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Abstract: Plasmonics is the study of resonant oscillations of free electrons in metals caused by incident
electromagnetic radiation. Surface plasmons can focus and steer light on the subwavelength scale.
Apart from metals, plasmonic phenomena can be observed in soft matter systems such as electrolytes
which we study here. Resonant charge oscillations can be induced for ions in solution, however, due
to their larger mass, they are plasmon-active in a lower frequency regime and on a larger wavelength
scale. Our investigation focuses on spatial confinement which allows increasingly strong charge
interactions and gives rise to nonlocality or spatial dispersion effects. We derive and discuss the
nonlocal optical response of ionic plasmons using a hydrodynamic two-fluid model in a planar
homogeneous three-layer system with electrolyte-dielectric interfaces. As in metals, we observe the
emergence of additional longitudinal propagation modes in electrolytes which causes plasmonic
broadening. Studying such systems enables us to identify and understand plasmonic phenomena in
biological and chemical systems.

Keywords: nanophotonics; spatial dispersion; nonlocality; theory and simulation

1. Introduction

Free electrons in the conduction band of metals can be resonantly excited by incident
light to form collective oscillations. If confined to a nanostructure in a dielectric environ-
ment, they form surface plasmons (SPs) manifesting along the conducting interface. At
planar interfaces, surface plasmon polaritons (SPPs) are formed which propagate along
the metal-dielectric interface with a higher parallel momentum compared to light in a
vacuum, while they decay exponentially away from the interface, as depicted in Figure 1a.
Consequently, they benefit from a long lifetime and enable the concentration of electromag-
netic fields within dimensions approximately equal to or smaller than their wavelength [1].
Apart from metals, graphene-based structures exhibit such plasmonic properties in the
THz regime [2–5]. This opens numerous possibilities for nanoscale applications including
light generation and concentration through confinement effects [6,7], the enhancement of
nonlinear phenomena [8–12], optical data storage [13,14], improved solar cells [15–17] and
photocatalysis [18], sensing down to the molecular level [19,20], surface-enhanced Raman
spectroscopy [21,22], structure-induced colors [23,24], and much more.

Experimental observations show that short-ranged electron-electron interactions
change the spectral profile of plasmons [25], which is contrary to the size-independence
predicted by classical electrodynamics in the local response approximation (LRA). At length
scales where the mean free path of valence electrons is similar to the particle diameter, quan-
tum effects emerge leading to additional loss channels. Noble metal nanostructures [26–29],
metallic dimers [27,30–33], and nanostructures with sub-nanometer gaps [34] exhibit signif-
icant blueshifts and quenching of their classically predicted near-field intensity.

To describe such effects, the hydrodynamic Drude model (HDM) is commonly in-
tegrated into standard computational nanophotonics methods. Spatial dispersion in
metals has been described with the finite element method (FEM) [35], the analytical
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Wentzel-Kramers-Brillouin (WKB) method [35], time-dependent local density approxi-
mation (TDLDA) [31], Fourier modal method (FMM) [36], and transformation optics
(TO) [29]. To account for convection and electron diffusion, the HDM can be expanded into
the generalized nonlocal optical response (GNOR) model [29,37–39].
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Figure 1. (a) Surface plasmon polariton (SPP) propagation and its evanescent decay perpendicular to
a dielectric-electrolyte interface. (b) In the local response approximation (LRA), a three-layer-system
with dielectric constants ε0, ε1 and ε2 shows the common multiple reflections for a single transversal
mode. (c) With nonlocal optical response (NOR), multiple reflections of several modes of transversal
and longitudinal character occur inside the electrolyte layer. Indices have been simplified.

Typically, plasmonics refers to the resonant excitation of the electron plasma. How-
ever, ionic charge carriers in soft matter such as membranes, biopolymers, liquid crystals,
and complex fluids [40,41] also exhibit plasmonic behavior. These materials have a het-
erogeneous structure with sizes ranging from nanoscale to a few micrometers. Ions are
much heavier than electrons, their concentration is much lower and their velocity depends
on local temperature as we will detail below. Consequently, different design principles
and adapted analytical theories of plasmonics are needed to conceive soft matter systems
that leverage plasmonic light-matter interactions. Ionic plasmon-polaritons have been
investigated for spherical electrolytes, embedded, e.g., in an insulating membrane and
chains thereof. Such models provide an alternative description of saltatory conduction
observed in nerve cells [42]. In addition, loss mechanisms beyond classical electrodynamics
such as size-dependent plasmon damping, ohmic-type energy dissipation, and radiative
losses were discussed [43,44]. Nonlocal effects in soft plasmonics were investigated in
spherical electrolyte systems using a two-fluid hydrodynamic model [44]. Such a two-fluid
model was furthermore used to investigate nonlocal interactions in electron-hole pairs of
semiconductors [45,46]. A generalized multi-fluid model has recently been developed [47].

In this article, we study the plasmonic properties of ions in solution analogous to elec-
trons in metals at planar homogeneous dielectric-electrolyte interfaces in systems depicted
in Figure 1b,c, developing an analytic nonlocal two-fluid model that includes short-ranged
non-classical interactions between the charge carriers resulting in spatial dispersion effects.
Our study can provide insights into the underlying physics of ionic phenomena in biologi-
cal and chemical systems. Soft plasmonics allows a different perspective on energy transfer
and the interaction of electrolytes with surfaces, e.g., in photocatalytic processes, could be
described more efficiently using computational tools from nanophotonics. In biological
systems, the confinement of an electrolyte into a liquid layered system can be achieved
by thin membranes separating the different layers. An example is signaling in nerve cells
(axons) where a cord connects several myelinated axons. Within and without the myeli-
nated sheaths, electrolytes of different concentrations and compositions are interfacing.
This enables a plasmon-polariton model in chains of myelinated axons [48,49] providing
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insights into the treatment of demyelination syndromes such as multiple sclerosis caused
due to perturbation of neuro-signaling in myelinated axons. Studying biological systems
through the lens of plasmonic properties may allow us to find different routes to diagnose,
study and combat such diseases.

