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Abstract

The importance of finding relevant research data in daily research practice is increasing.
Scholars search for pertinent data to compare and evaluate their scientific outcomes with
other available data, to integrate data from various sources for developing novel research
ideas or to reuse results instead of repeating experiments. One research domain with a
high number of such data discovery tasks is biodiversity research, a research field dealing
with the variety of species, genetic diversity and ecological diversity.

In various studies, scholars in the Life Sciences report on several difficulties they
have in retrieving relevant data. Dataset search tasks are time consuming, users retrieve
only partial pertinent data and important information can not be displayed in the user
interface, because the information is missing in the metadata. In addition, most data
portals use classical keyword based retrieval models in their search applications enabling
only syntactic matches of query terms and content in datasets. Moreover, user studies are
missing to examine the current obstacles in dataset search in more detail and to explore
usability issues in search interfaces.

Overcoming these problems has motivated a number of research efforts in computer
science such as text mining (extracting important information from text) and semantic
search (a search with results going beyond the entered keywords). In particular, the emer-
gence of the Semantic Web opens a variety of novel research perspectives, as the Life
Sciences are a very active application domain providing around one third of all available
terminologies and datasets in the Linked Open Data Cloud.

Motivated by these challenges, the overall aim of this work is to analyze the current
obstacles in dataset search and to propose and develop a novel semantic dataset search for
biodiversity research. We address the above mentioned obstacles in three main parts: (1)
We evaluate the current situation in dataset search in a user study, and we compare a first
version of a semantic search with a classical keyword search to explore the suitability of
semantic web technologies for dataset search. (2) We generate a question corpus and de-
velop an information model to figure out on what scientific topics scholars in biodiversity
research are interested in. Moreover, we also analyze the gap between current metadata
and scholarly search interests, and we explore whether metadata and user interests match.
(3) We propose and develop an improved dataset search based on three components: (A)
a text mining pipeline, enriching metadata and queries with semantic categories (entity
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types) and URIs, (B) a retrieval component with a semantic index over categories and
URIs (and various entity expansion strategies and entity-based retrieval models) and (C)
a user interface that enables a search within categories and a search including further hier-
archical relations. Following user centered design principles, we ensure user involvement
in various user studies during the development process.

Our results show that scholars only obtain moderate relevant results in a data portal of-
fering data for biodiversity research and that semantic technologies help to retrieve more
relevant data. The analysis on the question corpus and metadata reveal that scholarly
search interests in biodiversity research can be grouped into a limited set of semantic cat-
egories. These categories are less reflected in current metadata, as most data portals utilize
general metadata standards without domain specific metadata fields. Another problem are
inconsistent keywords and vocabularies in metadata fields. However, we show that text
mining approaches can support the discovery of hidden but relevant information in de-
scriptive metadata fields such as abstract and title. Finally, our improved semantic dataset
search presents results going beyond the entered keywords and offers a search within do-
main specific categories. The system is independent from specific metadata formats and
provides a user friendly interface with a keyword input. Now, users are able to retrieve
more specific terms when looking with keywords from a higher semantic hierarchy level.
Explanations on used terminologies and URIs are provided on demand. We evaluate the
system on different levels: The novel text mining pipeline BiodivTagger, enabling the
annotation of metadata with entity types and URIs, achieves moderate to good results
with respect to the identification of relevant domain categories. The evaluation of vari-
ous entity based retrieval models show that the expansion of the original query concept
with descendant nodes of domain ontologies results in the highest accuracy. Therefore,
the final system considers descendant nodes in the result set automatically. The usability
evaluation with 20 scholars reveal that for unknown search tasks users prefer the classical
single input field. However, the results for a second user interface, offering a form-based
search with the possibility to search within domain categories, are very close to the res-
ults for the single input field. Concerning the provided explanations, users appreciate
the highlightings of search terms and their related terms as well as the highlightings of
additional biological terms.



Zusammenfassung

Relevante Daten zu finden ist eine zunehmend wichtige Aufgabe in der täglichen For-
schungspraxis. Wissenschaftler suchen zum Beispiel nach Daten, um eigene Ergebnis-
se mit verfügbaren Daten zu vergleichen oder Ergebnisse wieder zu verwenden anstatt
sie zu wiederholen. Eine Forschungsdomäne mit einer hohen Anzahl solcher Suchauf-
gaben ist die Biodiversitätsforschung, eine Wissenschaft, die sich mit der Artenvielfalt,
der genetischen Vielfalt und der ökologischen Vielfalt beschäftigt. In mehreren Studien
berichten Wissenschaftler in den Lebenswissenschaften über die Schwierigkeiten, die sie
haben relevante Daten zu finden. Die Suche nach passenden Datensätzen ist Zeit aufwän-
dig, Anwender finden nur teilweise relevante Daten und wichtige Informationen können
in der Benutzeroberfläche nicht angezeigt werden aufgrund fehlender Informationen in
den Metadaten. Zudem verwenden die meisten Datenportale klassische, schlagwortba-
sierte Suchalgorithmen, die nur syntaktische Übereinstimmungen von Anfrage und Inhalt
im Datensatz abgleichen können. Des Weiteren fehlen Benutzerstudien, um die aktuellen
Schwierigkeiten in der Datensatzsuche weiter zu untersuchen und Usability-Probleme
aufzudecken. Diesen Problemen mit Methoden der Informatik zu begegnen ist Gegen-
stand verschiedener Forschungsrichtungen, z.B. im Text Mining, einem Forschungsge-
biet, das darauf abzielt, wichtige Informationen aus Texten zu extrahieren und in der se-
mantischen Suche, einer Suche, die Ergebnisse anzeigt, die über die eingegebenen Schlag-
worte hinaus gehen. Insbesondere das Aufkommen des Semantic Web hat eine Vielzahl
an neuen Forschungsperspektiven eröffnet, da die Lebenswissenschaften eine sehr aktive
Anwendungsdomäne sind, die ungefähr ein Drittel aller verfügbaren Terminologien und
Datensätze in der Linked Open Data Cloud ausmachen.

Motiviert durch diese Herausforderungen, ist das Ziel dieser Arbeit, die aktuellen Pro-
bleme in der Datensatzsuche der Biodiversitätsforschung zu untersuchen und eine neu-
artige semantische Datensatzsuche für diese Domäne zu entwickeln. Wir adressieren die
beschriebene Problematik in drei Teilen: (1) In einem ersten Teil untersuchen wir die aktu-
ellen Probleme in der Datensatzsuche in einer Benutzerstudie. Wir vergleichen außerdem
eine erste Version einer semantischen Suche mit einer klassischen, schlagwortbasierten
Suche, um herauszufinden, ob semantische Technologien für den Einsatz in der Daten-
satzsuche grundsätzlich geeignet sind. (2) Wir erstellen einen Korpus mit Suchanfragen
und entwickeln ein Informationsmodell, um zu verstehen, für welche Fachthemen sich
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Wissenschaftler in der Biodiversitätsforschung interessieren. (3) Wir stellen eine verbes-
serte Datensatzsuche auf Basis von drei Komponenten vor: (A) eine Text Mining-Pipeline,
die Metadaten mit semantischen Kategorien (Entitätstypen) und eindeutigen Identifikato-
ren (URIs) verknüpft, (B) eine Suchkomponente mit einem semantischen Index über Ka-
tegorien und Entitäten (und verschiedenen Entitäts-Expansionsstrategien sowie entitäts-
basierten Suchmodellen) und (C) einer Benutzeroberfläche, die eine Suche innerhalb von
Kategorien ermöglicht und weitere hierarchische Beziehungen in die Suche einbindet.
Außerdem stellen wir sicher, dass gemäß benutzerzentrierter Gestaltungsprinzipien ver-
schiedene Benutzerstudien während der Entwicklung durchgeführt werden.

Unsere Ergebnisse zeigen, dass Forschende nur moderate Suchergebnisse in einem
Datenportal für die Biodiversitätswissenschaften erhalten und dass semantische Techno-
logien helfen mehr relevante Daten zu finden. Die Analyse des Fragekorpus ergibt, dass
sich wissenschaftliche Informationsbedürfnisse in der Biodiversitätswissenschaft durch-
aus in eine begrenzte Anzahl von semantischen Kategorien gruppieren lassen. Diese Ka-
tegorien sind bisher wenig in vorhanden Metadaten reflektiert, da die meisten Datenpor-
tale allgemeine Metadatenstandards ohne fachspezifische Felder verwenden. Ein weite-
res Problem sind inkonsistent genutzte Begriffe in Metadatenfeldern. Wir demonstrieren,
dass Text Mining-Ansätze das Erkennen von versteckten aber relevanten Informationen
in beschreibenden Metadatenfeldern, wie z.B. ’Abstract’ unterstützen. Im letzten Teil
stellen wir unsere verbesserte semantische Datensatzsuche vor, die Ergebnisse anzeigt,
die über die eingegeben Schlagworte hinaus gehen und eine Suche innerhalb von Kate-
gorien ermöglicht. Das System ist unabhängig von spezifischen Metadatenformaten und
stellt eine benutzerfreundliche Oberfläche mit einer schlagwortbasierten Eingabe bereit.
Die Anwender erhalten spezifischere Ergebnisse, wenn sie mit Schlagworten suchen, die
auf einem höheren semantischen Hierarchielevel liegen. Erklärungen über verwendete
Terminologien und URIs werden nach Bedarf angezeigt. Wir evaluieren das System auf
verschiedenen Ebenen: Die neuartige Text Mining-Pipeline BiodivTagger erreicht mode-
rate bis gute Ergebnisse in Bezug auf die Identifikation von relevanten Fachkategorien.
Die Evaluation der verschiedenen entitätsbasierten Suchmodelle zeigt, dass die Expansi-
on der Entitäten aus den Eingabeschlagworten mit Nachkommen aus der Terminologie
die höchsten Werte in Bezug auf die Genauigkeit aufweist. Daher enthält das finale Sys-
tem im Suchergebnis automatisch auch Nachfolgerkonzepte aus der Terminologie. Die
Usability Evaluation mit 20 Wissenschaftlern zeigt, dass Anwender für unbekannte Such-
aufgaben das klassische, Eine-Sucheingabefeld bevorzugen. Die Ergebnisse für die zwei-
te Benutzeroberfläche mit einer formbasierten Suche, in der die Forschenden innerhalb
von Kategorien suchen können, sind jedoch sehr nah an den Ergebnissen für das klassi-
sche Sucheingabefeld. Hinsichtlich der Erklärungen schätzen die Anwender sowohl die
Hervorhebungen der eingegeben Suchbegriffe und ihrer verwandten Terme in den Such-
ergebnissen als auch die Hervorhebungen für zusätzliche biologische Begriffe.
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Chapter 1

Introduction

“In the same sense that we need archives for journal publications, we

need archives for the data ”

- Jim Gray in “Fourth Paradigm”, Computer scientist and winner of the Turing Award

In 2007, Jim Gray predicted a “Fourth Paradigm” [Hey et al., 2009], a data-intensive
research practice across all disciplines being dependent on computer science and al-
gorithms. Fiveteen years later, this vision is a reality. In particular, integrating scientific
data to gain new insights is a key challenge that requires large computing capabilities and
sophisticated algorithms.

In order to integrate research data, scholars need to find relevant data. Search systems
- or the underlying research field information retrieval - are a well investigated and dis-
cussed research field in computer science. The result are a variety of retrieval algorithms
available in search engines such as Elasticsearch1 or Apache Solr2. Research data repos-
itories utilize these search engines for dataset search. However, finding pertinent data is
challenging and time consuming for scholars. These challenges have not been sufficiently
addressed so far. The introduction of the Semantic Web [Berners-Lee and Hendler, 2001]
and Linked Data [Heath and Bizer, 2011] broadens the possibility to enrich data sources
and populate additional knowledge to the search process. The value of additional inform-
ation in the form of ontologies in search have already been shown in semantic search
approaches for document retrieval in the Life Sciences. However, semantic search sys-
tems focusing on scientific data and their special needs are lacking.

