as (2 + 0) – dimensional. In particular, we wish to

elucidate the complications arising for SLAC fermions in a magnetic field more carefully.

For this, we employ both the compact formulation based on link variables (4.24) as

well as the minimal-coupling prescription (4.26) for comparison. For both formulations

we investigate the effects of the boundary terms in Aµ leading to the definition (4.23).

Moreover, since the minimal coupling prescription is not gauge invariant, we consider

two different gauges, (4.21) (without A0), henceforth referred to as the Landau gauge,

and the symmetric gauge

A1(x) = −Bx2
2

, A2(x) =
Bx1
2

. (4.35)

The goal of this investigation is to see for which of the aforementioned prescriptions

– if for any at all – the idea of treating ieAµ in (4.26) as a perturbation is justified.

The introduction of boundary terms ensuring a non-vanishing magnetic flux works

similarly for (4.35) as for (4.21) (see (4.22)) and we simply omit A0 and U0 in our

(2 + 0) – dimensional setup.

Lastly, we consider the option of making the components of Aµ symmetric with respect

to the spatial origin by assuming xi ∈
{︁
−L−a

2
, . . . , L−a

2

}︁
instead of starting to count the xi

from zero. While this choice makes no difference for gauge-invariant formulations, in the

cases where it does one might, in fact, expect it to give better results since the absolute

44



4. Lattice Field Theory

0 20 40 60 80 100 120 140
eB/m2

0

10

20

30

40

50

60
/m

linear, Landau, boundary
linear, Landau, no boundary
linear, symmetric, boundary
linear, symmetric, no boundary
compact, Landau, boundary
compact, Landau, no boundary
compact, symmetric, no boundary
continuum

(a) ∆⟨ψ̄ψ⟩ from (4.30) with Aµ non-symmetric in space.
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(c) ∆⟨ψ̄ψ⟩rel from (4.31) with Aµ non-symmetric in space.
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(d) ∆⟨ψ̄ψ⟩rel from (4.31) with Aµ symmetric in space.

Figure 4.2: B-dependence of ⟨ψ̄ψ⟩ for SLAC fermions in 2+0 dimensions. The left (right) column
shows results for Aµ chosen (non-)symmetric in space. We employ the minimal coupling (4.26)
(solid lines) and the compact formulation (4.24) (dashed lines), both in the Landau gauge (4.21)
(circles) and the symmetric gauge (4.35) (squares) and we consider the inclusion (blue) and
non-inclusion (orange) of boundary terms such as in (4.22). The black crosses indicate the
continuum result. See the main text for details. Ns = 23, Nt = 24, am = 0.0512.

values of Aµ are smaller in magnitude. As the reader will notice, the construction has

become rather artificial at this point. Moreover, since we do not employ SLAC fermions

in simulations with a non-zero magnetic field in this thesis, the investigation at hand is

predominantly of academic interest for the time being. However, it would certainly be

desirable for future studies to find a working formulation of SLAC fermions in a magnetic

field. We show a comparison between the different ways of introducing a magnetic

field for SLAC fermions discussed above in Fig. 4.2. Recall that the compact formulation

including boundary terms is gauge-invariant.

We observe that – perhaps surprisingly – the link formulations overall seem to give

worse agreement than those based on minimal coupling. Also note that no imple-

mentation gives particularly convincing results for weak magnetic fields. It is difficult

to estimate which formulation performs best overall – after all, the B-dependence of

∆⟨ψ̄ψ⟩rel is very non-monotonic across the board. We are inclined to believe that for
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(a) ∆⟨ψ̄ψ⟩ from (4.30).
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(b) ∆⟨ψ̄ψ⟩rel from (4.31).

Figure 4.3: B-dependence of ⟨ψ̄ψ⟩ for SLAC fermions (blue), naive (orange), Wilson (green)
and overlap (red) fermions, as well as a comparison with the continuum result (black) in
2 + 0 dimensions. For SLAC fermions we use the minimal coupling (4.26), while for the other
discretizations we implement their usual link-based gauge-invariant formulations. In all cases
we employ the vector potential given in (4.22) (but without A0) – see the main text for details.
Ns = Nt = 32 (Ns = 31 for SLAC fermions), am = 0.0512.

small B the minimal coupling prescription in the Landau gauge, i.e., the definition

(4.23), has a slight edge in comparison to the others. However, due to the fact that the

relative deviation seems to follow no predictable pattern, one is left wondering if this

might not be merely a coincidence. Moreover, for different masses and/or volumes other

SLAC variants might be favorable instead. For naive, Wilson and overlap fermions there

is no ambiguity in the implementation, and a comparison between different possible

variations indeed shows that the usual link formulation gives the best results.

Let us now examine how the best-performing SLAC implementation fares against the

gauge-invariant formulations for naive, Wilson and overlap fermions. A comparison is

shown in Fig. 4.3. While Wilson fermions are completely off, SLAC fermions actually

agree with the continuum results reasonably well for intermediate B, but – as was

mentioned before – the deviation does not seem to be systematic. We conclude that SLAC

fermions are not reliable for their use in the present context with the implementations

suggested here. On the other hand, the agreement for both naive and overlap fermions is

very good, in particular for the latter. While the overlap result also starts to deviate from

the continuum one at some point, this happens only for much stronger magnetic fields

than it is the case for naive fermions. In their range of validity the naive and overlap

results lie essentially on top of the continuum curve.

4.4.2 Three dimensions

Since in Chapter 6 we shall be concerned with a (2 + 1) – dimensional theory, we check

whether the results of the previous sub-section still hold when adding another dimension,

in which fermions are assumed to obey anti-periodic boundary conditions. For the sake
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(a) ∆⟨ψ̄ψ⟩ from (4.30).
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(b) ∆⟨ψ̄ψ⟩rel from (4.31).

Figure 4.4: µ-dependence of ⟨ψ̄ψ⟩ for SLAC (blue), naive (orange), Wilson (green) and overlap
(red) fermions, as well as a comparison with the continuum result (black) in 2 + 1 dimensions.
We employ a linear coupling of µ for SLAC fermions, an exponential coupling for naive and
Wilson fermions and the GS prescription for overlap fermions – see the main text for details.
Ns = Nt = 12 (Ns = 11 for SLAC fermions), am = 0.0512.

of simplicity, however, we shall henceforth restrict ourselves only to the implementations

that yielded the best results in two dimensions.

In Fig. 4.4 we compare the µ-dependence of the condensate for the different lattice

discretizations with the continuum. Similar as in 1 + 1 dimensions, SLAC fermions seem

to perform worst, at least for this particular lattice spacing. The respective deviations for

Wilson and overlap fermions are comparable with each other, with the relative deviation

for the former (as well as for SLAC fermions) actually decreasing for large µ, which

appears to be counter-intuitive. By far the best agreement is found for naive fermions.

As far as the relative deviation can be compared between Figs. 4.1 and 4.4 it is smaller in

1 + 1 dimensions for all discretizations apart from the naive one. The largest deviation

between 1 + 1 and 2 + 1 dimensions can be seen for SLAC and overlap fermions.
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(b) ∆⟨ψ̄ψ⟩rel from (4.31).

Figure 4.5: As in Fig. 4.3 but in 2 + 1 dimensions. Ns = Nt = 12 (Ns = 11 for SLAC fermions),
am = 0.0512.
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Finally, the B-dependence of ∆⟨ψ̄ψ⟩ is shown in Fig. 4.5. While the disagreement

with the continuum results is not surprising for SLAC and Wilson fermions, one thing

that clearly stands out when comparing to the (2 + 0) – dimensional analog of Fig. 4.3

is that overlap fermions no longer lie on top of the continuum curve as naive fermions

do. On the contrary, the disagreement for the overlap case is quite substantial. However,

since the overlap condensate seems to systematically underestimate the continuum result,

one may still be able to make qualitative statements with this discretization. In fact, we

accredit the discrepancy to discretization effects. After all, while the massless overlap

operator is O(a) improved automatically, this is no longer true when introducing a mass

term as in (4.20), while the massive naive operator remains valid up to O(a2). To some

extent, this might be cured by employing an improved version of the overlap operator

[199, 200]. Either way, when investigating an interacting theory, a particular focus

should be put on the continuum limit and whether or not it is really under control.
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In the discussion of the (2 + 1) – dimensional GN model in the mean-field limit in

Sections 3.2 to 3.6 we were always assuming translational invariance, i.e., that the

effective action (2.40) is minimized by a homogeneous configuration, σ(x) = σ = const.,

and thus reduces to (3.16). While we argued that in 2+1 space-time dimensions such an

assumption is indeed justified, this is not true in general and we shall devote this chapter

to a more detailed discussion on this subject. After summarizing previous insights into

the (non-)existence of inhomogeneous phases in low-dimensional 4FTs, both on the

mean-field level and beyond, we present new simulation results for the χGN model in

1+1 dimensions. Most importantly, we find clear evidence for inhomogeneous structures

for flavor numbers as low as Nf = 2.

5.1 Inhomogeneous phases in the mean-field limit

In light of the invariance of four-Fermi Lagrangians such as (2.18), (2.19), or (2.20)

under translations (2.9) in both space and time, it is only reasonable to assume that

the respective vacuum or thermal expectation values of 4FTs should respect this sym-

metry as well. This would entail, for instance, that in the GN model (2.20) the chiral

condensate ⟨ψ̄ψ⟩ and, by virtue of (2.42), the expectation value of the auxiliary field σ

are homogeneous throughout all of space-time.

Indeed, this was the working assumption in early works on the model in 1 + 1

dimensions such as [201], where its large -Nf phase structure in the (µ, T ) plane was

calculated. It was found that chiral symmetry is spontaneously broken at low T and µ.

For µ = 0 chiral symmetry is restored via a second-order phase transition at a critical

temperature Tc/σ0 = eγ

π
. Here, γ ≈ 0.577 denotes the Euler-Mascheroni constant and,

as usual, σ0 denotes the (positive) minimum position of the effective potential (3.18)

at vanishing T and µ. In contrast, the symmetry-restoring phase transition at zero

temperature and a critical chemical potential of µc/σ0 = 1√
2

is of first order and the

two respective transition lines of first and second order meet at a tri-critical point at

non-vanishing values of both T and µ. We mention in passing that in the large -Nf limit

and under the assumption of homogeneous condensates the phase structures of the GN

and χGN models, in fact, exactly coincide. This is because the effective potential of the

latter only depends on the combination ρ2 = σ2 + π2, with π denoting the pseudo-scalar

field introduced in (2.35), due to chiral symmetry. The calculation then proceeds in an

identical fashion for both models [202].
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However, it was realized in [90, 91] that the assumption of translational invariance

leads to incorrect values for the masses of baryons within the models. Abandoning this

assumption subsequently led to a number of novel insights, the most relevant for our

purposes being that the phase diagram computed in [201] needed to be revisited. It turns

out that, as a consequence of allowing for spatial modulations of σ (and π), the correct

mean-field (µ, T ) phase diagrams of the GN and χGN models are, in fact, different, as

we shall discuss in the following.

We invert the chronological order in which these results were found and begin with

a discussion of the (massless) GN model with allowance for an inhomogeneous chiral

condensate. The situation for low T and µ changes very little, as chiral symmetry is still

spontaneously broken by a homogeneous order parameter. In addition, the second-order

transition line between the phase of (homogeneously) broken chiral symmetry and

the symmetric phase remains unchanged as well. However, it became clear that the

first-order transition line at low T is no longer present [121, 203]. Instead, one finds

two second-order transition lines delimiting an entirely new phase at high density, where

– in addition to chiral symmetry – translation symmetry is spontaneously broken, as

the order parameter develops a non-trivial dependence on the spatial coordinate. In

fact, the space-dependence of the chiral condensate in this inhomogeneous phase can

be described by a combination of Jacobi’s elliptic functions commonly referred to as

a real kink crystal [204, 205]. We remark, however, that a discrete combination of

translational and chiral symmetry remains intact. The large -Nf lattice studies [206, 207]

lent further numerical support to the existence of an inhomogeneous phase and similar

results were also found in the massive GN model [208]. For a comprehensive review of

these developments we refer to [72].

Next, we turn to the χGN model. Already in the seminal works [90, 91] it was found

that the correct phase diagram of the χGN model looks qualitatively different when the

assumption of translational invariance is relaxed. In contrast to the GN model, however,

the phase structure becomes much simpler in this case. Chiral symmetry is restored

for temperatures higher than Tc (the value of Tc is carried over from the homogeneous

case discussed above) independently of µ, while below Tc the system develops an

inhomogeneous phase for every µ > 0. The scalar and pseudo-scalar condensates form a

so-called chiral spiral, which is the thermodynamically preferred realization of a more

general solution to the inhomogeneous gap equation termed the twisted kink crystal

[209–211]. In the chiral spiral phase, the space-dependence of the complex condensate

is described by a plane wave, i.e., ⟨ψ̄ψ⟩ − i⟨ψ̄γ∗ψ⟩ = Ae2iµx, whose wave number is

proportional to µ and whose amplitude A only depends on the temperature. These

results were confirmed and further elaborated upon in [212–214] and extended to the

massive case in [215]. As for the GN model, a certain combination of translations and

chiral rotations remains a symmetry of the inhomogeneous phase of the χGN model as

well. For the latter, however, this residual symmetry is continuous and one could thus
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argue that – heuristically speaking – the effective “amount of symmetry breaking” is

actually the same in both models.

The emergence of inhomogeneous condensates at non-zero µ can be explained as

follows (see, e.g., [216]): Generically, a chiral condensate ⟨ψ̄ψ⟩ = ⟨ψ̄RψL⟩ + ⟨ψ̄LψR⟩
is formed by the pairing of a left-handed fermion with a right-handed anti-fermion

and vice-versa. At µ = 0 the energetically favored way in which this can happen is by

pairing fermions and anti-fermions with a vanishing total momentum, resulting in a

homogeneous condensate. While this is also true for non-zero µ, the latter opens up

the possibility for breaking chiral symmetry via a pairing between fermions and fermion

holes. The excitation of such a fermion-hole pair costs very little energy if it occurs

close to the Fermi surface. Importantly, whenever the pairing leads to a non-zero total

momentum p, the resulting condensate is inhomogeneous in space, with a wave vector

proportional to p. The latter is of the order of 2µ, which is, for instance, reflected in the

space-dependence of the chiral spiral discussed above. This mechanism is very similar in

spirit to the Peierls instability of one-dimensional electron chains [217].

5.2 Inhomogeneities beyond the mean-field limit

The central question that we aim to address in this chapter is whether the inhomo-

geneities discussed in Section 5.1 are merely an artifact of the mean-field limit or if they

persist even for finite flavor numbers, where quantum fluctuations are not suppressed.

The influence of the latter on the phase structure of a theory is generically expected to

be non-trivial. In this section we discuss the intricacies that arise in low-dimensional

theories beyond the mean-field limit and summarize the results of previous works dealing

with similar questions.

The spontaneous breakdown of translational invariance, which is a continuous sym-

metry, is a highly delicate issue in low dimensions due to the Coleman-Hohenberg-

Mermin-Wagner (CHMW) theorem [218–221]. In essence, this famous no-go theorem

forbids the spontaneous breakdown of continuous symmetries in two or fewer (spatial)

dimensions at finite temperature. We emphasize that this should affect the GN and χGN

models equally, despite the chiral symmetry of the former being discrete and that of the

latter being continuous. After all, as we have argued before, the remnant combination of

translations and chiral rotations left intact in an inhomogenous phase is discrete for the

GN and continuous for the χGN model. This entails that in both models a continuous

symmetry is broken spontaneously, such that the CHMW theorem does not distinguish

between them. While it was argued that a conflict with the CHMW theorem can be

avoided provided that one takes the limit Nf → ∞ before the thermodynamic limit [202],

this cannot be expected to be the case anymore when working with finite flavor numbers.

At this point we should introduce some terminology regarding (dis-)ordered systems
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described by some field Φ, where ⟨Φ⟩ is the relevant order parameter. We define as

perfect long-range order the situation where

lim
|x−y|→∞

⟨Φ(x)Φ(y)⟩ = C(|x− y|) ̸= 0 , (5.1)

i.e., the correlations of Φ at infinitely distant points do not decay to zero. They could,

e.g., approach a constant or a non-trivial function of |x− y|. This asymptotic behavior is

typically approached exponentially fast. On the contrary, we define as quasi-long-range
order the case in which these correlations decay according to a power law,

lim
x→∞

⟨Φ(x)Φ(y)⟩ ∝ 1

|x− y|α
, α > 0 . (5.2)

Such a power-law behavior is usually associated with the appearance of a phase of

the Berezinskii-Kosterlitz-Thouless (BKT) type [222–224]. We shall henceforth refer

to spontaneous symmetry breaking, as well as to the existence of proper phases, only

in situations when there is perfect long-range order. Under certain conditions a BKT

phase can showcase almost perfect ordering even on macroscopic scales [225], while

at the same time avoiding the CHMW theorem, which rules out the existence of perfect

long-range order.

That a BKT phase might be present in the (1+1) – dimensional χGN model was argued

in [226], where it was also explained how perfect long-range order is re-established in the

large -Nf limit. Despite the model only showing polynomially decaying correlations, one

observes physical consequences usually associated with perfect long-range order, such as

a non-vanishing fermion mass. That this is possible is due to the fact that the physical

fermion does not appear as a pole in the two-point function of the elementary fermion,

but as a branch cut instead, i.e., their quantum numbers are different [226]. Moreover,

while there exists a massless scalar field in the theory, it is not a Nambu-Goldstone boson

[227–229] and it fully decouples from the rest of the theory, thus avoiding the CHMW

theorem [226]. The BKT phase in the (1 + 1) – dimensional χGN model is expected to

exist only at T = 0, while at finite temperature chiral symmetry should be restored via

exponentially decaying correlations [230]. In the (2 + 1) – dimensional model, on the

other hand, it was realized that a BKT phase should be present at T > 0, while at zero

temperature one finds proper spontaneous symmetry breaking [230, 231].

All of the above references assume spatial homogeneity in their argumentation and,

since they are only concerned with the study of chiral symmetry, they only consider the

χGN model due to its continuous symmetry group. However, as we have mentioned

before, when allowing for the breakdown of translational symmetry, the GN and χGN

models should be treated on equal footing, such that similar effects might be taking

place in the discrete GN model as well.

First signs for inhomogeneities at finiteNf had already been found in early simulations
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of the (1 + 1) – dimensional GN model [232]. However, dedicated simulations with the

aim of finding inhomogeneous field configurations were only performed much later

[233, 234]. These investigations revealed clear evidence for the existence of spatial

inhomogeneities in the order parameter for flavor numbers as low as Nf = 4. While it is

plausible that the discrete GN model also exhibits a BKT-type phase, other attempts at

resolving the apparent clash with the CHMW theorem were presented in [233] as well.

