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Abstract

Deep learning is increasingly being proposed for detecting neurological and psychiat-

ric diseases from electroencephalogram (EEG) data but the method is prone to inad-

vertently incorporate biases from training data and exploit illegitimate patterns. The

recent demonstration that deep learning can detect the sex from EEG implies poten-

tial sex-related biases in deep learning-based disease detectors for the many diseases

with unequal prevalence between males and females. In this work, we present the

male- and female-typical patterns used by a convolutional neural network that

detects the sex from clinical EEG (81% accuracy in a separate test set with

142 patients). We considered neural sources, anatomical differences, and non-neural

artifacts as sources of differences in the EEG curves. Using EEGs from 1140 patients,

we found electrocardiac artifacts to be leaking into the supposedly brain activity-

based classifiers. Nevertheless, the sex remained detectable after rejecting heart-

related and other artifacts. In the cleaned data, EEG topographies were critical to

detect the sex, but waveforms and frequencies were not. None of the traditional fre-

quency bands was particularly important for sex detection. We were able to deter-

mine the sex even from EEGs with shuffled time points and therewith completely

destroyed waveforms. Researchers should consider neural and non-neural sources as

potential origins of sex differences in their data, they should maintain best practices

of artifact rejection, even when datasets are large, and they should test their classi-

fiers for sex biases.
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1 | INTRODUCTION

The advent of deep learning has led to numerous studies about con-

volutional neural networks (CNNs) for detecting neurological and psy-

chiatric diseases from electroencephalogram (EEG) data (Craik

et al., 2019; Jonas et al., 2019; Roy et al., 2019; Schirrmeister

et al., 2017). CNNs are intriguing for their potential to uncover and

utilize previously unknown patterns from the EEG, as the distinctive

patterns can be learned from the data and do not need to be hand-

crafted with prior assumptions. These patterns, however, are
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estimated only from their correlation with the outcome, and are not

designed with biomedical rigor. CNNs and many other deep learning

techniques can therefore be prone to exploiting illegitimate criteria

(Kapoor & Narayanan, 2022) that are not directly related to the

pathology itself, for example, the sex. Such sex-biased patterns can be

of neural and non-neural origin. Either way, the distinctive features in

many machine learning classifiers remain hidden (Heinrichs &

Eickhoff, 2020), as explainability is often deemed unnecessary or the

required explainability methods are unavailable for the used tech-

nique. Machine learning-based studies typically involve larger datasets

than conventional EEG studies. Often, the individual recordings from

such large datasets are treated less thoroughly, as demonstrated by

the number of studies reviewed by Craik et al. (2019) that leave arti-

facts in during analysis. These studies include artifacts, potentially

sex-biased, that are less present in conventional studies.

Many diseases that have been addressed with deep learning-

based EEG analyses (Roy et al., 2019) have a pronounced unequal

prevalence between males and females. For example, major depres-

sive disorder and Alzheimer disease are more prevalent in females,

whereas substance use disorders and Parkinson disease are more

prevalent in males (Salminen et al., 2022). Long reported sex differ-

ences in the EEG (Brenner et al., 1995; Cave & Barry, 2021; Clarke

et al., 2001; Davidson et al., 1976; Friedl & Vogel, 1979a, 1979b;

Jaušovec & Jaušovec, 2010; Maciejewska & Froelich, 2021;

Smith, 1952; Veldhuizen et al., 1993; Vogel & Götze, 1962; Wada

et al., 1994) and automatic sex-detection with machine learning

(Kaushik et al., 2018; Maciejewska & Froelich, 2021; van Putten

et al., 2018) imply that sex-related patterns can be a confounder to

machine learning-based assessments from EEG. The machine learning

models might involve the patient's sex in predictions that should only

be based on pathology. Sex-related biases in EEG datasets can occur

from unequal prevalence of diseases and actual electrophysiological

sex differences but also from unequal diagnosing or unequal willing-

ness to seek treatment.

In this work, we address three main research questions:

1. Does it require special network architectures to detect the sex from

EEG or is sex likely detectable by the commonly used CNN

architectures?