2. Methodology
2.1. Classical Soft Plasmonics — General Characteristics of Ionic Systems

Similarly to how electrons behave in metals, negative (−) ions in a fluid are displaced
toward positive (+) ions and vice versa due to material polarization, leading to bulk plasma
oscillations for each type of ion with frequency ωp±

ω2
p± =

Q2
±n±

ε0m±
(1)

which depends on their respective charge Q±, mass m±, and concentration n± [44]. Both
positive and negative ions carry equal but opposite charge parities Q+ = −Q− in our
chosen materials. More generally, total charge balance is demanded, i.e., |n+Q+| = |n−Q−|.
Throughout this work, we set the ion concentration to n± = 1 mol/m3NA, with the Avagadro
constant NA.

The ions are scattered throughout the entire electrolyte system and in principle move
freely within the solution. The movement of ions within the electrolyte is influenced
by their relatively large mass. Their mass is approximately 104 times greater than the
mass of an electron, see Table 1. Ions exhibit a velocity determined by their sensitivity to

thermal fluctuations, their thermal velocity vth± =
√

3kBT
m± , with values below 103 m/s at

T = 298.16 K. Notably, ions of greater mass such as K+ and Cl− are slower than lighter
ions such as OH− and H3O+. In contrast, free electrons in metals travel at a much higher
speed, characterized by their Fermi velocity vF = h̄kF

me
, which is typically three to four

orders of magnitude larger, e.g., for gold (and similarly for silver) vFAu = 1.4× 106 m/s [44].
Figure 2a shows that the values of ionic ωp± fall within the range of a few hundred GHz
with heavier ions exhibiting decreasing ωp± values. Therefore, the plasmonic optical
response of ionic systems occurs predominantly in the far-infrared.
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Figure 2. (a) Bulk plasmon frequency ωp of OH−, H3O+, Na+, K+, and Cl− ions in solution varying
with their respective ion mass ratios m/me with ion concentration n± = 1mol/m3 NA, where NA is the
Avogadro constant. (b) Dielectric permittivity of Au in a simple Drude model varying with frequency
using parameters ωpAu = 2.18× 1015 Hz, γAu = 1.72× 1013 Hz, εbAu = 9 [50]. (c) Dielectric ionic
permittivity of H2O, NaCl, and KCl ions in solution varying with frequency and with parameters as
in Table 1 and background permittivity εb = 1.77.

When considering the contribution of both negative and positive ions to the optical
response of an electrolyte, the dielectric Drude permittivity of ions can be employed as

ε±⊥(ω) = εb −
ω2

p+
ω(ω + iγ+)

−
ω2

p−
ω(ω + iγ−)

. (2)
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Negative and positive ions operate with distinct plasmon bulk ωp± and damping fre-
quencies γ± calculated from their viscosities; refer to Table 1 [44]. To illustrate the basic
plasmonic characteristics of ions, we compare them to gold in a simple Drude model for the
sake of clarity. Figure 2b shows the dielectric function for Au enabling comparability with
the behavior of ions in solution, Figure 2c. Apart from operating in a distinct frequency
range, ionic plasmons exhibit a typical plasmonic behavior similar to that of Au, which
allows for identifying the resonance condition at a planar interface −ε0 = Re{ε±⊥}. It
should be noted that the dielectric permittivity εb is significantly lower for ions than that
of noble metals such as Au (εb,Au ≈ 10) as it is determined by the solution in which the
electrolytes move. Instead of a liquid, lipid matter with slightly higher εb ≈ 2 could be
used. Neglecting damping, the resonance frequency ωSPP at a planar metal interface is
obtained from

ωSPP =
ωp√
2εb

, (3)

which in the case of ions becomes

ωSPPion =

√
ω2

p+ + ω2
p−

2εb
. (4)

Finally, the dispersion relation of p-polarized SPPs that propagate at the interface separating
two media as depicted in Figure 1b is given by

kSPP =
ω

c

√
ε0ε1(ω)

ε0 + ε1(ω)
. (5)

In Figure 3, we compare the analytical dispersion curve with the calculated energy
flux in the reflection of a Au-water interface, Figure 3a, with ionized H2O confined in
neutral water to a slab of thickness d = 2.5 mm in Figure 3b. In biological systems, such
confinement can be achieved by thin membranes separating the different layers. Note
that the permittivity of water is almost constant in the relevant frequency range. The left
side of the light line, the black line defined by ω = ckε0, represents propagating waves,
while the right side corresponds to the excitation of bound SPPs. This excitation occurs
for k‖ > k0 [1]. Due to realistic damping in the system, propagating modes occur above
the resonance frequency and bound modes show a finite width. While we observe the
typical strong dispersion in Au due to the abundance of free electrons, the same signature
is present in electrolytes with low concentration.

Figure 3. Analytical dispersion kSPP (red curves) and reflected energy flux for (a) a Au-water interface
and (b) ionized H2O in a slab of thickness d = 2.5 mm. The position of ωSPP and the light line (black
curves) are marked for reference. Tabulated data was used for Au [50].
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Table 1. Characteristic material parameters of ionic systems [44].