5.3 Simulation setup

Here, we extend the work of [233, 234] to the χGN model (2.35), which is invariant

under the continuous U(1)A chiral transformations (2.36). In particular, we perform

extensive lattice studies of the model in 1 + 1 dimensions, studying its phase structure

at finite temperature and density, for a small number of fermionic flavors and in the

chiral limit. Since it became clear in [233] that SLAC fermions, when compared to other

discretizations of 4FTs, have superior convergence properties towards the continuum

limit, we employ them for the present study as well. More precisely, we use the SLAC

Dirac operator introduced in Section 4.2.2 and couple the auxiliary fields σ and π, as

well as the chemical potential µ, in the following straightforward way:

D = γµ∂
(SLAC)
µ + σ + iγ∗π + µγ0 , (5.3)

where ∂(SLAC)
µ is the SLAC derivative defined in (4.9). The lattice action in our simula-

tions then reads

S =
Nf

2g2
a2
∑︂
x∈Λ

(︁
σ2(x) + π2(x)

)︁
− ln det (aD) . (5.4)

As is shown, e.g., in [108], the fermion determinant in this model is real even for

non-zero µ. This means that there is no complex-action problem, provided that we

simulate an even number of flavors, since det(aD) factorizes into a product of one-flavor

determinants. The subsequent presentation closely follows the corresponding publication

[104].

In order to study how bosonic quantum fluctuations alter the mean-field phase

structure of the χGN model, we perform simulations for Nf = 2 and Nf = 8 flavors,

respectively, employing a standard rHMC algorithm [152]. Needless to say, one expects

the results to approach their large -Nf counterparts for increasing flavor number. In our

large-scale study we simulate a sizable number of different values for both µ and T in

order to map out the parameter space as precisely as possible. Moreover, for Nf = 2 we

consider three different volumes at fixed lattice spacing in order to estimate finite-size

effects, as well as three different lattice spacings at fixed physical volume to approach

the continuum limit. A detailed list of the various parameter values we consider can be

found in [104].
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Figure 5.1: Distribution of ∆̄/ρ0 in the complex plane for various temperatures. The crosses mark
the origin for visual clarity. Ns = 63, µ = 0, aρ0 ≈ 0.46.

For subsequent discussions it shall be convenient to introduce the complex auxiliary

field ∆, comprised by σ and π as its real and imaginary parts, respectively,

∆ := σ + iπ = ρeiθ , (5.5)

where we have furthermore defined the absolute value ρ and the phase θ of ∆. Notice

that the chiral rotation (2.36) acts on these fields as

∆(x) → e−2iα∆(x) or ρ(x) → ρ(x) , θ(x) → θ(x)− 2α . (5.6)

In particular, we see that ρ is invariant under chiral transformations and thus a non-

vanishing expectation value of ρ does not entail the breakdown of chiral symmetry.

We may demonstrate the U(1) – invariance of the action (5.4) by plotting histograms

of the spatial average ∆̄ := a2

V

∑︁
x∈Λ∆(x) in the complex plane, which reflect its prob-

ability distribution. This is done for different temperatures and at vanishing chemical

potential in Fig. 5.1. We see that for low temperatures the distribution takes its maxi-

mum at a non-vanishing value of ρ, which moves to ρ = 0 at some critical temperature

Tc/ρ0 ≈ 0.1, where the scale ρ0 is defined in (5.14) below. For all temperatures the

distribution is symmetric with respect to rotations in the complex plane, highlighting the

ergodicity properties of our simulations.
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5.3.1 Observables

The main observables of interest are the scalar and pseudo-scalar fermionic condensates

⟨ψ̄ψ⟩ and ⟨ψ̄γ∗ψ⟩, related to the expectation values of σ and π via (2.42) and (2.43),

respectively. In the mean-field limit an inhomogeneous phase is characterized by an

oscillatory behavior of the condensates as a function of the spatial coordinate. However,

in order to search for inhomogeneous structures in our lattice theory, the computation of

⟨σ⟩ and ⟨π⟩ is of little help. This is because any sort of inhomogeneity present on the level

of individual configurations of the auxiliary fields would be invisible in their expectation

values due to translational invariance – after all, inhomogeneous configurations shifted

by an arbitrary amount of lattice points are equally likely to be sampled in the path

integral and will thus cancel each other in ensemble averages. Two such configurations

of σ and π are shown exemplarily in Fig. 5.2.

In order to avoid this cancellation we follow [233] by introducing the spatial correla-

tion functions

Cσσ(x1) :=
a2

V

⟨︄∑︂
x′∈Λ

σ (x′0, x1 + x′1)σ (x
′
0, x

′
1)

⟩︄
,

Cσπ(x1) :=
a2

V

⟨︄∑︂
x′∈Λ

σ (x′0, x1 + x′1) π (x
′
0, x

′
1)

⟩︄
,

(5.7)

as well as Cπσ and Cππ, defined analogously. If the path integral is dominated by

inhomogeneous configurations of σ and π, these correlators exhibit oscillatory behavior

as well. Due to the U(1)A symmetry, they are related to each other via

Cσσ = Cππ , Cσπ = −Cπσ , (5.8)

which implies that

C∆∗∆(x1) :=
a2

V

∑︂
x′∈Λ

⟨∆∗ (x′0, x1 + x′1)∆ (x′0, x
′
1)⟩ = 2 (Cσσ(x1) + iCσπ(x1)) . (5.9)

In (5.7) and (5.9), ⟨ . ⟩ denotes the ensemble average (4.3), but does not imply averaging

over lattice sites by itself and we shall retain that convention in what follows.

Useful information about oscillating correlation functions can be obtained by studying

their Fourier spectrum. In particular, if the Fourier transform of a correlator takes its

maximum at a non-vanishing momentum, this is a clear sign for oscillations. To this end,

we define the dominant wave-number of Cσσ on a single configuration of σ as

kmax := argmax
k

⃓⃓⃓⃓
⃓F
[︄
a2

V

∑︂
x′∈Λ

σ (x′0, x1 + x′1)σ (x
′
0, x

′
1)

]︄
(k)

⃓⃓⃓⃓
⃓ , (5.10)
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Figure 5.2: Two typical inhomogeneous configurations of σ (top) and π (bottom), respectively.
Ns = 127, Nt = 72, µ/ρ0 ≈ 0.44, aρ0 ≈ 0.46.

where F [ . ](k) denotes the one-dimensional discrete Fourier transform. Similarly, we

introduce the winding number of Cσσ as

νmax :=
L

2π
argmax

k

⃓⃓
F [Cσσ(x1)] (k)

⃓⃓
. (5.11)

These two quantities have similar names only for notational convenience – notice that

kmax is defined configuration-wise, while νmax is related to an expectation value, such

that, in general, νmax ̸= L
2π

⟨kmax⟩. We also remark that it is sufficient for our purposes to

compute the dominant wave-number and the winding number with respect to Cσσ only.

In order to scan the parameter space for inhomogeneities we require some quantity

that allows us to distinguish between oscillating and non-oscillating correlation functions.

To appreciate that this is not a trivial issue, first recall from Section 5.2 that some care

is due with respect to terminology. After all, one is led to expect a BKT-type phase,

where correlations decay algebraically, to be present in the model for temperatures equal

or close to zero. In such a phase it would be incorrect to speak of perfect long-range

order and the term quasi-long-range order is more appropriate. Despite resembling

spontaneous symmetry breaking in some qualitative aspects, the actual physical situation

in a BKT phase is different in detail.

It is thus important to investigate the spatial correlation functions both on small

and on large scales. A quantity that enables us to study the presence of short-range

oscillations was introduced in [104, 233] and is defined as

Cshort := min
x
Cσσ(x) . (5.12)
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As was explained in [233], if this quantity becomes negative one can conclude that

inhomogeneities of some sort are present in σ. On the other hand, a positive value of

Cshort indicates a type of long-range ordering. However, it does not allow to distinguish

between the aforementioned quasi-long-range order, with algebraically decaying correla-

tions, and perfect long-range order, where correlations decay exponentially. Finally, if

Cshort vanishes there is no long-range order in the system at all.

We have remarked in [102] that a negative value of Cshort, while being a clear sign

for inhomogeneities, does not provide any insights on the behavior of Cσσ on large scales.

This is because fluctuations in the spatial correlation functions are most prominent on

short scales, as we shall see below. In order to probe larger scales we thus follow [102]

by introducing

Clong := min
x

|C∆∗∆(x)| , (5.13)

where C∆∗∆ was defined in (5.9). This quantity is insensitive to inhomogeneities, as any

respective oscillations in Cσσ and Cσπ cancel each other by definition. However, it allows

us to make statements about the long-range behavior of the system. To be precise, if

Clong > 0 there is an ordering on scales at least comparable to the system size, which

hints at (quasi-)long-range order, whereas there is none if Clong vanishes. To obtain

a complete picture, we thus study Cshort and Clong in a complementary way. Notice,

however, that Clong only yields additional information when oscillations are present, i.e.,

when Cshort < 0. We remark that, despite the fact that we compute Cshort and Clong in

(µ, T ) space in the next section, yielding what resembles phase diagrams, one should be

aware that neither of these quantities is a genuine order parameter, as both are non-local

observables.

Finally, let us discuss how we renormalize our observables. Ideally, we would

like to use the expectation value of ρ, being non-negative and invariant under U(1)A

transformations, as a scale. A direct comparison to mean-field results would then

be straightforward. Thus, the most intuitive and conventional definition of a scale is

the expectation value
⟨︁⃓⃓
∆̄
⃓⃓⟩︁

at vanishing temperature and chemical potential, with ∆̄

again denoting the lattice average of ∆. However, as was discussed at length in [104],

this quantity is severely spoiled by inhomogeneous configurations, which – perhaps

surprisingly – can give a significant contribution to the path integral even at µ = 0,

especially on large volumes. For such configurations ∆̄ is close to zero, such that the

naive definition above is biased towards smaller values. After considering a number

of alternatives we came to the conclusion in [104] that a reasonable compromise is

provided by the – admittedly unusual – definition of the scale as

ρ0 :=
a2

V

⟨︄
Ns∑︂
x1=0

⃓⃓⃓⃓
⃓
Nt∑︂
x0=0

∆(x)

⃓⃓⃓⃓
⃓
⟩︄ ⃓⃓⃓⃓
⃓
T≈0, µ=0

, (5.14)

i.e., the absolute value is taken after the temporal average but before the spatial average.

57



5. Inhomogeneous Structures

We emphasize that configurations with an oscillating space-dependence nonetheless

tend to be roughly homogeneous in time direction (see Fig. 5.2), such that taking the

temporal average first results in a smaller variance of ρ0. However, as has become clear

in [104], the definition (5.14) is still far from ideal, which should be kept in mind in the

following.

5.3.2 On thermalization and auto-correlations

Drawing from previous experience with the simulation of fermionic systems exhibiting in-

homogeneous structures on large scales, which typically suffer from long thermalization

times, we employ the following strategy to counteract this problem. For high tempera-

tures, where thermalization is not so much of an issue, we generate configurations until

equilibrium is reached. We then “cool down” such an equilibrium configuration to a lower

temperature by simply repeating the data in the temporal direction in an appropriate way.

By iterating this procedure we reach lower and lower temperatures, thereby successfully

reducing thermalization times. As was shown in [104], this cooling-down is free from

hysteresis effects, i.e., if we first cooled the system down, then evolved it in Monte-Carlo

time and at a later point heated it up again we would find results equivalent to such

obtained without any cooling at all. We remark that we have only applied the cooling

procedure in our simulations at Nf = 2.

We have analyzed the auto-correlations present in our simulations in great detail in

[104] and only summarize the most important conclusions here. While for moderate

temperatures the long auto-correlation times are under control due to sufficient statistics,

the situation at low temperatures is more difficult, as auto-correlations become even more

severe. This is expected from a physical point of view, but complicates the quantitative

interpretation of our results. To be clear, we are confident that our findings capture the

qualitative picture correctly, but the precise values of, say, winding numbers, might be

somewhat off for temperatures close to zero. Lastly, our error analysis is performed via

binned jackknife resamplings.

5.4 Results

Let us now present our simulation results for the (1 + 1) – dimensional χGN model with

Nf = 2 and Nf = 8 fermion flavors, respectively. We first discuss oscillations in the

spatial correlation functions (5.7), indicating the presence of inhomogeneities of some

sort. Afterwards we shall map out the quantities Cshort and Clong, defined in (5.12)

and (5.13), respectively, in the parameter space spanned by the chemical potential

and the temperature, in order to study for which parameter values one finds such

inhomogeneities. Finally, we study the decay properties of correlation functions in an

attempt to distinguish between perfect and quasi-long-range order.
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(a) Nf = 8, µ/ρ0 ≈ 0.98, aρ0 ≈ 0.41. (b) Nf = 2, µ/ρ0 ≈ 1.13, aρ0 ≈ 0.46.

Figure 5.3: Spatial correlation functions Cσσ and Cσπ from (5.7) for two different Nf , at equal
temperature T/ρ0 ≈ 0.03 and with µ chosen such that the winding numbers match. Ns = 63.

5.4.1 Spatial oscillations of correlation functions

In order to search for possible inhomogeneities, we scan the (µ, T ) plane for traces of

oscillatory behavior in the spatial correlation function C∆∗∆ defined in (5.9), or, equiva-

lently, in the correlators Cσσ and Cσπ of (5.7). Guided by the mean-field observations,

we expect to find such inhomogeneities only for non-zero µ and low temperatures. In

Fig. 5.3 we show exemplary plots of Cσσ and Cσπ for Nf = 2 and Nf = 8, respectively.

The most important observation is that the correlation functions indeed show oscillat-

ing behavior, indicative of the presence of inhomogeneities in the system. In fact, the

space-dependence of C∆∗∆ resembles that of the chiral spiral discussed in Section 5.1

and we shall thus henceforth use that terminology to refer to our results as well. Note

that indications for inhomogeneities in the considered model have also been found using

naive fermions [235].

An immediate conclusion is that inhomogeneous structures are not an artifact of the

mean-field limit but are left intact to some extent by bosonic fluctuations. However, as

the comparison between Figs. 5.3a and 5.3b shows, the amplitude of the chiral spiral

decreases faster with the distance for Nf = 2 than for Nf = 8. This behavior is consistent

with the expectation that in a BKT phase correlations decay more rapidly for smaller

flavor numbers [226]. In fact, the decay properties of correlation functions at finite

flavor number and zero temperature have recently been computed exactly by relating

the χGN model to a deformed conformal field theory [236], in qualitative agreement

with our results.

It is instructive to investigate how the oscillatory behavior is affected when increasing

the temperature. The expectation drawn from the mean-field results dictates that the

chiral spiral amplitude should decrease with higher temperatures, whereas the oscillation

frequency should remain unaffected. In Fig. 5.4 we show Cσσ and Cσπ for two different
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Figure 5.4: Spatial correlation functions Cσσ and Cσπ from (5.7) for Nf = 2 and two different
temperatures. Ns = 63, µ/ρ0 ≈ 1.14, aρ0 ≈ 0.46.

temperatures and constant µ. We observe that, while the correlators go to zero with x1
more rapidly at the higher temperature, one can still clearly make out oscillatory behavior

at small distances. This fact makes clear why it is necessary to distinguish between the

short-range and long-range behavior of correlation functions and will become important

when we study the “phase structure” of the model in the next section.

Based on the mean-field analysis, we are led to expect the frequency of oscillations

and, thus, the winding number of the chiral spiral to be predominantly determined by

the chemical potential. In order to see to which extent this holds beyond the mean-field

limit, we show νmax as a function of µ for Nf = 2 and Nf = 8, with equal volumes and

temperatures, in Fig. 5.5. We see that for both flavor numbers νmax grows with the

chemical potential in a roughly linear way. Of course, an exact linear behavior as in the

large -Nf limit is unlikely to occur on finite volumes due to νmax being a discrete number

depending on the continuous variable µ. We furthermore show a comparison with the

large -Nf expectation νmax = L
π
µ [211] in Fig. 5.5. The physical volumes for the two
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Figure 5.5: Winding number νmax from
(5.11) for Nf = 2 (aρ0 ≈ 0.46) and Nf =
8 (aρ0 ≈ 0.41), as well as a comparison
with the large -Nf result. For the latter,
the physical volume was chosen to agree
with the one for Nf = 8. See the main
text for details. Ns = 63, T/ρ0 ≈ 0.03.
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different flavor numbers do not match precisely and we only show the mean-field result

for the smaller of the two, corresponding to Nf = 8. One observes that our result for

Nf = 8 agrees very well with this expectation, while the deviations are larger for Nf = 2.

This is, of course, precisely the kind of deviation one would expect when going beyond

the large -Nf limit.

An important observation to be made is that the chiral condensate is not governed

solely by its dominant wave-number but instead receives significant contributions from

sub-dominant k as well. That this is especially true for high temperatures can be seen

in Fig. 5.6, where we show exemplary histograms of kmax for different T and µ. While,

expectedly, the peak of the distribution of kmax moves to larger values for larger µ, we

also see that it decreases and broadens with increasing temperature. The fact that

multiple oscillation frequencies contribute to the correlator is caused by a combination

of quantum and thermal fluctuations and is also ultimately responsible for the avoidance

of the CHMW theorem.

5.4.2 Phase structure beyond the mean-field limit

Let us now investigate the phase structure of the χGN model for low flavor numbers.

What we mean by that is that we are interested in where exactly in (µ, T ) space one

can find inhomogeneities of the form shown in Figs. 5.3 and 5.4. Inhomogeneities in

our setup likely do not exhibit perfect long-range order, as this would imply a conflict

with the CHMW theorem. To obtain a more complete picture, we thus probe short

and long scales alike by investigating both Cshort and Clong, introduced in (5.12) and

(5.13), respectively. As was mentioned previously, referring to regions where some sort

of structural order can be found as “phases” and to Cshort and Clong as “order parameters”

is technically incorrect, but we shall still do so for reasons of convenience and brevity.

We begin by showing the order parameters in (µ, T ) space for Nf = 8 in Fig. 5.7. One

sees in Fig. 5.7a that a large part of the (µ, T ) plane is governed by negative values of

Cshort, indicating the presence of inhomogeneities on some scale. For small chemical
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Figure 5.7: Order parameters Cshort from (5.12) and Clong from (5.13) in the (µ, T ) plane for
Nf = 8. Ns = 63, aρ0 ≈ 0.41.

potentials we observe that the dominant contributions to the path integral are homoge-

neous, as expected. Notice, however, that even at µ = 0 one observes inhomogeneities

for some temperatures. Since we have not applied the cooling procedure outlined in

Section 5.3.2 for Nf = 8, we cannot rule out that these might be thermalization effects.

On the other hand, in Fig. 5.7b we see that the phase structure as determined by Clong

is quite similar to the one found in the mean-field limit, as the boundary between the

respective regions where Clong > 0 and Clong ≈ 0 is almost horizontal, albeit at a lower

Tc. Other peculiarities to be found in Fig. 5.7 shall be discussed in more detail in the

context of the Nf = 2 case below, where they play an even more prominent role.

For the two-flavor case we have performed simulations on increasing physical volumes

at fixed lattice spacing as well as for decreasing a on a roughly constant volume. The

phase diagrams resulting from Cshort and Clong for the former case are shown in the

top and bottom rows of Fig. 5.8, respectively. We see that the phase structure looks

rather different from Fig. 5.7, confirming once more that bosonic fluctuations play an

important role in the context of inhomogeneous structures. While many qualitative

features remain the same in that there exist inhomogeneities for most µ > 0 and low

enough temperatures, the green region in the top row of Fig. 5.8 is much larger than the

corresponding region in Fig. 5.7b. In this region the correlators show no oscillations and

decay to zero, such that there is no (quasi-)long-range order to be found. As was outlined

in [104], the phase structure can be understood by a comparison of the two relevant

scales in the system, namely the correlation length, determined by the temperature, and

the oscillation wavelength, determined by the chemical potential. In simple words, one

expects to find inhomogeneities whenever the chiral spiral wavelength is shorter than

the correlation length.