2. Which patterns in the EEG signal are relevant to the CNN for detect-

ing the sex and what do these patterns look like?

3. Can we isolate neural and non-neural sources of the sex differences in

the EEG?

We demonstrate the influence of non-neural artifacts, particularly

from the heart, on deep learning-based sex detection and propose

mitigation measures to reduce the confounding impact of such arti-

facts. On the artifact-cleaned and, thus, supposedly more brain-

originated data, we present observations on topographies, wave-

forms, and frequencies, allowing for new hypotheses about the

sources of sex differences in the EEG. Finally, we discuss the implica-

tions of the sex's detectability to machine learning-based disease

assessments.

2 | MATERIALS AND METHODS

2.1 | Dataset preparation and signal filtering

We conducted our study on the clinical TUH Abnormal EEG Corpus

(2.0.0) (Lopez de Diego, 2017; Obeid & Picone, 2016), selecting all

1505 recordings that were annotated as normal and came from adult

patients. Sixty-seven recordings were removed for having a different

sampling rate compared with the rest, in suspicion of bias-inducing

unknown differences. Only one recording per patient was allowed,

leading to the removal of another 107 recordings. We selected the

one recording per patient where the Autoreject algorithm (Jas

et al., 2017; implemented in MNE Python; Gramfort et al., 2013)

returned the most usable segments, which depended on the recording

length and amount of noise. The recordings in the dataset were split

into separate directories for training and evaluation by the dataset's

authors and we kept that split in our work to allow comparisons to

other studies (training subset: 1140 patients, 636 (56%) female,

504 (44%) male; evaluation subset: 142 other patients, 61 male (43%),

81 female (57%), age range 18–88 years, age mean ± SD = 45

± 17 years). We aimed to utilize as much as possible of the available

information and accounted for the imbalance in the corpus by using

class weights for the calculation of the cost function during network

training, by reporting balanced accuracies (see definition below) for

reporting the results, and by deriving p0 in the statistical tests from

the population mean (57% females). Per recording (250Hz sampling

rate, 21 EEG channels in 10–20 configuration), 50 non-overlapping

segments (4 s length) were selected using the Autoreject method.

Autoreject scanned through the data and returned segments with low

noise and artifact load, regardless of the underlying status of the

recording. The first 2min of each recording were skipped, as readjust-

ments of the electrodes often occur at the beginning, leading to an

increased number of bad channels (Figure S1 shows the average arti-

fact load over time). The optimal segment length was determined in a

parameter study between 2 and 8 s that showed no benefit from using

more than 4 s (Figure S2). Forty-nine recordings that did not yield a

sufficient number of segments due to noise and artifacts were

excluded. We chose a threshold of 50 segments because larger num-

bers would have led to the exclusion of substantially more cases and

smaller numbers would have left more data unused. The corpus was

built from archival clinical EEG data reflecting a broad spectrum of

clinical scenarios. From these heterogeneous data, the selection

of the segments was purely based on signal quality (determined by

Autoreject) and did not depend on the state of the patient or the

experiment, that is, eyes could have been open or closed, patients

could have received photic stimulation, undergo behavioral tasks, et

cetera. The signals were bandpass filtered from 1 to 40Hz to show

that the observed effects occur within this commonly studied fre-

quency range (Hari & Puce, 2017).

After interpolation of bad channels, artifacts were filtered with

independent component analysis (ICA). The artifactual ECG and EOG

components were semi-automatically selected and removed using the

Corrmap method (Campos Viola et al., 2009). That algorithm rejected
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on average two artifactual components out of a maximum of 20 ICA

components. Finally, the segments were referenced to common aver-

age, de-meaned, and normalized to unit standard deviation.

2.2 | A simple CNN for sex detection

We built a CNN that detects a patient's sex from few-second seg-

ments of EEG. We designed an extremely small and shallow network

architecture under the conjecture that findings from this architecture

generalize to most deep learning architectures for EEG analysis; what-

ever this CNN can detect should easily be detected by deeper net-

works because of their higher fitting capacity (Goodfellow

et al., 2016, pp. 423 ff.). Table 1 lists the full network architecture and

hyperparameters, and Figure 1 illustrates the data flow in the net-

work. The network was implemented in TensorFlow 2.7.0 (Abadi

et al., 2016; Chollet, 2015) and was termed Minimalistic Spatio-Tem-

poral Network (Mini-SpaTeN).

