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Genome Mining in Glass Chemistry Using Linear
Component Analysis of Ion Conductivity Data

Zhiwen Pan, Jan Dellith, and Lothar Wondraczek*

Understanding the multivariate origin of physical properties is particularly
complex for polyionic glasses. As a concept, the term genome has been used
to describe the entirety of structure-property relations in solid materials,
based on functional genes acting as descriptors for a particular property, for
example, for input in regression analysis or other machine-learning tools.
Here, the genes of ionic conductivity in polyionic sodium-conducting glasses
are presented as fictive chemical entities with a characteristic stoichiometry,
derived from strong linear component analysis (SLCA) of a uniquely
consistent dataset. SLCA is based on a twofold optimization problem that
maximizes the quality of linear regression between a property (here: ionic
conductivity) and champion candidates from all possible combinations of
elements. Family trees and matrix rotation analysis are subsequently used to
filter for essential elemental combinations, and from their characteristic mean
composition, the essential genes. These genes reveal the intrinsic
relationships within the multivariate input data. While they do not require a
structural representation in real space, how possible structural interpretations
agree with intuitive understanding of structural entities known from
spectroscopic experiments is finally demonstrated.

1. Introduction

Relations between chemical composition, the spatial arrange-
ment of atoms (structure), and the evolving macroscopic prop-
erties are of central interest in glass science and technology.[1–7]
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The concentration of a single chemical el-
ement (or nominal compound) is the intu-
itive descriptor for starting to explore these
relations. However, this simplistic approach
is usually insufficient to account for mate-
rial behavior in glasses containing multiple
chemical elements, in particular, for proper-
ties as complex as ionic conductivity.[3,8–10] A
plot of a material property over the concen-
tration of a single element may show, in this
case, broadly scattered data, a vertical line,
or some kind of mathematical trend with
many or only a few outliers, all of which
can be highly misleading. Instead, such ob-
servations might be caused by insufficient
expressivity when using single-component
concentration values as descriptors: multi-
component glasses usually exhibit intri-
cate, typically unknown non-linear relation-
ships and interdependencies involving mul-
tiple elemental species. From this, the im-
mediate question arises as to how multi-
component descriptors can be identified
for a given glass property, i.e., the glass
genome.[11] Are all or only some of the

elements forming the material involved in individual such de-
scriptors? What is the molar ratio of each element in these de-
scriptor constructions? Can the descriptors be traced back – di-
rectly or indirectly – to structural entities or building blocks
known to exist in the material? In the following, we will demon-
strate how these questions can be answered through analyzing
composition – property correlations for strong linear compo-
nents, introducing Strong Linear Component Analysis (SLCA)
for deciphering glass property genomes on small datasets.

In this context, the term gene is used for functional groups
of elements acting as descriptors for a particular property. Genes
are presented as fictive chemical entities with a characteristic sto-
ichiometry derived from SLCA. They do not need to be charge-
balanced, and may not even require that their constituents are
chemically connected, thus, they do not require a structural rep-
resentation in real space (although such knowledge could be
helpful in their further interpretation). As an example, three
functional groups which could be responsible for ion conductiv-
ity are depicted schematically in Figure 1. All of these groups in-
volve the gene ABC2 as a common feature, whereas further con-
stituents (depicted as green balls) could be any of the three el-
ements A, B and C, or even additional, unknown components.
In this schematic example, the gene of ABC2 would have been
extracted by SLCA as a fundamental descriptor for ionic conduc-
tivity in the specific type of glass.
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Figure 1. Schematic of the gene ABC2 as the common feature in three dif-
ferent functional groups responsible for a particular glass property. Green
spheres represent unnamed elemental entities, e.g., A, B, C, or D.

Table 1. PCA of the six-dimensional Na2O-P2O5-AlF3-SO3 glass dataset. 𝝀
is presented as the percentage of the sum of all eigenvalues; it indicates the
relevance (in terms of underlying property variance) of each component
in property predictions.