In the large -Nf limit one observes inhomogeneities for every non-vanishing µ below

Tc. In our case, however, we see that the region of small µ ̸= 0 is dominated by
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Figure 5.8: Order parameters Cshort from (5.12) (top row) and Clong from (5.13) (bottom row)
in the (µ, T ) plane for Nf = 2 and different volumes at a constant lattice spacing aρ0 ≈ 0.46 .
The gray line indicates the critical temperature in the large -Nf limit.

homogeneous configurations on small volumes. This is due to the fact that the chiral

spiral wavelength is inversely proportional to the chemical potential, such that for

small enough µ the wavelengths simply do not fit inside our finite lattice. As expected,

this effect disappears, i.e., the red region in the top row of Fig. 5.8 shrinks, in the

thermodynamic limit.

Regarding the existence of (quasi-)long-range order we study Clong in the bottom

row of Fig. 5.8. We see that the two regions of Clong > 0 and Clong ≈ 0, respectively,

are separated roughly by a horizontal line as in the Nf = 8 case, at least when µ

is sufficiently large to allow for inhomogeneities to develop. Despite happening at

a much lower temperature, these results, as compared to those for Cshort, are thus

comparable to their mean-field counterparts on a qualitative level. Notice, however,

that Clong approaches zero everywhere for larger volumes. This is consistent with the

expectation that correlations should decay to zero for large distances, be it exponentially

or algebraically. One thus concludes that no spontaneous symmetry breaking takes place,

despite the presence of inhomogeneities.

Let us now turn to the continuum extrapolations of Cshort and Clong, shown in the top

and bottom rows of Fig. 5.9, respectively. Even for the smallest lattice spacing considered

our results still suggest the presence of inhomogeneities on some scale, as is indicated by

negative values of Cshort. The behavior of Clong, on the other hand, appears to remain

roughly unchanged as we decrease a, which is not surprising as we keep the physical

volume roughly constant in the process. What we observe is, thus, that the correlations
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(a) Ns = 63, aρ0 ≈ 0.46. (b) Ns = 127, aρ0 ≈ 0.19. (c) Ns = 255, aρ0 ≈ 0.08.

Figure 5.9: Order parameters Cshort from (5.12) (top row) and Clong from (5.13) (bottom row)
in the (µ, T ) plane for Nf = 2 and different lattice spacings at constant physical volume. The
gray line indicates the critical temperature in the large -Nf limit.

do not decay to zero on the small volumes considered here, which is not surprising. We

should emphasize, however, that a precise statement about the existence or non-existence

of inhomogeneities in the continuum limit is complicated by our scale-setting procedure

discussed in Section 5.3.1. While our data suggest that short-scale inhomogeneities

are present even in the continuum limit with the current scale-setting, an improved

procedure might come to a different conclusion.

5.4.3 Perfect long-range order vs. quasi-long-range order

In [230] the correlation functions of our system were predicted to decay algebraically at

T = 0 and exponentially for every non-zero temperature. Since we cannot simulate at

exactly vanishing temperature, we are led to expect exponentially decaying correlations

everywhere, approaching an algebraic decay as we lower the temperature. In order to put

this assertion onto more solid ground we now study the decay properties of the correlator

C∆∗∆, which is related to the fermionic four-point function [104], in more detail. We

show its absolute value at a low temperature for both flavor numbers considered in

Fig. 5.10. Additionally, we attempt to fit the data using three different functions, each of

which is chosen to be symmetric about x1 = L
2

to account for the lattice periodicity. First

of all, we consider an algebraic fit,

C∆∗∆(x1) =
κ

xα1
+

κ

(L− x1)α
, (5.15)

64



5. Inhomogeneous Structures

2 4 6 8 10 12 14
x1 0

0.8

1.0

1.2

1.4

1.6
|C

*
|/

2 0

2 4 6 8 10 12 14
x1 0

0.8

1.0

1.2

1.4

1.6

|C
*

|/
2 0

algebraic fit
cosh fit
double-cosh fit

(a) Nf = 8, aρ0 ≈ 0.41. (b) Nf = 2, aρ0 ≈ 0.46.

Figure 5.10: Correlation function C∆∗∆ from (5.9) as a function of the spatial coordinate, as
well as algebraic, cosh and double-cosh fits to the data – see the main text for details. The fit
uncertainties are not shown. Ns = 63, µ = 0, T/ρ0 ≈ 0.03.

which is expected to describe the long-distance behavior of the correlator in a BKT phase.

Here, α and κ are fit parameters. In addition, we compute single- and double-cosh fits,

obtained by setting N = 1 and N = 2 in

C∆∗∆(x1) =
N∑︂
i=1

ai cosh

[︃
mi

(︃
x1 −

L

2

)︃]︃
, (5.16)

respectively, the fit parameters being denoted as ai and mi.

For both flavor numbers we observe that the algebraic and double-cosh fits lie practi-

cally on top of each other and describe the data almost perfectly, while the single-cosh

fit performs much worse, therefore being discarded in what follows. The relevant pa-

rameters for the algebraic and double-cosh fits are α and mi, respectively, but, since the

exact values of the fit parameters depend on the chosen fit interval, we only give rough

estimates here. We find α ≈ 0.2 for Nf = 8 and α ≈ 0.5 for Nf = 2, while m1/ρ0 ≈ 10−4

and m2/ρ0 ≈ 0.6 for both flavor numbers. These values do not change much when

increasing the volume.

As expected, at such a low temperature one cannot properly distinguish between

algebraic and exponential decays. However, our data is consistent with the expectation

that the exponential behavior should approach the algebraic one as the temperature

is decreased. Indeed, we have verified that at higher temperatures the decay behavior

rather resembles an exponential function. That one behavior turns into the other can

be appreciated by observing that m1 approaches zero. Moreover, our values for α are in

qualitative agreement with the results of [236].

65



6 Magnetic Catalysis

We have seen in Chapter 3 that fermionic theories in background magnetic fields

experience an enhancement of chiral symmetry breaking in the large -Nf limit at zero

density and for all temperatures below the chiral phase transition. While it was argued

in [237] that this magnetic catalysis is a model-independent feature, it might still be

an artifact of the mean-field limit. Moreover, it is not clear to which extent bosonic

fluctuations, present at finite Nf , affect the complicated phase structure found in mean-

field fermionic theories at finite density, comprising inverse magnetic catalysis as well as

patterns of multiple phase transitions. It shall be part of the investigation presented in

this chapter to shed light on these and related questions by studying the fate of chiral

symmetry in magnetized fermionic theories beyond the mean-field limit. We begin this

chapter by giving a brief historic account of the study of magnetic catalysis, also covering

QCD, where it has become clear that the behavior of the chiral condensate in a magnetic

field is not as trivial as predicted by model approaches. After outlining some convenient

spectral properties of our lattice discretization based on the overlap formalism, the main

part of this chapter is then devoted to the presentation of results obtained in extensive

lattice simulations of the GN model in 2 + 1 dimensions.

6.1 Strongly-interacting theories within magnetic fields

In this section we shall summarize the most important historical developments in the

study of strongly-interacting matter within (electro-)magnetic background fields. We

put a particular emphasis on the investigation of chiral symmetry and its spontaneous

breakdown and how it is affected by magnetic fields.

First studies of model theories in electromagnetic fields can be found, e.g., in [131,

132, 238–240]. In the context of the (2 + 1) – dimensional GN model in the mean-field

limit it was realized that the magnetic field leads to the spontaneous breakdown of chiral

symmetry for arbitrarily weak couplings [132]. Recall from Appendix D that the GN

model can be divided into a strong-coupling regime, where the bare four-Fermi coupling

is larger than some critical value, g2 > g2c (or the renormalized coupling g2R becomes

negative), and a weak-coupling regime, where g2 < g2c (or g2R > 0). In the strong-

coupling regime chiral symmetry is spontaneously broken at vanishing temperature,

chemical potential and magnetic field, and we again denote the corresponding value of

⟨σ⟩ by σ0 > 0. As before, we only consider the branch of non-negative solutions of the

gap equation (3.19) without loss of generality. On the other hand, for weak couplings σ0
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vanishes.

For weak but non-zero magnetic fields one then finds the following B-dependence of

the order parameter [132]:

⟨σ⟩(B) ∝

⎧⎨⎩1 + (eB)2

12σ4
0

if g2 > g2c

|eB| if g2 < g2c

, (6.1)

where we have omitted higher-order terms as well as unimportant (but dimensionful)

proportionality constants. We see that the chiral condensate increases in magnitude

with the magnetic field in both regimes, corresponding to magnetic catalysis, albeit

with different powers. Analogous results were also found at finite temperature [133,

134], provided that one stays below the transition temperature Tc, beyond which chiral

symmetry is restored. This Tc was furthermore predicted to increase monotonically with

B.

In [237, 241–243] a proper physical explanation for magnetic catalysis was given

based on the fact that the magnetic field reduces the effective number of space-time

dimensions by two, d → d− 2; see [244] for a review. This has also been observed in

the theory of superconductivity before [245] and can best be seen by investigating the

fermion propagator and expanding it in terms of Landau-level poles [241]. In particular,

the contribution of the LLL to the bare momentum-space propagator in 2 + 1 dimensions

reads (see also [246])

S0(p) ∝ e−
p2∥
|eB|

m− p0γ0
p20 +m2

(1− iγ1γ2 sign(eB)) , (6.2)

where p2∥ = p21+p
2
2 and we have once again assumed the magnetic field to be perpendicular

to the spatial plane. Since for strong magnetic fields the physics is governed by the LLL,

one concludes that the motion perpendicular to the magnetic field, i.e., in the spatial

plane, is indeed suppressed. Analogous conclusions can be drawn in dimensions higher

than three as well [243]. Since low-dimensional theories are more prone to suffer from

infrared divergences, an interpretation of magnetic catalysis is that the system responds

to the dimensional reduction via the creation of a mass gap, which happens for arbitrarily

weak fermionic interactions – see also [247–249] for accounts on magnetic catalysis

from the point of view of the functional renormalization group.

Importantly, the dimensional reduction only affects electrically charged degrees of

freedom, such as the elementary fermions, but leaves electrically neutral ones unaf-

fected. In this way magnetic catalysis can, e.g., avoid the CHMW theorem mentioned in

Chapter 5. For instance, in the NJL model, where chiral symmetry is continuous and its

spontaneous breaking thus entails the presence of Nambu-Goldstone modes, it can be

shown that the propagators of the latter have a genuine d-dimensional structure. This

means that they do not suffer from the dimensional reduction and the associated infrared
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divergences, which is accredited to their electric neutrality [241]. While there are no

Nambu-Goldstone bosons in the GN model (2.20) due to its discrete chiral symmetry,

there also exist different no-go theorems preventing the existence of phases in low di-

mensions, see, e.g., [250]. Nevertheless, we believe that, due to the electric neutrality of

the chiral condensate ⟨ψ̄ψ⟩, similar arguments should hold, such that magnetic catalysis

in the GN model is not in conflict with any no-go theorems, both in the mean-field limit

and beyond.

After the aforementioned seminal works it was long believed that magnetic catalysis

at zero density was a universal, model-independent feature, as it was confirmed by

countless model investigations [251–257] (see also [258–264] for accounts of the

relevance of magnetic catalysis for condensed-matter physics). A notable exception

is the study [265], employing the MIT bag model [266], where it was found that the

critical temperature of the phase transition should decrease with the magnetic field.

For a review of these developments, we refer to [267]. That the situation at µ ̸= 0 is

more complicated was made clear in [146], as we have already discussed in detail in

Section 3.3. Moreover, it was realized that the inclusion of gauge degrees of freedom

might also spoil the argument of universality of magnetic catalysis [268].

The study of QCD in external magnetic fields has an even longer history than the

aforementioned mean-field model studies, as, for instance, the magnetic moments of

a number of baryons had already been computed in [269, 270]. The first dedicated

studies of the QCD phase transition at finite temperature in a magnetic field, however,

were only performed much later in [197, 271]. There, indeed, the picture of magnetic

catalysis was confirmed, as the chiral condensate as well as the critical temperatures

of the chiral and deconfinement cross-overs were all found to increase with B – see

also [272] for a review of early results. However, these studies were performed on

coarse lattices and for larger-than-physical pion masses. In later investigations at the

physical point and with a proper continuum extrapolation it then became clear that the

real physical situation is drastically different [273, 274]. While for low temperatures

magnetic catalysis persists, close to the QCD cross-over this is no longer true. There, the

order parameter exhibits non-monotonic behavior as a function of B. In particular, in an

intermediate region the magnetic field actually lowers the chiral condensate, i.e., one

observes inverse magnetic catalysis. For higher temperatures the condensate then again

increases with B. Interestingly, one observes a monotonic decrease of the QCD critical

temperature with B, even for extremely strong magnetic fields [275–278], at which the

QCD cross-over might turn into a real first-order transition [278].

With these results at hand, it became clear that the model results one took for granted

for years before [273, 274] do not give correct descriptions of finite-temperature QCD

and an explanation for this discrepancy was much needed. One such explanation was

provided in [279], where it was found that there are two competing effects governing the

phenomenology of QCD in an external magnetic field, called the valence and sea quark
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effects, respectively. While the former is caused by a direct enhancement of low-lying

Dirac eigenmodes due to the magnetic field, thus contributing to magnetic catalysis via

the Banks-Casher effect [280], the latter incorporates the influence of the magnetic field

on the gluonic distribution in the path integral via the fermion determinant. Close to

the QCD cross-over temperature the sea quark mechanism has the effect of decreasing

the chiral condensate and dominates over the valence quark contribution, thus overall

leading to inverse magnetic catalysis [279]. This dominance is possible since near the

cross-over the Polyakov loop effective potential is practically flat, making the Polykakov

loop susceptible to small changes induced by the magnetic field, which can suppress

low-lying Dirac eigenmodes [279].

If this picture is indeed the correct one, purely fermionic model theories cannot

be expected to reproduce the decrease of the chiral condensate with B at non-zero

temperatures, as the latter is caused by interactions with gluons. In fact, a large number

of alternative explanations for inverse magnetic catalysis (see, e.g., [281]), as well as

various extensions to existing model theories were developed in the years following the

original works [273, 274]. Perhaps unsurprisingly, the central idea that emerged from

these investigations is that one should incorporate gluonic interactions into the picture

somehow, for instance by coupling the models to the Polyakov loop. In particular, the

Polyakov-loop-extended NJL (PNJL) model [282] as well as the Polyakov-loop-extended

quark-meson (PQM) model under the influence of magnetic fields have been studied

extensively [283–288] (see [289] for a review).

The crucial ingredient that the straightforward PNJL and PQM models miss, however,

is the back-reaction of magnetized quarks onto the gluon distribution, encoded by the

sea quark effect in QCD. In order to incorporate this back-reaction, one could let the

fermionic coupling run with the magnetic field [290], as so does the QCD coupling [268].

The idea behind this is motivated by the fact that the effective interactions between

quarks, obtained by integrating out gluons in a suitable way, are encoded in, say, the

four-Fermi coupling g2. Thus, if gluons are somehow affected by the magnetic field, this

should be reflected by the coupling. Indeed, the inclusion of such B-dependent couplings

in model theories led to the reproduction of QCD phenomenology, such as inverse

magnetic catalysis [291–297]. One particular approach that appears to be especially

natural is the following [298]: One uses lattice QCD to compute magnetized baryon

masses, from which constituent quark masses are extracted by using a simple quark

model. This then gives magnetic-field-dependent input for a mean-field PNJL model,

in which one indeed observes inverse magnetic catalysis and a decrease of the critical

temperature. For reviews on the efforts to reproduce inverse magnetic catalysis in model

theories, see [299–302]

We mention at this point two important aspects that remain to be addressed. On

the one hand, most model studies dealing with the search for QCD phenomenology to

be found in the literature were performed in the mean-field limit, which clearly does
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not allow for the complete description of a quantum theory. On the other hand, despite

tremendous progress in our understanding of magnetized QCD at finite temperature, the

finite-density part of the QCD phase diagram [303] remains very much elusive to this

day, both for zero and non-zero background magnetic fields [304].

The present chapter is a step into the direction of filling both of these gaps. To this

end, we investigate the (2 + 1) – dimensional GN model, as a very simplistic toy model

for QCD, at finite temperature, density and magnetic field beyond the mean-field limit.

Conceivably, allowing for (bosonic) quantum fluctuations might alter the mean-field

picture of magnetic catalysis at finite temperatures. If this were indeed the case, the

idea that gluonic degrees of freedom are capable of inducing inverse magnetic catalysis

might have to be re-visited. As it shall turn out, however, there is no evidence for inverse

magnetic catalysis in our results and – on the contrary – we believe that our work gives

further support to the importance of gluonic degrees of freedom. Another important

question concerns the fate of the phase structure of the GN model at finite density, where

the mean-field limit predicts a plethora of interesting phenomena. As we shall see,

however, they are not reproduced by our simulation results. Since QCD at intermediate

chemical potentials is still – for the most part – uncharted territory, we nonetheless hope

to provide some insight into the physics of magnetized strongly-interacting matter at

finite density.

6.2 Spectral properties of the overlap operator

Before discussing our lattice simulations using overlap fermions in detail in the sub-

sequent sections, we devote the present section to a spectral analysis of the overlap

operator itself. We restrict ourselves to the study of non-interacting fermions in 2 + 0

dimensions (i.e., with periodic boundary conditions only) for now. This is because the

use of anti-periodic boundary conditions would introduce fermionic Matsubara frequen-

cies, which would spoil the zero modes the overlap operator otherwise exhibits. We

later comment on the applicability of the results presented here for our studies in 2 + 1

dimensions.

6.2.1 Landau levels on the lattice

One of the most salient features of the (massless) overlap operator (4.17) is that it can

have exact zero modes, just as the continuum Dirac operator. In fact, this is true for every

solution of the Ginsparg-Wilson relation (4.13). This is especially convenient for the

study of fermions exposed to background magnetic fields, as with the overlap formalism

the Landau levels (3.1) have a particularly clear representation in the discretized theory.

To see this, we show in Fig. 6.1a the (absolute-squared) eigenvalues of D(0)
ov as a function

of the magnetic field. The color coding is chosen in analogy to the continuum degeneracy
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(a) D(0)
ov from (4.17). (b) /Dnaive from (4.4).

Figure 6.1: Spectra of the massless overlap and naive Dirac operators (horizontal axes), re-
spectively, in 2 + 0 dimensions as a function of the magnetic field (vertical axes). The solid
lines correspond to the continuum eigenvalues and the points are colored according to their
degeneracy. Notice the different scales on the x-axes. Ns = 16.

of Landau levels (3.3), i.e., using (3.4) and assuming eB ≥ 0,

dl =

⎧⎨⎩b if l = 0

2b if l > 0
. (6.3)

The continuum eigenvalues |λ|2 = 2|eB|l are shown as solid lines for comparison.

For stronger magnetic fields than those shown in Fig. 6.1a one runs into numerical

difficulties in the evaluation of the inverse square root in (4.17) due to the Wilson kernel

AW developing eigenvalues close to zero, see the discussion in Section 6.2.2 below.