Understanding the user experience is essential to improve a dataset search. Studying
the context of use allows the creation of requirements for enhanced data retrieval. There-
fore, users need to be observed, interviewed and involved into the development process to
ensure a product with a high user satisfaction. This becomes challenging when semantic
technologies are utilized. For instance, it is still unclear whether Linked Data improves

1Elasticsearch, https://www.elastic.co
2Apache Solr, https://solr.apache.org/
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dataset search and what additional information from knowledge bases are benefical for
scholars. User centric semantic dataset retrieval needs more attention and is the main
scope of this thesis.

1.1 Motivation

The following sections elaborately discuss the motivation for this thesis. Starting with a
subsection about data-intensive research 1.1.1 explaining why computing capabilities are
required in today’s research practice, Subsection 1.1.2 introduces the new research field
dataset retrieval and current challenges followed by a Subsection 1.1.3 about semantic
search with its opportunities and challenges for dataset search. Subsection 1.1.4 presents
our motivation for exploring the user experience in dataset search applications.

1.1.1 Data-Intensive Research

Automatic monitoring systems, computer simulations or the digitization of legacy data
produce a vast amount of research data that are not manually manageable. For instance,
in molecular biology, there is a massive demand for large computing capabilities, as mo-
lecular sequencing produces very large files. For example, a couple of years ago, the
EMBL-EBI3, a global molecular data repository, announced on its website that it con-
tains 8.7 petabytes of data. Remote sensing for Earth observations is another example
where high end computing capabilities for data scientists are required to handle the large
number and size of images.

Apart from the exponentially increasing amount of data, progressively, scientific data
management practices are changing. In many scientific fields, it is still common to store
collected data only on a hard disk. This is difficult, as data formats and software change
over time. If data stored on hard disk are not updated, in the worst case, it can be lost
forever. Among many reasons, as [Güntsch et al., 2012] indicated, staff change and re-
tirement resulted in tremendous loss of data. Nowadays, the awareness that data sharing
and good data management are important key factors to improve data analysis and gain
scientific insights is rising. Driven by stakeholders from academia, scientific publishers
and funding agencies, scholars are expected to describe, publish and share research data.
This development was additionally promoted by the publication of the FAIR principles
[Wilkinson et al., 2016]. The adherence of these four principles ensures that data is find-
able, accessible, interoperable and reusable. Thus, in an increasing number of scientific
publications the underlying data are being made openly accessible. This “Long-tail of
Data” holds a great potential of unexplored data that are small in volume and lots in

3EMBL-EBI, https://www.ebi.ac.uk/

https://www.ebi.ac.uk/
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number. In order to find these data, new algorithms and techniques for efficient dataset
retrieval and analysis are needed.

A discipline with a large number of unexplored data is biodiversity research, a field
dealing with the diversity of life on earth - the variety of species, genetic diversity, di-
versity of functions, interactions and ecosystems [idiv, 2019, Loreau, 2010]. Collected
and stored in different data formats, the datasets often contain or link to spatial, temporal
and environmental data [Walls et al., 2014]. Many important research questions cannot be
answered by working with individual datasets or data collected by one group, but require
meta-analysis integrating a wide range of topics [Culina et al., 2018].

As application domain, this work uses scientific datasets from biodiversity research.
In particular, we conducted our study with datasets and users from long-term biodiversity
projects such as the German Centre for Integrative Biodiversity Research (iDiv) Halle-
Jena-Leipzig4, AquaDiva5 and The German Federation for Biological Data (GFBio)6.
Further information on the projects can be found in Chapter 2.4.

1.1.2 Dataset Retrieval

Datasets are defined as “a collection of related observations organized and formatted for a
particular purpose” [Chapman et al., 2019]. In contrast to classical information retrieval,
where unstructured, textual resources are the main source, dataset retrieval is mainly based
on metadata. Metadata are a supplementary or supporting descriptions of primary data.
They are mainly provided in half-structured formats such as XML7 or JSON8. A survey
among 98 data repositories showed that data archives either use all available metadata
(58%) or partial metadata (52%) in search [Khalsa et al., 2018]. Only in some research
fields, primary data can be directly used for indexing. For instance, taxonomic data in
GBIF (Global Biodiversity Information Facility)9 are provided in XML based standards
such as ABCD10 or Darwin Core11.

Retrieving pertinent data from data repositories is becoming increasingly import-
ant. For instance, the annual GBIF report [GBIF, 2018] registers a growing number
of GBIF data being reused. Scholars reuse data for various purposes. For some re-
search tasks it is not feasible to collect all data in the field, or scholars want to com-
pare their data to data collected at a different time or place. Hence, retrieving relev-
ant datasets is nowadays an essential part in daily research practice. However, studies

4idiv, https://www.idiv.de/
5AquaDiva, https://www.aquadiva.uni-jena.de/
6GFBio, https://gfbio.org
7XML, https://www.w3.org/standards/xml/
8JSON, https://www.json.org/
9GBIF, https://www.gbif.org

10ABCD, https://abcd.tdwg.org/
11Darwin Core, https://dwc.tdwg.org/

https://www.idiv.de/
https://www.aquadiva.uni-jena.de/
https://gfbio.org
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https://www.json.org/
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Chapter 1. Introduction 21

are rising that describe obstacles and report on challenges in dataset search. For in-
stance, a large study by [Kacprzak et al., 2018] reveals that users had to send direct re-
quests to data portals, because they could not find relevant data. And a recent study by
[Gregory et al., 2020] reports that scholars searched for data in publications or utilized
text search engines such as Google12. Obviously, even the launch of the Google Dataset
Search [Benjelloun et al., 2020] with almost 30M datasets from various domains such as
Social Sciences 26.2 %, Geosciences 19.0% and Biology 15.2% has not improved dataset
discovery yet, and scholars prefer to search in the text search rather than in the dataset
search.

Only very limited evaluation studies are publicly available studying these issues. There-
fore, this thesis aims to explore current obstacles in dataset retrieval.

1.1.3 Semantic Search

Semantic search is a very broad field with no exact definition what it comprises. The only
common agreement exists on the term semantic. Semantic stands for “meaningful” or just
“meaning”. [Bast et al., 2016] define a semantic search as a “search with meaning”.

A semantic search goes beyond the classical keyword-search, which only returns doc-
uments syntactly matching a user’s entered query. This broader search supports the
discovery of relevant documents containing semantically related terms. For instance, a
search for a profession could also return famous people, who have practiced this profes-
sion, or a search for a city could also return highlights for sightseeing. This related in-
formation comes from structured knowledge bases, graph-based storages providing data
in triples and formal languages such as the Resource Description Format (RDF)13 or the
Web Ontology Language (OWL)14. In order to retrieve data from these knowledge bases,
novel query languages such as SPARQL15 have been developed. A brief introduction into
common Semantic Web standards and techniques are provided in Chapter 2.3.

Over the last decade, numerous knowledge bases were developed for a variety of re-
search domains. A very active domain are the Life Sciences (see also Chapter 2.3.4).
Various taxonomies (hierarchies with no semantic relationship between the individual
concepts, only is-a relations) and ontologies (structured knowledge with concepts and
more complex relations such as part_of or develops_from) have been launched from
this community. For instance, UMLS16 and Bioportal17 provide large numbers of on-

12Google, https://www.google.com
13RDF, https://www.w3.org/RDF/
14OWL, https://www.w3.org/OWL/
15SPARQL, https://www.w3.org/TR/rdf-sparql-query/
16UMLS, https://www.nlm.nih.gov
17Bioportal, https://bioportal.bioontology.org/

https://www.google.com
https://www.w3.org/RDF/
https://www.w3.org/OWL/
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https://bioportal.bioontology.org/
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tologies and services for the biomedical domain. The BioASQ18 or TREC Live QA19

challenges are annual competitions in the fields of question answering. Furthermore,
workshops in conjunction with Computer Linguistic or Semantic Web conferences have
been organized such as the BioNLP20, BioCreative21 and S4biodiv22.

Driven by these efforts, multiple semantic search systems in the Life Sciences have
already been introduced (see Chapter 3.1.2). Most of them are based on unstructured
text such as scientific articles, or they work solely over Linked Data. Approaches that
attempt to include ontological knowledge into textual resources are rare. Moreover, due
to this lack of approaches for combined data sources, there are also few studies exploring
the suitability of the multitude of available semantic relations for dataset search. It has
not been studied so far whether semantic techniques are benefical for dataset discovery.
Therefore, we address this topic and examine different semantic strategies and approaches
for dataset retrieval. A second open issue in semantic search applications are appropriate
user interfaces. A key challenge is to hide the complexity of SPARQL statements but to
enable the power of this new technology for end users. We also address this challenge
and propose a user interface for a semantic dataset search.

1.1.4 User Experience

Users’ experiences with search applications are often influenced by the user interface. A
proper structure, a clear navigation and consistency in the design elements enhance the
user acceptance, the usability (the characteristic to what extent users can complete their
tasks, in what time and in which context, see also Chapter 2.1) and hence trust in a novel
system. On the contrary, too many colors with no contrast, buttons in different shapes and
colors, hidden navigations and dead or unhighlighted links distract users and even prevent
users from fulfilling their tasks. In addition to the user interface, the underlying search
engines often provide different functionalities. For instance, a search for “Apis mellifera”
(the scientific name for ‘honey bee’) in PANGAEA23 leads to the same number of results,
no matter whether a user enters the query with quotes or without quotes. In contrast,
a search in Zenodo24 leads to different results when searching with or without quotes.
Further issues can occur when users search with plural forms instead of singular or make
mistakes in spelling.

For dataset search and semantic search, very few user studies are publicly available.
User studies are time consuming and personnel intensive, which are very likely the main

18BioASQ, http://bioasq.org/
19TREC Live QA, https://trec.nist.gov/data/qamain.html
20BioNLP,https://bionlp.sourceforge.net/index.shtml
21BioCreative, https://www.biocreative.org/
22S4biodiv, https://fusion.cs.uni-jena.de/s4biodiv2021/
23PANGAEA, https://pangaea.de
24Zenodo, https://zenodo.org/
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reason for the lack of studies. Study planning, recruiting participants and organizing the
evaluation setup as well as the analysis afterwards take a lot of time and require additional
expertise. However, usability issues can only be identified and eliminated by means of
user studies. A user interface with a good user experience saves money for service and
support, as it prevents users from making mistakes. This finally enhances the acceptance
of and trust in digital systems. Therefore, the process of analyzing current obstacles in
dataset search as well as the development of a novel semantic dataset search should be
accompanied by various user studies.

1.1.5 Goal

The aim of this thesis is to identify obstacles in a dataset search application and propose
an improved semantic dataset search for biodiversity research using a user-centric design
process. The identification of search interests and obstacles in dataset search applications
form the basis before a concept and an enhanced semantic search system is introduced
and evaluated. Various user studies are integrated into the requirement and development
process.

1.2 Use Cases

To emphasize the necessity for improved retrieval approaches with semantic technologies,
we introduce two use cases in biodiversity research, which so far are not sufficiently
supported by dataset search applications. The uses cases were originally described by
[Thessen et al., 2015]. For each use case, we provide the research question that should be
answered by datasets and summarize the current workflow scientists have to go through.

• Use Case 1: “Which traits are common to or vary the most in beetles collected from
deserts?” [Thessen et al., 2015]

In a first step, scholars have to think about specific traits to search with, e.g., “cutic-
ular texture, hairiness, and color” [Thessen et al., 2015]. Afterwards, they can start
searching for beetle datasets with the determined traits. However, not all data de-
scriptions provide information on phenotypes or do not provide it in a format or
with a terminology that is searchable. Therefore, another workaround is to remem-
ber descriptions from older literature in Latin. Finally, if datasets have been found,
scholars need to verify the datasets found to ensure that the retrieved species ac-
tually lived in deserts at the time of collection in the field. To ensure reliability
and authenticity, scholars refer to additional data sources such as the Global Biod-
iversity Information Facility (GBIF)25. Sometimes scholars have to visit biological

25GBIF, https://www.gbif.org/

https://www.gbif.org/
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collections to verify the taxonomic, spatial and temporal information from the la-
bels located on the specimens.