ṽ PC1 PC2 PC3 PC4 PC5 PC6

𝝀 (%) 70.44 20.17 9.18 0.19 0.01 0.00

PC1 + PC2 + PC3 + PC4 99.99

PC1 + PC2 + PC3 99.80

PC1 + PC2 90.62

Technically, the present method is based on an optimiza-
tion problem that maximizes the R2 from linear regression[12]

between a property (here: ionic conductivity) and the sum
of weighted concentrations of each constituent by tuning the
weighting factors. This optimization is done for all subsets of
composition – property data (that is, for all possible combina-
tions of elements; each combination is handled as an individual
model). Assisted by matrix rotation, principal component anal-
ysis (PCA,[13]) and family trees, those models that are essential
for the studied property are identified, and from their character-
istic mean composition, the essential genes. Thereby, the abso-
lute concentration of a gene is initially undetermined; other than
with common regression analysis or similar machine learning
approaches which are frequently applied in glass science,[14] re-
lationships between the weighted sum of certain elemental com-
ponents and a target property are not in the focus of the present
study. The genes, however, may act as descriptors in physics-
informed ML models for glass property predictions.

We base our analysis on a uniquely consistent set of 56 glasses
from the Na2O-P2O5-AlF3-SO3 family, fabricated according to a
uniform protocol, with exact compositional data and property
measurements available from experimental study.

2. Results and Discussion

2.1. PCA and Dataset Dimensionality

The significance values 𝜆 after applying PCA on chemical compo-
sition data are listed in Table 1. By summing up the significance
values of the principle components PC1-PC3, we find that three
PCs are sufficient to explain 99.80% of the variations within the
dataset. When only PC1 and PC2 are used, this value reduces to
90.62%. Thus, using more than three variables (genes) will prob-
ably overfit the current dataset, while using only two variables

leads to underfitting. This reduction in dataset dimensionality
(from 6 to 3) can be understood intuitively from the correlation
between anion and cation fractions (charge compensation), mass
conservation, and possible systematic correlations produced by
interrelated batching (e.g., when using Na2SO4 or AlF3 for batch-
ing S or F).

2.2. R2 Optimization

The optimized R2 value describes the best linear relationship
found in each model by optimizing the weighting vector w. The
set of obtained values is provided in Table S1, Supporting Infor-
mation. Results obtained for conductivity at different tempera-
tures show very similar trends, therefore, we will initially limit
the discussion to conductivity at 50 °C. The overall results in Ta-
ble S1, Supporting Information show that the R2 value increases
from group I (d = 1) to group VI (d = 6); for d = 6 (involving all six
elements into the SLCA procedure), a maximum of R2 = 0.919 is
obtained. For increasing temperature, there is a slight decrease
in the optimized R2 values. In order to indicate the descriptive
power of each model, the individual R2 values in Table S1, Sup-
porting Information are stated relative to the maxima found for
d = 6; in the following, we will refer to these relative values.

The group I models (including only one single elemental
species) have R2 ranging from 23.2% to 72.2%; only when cor-
relating conductivity to P, a value of 92% is obtained (whereby
we assume that this is an artifact originating from the narrow
range of phosphate concentrations involved in the dataset, and
further from interrelated batching). A significant improvement
is observed in the group II models, for which the R2 values in-
crease up to 99.2%. This reflects the PCA, where an increase in
confidence from ≈70% to ≈90% was seen when moving from
one single PC to two PCs. In Group III, the linearity further
improves slightly, with most models achieving R2 above 99.2%.
Groups IV, V, and VI show no more significant improvement in
the relative R2 value, with almost all models hitting 100%. Al-
though we are not optimizing for the maximum variance such as
in the PCA, group-to-group comparison strongly resembles the
results of PCA. This is because the total sum of squares in the
calculation of the R2 value is proportional to the variance of data.
Finally, the decreasing R2 with increasing temperature indicates
that the conductivity depends less on composition for higher tem-
peratures.