We see in Fig. 6.1a that for weak magnetic field the spectrum of the overlap operator

lies almost exactly on top of its continuum counterpart. Given the importance of Landau

levels for continuum physics (see Chapter 3), this fact makes Dov a very promising

discretization for the study of fermions within magnetic fields. In particular, for all

magnetic fields shown the zero modes of the Dirac operator, corresponding to the

LLL, are represented exactly in the lattice theory. This remarkable fact can be better

appreciated when comparing the overlap spectrum of Fig. 6.1a to Fig. 6.1b, where we

show an analogous plot of the spectrum of the naive Dirac operator (4.4) in a magnetic

field, taking into account the doubler modes in the degeneracies (6.3). While for weak

magnetic field the agreement with the continuum eigenvalues is still remarkable, a

deviation sets in at smaller eB than in the overlap case, in particular regarding the LLL.

We mention in passing that the fractal structure that emerges in the magnetized

spectra due to a competition between the two relevant length scales, i.e., the magnetic

length 1√
eB

and the lattice spacing a, is commonly referred to as Hofstadter’s butterfly

[305], which can perhaps be better appreciated by looking at Fig. 6.1b. A detailed

investigation of the role of Landau levels within lattice QCD can be found in [306,
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307]. There, it became evident that the LLL can clearly be distinguished from the higher

Landau levels even when QCD interactions are taken into account. The reason for this is

a topological argument, the so-called index theorem, which we shall discuss in the next

subsection. On the other hand, in the GN model studied in this thesis there is no index

theorem that would facilitate the interpretation and thus it is less clear what happens

to the spectrum of D(0)
ov once interactions are considered. This question is part of an

ongoing investigation.

6.2.2 Index theorem

Let us now discuss the celebrated index theorem [308] in some detail. From the

Ginsparg-Wilson relation (4.13) it follows that the zero modes, or, more precisely, all

real eigenmodes of D(0)
ov , have definite chirality. Denoting the numbers of right- and left-

handed zero modes of a Dirac operator D as n+ and n−, respectively, the index theorem

in our two-dimensional setup can be formulated as (see, e.g., [309] and Appendix A)

ind(D) := n+ − n− = b , (6.4)

This means that the difference between the numbers of left- and right-handed zero

modes, i.e., the index of D, is entirely determined by the magnetic flux, represented by

its quantum number b defined in (3.4). More generally, the index theorem relates the

index of an operator to some topological quantum number, whose definition may not be

as straightforward as that of b. A formulation of the index theorem on the lattice can be

found in [310].

The spectrum of D(0)
ov at b = 0 can be computed in closed form (see, e.g., [311]) and

one finds that there are two zero modes with opposite chirality, i.e., n+ = n− = 1. For any

b > 0, on the other hand, one expects that either n+ = 0 or n− = 0. This assertion that

the zero modes are either all left-handed or all right-handed is known as the vanishing

theorem, see Appendix A. Thus, using (6.4), the total number of zero modes of the free

massless overlap operator in a magnetic field in 2 + 0 dimensions should be given by

n := n+ + n− = b+ 2δb,0 . (6.5)

Let us now test the validity of the vanishing theorem, as well as of (6.4). The index

theorem in lattice QCD and related theories has been studied intensely in the litera-

ture [312–317], with the conclusion that for strong couplings it breaks down due to

discretization effects. Similarly, we expect (6.4) not to hold anymore for large enough

eB, i.e., when the lattice can no longer properly resolve the magnetic field. To this end,

we show in the upper panel of Fig. 6.2 a comparison between the magnetic flux quantum

number b, the number of zero modes n and the index of the overlap operator ind(D(0)
ov )

as a function of B. While the vanishing theorem is valid for all B > 0, we see that the
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Figure 6.2: Various quantities related to the index theorem in 2+0 dimensions as a function of B.
(upper panel): magnetic flux quantum number b, modulus of the index of the overlap operator,
| ind(D)|, and total number of zero modes of D, n (with D = D

(0)
ov from (4.17)). (middle

panel): lowest eigenvalue of the Wilson kernel AW from (4.18). (lower panel): validity of the
Ginsparg-Wilson relation (4.13). See the main text for details. Ns = 16.

index theorem holds exactly for a broad range of weak magnetic fields but breaks down

above a2eB
2π

≈ 0.28. There are two effects at play here, which we shall now discuss in

turn.

On the one hand, as was mentioned in Section 6.2.1, the Wilson kernel AW in

(4.17) may acquire small eigenmodes for certain magnetic field strengths, resulting in

numerical problems in the evaluation of the overlap operator. To see for which values

of B this is the case, we show in the middle panel of Fig. 6.2 how the magnitude of

the smallest eigenvalue of AW changes with the magnetic field. We indeed observe a

correspondence between the lowest eigenvalue of AW being close to zero and the index

theorem breaking down. These numerical difficulties are also reflected in the validity of

the Ginsparg-Wilson relation (4.13), as can be seen in the lower panel of Fig. 6.2, where

we show the matrix norm of (4.13),

⃦⃦
GW

⃦⃦
:=
⃦⃦ {︁

D(0)
ov , γ∗

}︁
− aD(0)

ov γ∗D
(0)
ov

⃦⃦
. (6.6)

On the other hand, we also find violations of the index theorem in regions where

there are no small eigenvalues of AW. To understand them, recall that for b = 0 the

real eigenvalues λ of D(0)
ov come in two branches, the physical modes at aλ = 0 and the

unphysical doubler modes at aλ = 2, both of which are affected by a magnetic field. For

strong enough magnetic fields these two branches eventually intersect, resulting in a
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Figure 6.3: Violation of the index the-
orem in 2 + 0 dimensions as mea-
sured by b− ind(D), where D = D
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Ns = 16.

spurious counting of the unphysical modes in the index of D(0)
ov . The index theorem (6.4)

is thus no longer valid for strong magnetic fields without taking the doubler modes into

account explicitly. Obviously, this is a discretization artifact.

It is interesting to study how one may influence the range of validity of the index

theorem. To this end we follow [311] by tuning the Wilson mass parameter mW in

(4.18). As the choice of mW controls the location of the eigenvalues of AW in the complex

plane, it should allow us to manipulate the distinction between the aforementioned

physical and unphysical modes to some degree. One usually prefers to avoid this by

restricting amW to values between 0 and 2 as in (4.18) – recall that in our simulations

we set amW = 1 throughout. Here, however, we allow for arbitrary values. Plotting the

violation of the index theorem (6.4), i.e., b− ind(D
(0)
ov ), in the plane spanned by mW and

B, we obtain the topological phase diagram shown in Fig. 6.3. We see that the choice

amW = 1 is indeed not far from the optimal value, yielding a sizable range of magnetic

fields where (6.4) is valid. On the contrary, for amW < 0 or amW > 4 we find that D(0)
ov

has no zero modes at all, while in the range 2 < amW < 4 left- and right-handed zero

modes are interchanged [318].

6.2.3 Finite-size effects

Finally, we shall discuss a peculiarity in the behavior of the chiral condensate as a function

of B on finite volumes. Namely, we investigate how the finite-size effects studied in

Section 3.1 in the context of (3.10) are reflected in our lattice formulation. To this end,

we follow [319] by writing the chiral condensate for Ginsparg-Wilson fermions, (4.16),

as

⟨ψ̄ψ⟩ov = −
⟨︂
ψ̄
(︂
1− a

2
D(0)

ov

)︂
ψ
⟩︂
=

1

ωL2
tr
[︂
D−1

ov − a

2
1
]︂
, (6.7)

where ω := 1− am
2

and the massive overlap operator Dov = ωD
(0)
ov +m1 was defined in

(4.20). Notice that we consider a non-vanishing fermion mass m for this discussion. We
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furthermore mention that (6.7) is equivalent to the definition given in (4.28) and (4.29).

Expressing the trace in (6.7) as a sum over the eigenvalues of D(0)
ov one finds that the

unphysical modes aλ = 2 do not contribute to the condensate and that the latter can be

written as [319]

m⟨ψ̄ψ⟩ov =
n

L2
+ q , (6.8)

where n was defined in (6.5) and

q =
1

ωL2

∑︂
λ

Im(λ)̸=0

(︃
1

ωλ+m
− a

2

)︃
(6.9)

encodes the contributions from all eigenvalues with non-vanishing imaginary parts; see

[320] for a similar argument.

Up to now, our calculation matches common derivations of the Banks-Casher theorem

[280]. The point of deviation, however, is that one usually concludes that exact zero

modes do not contribute to the condensate in the thermodynamic limit due to the factor
1
L2 in (6.8) and that ⟨ψ̄ψ⟩ov is instead governed by near-zero modes. Here, we shall argue

that this is not the case if one keeps magnetic field strength fixed in the limit L2 → ∞.

Indeed, inserting (6.5) and (3.4) into (6.8), we find

m⟨ψ̄ψ⟩ov =
eB

2π
+

2δb,0
L2

+ q . (6.10)

We emphasize that the first term, which is linear in B and arises due to exact zero modes,

does not vanish in the infinite-volume limit. On the other hand, if we fixed b (i.e., the

magnetic flux) and thus, by virtue of the index and vanishing theorems, n instead of B

(i.e., the magnetic field strength), we would indeed find that exact zero modes do not

contribute to ⟨ψ̄ψ⟩ov as L2 → ∞, see (6.8). The second term in (6.10) arises since the

vanishing theorem does not hold for b = 0. On finite volumes it gives an offset, resulting

in a non-monotonicity of the condensate with B in the same way as n is non-monotonic

in b. This is how the finite-volume effect discussed below (3.10) is represented in the

lattice theory. Albeit not a desired feature for applications in high-energy physics, where

one would like to approach infinite volumes in simulations, this still provides a non-trivial

test for fermion discretizations in a magnetic field, see Section 4.4.

In order to visualize this finite-size effect we show in Fig. 6.4 the individual contribu-

tions to ⟨ψ̄ψ⟩ov as a function of B for different volumes and fermion masses. One clearly

observes how the non-monotonicity of the condensate becomes irrelevant as L2 → ∞. In

the infinite-volume limit, the condensate then merely contains a contribution linear in B

plus sub-leading contributions originating from non-zero eigenmodes of D(0)
ov . For smaller

masses we observe that the condensate is governed almost entirely by zero modes.

We have seen in this section that the overlap operator faithfully reproduces a plethora

of important features of the continuum theory in the discretized setup. Although we
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Figure 6.4: Chiral condensate ⟨ψ̄ψ⟩ov from (6.7) in 2+0 dimensions as a function of B for various
spatial extents Ns and different masses am. We show the full condensate (circles, solid lines),
as well as the individual contributions from zero modes (squares, dashed lines) and non-zero
modes (diamonds, dotted lines), respectively. See the main text for details.

have only considered non-interacting fermions in a two-dimensional space-time here for

simplicity, we believe that these features should – at least to some extent – be observable

in the (2 + 1) – dimensional interacting theory we consider in the remainder of this

chapter as well. Of course, there are subtleties in three dimensions that do not play a role

here. For instance, the index theorem is not defined in three dimensions and there are no

exact zero modes of D(0)
ov anymore due to fermionic Matsubara frequencies. This raises

the question of what remains of the finite-size effects shown in Fig. 6.4. Moreover, as we

have seen in Section 4.4, there appear to be more severe discretization artifacts when

anti-periodic boundary conditions are introduced in 2 + 1 dimensions, which need to be

studied properly. Nonetheless, we believe that the conclusions drawn from Section 4.4

and the present section imply that the overlap operator is well-suited for the study of

fermionic theories within magnetic fields.

6.3 Simulation setup

We intend to simulate the GN model (2.20) within an external magnetic field in 2 + 1

dimensions, using the overlap Dirac operator in the fermionic action. As we have seen

in Sections 4.4 and 6.2, this discretization features a number of remarkable properties

implying that it is well suited for that purpose. To this end, we need to couple the

auxiliary field σ in (2.33) to the overlap fermions in a suitable manner. The most

straightforward way to do so is by using the fact that the term σψ̄ψ in (2.33) would

reduce to a fermionic mass term if σ were constant. We are thus guided by (4.20) in

defining the overlap operator for the GN model in the chiral limit as

D = D(0)
ov + (σ + µγ0)

(︂
1− a

2
D(0)

ov

)︂
, (6.11)

76



6. Magnetic Catalysis

where the massless overlap operator D(0)
ov was given in (4.17) and we have coupled the

chemical potential µ using the GS prescription (4.19). While a similar argument [321]

has been used previously in the domain wall formalism [322], we also mention that an

alternative prescription was proposed in [323], both for vanishing µ, however. To the

best of our knowledge, there is no prior account of lattice simulations employing (6.11)

to be found in the literature, even though an analogous expression has been devised for

µ = 0 in [324].

A remarkable property of (6.11) from a numerical point of view is that the dynamical

degree of freedom in our simulations, i.e., the scalar field σ, does not enter the expensive

computation of the operator sign function in the definition of D(0)
ov (4.17). In particular,

this means that we do not have to re-compute D(0)
ov for every update step and may simply

calculate it once (which can be done exactly, i.e., without approximation [325]) and

store it for later use, which is a tremendous advantage as compared to, say, overlap

simulations of gauge theories. Nonetheless, the non-ultralocality of the overlap operator

comes with an extensive numerical cost, such that we are forced to restrict to rather

small volumes in our investigations.

Here and in the remainder of this chapter we again consider a reducible representation

of the Dirac algebra, allowing for the introduction of γ∗, see Section 2.2.4. Recall that

the GN model in the continuum only has the discrete Z2 chiral symmetry (2.34). Indeed,

the lattice action arising from (6.11) is not invariant under the full U(1) group of lattice

transformations (4.14) either. Rather, one finds the following Z2 symmetry:

ψ → iγ̂∗ψ , ψ̄ → iψ̄γ∗ , σ → −σ , (6.12)

where we have defined γ̂∗ = γ∗(1 − aD
(0)
ov ). We remark that the use of lattice chiral

transformations that do not act symmetrically on ψ and ψ̄ as in (6.12) is not uncommon

in the Ginsparg-Wilson literature, see, e.g., [187, 194]. After all, the difference between

the transformations on ψ and ψ̄ vanishes in the limit a → 0 and one is again led back

to (2.34). We remark that the ambiguity of choosing γ∗ in the reducible representation,

leading to the respective axial transformations (2.22) and (2.23), is respected exactly in

the Ginsparg-Wilson formalism as well, and one also finds a correspondence of the vector

symmetry (2.24) [114]. In our lattice GN model (6.14) below, the axial symmetries are

both broken down to discrete symmetries like (6.12), which are related by the lattice

version of (2.24). Hence, our lattice theory reproduces the continuum chiral symmetry

group faithfully, which is another remarkable property of the Ginsparg-Wilson formalism.

Moreover, the discretization (6.11) was designed so as to carry over the continuum

DSE (2.42) onto the lattice. Indeed, using (6.7), one finds

⟨ψ̄ψ⟩ov =
Nf

g2
⟨σ⟩ . (6.13)
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That there is a factor of i missing as compared to (2.42) has to do with the fact that

we define the fermionic part of the lattice theory as ψ̄Dψ instead of ψ̄iDψ like in

the continuum (2.37), but bears no physical consequences, as ⟨σ⟩ serves as an order

parameter for chiral symmetry breaking all the same.

With the Dirac operator D from (6.11), our full lattice action, which we use to

simulate the GN model for one reducible fermion flavor, Nf = 1, reads

S =
Nf

2g2
a3
∑︂
x∈Λ

σ2(x)− ln det(aD) . (6.14)

As before, our simulations are performed using a standard rHMC algorithm. We have

generated data for three different lattice sizes at fixed a in order to extrapolate to the

thermodynamic limit and we have considered three different lattice spacings at fixed

volume to approach the continuum theory. In our investigations we are mainly interested

in the effects of a magnetic field at finite temperature and zero density, as well as on the

non-zero density regime at low temperatures, i.e., we do not probe the combined case of

high T and large µ. For lists of the parameter values we have simulated, we refer to the

corresponding publications [105, 106].

For each data point in (B, T, µ) space we have generated between O(102) and O(104)

independent trajectories. Regarding the error analysis we have once again performed

binned jackknife resamplings, making sure that the bins are at least as large as the

integrated auto-correlation time, but in most cases they are significantly larger than

that. Indeed, we have made sure that auto-correlations, which become more severe with

increasing system size, are under control in our simulations.

6.3.1 Observables

Let us now outline the lattice observables that we study in this chapter. The observable of

predominant interest is the chiral condensate ⟨ψ̄ψ⟩, as it serves as an order parameter for

chiral symmetry breaking and allows us to determine the phase structure of the model.

As in previous chapters, we instead consider the expectation value of the auxiliary scalar

field σ, using the DSE (2.42) (or, rather, its lattice version for Ginsparg-Wilson fermions

(6.13)), since its computation is a much simpler task numerically.

In order to avoid cancellations by the two competing minima of the effective action in

the phase of broken chiral symmetry, we do not measure ⟨σ⟩ directly, as it would average

to zero in an ergodic simulation. Instead, we compute the quantity

⟨|σ̄|⟩ = a3

V

⟨︄⃓⃓⃓⃓
⃓∑︂
x∈Λ

σ(x)

⃓⃓⃓⃓
⃓
⟩︄
, (6.15)

where we denote by σ̄ the space-time average of σ, σ̄ := a3

V

∑︁
x∈Λ σ(x). While in the
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thermodynamic limit ⟨|σ̄|⟩ approaches the desired order parameter,

lim
V→∞

⟨|σ̄|⟩ = |⟨σ⟩| , (6.16)

one should keep in mind that ⟨|σ̄|⟩ will never vanish exactly on finite volumes, even

when chiral symmetry is intact, which complicates the study of phase transitions. We

also mention that the definition (6.15) assumes translational invariance, i.e., the absence

of inhomogeneities in σ beyond random fluctuations. Below, we shall see that this

assumption is indeed justified.

In order to study phase transitions and, in particular, determine their locations, we

study the chiral susceptibility, which we define as

χ := V
(︁⟨︁
σ̄2
⟩︁
− ⟨|σ̄|⟩2

)︁
. (6.17)

Notice that we have explicitly included a factor of V in the definition of χ in order to

compensate for the space-time average performed in the definition of ⟨|σ̄|⟩. The resulting

susceptibility is an intensive quantity. On a finite volume the chiral susceptibility exhibits

a peak at a phase transition, which diverges rationally in the infinite-volume limit with a

behavior governed by critical exponents.

Another method for pinning down the position of a phase transition is the study of

the finite-size scaling of the Binder cumulant [326]

UL := 1− ⟨σ̄4⟩
3 ⟨σ̄2⟩2

. (6.18)

At a phase transition the curves of Binder cumulants for different system sizes should

intersect each other, providing us with a second, independent, estimate of the transition’s

location. We remark that the Binder cumulant is likely less reliable in this study due

to the small volumes we consider. Nonetheless, we compute it alongside the chiral

susceptibility for the sake of comparison.