Ion Mass m± (me) Velocity vth± (m/s) Frequency ωp± (1011 Hz) Damping γ (1011 Hz)

OH− 31, 005 663.63 2.49 2.46
H3O+ 34, 670 627.57 2.35 2.20
Na+ 41, 907 570.82 2.14 3.19
K+ 64, 628 459.65 1.72 2.68
Cl− 71, 270 437.71 1.64 3.07

2.2. Nonlocal Interactions in Dielectric-Electrolyte Multilayered Systems

Nonlocal phenomena occur when charge carriers interact over short length scales,
typically promoted by strong spatial confinement [51]. This section focuses on nonlocal
effects arising from ion-ion interactions driven by Coulombic forces in planar homoge-
neous multilayers. In order to study such systems, we apply the HDM to a two-fluid
system [44]. In this framework, it was shown for ionic spheres that spatial dispersion yields
less pronounced blueshifts of their plasmon resonances compared to metals [44].

The ion-ion interaction is described by the linearized Navier-Stokes equation

j± =
i

ω + iγ±
(ε0ω2

p±E− β2
±∇ρ±) (6)

for an incident light field E. The charges are treated separately in the usual wave equation
as external current j± and charge densities ρ± arising from each charge carrier type. The

nonlocal strength β± =
√

3
5 vth± quantifies the interaction caused by internal pressure of

the charge carriers. The Helmholtz equation for a nonlocal ionic system becomes

∇2E + k2ε±⊥E =
1
ε0
∇(η−ρ− + η+ρ+), (7)

where η± = 1
εb
− k2β2

±
ω(ω+iγ±)

, leading to a system of a total of three coupled equations.
An important manifestation of spatial dispersion is the emergence of longitudinal

waves in addition to the usual transversal modes obtained by the Navier-Stokes equation
as pressure waves of charge carriers. The classical transversal and additional longitudinal
waves are superimposed in the nonlocal medium. The nonlocal wave vectors associated
with the propagation of individual longitudinal ionic modes in a medium are

q2
± =

1
β2
±

ω(ω + iγ±)
εb

ε⊥± , (8)

where ε⊥± = εb −
ω2

p±
ω(ω+iγ±)

is the individual permittivity of each type of ion, which is

not to be confused with the total ionic permittivity of the electrolyte given by ε±⊥, see
Equation (2).

The coupled nonlocal wave equations of each type of ion can be combined into a
single differential equation, symmetric with respect to the indicated signs, that results in a
nonlocal wave equation of fourth order

0 = β2
−β2

+(∇2 + q2
−)(∇2 + q2

+)ρ− −
ω2

p+ω2
p−

ε2
b

ρ−. (9)

This gives rise to a fourth-power equation whose symmetric complex-valued roots describe
the oscillations of positive and negative ions in an electrolyte system. Assuming a planar
system and propagation in the z-direction, the component of the wave vector of interest is
qz while the parallel component~k‖ remains unchanged throughout the structure.
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Figure 4a shows the resulting total nonlocal wave vector qz as a function of the parallel
wave vector k‖ necessary to excite the longitudinal modes at planar interfaces. For the
chosen frequency ω = 3× 1011 Hz, the values are in the range of 0.1–2 nm−1. Interestingly,
a similar length scale is found for Au surfaces as depicted in Figure 4b. The wave vector
in the propagation direction is connected to the penetration depth of the SPP waves that
evanescently decay in the z-direction. The penetration or skin depth of nonlocal modes is
given by δ = 1

Im{qz} , which is of the order of 1 to 5 nm as depicted in Figure 4c for the ions.
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Figure 4. (a) Real and imaginary part of the nonlocal wave vector qz of ions in solution varying with
the parallel wave vector k‖ for frequency ω = 3× 1011 Hz. (b) Same for Au at frequency ω = 1015 Hz.
(c) Nonlocal skin depth δ = 1

Im{qz} of ions in solution.

3. Results and Discussion
3.1. Nonlocal Optical Coefficients for Finite Multilayers

In this section, we derive the optical coefficients at planar dielectric-electrolyte in-
terfaces with either transversal or longitudinal incident modes as illustrated in Figure 1c.
The usual boundary conditions, i.e., the continuity of the parallel field components of the
electric and magnetic fields, are applied next to an additional boundary condition (ABC)
emerging from the differential equation central to the hydrodynamic model for each type of
ion. The ABC confines the charge carriers to the nonlocal medium and prohibits them from
entering the dielectric local environment. In a hard-wall boundary approach, it is given
by n̂ · j± = 0, where n̂ is the surface normal and determines the amplitude of longitudinal
waves. Due to the overall micrometer size of ionic systems and larger mass of individual
ions than compared to electrons, further surface effects are negligible [44,52,53].

The system is, thus, described by a total of three possible modes, the transversal p and
longitudinal q± excitations, through their wave vectors in z-direction kz1 =

√
(ω

c )
2ε±⊥ − k2

‖
and qz given by the roots of the fourth-power Equation (9) discussed above.

In general, several distinct cases are possible. Within the dielectric, only the transversal
mode (p) can be excited. At a dielectric-electrolyte interface, i.e., light incident from the
dielectric side and propagation in +z-direction, the light transmitted into the electrolyte
medium excites a transversal and both longitudinal modes q± according to their respective
transmission coefficients. On the other hand, in reflection, only the transversal mode (p)
remains. For an electrolyte-dielectric interface, any of the three modes may be incident on
the interface and likewise reflected back into the electrolyte, but again, in transmission only
the transversal mode will be excited.