2.3. Weighting Vectors and Mean Compositions

The weighting vectors w{w1, …., wd}i (corresponding to the
optimized R2 in each model) are used to calculate the chemical
formulas of conductivity genes. Optimized such weighting
vectors with R2

> 99.0% (group III; d = 3) are listed in
Table 2. Mean compositions c are then calculated using Equa-
tion (8), multiplying w with the mean concentration X̄ of the
individual elements in Table S2, Supporting Information. The
components in c are normalized to the quantity of the element
following the order of priority O>Na>P>Al>F>S (ascending
with the ratio Std./Mean in Table S2). The most stable element
is always used as a reference in normalization. The elements
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Table 2. Essential genes with their mean stoichiometry and weight vectors w, general compositions and R2 values. Signs on the weight factors are chosen
so that positive factors signify increasing conductivity. The components of the weight vector are listed in the same order as in the model X̃ representation.
Data are provided for conductivity at 50, 150, and 250 °C.

essential gene gene (𝜎50°C) general composition (𝜎50°C) R2 (𝜎50°C) gene (𝜎150°C) R2 (𝜎150°C) gene (𝜎250°C) R2 (𝜎250°C)

Gene 1
[Na/O/S]

Na0.47 S0.15Ō
0.17:0.70:-0.13

Na0.47 S0.09−0.25Ō 0.913 Na0.66 S0.20Ō
0.17:0.72:-0.10

0.901 Na1.20 S0.29Ō
0.22:0.71:-0.07

0.895

Gene 2
[Na/P/S]

NaP̄S0.19

0.20:-0.30:0.50
NaP̄S0.11−0.30 0.914 NaP̄0.74S0.22

0.20:-0.22:0.58
0.903 NaP̄0.41 S0.19

0.24:-0.15:0.61
0.896

Gene 3
[Na/S/F]

NaS0.22F0.11

0.22:0.65:0.13
NaS0.13 − 0.35F0.06 − 0.17 0.912 NaS0.23F0.08

0.22:0.68:0.10
0.900 NaS0.20F0.05

0.25:0.68:0.07
0.894

Gene 4
[Na/S/Al]

NaS0.19Al0.12

0.23:0.58:0.19
NaS0.11 − 0.30Al0.08 − 0.16 0.915 NaS0.20Al0.10

0.23:0.62:0.16
0.904 NaS0.19Al0.07

0.25:0.63:0.12
0.897

Gene 5
[Na/O/P]

Na0.33P̄0.79O
0.17:-0.62:0.21

Na0.33P̄0.70−0.90O 0.913 Na0.29P̄0.67O
0.17:-0.59:0.23

0.904 Na0.33P̄0.59O
0.21:-0.55:0.24

0.897

Gene 6
[P/F/Al]

P̄F̄0.04Al0.06

-0.68:-0.12:-0.20
P̄F̄0.02−0.06Al0.04−0.08 0.913 P̄F̄0.08Al0.04

-0.68:-0.21:-0.12
0.904 P̄F̄0.07Al0.07

-0.63:-0.17:-0.20
0.896

Figure 2. a) Correlations between experimental ionic conductivity at 250 °C and single-element concentrations. b) Rescaled correlations to weighted
composition using the [Na/O/S] and [P/F/Al] genes (see Table 2 for gene parameters).