• Use Case 2: “Do species that have independently reduced or lost their eyes share
common environments now or in the past?” [Thessen et al., 2015]

To answer this research questions, scholars visit and examine several hundred spe-
cies of freshwater fishes in natural history museums and biological collections.
They classify fish species into three categories: absent eyes, reduced eyes and fully
developed eyes. After further scientific evaluations, they conclude that “eye reduc-
tion and loss has occurred independently several times in this clade”
[Thessen et al., 2015]. This results in a new hypothesis: fish species adapt their
eyes to their habitat. In order to test this hypothesis, scholars go to museums again
and look closer into the data descriptions, specifically into the element “verbatim-
Locality” of the Darwin Core standard26 (a data standard for biodiversity data, see
also Chapter 4.3) describing the habitat. They notice that the descriptions vary
greatly, but there are also terms that could be synonyms. After further research,
they find that “species with reduced or absent eyes are all from subterranean envir-
onments” [Thessen et al., 2015]. Now, they can continue research on other envir-
onmental factors that might have an influence on that habitat.

1.3 Problem Statement

The use cases of current practices in biodiversity research reveal, that research data are
scattered across various repositories and institutions and scholars need to search at differ-
ent places and portals to obtain relevant data. Once suitable datasets are found, they are
in different formats, or descriptions are incomplete.

Searching for datasets is an increasingly important task in daily research work, but
scientists are not satisfied with the search results returned by dataset search applications.
A study by [Kacprzak et al., 2018] confirms that 40% of the users of an open data portal
said that they could not find the data they were interested in and thus directly reques-
ted the data from the repository manager. In different publications, ecologists mentioned
obstacles when looking for datasets, e.g., missing primary data, missing information on
how the studies were conducted [Parker et al., 2016] and scattered data across various
data portals [Culina et al., 2018, Ramakers et al., 2018]. The participants in a study by
[Gregory et al., 2020] reported on dataset search as a challenging (73%) or even difficult
(19%) task. From the user perspective, the most challeging issues are “inadequate search

26verbatimLocality, http://rs.tdwg.org/dwc/terms/verbatimLocality
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tools, a lack of skill in searching for data, or the fact that their needed data are not di-
gital” [Gregory et al., 2020]. As a consequence, scholars look for datasets in publications
mentioning research data, or they utilize general search engines such as Google27.

So far, we do not know why current search applications in data portals do not
work properly for dataset search. Only very few user studies explored obstacles in
dataset search. For instance, user studies are missing on existing retrieval techniques and
their appropriateness for dataset search. Search applications usually consist of a given cor-
pus, a query and a retrieval model to return a ranked list of documents that match a query
(see also Chapter 2.2.2). In dataset retrieval, the underlying documents are metadata files,
descriptive information about the primary data. Most data portals utilize conventional
retrieval models such as the Vector-Space-Model [Khalsa et al., 2018], a keyword based
approach returning data that match the user’s query exactly. It is successfully used in a
wide range of applications and performs well when queries are very specific and users
want to retrieve the documents that exactly contain their search terms. Yet, little research
has been done whether keyword based retrieval leads to relevant results in dataset search.
In particular, there is a lack of investigations in applied domains. Hence, further efforts
and studies are necessary to analyze how scholars search for scientific data and to tackle
the root causes for the current problems.

The Semantic Web with its vision of a web of data opens a variety of new research
opportunities in computer science. Due to the large amount of available terminologies and
datasets in the Linked Open Data (LOD) cloud with respect to the Life Sciences, numer-
ous research activities in computer science have emerged to address the above mentioned
obstacles. One example for such a research field is semantic search. In particular, a
variety of approaches exist for the biomedical domain that link search terms to entries
in taxonomies or ontologies. These enriched queries are then sent to search engines
and return not only exact matches, but the result set also contains documents with syn-
onyms or alternate labels for the originally entered query terms, e.g., [Thomas et al., 2012,
Wei et al., 2019, Ernst et al., 2019]. However, it is still unclear whether query expansion
is beneficial for dataset retrieval. We still do not know how to properly integrate addi-
tional semantic information into the retrieval process for dataset search. For instance,
are any specific semantic relations relevant for dataset discovery? And how to further en-
hance semantic search for dataset retrieval? In particular, it is still a technical challenge
to design and develop a search over metadata and knowledge bases in one search process.
Utilizing entities (concepts) in the retrieval process instead of keywords would allow a
more powerful search - an intelligent search that can expand the scope not only on syn-
onyms and alternate labels, but also enables an expansion on available semantic relations.
A second issue in semantic search systems are missing appropriate user interfaces.
Quering knowledge bases requires SPARQL knowledge, which is too complex for end

27Google, https://www.google.com

https://www.google.com
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users. Open questions are for instance how to design a user interface that hides the com-
plexity of ontologies and vocabularies, but uses the full potential of SPARQL queries.
And what concepts or additional information are necessary in the presentation of search
results to foster comprehensibility and reliability?

1.4 Hypotheses

Based on the described problem statement (Section 1.3), we define the main hypothesis
as follows:

It is possible to analyze, describe and enrich scientific datasets and scholarly inform-

ation needs so that scholars are able to retrieve, understand, and reuse scientific datasets

with an improved retrieval system.

Due to our association with various biodiversity research related projects, the predom-
inantly studied domain is biodiversity science. The main hypothesis can be divided into
the following sub-hypotheses:

Hypothesis H1:
Current dataset search systems do not support (biodiversity) scholars sufficiently to find
relevant datasets.

Hypothesis H2:
A major problem are insufficiently described metadata. Metadata fields do not entirely
reflect scholarly search interests. Data providers’ search applications are mainly based on
these insufficient metadata.

Hypothesis H3:
Descriptive parts in metadata such as titles or abstracts implicitly contain useful inform-
ation reflecting information needs of the respective domain. This hidden data can be
extracted and semantically enriched with text mining techniques.

Hypothesis H4:
A concept-based retrieval model that considers semantic relations in ranking returns more
relevant results than a concept-based retrieval model using no additional semantic rela-
tions in ranking.

Hypothesis H5:
Users are more efficient in a semantic dataset search that allows a search over semantic
categories in comparison to a semantic dataset search offering a single input field as search
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input. Users find explanations including utilized semantic technologies and terminologies
more useful than a dataset search with less semantic information.

1.5 Objectives

The main goal of this thesis is to analyze current obstacles in dataset search and to propose
and develop an improved dataset search for biodiversity research based on user-driven
design principles. In order to verify our hypotheses, we define two sub-objectives:

1. O1: Identify obstacles in current dataset search systems for the green Life Sciences
considering all three building blocks in dataset retrieval: the data source, informa-
tion needs (user queries) and the retrieval process (addressing H1 - H2).

2. O2: Design and develop an improved dataset search that takes scholarly informa-
tion needs into account, describes scientific data appropriately and returns relevant
results that are comprehensible and reusable (addressing H3 - H5).

1.6 Overview of the Proposed Solution

An overview of the thesis is illustrated in Figure 1.1. The proposed solution is designed
in accordance with the three parts of a retrieval system (Chapter 2): user input (quer-
ies), retrieval process and data source. Each row in the table displays the outcomes for
the identification of obstacles (O1) and a solution (O2). User-centered design principles
and evaluations are considered in all steps. Each cell in the table contains novel devel-
opments, gold standards or test collections denoted with light icons and/or evaluations.
We distinguish between user requirement studies and formative evaluations (gear icon)
and summative evaluations (checklist icon). The user icon denotes evaluations with user
involvement.

At first, we carried out an evaluation of an existing dataset search (Hypothesis H1,
Chapter 3) for biodiversity research to analyze if users are satisfied with the given retrieval
system and if they are able to find relevant datasets. A user survey was conducted after-
wards to obtain further insights on current obstacles. Based on these findings, we wanted
to know if semantic enrichment actually improves dataset retrieval systems. Therefore,
we developed a first prototype of a semantic search, and we conducted tests with schol-
ars to determine if a semantically enhanced search outperforms a keyword based search
(Hypothesis H1, Chapter 3). Subsequent interviews complemented this formative study.

The results pointed us back to the user input and led to a large study on scholarly
information needs in biodiversity research (Hypothesis H2, Chapter 4.2). The aim of
this study was to understand what search interests and domain categories are important
for biodiversity research, and therefore should be considered in a retrieval system. The
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Figure 1.1: Overview of the thesis. The light bulb denotes reusable outcomes such as gold stand-
ards, test collections and development parts. The checklist icon indicates requirement studies and
evaluation types (formative and summative). Entries with a user icon highlight evaluations with
user involvement.

result is a question corpus containing both search questions (questions, scholars have in
mind when searching for datasets) and research questions (questions that are not neces-
sarily tailored to a search but require datasets implicitly) to analyze the research context
a scholar is involved. We annotated the questions’ noun entities and their nested com-
ponents manually with domain categories (entity types). In a subsequent evaluation with
domain experts, we explored the comprehensiveness and representativeness of the pro-
posed categories. Afterwards, we analyzed the occurence of the identified categories in
common metadata standards and whether the categories are reflected in existing metadata
in five large data repositories (Hypothesis H2, Section 4.3 and Section 4.4). This allowed
us to quantify the gap between existing metadata and scholarly information needs in biod-
iversity research.

Due to the findings of these studies, we were able to list and describe obstacles in
dataset retrieval systems. Hence, we propose an improved retrieval system for existing
research data using semantic enrichment in all three building blocks (Chapter 5). The first
component is a text mining pipeline linking metadata with concepts from selected do-
main ontologies and assigning an entity type (Hypothesis H3, Chapter 6). We evaluated
the pipeline with a novel gold standard for metadata. The second part describes the re-
trieval component (Hypothesis H4, Chapter 7). Based on the semantic annotations created
in the previous step, a concept based retrieval is now possible. In order to get a better un-
derstanding of scholars’ ranking preferences and what kind of semantic relations support
dataset retrieval, we conducted a user survey. The outcome gave insights on the selection
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Figure 1.2: Research methodology of the thesis: According to an agile development, O1 and O2
were processed in iterations. Following a user-centered design, we collected user requirements
and conducted formative and summative evaluations iteratively.

of entity based retrieval models and semantic relations to be considered. We evaluated the
retrieval approach with two test collections from the Life Sciences. One of this ground
thruth information was created in cooperation with a domain expert. We developed a user
interface (UI) framework (Hypothesis H5, Chapter 8) to provide convenient access to the
novel semantic dataset search. We propose two user interfaces based on discussions and
decisions in a focus group. A final evaluation with scholars took place to assess the user
experience and usability.

1.7 Research Methodology

The research methodology in this thesis oriented on an agile development process (Figure
1.2) consisting of several iterations. The outcome of one increment served as input for the
following increment [Sommerville, 2021].

User feedback was considered throughout the entire thesis process. We collected user
requirements, conducted formative evaluations to assess a solution in an early stage to
make improvements or to obtain further insights for the development process, and we
carried out summative evaluations to support the assessment of the overall experience or
accuracy of a proposed solution 2.