Let us consider as an examplary case light incident from the dielectric side, charac-
terized by permittivity ε0. It is partially reflected back into the dielectric medium as r01p
and the remainder is transmitted into the electrolyte medium of permittivity ε1 = ε±⊥ and
divided into three modes, namely the transversal mode t01p, and the longitudinal modes
t01q±. Solving the three boundary conditions mentioned above leads to the nonlocal Fresnel
coefficients for a two-fluid system
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r01p =
(1 + g′so f t)ε

±
⊥kz0 − (1 + gso f t)ε0kz1

(1 + g′so f t)ε
±
⊥kz0 + (1 + gso f t)ε0kz1

, t01p =
2kz0

k1
k0

ε0

(1 + g′so f t)ε
±
⊥kz0 + (1 + gso f t)ε0kz1

where gso f t and g′so f t stem from the nonlocal properties with

gso f t =
k‖k1

kz1

(
Fl+
|q+|

+
Fl−
|q−|

)
, (10)

g′so f t =
−ik1qz

k‖

(
Fl+
|q+|

+
Fl−
|q−|

)
. (11)

Finally, the ABC connects the longitudinal modes with the transversal mode via

t01q± = Fl± t01p. (12)

In the (local) limit k‖ → 0, the common Fresnel coefficients of the LRA can be retrieved,
i.e., for planar systems all coefficients become local at normal incidence as at least some
parallel momentum is needed to excite the longitudinal modes. Further details, e.g., on the
additional nonlocal function Fl± can be found in the Appendix A.

For a three-layered system, e.g., an electrolyte layer of finite width d in neutral solution
as depicted in Figure 1c, a high degree of complexity regarding the involved modes emerges
due to the multiple reflection events as each interaction with an interface creates three
further excitations.

Let us consider the total transmission coefficient T. The part of the incident light that
transmits into the electrolyte medium splits into three modes with amplitudes t01p, t01q+,
and t01q−. When reaching the second interface, these modes can transmit into the second
dielectric medium with amplitude t12p or be reflected back as r12p, r12q+, and r12q−. A
second index is necessary to indicate both the original mode and the type of mode that was
excited by it, as the respective optical coefficients differ from each other. Further internal
reflections occur and all triple possibilities with the respective double index are [(r10p)p,
(r10q+)p, (r10q−)p], [(r10p)q+, (r10q+)q+, (r10q−)q+], and [(r10p)q−, (r10q+)q−, (r10q−)q−]. For
transmission, all contributions exiting the second interface towards the outer medium are
summed up. Depending on the nature of the wave incident to the interface, the related
coefficients are [(t12p)p, (t12p)q+, and (t12p)q−]. The described optical paths are the typical
multiple reflections observed in a Fabry-Pérot setup, however, each interaction with an
interface creates three modes inside the nonlocal electrolyte. This allows writing the total
reflection and transmission coefficients in the known manner. All related electric fields are
superimposed and contribute to the total transmission coefficient T

T =
T1T3

1− T2
, (13)

where T1 and T3 are the transmission contributions from the three excitations

T1 = t01peikz1 d + t01q+eiqzd + t01q−eiqzd, T3 = (t12p)p + (t12q+)q+ + (t12q−)q−.

They describe the initial transmission step into the electrolyte layer and the final transmis-
sion step into the outer dielectric layer, respectively. The term T2 describes the multiple
internal reflections. Here, all possible modes are excited and this contribution becomes
rather involved. The analytic expression can be found in the Appendix B.
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The total reflection coefficient R can be derived in a similar manner and can be cast
into the standard form for a three-layer system

R = r01p +
R1R2R3

1− T2
, (14)

where the coefficient describing the inner multiple reflections, T2, is unchanged. The term
R2 describes the reflection at the second interface and can be found in the Appendix B.R1
andR3 contain the initial transmission into the electrolyte layer and the final transmission
back into the front layer. They are given by

R1 = t01peikz1 d + t01q+eiqzd + t01q−eiqzd, R3 = (t10p)p + (t10p)q+ + (t10p)q−.

It is notable that from analyzing the optical paths of all modes, both the total transmission
and reflection for the case of nonlocal interaction between ions can be cast into the familiar
form known from classical electrodynamics. While the contributions are given by sum-
mations of transversal and longitudinal solutions, this analysis allows for systematically
increasing the complexity to multi-fluid systems with more distinct constituents.

3.2. Evaluating Three-Layer Systems

In an experimental setup, reflection and transmission are measured in terms of energy
flux retrieved from the time-averaged real part of the Poynting vector S = E×H∗. The flux
of light incident in the dielectric is 〈S0〉 = 1

2 ε0
c2

ω Re{k0}|E0|2, and changes for reflected light
to 〈Sr〉 = 1

2 ε0
c2

ω Re{kr}|Er|2, and results for transmitted light in 〈St〉 = 1
2 ε0

c2

ω Re{kt}|Et|2,
where kr = k0. From this, we calculate the reflected and transmitted energy flux

R f lux =
|〈Sr〉|
|〈S0〉|

= |R|2 Re{kr}
Re{k0}

, Tf lux =
|〈St〉|
|〈S0〉|

= |T|2 Re{kt}
Re{k0}

. (15)

The wave vectors in the dielectric media are k0 =
√
(ω

c )
2ε0 − k2

‖ and kt =
√
(ω

c )
2ε2 − k2

‖.

Note that the flux can be greater than 1 in the evanescent regime at high parallel momenta,
however, the flux of the associated evanescent waves does not carry energy.

We compare spectra of the fluxes for a nonlocal system in a water-electrolyte-water
configuration with its local case in Figure 5 using the material parameters given in Table 1
for the different ionic systems. Firstly, we consider in Figure 5a a nonlocal electrolyte layer
with thickness d = 1 mm at a fixed parallel momentum. We observe a considerable amount
of plasmonic resonance broadening for the Tf lux in the upper and R f lux in the lower panel
as compared to the sharp resonances in the local case in Figure 5b, in particular for the
resonant reflection. The broadening is stronger for lighter ions. This is due to the nonlocal
strength parameter β being larger for faster ions, which is the case for the lighter ions since
the thermal velocity is inversely proportional to their mass.