The final observable we shall consider in this chapter is the spatial correlation function

of σ, taken over from (5.7) and generalized to three dimensions,

Cσσ(x1, x2) =
a3

V

∑︂
x′∈Λ

⟨σ (x′0, x1, x2)σ (x′0, x1 + x′1, x2 + x′2)⟩ . (6.19)

This correlator now depends on both spatial directions and we compute it, as before, in

order to search for potential inhomogeneities. As in Chapter 5, oscillations present on

the level of individual configurations would cancel each other in the naive expectation

value ⟨σ(x)⟩, but should be captured by Cσσ.
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In order to set the scale in our computations we use the definition

σ0 := ⟨|σ̄|⟩
⃓⃓
B=0, µ=0, T=T0

, (6.20)

i.e., the value of the chiral condensate for vanishing magnetic field and chemical potential

and for the lowest temperature considered, T0 ≈ 0. As was outlined in [105], we

use two different scale-setting temperatures for our infinite-volume and continuum

extrapolations, respectively. The reason for this is that we would like to set the scale at

as low a temperature as possible, while at the same time keeping T0 constant in the two

respective limits V → ∞ and a→ 0. As before, since we can express the lattice spacing

in units of σ0 (and vice-versa) via the dimensionless combination aσ0, we approach the

continuum limit by tuning the coupling g2 in (6.14) to smaller values of aσ0 and control

the temperature by changing Nt at a fixed lattice spacing.

We mention that there is no complex-action problem in our simulations provided that

either B = 0 or µ = 0, which we show in Appendix E. In the case where both B and µ

are non-vanishing, a complex-action problem is present but under control for the order

parameter ⟨|σ̄|⟩, as is also discussed in Appendix E.

6.4 Tests and cross-checks

Having tested the applicability of the overlap operator and its limits in the context of

non-interacting fermions in Section 4.4 and having studied its spectral properties in

Section 6.2, we present here a number of additional numerical tests, performed in the

full interacting theory of interest, i.e., the GN model in 2 + 1 dimensions, governed by

the lattice action (6.14)

6.4.1 Dyson-Schwinger equation

First and foremost, it is important to verify that the DSE (6.13) is indeed fulfilled, such

that we can reliably use ⟨|σ̄|⟩ as an order parameter for chiral symmetry breaking in

the discretized theory. To this end we compare ⟨|σ̄|⟩ with the corresponding fermionic

observable, i.e., the absolute value of (4.28),

⟨|⟨ψ̄ψ⟩|⟩ov :=
1

V

⃓⃓⃓⃓
tr
[︂(︂
1− a

2
D(0)

ov

)︂
D−1

]︂ ⃓⃓⃓⃓
, (6.21)

with D given in (6.11). Since the computation of ⟨|⟨ψ̄ψ⟩|⟩ov is much more expensive

numerically, we only consider small lattices with Ns = 8 for this discussion. In Fig. 6.5

we show ⟨|σ̄|⟩ and ⟨|⟨ψ̄ψ⟩|⟩ov for different values of the coupling g2 and the control

parameters T , B and µ.

We make the following observations: On cubic lattices, i.e., when Nt = Ns, the DSE
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Figure 6.5: Comparison between the left-hand (blue) and right-hand (orange) sides of the DSE
g2⟨|⟨ψ̄ψ⟩|⟩ov = ⟨|σ̄|⟩ as a function of different control parameters and for Ns = 8. Except for
Fig. 6.5b, we always consider cubic lattices, i.e., Nt = Ns.

is fulfilled very well for all values of g2, µ and B considered, the deviations growing

somewhat larger for weak couplings and large µ. When Nt and Ns do not agree,

however, i.e., when we investigate the T - dependence of the observables in Fig. 6.5b,

the disparity is more severe. Curiously, ⟨|⟨ψ̄ψ⟩|⟩ov and ⟨|σ̄|⟩ appear to agree only for the

second-to-lowest and the highest temperature considered, corresponding to the cubic

lattice (Nt = 8) and Nt = 2, respectively. The non-monotonic behavior of the fermionic

observable with T appears particularly odd, while ⟨|σ̄|⟩ behaves as one would expect.

While we do not have an explanation for the T - dependence of ⟨|⟨ψ̄ψ⟩|⟩ov, we remark

that its overall behavior is nonetheless comparable to that of the bosonic observable.

Since the latter is also more plausible from a physical point of view, we conclude from

Fig. 6.5 that ⟨|σ̄|⟩ is a reasonable order parameter for our purposes overall. We note

that in the remainder of this section all results at low temperature are obtained on cubic

lattices, in which case the disparity is of no concern either way.
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6.4.2 Critical exponents

As a further non-trivial test of the lattice action (6.14), we once again investigate the

dependence of the order parameter on the coupling g2. It is well known that, while

at low temperatures chiral symmetry is spontaneously broken in the strong-coupling

regime, the system undergoes a phase transition to a chirally symmetric phase when

the coupling is weakened below a critical value g2c . As we have remarked before, on a

finite volume this will not be a phase transition in the strict thermodynamical sense, but

it should approach a real transition in the infinite-volume limit. In the vicinity of this

transition the physical properties of the system are governed by its critical exponents.

In particular, one expects a finite-size scaling law of the following form for the chiral

condensate:

⟨|σ̄|⟩ = α + γL−κ , (6.22)

where the parameters α, γ and κ in general depend on the coupling. Near the phase

transition α vanishes and κ is related to the critical exponents β and ν of the order

parameter and the correlation length, respectively, via

κ|g2=g2c =
β

ν
. (6.23)

In order to compare with the existing literature on the GN critical exponents, an

extrapolation to the thermodynamic limit of the coupling-dependence of the chiral

condensate is shown in Fig. 6.6. We find that the critical coupling of the phase transition

likely lies somewhere between a/g2 = 0.188 and a/g2 = 0.198, giving rise to a very

rough weighted estimate for the ratio of the critical exponents, β
ν

= 0.9(3). While

this measurement is certainly not competitive with state-of-the-art investigations, it is

nonetheless compatible with estimates from dedicated methods, summarized, e.g., in

[327], which also contains a list of relevant references. The various estimates for β
ν

range

from about 0.74 to roughly 1.01. This agreement is a strong indication that our overlap
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formalism is capable of capturing the correct physics.

6.4.3 Saturation effects

Finally, we aim at obtaining a better understanding of the limits of the magnetic fields we

can simulate in our lattice setup. As we have remarked in Section 4.3, our formulation

is periodic in the flux quantum b with a periodicity given by N2
s , but one should expect

saturation effects to set in and reduce the effective range of b that gives rise to physically

sensible results [197, 198]. In order to estimate this range we show in Fig. 6.7 the

B-dependence of the chiral condensate for values of b between 0 and N2
s on a lattice with

Ns = Nt = 8. Indeed, the expected periodicity in B, as well as the resulting reflection

symmetry b→ N2
s − b [197] is observed. However, the largest part of Fig. 6.7 is governed

by unphysical saturation effects. In order to avoid them we shall thus impose by hand

the restriction b ≤ N2
s

16
, indicated by the vertical line in Fig. 6.7, on the magnetic flux

quantum number in all of our subsequent investigations, allowing us to study continuum

physics.

With the findings presented in this section we are confident in our choice of lattice

action for a broad range of values of B, T and µ, respectively, and we shall now turn

towards the discussion of our main results.

6.5 Results for vanishing magnetic field

In the remainder of this chapter we present the results of extensive lattice simulations

of the (2 + 1) – dimensional GN model using Nf = 1 flavor of four-component overlap

fermions. In this section we investigate the influence of finite temperature and chemical

potential on the order parameter at vanishing magnetic field, providing estimates for

the critical temperature Tc and the chemical potential µc of the chiral phase transition.

Afterwards, we turn to the study of finite magnetic fields in the subsequent sections.
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Figure 6.8: T - dependence of the chiral condensate and the chiral susceptibility for different
physical volumes and constant lattice spacing.

While the main interest in this chapter shall be the determination of the phase structure

of the one-flavor model, we also investigate whether a combination of finite flavor

number, volume, temperature, chemical potential and magnetic field may induce spatial

inhomogeneities in 2 + 1 dimensions.

6.5.1 Vanishing chemical potential

We begin by studying the T - dependence of the chiral condensate at vanishing B and

µ for different physical volumes. The corresponding results are shown in Fig. 6.8a.

First of all, one observes that the chiral condensate decreases monotonically with the

temperature, albeit to a non-zero value, due to the definition of the order parameter

as ⟨|σ̄|⟩. As expected, the transition in T becomes more pronounced for larger volumes,

while the non-vanishing tails at high temperatures decrease in value. These observations

are thus consistent with the presence of a phase transition in the thermodynamic limit.

From the mean-field analysis of Section 3.3 one expects this transition to be of second

order and our data suggest that this is indeed the case.

Let us now estimate the critical temperature Tc of this transition. Since we work

with Nf = 1, we expect strong quantum fluctuations to be present in the system, which

should generically reduce or even destroy any sort of long-range order. One thus

conjectures that the extent of the phase of spontaneously broken chiral symmetry should

shrink considerably when compared to the mean-field limit, where Tc/σ0 = 1
2 ln 2

≈ 0.72.

In Fig. 6.8b we show the chiral susceptibility (6.17) as a function of T for different

physical volumes. We observe a peak in χ, which becomes sharper as Ns increases while

moving slightly to lower temperatures. For the largest volume considered we estimate

Tc/σ0 ≈ 0.145. Compared to the mean-field result, this value is smaller by roughly a

factor of 5.

For comparison, we compute another estimate for Tc, obtained by studying the finite-
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size scaling of the Binder cumulant (6.18), whose T - dependence is shown in Fig. 6.9.

Since we can only consider rather small volumes in our simulations, the finite-size

analysis of UL is not very reliable on its own. Indeed, it can be seen that the curves for

different Ns in Fig. 6.9 do not yet intersect each other in a single point. We extract a

rough estimate of Tc/σ0 ≈ 0.135 but note that the true result is likely larger than that,

which is also consistent with the above estimate obtained from χ. We thus conclude that

the critical temperature, extrapolated to the thermodynamic limit, likely lies between

these two values, i.e., Tc/σ0 = 0.140(5).

We now study the continuum limit of these results. To this end, we show ⟨|σ̄|⟩ and χ

as functions of T for decreasing lattice spacing at (approximately) fixed physical volume

in Figs. 6.10a and 6.10b, respectively. One observes that the behavior of the order

parameter shows little change in this limit, indicating that we are already quite close to

simulating continuum physics. The fact that the green curve in Fig. 6.10a, corresponding

to the smallest lattice spacing considered, deviates from the other ones is likely due to

the scale-setting being slightly off in this case, resulting in different physical volumes for

the different lattice spacings. To be more specific, while we double the number of lattice

sites in each spatial direction when going from Ns = 8 to Ns = 16, the corresponding

lattice spacings differ from each other by slightly more than a factor of 2 and thus

the physical volumes are not the same. On the other hand, within error margins the

critical temperature determined from Fig. 6.10b remains constant for all lattice spacings

considered. We remark that the physical volume considered in Fig. 6.10 corresponds to

the smallest volume shown in Fig. 6.8.

6.5.2 Finite chemical potential

Having studied the effects of non-zero temperature on the order parameter, we now

turn to the finite-density case. In particular, we study the µ-dependence of ⟨|σ̄|⟩ at low

temperatures. Phenomenologically, high enough densities can be expected to have the

same disordering effect as high temperatures, i.e., restore chiral symmetry. We show the
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(a) Order parameter ⟨|σ̄|⟩ from (6.15).

0.2 0.4 0.6 0.8 1.0
T/ 0

10

20

30

40

50

60

0

Ns = 8, a 0 0.995
Ns = 12, a 0 0.691
Ns = 16, a 0 0.461

(b) Chiral susceptibility χ from (6.17).

Figure 6.10: T - dependence of the chiral condensate and the chiral susceptibility for different
lattice spacings and constant physical volume.

chiral condensate as a function of the chemical potential for different physical volumes

in Fig. 6.11a. We see that, as before, the phase transition becomes sharper with larger

volumes. Notice, however, that we work on cubic lattices here, i.e., Ns = Nt, such

that the temperature decreases as we approach the thermodynamic limit. Based on

the infinite-volume mean-field results of Section 3.3, one expects a strong-second order

transition since we work at low but non-vanishing temperatures. However, as we have

outlined in Section 3.6, the restriction of the model to finite volumes might cause the

transition to be discontinuous even at non-zero T .

Before discussing this issue in more detail in subsequent paragraphs, we mention

that the susceptibility (6.17), shown in Fig. 6.11b, also exhibits a peak as a function of

µ, growing with Ns. For the largest volume considered we can read off a value for the

critical chemical potential of µc/σ0 ≈ 0.3. Compared to its mean-field value of µc = σ0,

it is smaller by about a factor of 3. Thus, the phase of spontaneously broken chiral

symmetry shrinks in both the T - and the µ-direction when comparing Nf = ∞ with

Nf = 1. However, it is worth noting that Tc and µc at Nf = 1 deviate from their respective

large -Nf counterparts by different factors, contrary to what one could have naively

anticipated. This makes it harder to draw quantitative conclusions from the large -Nf

limit.

In order to distinguish between a first- and a second-order transition in our system it

is not sufficient to investigate the behavior of the order parameter as shown in Fig. 6.11a.

The reason for this is as follows: In an ergodic simulation two (almost-)degenerate

minima of the effective action are sampled with an (almost) equal probability. If one

first simulates the system in a phase of broken symmetry, where the global minimum

is non-trivial, and then subsequently approaches the symmetric phase by appropriately

tuning the control parameters, a third minimum, namely the trivial one, will become

relevant at some point if the transition is of first order. This emergence of a mixed phase
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(a) Order parameter ⟨|σ̄|⟩ from (6.15).
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Figure 6.11: µ-dependence of the chiral condensate and the chiral susceptibility for different
physical volumes of cubic lattices (Ns = Nt) and constant lattice spacing.

then leads to an overall decrease of the order parameter, which is, however, smooth

on small volumes, complicating the determination of the order of the transition. On

larger volumes, on the other hand, the minima become deeper and tunneling between

them is generically less likely. A realistic simulation will thus be less prone to sampling a

sub-dominant minimum, which leads to the transition in Fig. 6.11a becoming sharper

for larger Ns.

The above discussion makes clear that one should rather investigate the action itself,

as the presence of two or more degenerate non-trivial minima, separated by a barrier, is

a clear indication for a first-order transition in the thermodynamic limit. To this end, we

have computed histograms of time-series of σ̄, which reflect the probability distributions
e−Seff

Z
for various chemical potentials. We show the logarithm of the distributions obtained

in this way (divided by the lattice volume and normalized to 0 at σ̄ = 0) on our smallest

lattice in Fig. 6.12. The error estimates are obtained by computing the effective action

on every jackknife ensemble and performing the usual jackknife analysis on the result. In

passing we note that the results shown in Fig. 6.12 correspond to the so-called constraint
effective potential [328].

Clearly, there are two non-trivial minima and no trivial minimum present for µ/σ0 ≈
0.282, which indicates the spontaneous breakdown of the Z2 chiral symmetry. For

µ/σ0 ≈ 0.301, on the other hand, the additionally emerging trivial minimum becomes

degenerate with the non-trivial ones. Lastly, for µ/σ0 ≈ 0.376 only the minimum at σ̄ = 0

is left, i.e., the system is in the symmetric phase. The described behavior is striking

evidence for a first-order phase transition in µ, as one would have predicted based on

the discussion in Section 3.6. Curiously, this can be observed already on our smallest

lattice, while conventionally one first extrapolates to the thermodynamic limit in order

to study phase transitions. Due to limited statistics an equally detailed analysis was not

possible for our larger lattices, but our data indicate that the nature of the transition
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tial, normalized to zero at σ̄ = 0, for
different chemical potentials. See the
main text for details. Ns = Nt = 8,
aσ0 ≈ 1.063 , i.e., T/σ0 ≈ 0.118.

does not change as we approach the thermodynamic limit. We mention that indications

for a first-order transition in the model were also found in the lattice study [329]. This

behavior was later explained by studies employing the optimized perturbation theory

(OPT) technique [330] to be a result of going beyond the mean-field limit [331, 332].

As we have seen in Section 3.6, however, a first-order transition can even be observed in

the mean-field limit, provided that one considers a finite volume. In the next section we

study how this behavior is affected by non-zero magnetic fields.

Before that, however, we provide for completeness a continuum extrapolation at

fixed volume of the µ-dependence of ⟨|σ̄|⟩ and χ in Figs. 6.13a and 6.13b, respectively.

As above, we observe little change as the lattice constant is altered, providing further

evidence that the system under consideration is not too far from the continuum limit.
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(a) Order parameter ⟨|σ̄|⟩ from (6.15).
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Figure 6.13: µ-dependence of the chiral condensate and the chiral susceptibility for different
lattice spacings and constant physical volume on cubic lattices (Ns = Nt).
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Figure 6.14: B-dependence of the chiral condensate on cubic lattices (Ns = Nt).

6.6 Results for finite magnetic field

Let us now incorporate a non-zero background magnetic field B into our study. In light

of the mean-field discussion of Chapter 3 we are led to expect a rich phase structure

in (B, T, µ) space and we discuss in this chapter whether this is indeed true beyond

the mean-field limit. We are predominantly interested in the dependence of the order

parameter on the magnetic field, but we also study how the critical temperature and the

critical chemical potential are affected and we search for remnants of multiple phase

transitions due to the emergence of Landau levels.

6.6.1 Vanishing temperature and chemical potential

To begin with, we show a continuum extrapolation of the chiral condensate as a function

of the background magnetic field for low temperatures and vanishing chemical potential

in Fig. 6.14a. What is perhaps most striking is the non-monotonicity of the order

parameter in B, as ⟨|σ̄|⟩ exhibits a dip for the weakest non-vanishing magnetic field, i.e.,

the one corresponding to b = 1 in (3.4). We have previously discussed this feature in the

context of a non-interacting theory in Sections 3.1 and 6.2 and we see here that it can

still be observed when interactions are taken into account. We emphasize once more that

this is not a discretization artifact, as it occurs in the continuum theory as well. Thus, it

should be regarded as a physical feature that is present on finite volumes.

Apart from this dip the behavior of the condensate with B is as expected in that the

magnetic field induces a monotonic increase of ⟨|σ̄|⟩, which amounts to the phenomenon

of magnetic catalysis. It is interesting to observe that the condensate for b > 1 seems

to have a roughly linear dependence on the magnetic field, much like it does in the

two-dimensional free theory setup discussed in Sections 3.1 and 6.2. This is in contrast

to the mean-field expectation (6.1), predicting a quadratic increase in B in the strong-
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coupling regime we investigate here. Only for the case of weak couplings does the order

parameter grow linearly with B in the large -Nf limit.

In Fig. 6.14b we show the B-dependence of the order parameter for different physical

volumes and fixed lattice spacing. The aforementioned non-monotonicity clearly disap-

pears on larger volumes and for Ns = 16 we observe pure magnetic catalysis for every

value of B. This proves that the contributions to ⟨|σ̄|⟩ that cause the dip are suppressed

in the thermodynamic limit, just as in the non-interacting case. As we have discussed

earlier, these contributions are likely due to low eigenmodes of the Dirac operator.

6.6.2 Finite temperature and vanishing chemical potential

Let us now investigate the influence of a non-zero magnetic field on the finite-temperature

behavior of the chiral condensate. From the QCD point of view this study provides a

non-trivial comparison, as the behavior of QCD in background magnetic fields close to

the chiral cross-over temperature is well understood by now. We emphasize at this point

once more the fact that we do not seek to employ the (2 + 1) – dimensional GN as a

realistic model that should reliably reproduce all QCD phenomenology without any sort

of modifications. Rather, this study should be regarded as a first step into the direction

of the long-term goal of approaching QCD from the perspective of simple model theories

beyond the mean-field limit. The GN model, being the simplest 4FT, was chosen in order

to assess the qualitative differences one should expect to arise when going beyond the

mean-field limit in a generic theory of interacting fermions. However, it also allows us to

better understand to which extent the qualitative differences between QCD and model

theories are reflected on the level of observables.