At first, we conducted a relevance evaluation on a current dataset search in a summat-
ive evaluation (Chapter 3). Afterwards, we developed a prototype of a semantic search and
evaluated the prototyp in a comparative, formative study at the very beginning of the thesis
to estimate whether users actually benefit from semantic technologies in a dataset search.
This outcome mainly inspired and influenced the following iterations. Subsequently, we
conducted a more thorough analysis of user’ information needs and available data before
we developed a final concept for a semantic dataset search. In a formative evaluation,
we verified the proposed domain categories (Chapter 4.2). The domain experts sorted
provided terms and phrases into pre-defined categories (card sorting). In an analysis on
existing metadata standards and metadata in data repositories, we collected quantitative
data to determine the biggest obstacles in metadata descriptions. These findings gave
further insights on the subsequent development of an improved dataset search.
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In order to get feedback on ranking preferences in a dataset search, we presented
search scenarios in a survey to domain experts (Section 7.3). The results of this user re-
quirement study led to the entity expansion strategies and retrieval approaches introduced
in Section 7.5 and Section 7.6. We evaluated the retrieval part with two test collections.
One of those was created in the scope of this work (Section 7.4). The discussions and
testings of the suggested user interfaces (Chapter 7) in a focus group (Section 8.2.3) facil-
itated the decision on the final user interfaces and the usability methods for the subsequent
user study. In a final summative evaluation with 20 scholars, we assessed the usability of
two main search components (query input and explanations) in two proposed user inter-
faces for dataset search (Chapter 8).

In addition to evaluations, comprehensive literature studies for the different involved
research fields complemented the requirement analysis for each iteration. Due to the het-
erogeneity of the research fields, each iteration required separate literature studies. It was
necessary to gain comprehensive knowledge in user-centered design and user evaluations.
Moreover, familiarity with information retrieval and Natural Language Processing was re-
quired as well as knowledge in semantic web technologies. Finally, in order to be able to
work and understand the data sources, basic foundations had to be gained in biodiversity
research and biodiversity informatics. We provide basic knowledge for each research field
in Chapter 2. We also decided to provide related work at the beginning of each chapter
as we think, this guides readers better through the thesis and presents relevant literature
where it is needed.

Further additional insights for the proposed solutions were gained during the parti-
cipation in the GFBio28 research project. GFBio is a national infrastructure and contact
point for issues concerning research data management and standardization of biological
and environmental data. The project was established in 2013 with the main goal to sup-
port scholars in all steps of the data life cycle, from acquisition to archiving and data
publication. The team at the Friedrich Schiller University Jena (FSU Jena) was respons-
ible for the data portal, in particular for the data search, user management and integra-
tion of tools and services developed by GFBio partners. Being part of the project from
2013 to 2021, the involvement in the design, implementation and maintenance process of
GFBio’s dataset search strongly influenced this thesis. In particular, several workshops,
telephone conferences and task groups gave important hints towards a concept for an im-
proved search. First results of the thesis were also incorporated into the GFBio search.
GFBio’s semantic search [Löffler et al., 2017] was developed based on the findings of the
first semantic prototype of this thesis. In this novel semantic search, query terms were
expanded with services from the Terminology Service [Karam et al., 2016] and extended
search results on related terms such as synonyms, common and scientific names. The out-
comes of the first research goal (O1) also led to improvements of GFBio’s faceted search.

28GFBio, https://www.gfbio.org

https://www.gfbio.org
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Chapter Contribution Data and Code Availability Publication

Chapter 3, H1 A first prototyp of a semantic search based
on query expansion was developed to evaluate
whether semantic techniques are benefical for
dataset search. For this methodology, we provide
a JAVA based command line tool to obtain syn-
onyms, alternate labels, descendant and ancestor
nodes from two terminology services. A demon-
stration of this approach (limited to synonym
expansion) is integrated into the GFBio search
(https://search.gfbio.org/)

https://doi.org/10.
5281/zenodo.7374539,

[Löffler and Klan, 2016],
[Löffler et al., 2017]

Chapter 4, H2 We created a manually annotated and evaluated
question corpus for biodiversity research repres-
enting main search interests (information cat-
egories) in biodiversity research. In addition,
scripts and survey templates are provided for cre-
ating own surveys for information modelling and
analyis. As a second contribution, we developed
a methodology to harvest and analyze metadata
from data repositories.

https://doi.org/10.
5281/zenodo.7385600

[Löffler et al., 2021]

Chapter 6, H3 We manually annotated a metadata corpus
(QEMP) with some of the identified information
categories (entity types) from H2. As a second
contribution, we developed a text mining pipeline
to automatically extract these entity types. In ad-
dition, key terms are linked to entities of selected
ontologies.

https://doi.org/10.
5281/zenodo.7385638

[Löffler et al., 2020]

Chapter 7, H4 For the evaluation of different entity based expan-
sion strategies and entity based retrieval models,
we created a metadata ground truth in coopera-
tion with a biodiversity expert. We also imple-
mented two entity-based retrieval models being
available as GATE Mímir (https://gate.ac.
uk/mimir/) plugins.

https://doi.org/10.
5281/zenodo.4638089

https://doi.org/10.
5281/zenodo.7396799

[Löffler et al., 2021]

Chapter 8, H5 The developed user interface framework for a
semantic dataset search provides two interfaces
(a structured, category based input and a clas-
sical one input field). We also setup a jupy-
ter notebook to analyze the user results, and
we implemented scripts to compile several sur-
vey files into one large file. As a supplement
outcome, we upgraded the Semantic Assistants
framework [Witte and Gitzinger, 2008] to pub-
lish text mining pipelines for Named Entity Re-
cognition tasks.

https://github.com/
fusion-jena/semantic-
assistants-2.0

https://doi.org/10.
5281/zenodo.7394890

https://doi.org/10.
5281/zenodo.7391991

[Shafiei et al., 2021],
[Löffler et al., 2023]

Table 1.1: Research contributions with source code and data availability and respective publica-
tions.

All GFBio services are now part of the Nationale Forschungsdateninfrastruktur für die

Biodiversität (NFDI4Biodiversity)29. The former search UI was revised and is now based
on the first version of the user interface framework being developed in the scope of this
thesis (Chapter 8) [Shafiei et al., 2021].

We developed the functional and non-functional requirements on the proposed system
after the domain specific requirements and conditions were identified (Chapter 4). The
functional and non-functional requirements are introduced in Chapter 5.

29NFDI4Biodiversity, https://www.nfdi4biodiversity.org/de/
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1.8 Research Contributions

Table 1.1 lists the research contributions of our work. We focused on reusable arti-
facts such as gold standards, test collections, frameworks and further reusable code. We
provide a brief overview about each contribution with its availability and respective pub-
lications.

1.9 Structure of the thesis

At first, we present the research areas our work deals with in a background chapter
(Chapter 2). The following chapters are mainly organized along the hypotheses. We
conduct different evaluations on the retrieval process, search interests and data sources to
determine requirements for an improved dataset search (addressing H1 and H2) in Chapter
3 and Chapter 4. Chapter 5 summarizes the findings from first two chapters, provides
ideas for improvements and introduces the proposed solution. The focus of the last three
chapters is on the improved dataset search. In separate chapters, we present each of the
three components addressing H3 - H5. Chapter 6 introduces the pre-processing compon-
ent with the novel text mining pipeline. In Chapter 7, we present the evaluation on dif-
ferent entity expansion strategies and entity-based retrieval models. Chapter 8 describes
the presentation component and the user study on the usability of specific components in
a dataset search. We summarizes all achievements in Chapter 9, and we give an outlook
on future work in Chapter 10.





Chapter 2

Background

“If I had asked people what they wanted, they would have said faster

horses.”

- attributed to Henry Ford, Founder of Ford Motor Company

Searching for information on the web is an interactive and highly complex process.
Users have different backgrounds, attitudes and expectations. And systems are based on
different technologies, algorithms and data. Asking users what should be improved in a
search application is therefore difficult. Hence, solid research from various research areas
is required to explore the user experience and to design and develop improved retrieval
systems.

This work deals with topics from three research areas: User experience and user-
centered design, information retrieval and the Semantic Web. Basics about user-centered
design and user evaluations are provided in Section 2.1. These foundations are necessary
to design proper user studies, to collect user requirements and to develop systems in close
contact with the target group. Information retrieval (IR) is the research field that has
leveraged the development and success of search engines. Main algorithms and evaluation
metrics in information retrieval are introduced in Section 2.2. As this works aims to
explore the integration of semantic resources into the retrieval process, Section 2.3 gives
an overview about basic Semantic Web formats. The application domain to which this
work relates to is biodiversity research. Therefore, Section 2.4 defines what biodiversity
research is, what it comprises and introduces the projects and data used in this work.

2.1 User-Centered Design

User-centered (or human-centered) design aims to develop systems that are usable, com-
prehensible and focused on user needs. This result is often also called usability. It de-
scribes to what extent users can complete their tasks, in what time and in which con-
text [ISO 9241-11, 2018]. User-centered design is the process to reach usability.

34
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Usability is characterized by five attributes [Nielsen, 1993]: Lernability, Efficiency,
Memorability, Errors and Satisfaction. Learnability describes how easy it is to work with
the system. The aim is to design systems that require no or less training to get started
and to achieve the desired tasks. Efficiency comprises the amount of work and tasks
users can achieve in a certain time once they are familiar with the system. Memorability

characterizes how easy it is to remember the system with its navigation and functions after
some period of time. Users should be able to continue their work without any additional
training. Errors describe the amount of errors occuring while working with the system.
Usually, the aim is to develop systems with low error rates. Satisfaction comprises the
subjective estimation of users how satisified they are with the system and whether they
like the system or not.

In order to achieve usability, multiple standards for user-centered design have been
developed. A central entry point is the [ISO 9241-11, 2018] standard published by
the International Organization for Standardization (ISO). Developed in the early nineties
and revised over the years, ISO 9241 contains definitions, advices, guidelines and prin-
ciples to develop and evaluate user-focused applications. One important sub-standard
is [ISO 9241-210, 2019] (Human-Centred Design For Interactive Systems) comprising a
definition and activities to ensure human-centered design (Definition 1).

Definition 1. “Human-centered design is an approach to systems design and development

that aims to make interactive systems more usable by focusing on the use of the system

and applying human factors/ ergonomics and usability knowledge and techniques. This

approach enhances effectiveness and efficiency, improves human well-being, user satis-

faction, accessibility and sustainability; and counteracts possible adverse effects of use

on human health, safety and performance.”

To ensure a user-centered design (Figure 2.1), four main steps should take place during
the development process of an application: At first, the target group needs to be identi-
fied and studied, e.g., by observing daily tasks or visiting the working environments. It
also needs to be examined for what purpose the target group will use the product (context
of use). Afterwards, user requirements can be collected, sorted and prioritized. Based
on these first insights, several prototypes are developed and tested. These steps are iter-
ated over and over again until the final result is achieved. Several user experience (UX)
methodologies have been developed for each of these phases. We introduce the UX meth-
dologies used in this work in the following Subsection 2.1.1.

2.1.1 Usability Testing

Usability testing comprises various evaluation methodologies to explore whether a system
is easy to use or not. Researchers observe or interview users while they are interacting
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Figure 2.1: Four steps ensure a user-centered design process.

with the system. Usually, the main focus is on the user interface. The more users report
on difficulties they have with a certain navigation, a function or the comprehensibility of
a particular content, the more likely it is that this problem is a usability issue.

There are two main types of evaluations [Nielsen, 1993, Tullis and Albert, 2013a]:
formative and summative evaluations. Formative evaluations are conducted to analyze a
particular feature or design in an early stage of the development with the aim to improve
the system before it is released. In contrast, summative evaluations are utilized to measure
whether the system meets the defined requirements. For these final evaluations, which are
usually not that frequently conducted than formative evaluations, often benchmarks are
utilized or a larger number of users is recruited to examine the usability on a larger scale.