Na, O, and P are relatively more stable than that S, F, and Al.
The signs of components in c are forced positive. In this way,
c represents the stoichiometry of genes underlying the present
dataset. The practical consequence of this procedure is illustrated
by way of example in Figure 2, showing the correlation between
experimental conductivity and the concentration of single ele-
mental components (Figure 2a). Alternatively, strongly enhanced
linearity is achieved when correlating to the weighted sum of
[Na/S/O] using w = [0.22/0.71/-0.07] or [P/F/Al] with w = [-0.63/-
0.17/-0.20] (see Figure 2b; w from Table 2). The corresponding
mean composition c from these two models using X̃ = [Na/S/O]
and X̃ = [P/F/Al] are [0.47/0.15/1] and [1/0.04/0.06]; these rep-
resent the genes Na0.47S0.15Ō and P̄F̄0.04Al0.06, respectively (the
macron on the elemental symbol representing a negative sign,
that is, inverse proportionality). The absolute magnitude of the
weighted sum concentrations can be scaled arbitrarily without
changing the R2 values. This is why the absolute concentration

of the gene is undetermined. The standard deviation represents
the uncertainty of gene stoichiometry, which we express in the
general composition of each gene (see Table 2).

2.4. Determination of Essential Genes

As a crucial step in the SLCA, the set of models needs to be
filtered for essential genes which represent neither underfitted
nor overfitted models. From the PCA, we know that the hy-
perparameter nd should not exceed 3, otherwise, the model is
overfitted. However, this information alone is not sufficient to
identify the essential models. The R2 values in group III still vary
from 54.0% to 99.8%, meaning that some models are underfitted
while others are overfitted. Removing the models with low R2 to
avoid underfitting within group III is straightforward. Exclud-
ing overfitted models is less obvious. Using R2 alone cannot
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Figure 3. Family trees originating from [S] a) and [P] b). The essential genes in group III are highlighted; overfit models are crossed out (for uncertain
models, a bar instead of a cross is used). Numbers indicate the relative R2 value obtained for each model.

distinguish between over-fitted and just well-fitted models.
Therefore, an additional criterion is applied on the models of
group III, whereby a model is considered overfitted when R2

is high, but not rooted in group hierarchy: adding one more
element from group to group must improve model linearity.
Figure 3 shows two families originating from S and P, selected by
way of example for their highest R2 among the group I models.
On the second level of the family trees, only those models (group
II) are considered descendant from S (or P) which (i) include S (or
P) and (ii) have higher R2 than their parent. On the third and any

higher level, in addition to (i-ii), the molar ratio and qualitative
contribution (signified by a positive or negative sign) of the par-
ent elements must also reflect in the child’s model stoichiometry
(iii). For example, all of the five possible group II descendants of
S have increased R2 values, therefore, they are all children of S.
Each of these five children has four further descendants in group
III, however, the majority of those second-level descendants is
excluded because of the stoichiometry criterion (iii), or because
of an insignificant increase in R2 over the group II ancestor (in-
dicating overfitting). As a result, we identify four essential genes,
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and a limited number of uncertain models (for which exclusion
based on deviating stoichiometry is less clear; the main reason
for such uncertainty is with the limited size of the dataset relative
to the strong variation in the elemental concentration of S).

The same procedure is carried out for element P and its group
II and group III descendants. Here, models [P/F] and [P/Al]
achieved a relative R2 of 99.2% already in group II; for symme-
try reasons, they both converge in group III [P/F/Al] with a slight
further increase in R2. Overall, two additional, unique genes are
identified in this way, whereas the [Na/P/S] model recurred in
both the S and the P families. The six essential genes are sum-
marized in Table 2.

When conductivity is correlated to glass composition using the
gene weighting factors, highly refined linear correlations are ob-
tained, see Figure 2b; the composition of the essential genes rep-
resents the internal correlation among the chemical components
in determining ionic conductivity. In Figure 2, the essential mod-
els [Na/S/O] and [P/F/Al] are used for this demonstration. They
do not contain any common element and, consequently, seem to
conjugate in their contribution to ionic conductivity.

Five of the six essential genes involve Na; expectedly, it is the
most important element in increasing the ionic conductivity. Be-
yond Na, S is the second most frequent species, therefore, we will
focus our discussion on the structural meaning of the identified
genes on these two elements. In addition, we find that the Na
contribution within increases consistently with temperature, in
each of the genes in which it is present. We will therefore close
the following discussion with a perspective on the temperature-
dependence of Na mobility.