The flux can become larger than 1 in the evanescent regime where k0 < k‖. The
transition into this regime occurs past the resonance frequency and explains the increase
observed in T. The associated modes are evanescent and do not carry information at
this large parallel momentum. For reasonably low parallel momentum, the measurable
transmission converges to the local result. Hence, the measured transmission will reach
close to 100% in this regime which can still be assessed from 1− R f lux. The absorption
reaching zero beyond the resonance frequency can additionally be seen in Figure 2c since
the imaginary part of the permittivity vanishes.
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Figure 5. Transmission (upper panel) and reflection spectra (lower panel) of ions in solution in
the (a) nonlocal and (b) local case for an electrolyte layer of thickness d = 1 mm and with parallel
momentum k‖ = 2500 m−1.

We compare spectra of the fluxes for a nonlocal system in a water-electrolyte-water
configuration with its local case in Figure 6 varying the thickness of the electrolyte layer.
The highest T is observed for the lowest thickness and vice versa for reflection, which
can be expected for the only slightly absorbing material. The reflection peaks become
broader for the lower layer thickness where the nonlocal strength increases. Note that
the local and nonlocal theories coincide for the case of thickness d = 2 mm which means
that the local limit is reached and the nonlocal interactions no longer alter the optical
response. The resonance position is stable and any induced blue shift as observed in solid
metal nonlocal systems [25,27,28,30,35,38] is not resolved in this frequency regime. In
metal systems, such a shift results in a few tens of nanometers for highly nonlocal systems.
In ionic systems, where the resonance wavelength is several orders of magnitude larger,
such a shift does not have an impact given the broadening of the peaks with increased
nonlocal interaction. As before, the transmitted flux becomes larger than 1 in the evanescent
regime past the resonance frequency but reduces to the local result when decreasing the
parallel momentum.
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Figure 6. Transmission (upper panel) and reflection spectra (lower panel) of ionized NaCl in solution
in the (a) nonlocal and (b) local case for varying layer thickness d and with parallel momentum
k‖ = 2500 m−1.

4. Conclusions

We studied the nonlocal plasmonic response of planar electrolyte-dielectric interfaces
in comparison to the local response approximation of classical electrodynamics. We believe
that there is a need to create an understanding of plasmonics beyond electrons in solid
matter. Ions are resonant in the far-infrared and are typically confined to mesoscopic length
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scales in the range of a few hundred microns, e.g., in biological systems separated by thin
membranes. Their analytical plasmonic dispersion curve exhibits weak SPPs due to their
typically low charge carrier concentration. These fundamental properties arise due to
their large mass ∼ 104me resulting in low thermal velocities vth± which determines the
interaction strengths of the nonlocal charge carrier interaction. Overall, their plasmonic
behavior is comparable to electrons in metals. However, they offer a wider range of
tunability by choice of material allowing for the adjustment of material mass, charge and
concentration.

In addition to studying classical plasmonic properties of ions in a planar electrolyte
layer, we use the hydrodynamic two-fluid model to assess spatial dispersion effects in
ionic systems. A coupled dynamics of the negative and positive ions is obtained from
the analytical expressions of charge densities. In a three-layered system with dielectric-
electrolyte interfaces, the complexity is increased by the additional longitudinal modes
associated with nonlocal wave numbers q±. This manifests as resonance broadening of
the energy flux. The wave amplitudes of these modes were obtained from the additional
boundary condition at the electrolyte-dielectric interfaces. In the k‖ → 0 limit of the
nonlocal analytical expressions, we retrieve the original expressions for the local response.

We conclude from these results that a notable difference in the optical coefficients
arises in ionic fluids confined to a planar slab when ion-ion interaction is considered. Our
analysis allows for systematically increasing the complexity further to a three-layered multi-
fluid ionic system, where the contributions stem from more than two ionic constituents.
However, it should be noted that further effects are of importance in solutions with liquid-
liquid interfaces even when separated by thin membranes. Firstly, while such membranes
offer some stability, the interfaces are constantly shape-shifting and forming a wave pattern
instead of an idealized planar surface. Secondly, although the ions cannot move freely due
to the confinement, osmosis will take place allowing them to transfer into a neighboring
layer and, ultimately, altering the concentration until an equilibrium is reached between
a neutral and an ionized layer. Such elaborate aspects are worth investigating in the
future. Exploiting the plasmonic properties of ions can open up new avenues in their
description and, thus, expand our understanding of their behaviour. We believe that
extending plasmonics towards soft matter can bridge soft and hard matter regimes with
potential applications in biology and chemistry.
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Appendix A. Nonlocal Function Fl±

The function Fl± connects the optical coefficients of the longitudinal with the transver-
sal modes Equation (12) and is found after applying the respective boundary conditions
and solving the resulting system of linear equations. Its analytic expression is

Fl± =
ω2

p± ε0|qz|(1 + β′∓)

iqzκ±(1− α′)

(−k‖
k

)
. (A1)

where κ±, α′, and β′∓ are given by

κ± = β2
± −

ω2
p± ε0

k2ε±⊥ − (k2
‖ + q2

z)

(
1
εb
−

k2β2
∓

ω(ω + iγ∓)

)
(A2)

α′ =
ω2

p+ω2
p− ε2

0

κ+κ−(k2ε±⊥ − (k2
‖ + q2

z))
2

(
1
εb
−

k2β2
+

ω(ω + iγ+)

)(
1
εb
−

k2β2
−

ω(ω + iγ−)

)
(A3)

β′∓ =
ω2

p± ε0

κ±(k2ε±⊥ − (k2
‖ + q2

z))

(
1
εb
−

k2β2
∓

ω(ω + iγ∓)

)
. (A4)

Appendix B. Nonlocal Transmission and Reflection Coefficients

The terms that contribute to T2 to the total transmission coefficient T, Equation (13), are

T3 = {(r10p)p + (r10q+)p + (r10q−)p}eikz1 d{(r12p)peikz1 d + (r12q+)q+eiqzd + (r12q−)q−eiqzd}

+{(r10p)q+ + (r10q+)q+ + (r10q−)q+}eiqzd{(r12q+)peikz1 d + (r12q+)q+eiqzd + (r12q+)q−eiqzd}

+{(r10p)q− + (r10q+)q− + (r10q−)q−}eiqzd{(r12q−)peikz1 d + (r12q−)q+eiqzd + (r12q−)q−eiqzd}.