In order to study the effects of a background magnetic field on the finite-temperature

GN model, we plot phase diagrams in the (B, T ) plane for different physical volumes in

Fig. 6.15. These phase diagrams should be contrasted with the analogous infinite-volume

mean-field result shown in Fig. 3.5a. We indicate the rough estimates for the critical

temperature at B = 0 and Ns = 16, obtained previously via the chiral susceptibility and

the Binder cumulant, respectively, as the gray bands in Fig. 6.15.

One observes that for all temperatures below Tc the magnetic field has a clear

tendency to increase ⟨|σ̄|⟩, apart from the aforementioned finite-size effects, which

disappear on our largest lattice. This is in agreement with the mean-field picture, stating

– in essence – that the competition between T and B is relatively uncomplicated: higher

temperatures destroy the order via thermal fluctuations, while stronger magnetic fields

restore the order via misaligning the spins of the fermions and anti-fermions comprising

the chiral condensate. The interplay between the two control parameters T and B is

thus very much straightforward and expected both in the mean-field limit and beyond.

Above the phase transition at T = Tc the magnetic field ceases to have a noticeable

effect on the order parameter. This is also consistent with the expectation, as it is no
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(a) Ns = 8, aσ0 ≈ 1.063. (b) Ns = 12, aσ0 ≈ 1.004. (c) Ns = 16, aσ0 ≈ 0.984.

Figure 6.15: Phase diagram in the (B, T ) plane for different physical volumes and constant lattice
spacing. The gray bands indicate the critical temperature for Ns = 16 and B = 0, see the main
text for details.

different in the mean-field limit. One might be tempted to think that, since ⟨|σ̄|⟩ does not

vanish beyond Tc, one should expect to observe magnetic catalysis in that region as well.

However, what we really measure in the symmetric phase is the modulus of fluctuations

of σ̄ around zero. Such fluctuations should be less affected by the magnetic field and our

data indeed support this picture. The critical temperature itself remains approximately

constant as a function of B in all of Fig. 6.15.

Notice, however, that the magnetic fields we can consider in our setup for fixed a

are rather weak. In order to study stronger fields (in units of σ2
0), we approach smaller

lattice spacings at a fixed physical volume in Fig. 6.16. The thick gray lines are a

rough estimate for the B-dependence of the critical temperature, obtained here via the

chiral susceptibility only. To be precise, we determine the peak of χ for every value of

B considered and use the peak position as an estimate for Tc. If this is not possible

unambiguously within errors we quote the mean value of the competing peak positions

as the critical temperature instead. With this very crude estimate we find that the critical

temperature increases slightly for the strongest magnetic fields considered. Comparing

with Fig. 3.5a, where the critical temperature starts to increase noticeably at around

eB/σ2
0 ≈ 0.8, our findings are in accordance with the mean-field results. Albeit being a

relatively weak statement, this nonetheless once again suggests that the phase structure

beyond the mean-field limit cannot simply be obtained from the large -Nf results via

re-scaling them by some uniform Nf-dependent scaling factor. We have seen that one

would, e.g., require different such factors for scaling Tc and µc, respectively.

Not taking into account the finite-size effects leading to a dip in ⟨|σ̄|⟩ for b = 1, all

of our data are consistent with the picture of magnetic catalysis beyond Tc, i.e., there

do not appear to be any signs of inverse magnetic catalysis within the region of broken

chiral symmetry. Beyond Tc, we once again find the condensate to be independent of B.

These results show that the finite-temperature behavior of the (2 + 1) – dimensional GN

model in a magnetic field is qualitatively different from the analogous situation in QCD,

where inverse magnetic catalysis governs the region around the chiral cross-over. This
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Figure 6.16: Phase diagram in the (B, T ) plane for different lattice spacings and constant physical
volume. The gray bands indicate a rough estimate for the critical temperature, see the main text
for details. Notice the different x-axis and color map scales.

observation lends further evidence to the claim that inverse magnetic catalysis in QCD is

a gluonic effect, caused by the back-reaction of quarks onto the gluon distribution [279].

We emphasize that, while a priori there was no reason to believe that allowing for

quantum fluctuations in the GN model should give rise to inverse magnetic catalysis at

finite temperature despite its absence in the mean-field limit, the finite-Nf behavior of

the model is not fully understood yet, especially for non-vanishing magnetic fields. A

situation where fluctuations, having the tendency to restore chiral symmetry, could lead

to a non-trivial interplay between the temperature and the magnetic field, resulting in

non-monotonic behavior of the order parameter or a decrease of the critical temperature

with B, was not inconceivable.

6.6.3 Low temperature and non-vanishing chemical potential

Finally, we turn to the case of finite µ and B, which is the most interesting case from the

QCD perspective, as this regime is not accessible in Monte-Carlo simulations based on

importance sampling. We shall only consider cubic lattices, i.e., low temperatures, for

the remainder of this section.

In Fig. 6.17 we show the µ-dependence of ⟨|σ̄|⟩ for different magnetic field strengths

and increasing physical volumes at fixed a. Investigating the data for Ns = 8 first, one

observes that the – by now familiar – finite-size effects are also present at finite µ. Once

again, they become less prominent on larger volumes, as expected. By and large, the

µ-dependence of the order parameter seems to change little on a qualitative level when

the magnetic field is switched on, as chiral symmetry is spontaneously broken at µ = 0

and becomes restored for larger µ for all values of the magnetic field. This is true for all

lattice sizes considered.

All of our data are fully consistent with the picture of magnetic catalysis everywhere
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Figure 6.17: µ-dependence of the chiral condensate for different magnetic field strengths and
physical volumes of cubic lattices (Ns = Nt) at constant lattice spacing.

below the phase transition at µ = µc. While some data points have overlapping error

margins that would – in principle – also allow for the converse interpretation, we

see no clear evidence for a decrease of the order parameter with B anywhere in our

results. Making any precise statements on the largest lattice is less straightforward due

to very limited statistics and the Ns = 16 results should rather be thought of as a rough

consistency check. However, no clear evidence for inverse magnetic catalysis can be

found there either. On the other hand, beyond the phase transition, where we again only

measure the absolute value of fluctuations around σ̄ = 0, the magnetic field leaves the

chiral condensate almost unaffected, which is expected and was also observed at the

finite-temperature phase transition for µ = 0 discussed above.

We have furthermore investigated the order of the phase transition in µ at finite

B in analogy to Fig. 6.12. In Fig. 6.18 we show a comparison between the effective

potential close to the phase transition in µ for different magnetic field strengths. The

clear triple-minimum structure in Veff is no longer observed at B ̸= 0. While the data

are consistent with the presence of a first-order transition for some values of B, at

other points a strong second-order transition appears to be favored. From the point

of view of the mean-field approach, this is not all that surprising. After all, there is a

qualitative difference between B = 0 mean-field results on finite and infinite volumes,
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Figure 6.18: (Constraint) effective potential
close to the phase transition in µ for different
values of the magnetic field. The data are
shifted vertically for visual clarity. Ns = Nt =
8, aσ0 ≈ 1.063 , i.e., T/σ0 ≈ 0.118.

93



6. Magnetic Catalysis

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
/ 0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
|

|/
0

eB/ 2
0 = 0.000

eB/ 2
0 0.099

eB/ 2
0 0.198

eB/ 2
0 0.297

eB/ 2
0 0.397

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
/ 0

eB/ 2
0 = 0.000

eB/ 2
0 0.091

eB/ 2
0 0.274

eB/ 2
0 0.366

eB/ 2
0 0.457

eB/ 2
0 0.548

eB/ 2
0 0.731

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
/ 0

eB/ 2
0 = 0.000

eB/ 2
0 0.115

eB/ 2
0 0.231

eB/ 2
0 0.462

eB/ 2
0 0.924

(a) Ns = 8, aσ0 ≈ 0.995. (b) Ns = 12, aσ0 ≈ 0.691. (c) Ns = 16, aσ0 ≈ 0.461.

Figure 6.19: µ-dependence of the chiral condensate for different magnetic field strengths and
lattice spacings at constant physical volume on cubic lattices (Ns = Nt).

see Section 3.6. On the contrary, the B ̸= 0 effective potential is the same irrespective of

the volume, the only distinction for different volumes being the different allowed values

of B according to (3.4). By that, while one finds a first-order transition in mean-field for

finite volumes and B = 0, switching on a sufficiently weak magnetic field could result in

the phase transition being of strong second order instead. Our lattice results indicate that

the transition indeed becomes weaker for non-vanishing B. As before, however, these

investigations are really only conclusive on our smallest lattice for reasons of statistics.

We do not find any evidence for the presence of multiple phase transitions in µ,

neither of first nor of second order. We emphasize, however, that our investigation

cannot completely rule them out either. As we have mentioned earlier, the exact position

of a phase transition is very difficult to estimate from the behavior of the order parameter

alone and one should instead look for multiple minima of the effective potential. In

particular, one should either search for signs of more than three simultaneous minima or

for two non-adjacent values of µ which both exhibit three minima. While we do not find

indications for either of these scenarios, our relatively coarse scan in µ might conceivably

simply have missed them. After all, it is expected that multiple phase transitions – if

present – happen in close succession.

Lastly, we once again consider smaller lattice spacings in order to study larger

magnetic fields in units of σ2
0. The corresponding results are shown in Fig. 6.19. While

finite-size effects are obviously more prominent here, all qualitative statements made

above are still valid. There is no sign of inverse magnetic catalysis or of multiple phase

transitions in µ. Instead, the magnetic field tends to enhance the breaking of chiral

symmetry everywhere before it is restored in a (single) phase transition. Also note that

the critical chemical potential increases with B, as can be seen from Fig. 6.18.

6.6.4 Search for inhomogeneities

While in 1 + 1 dimensions inhomogeneous phases have been known to exist in 4FTs for

a long time, see the discussion in Sections 5.1 and 5.2, the situation in 2 + 1 dimensions
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is less clear. It appears as if at B = 0 inhomogeneities can be found in the mean-field

limit with certain lattice discretizations [122, 123]. These inhomogeneities, however,

were shown to fully disappear once the cutoff is removed. There are no studies of

inhomogeneities in the (2 + 1) – dimensional GN model beyond the mean-field limit

to be found to date, to the best of our knowledge. Moreover, there exist no studies,

not even in the mean-field limit, on the question of whether a non-zero background

magnetic field might induce such inhomogeneities in the model. We mention that, in

spite of the assumption of the magnetic field to be homogeneous itself, this question is

not necessarily obsolete. In fact, in some four-dimensional theories a non-zero magnetic

field seems to favor inhomogeneous phases at finite density that would otherwise be

disfavored [125–128].

The intuitive picture behind this is as follows: As we have discussed in Section 6.1,

a strong enough magnetic field leads to a dimensional reduction of fermionic systems

due to the LLL dominance. This means that a (3 + 1) – dimensional theory in a strong

magnetic field is to a certain degree equivalent to a (1 + 1) – dimensional one at B = 0,

where the remaining spatial direction, in which propagation is not suppressed, lies along

the magnetic field. Now, as we have seen in detail in Chapter 5, fermionic theories in

1 + 1 dimensions are prone to exhibit inhomogeneous structures, be it via perfect or

quasi-long-range order. This means that one expects inhomogeneities to form along the

magnetic field axis in 3+ 1 dimensions, which is indeed the case according to [125–128].

In our (2 + 1) – dimensional setup the interpretation is more difficult. Since the

spatial motion of fermions only takes place in a two-dimensional plane perpendicular to

the magnetic field, propagation along the magnetic field axis is prohibited altogether.

For strong enough fields, the theory is then effectively (0 + 1) – dimensional and the

spatial propagation of fermions should be completely suppressed. It is not clear intu-

itively whether this situation could give rise to spatial (or, for that matter, temporal)

inhomogeneities.

We now aim to fill this vacancy, thereby neatly bridging the gap between Chapter 5

and the present chapter. To this end, we employ the spatial correlation function Cσσ

defined in (6.19). We have scanned our entire (B, T, µ) parameter space for possible

traces of inhomogeneities, indicated by oscillating behavior of Cσσ. Of course, the

expectation is to find them at finite µ, if at all. In Fig. 6.20 we show the spatial

correlation function for one exemplary data point at non-zero B and µ. One observes

no sign for any inhomogeneous behavior and we have verified that this result is indeed

representative for all parameter values we have considered in our simulations. This

indicates that there are no inhomogeneities present in the GN model in 2 + 1 dimensions

at Nf = 1 even at finite lattice spacing, in contrast to earlier simulations at B = 0 using

staggered fermions [333]. It would be interesting to study the mean-field limit of these

results as well. Perhaps crystalline order can be found for large Nf and finite B and is

only destroyed by bosonic quantum fluctuations.
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Figure 6.20: Spatial correlation function
Cσσ(x1, x2) from (6.19) for Ns = Nt = 12,
T/σ0 ≈ 0.083, µ/σ0 ≈ 0.349, eB/σ20 ≈
0.346 and aσ0 ≈ 1.004 . Due to the lattice
periodicity we only show half of each co-
ordinate axis.

6.6.5 Comparison to the literature

Let us now compare what we have found in our Nf = 1 lattice simulations with the

existing literature. We only know of one other work investigating the phase structure

of the (2 + 1) – dimensional magnetized GN model beyond the mean-limit, namely the

OPT study [334]. There, it was found that the phase structure for finite flavor number is

not so different from its mean-field counterpart, at least down to Nf = 2. In particular,

multiple phase transitions in µ at finite B were found to still be present and inverse

catalysis was even claimed to persist for arbitrarily strong magnetic fields beyond the

large -Nf limit. Obviously, these results are at odds with ours.

In order to resolve this discrepancy, let us first make the following comments: To

begin with, it seems questionable to us whether the leading-order OPT computation,

giving corrections of O
(︁
N−1

f

)︁
, is really reliable for Nf = 2. Assuming that it can indeed

be trusted, there are a few important differences in the computation of [334] and the one

presented here. For one, the OPT study is performed in the continuum and on an infinite

volume, whereas we consider a lattice of finite extent. We see no reason to believe

that the discretization should give rise to the discrepancy, as, after all, our continuum

extrapolations seem rather stable. Finite-volume effects, on the other hand, are a

different story, as they were shown in Section 3.6 to cause a qualitative difference in the

mean-field theory, at least at B = 0. Still, for the aforementioned reasons finite-volume

effects should play less of a role when the magnetic field is non-zero.

The fundamental difference we believe could be at the origin of the disagreement

lies in the tacit assumption of homogeneity of σ, i.e., σ(x) = const., in [334]. In our

simulations, on the other hand, we allow for arbitrary fluctuations in σ on the level

of individual configurations. While we do not observe inhomogeneities on the level

of expectation values, the dynamics are clearly different when allowing for arbitrary

bosonic quantum fluctuations and we believe that this crucial ingredient might explain

the discrepancy between the OPT study and our results. More concretely, one may

envision the following situation: We know from preliminary investigations discussed in
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Section 6.2.1 that the overlap operator allows for a straightforward identification of the

Landau level structure, at least in a theory of non-interacting fermions in two dimensions

with periodic boundary conditions. Allowing for interactions introduces fluctuations in

σ(x) that will certainly wash out the well-separated Landau levels in Fig. 6.1a to a certain

degree. If such fluctuations are strong enough, individual Landau levels might no longer

be distinguishable at all. One may then conjecture that Landau-level-induced effects such

as the multiple phase transition pattern can no longer be present once the separation

between Landau levels tends to zero. Work in this direction is currently ongoing.
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7 Conclusions & Outlook

In this thesis we have investigated two four-Fermi theories in low dimensions in detail,

namely the chiral Gross-Neveu model (2.19) in 1 + 1 dimensions and the Gross-Neveu

model (2.20) in 2 + 1 dimensions. It was the main goal of this thesis to perform lattice

simulations at finite numbers of fermionic flavors in order to study the models beyond

the mean-field limit, where they are understood best. Such a study is important due

to the fact that realistic theories describing real physical systems most likely require

a treatment that goes beyond the mean-field limit. Since in the latter one observes a

plethora of non-trivial physical effects in the models studied here, a central goal of this

thesis was to elucidate to which extent these effects are left intact by fluctuations.

In particular, it has been known for some time that two-dimensional 4FTs in the

mean-field limit can develop inhomogeneous phases, where the chiral condensate (as an

order parameter for chiral symmetry breaking) acquires a non-trivial space-dependence.

We devoted Chapter 5 to a lattice study, using SLAC fermions, of the (1+1) – dimensional

χGN model for low flavor numbers, Nf = 2 and Nf = 8. We find that, indeed, inhomo-

geneities are present in the system even beyond the mean-field limit and presumably

persist when the lattice spacing approaches zero. We have emphasized that our results

should not be interpreted as signs for the spontaneous breakdown of some continuous

symmetry, be it chiral symmetry or translations. Rather, we believe that correlations in

our setup decay to zero for large enough distances. For temperatures close to zero this

decay is likely algebraic, in accordance with the existence of a BKT phase. Thus, our

results are not in conflict with the CHMW theorem.

Moreover, we have mapped out the parameter space spanned by the temperature

and the chemical potential to see how the existence or non-existence of inhomogeneities

depends on these control parameters. We have found that for low temperatures and

large enough µ inhomogeneities always exist on some length scale. For very small

µ, on the other hand, the wave-length of chiral-spiral-like configurations exceeds the

spatial extent, such that inhomogeneities cannot form. Despite bosonic fluctuations

altering the mean-field picture quantitatively, we still observe remnants of the large -Nf

phase structure in our results. One way of interpreting inhomogeneous structures is

to investigate the constraint potential [328], whose flat regions have been linked to

the presence of inhomogeneous field configurations [335], the constraint itself being

enforced in 1 + 1 dimensions by the CHMW theorem.

The main focus of this thesis, however, was the study of the (2 + 1) – dimensional

GN model exposed to a background electromagnetic field. In Chapter 3 we provided

a detailed study of the model in the large -Nf limit, discussing the combined effects of
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non-zero temperature, magnetic field and chemical potential on the chiral condensate.

While for µ = 0 the magnetic field causes an enhancement of chiral symmetry breaking,

termed magnetic catalysis, the phase structure at finite chemical potential is highly non-

trivial. Due to the emergent Landau-level structure, which becomes especially important

for weak magnetic fields, one observes multiple phase transitions in µ. Moreover, one

finds that the critical chemical potential, corresponding to the chiral phase transition,

is non-monotonic in B. Similar results can be found when considering the model on a

finite volume. In particular, the quantization of spatial momenta on finite volumes can

induce first-order transitions in the system even at finite temperature, in close analogy to

the effects induced by the Landau quantization.

We then proceeded to study the model on the lattice for Nf = 1 flavor of reducible

fermions, using the overlap formalism, in Chapter 6. Our simulations were thus per-

formed as far away from the mean-field limit as possible. We found that the GN model

shows qualitatively different behavior beyond the mean-field limit. In particular, we did

not find any traces of inverse magnetic catalysis or multiple phase transitions. On the

contrary, within the region of spontaneously broken chiral symmetry, which increases in

size with B, we found that the magnetic field only enhances chiral symmetry breaking.