2.5. Structural Significance of Essential Genes

Combining gene composition and bonding information can po-
tentially reveal the structural significance of the identified genes.
In order to explore this aspect, we first interpret each element as a
structural entity:[6–8,16] S as a sulfate tetrahedron, P as a phosphate
tetrahedron, Al as an alumina octahedron, F as a terminal P-F or
Al-F bond, or as an Al-F-Al link, and Na as Na+ ions attached to F
terminal bonds, non-bridging oxygen species, or isolated sulfate
tetrahedra. Assumed charge carriers are Na(+)[17,18] and, eventu-
ally, F(-) and O(2-). We now consider each gene separately, using
the general stoichiometry (taking into account the standard de-
viation found per gene for the contributions of S, F, and Al; the
gene itself is specific, however, uncertainty arises from the un-
derlying dataset). In Figure 4, possible structures are depicted for
each gene at the extremes of its respective general stoichiometry.

Na0.47 S0.09−0.25Ō (1)

On the upper end of its general formula, the [Na/S/O] gene in-
volves two Na+ ions per one SO4

2− tetrahedron, that is, a sodium
sulfate group (Figure 4a, left). Lower S signifies an excess of Na+,
charge compensated by non-bridging oxygen species (i.e., up to
3 Na and 6 O when S is at its minimum value of 0.09). A possible
structural representation of this is depicted in Figure 4a (right),
where a sulfate tetrahedron is surrounded by the additional oxy-
gen species in a mix of bridging and nonbridging configurations
between network-forming polyhedra, and charge-compensating

the additional Na+ ions. In effect and although the exact chemi-
cal environment is uncertain, the structural role of the [Na/S/O]
gene, therefore, is that of an SO4 bridge in an Na-rich environ-
ment. This agrees with the observation of the conjugate [P/F/Al]
gene discussed in the previous section. The bulk conductivity
then depends on the frequency of these ionic bridging entities,
which – assumedly – would interact to form ion transport chan-
nels.

NaP̄S0.11−0.30 (2)

The normalized extreme cases of the [Na/P/S] gene are Na3P̄3S
and Na10P̄10. Both formulas maintain a fixed Na:P ratio of 1. This
stoichiometry reflects the interaction between a network former
(P) and a network modifier (Na), bridged by sulfate entities. It
involves phosphate groups with 3 to 10 tetrahedra per sulfate
ion. Compared to the [Na/S/O] gene, [Na/P/S] is more specific
in terms of representing similar sulfate bridges, but now within
a defined range of superstructural network arrangements (Fig-
ure 4b).

NaS0.13−0.35F0.06−0.17 and NaS0.11−0.30Al0.08−0.16 (3)

In [Na/S/F] and [Na/S/Al], the phosphate group is replaced by
F and Al, respectively. Again, both genes represent SO4 bridging
units, however, at the -P-F-Al- phosphate junctions. The S:F ratio
in [Na/S/F] is fixed at 2:1, indicating that a sulfate bridge involves
two sulfate tetrahedra and one terminal F (Figure 4c, left). The
[Na/S/Al] gene has an S:Al ratio varying from 2:1 to 1:1, meaning
that in this case, the sulfate bridge consists of one or two sulfate
tetrahedra (Figure 4c, right).

Na0.33P̄0.79O and P̄F̄0.04Al0.06 (4)

In normalized form, the gene of [Na/P/O] is NaP̄2.5O3; it repre-
sents a simple sodium phosphate in which conductivity increases
with increasing sodium concentration, and decreases for higher
phosphate content (Figure 4d, left). The interesting aspect is with
the contribution of O: in contrast to the role of bridging oxygen in
the above [Na/S/O] gene, in the non-bridging form, gene mining
accurately predicts that oxygen increases conductivity. Finally, the
[P/F/Al] gene is the conjugate of [Na/S/O], as discussed in the pre-
vious paragraphs. It represents a phosphate network cross-linked
by -Al- O – and –Al-F- entities (Figure 4d, right).