In the total reflection coefficient R, Equation (14), the following terms contribute toR2.

R2 = {(r12p)p + (r12q+)p + (r12q−)p}eikz1 d + {(r12p)q+ + (r12q+)q+ + (r12q−)q+}eiqzd

+{(r12p)q− + (r12q+)q− + (r12q−)q−}eiqzd.

References
1. Maier, S.A. Plasmonics: Fundamentals and Applications; Springer: New York, NY, USA, 2007. [CrossRef]
2. Tang, B.; Guo, Z.; Jin, G. Polarization-controlled and symmetry-dependent multiple plasmon-induced transparency in graphene-

based metasurfaces. Opt. Express 2022, 30, 35554–35566. [CrossRef]
3. Lai, R.; Shi, P.; Yi, Z.; Li, H.; Yi, Y. Triple-Band Surface Plasmon Resonance Metamaterial Absorber Based on Open-Ended

Prohibited Sign Type Monolayer Graphene. Micromachines 2023, 14, 953. [CrossRef]
4. Ye, Z.; Wu, P.; Wang, H.; Jiang, S.; Huang, M.; Lei, D.; Wu, F. Multimode tunable terahertz absorber based on a quarter graphene

disk structure. Results Phys. 2023, 48, 106420. [CrossRef]
5. Chen, Z.; Cai, P.; Wen, Q.; Chen, H.; Tang, Y.; Yi, Z.; Wei, K.; Li, G.; Tang, B.; Yi, Y. Graphene Multi-Frequency Broadband and

Ultra-Broadband Terahertz Absorber Based on Surface Plasmon Resonance. Electronics 2023, 12, 2655. [CrossRef]
6. Schuller, J.A.; Barnard, E.S.; Cai, W.; Jun, Y.C.; White, J.S.; Brongersma, M.L. Plasmonics for extreme light concentration and

manipulation. Nat. Mater. 2010, 9, 193–204. [CrossRef]
7. Luo, Y.; Chamanzar, M.; Adibi, A. Compact on-chip plasmonic light concentration based on a hybrid photonic-plasmonic

structure. Opt. Express 2013, 21, 1898. [CrossRef]
8. Kauranen, M.; Zayats, A.V. Nonlinear plasmonics. Nat. Photonics 2012, 6, 737–748. [CrossRef]
9. Krasavin Alexey, V.; Pavel, G.; Zayats Anatoly, V. Free-electron Optical Nonlinearities in Plasmonic Nanostructures: A Review of

the Hydrodynamic Description. Laser Photonics Rev. 2018, 12, 1700082. [CrossRef]
10. Mesch, M.; Metzger, B.; Hentschel, M.; Giessen, H. Nonlinear Plasmonic Sensing. Nano Lett. 2016, 16, 3155–3159. [CrossRef]
11. Beer, S.; Gour, J.; Alberucci, A.; David, C.; Nolte, S.; Zeitner, U.D. Second harmonic generation under doubly resonant lattice

plasmon excitation. Opt. Express 2022, 30, 40884. [CrossRef]
12. Daryakar, N.; David, C. Thin Films of Nonlinear Metallic Amorphous Composites. Nanomaterials 2022, 12, 3359. [CrossRef]
13. Zhang, C.; Ji, M.; Zhou, X.; Mi, X.; Chen, H.; Zhang, B.; Fu, Z.; Zhang, Z.; Zheng, H. Plasmon-Assisted Self-Encrypted All-Optical

Memory. Adv. Funct. Mater. 2022, 33, 2208561. [CrossRef]

http://doi.org/10.1007/0-387-37825-1
http://dx.doi.org/10.1364/OE.473668
http://dx.doi.org/10.3390/mi14050953
http://dx.doi.org/10.1016/j.rinp.2023.106420
http://dx.doi.org/10.3390/electronics12122655
http://dx.doi.org/10.1038/nmat2630
http://dx.doi.org/10.1364/OE.21.001898
http://dx.doi.org/10.1038/nphoton.2012.244
http://dx.doi.org/10.1002/lpor.201700082
http://dx.doi.org/10.1021/acs.nanolett.6b00478
http://dx.doi.org/10.1364/OE.470578
http://dx.doi.org/10.3390/nano12193359
http://dx.doi.org/10.1002/adfm.202208561


Photonics 2023, 10, 1021 12 of 13

14. Taylor, A.B.; Michaux, P.; Mohsin, A.S.M.; Chon, J.W.M. Electron-beam lithography of plasmonic nanorod arrays for multilayered
optical storage. Opt. Express 2014, 22, 13234. [CrossRef]

15. Green, M.A.; Pillai, S. Harnessing plasmonics for solar cells. Nat. Photonics 2012, 6, 130–132. [CrossRef]
16. Enrichi, F.; Quandt, A.; Righini, G. Plasmonic enhanced solar cells: Summary of possible strategies and recent results. Renew.

Sustain. Energy Rev. 2018, 82, 2433–2439. [CrossRef]
17. David, C.; Koduvelikulathu, L.J.; Kopecek, R. Comparative Simulations of Conductive Nitrides as Alternative Plasmonic

Nanostructures for Solar Cells. Energies 2021, 14, 4236. [CrossRef]
18. Fusco, Z.; Catchpole, K.; Beck, F.J. Investigation of the mechanisms of plasmon-mediated photocatalysis: Synergistic contribution

of near-field and charge transfer effects. J. Mater. Chem. C 2022, 10, 7511–7524. [CrossRef]
19. Taylor, A.B.; Zijlstra, P. Single-Molecule Plasmon Sensing: Current Status and Future Prospects. ACS Sens. 2017, 2, 1103–1122.