The data collected in usability studies distinguish between quantitative and qualitative

data [Nielsen and Norman, 2022]. Qualitative data provide direct feedback on the usab-
ility of a system. When scholars observe users working or testing the system they can
directly obtain information how easy the design or system is to use or what difficulties
occur. In such live sessions, researchers can ask users why they encounter a problem
or what they think about a particular design. It also give researchers the opportunity to
change the methodology if needed (e.g., to ask more questions or discuss another solu-
tion) [Nielsen and Norman, 2022]. Quantitative data result in indirect findings on the
usability of a design but deliver numbers on quantitiative measures such as error rate,
time of task completion or success rate. However, scholars often need qualitiative data in
addition to be able to interprete the numbers. For instance, if the task completion is only
about 50%, it does not tell anything about the problems users had performing the tasks.
Due to this disadvantage, usability studies that aim to gather quantitative data often also
consider methodologies collecting qualitative data [Nielsen and Norman, 2022].

Table 2.1 provides an overview of the usability testing methods used in this work.
For each methodology, we provide a short description and the information what data are
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produced and for which evaluation type it is suited. Further usability testing methods are
introduced in Nielsen’s book on the foundations of usability testing [Nielsen, 1993].

Qualitative data can be collected in formative and summative evaluations and return a
researcher’s impressions and interpretations of studies with few participants. Quantitative
data are mostly gathered in summative evaluations with a well-defined and controlled
methodology and a larger number of participants. The result of quantitative data can be
statistically analyzed. This encourages further research, which might aim to replicate or
extend a study.

2.1.2 Usability Metrics

Usability metrics comprise all kinds of measurements to determine to what extent certain
usability attributes have been addressed in a system. Based on a specific usability goal
(e.g., Efficiency of Use), a model needs to be established to visualize which goal is ad-
dressed by which usability testing method and measured by which metric [Nielsen, 1993].
[Tullis and Albert, 2013a] distinguish between various types of usability studies (e.g.,
completing a transaction, comparing products or alternative designs) and provide sugges-
tions for relevant usability testing methods and metrics. In the following, we introduce
the usability metrics used in this work. Other metrics and more details for each metric are
provided in [Tullis and Albert, 2013b, Tullis and Albert, 2013c, Tullis and Albert, 2013d]

Performance based metrics [Tullis and Albert, 2013b]: Performance based metrics
describe all kinds of metrics observing or recording the user behaviour. They are the major
metrics to measure the efficiency and effectiveness of a system. Important metrics being
used in multiple usability studies are task success, time-on-task, errors and efficiency. All
metrics can be either collected manually or automatically (e.g., by logging mechanisms).

• The task success metric marks the success or failure of pre-defined user tasks and
can be either measured from the task or user perspective. Usually, success is meas-
ured on a scale with different levels. From the task perspective, success could be
determined with three levels: complete success (all tasks achieved), partial success
(only partial tasks achieved) and failure (no tasks achieved). In contrast, a scale
based on the user perspective could distinguish between ‘no problem’, ‘minor prob-
lems’, ‘major problems’ and failure. Independent of which perspective is chosen, a
proper definition and a quantitative measure of ‘success’ must be given, e.g., num-
bers of incomplete tasks or numbers of problems occurred.

• The time-on-task metric measures the time users need to reach a specific goal or
task. The start and end time of an action is either manually or automatically recor-
ded. Another opportunity besides start and end time are pre-defined thresholds. In
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Method Description Data Evaluation
Type

Interview Researcher conduct formal interviews
with one or more users.

qualitative formative

Field studies (ques-
tion collection)

Researchers visit target group users at
the environment that is relevant for the
application to be developed.

qualitative formative

Concept testing/
Competitive testing

An important function is introduced to
the target group in an early stage of the
developement. This can be combined
with competitive testing in which sev-
eral different concepts are discussed.

qualitative formative

Focus group Representative users of a target group
are selected to be involved in the design
and development process.

qualitative formative

User stories Daily tasks within the context of use
are collected from several users of the
target group.

qualitative formative

Card sorting Users classify information entities into
categories.

qualitative,
quantitative

formative

Clickable paper
prototype

In an early stage of the developement
online or offline paper prototypes sup-
port the identification of obvious usab-
ility issues, for instance in the naviga-
tion or comprehensibility of content.

qualitative formative

Survey (question-
naire)

Surveys aim to measure users’ satisfac-
tion and subjective estimations on the
use with the system.

quantitative formative,
summative

Moderated (re-
mote) usability
studies

A moderator guides users through dif-
ferent user tasks in a live (remote) ses-
sion.

qualitative,
quantitative

summative

Logging actual use The system records the user behaviour
automatically, for instance clicks on
links and buttons, keywords entered in
a search input field and occurring er-
rors.

quantitative summative

Table 2.1: Usability testing methods used in this work according to Nielsen [Nielsen, 1993,
Nielsen and Norman, 2022]
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this case, users need to fulfill a task within a certain time frame. In the later ana-
lysis, the threshold-based measurement allows a simple visualization, such as the
amount of users being below the threshold for a specific task.

• Errors can be the result of usability problems and may lead to task failure. Errors
can occur on a user’s or on a system’s side. Users may provide incorrect input data,
select the wrong button or do the required actions in an incorrect sequence. System
errors can occur if sub-systems are not available, the login is not successful or the
maximum numbers of characters are reached in an input field. Again, similar to the
definition of ‘success’, it is crucial to describe in advance what is an error and what
is a required system or user behaviour.

• In supplement to task success and time-on-task, there are further metrics to meas-
ure efficiency. A common approach is to determine the actions that are needed to
achieve a goal. Based on pre-defined start and end actions, the number of user ac-
tions (e.g., user clicks) are counted until the final state is reached. Other approaches
combine task completion and time per task. The Common Format for Usability
Test Reports [ISO, 2018] defines the “core measure of efficiency” as the “ratio of
the task completion rate to the mean time per task” [Tullis and Albert, 2013b]. A
variation of this ratio proposed by [Tullis and Albert, 2013b] divides the number of
completed tasks by the “total time spent by the participant on all tasks (successful
and unsuccessful)”.

Issue-based metrics [Tullis and Albert, 2013c]: Issue-based metrics aim to collect in-
formation on usability issues. Usability issues occur while using a system and influence
a user’s behaviour. The range of issues can be very broad and may prevent users of
completing a task or may lead to a wrong action while navigation through a page. A
usability issue can also be the misinterpretation of a particular content or a user’s unsatis-
faction with a system. Issue-based metrics can be either collected in on-site studies with
a thinking-aloud method 2.1.1 or can be determined with comment fields in automated
studies (e.g., questionnaires). Not all usability issues have the same importance. There-
fore, severity ratings facilitate to concentrate on the main issue only. In most cases, a
three-level rating is sufficient. Finally, the most important usability issues can be either
grouped in categories, or the issue classification can be based on the tasks or participants.

Self-reported metrics [Tullis and Albert, 2013d]: Self-reported metrics comprise all
methodologies to collect direct feedback from users. The aim is to get information about
users’ perception about the system. Participants can be asked orally in on-site or remote
sessions (interviews), but users can also fill a paper or an online questionnaire. The latter
has the advantage that it is more likely that the participants give an unbiased feedback.
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A study conducted by [Dillman et al., 2009] reveals that people tend to give more posit-
ive answers in interviews (in-person or on the phone). The reason for this is that people
hestitate to give critical feedback to moderators or interviewers in direct interview situ-
ations. Hence, it is recommended to provide anonymous surveys, which the moderator
will only see once the participant has left.

Likert scales are the most common rating scale used to collect self-reported metrics.
Developed in 1932 by [Likert, 1932], this rating scale focuses on the level of agreement.
Usually, a five- or seven-point Likert scale is utilized with agreement levels such as stronly

disagree, disagree, neither agree nor disagree, agree, strongly agree. Another rating
scheme are the semantic differential scales [Osgood et al., 1975] that provide oppositive
adjectives such as weak/strong or beautiful/ugly. Similar to the Likert scale, the levels
between these opposite terms are rated on a five- or seven-point scale.

Self-reported metrics are mostly collected after a task (post-task) and after a com-
plete session (post-session). In particular for post-sessions, multiple questionnaires have
been developed to gather anonymous user feedback such as the System Usability Scale
(SUS) [Brooke, 1996], the Questionnaire for User Interface Satisfaction (QUIS)
[Chin et al., 1988] or the Computer System Usability Questionnaire (CSUQ) [Lewis, 1995].
In 2004, [Tullis and Stetson, 2004] compared several post-session questionnaires and
found out that the results from the SUS questionnaire, which is relatively short with
10 questions only, resulted in higher percentages of correct conclusions with respect to
the percentages of correct conclusions achieved with the other questionnaires. They as-
sume that the SUS questionnaire in particular is more consistant in its result as it contains
five positive and five negative statements, which better keeps a user’s attention. Another
positive influence is the assessment of a system or page as a whole instead of splitting
statements into smaller sections like in the other questionnaires.

2.2 Information Extraction and Information Retrieval

Information retrieval comprises research on how to find and obtain relevant information.
Leveraged by the introduction of the world wide web in the nineties, one major outcome of
this research area are search engines, which are utilized in numerous daily tasks for mul-
tiple purposes in various domains. In Subsection 2.2.2, we describe the main functionality
of a retrieval process followed by the introduction of multiple evaluation metrics 2.2.3.
Information retrieval is closely related to Natural Language Processing. Before indexing,
documents need to pass a syntactic analysis and an optional semantic analysis, both being
introduced in Subsection 2.2.1. The differences between classical document retrieval and
dataset retrieval are presented in Subsection 2.2.4.
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2.2.1 Natural Language Processing and Information Extraction

Natural Language Processing (NLP) is a research field that aims to analyze and to “un-
derstand” human written text with machines [Maynard et al., 2017]. One sub-field in this
large research domain is information extraction (IE). It comprises the processing of un-
structured text to identify and extract structured information [Gaizauskas and Wilks, 1998].
For this purpose, three main steps have to be carried out subsequently
[Maynard et al., 2017]: Pre-processing (to recognize basic elements in text), named en-

tity recognition (NER) (to identify important entity types in text) and relation or event
extraction (to determine relations or events).

Information extraction tasks: In a pre-processing step, the system splits the text into
individual tokens such as words, punctuations or spaces. Afterwards, it identifies sen-
tences, followed by part-of-speech tagging (POS), a syntactic analysis to classify tokens
into categories, e.g., nouns, verbs and adjectives [Jurafsky and Martin, 2008]. Most text
mining pipelines also provide a morphological analysis (an extended form of stemming
or lemmatization) to determine the root form of terms. As a last step, parsing and
chunking aim to identify further grammatical structures or phrases. Subsequent to this
pre-processing step, named entity recognition can take place. Extracting important terms
or phrases, such as names, organizations, geographic locations and classifying them into
proper categories are the major tasks in this step [Maynard et al., 2017]. Once import-
ant words are identified, a further task can be added - entity linking. In this step, the
extracted terms or phrases are linked to an entry in a knowledge base [Balog, 2018].
The distinction between named entities and simple entities is crucial, as named entities
refer to concrete people (e.g., Jane Goddall, Barack Obama) or geographic locations (e.g.,
The Botanical Garden Jena, Mount Cook), whereas entities refer to classes or types, e.g.,
female scientist, president, garden, mountain [Maynard et al., 2017, Balog, 2018].

Two main approaches can be distinguished in linguistic processing, namely knowledge

based approaches and approaches based on machine learning [Maynard et al., 2017].
Knowledge based approaches are the more conventional approaches based on rules writ-
ten by NLP developers. Rules have the advantage that they are easy to understand
[Maynard et al., 2017] and no large training data corpora are needed. However, changing
or extending rules can get time-consuming, in particular for complex tasks. In contrast,
machine learning approaches require only very little or no expertise in NLP. A variety
of ready-made models exist for major entity extraction tasks. They are easy to setup in
case sufficent training data exist [Maynard et al., 2017]. Supervised approaches based
on labeled training corpora usually provide more precise results than unsupervised ap-
proaches. However, system or requirement changes can cause re-labeling, which can get
time-consuming, too.
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Evaluation: In order to evaluate information extraction pipelines, manual labelings are
required. Usually, human judges manually annotate a text corpus based on given annota-
tion guidelines. This manual assessment is called “gold standard”
[Jurafsky and Martin, 2008]. In an evaluation, gold standards allow a comparision of
automatically produced annotations and manually created labelings. Precision and recall
metrics can be applied to compute the accuracy (Chapter 2.2.3).