We designed the CNN with the practical minimum of only two

trainable layers: one convolution layer and one dense layer. The

network works as follows: The convolution layer receives the EEG

data matrix as input and calculates the cross-correlation between the

EEG data matrix and filter matrices, denoted as kernels. The values of

the kernels are trainable parameters, whereas the number and length

of the kernels are non-trainable hyperparameters. We tested the

influence of these hyperparameters and found the accuracy of the sex

detection to be similar for a wide range of kernel numbers and lengths

(Figure S3). We then chose values that are suitable for visual inspec-

tion and printing of the learned parameters (16 kernels, 19 samples

length, equivalent to 76 ms). The kernels are short, EEG-like patterns.

These spatio-temporal kernels can reflect topographies, waveforms,

and frequencies, as well as cross-spatial, cross-temporal, and cross-

spectral relations. Arbitrary waveforms can be learned, addressing the

importance of non-sinusoidal waveforms (Cole & Voytek, 2017;

Jasper, 1948). The cross-correlation of the kernels with the EEG seg-

ment leads to one time course per kernel, representing how each of

the kernels matches with the EEG data over time. Next, an unbiased

ReLU (rectifying linear unit; Glorot et al., 2011) activation function is

applied to these time courses, which sets all negative correlation

values to zero and leaves positive values as they are. For each of the

TABLE 1 Layers of our CNN architecture for sex detection. The two trainable layers are marked by cursive font.

Layer type, specifications Output shape Comment

0. Input EEG segment (4000 ms) 21 � 1000 1000 samples≙4000 ms

1. 2D convolution (16 kernels, 21 � 19, ReLU activation) 16 � 982 19 samples≙76ms

2. Maximum pooling (1 � 75, 1 � 25 stride) 16 � 40 75 samples≙300 ms

3. Global average pooling 16 Average over time

4. Dense (sigmoid activation) 1 Predicted sex (0, 1)

→

EEG data

4000 ms (1000 samples)

21
 E

EG
 c

ha
nn

el
s

16 weights
wi

Cross-correlation
with learned kernels

76 ms

16 kernels 
Ki ReLU SigmoidCorrelation 

time courses

3928 ms (982 samples)

Max. pooling 
(300 ms window, 

100 ms stride)

Logistic
regression

X

Relevance attribution
(overlay and curve)

Global 
average

→

→

→

R 

16 × 40 
maxima 

Mij

Relevance time course |R|

Y

Detected 
sex

→

→ →

...

Post hoc relevance attribution

Input Convolutional Neural Network (CNN) Output Explanation

F IGURE 1 Sex detection with the Mini-SpaTeN convolutional neural network and relevance attribution method. First, the segment Xð Þ is
cross-correlated ?ð Þ with 16 learned spatio-temporal kernels (Ki) similar in dimension as short windows of EEG (actual kernels depicted in
Figure 2). Since the kernels have the same number of channels as the data, they only slide along the time axis and not across channels. The
16 correlation curves are rectified (ReLU activation) and divided into 40 overlapping windows. Next, the window-wise maxima (Mij) are averaged.
In the final layer, the sex Yð Þ is predicted from these 16 averages with logistic regression. Post hoc, the network parameters are used to attribute
the relevance R that each EEG channel and time point from a recording had to the prediction (path indicated in purple). The signs of the final
classifier layer weights (wi) imply the sex corresponding to each kernel from the first layer (�/female/red and +/male/blue).
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time courses, the network then calculates a single value that is high,

when the data contain segments that are particularly similar to a ker-

nel. Instead of using only a single maximally correlating value per

kernel, we averaged the maximum correlation values over 40 overlap-

ping intervals (via a maximum pooling layer and a global averaging

layer) to increase the robustness. Finally, from the 16 averages, the

dense layer with a sigmoid activation function classifies the sex, iden-

tical to logistic regression. We chose a sigmoid activation in the out-

put layer to map the output to a range between 0 and

1, corresponding to the encoded sex (0 = female, 1 = male). Since the

ReLU function in the first layer crops the negative values, the sign of

the weights in the logistic regression layer directly tells which kernel is

male- and which is female-typical.