Moreover, finite-size effects were identified and their origins explained. For B = 0,

on the other hand, we confirmed the existence of a first-order transition in µ at low

non-vanishing temperature. We briefly investigated possible inhomogeneous structures

in the model, with the conclusion that no such inhomogeneities can be found for any

value of the magnetic field, chemical potential, temperature or volume considered.

Let us now briefly discuss how to possibly extend the work presented in this thesis.

The ultimate goal that motivated our research was to study QCD from the point of view

of fermionic model theories. One of the main reasons for this is the fact that QCD at finite

density suffers from the infamous complex-action problem, prohibiting the application of

conventional lattice field theory techniques. On the other hand, as we have shown, some

model theories do not suffer from this problem, or only to a lesser extent. However, as

has become especially clear in Chapter 6, the simple GN model in 2 + 1 dimensions is

still quite far away from the desired application in the study of QCD phenomenology.

While this was expected from the beginning, we have gained important insights into

which ingredients are necessary in any effective theory of QCD to reproduce the correct

physics.

It appears to be necessary to not only include gluonic degrees of freedom, but also

to somehow mimic the back-reaction of magnetized quarks onto their distribution. In a

similar way as the sea quark contributions, responsible for inverse magnetic catalysis

around the chiral cross-over in QCD, the four-Fermi coupling should run with the

magnetic field. This incorporates an effective change in the gluon dynamics, which one

integrates out, due to the magnetic field.

One may thus picture the following procedure of systematically approaching QCD,
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starting from low-dimensional 4FTs: First of all, one should consider continuous chiral

symmetries as in QCD, and therefore employ models of the NJL type. One should then

endow the auxiliary scalar fields, introduced via Hubbard-Stratonovich transformation,

with kinetic terms, resulting in quark-meson-like models. This allows for a proper

interpretation of the low-energy degrees of freedom as dynamical pions. Notice, however,

that the introduction of kinetic terms for scalar fields means that there is no pure

four-Fermi analog for the theory anymore. On the other hand, it has the advantage

that quark-meson models are renormalizable in four space-time dimensions, such that

one no longer has to restrict to low dimensions in order to work with renormalizable

theories. As a next step, one may couple the theories to the Polyakov loop, thereby

introducing gauge degrees of freedom. Lastly, one should make the couplings run with

the magnetic field. One sees from this discussion that the effort of going from simple

low-dimensional fermionic theories to realistic effective theories that correctly reproduce

QCD phenomenology can be considerable. Whether such modified theories still have

significant computational advantages as compared to QCD itself remains to be seen.

As interesting directions for future research we mention the study of inhomogeneous

magnetic fields [336], which better represent the physical situation during a particle

collision, as well as that of QCD within electric fields [337], for which lattice simulations

suffer from a complex-action problem. Moreover, it would be interesting to study the

effect of background gravitational fields on 4FTs [338] beyond the mean-field limit.
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A Derivation of Landau levels

In this appendix we shall demonstrate how the spectrum of the Dirac operator in a

magnetic field is given in terms of discrete Landau levels. For the discussion, we consider

a (2 + 1) – dimensional space-time, albeit in an irreducible representation of the Dirac

algebra for simplicity. To conform with the literature, we denote the irreducible gamma

matrices with the usual symbol γµ instead of the notation introduced in Section 2.2.4. For

the discussion, we assume a finite space-time volume V = βL2, on which the fermions

obey their usual boundary conditions.

Consider the Dirac operator

D = /∇+m , (A.1)

where the covariant derivative is given by

∇µ = ∂µ + ieAµ , (A.2)

e denotes the elementary electric charge and Aµ is a vector potential describing a

constant and homogeneous magnetic field of magnitude B. With the usual definition of

the field-strength tensor,

Fµν := ∂µAν − ∂νAµ , (A.3)

we have B = F12. Notice that we may also introduce a chemical potential into this Dirac

operator in a straightforward way, namely as the imaginary part of A0.

In the following, we shall be interested in computing the spectrum of one-particle

energies and their corresponding degeneracies. To this end, we separate the time-

direction in D by multiplying with γ0, which gives

γ0D = ∇0 + h , (A.4)

where h is the Dirac Hamiltonian whose (squared) eigenvalues we want to compute. It

is defined as

h = γ0m+ γ0γi∇i , (A.5)

such that

h2 = m2 − (γi∇i)
2 . (A.6)

We have thus reduced the problem to the computation of the spectrum of (γi∇i)
2.
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Notice that γi∇i is precisely the massless Dirac operator in 2 + 0 dimensions. In

this two-dimensional theory the role of the matrix γ∗ is simply played by γ0, as it

anti-commutes with both γ1 and γ2. Indeed, in the following we shall mostly use

two-dimensional terminology, as we, for instance, refer to eigenfunctions of γ0 with

eigenvalue +1 and −1 as right-handed and left-handed, respectively. For the remainder

of this section we closely follow [309].

Let us denote the zero modes of iγi∇i as ψp, where p is an index running from 1 to the

total number n of zero modes. Non-zero eigenvalues of iγi∇i shall be denoted as λq ̸= 0

and the corresponding eigenfunctions as ψq, where q runs from n+ 1 to ∞. Notice that

iγi∇i is Hermitian, such that its eigenvalues are real. Since on the space of zero modes

iγi∇i commutes with γ0, the ψp have definite chirality and we denote the numbers of

right- and left-handed zero modes by n+ and n−, respectively, such that n = n+ + n−.

Moreover, from the eigenvalue equation

iγi∇iψq = λqψq (A.7)

it follows that

iγi∇i(γ0ψq) = −λq(γ0ψq) , (A.8)

which means that for every non-zero eigenvalue its negative is also in the spectrum,

while their corresponding eigenfunctions, ψq and γ0ψq, are orthogonal. From this one

concludes that only the zero modes contribute to the so-called Witten index [339],

tr
[︂
γ0e

t(γi∇i)
2
]︂
=

n∑︂
p=1

(ψp, γ0ψp) +
∞∑︂

q=n+1

e−tλ
2
q (ψq, γ0ψq) =

n∑︂
p=1

(ψp, γ0ψp) = n+ − n− ,

(A.9)

where we have expressed the trace as a sum over the eigenstates of iγi∇i. Performing a

heat-kernel expansion [340] to write the diagonal elements of et(γi∇i)
2 as⟨︂

x
⃓⃓⃓
et(γi∇i)

2
⃓⃓⃓
x
⟩︂
=

1

4πt

(︁
1 + γ0eF12t+O(t2)

)︁
, (A.10)

leads back to (A.9) upon multiplication with γ0 and integration over space. Since, as has

been highlighted in [309], the Witten index is independent of the parameter t, one only

needs to retain the second term in (A.10) and obtains

tr
[︂
γ0e

t(γi∇i)
2
]︂
=

e

2π

∫︂
d2xB , (A.11)

where we have used the definition of the magnetic field, B = F12, and the fact that the

identity matrix in Dirac space has a trace of 2. Combining this result with (A.9) and

102



Appendices

introducing the magnetic flux Φ := e
∫︁
d2xB we find the two-dimensional index theorem

Φ

2π
= n+ − ni , (A.12)

relating the index of iγi∇i, i.e., the difference between the respective numbers of its

right- and left-handed zero modes to the magnetic flux.

Since Φ is proportional to an integer, Φ = 2πb, one also concludes that the magnetic

flux through a torus is quantized. For a constant and homogeneous magnetic field B

through a torus of area L2 this quantization condition is reflected as

eB =
2π

L2
b . (A.13)

Turning back to the computation of the spectrum of iγi∇i, it is straightforward to

show that

(γi∇i)
2 = ∇2

i +
ie

2
γiγjFij , (A.14)

where the second term on the right-hand side is the usual Pauli term. It follows that

− (γi∇i)
2 = −∇2

i +
Φ

L2
γ0 . (A.15)

Since ∇i and γi∇i are both anti-Hermitian operators, their respective squares are negative

semi-definite. Thus, for Φ > 0 the operator − (γi∇i)
2 can only have left-handed zero

modes, while for Φ < 0 they can only be right-handed. This fact is commonly referred

to as the vanishing theorem. Only for vanishing magnetic flux can both left- and right-

handed zero modes be present at the same time. This case, however, is not considered

here, as the computation of the spectrum is straightforward for Φ = 0.

Note that γ0 commutes with − (γi∇i)
2. From (A.7) and (A.8) it thus follows that

1
2
(1± γ0)ψq are both eigenfunctions of − (γi∇i)

2 with the same eigenvalue λ2q, but come

with opposite chirality. With the knowledge we have acquired so far, we may now derive

the eigenvalues of − (γi∇i)
2. Combining our last statement with the vanishing theorem

and (A.15) we conclude that there are |Φ|
2π

zero modes, all of them being either left- or

right-handed, while the higher modes have a degeneracy of |Φ|
π

each, but are split in half

into both left- and right-handed ones. The eigenvalues of the latter are integer multiples

of 2Φ
L2 .

In summary, we find the squared one-particle energies E2
l , i.e., the eigenvalues of the

squared Dirac Hamiltonian h2 (A.6) to be

E2
l = m2 + 2|eB|l . (A.16)

These quantized energy levels, labeled by the non-negative integer l, are referred to as

Landau levels and their degeneracy is given by dl = (2− δl0)
L2

2π
|eB|.
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B The chiral condensate from the density of states

Here we derive some relations that are used in the context of Chapter 3. To begin with,

let us consider the dispersion relation (3.2) of (2 + 1) – dimensional non-interacting

fermions without a magnetic field. We shall work in an irreducible representation of the

Dirac algebra with two-component spinors.

The density of states with an energy below some value ε, i.e., the integrated density

of states, is given by

ρ0(ε) =
2

L2

∑︂
p

Θ(ε− Ep) , (B.17)

where the factor of 2 takes into account the two-fold (spin) degeneracy. With (3.2) and

the discretization of spatial momenta on a torus, (2.1), we thus find

ρ0(ε) =
2

L2

∑︂
n∈Z2

Θ

(︄
ε−

√︃
m2 +

4π2

L2
(n2

1 + n2
2)

)︄
. (B.18)

Introducing the sum-of-squares function,

r2(n) =
⃓⃓{︁
(n1, n2) ∈ Z2|n2

1 + n2
2 = n

}︁⃓⃓
, (B.19)

counting the number of pairs of integers whose squares sum up to n, leads to

ρ0(ε) =
2

L2

∞∑︂
n=0

r2(n)Θ

(︄
ε−

√︃
m2 +

4π2

L2
n

)︄
, (B.20)

Similarly, we find for the Landau levels (3.1) at B ̸= 0 that

ρb(ε) =
1

L2

∞∑︂
l=0

dlΘ(ε−El) =
|eB|
2π

[︄
Θ(ε−m) + 2

∞∑︂
l=1

Θ
(︂
ε−

√︁
m2 + 2|eB|l

)︂]︄
. (B.21)

where we have used the definition of the Landau-level degeneracy dl (3.3). Now, with

(3.4) and (3.1) we obtain

ρb(ε) =
|b|
L2

[︄
Θ(ε−m) + 2

∞∑︂
l=1

Θ

(︄
ε−

√︃
m2 +

4π|b|
L2

l

)︄]︄
. (B.22)

Let us now use these densities of states to compute the fermion condensate ⟨ψ̄ψ⟩.
Since in a massive free theory

⟨ψ̄ψ⟩ = 1

Z

∫︂
Dψ̄Dψ e−

∫︁
d3xψ̄iDψ ψ̄ψ (B.23)
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with D = /∇+m and

Z =

∫︂
Dψ̄Dψe−

∫︁
d3xψ̄iDψ = detD , (B.24)

the condensate can be computed from the Dirac operator D via

⟨ψ̄ψ⟩ = − 1

V

∂

∂m
ln detD = − 1

2V

∂

∂m
ln detD2 , (B.25)

where the factor 1
V

compensates for the space-time integration. Assuming that the

determinant can be written as

det(D2) = det
(︁
Q2 +m2

)︁
, (B.26)

with some suitable operator Q2, and using ln detD = tr lnD, the condensate becomes

⟨ψ̄ψ⟩ = −m
V

tr
1

Q2 +m2
. (B.27)

In the eigenbasis of Q2, the trace is simply a sum over its eigenvalues λ2Q,

⟨ψ̄ψ⟩ = −m
V

∑︂
λ2Q

1

λ2Q +m2
, (B.28)

regularized in an appropriate way.

Let us first consider the Dirac operator for free fermions in 2 + 1 dimensions and at

B = 0, D = /∂ + m. It is not hard to convince oneself that det(D2) = det(−∂2 + m2),

such that Q2 = −∂2 in (B.26). The eigenvalues of −∂2 are the squared momenta p2

with a two-fold degeneracy due to the spin structure and with pi given in (2.1). For the

Matsubara frequencies p0 we introduce the more conventional symbol ωn = 2π
β

(︁
n+ 1

2

)︁
,

such that, from (B.28), we find

⟨ψ̄ψ⟩0 = −m
V

∞∑︂
n=−∞

∑︂
p

2

ω2
n + p2 +m2

. (B.29)

Introducing the density of energy states g0 = ∂
∂ε
ρ0(ε) and using (B.17), whose derivative

is a sum of Dirac deltas, as well as (3.2), we thus obtain

⟨ψ̄ψ⟩0 = −m
β

∞∑︂
n=−∞

∫︂
dε

1

ω2
n + ε2

g0(ε) . (B.30)

Next, we turn to the case of non-zero magnetic field, where D = /∂+ ie /A+m. We can

use the decompositon (A.4) with ∇0 = ∂0 since we do not consider a chemical potential

here, to write

det
(︁
D2
)︁
= det

[︁
(γ0D)2

]︁
= det

[︁
(∂0 + h)2

]︁
. (B.31)
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As ∂0, which has the eigenvalues iωn, commutes with h, whose eigenvalues we denote as

λ, the determinant is given by the regularized product

det
[︁
(∂0 + h)2

]︁
=
∏︂
n,λ

(︁
iωn + λ

)︁2
=
∏︂
n,λ

(︁
ω2
n + λ2

)︁
= det

(︁
−∂20 + h2

)︁
, (B.32)

where we have used that the product over n contains both ωn and −ωn for each n. Thus,

using the definition of h2 in (A.6), we find

det
(︁
D2
)︁
= det

(︁
m2 − ∂20 − (γi∇i)

2
)︁
, (B.33)

i.e., Q2 = −∂20 − (γi∇i)
2 in (B.26). We have computed the eigenvalues of (γi∇i)

2 and

their degeneracies in Appendix A. In analogy to the B = 0 case above we introduce

gb =
∂
∂ε
ρb(ε), such that, using (B.21) and (3.1), the condensate for non-zero magnetic

field takes the form

⟨ψ̄ψ⟩b = −m
β

∞∑︂
n=−∞

∫︂
dε

1

ω2
n + ε2

gb(ε) , (B.34)

reminiscent of (B.30).

C Zeta function regularization

We present a short account on the zeta function regularization and renormalization

technique. We follow [130] but mention that earlier accounts can be found as well

[341, 342]. Let A denote a self-adjoint second-order elliptic differential operator with

eigenvalues λn, n being an integer enumerating the eigenvalues. The zeta function of A

is defined as

ζA(s) =
∑︂
n

′
λ−sn , (C.35)

where the prime indicates omission of all zero eigenvalues here and in what follows. The

zero modes have to be projected out in a suitable way.

The sum in (C.35) converges for sufficiently large s and the zeta function defined in

this way can then be analytically continued to a meromorphic function of s in a unique

way [343]. One then finds, formally,

d

ds
ζA(s)

⃓⃓⃓⃓
s=0

= −
∑︂
n

′
lnλn = − ln det ′A , (C.36)

where we have used detA =
∏︁

n λn. One then defines the determinant of A as

det ′A := exp

[︃
− d

ds
ζA(s)

]︃ ⃓⃓⃓⃓
s=0

. (C.37)
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For simple systems this expression for the determinant can be computed in closed

form. The result is then both regularized and renormalized at the same time, which is

possible due to the analytical continuation of ζA(s), in a similar fashion as in the more

conventional dimensional regularization technique [344, 345].

One representation of the zeta function, which shall turn out to be particularly

convenient for our computations, is given by the Mellin transform of the (trace of the)

heat kernel of A, K(t) = tr ′ [︁e−At]︁,
ζA(s) =

1

Γ(s)

∫︂ ∞

0

dt ts−1K(t) , (C.38)

which can be derived by using the definition of the gamma function,

Γ(s) :=

∫︂ ∞

0

dt ts−1e−t , (C.39)

with an appropriate re-scaling of the integration variable.

D Derivation of the effective potential

In this appendix we derive the effective potential of the GN model in 2 + 1 space-time

dimensions in the mean-field limit, assuming σ to be homogeneous in space and time

throughout. For the most part, we employ the zeta function technique introduced in

Appendix C. See also [346, 347].

D.1 The vacuum case

To begin with, let us consider the GN model at vanishing temperature, chemical poten-

tial and magnetic field in the chiral limit. We consider a reducible representation of

gamma matrices, where spinors are four-component objects. The corresponding effective

potential from (3.16) and (3.18) is given by

Veff =
σ2

2g2
− 1

V
ln detD , (D.40)

where we will later let the space-time volume V tend to infinity and the Dirac operator is

given by D = /∂ + σ. We compute ln detD = 1
2
ln detD2 via the zeta function, i.e., using

(C.37), which amounts to

ln detD = −1

2
ζ ′D2(s)

⃓⃓⃓⃓
s=0

, (D.41)
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where ζD2 is the zeta function corresponding to A = D2 in (C.38). Thus,

ζD2(s) =
4

Γ(s)

∫︂ ∞

0

dt ts−1
∑︂
p

e−t(p
2+σ2) , (D.42)

where we have used the property det(D2) = det(−∂2 + σ2) and we write the trace

explicitly as a sum over the eigenvalues of −∂2. The factor 4 takes into account their

spin degeneracy in the reducible representation.

Since we let the volume approach infinity, we may replace the sum over momenta

by an integral with measure d3p = (2π)3

V
. Evaluating this Gaussian momentum integral

leaves us with

ζD2(s) =
V

2π3/2

1

Γ(s)

∫︂ ∞

0

dt ts−5/2e−tσ
2

. (D.43)

Using (C.39), we find

ζD2(s) =
V

2π3/2

Γ
(︁
s− 3

2

)︁
Γ(s)

|σ|3−2s . (D.44)

We need to compute the derivative of ζD2 at s = 0, see (D.41), for which we use the

following useful properties:

1

Γ(0)
= 0 ,

∂

∂s

1

Γ(s)

⃓⃓⃓⃓
s=0

= 1 , Γ

(︃
−3

2

)︃
=

4
√
π

3
. (D.45)

We obtain

ζ ′D2(s)
⃓⃓
s=0

=
2V

3π
|σ|3 . (D.46)

The effective potential (D.40) thus reads

Veff(σ) =
σ2

2g2R
+

|σ|3

3π
, (D.47)

where we have introduced g2R to indicate that the coupling is understood to be the

renormalized one, which is implicit in the zeta function formalism. Indeed, the above

expression for Veff is already renormalized, i.e., finite.