2.2.2 The Retrieval Process

A retrieval system consists of a collection of documents (a corpus) and a user’s inform-
ation needs that are described with a few keywords (query). The retrieval process aims
at returning a ranked list of documents that match a user’s query. The architecture of
a retrieval system is depicted in Figure 2.2: If the document corpus is not given, an
optional crawling process has to be run beforehand to retrieve and collect documents
[Baeza-Yates and Ribeiro-Neto, 2008]. The indexing process comprises pre-processing
steps, such as stopword removal, stemming, and spell checks. They are important to
clean documents from unnecessary information and to analyze only terms that represent
the content of a document. Afterwards, the system counts word frequencies within a doc-
ument and across all documents. The result is an inverted index. Similar to a book index,
this is a list of terms with the number of occurrences of each term in each document and
across all documents. These statistics, generated regularly in background processes, form
the basis for a fast access to the documents at search time. The actual search takes place in
the retrieval and ranking process whenever a user sends a query to the system and results
in a ranked result set being returned to the user.

Based on the underlying retrieval model, different ranking functions have been de-
veloped to produce a score for the documents with respect to a query. Top-scored docu-
ments are returned first. In larger corpora, paging functions allow a subsequent retrieval
of further documents. Classical retrieval models are for instance: the Boolean Model

[Manning et al., 2008], where only documents are returned that exactly match a query. It
is named Boolean Model, because a query may only contain operators from Boolean al-
gebra such as AND, OR and NOT. The result is either TRUE or FALSE [Croft et al., 2009].
An example query looks like this:

butterfly AND grassland

The result set only contains documents were both terms are contained. Any further
ranking does not take place, all documents in the retrieved set are equally relevant. There-
fore, the Boolean Model is often used in search engines in combination with further
retrieval models such as the Vector Space Model [Manning et al., 2008]. Here, docu-
ments and the query are represented by vectors that consist of term weights. These term
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Figure 2.2: The architecture of an information retrieval system based on
[Baeza-Yates and Ribeiro-Neto, 2008]: An optional crawling process (blue, dashed line)
gathers documents. In the indexing process (blue) the documents are pre-processed before an
index can be established. The retrieval process (orange) comprises the transformation of a user
query into a format the search engine understands before the actual search and ranking takes
place. Finally, users receive a ranked list of documents that match their query.

weights are computed based on statistical information from the documents. The term
frequency (TF) counts how often a term appears in a document, whereas the document
frequency (DF) denotes how often the term appears over all documents in the corpus.
Both statistics are usually normalized in order to avoid giving preference to longer docu-
ments. A variety of normalizations have been explored in research [Manning et al., 2008,
Croft et al., 2009] for TF values. A common modification is to use the logarithm for
normalization as presented in Equation 2.1.

w ft = 1+ log ft i f ft > 0

0 otherwise
(2.1)

For a term t, the weighted term frequency w ft is computed by the frequency ft , which
denotes how often the term t occurs in the document. It is normalized with the logarithm.
We add 1 because in case of ft being 1, log1 would be 0. The second line of Equation 2.1
considers the case of ft being 0, because log0 would be undefined.

id ft = log
N

d ft
(2.2)

The document frequency is normalized as presented in Equation 2.2 where id ft is
the inverse document frequency of term t, N is the total number of documents in the
corpus and d ft denotes the document frequency (the number of documents in which term
t appears).
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Figure 2.3: In the Vector Space Model, documents and queries are represented as vectors. The
similarity between documents (and documents and the query) is computed: sim(d⃗, q⃗) = cos α

wt = T F − IDF = (1+ log ft)∗ log
N

d ft
(2.3)

Both together, term frequency and document frequency values form a weight for each
term in a document. The final computation of term weights looks like as stated in Equation
2.3. In order to compute a final rank for each document, a subsequent scoring has to take
place. A simple scoring measure is the overlap score measure [Manning et al., 2008]
presented in 2.4.

score(q,d) = ∑
t ∈q

wt (2.4)

The score of a document d for a query q is the sum over all term weights, all T F−IDF

values of document d. Another scoring approach that considers all term weights in a
document as vectors is the Vector Space Model. In Figure 2.3, each document d and the
query q are represented as vectors in a vector space and one axis illustrates one term.
Finally, the similarity of document and query vectors results from the distance between
the document and query vectors (Figure 2.3). The cosine similarity (Equation 2.5) is the
preferred similarity measure, as it considers normalization of the document lengths.

sim(d,q) = cosα =
d⃗ ∗ q⃗∣∣∣d⃗∣∣∣∗ |⃗q| (2.5)

The numerator in Equation 2.5 is the dot product of the vectors d⃗ and q⃗, and the
denominator represents the product of the Eucledian distance of both vectors. The results
of the cosine similarity are values between -1 and 1. Negative values point to documents
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containing contracting or opposing contents. Usually, values vary between 0 and 1, where
values close to 1 denote documents with very similar content.

Apart from the Vector Space Model, which is the most common model, a variety of
other retrieval models have been developed. Probabilistic Models [Manning et al., 2008]
are based on computations of the probability of a document belonging to the relevant set.
For languages where there are no word boundaries, e.g., in Eastern Asian Languages, Lan-

guage Models [Jurafsky and Martin, 2008] are a solution to get a mathematical represent-
ation of the documents. The system analyzes the text documents by means of character-
based sliding windows (n-grams) to determine word boundaries and to compute statistics.

All introduced retrieval models share one characteristic: They are keyword-based,
and retrieval systems using these conventional models only return documents that exactly
match a user’s query terms.

2.2.3 Evaluation of Retrieval Systems

When setting up a retrieval system, various design decisions influencing different parts
of the system have to be made. Examples of such decisions are whether to stem terms
in the pre-processing phase or which terms to include in the stopword list. Numerous
evaluation measures have been developed to determine the effectiveness of the systems,
i.e., the accuracy of a result returned by a given retrieval algorithm. For this purpose,
a test collection is required that consists of three things [Manning et al., 2008]: (1) a
corpus of documents, (2) representative information needs expressed as queries, (3) a set
of relevance judgments that are provided by human judges and that contain assessments
of the relevance of a document for given queries. If judgments are available for the entire
corpus, they serve as baseline (“gold standard”) and can be used to determine how many
relevant documents a search system finds for a specific query.

User queries should be representative for the target domain. Queries are either ob-
tained from query logs of a similar application or domain users are asked to provide
example queries [Croft et al., 2009]. The number of example queries influences the eval-
uation result. TREC (Text REtrieval Conference) is a long-running, very influential an-
nual information retrieval competition that considers different retrieval issues in a number
of Tracks, e.g., Genomics Track or Medical Track1. Various TREC experiments have
shown that the number of queries used for the evaluation matters more than the number of
documents judged per query [Croft et al., 2009]. Therefore, TREC experiments usually
consist of around 150 queries (or so-called “topics”) per track. Common evaluation met-
rics with respect to retrieval effectiveness are Precision and Recall (PR). They are based
on a confusion matrix presented in Table 2.2. The row with the POSITIVE entries denote
the system’s result set. The returned entries can be classified according to their relevance.

1TREC, https://trec.nist.gov/

https://trec.nist.gov/
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POSITIVE true positive (tp) false positive (fp)
NEGATIVE false negative (fn) true negative (tn)

Table 2.2: Confusion matrix in a retrieval system. The POSITIVE row marks the result returned
by the system, and the NEGATIVE row contains the sets that were not returned.

When the system is right, we say these entries are ’true positive’. When the system is
wrong, we denote the entries as ’false positive’. The second row contains the missing
entries in the result set (’false negative’) and the entries that were correctly not returned
(’true negative’).

With these statistics, the performance metrics are computed as stated in Equation 2.8.
The Precision denotes which fraction of the documents in the result set is relevant for a
query, whereas the Recall describes which fraction of relevant documents was success-
fully retrieved. Both metrics are based on binary judgments, i.e., raters can only determine
whether a document is relevant or non-relevant.

Precision =
t p

t p+ f p

Recall =
t p

t p+ f n

(2.6)

The F-Measure (Equation 2.8) is the harmonic mean of Precision and Recall. If Pre-
cision and Recall values are very close, the F-measure is approximately the average of the
two.

F-Measure = 2∗ Precision∗Recall
Precision+Recall

(2.7)

Precision and Recall can only be used, when a gold standard is provided containing
the total number of documents in a corpus that are relevant for a query. However, in
applied domains, where corpora are established specifically for a particular research field,
gold standards are usually not available. Therefore, with the Recall being unknown, the
Mean Average Precision (MAP, Mean AP) [Manning et al., 2008] is an alternative. The
MAP only requires to get ratings for the TopN-ranked documents to compute an average
precision. It is based on the assumption that users are only interested in the first entries
of a search result and usually do not navigate to the last page. The top-ranked documents
get higher scores than the lower ranked ones [Croft et al., 2009].

The MAP represents a measure for computing the quality of a system across several
search queries. Hence, it requires to compute other intermediate metrics, first, such as
the Average Precision per query and the Precision@k. The Precision@k is the Precision
at a given cut-off rank, considering only the top-k documents returned by the system. In
Equation 2.8,
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Precision@k =
1
k
·

k

∑
d=1

rel(d), (2.8)

k is the rank of the document that is considered, and rel(d) denotes the binary rating
for the iterating position d. For all relevant documents d ∈ D per query q, the Average
Precision (AP) of a query q is computed as follows 2.9:

AP(q) =
1

Drelk

k

∑
d=1

Precision@k ·rel(d), (2.9)

where rel(d) is 1 if the document d is relevant and 0 if it is not relevant. Drelk is the
set of all relevant documents up to a certain cut-off rank k. Finally, the MAP is the sum of
all Average Precision values for every query q ∈ Q, divided by the total number of queries
as presented in Equation (2.10):

MAP(Q) =
1
|Q|

|Q|

∑
q=1

AP(q). (2.10)

Another metric proposed by Järvelin and Kekäläinen [Järvelin and Kekäläinen, 2002]
is the Discounted Cumulated Gain (DCG), a metric that uses a Likert-scale [Likert, 1932]
as rating scheme and allows non-binary ratings. Given a list of documents, rel(d) is the
rating of each document d. When using Likert-scales, ratings can have arbitrary values
that are equally distributed. For instance, a common scale contains five values such as
0 (not relevant), 1 (slightly relevant), 2 (less relevant), 3 (relevant) and 4 (highly relev-
ant). In accordance to the Precision, the DCG supposes that higher ranked documents are
more relevant than lower ranked. Therefore, the Logarithm reduces the influence of the
lower ranked documents on the final DCG value. Per rank, so-called cumulated gains are
computed as stated in Equation 2.11:

DCGq = rel1 +
|D|

∑
i=2

rel(d)
log2 i

. (2.11)

Cumulated gains denote the sum of all relevance scores in a search result list. For a set
of queries Q, let rel(d) be the relevance score of document d ∈ D for query q ∈ Q. Then,
the DCG for every query as defined in [Croft et al., 2009] is the sum over all |D| document
gains. In order to consider different document length’, the DCG values are normalized
across all queries. Therefore, the documents are arranged in an ordered list called Ideal

DCG (IDCG). This IDCG is utilized to determine the normalized DCG (nDCG) for a
query q as follows (2.12):

nDCGq =
DCGq

IDCGq
. (2.12)
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DCG does not penalize for wrong results, but only increases the scores of top-ranked
documents.