We trained the CNN to minimize the binary cross-entropy loss of

the accuracy, balanced with class weights, via adaptive moment esti-

mation backpropagation, Adam (Kingma & Ba, 2017). Convergence of

the loss metric was typically reached after 5 epochs (an epoch

denotes one iteration over the full dataset). We kept iterating for a

total of 20 epochs and selected the model with the best performance

on a 20% held-out portion, neither used for training the weights nor

for later evaluation. The weights of the kernels and the logistic regres-

sion layer are randomly initialized and during the training process,

they iteratively converge toward patterns/values that are optimal for

the classification task (in this case sex detection).

2.3 | Predictions with the trained neural network
and performance evaluation

Per-subject sex predictions are made from a majority vote after apply-

ing the network to 50 separate segments. We report balanced accura-

cies, defined as the arithmetic mean of true positive rate and true

negative rate (Brodersen et al., 2010), to account for the imbalanced

number of males and females. For better comparison with other stud-

ies, we also report conventional accuracies as the percentage of cor-

rect predictions. Values are reported with their means and standard

deviations from 30 networks that were independently randomly ini-

tialized and trained on the same data. To probe the accuracy limit of

this network architecture, we increased the number of kernels to

512 and made an ensemble prediction by a majority vote from 30 net-

works, again, independently randomly initialized and trained on the

same data.

We used a one-sided binomial test with Bonferroni correction for

n¼15 multiple comparisons resulting in an adjusted significance level

of α¼0:003. p0 was derived from the population mean (142 subjects,

57% female).

2.4 | Feature visualization and relevance
attribution

Our shallow network architecture brought the advantage that the dis-

tinctive patterns could be directly read from the learned weights. The

learned weights consist of the elements of the convolutional kernels

and of the dense output layer. The network, up to the next-to-last

layer, yields how well each kernel, Kk , matches with the data. Then,

the sign of the weights, Wk , in the dense output layer tells whether

matching with an individual kernel turns the prediction toward male

or female.

We determined the relevance R of the EEG signal at each channel

and time point for the network's decision between male and female.

The shallowness and simplicity of the network allowed for a short der-

ivation of R without involving an extensive explainability framework:

The CNN scans through each 4-s EEG segment, X, in 40 overlapping

windows, Xi, of 300ms length and 100ms overlap. Within these win-

dows, only the parts with the maximum correlation between the data

and the kernels contribute to the final prediction. The scanning first

leads to the cross-correlation time courses Ck between the data matri-

ces and a kernels

Ci,k ¼Xi ?Kk:

To calculate the relevance matrices Ri,k at the maximum correla-

tion time points in each window from each kernel, we first defined

R0
i,k ¼ X argmax Ci,kð Þð Þ�Kkð Þ �max Ci,kð Þ,

where X arg max Ci,kð Þð Þ is a submatrix of the same size as the kernels,

and � denotes the element-wise Hadamard product. Next,

Ri,k ¼ sign R0
i,k

� � �
ffiffiffiffiffiffiffiffiffiffiffi
jR0

i,k j
q

�wk:

We then summed up the relevances from the different segments

at their corresponding time points, which yields kernel-specific rele-

vance matrices with the same dimensions as the data matrices. Finally,

the sum over all kernel-specific relevance matrices was used to deter-

mine the total relevance that we then overlayed in a red and blue tint

on top of the data (Figure 1).

The sum of a relevance matrix over all channels yields a relevance

time course. We used these relevance time courses to assess the

impact of electrocardiac artifacts on the CNN's predictions, by com-

paring averaged time courses of the absolute relevance jR j with aver-

aged time courses of the ECG around the QRS complexes.