[CrossRef]
20. Zhou, X.L.; Yang, Y.; Wang, S.; Liu, X.W. Surface Plasmon Resonance Microscopy: From Single-Molecule Sensing to Single-Cell

Imaging. Angew. Chem. Int. Ed. 2020, 59, 1776–1785. [CrossRef]
21. Sharma, B.; Frontiera, R.R.; Henry, A.I.; Ringe, E.; Duyne, R.P.V. SERS: Materials, applications, and the future. Mater. Today 2012,

15, 16–25. [CrossRef]
22. Schlücker, S. Surface-Enhanced Raman Spectroscopy: Concepts and Chemical Applications. Angew. Chem. Int. Ed. 2014,

53, 4756–4795. [CrossRef] [PubMed]
23. Stockman, M.I.; Kneipp, K.; Bozhevolnyi, S.I.; Saha, S.; Dutta, A.; Ndukaife, J.; Kinsey, N.; Reddy, H.; Guler, U.; Shalaev, V.M.;

et al. Roadmap on plasmonics. J. Opt. 2018, 20, 043001. [CrossRef]
24. Rezaei, S.D.; Dong, Z.; Chan, J.Y.E.; Trisno, J.; Ng, R.J.H.; Ruan, Q.; Qiu, C.W.; Mortensen, N.A.; Yang, J.K. Nanophotonic

Structural Colors. ACS Photonics 2020, 8, 18–33. [CrossRef]
25. García de Abajo, F.J. Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides. J. Phys.

Chem. C 2008, 112, 17983–17987. [CrossRef]
26. Scholl, J.A.; Koh, A.L.; Dionne, J.A. Quantum plasmon resonances of individual metallic nanoparticles. Nature 2012, 483, 421–427.

[CrossRef] [PubMed]
27. David, C.; García de Abajo, F.J. Spatial Nonlocality in the Optical Response of Metal Nanoparticles. J. Phys. Chem. C 2011,

115, 19470–19475. [CrossRef]
28. Raza, S.; Stenger, N.; Kadkhodazadeh, S.; Fischer, S.V.; Kostesha, N.; Jauho, A.P.; Burrows, A.; Wubs, M.; Mortensen, N.A.

Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS. Nanophotonics 2013, 2, 131. [CrossRef]
29. Raza, S.; Bozhevolnyi, S.I.; Wubs, M.; Mortensen, N.A. Nonlocal optical response in metallic nanostructures. J. Phys. Cond. Matter.

2015, 27, 183204. [CrossRef]
30. Fernández-Domínguez, A.I.; Wiener, A.; García-Vidal, F.J.; Maier, S.A.; Pendry, J.B. Transformation-Optics Description of Nonlocal

Effects in Plasmonic Nanostructures. Phys. Rev. Lett. 2012, 108, 106802. [CrossRef]
31. Zuloaga, J.; Prodan, E.; Nordlander, P. Quantum Description of the Plasmon Resonances of a Nanoparticle Dimer. Nano Lett.

2009, 9, 887–891. [CrossRef] [PubMed]
32. Ciracì, C.; Hill, R.T.; Mock, J.J.; Urzhumov, Y.; Fernández-Domínguez, A.I.; Maier, S.A.; Pendry, J.B.; Chilkoti, A.; Smith, D.R.

Probing the Ultimate Limits of Plasmonic Enhancement. Science 2012, 337, 1072–1074. [CrossRef]
33. Toscano, G.; Straubel, J.; Kwiatkowski, A.; Rockstuhl, C.; Evers, F.; Xu, H.; Mortensen, N.A.; Wubs, M. Resonance shifts and

spill-out effects in self-consistent hydrodynamic nanoplasmonics. Nat. Commun. 2015, 6, 7132. [CrossRef] [PubMed]
34. Zhu, W.; Esteban, R.; Borisov, A.G.; Baumberg, J.J.; Nordlander, P.; Lezec, H.J.; Aizpurua, J.; Crozier, K.B. Quantum mechanical

effects in plasmonic structures with subnanometre gaps. Nat. Commun. 2016, 7, 11495. [CrossRef]
35. Wiener, A.; Fernández-Domínguez, A.I.; Horsfield, A.P.; Pendry, J.B.; Maier, S.A. Nonlocal Effects in the Nanofocusing

Performance of Plasmonic Tips. Nano Lett. 2012, 12, 3308–3314. [CrossRef]
36. David, C.; Christensen, J.; Mortensen, N.A. Spatial dispersion in two-dimensional plasmonic crystals: Large blueshifts promoted

by diffraction anomalies. Phys. Rev. B 2016, 94, 165410. [CrossRef]
37. Mortensen, N.A.; Raza, S.; Wubs, M.; Søndergaard, T.; Bozhevolnyi, S.I. A generalized non-local optical response theory for

plasmonic nanostructures. Nat. Commun. 2014, 5, 3809. [CrossRef]
38. Raza, S.; Wubs, M.; Bozhevolnyi, S.I.; Mortensen, N.A. Nonlocal study of ultimate plasmon hybridization. Opt. Lett. 2015,

40, 839–842. [CrossRef]
39. Mortensen, N.A. Mesoscopic electrodynamics at metal surfaces. Nanophotonics 2021, 10, 2563–2616. [CrossRef]
40. Kolle, M.; Lee, S. Progress and Opportunities in Soft Photonics and Biologically Inspired Optics. Adv. Mater. 2017, 30, 1702669.