2.6. Temperature Effects

The SLCA was carried-out for conductivity data collected at 50,
150, and 250 °C (Table 2). The [Na/P/O] and [P/F/Al] genes are
practically insensitive to temperature within this range, indicat-
ing structural stability below Tg. For all other genes and, in partic-
ular, [Na/O/S], the relative contribution of Na increases notably
with increasing temperature. At the same time, the weight of P
in [Na/P/S] decreases. These observations reflect that tempera-
ture affects primarily the sulfate bridge in its strength to localize
Na ion species. With increasing temperature, the sulfate entity
interacts with less and less phosphate groups and, in turn, as-
sembles more Na in its vicinity. Overall, it is not surprising that
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Figure 4. Schematic representations of possible structural interpretations of essential genes for ionic conductivity in Na2O-P2O5-AlF3-SO3 glasses. Balls
represent chemical species: Na (yellow), F (turquoise), bridging oxygen (red) and non-bridging oxygen (black). The green tetrahedron depicts and SO4
group; the orange octahedron is Al(O,F)6.

the gene stoichiometry is temperature dependent, given the mul-
titude of interaction potentials within multi-component glasses
such as the present ones.

3. Conclusion

In the context of the material genome, genes are functional
groups of elements acting as descriptors for a particular prop-
erty. Studying ionic conductivity in glasses from the Na2O-P2O5-

AlF3-SO3 family, we presented them as six fictive chemical en-
tities with a characteristic stoichiometry derived from strong
linear component analysis. SLCA maximizes the quality of lin-
ear regression between a property (here: ionic conductivity) and
champion compositions from all possible combinations of ele-
ments. Family trees and matrix rotation allow for the identifi-
cation of essential genes, which are filtered from the set of all
possible combinations of elements present in the considered
dataset.
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Figure 5. Schematic of the gene extraction method using SLCA. SLCA stars with a linear regression and optimization for maximum R2 of composition
– property correlations for all possible combinations of elements, based on the weighted sum of elemental concentrations (leading to 63 individual
models). Optimized weighting factors and R2 values are then used to construct family trees, and models are filtered by PCA and physical ancestry. From
this, essential models are obtained, whose mean compositions are referred to as essential genes.

While such genes do not require a structural representation
in real space, we finally demonstrated how possible structural
interpretations agree with intuitive understanding of structural
entities known from spectroscopic experiments.

4. Experimental Section
General: A general schematic of the approach used to extract genes

for glass conductivity is shown in Figure 5. We initially constructed 63 lin-
ear regression models according to all possible subsets X̃ of independent
variables (elemental constituents) in the input matrix X (Weight Vector
Optimization). The choice of linear models reflects Occam’s razor, but it
is not unique: other model orders could have been chosen for higher com-
plexity. A weighted sum of the independent variables in X̃ is generated in
each linear regression model, yielding a total R2 feedback value as a func-
tion of the individual weighting factors used in the model for each variable.
By tuning the weighting factors, R2 is maximized for a particular model;
the optimized weighting factors and the optimized R2 are the output val-
ues of this procedure. All optimized models are subsequently categorized
into groups according to the number of independent variables in X̃. PCA
is used to filter for groups that are neither underfit nor overfit (Principal
Component Analysis). Family trees are then constructed, in which models
are probed for ancestry by number of components, and unphysical mod-
els are removed. The remaining models are referred to as essential models,
and their mean compositions are the essential genes.