All metrics introduced so far are based on the assumption that the provided relevance
judgments are complete. For large test collections with millions of documents, manual
inspection and judgment are not feasable. In the annual TREC competions, they util-
ize pooling strategies in combination with top k documents to overcome this obstacle.
However, the above mentioned measures do not consider this incompletness appropri-
ately [Buckley and Voorhees, 2004]. To address this problem, [Yilmaz et al., 2008] pro-
posed an inferred measure infAP with randomly selected cut-off ranks. As also variance
in the values of infAP can occur, they employed confidence intervals. Concerning an
enhanced efficiency, the authors further improved the measure to also incorporate relev-
ance judgments of non-random samples. Finally, [Yilmaz et al., 2008] showed that this
stragegy can be applied to other metrics, such as nDCG, which they call infNDCG.

As discussed so far, numerous evaluation metrics focus on computing the relevance
of documents. There are also other metrics concentrating on the efficiency (e.g., the time,
memory and disk space required by the algorithm to produce the ranking
[Croft et al., 2009]), user satisfaction on the provided result set and the presentation and
visualization [Hearst, 2011] of search results.

Evaluation of User Interfaces in Retrieval Systems

A user-friendly and comprehensive user interface is as essential as a correct ranking. A
common and classical search input provides one long input field with at least 27 char-
acters covering the longest sequence of possible search terms [Nielsen, 1999]. Users
enter keywords representing their information need. This so-called ad-hoc search re-
turns a search engine result page (SERP) with a list of documents containing the entered
keywords. SERP entries typically provide a snippet of the full content per document, the
title and a link to the document source. Since a user’s information needs are often im-
precise, as only a few keywords can be entered into the input field, the interface has to
be designed in a way that motivates and supports users in formulating their queries. It
also has to present the results clearly and comprehensively and should provide the oppor-
tunity to select among the available resources. Common techniques in supporting users
in search interfaces are auto-complete functions, spell correction, faceted filtering to en-
hance navigation and highlighting of search terms [Manning et al., 2008]. We introduce
search interfaces of data portals in the Life Sciences and biodiversity research in the next
Section 2.2.4.

All evaluation approaches of search applications with user involvement are comprised
as Interactive Information Retrieval (IIR). [Kelly, 2009] distinguishes between different
types of interactive retrieval systems. They range from system-focused approaches in
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which users assess the relevance of the results, studies where system or interface features
are evaluated to evaluations that are solely focused on the search behaviour of users. Main
contributions towards standard techniques for IIR were driven by the TREC Interactive
Search [Dumais, 2005] tracks, a series of evaluations concentrating on both, system and
interface features. Starting from TREC-7, users have to perform the search tasks on two
systems (A/B testing), a system proposed by the TREC participants and a self-chosen
information retrieval control system, which also meets the evaluation goals. Users need
to save the documents that contain the relevant answers on the search task, and they have
to fill out several questionnaires before (pre-)and after (post-search) the search and after
each system (post-session). With TREC-92 the search time was limited to five minutes to
minimize the cognitive effort for the users.

Even if a standard evaluation framework could not be established [Kelly, 2009], the
TREC Interactive Search tracks supported the introduction of some standard techniques
in IIR such as the logging of user data or the reduction of time per search task.

2.2.4 Dataset Retrieval

Scientific data in the Life Sciences comprise all components and information collected
and generated during the research process. They can differ in format and size; examples
are for instance: spread sheets, audio or video files, field books, specimens, question-
naires, models or software code. As it is difficult to search for these heterogenous data
formats, scientific primary data are described by metadata.

Metadata are usually provided in semi-structured formats such as XML3 or JSON4

and contain descriptive information along the W-questions (What, When, Where and
Why). Important metadata fields comprise information on the author and/or collector
of the dataset, a title, an abstract, parameters that have been measured, information about
the geographic location (including spatial information), collection time and data format.
Data reuse and data citation also play an important role. Metadata provide several ele-
ments for digital identifiers, license information and citation, as it is demanded by the
Joint Declaration of Data Citation Principles [Data Citation Synthesis Group, 2014] and
practical guidelines for data repositories [Fenner et al., 2019]. Multiple metadata stand-
ards have been developed in different domains and for different purposes. We introduce
different metadata standards being relevant for the Life Sciences in Chapter 4.3. An ex-
ample metadata file is presented in the next Section 3.2.

Search engines need homogenous, text-based data for indexing. Therefore, data re-
positories mainly use metadata in their search indexes [Khalsa et al., 2018]. Metadata can
be generated in different ways. In most cases, it is a manual or half-automated process.

2TREC-9, https://trec.nist.gov/data/t9i/t9i.html
3XML, https://www.w3.org/standards/xml/
4JSON, https://www.ecma-international.org/publications-and-standards/standards/ecma-404/

https://trec.nist.gov/data/t9i/t9i.html
https://www.w3.org/standards/xml/
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
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Figure 2.4: Screenshot of Dryad’s search interface in March 2022.

When scholars submit research data, data centers either offer forms to ask for basic in-
formation about the dataset, or they guide scholars through a longer curation process and
interact with the data submitter. Large publishers, such as Nature5 recommend to submit
research data to domain specific data repositories [Nature, 2018], e.g., PANGAEA6 (en-
vironmental data) or EBI/ENA7 (nucleic acid sequence data), as they are specialized on a
particular domain and formats. In contrast, generalist repositories are able to archive dif-
ferent types of data, e.g., Dryad8, Zenodo9 or Figshare10. Federated approaches harvest
data from different data sources and provide one entry point for data access. Examples
are for instance DataONE11, GFBio or the Google Dataset Search12.

A typical user interface for dataset search consists of one input field, filters for search
adjustment and a list of datasets utilizing different information from metadata fields. Fig-
ure 2.4 presents a screenshot from Dryad. In this example each entry in the result list only
provides a title per dataset. Other information from metadata are omitted. This makes it
difficult for users to decide at one glance whether a dataset is relevant to a query or not.
In contrast, PANGAEA (Figure 2.5) presents a snippet per dataset with information on
author, title, publication year and identifier per dataset. The RDA Data Discovery Interest
group goes even further and recommends to display information on data access, data li-

5Nature, https://www.nature.com/
6PANGAEA, https://pangaea.de/
7EBI/ENA, https://www.ebi.ac.uk/
8Dryad, https://datadryad.org
9Zenodo, https://zenodo.org/

10Figshare, https://figshare.com/
11DataONE, https://www.dataone.org/
12Google Dataset Search, https://datasetsearch.research.google.com

https://www.nature.com/
https://pangaea.de/
https://www.ebi.ac.uk/
https://datadryad.org
https://zenodo.org/
https://figshare.com/
https://www.dataone.org/
https://datasetsearch.research.google.com
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Figure 2.5: Screenshot of PANGAEA’s search interface in March 2022.

cense as well as a preview or statistics of the primary data [Wu et al., 2019]. In addition,
provenance information should be given, such as who collected the data, who is the data
owner and which methods or devices were used to generate the data. Only these full
metadata allow users to easily decide whether a dataset is worth to click and further to in-
spect or not. When selecting a dataset, users are usually directed to a separate page, a land-
ing page, which displays more, and sometimes complete, metadata information. Land-
ing pages usually use persistent identifiers in their address (Uniform Resource Locator
[Berners-Lee et al., 2005]), e.g., https://doi.pangaea.de/10.1594/PANGAEA.922054

[Pérez-Luque et al., 2020]. These unique identifiers foster the availability and access-
ibility of datasets in the web and are a prerequisite for Linked Data and semantic interop-
erability (see also Section 2.3).

Enhancements in dataset search such as auto-completion in the search field or fa-
ceted search facilities are nowadays state-of-the-art. Facets represent relevant categor-
ies of a domain [Hearst, 2006] and allow users to influence the result set, e.g., to nar-
row its scope and to search for datasets in a specific spatial coverage. Facets are based
on metadata fields, grouped keywords or they can be created manuelly. Various ap-
proaches in computer science explore automatic facet creation [Hildebrand et al., 2006,
Dakka and Ipeirotis, 2008, Xu and Zhuge, 2014]. There are also very first approaches
built on semantic technologies and knowledge graphs [Moreno-Vega and Hogan, 2018,
Feddoul et al., 2019].

Most data providers use one of the widely spread search engines such as Apache Solr
13, Apache Lucene14 or elasticsearch15 [Khalsa et al., 2018]. These search engines are
keyword based and provide classical retrieval models, e.g., TF-IDF or BM25

[Manning et al., 2008, Croft et al., 2009].

13Apache Solr, http://lucene.apache.org/solr/
14Apache Lucene, http://lucene.apache.org/
15elasticsearch, https://www.elastic.co/

http://lucene.apache.org/solr/
http://lucene.apache.org/
https://www.elastic.co/
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2.3 Semantic Web

The Semantic Web is closely connected to the development of the World Wide Web
(WWW)16. The WWW was originally designed to provide a machine-supported way of
communication between users [Berners-Lee and Hendler, 2001] based on a client-server
architecture. Web pages are placed on a server in (X)HTML17 format. A client consumes
the page with a browser that interprets the (X)HTML code and displays it in a user-
friendly and readable form. The idea of the Semantic Web goes beyond this simple in-
formation consumption of humans. Instead of displaying information, the Semantic Web
aims to enable machines to ’understand’ web content [Berners-Lee and Hendler, 2001].

For this understanding, machines need logic structures. The development of the Se-
mantic Web has the goal to provide these new formal languages to describe the real world
in a formal and mathematical representation. It belongs to the research field of symbolic
artifical intelligence (AI) and can be considered as an implementation of symbolic AI ap-
proaches. Symbolic AI has its origin in formalism and logic. It was the dominant research
area in artifical intelligence until the mid-1990s [Russel and Norvig, 2021].

We briefly introduce the formal languages RDF (Subsection 2.3.1) and OWL (Subsec-
tion 2.3.2), and we describe how to query semantic data with SPARQL (Subsection 2.3.3).
We also present the principles of Linked Open Data (LOD) and vocabularies being rel-
evant for the Life Sciences (Subsection 2.3.4), followed by some examples of semantic
metadata standards for datasets (Subsection 2.3.5).

2.3.1 RDF/RDFS

The Resource Description Framework (RDF)18 is considered as “basic representation
format for developing the Semantic Web” [Hitzler et al., 2009]. Instead of displaying
information, it aims at processing information to provide a structure that is human and
machine readable. In an RDF document, information is described as a directed graph that
represents subject - predicate - object relations. Figure 2.6 presents an example. The book
“The Lord of the Rings” was written by J.R.R. Tolkien. The book (subject) and the author
(object) nodes are resources with unique identifiers. Theses identifiers evolved over time
from Uniform Resource Identifiers (URIs) [Berners-Lee et al., 2005] based on ASCII
characters to IRIs (Internationalized Resource Identifiers) [Duerst and Suignard, 2005],
an extended version permitting further characters based on the Universal Character Set
(Unicode/ISO 10646). They describe unique resources in the web, e.g., a web page, a
mail address or a file. In our work, we only focus on URIs, as not all utilized terminolo-
gies and systems supported the extended character set. The arrow (predicate or property)

16WWW, https://www.w3.org/
17(X)HTML, https://www.w3.org/standards/webdesign/htmlcss
18RDF Primer, https://www.w3.org/TR/rdf11-primer/

https://www.w3.org/
https://www.w3.org/standards/webdesign/htmlcss
https://www.w3.org/TR/rdf11-primer/
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Figure 2.6: An RDF graph visualizing the relationship between a book and an author.

“author” denotes the relation between book and author. It is also represented with a URI.
Various notation formats have emerged such as RDF/XML, notation 3/n3, Turtle, N-

Triples, N-Quads and JSON-LD. The Listing below contains the graph of Figure 2.6 in
Turtle notation.

Listing 2.1: RDF graph in Turtle notation.