2.5 | Explorative data modification

To assess the influence of artifacts, we compared the accuracies and

relevances with and without ICA filtering. On the ICA-filtered data,

we tested different preprocessing on the entire dataset (training and

evaluation data) to probe the origin of the sex differences in the EEG:

i. We tested if we could isolate the origin of the sex difference to

one of the traditional frequency bands by bandpass filtering.

ii. To assess the importance of the time domain, we randomly shuf-

fled the time points of the EEG signals within each segment,

destroying waveforms and cross-temporal connectivity. We
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repeated this on band-filtered data in the traditional EEG bands.

These experiments required altering the network architecture to

only learn topographic kernels (i.e. EEG patterns from a single

time point).

iii. To assess the importance of the spatial domain, we destroyed the

topographies: we randomly moved each channel in each segment

up to 200 ms forward or backward (in the data before the whole

training and analysis procedure). This kept the waveforms and

frequencies within each channel intact.

iv. We computed the accuracy of detecting the sex directly from a

single ECG channel instead of from the EEG.

2.6 | Sex or gender

We use the patient sex from the metainformation of the EEG data,

encoded as 0 or 1, as the target of our neural network. Throughout

this work, we discuss sex rather than gender because the dataset was

built from clinical data during a time (2002–2013) when patients

presumably presented with the sex information related to their legal

documents, at that time containing the sex assigned at birth rather

than their self-identified gender.

3 | RESULTS

3.1 | Detectability of the patients' sex from raw,
filtered, and experimentally modified data

Table 2 lists the accuracies from the different experiments. On EEG

data that had not received any artifact treatment, other than automat-

ically selecting segments with low artifact load, our CNN detected the

patients' sex with 78% ± 2% accuracy (p< :001, balanced accuracy,

majority vote over 50 segments per patient, accuracy from single seg-

ments was 73%±1%). After artifact removal, the balanced accuracy

dropped to 74%±2% p< :001ð Þ. Repeating the entire pipeline (train-

ing and prediction) with band-filtered data (δ,θ,α,β,γ; frequency

ranges listed in Table 2) resulted in the same or slightly smaller

TABLE 2 Sex detection accuracies of per-subject predictions from majority votes over 50 segments (mean ± SD over 30 randomly initialized
networks).

Experimenta Kernelsb

Accuracy pc pd

Balanced Imbalanced α=n¼0:003 α=n¼0:01

EEG

Raw, 1–40 Hz 21 � 19 78%�2% 78%�2% < :001

ICA, 1–40 Hz 21 � 19 74%�2% 75%�2% < :001

1–4 Hz δð Þ 21 � 19 73%�2% 74%�2% < :001

4–8 Hz θð Þ 21 � 19 73%�3% 74%�3% < :001

8–14 Hz αð Þ 21 � 19 74%�2% 75%�2% < :001

14–30 Hz βð Þ 21 � 19 71%�3% 72%�2% < :001

30–40 Hz γð Þ 21 � 19 70%�3% 70%�2% < :001

ICA, 1–40 Hz, shuffled time points 21 � 1 68%�3% 69%�2% :002 ↰

1–4 Hz δð Þ 21 � 1 72%�2% 73%�2% < :001 < :001

4–8 Hz θð Þ 21 � 1 71%�2% 71%�2% < :001 0:007

8–14 Hz αð Þ 21 � 1 73%�2% 73%�2% < :001 < :001

14–30 Hz βð Þ 21 � 1 72%�2% 73%�2% < :001 < :001

30–40 Hz γð Þ 21 � 1 70%�2% 70%�2% < :001 0:11

ICA, 1–40 Hz random channel phasee 21 � 19 61%�3% 61%�3% :17

Raw, 1–40 Hz, ensemble 21 � 19 81% 82% < :001

ECG

Raw, 1–40 Hz 1 � 19 58%�2% 60%�1% :22

Note: To probe the accuracy limit of this network architecture, we increased the number of kernels from 16 to 512 and made an ensemble prediction by a

majority vote from 30 independently randomly initialized networks, trained on the same data (bold).
aFilters and modifications were applied to training and evaluation data.
bSize of the convolutional kernels in the CNN; channels � samples; 19 samples b¼76 ms.
cBinomial test on the (imbalanced) accuracy; 142 subjects, 57% female; Bonferroni adjusted alpha level of 0.003 per test (0:05=15) for n¼15 multiple