The expectation value ⟨σ⟩ is given as the minimum position of Veff , i.e., as the solution

of the gap equation (3.19). We find

∂

∂σ
Veff(σ) =

σ

g2R
+
σ|σ|
π

. (D.48)

Hence, the trivial solution σ = 0 exists for all values of the coupling. However, if the

renormalized coupling becomes negative, one additionally finds the non-trivial solutions

σ = ± π

g2R
, (D.49)
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which both minimize Veff . The situation where g2R < 0 corresponds to the strong-coupling

regime, where the bare coupling g2 is larger than some critical value g2c . On the other

hand, the weak-coupling regime g2 < g2c implies g2R > 0. Quite intuitively, a condensate

can only be formed for sufficiently strong interactions.

Since the minimum position of Veff corresponds to ⟨σ⟩, which is in turn proportional to

the chiral condensate by virtue of (2.42), we conclude that in the strong-coupling regime

chiral symmetry is spontaneously broken at vanishing temperature, chemical potential

and magnetic field. In what follows we shall thus always assume strong couplings, such

that we can use the positive non-trivial solution of (D.48) as a scale. We define

σ0 := − π

g2R
> 0 . (D.50)

The following computations go along the same lines as the one presented here, albeit

the calculation of the determinant becomes more involved.

D.2 Non-zero temperature and chemical potential

Let us now consider the case of non-zero temperature and chemical potential, restricting

to vanishing magnetic field for the time being. The appropriate Dirac operator reads

D = /∂ + σ + µγ0 , (D.51)

and we have det(D2) = det(σ2 − (∂0 + µ)2 − (γi∂i)
2) from (B.33) with the trivial replace-

ments ∂0 → ∇0 = ∂0 + µ, ∇i → ∂i and m → σ. Moreover, we consider a finite spatial

volume L2 for now, such that the momenta pi are discretized according to (2.1). With

this, the zeta function is given by

ζD2(s) =
4

Γ(s)

∫︂ ∞

0

dt ts−1

∞∑︂
n=−∞

∑︂
p

e−t(σ
2+(ωn+iµ)2+p2) , (D.52)

the factor 4 again arising due to the use of four-component spinors. We make use of the

Poisson resummation formula,

∞∑︂
n=−∞

e−t(ωn+iµ)2 =
β

2
√
π

∞∑︂
k=−∞

(−1)k√
t
e−kβµ−

β2k2

4t , (D.53)

to obtain

ζD2(s) =
2β√
π

1

Γ(s)

∞∑︂
k=−∞

(−1)ke−kβµ
∫︂ ∞

0

dt ts−3/2
∑︂
p

e−t(σ
2+p2)−β2k2

4t . (D.54)
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In principle, one could use analogous Poisson resummation formulas of the form

∞∑︂
pi=−∞

e−tp
2
i =

L

2
√
π

∞∑︂
ki=−∞

(−1)ki√
t
e−

L2k2i
4t (D.55)

for the sums over the spatial momenta pi as well. However, we refrain from doing so for

the full zeta function.

Instead, we separate ζD2 into a vacuum contribution (k = 0) and thermal corrections

(k ̸= 0):

ζD2(s) = ζ0(s) + ζT (s) , (D.56)

where

ζ0(s) =
2β√
π

1

Γ(s)

∫︂ ∞

0

dt ts−3/2
∑︂
p

e−tε
2
p (D.57)

and

ζT (s) =
4β√
π

1

Γ(s)

∫︂ ∞

0

dt ts−3/2

∞∑︂
k=1

(−1)k cosh(kβµ)
∑︂
p

e−tε
2
p−

β2k2

4t . (D.58)

Here, we have introduced εp :=
√︁
σ2 + p2. Only for ζ0 do we apply (D.55), such that

ζ0(s) =
V

2π3/2

1

Γ(s)

∫︂ ∞

0

dt ts−5/2
∑︂
k∈Z2

e−tσ
2−L2k2

4t , (D.59)

To evaluate the integral over t, we split the sum over k into a contribution from k = 0

and the remaining terms, the latter of which we indicate by a prime in the sum. For the

former, we use (C.39) and for the latter we make use of an identity for Mellin transforms

(see, e.g., [348]), reading∫︂ ∞

0

dt ts−1e−at−
b
t = 2

(︃
b

a

)︃s/2
Ks

(︂
2
√
ab
)︂
, (D.60)

where Kν(z) = K−ν(z) denotes the modified Bessel functions of the second kind. We

end up with

ζ0(s) =
V

2π3/2

Γ
(︁
s− 3

2

)︁
Γ(s)

|σ|3−2s +
V

π3/2

1

Γ(s)

(︃
2|σ|
L

)︃3/2−s∑︂
k

′ 1

|k|3/2−s
K 3

2
−s (L|σ||k|) ,

(D.61)

where the first term comes from k = 0 and corresponds to the vacuum zeta function in

an infinite volume (D.44) and the second term gives finite-size corrections.

For the thermal term ζT (s) we also use (D.60) to evaluate the integral over t. We
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obtain

ζT (s) =
8β√
π

1

Γ(s)

∞∑︂
k=1

(−1)k cosh(kβµ)
∑︂
p

(︃
2εp
βk

)︃1/2−s

K 1
2
−s (βεpk) . (D.62)

With the explicit forms

K1/2(z) =

√︃
π

2z
e−z , K3/2(z) =

√︃
π

2z
e−z
(︃
1 +

1

z

)︃
(D.63)

and using (D.45), the derivative of the full zeta function at s = 0 reads

ζ ′D2(s)
⃓⃓
s=0

=
2V

3π
|σ|3 + 2V

L2π
|σ|
∑︂
k

′
e−L|σ||k|

1

k2

(︃
1 +

1

L|σ||k|

)︃
+ 8

∞∑︂
k=1

(−1)k

k
cosh(kβµ)

∑︂
p

e−βεpk .

(D.64)

Using the identity

∞∑︂
k=1

(−1)k

k
cosh(kβµ)e−kβε = −1

2

[︁
ln
(︁
1 + e−β(ε+µ)

)︁
+ ln

(︁
1 + e−β(ε−µ)

)︁]︁
(D.65)

the sum over k can now be evaluated, giving the final result for the effective potential on

a finite volume and with non-zero T and µ from (D.40) and (D.41),

V
(V )
eff =

σ2

2g2R
+

|σ|3

3π
+

1

L2π
|σ|
∑︂
k

′
e−L|σ||k|

1

k2

(︃
1 +

1

L|σ||k|

)︃
− 2

V

∑︂
p

[︃
ln

(︃
1 + e

−β
(︂√

σ2+p2+µ
)︂)︃

+ ln

(︃
1 + e

−β
(︂√

σ2+p2−µ
)︂)︃]︃

.

(D.66)

Let us now take the limit L → ∞. To this end, we go back to (D.54) and replace

the sum over spatial momenta by an integral by introducing d2p = (2π)2

L2 . We may then

perform the resulting Gaussian momentum integral to obtain

ζD2(s) =
V

2π3/2

1

Γ(s)

∞∑︂
k=−∞

(−1)ke−kβµ
∫︂ ∞

0

dt ts−5/2e−tσ
2−β2k2

4t . (D.67)

Once more splitting into contributions from k = and k ̸= 0, the first corresponding to the

vacuum term, and using (D.60), we find

ζD2(s) =
V

2π3/2

Γ
(︁
s− 3

2

)︁
Γ(s)

|σ|3−2s

+
2V

π3/2

1

Γ(s)

(︃
2|σ|
β

)︃3/2−s ∞∑︂
k=1

(−1)k cosh(kβµ)
1

k3/2−s
K 3

2
−s (β|σ|k) .

(D.68)
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Now, we again use (D.45) and (D.63), as well as the identities

∞∑︂
k=1

(−1)k

k2
cosh(kβµ)e−kβ|σ| =

1

2

[︁
Li2
(︁
−e−β(|σ|+µ)

)︁
+ Li2

(︁
−e−β(|σ|−µ)

)︁]︁
, (D.69)

∞∑︂
k=1

(−1)k

k3
cosh(kβµ)e−kβ|σ| =

1

2

[︁
Li3
(︁
−e−β(|σ|+µ)

)︁
+ Li3

(︁
−e−β(|σ|−µ)

)︁]︁
, (D.70)

where the Liν(z) are polylogarithms,

Liν(z) =
∞∑︂
n=1

zn

nν
. (D.71)

For the effective potential (D.40) at finite temperature and chemical potential and in an

infinite spatial volume we thus find

lim
L→∞

V
(B=0)
eff =

σ2

2g2R
+

|σ|3

3π
+

1

πβ3

[︁
β|σ|Li2

(︁
−e−β(|σ|+µ)

)︁
+ Li3

(︁
−e−β(|σ|+µ)

)︁]︁
+

1

πβ3

[︁
β|σ|Li2

(︁
−e−β(|σ|−µ)

)︁
+ Li3

(︁
−e−β(|σ|−µ)

)︁]︁
.

(D.72)

D.3 Non-zero temperature, chemical potential and magnetic field

Next, we compute the effective potential for the GN model in 2+ 1 dimensions in a finite

magnetic field, for non-zero temperature and chemical potential. The Dirac operator

reads

D = /∂ + ie /A+ µγ0 . (D.73)

For the zeta function of D2 we use det(D2) = det(σ2 − (∂0 + µ)2 − (γi∇)2) from (B.33) .

It reads

ζD2 =
2

Γ(s)

∫︂ ∞

0

dt ts−1

∞∑︂
n=−∞

∞∑︂
l=0

e−t(σ
2+(ωn+iµ)2+2eBl)dl , (D.74)

where we assume eB > 0. Inserting the definition of dl and performing the Poisson

resummation (D.53), we obtain

ζD2 =
eBV

2π3/2

1

Γ(s)

∫︂ ∞

0

dt ts−3/2

∞∑︂
k=−∞

(−1)ke−kβµ
∞∑︂
l=0

e−t(σ
2+2eBl)−β2k2

4t d̃l , (D.75)

where d̃l = (2− δ0l) We once again proceed by splitting the sum over k into a vacuum

term k = 0 and the remaining summands. After a few lines of algebra, using (C.39) and
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(D.60), we find

ζD2 =
eBV

2π3/2

1

Γ(s)

∞∑︂
l=0

d̃l

[︃
Γ

(︃
s− 1

2

)︃
ε1−2s
l (D.76)

+2
∑︂
k=1

(−1)k cosh (kβµ)

(︃
βk

2εl

)︃s−1/2

Ks−1/2 (βkεl)

]︃
, (D.77)

where εl =
√
σ2 + 2eBl. Using (D.45) as well as Γ(−1/2) = −2

√
π, we obtain for the

derivative of ζD2 at zero

ζ ′D2(s)
⃓⃓
s=0

=
eBV

2π3/2

∞∑︂
l=0

d̃l

[︄
−2

√
πεl + 2

∑︂
k=1

(−1)k cosh (kβµ)

√︃
2εl
βk

K1/2 (βkεl)

]︄
. (D.78)

Introducing the Hurwitz zeta function

ζH(s, a) =
∞∑︂
n=0

1

(n+ a)s
, (D.79)

we obtain, after some algebra,

ζ ′D2(s)
⃓⃓
s=0

=
eBV

2π

∞∑︂
l=0

d̃l

[︃
−2

√
2eBζH

(︃
−1

2
,
σ2

2eB

)︃
+ 2|σ| (D.80)

+
1

β

∞∑︂
l=0

dl

∞∑︂
k=1

(−1)k
(︁
ekβµ + e−kβµ

)︁ 1
k
e−βkεl

]︃
. (D.81)

The sum over k may once more computed using (D.69). After the dust has settled, we

then obtain for the full effective potential the result

V
(B)
eff =

σ2

2g2R
+

|σ|eB
2π

− (2eB)3/2

2π
ζH

(︃
−1

2
,
σ2

2eB

)︃
− eB

2πβ

∞∑︂
l=0

d̃l
[︁
ln
(︁
1 + e−β(εl+µ)

)︁
+ ln

(︁
1 + e−β(εl−µ)

)︁]︁
.

(D.82)

E On the complex-action problem

We briefly discuss the (non-)realness of the lattice action (6.14) in our simulations of

the (2 + 1) – dimensional GN model in a magnetic field. Since QCD at finite chemical

potential is plagued by the complex-action problem one might wonder whether this is

the case for the GN model as well or if similar arguments as in the (1 + 1) – dimensional

χGN model, mentioned in Section 5.3, hold.

First of all, it turns out that there is no complex-action problem at finite B as long as µ

vanishes. This fact is intimately connected with the use of four-component spinors in our
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study. To see this, we follow [105] by writing the gamma matrices in the block-diagonal

form introduced in (2.25). The overlap Dirac (6.11) then also decomposes into a block

form,

D =

(︄
D1 0

0 D2

)︄
, (E.83)

where D1 and D2 are the overlap operators corresponding to each of the two inequivalent

irreducible representations in three dimensions. More concretely, we find the two

irreducible analogues of (6.11),

D1(µ,B) = Dov,1(B) + (σ + µτ0)
(︂
1− a

2
Dov,1(B)

)︂
,

D2(µ,B) = Dov,2(B) + (σ − µτ0)
(︂
1− a

2
Dov,2(B)

)︂
,

(E.84)

where we have made explicit the µ- and B-dependence of the operators. The irreducible

components of the massless overlap operator (4.17) read (we omit the superscript (0)

for better readability)

Dov,i(B) =
1

a

[︃
1 + AW,i(B)

(︂
A†

W,i(B)AW,i(B)
)︂−1/2

]︃
, (E.85)

where i = 1, 2 and, in analogy to (4.18),

AW,i(B) = a /DW,i(B)− 1amW . (E.86)

Finally, the irreducible components of the Wilson operator (4.7) are given by

/DW,1(B) =
1

2

[︁
τµ
(︁
∇∗
µ +∇µ

)︁
− a∇∗

µ∇µ

]︁
,

/DW,2(B) =
1

2

[︁
−τµ

(︁
∇∗
µ +∇µ

)︁
− a∇∗

µ∇µ

]︁
,

(E.87)

with the one-sided covariant difference operators ∇µ and ∇∗
µ defined in (4.5). We

emphasize that the expressions (E.84) are precisely what one would find when working

in one of the irreducible representations of the Dirac algebra in 2 + 1 dimensions.

Now, due to the fact that ∇∗
µ +∇µ is anti-hermitian while ∇∗

µ∇µ and τµ are hermitian

for all µ, we find that /D†
W,1(B) = /DW,2(B). One can convince oneself that this, in turn,

implies that D†
1(0, B) = D2(0, B), such that

detD(0, B) = detD1(0, B) detD2(0, B) = |detD1(0, B)|2 ≥ 0 , (E.88)

i.e., the fermion determinant is real and non-negative for vanishing chemical potential,

such that there is no complex-action problem.

Let us now consider the case B = 0 and µ ̸= 0, where the above procedure no

longer works due to the chemical potential appearing with different signs in D1 and D2,
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respectively. Instead, we use the fact that for zero magnetic field the covariant difference

operators ∇∗
µ and ∇µ reduce to ordinary one-sided difference operators, which are real.

Then, one finds /DW,1(0)
∗ = τ2 /DW,2(0)τ2, where the right-hand side amounts to a charge

conjugation of /DW,2(0) [108]. Similarly, one shows that D1(µ, 0)
∗ = τ2D2(µ, 0)τ2, such

that, as above,

detD(µ, 0) = |detD1(µ, 0)|2 ≥ 0 , (E.89)

and there is no complex-action problem.

For the combined case where both B and µ are non-vanishing, however, neither the

realness of the difference operators nor the properties of the reducible representation can

be used. Indeed, it turns out that the fermion determinant has a non-vanishing imaginary

part in general. However, as was discussed in [106], for certain observables O one may

still obtain reliable estimates despite this fact. To see this, consider the expectation value

of O with respect to a complex Euclidean action S = SR + iSI with real and imaginary

parts SR and SI , respectively. We have

⟨O⟩ =
∫︁
Dσe−SR−iSIO[σ]∫︁
Dσe−SR−iSI

(E.90)

and we may – in principle – interpret the complex phase of the action, e−iSI , as part of

the observable by writing

⟨O⟩ = ⟨e−iSIO⟩R
⟨e−iSI ⟩R

, (E.91)

where ⟨·⟩R denotes the expectation value with respect to the real part of S only:

⟨O⟩R =

∫︁
Dσe−SRO[σ]∫︁
Dσe−SR

. (E.92)

This is the standard re-weighting approach. On paper,
⟨︁
e−iSIO

⟩︁
R

and
⟨︁
e−iSI

⟩︁
R

may both

be evaluated in a Monte Carlo simulation as the Boltzmann factor now has a proper

probabilistic interpretation. However, it is well known that the re-weighting technique in

general does not solve the sign problem [39].

We proceed by introducing the covariance of two observables O and O′ with respect

to e−SR as

covR(O,O′) = ⟨OO′⟩R − ⟨O⟩R⟨O′⟩R . (E.93)

This allows for an exact re-writing of (E.91) as

⟨O⟩ = ⟨O⟩R +
covR(e

−iSI ,O)

⟨e−iSI ⟩R
. (E.94)

If the complex-action problem was severe, the average phase
⟨︁
e−iSI

⟩︁
R

would be close to

zero, complicating the evaluation of the right-hand side of (E.94). In our simulations of
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the magnetized GN model in 2 + 1 dimensions, however, this seems not to be the case

and the average phase instead takes values close to unity [106]. Moreover, as we have

demonstrated in [106], the covariance between the complex phase and our primary

observable of interest, O[σ] = |σ̄|, approximately vanishes.

We know of no analytical argument why |σ̄| and e−iSI should be uncorrelated and,

thus, why the fact that SI is non-zero should not play a role in the computation of ⟨|σ̄|⟩.
Nonetheless, the numerical results presented in [106] suggest that the imaginary part of

the action may simply be ignored. As the ratio between cov
(︁
e−iSI , σ̄

)︁
R

and
⟨︁
e−iSI

⟩︁
R

is

close to zero in our simulations, such that ⟨|σ̄|⟩ ≈ ⟨|σ̄|⟩R, we thus merely compute the

expectation value with respect to e−SR . We emphasize, however, that these observations

likely only hold for the small lattice volumes we consider here. There is no guarantee

that the complex-action problem is unproblematic for larger volumes as well. Moreover,

one should keep in mind that the above statement was only made for the case O = |σ̄|.
For general observables it might no longer be true and one should expect a more severe

complex-action problem.
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Acronyms

4FT four-Fermi theory

BCS Bardeen-Cooper-Schrieffer

BKT Berezinskii-Kosterlitz-Thouless

CERN Conseil européen pour la recherche nucléaire (European Or-

ganization for Nuclear Research)

χGN chiral Gross-Neveu

CHMW Coleman-Hohenberg-Mermin-Wagner

DSE Dyson-Schwinger equation

FFLO Fulde-Ferrell-Larkin-Ovchinnikov

GN Gross-Neveu

GS Gavai and Sharma

LHC Large Hadron Collider

LLL lowest Landau level

MIT Massachusetts Institute of Technology

NJL Nambu–Jona-Lasinio

OPT optimized perturbation theory

PNJL Polyakov-loop-extended NJL

PQM Polyakov-loop-extended quark-meson

QCD quantum chromodynamics

rHMC rational hybrid Monte-Carlo

SLAC Stanford linear accelerator complex
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