Dataset: As proof of principle, we focus on gene extraction for the
(sodium) ion mobility in glasses of the Na2O-P2O5-AlF3-SO3 family. For
these glasses, a highly consistent dataset including 56 individual sam-
ples with variable chemical composition is available from our lab, to-
gether with a range of physical and spectroscopic data.[6–8] In order to im-
prove the accuracy of chemical composition data over previously available
energy-dispersive X-ray spectroscopic results (EDX),[15] all glasses were
reanalyzed by fully quantitative wavelength-dispersive X-ray spectroscopy
(WDX) using a JEOL JXA8800L microprobe analyzer. Generally, compared
to standardless EDX the WDX technique provides improved energy resolu-
tion, detection limit, and more precise results, in particular, for the lighter

elements such as F (the elemental composition obtained in this way and
the previously reported ionic conductivity are the (X, Y) input in Figure 5).

All samples were coated with a layer of approximately 5 nm of carbon
before WDX measurement to avoid charging effects under the electron
beam. In order to minimize beam damage of the sensitive Na2O-P2O5-
AlF3-SO3 glasses the count rate of the elements in question was initially
recorded as a function of beam time, and the excitation conditions were
optimized accordingly. As a result, the energy of the exciting electron was
set to E0 = 10 kV, and a moderate beam current of 30 nA was applied. The
beam diameter was defocused to 100 μm. As diffractive element a TAP
crystal (2d: 25.757 Å) was used for the detection of the KL3 radiation of F
(677 eV), Na (1040 eV), and Al (1486 eV), and a PET crystal (2d: 8.742 Å)
for P (2010 eV) and S (2309 eV). All lines were recorded over a time of 60 s
(peak) and 2× 30 s (background), respectively. These times were chosen to
guarantee sample stability under the electron beam; for observation times
of 120 s, we started to see dynamic variations in the Na ion concentration.

For each glass, the SLCA was carried-out three times, using conductivity
data at three different temperatures (50, 150, and 250 °C) so as to obtain
information on the possible effect of temperature on gene prevalence. The
full dataset is provided in the supplementary Table S2.

Weight Vector Optimization: Vector optimization was conducted using
linear fits of the composition – conductivity relationship to obtain weight
factors for the contribution of individual elements to ionic conductivity. For
an n-dimensional (number of elemental constituents) multivariate dataset
X with m observations (number of composition datasets), and another
m × 1 dataset y with m observations (number of ionic conductivity data-
points), the SLCA searches for the optimal d × 1 vector w = [w1,w2…wd]T

(gene receipt) such that

R2 = 1 −
∑m

i = 1 (yi − fi)
2∑m

i = 1 (yi − ȳ)2
(5)

is maximized (thereby, d is the vector dimensionality, 1 < d < 6). The R2

value ranges from 0 to 1, representing poor (R2 → 0) and perfect linearity
(R2 = 1). yi and ȳ are the ith observation and mean value of y, respectively.
fi is the predicted value from the best linear fit between the m × 1 vector x
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= Xw and the m × 1 vector y. x is the weighted sum of elements in X, with
weights w.

f (w) = ax + b = aXw + b (6)

where a and b are the slope and intercept obtained via minimizing the least
square error, respectively,

min
a,b

m∑
i = 1

(fi − yi)
2 (7a)

max
w

(
1 −

∑m
i = 1 (yi − fi (w))2∑m

i = 1 (yi − ȳ)2

)
(7b)

There are two optimization processes in SLCA. One is to minimize the
least square error (Equation (7a)) in order to obtain the slope and intercept
for the best linear fit, and the other one is to obtain the weighting factor w
by maximizing the R2 value based on Equation (7b). Since w is a d × 1 vec-

tor, we have d − 1 fitting parameters (because of normalization, | m∑
i = 1

wi|
= 1, therefore, |w1| = 1 when d = 1). The remaining fitting parameters
are initiated 1000 times randomly between the lower and upper bounds
of -1 and 1, respectively. The two optimization problems form one single
model (Figure 5) with w and R2 as output. SLCA than explores all possible
subsets X̃ of X without requiring any filtering procedure (from prior knowl-
edge) before data input. In the present case, six elements are considered,
n = 6. This results in C1