[CrossRef]
41. van der Gucht, J. Grand Challenges in Soft Matter Physics. Front. Phys. 2018, 6, 87. [CrossRef]
42. Jacak, J.; Jacak, W. Plasmons and Plasmon–Polaritons in Finite Ionic Systems: Toward Soft-Plasmonics of Confined Electrolyte

Structures. Appl. Sci. 2019, 9, 1159. [CrossRef]
43. Jacak, W.A. Plasmons in finite spherical electrolyte systems: RPA effective jellium model for ionic plasma excitations. Plasmonics

2016, 11, 637–651. [CrossRef] [PubMed]
44. David, C. Two-fluid, hydrodynamic model for spherical electrolyte systems. Sci. Rep. 2018, 8, 7544. [CrossRef]

http://dx.doi.org/10.1364/OE.22.013234
http://dx.doi.org/10.1038/nphoton.2012.30
http://dx.doi.org/10.1016/j.rser.2017.08.094
http://dx.doi.org/10.3390/en14144236
http://dx.doi.org/10.1039/D2TC00491G
http://dx.doi.org/10.1021/acssensors.7b00382
http://dx.doi.org/10.1002/anie.201908806
http://dx.doi.org/10.1016/S1369-7021(12)70017-2
http://dx.doi.org/10.1002/anie.201205748
http://www.ncbi.nlm.nih.gov/pubmed/24711218
http://dx.doi.org/10.1088/2040-8986/aaa114
http://dx.doi.org/10.1021/acsphotonics.0c00947
http://dx.doi.org/10.1021/jp807345h
http://dx.doi.org/10.1038/nature10904
http://www.ncbi.nlm.nih.gov/pubmed/22437611
http://dx.doi.org/10.1021/jp204261u
http://dx.doi.org/10.1515/nanoph-2012-0032
http://dx.doi.org/10.1088/0953-8984/27/18/183204
http://dx.doi.org/10.1103/PhysRevLett.108.106802
http://dx.doi.org/10.1021/nl803811g
http://www.ncbi.nlm.nih.gov/pubmed/19159319
http://dx.doi.org/10.1126/science.1224823
http://dx.doi.org/10.1038/ncomms8132
http://www.ncbi.nlm.nih.gov/pubmed/26013263
http://dx.doi.org/10.1038/ncomms11495
http://dx.doi.org/10.1021/nl301478n
http://dx.doi.org/10.1103/PhysRevB.94.165410
http://dx.doi.org/10.1038/ncomms4809
http://dx.doi.org/10.1364/OL.40.000839
http://dx.doi.org/10.1515/nanoph-2021-0156
http://dx.doi.org/10.1002/adma.201702669
http://dx.doi.org/10.3389/fphy.2018.00087
http://dx.doi.org/10.3390/app9061159
http://dx.doi.org/10.1007/s11468-015-0064-6
http://www.ncbi.nlm.nih.gov/pubmed/27069439
http://dx.doi.org/10.1038/s41598-018-25791-0


Photonics 2023, 10, 1021 13 of 13

45. Maack, J.R.; Mortensen, N.A.; Wubs, M. Size-dependent nonlocal effects in plasmonic semiconductor particles. EPL (Europhys.
Lett.) 2017, 119, 17003. [CrossRef]

46. Maack, J.R.; Mortensen, N.A.; Wubs, M. Two-fluid hydrodynamic model for semiconductors. Phys. Rev. B 2018, 97, 115415.
[CrossRef]

47. Dong, T.; Yin, K.; Gao, X.; Ma, X. Generalized local analogue model for nonlocal plasmonic nanostructures based on multiple-fluid
hydrodynamic framework. J. Phys. Appl. Phys. 2020, 53, 295105. [CrossRef]

48. Jacak, J.E.; Jacak, W.A. New wave-type mechanism of saltatory conduction in myelinated axons and micro-saltatory conduction
in C fibres. Eur. Biophys. J. 2020, 49, 343–360. [CrossRef]

49. Jacak, J.E.; Jacak, W.A. Explanation of saltatory conduction in myelinated axons and of micro-saltatory conduction in C fibers of
pain sensation by a wave-type ion plasmonic mechanism of stimulus kinetics. bioRxiv 2023. [CrossRef]

50. Johnson, P.B.; Christy, R.W. Optical Constants of noble metals. Phys. Rev. B 1972, 6, 4370–4379. [CrossRef]
51. Kluczyk, K.; Jacak, L.; Jacak, W.; David, C. Microscopic Electron Dynamics in Metal Nanoparticles for Photovoltaic Systems.

Materials 2018, 11, 1077. [CrossRef]
52. Toscano, G.; Raza, S.; Jauho, A.P.; Mortensen, N.A.; Wubs, M. Modified field enhancement and extinction by plasmonic nanowire

dimers due to nonlocal response. Opt. Express 2012, 20, 4176–4188. [CrossRef] [PubMed]
53. David, C.; García de Abajo, F.J. Surface Plasmon Dependence on the Electron Density Profile at Metal Surfaces. ACS Nano 2014,

8, 9558–9566. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1209/0295-5075/119/17003
http://dx.doi.org/10.1103/PhysRevB.97.115415
http://dx.doi.org/10.1088/1361-6463/ab8509
http://dx.doi.org/10.1007/s00249-020-01442-z
http://dx.doi.org/10.1101/2023.07.14.548969
http://dx.doi.org/10.1103/PhysRevB.6.4370
http://dx.doi.org/10.3390/ma11071077
http://dx.doi.org/10.1364/OE.20.004176
http://www.ncbi.nlm.nih.gov/pubmed/22418175
http://dx.doi.org/10.1021/nn5038527
http://www.ncbi.nlm.nih.gov/pubmed/25136918

	Introduction
	Methodology
	Classical Soft Plasmonics — General Characteristics of Ionic Systems
	Nonlocal Interactions in Dielectric-Electrolyte Multilayered Systems

	Results and Discussion
	Nonlocal Optical Coefficients for Finite Multilayers
	Evaluating Three-Layer Systems

	Conclusions
	Nonlocal Function Fl
	Nonlocal Transmission and Reflection Coefficients
	References