comparisons.
dOne-sided paired t-test on the (imbalanced) accuracy to compare the accuracies from the physiological frequency bands against the 1–40 Hz data; 142

subjects, 57% female.
eWithout fixed temporal relations between channels it is harder to populate multiple channels of one kernel. To neutralize this drawback, we increased the

number of kernels for this experiment from 16 to 512.
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accuracies. None of the frequency bands stood out and the largest

difference between any two of the frequency bands was 4% (between

α and γ). The p-values from pairwise significance tests between the

frequency bands are provided in Table S1. When shuffling the time

domain and shrinking the spatio-temporal kernels to a single

time point, which only represents a topography rather than a topo-

graphic temporal evolution, the detection was still possible (68%±3%,

p¼ :002). The detection from topographies was also possible from

band-filtered data in each of the frequency bands and even lead to

higher accuracies (up to 5% increased). Again, none of the frequency

bands stood out. The largest difference between any two of the fre-

quency bands was only 3% (between α and γ). The p-values from pair-

wise significance tests between the frequency bands are provided in

Table S2. With spatio-temporal kernels and shuffled topographies, the

detection was no longer possible (61%, p¼ :17). We estimated a bal-

anced accuracy of 81% for this architecture and dataset with the

ensemble prediction from 30 networks with an increased number of

kernels (512).

We searched for commonalities between the falsely classified

patients, but errors were found for all kinds of patients: males and

females, young and old, with and without medication, and with

diverse medical histories. The confusion matrix for the experiment

with ICA-filtered data and spatio-temporal kernels (Table 3) showed

no significant bias (p¼ :20).

A single-channel adaptation of our shallow CNN could not predict

the sex from an ECG channel (58%, p¼ :22). For single EEG channels,

the frontal channels reached the highest accuracies When allowing

more and more channels and always adding the optimal next channel,

the selected sensors spread across the head. Six channels (F4, Fp2,

C4, T6, Pz, O1) already led to an accuracy >70%. Figure 3 shows the

accuracies from single EEG channels and the estimated order of opti-

mal addition when always searching for the channel that leads to the

largest increase in accuracy.

3.2 | Relevance attribution with raw data
compared with ICA-filtered data

Figure 4 shows one typical segment from the evaluation data with a

relevance map overlay. In the case of raw data, the visual assay

showed a strong accumulation of relevance during the electrocardiac

QRS complexes, but not during the intervals where T waves are seen

in the ECG or when pulse waves normally occur. ICA-based artifact

removal strongly mitigated the accumulation of relevance. As illus-

trated in Figure 5, accumulation and mitigation were generally con-

firmed by averaging the relevance time courses around the QRS

epochs from all evaluation subjects.

4 | DISCUSSION

We predicted the sex from EEG with a shallow, explainable CNN,

reproducing the recent results from a vastly deeper CNN by van Put-

ten et al. (2018). With our relevance attribution technique and by

exploratively altering the signals, we narrowed down potential neural

and non-neural sources of sex differences.

To explain the CNN and its predictions, we visualized the learned

parameters (convolutional kernels and weights of the final classification

layer) and estimated the relevance of the data points for a prediction

from each segment. We refrain from neural interpretations of the spec-

tra and the waveforms in the kernels (Figure 2) as they do not necessar-

ily show neural activity (Haufe et al., 2014). The role of the different

parts of the kernels during the convolution operation is to yield the maxi-

mum correlations at the relevant positions. This can be achieved by rec-

ognition: positively correlating with wanted patterns in the data; but also

by exclusion: anti-correlating with unwanted waveforms. Parts of a kernel

can be used to steer the network toward intervals with sex differences,

yet these parts themselves might not exhibit sex differences. Non-neural

differences also vary between EEG channels and should therefore not

be mistaken for differences in the underlying brain regions.