6 + C2
6 + C3

6 + C4
6 + C5

6 + C6
6 = 6 + 15 + 20 + 15 +

6 + 1 = 63 possible elemental combinations (with the subscript n, and the
superscript d, the number of constituents partaking in the specific model;
e.g., C1

6 could represent a model correlating all data to Na concentration
alone, whereas C6

6 is the model in which all elements are considered in the
fitting process). Each such combination represents one individual model
for which the above optimization is done using the full dataset of 56 sam-
ples. The weight vector w therefore varies in its dimensionality d, corre-
sponding to the model dimensionality of X̃. In the following, the models
will be grouped according to their dimensionality, from group I to group
VI.

The individual weighting factors wi in the vector w represent the con-
tribution of element i to the target property, here, ionic conductivity. The
sign of wi is defined by forcing the slope a in Equation (6) to be positive,
which is equivalent to requiring monotonically increasing proportionality
for the element i with positive wi and vice versa.

The weighting factors alone are not suitable for representing genes in
terms of (fictive) chemical formulas because they are not given in molar
ratios. Therefore, we transform to c instead, with

ci = wi Xi (8)

where Xi is the mean of the ith chemical element in subset X̃. In this way,
genes are represented in the form of c.

Principal Component analysis: PCA is used to analyze the entire dataset
in order to reveal its minimum dimensionality. The principal components
v of the m × n dataset X are obtained by solving the eigenvalue equation

Cv = 𝜆v (9)

where 𝜆i is the ith eigenvalue of the corresponding eigenvector vi (ith prin-
cipal component). C is a n × n matrix, the covariance matrix:

C =
⎡⎢⎢⎣
Cov (X1, X1) ⋯ Cov (X1, Xn)

⋮ ⋱ ⋮
Cov (Xn, X1) ⋯ Cov (Xn, Xn)

⎤⎥⎥⎦ (10)

where Cov(Xi,Xj) is the covariance of two variables Xi and Xj, which are the
ith and jth element/column of X:

Cov
(

Xi, Xj

)
= E

((
Xi − Xi

)(
Xj − Xj

))
(11)

where E is the expected value operator, and Xi and Xi are mean of vari-
ables Xi and Xj, respectively. The PCA initially generates the same number
of principal components as there are dimensions in the input dataset. It
then reduces dimensionality by removing those components which have
low 𝜆i. The remainder is the principal components; their number is the
minimum dimension of the dataset. In effect, PCA conducts a matrix rota-
tion aiming to identify correlations in the raw dataset which would reduce
its dimensionality.

Before conducting PCA, the raw dataset X requires standardization,

Zi =

(
Xi − Xi

)
E
((

Xi − Xi

)2
) (12)

The standardized Zi (centered at 0 and scaled by forcing its variation
to 1) now replaces Xi in Equations (9)–(11) so that the PCA is not biased
in any chemical element i with high absolute magnitude in Xi. To keep the
coefficients in principal components v orthonormal, the components vi in
v are rescaled by the standard deviation of the corresponding Xi,

ṽ = Dv =
⎡⎢⎢⎢⎣

1
Std(X1)

⋯ 0

⋮ ⋱ ⋮
0 ⋯ 1

Std(Xn)

⎤⎥⎥⎥⎦ v (13)

where D is the n × n diagonal matrix with n diagonal elements equal to
the inverse of standard deviations of n variables/column, X1, X2…and Xn.
Finally, the orthonormal ṽ are obtained (shown in Table 1 as PC1, PC2 …
PC6, following in ascending order their Eigenvalues 𝜆1 > 𝜆2 > 𝜆3 > 𝜆4 >

𝜆5 > 𝜆6). For example, the first principal component for our nominal data
is (with T representing the transpose)

ṽ1 = [−0.33,+0.48,+0.46,−0.17,−0.46,−0.46]T (14)
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