The shallow network architecture facilitated tracing back the rele-

vance of each data point in the EEG to a given prediction. We

observed an uneven distribution of relevance over time when

we worked with raw EEG data: the relevance was attributed mostly to

artifactual signals during the electrocardiac QRS complexes, and not

to neural waveforms. There are two possible explanations why the

network focuses on the EEG-visible heart activity: There could be sex

differences (i) directly in the source of the electrocardiac activity, or

(ii) in the volume conducting body that lead to differences in the elec-

trical potentials at the sensors. Electrocardiac sex differences are well

known (Macfarlane, 2018; Simonson et al., 1960) and have been

detected with deep learning from 12-channel ECG (Attia et al., 2019).

However, our network architecture—when adapted to the single ECG

channel instead of the 21-channel EEG input—was unable to detect

the sex from it. Detecting the sex from the heart signals within the

EEG curves, but not from the single-channel ECG, could be explained

by differences emerging when the signals propagate from the heart to

the scalp. ICA-based artifact rejection strongly mitigated the electro-

cardiac artifacts in the EEG and led to evenly distributed relevance

attribution over the time series, but also to a loss of 4% accuracy.

The body of literature on EEG sex differences agrees on

frequency-specific differences in normal (Cave & Barry, 2021; Friedl &

Vogel, 1979b; Smith, 1952) and abnormal EEGs (Vogel &

Götze, 1962), particularly in the β-band. In this study, however, none

of the resulting frequency-specific accuracies stood out substantially.

The differences between the frequency bands were either

TABLE 3 Confusion matrix for sex classification from EEG with
ICA-based artifact removal, filtered 1–40 Hz.

N¼142 Estimated female Estimated male Total

Labeled female 67 14 81

Labeled male 22 39 61

Total 89 53

Note: The values show no significant bias (p¼ :20, two-sided

binomial test).
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insignificant or small and could be related to different signal-to-noise

ratios in the different frequency bands, rather than frequency-specific

sex differences. The discrete kernel grid might also impose a slight

bias against higher frequencies. Cave and Barry (2021) found sex dif-

ferences in EEG topographies. In agreement to that, sex detection

with our CNN was possible even after the complete destruction of

waveforms, frequencies, and connectivities by shuffling the time

points while keeping the topographies in good order. Compared with

the intact time series, the accuracy dropped only by ≈6%. We further

investigated whether this accuracy gap should be attributed to actual

time-domain information or just to the fact that topographies are

likely more robustly detectable from a series of samples, rather than

just one point in time. After destroying the topographies by randomly

shifting channel by channel forward or backward while keeping the

channel-wise waveforms and frequencies in good order, sex detection

was no longer possible. This provides evidence for sex-typical topog-

raphies. Again, different from the above-mentioned studies, our seg-

ments were arbitrarily extracted from clinical recordings and exhibited

a mix of paradigms with resting states, stimuli, and so forth. Sex differ-

ences in the waveforms or frequencies either could not be learned by

our CNN or were not sufficiently present in the segments that we

extracted from this heterogeneous dataset. Another explanation for

why our network did not find differences in the waveforms or fre-

quencies could be that the sex differences therefrom might have high

variations of frequency, amplitude, and location (Friedl &

Vogel, 1979b; Vogel & Götze, 1962), which is difficult to represent
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data. They show waveforms that more strongly resemble the cardiac QRS complex.
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with simple convolutional kernels. Deeper neural networks might be

able to better adapt to these nuances. In contrast to the studies that

found sex differences in certain frequency bands under controlled

conditions, our data from miscellaneous clinical scenarios exhibit a

multitude of different conditions. Frequency-specific sex differences

might be better observed from data with a homogeneous paradigm.

The importance of topographies rather than waveforms might

indicate that the differences arise from different propagation of the

signals through the volume, rather than different neural activity. Fur-

thermore, for neural sources, we would expect stronger differences

between the accuracies achieved from the individual frequency bands.

Together, this suggests anatomical differences as one cause of the dif-

ferent EEG signals.

Our results do not suggest the sex differences to be focused on a

certain brain region. While the frontal channels had the highest single-

channel accuracies, the search for optimal additions of further chan-

nels yielded a central, temporal, parietal, and occipital channel.

The relevance attribution maps from males and females each

showed correlations with the kernels from both sexes, indicating a

substantial overlap in the EEG activity of males and females. This

overlap is in agreement with previous reports on sex differences in

the EEG (Friedl & Vogel, 1979b; Smith, 1952) and other brain-related

differences (Eliot et al., 2021; Weis et al., 2020). The studies by van

Putten et al. (2018) using deep learning, Maciejewska and Froelich

(2021) using naive Bayes and random forests, and this work using a

shallow CNN all achieved ≈80% accuracy. These recurring 80% may

indicate a limit, potentially from an overlap of the underlying proper-

ties causing the sex differences.

The detectability of the sex from EEG, which records the electri-

cal potentials on the scalp, by no means provides evidence for

dimorphic male and female brain function. The undisputed sex differ-

ences in brain size and the brain-size-related gray matter to white

matter ratio (Eliot et al., 2021) influence how the brain signals propa-

gate through the tissue toward the EEG sensors (Haueisen

et al., 2002). After all, the differences are not necessarily rooted in

the central nervous system, but could as well originate from the heart,

eyes, muscular activity, movement patterns, and from the volume

conducting anatomy, through which all of the electrophysiological sig-

nals must propagate (Hari & Puce, 2017). With the typically larger

datasets in deep learning-based studies, artifacts from such non-

neural sources might be more common than in conventional EEG

studies because the individual recordings are treated less carefully.

The extensive review by Craik et al. (2019) on deep learning for EEG

lists various studies for disease detection where artifacts were left in

during analysis.

A notable difference between van Putten et al.'s study and ours is

the demographics: We used data from clinical patients and almost all

of them matched the exclusion criteria in van Putten et al.'s study. We

included only recordings that were labeled as normal by trained neu-

rologists, but more than half of the patients in our study had epilepsy,

affective disorders, or headache, and more than half received medica-

tion that has known effects on the EEG, such as antiepileptics, antide-

pressants, and benzodiazepines (Duncan, 1987; Haueisen et al., 2000;

Meador et al., 1993). Table S3 presents the patient demographics,

medical history, and reported medication. Sex-related imbalances in

the documented diseases and medications were not observed to an

extent that would allow the CNN to detect the sex entirely based on

diseases predominated by one sex. Despite the markedly different

demographics and a much smaller network than in the study from van

Putten et al. (ours: 6400 trainable parameters compared with theirs:
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9 million), we received precisely the same accuracy (81%, balanced

accuracy). The purpose of reducing our network to such low capacity

was to create precedence: if our shallow CNN can detect the sex, the

much deeper and therewith more capable networks that have been

proposed for disease estimation can detect the sex as well. Most of

the recently proposed architectures have millions of parameters (see

the reviews by Roy et al. (2019) and Craik et al. (2019)).

5 | CONCLUSION

We replicated neural network-based sex detection from EEG. Our

work introduces a method for relevance attribution for the case of a

shallow neural network and presents the sex-related patterns in the

EEG data. None of the traditional frequency bands were particularly

important for sex detection. Non-neural sources, particularly from the

(a) Raw EEG data

(b) ICA-filtered EEG data
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F IGURE 4 EEG signals with relevance visualization, ECG signal, and relevance time course from a typical example, with and without artifact
removal (female, 45 years). Red background color indicates the influence of the data points toward predicting female, and blue toward male sex.
The stronger the color, the larger the relevance. The last curve (purple) shows the absolute relevance jR j, summarized over all EEG channels.
Second to last is the ECG channel. With raw data (a), relevance accumulates at the times of the QRS complexes. After ICA-based artifact removal
(b), the relevance is more evenly distributed over the data, and therewith non-cardiac signals are factored in into the decision more strongly.
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heart, were found to inflict sex-biased components to the EEG, but

even after rejecting these artifacts, the sex remained highly

detectable.

Our findings suggest that sex is easily detectable by practically

any neural network for EEG analysis. For the many neurological and

psychiatric diseases with unequal prevalences for males and females,

sex is therefore a likely hidden confounder. Disease classifiers should

therefore be analyzed for sex biases, for example by comparing if the

detection performance for one sex is different for male- or female-

only trained models.

Researchers using large datasets should aim to maintain best

practices of artifact rejection and employ explainability methods to

identify illegitimate patterns, such as the heart-related signals

revealed in our study.
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