@base <http://example.org/>
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>

<The_Lord_of_the_Rings>
<hasAuthor> <JRR_Tolkien> ;
<publicationDateStart "1954−07−29"^^xsd:date> ;
<publicationDateEnd "1955−10−20"^^xsd:date> ;

Nodes can be either described as resources or literals. The hierarchy is represented by
the nesting of the elements, e.g., <The_Lord_of_the_Rings> <hasAuthor>
<JRR_Tolkien>). Literals are used when values are strings, numbers or dates. For in-
stance, in Listing 2.1, publication date is described by the properties
<publicationDateStart> and <publicationDateEnd>, as the book was published in
three volumes over one year. The attribute xsd:date denotes that the following value is a
date. In a similar way, numbers and strings can be expressed. The namespace information
at the beginning of the document (xsd) aims at grouping identifiers and ensures that each
occurring element in the group is unique. RDF graphs are stored in non-relational data-
base structures, in so-called triple stores (e.g., Virtuoso19, Apache Jena20 or GraphDB21),
which return triple statements as subjects, predicates and objects.

RDF data mainly describe instances, concrete subjects or objects (also called A-Box).
In contrast, RDF Schema (RDF/S)22 aims at modeling classes and their relationships
(also called T-Box). The book instance “The Lord of the Rings” is a book (or belongs
to the class “book”) (Listing 2.2). Hierarchical IS-A relations can be expressed with the
element rdfs:subClassOf. In the following Listing, the class Book is a subclass of class
Publication.

Listing 2.2: RDF graph in Turtle notation.

@base <http://example.org/>
@prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#>

19Virtuoso,https://virtuoso.openlinksw.com/
20Apache Jena, http://jena.apache.org/
21GraphDB, http://graphdb.ontotext.com/
22RDFS, https://www.w3.org/TR/rdf-schema/

https://virtuoso.openlinksw.com/
http://jena.apache.org/
http://graphdb.ontotext.com/
https://www.w3.org/TR/rdf-schema/
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<Lord_of_the_Rings> a <Book> .
<Book>

a rdfs:Class ;
rdfs:label "book"@en ;
rdfs:subClassOf [ rdfs:resource "Publication" ] .

2.3.2 OWL

RDF/S allows the modeling of simple domain knowledge. However, modeling the real
world is a difficult task as real life does not only consist of hierarchical structures.

In order to overcome these limitations and to provide more powerful elements, the
Web Ontology Language (OWL)23 has been developed. OWL reuses elements from RD-
F/S such as classes and properties. Properties are also called roles, and instances are
named individuals. Class extensions that are not available in RDF/S are for instance
disjointClasses to express that two classes must not have any overlap, individuals
can only belong to one of these classes. OWL also provides elements to describe closed
classes. In order to express that only specific individuals belong to a class, the class re-
striction oneOf can be used. Equivalent to RDF/S, OWL offers two role constructors: ab-
stract roles (owl:ObjectProperty) and concrete roles (owl:DatatypeProperty). Ab-
stract roles define relationships between classes, whereas concrete roles describe relation-
ships between classes and data values, e.g., literals.

OWL is a W3C24 Recommendation since 2004. Since 2009, OWL2 (second edi-
tion since 2012) is the officially used version for the modeling of ontologies. There
are three sub-languages, namely OWL Full, OWL Lite and OWL DL. Depending on
the purpose of the ontology to be developed and the degree of expressivity, one of the
three sub-languages is used [Hitzler et al., 2009]. In order to model taxonomies, a less
complex language as RDF/S has been evolved. The Simple Knowledge Organization
System (SKOS)25 allows the description of simple hierarchical structures with the ele-
mentsskos:broader and skos:narrower. It also contain RDF/S elements to describe
class/type associations. More descriptive language constructs are not provided.

Further detailed information on modeling languages and semantic web technologies
can be found in [Hitzler et al., 2009, Antoniou et al., 2012]. Nowadays, a variety of vocab-
ularies are available for multiple domains. We introduce main vocabularies for the Life
Sciences in Subsection 2.3.4.

23OWL, https://www.w3.org/TR/owl2-overview/
24w3c, https://w3c.org
25SKOS, https://www.w3.org/TR/skos-primer/

https://www.w3.org/TR/owl2-overview/
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2.3.3 SPARQL

A thorough selection of a suitable format and careful decisions about the used language
constructs facilitates the query of a semantic web graph. The SPARQL Protocol And
RDF Query Language26 is a W3C Recommendation since March 2008, the latest version
(SPARQL 1.1) was published in March 2013. SPARQL queries return all sub-graphs
that match the graph described by the triples in the query. Queries are sent to SPARQL
endpoints, and results are returned via HTTP(S) in various formats such XML, JSON,
RDF and HTML. Listing 2.3 presents an example query to retrieve all book instances in
a graph.

Listing 2.3: SPARQL example query: return all book instances that belong to class ’book’

# prefix declarations
PREFIX foo: <http://example.com/resources/>...
# dataset definition
FROM ...
# result clause
SELECT ?book
# query pattern
WHERE {
?book rdf:type ex:Book .
}
# query modifiers
ORDER BY ...

The PREFIX declarations provide the abbreviations of the URIs used. The following
dataset definitions indicate which graphs are being required in the query, and the SELECT
clause identifies the variables to appear in the query results. The WHERE clause provides
the basic graph pattern to match against the data graph, and the ORDER BY information
allows query modification, e.g., ordering of query results. The WHERE clause contains
a graph patterns that needs to be successfully matched to be further processed. Patterns
consists of triple patterns (subject, predicate, object). One or more parts of the pattern
can be replaced with variables that are marked with a question mark, e.g., ?book. Vari-
ous language constructs are available to add constraints (FILTER), matching alternatives
(UNION), exclude results (MINUS) or grouping (GROUP BY). Further information can
be obtained from the SPARQL W3C website.

2.3.4 Linked Open Data and Vocabularies in the Life Sciences

All introduced semantic technologies aim at presenting or querying information in the
web. However, the Semantic Web is not just about providing more meaningful informa-

26SPARQL, https://www.w3.org/TR/sparql11-overview/

https://www.w3.org/TR/sparql11-overview/
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tion, but has a strong focus on linking data, too. While the WWW is a network of web
pages, the Web of Linked Open Data aims at linking any kind of resources that have
unique identifiers (data). If every resource has its own URI, e.g., people, publications or
products, we are able to create a network of data.

In 2006, Tim Berners-Lee published four rules that need to be fulfilled in order to call
a web resource “fully semantic”. Nowadays, his revised version from 2010, is known
worldwide and comprises five principles27.

• one star: A web resource gets one star once it is available in the web (it has a URI).

• two stars: If a web resource is available in a machine-readable and structured format
(e.g., xlsx), it owns two stars.

• three stars: Three stars are assigned when the resource fulfills the two stars but in
addition uses a non-proprietary format, e.g., csv.

• four stars: A web resource gets four stars when open W3C standards are used such
as RDF and SPARQL to present and query the information.

• five stars: Five stars are granted if a web resource in addition to four provide links
to other web sources.

These principles served as basis for further discussions on improving linked data-
sets, such as adding provenance information [Lebo et al., 2013] and reusing vocabularies
[Janowicz et al., 2014]. In particular the latter is important for semantic interoperability.
Not only the linking of web resources is important, but resources in datasets should refer
to classes and properties in vocabularies to be interpretable and reusable. Over the past
decade, numerous vocabularies for a variety of applications and domains have been de-
veloped and linked among each other. The current (but not complete) state of linked data-
sets and vocabularies are presented in the Linked Open Data cloud [McCrae et al., 2020],
a visualization initiated by [Semantic Web Education and Outreach Interest Group, 2009].
In May 2020, the Linked Open Data cloud contains 1,301 datasets with 16,283 links. Fig-
ure 2.7 presents the current state. What stands out is that one third of the displayed
vocabularies comes from the Life Sciences. Most of them have been developed in the
bio-medical context such as the Gene Ontology [GO, 2021] or the Chemical Entities of
Biological Interests (ChEBI) developed for describing molecular entities with chemical
compounds [Hastings et al., 2016]. However, numerous other datasets describing vari-
ous biological fields have emerged, e.g., the NCBI Taxonomy Database (NCBITAXON)
[NCBITaxon, 2022], a curated nomenclature for all organisms, The Phenotype And Trait
Ontology (PATO) [Gkoutos, G. et al., 2022] to describe phenotypic properties or the En-
vironment Ontology (ENVO)[Buttigieg et al., 2016] for the description of environments.

27Linked Data, https://www.w3.org/DesignIssues/LinkedData.html

https://www.w3.org/DesignIssues/LinkedData.html
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In the Life Sciences, most vocabularies are class-based and mainly represent hierarch-
ies. While some of them are very large in its size, for instance, NCBITAXON contains
around 1,8 Mio classes with a maximum number of sub-classes of 42,960, there are also
small ontologies such as the Plant Phenology Ontology (PPO) [Walls, R. et al., 2022] with
only 443 classes. More sophisticated semantic rules (such as reasoning) are only suppor-
ted by a few ontologies such as PATO and ENVO, most biological vocabularies focus
on describing IS-A relationships. Initiatives such as the Open Biological and Biomedical
Ontology (OBO) foundry28 aims at connecting, organizing and structuring Life Sciences
related entities (mainly class-based). In order to foster interoperability, all developers are
committed to shared principles such as non-overlapping content, open use and collab-
orative environments. In practice, entities get one unique URI per context, e.g., water
in chemical context (http://purl.obolibrary.org/obo/CHEBI_15377), but can be
used in other domains. For instance, ENVO uses the same URI for water and groups it
under “chemical entity”. If the entity occurs in a new context, e.g. water as food, it gets a
new URI (http://purl.obolibrary.org/obo/FOODON_00002340).

Instances in the Life Sciences represent scientific primary data such as concrete spe-
cies, genes or chemical compounds. Driven by funding agencies and academic publishers,
scholars are more and more urged to publish their primary data. Hence, increasingly, sci-
entific primary data get unique identifiers such as DOIs (Digital Object Identifier)29 that
are open, persistent and machine readable. A few initiatives have already started to finally
connect biological instances and classes with other web resources such as people and pub-
lications. For instance, the work by [Page, 2019] is one of the first approaches to finally
build a biodiversity knowledge graph. According to the author, the biggest challenge for
the development of such a knowledge graph is the alignment of the different identifiers.
Numerous biological raw data are maintained in a variety of local databases that use in-
ternal identifier schemes. That hampers reuse, interoperability and citation. Hence, local
identifiers need to be mapped to external identifiers (such as DOIs) that are shared by
other databases.

2.3.5 Semantic Formats for Datasets

Driven by the FAIR and Linked Data principles, metadata standards are increasingly
evolving towards semantic formats. In addition to Chapter 4.3, presenting metadata stand-
ards in the Life Sciences that are utilized by data repositories, this subsection briefly in-
troduces (general) semantic metadata standards.

One of the earliest semantic metadata formats is Dublin Core in RDF/XML30, a gen-

28OBO Foundry, http://www.obofoundry.org/
29DOI, https://www.doi.org/
30Dublin Core in RDF/XML, https://www.dublincore.org/specifications/dublin-core/

dcmes-xml/
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Figure 2.7: The Linked Open Data cloud in May 2020. One-third of the depicted vocabularies are
from the Life Sciences. [McCrae et al., 2020]

eral metadata standard utilized in various research fields. It comprises 15 metadata fields
with basic information, such as dc:title, dc:description or dc:creator. Further
information are provided in Chapter 4.3.

Dublin Core served as the basis for further developments, such as the Data Catalog
Vocabulary (DCAT)31. DCAT provides a data model with six main classes to describe
data catalogs in the Web. A data catalog is a collection of resources, e.g., datasets or data

services. DCAT was initiated by DERI and further developed by the W3C eGov Interest
Group for governmental data (the group is not active anymore). Thus, DCAT is mainly
utilized in governmental institutions. For instance, the European derivate DCAT-AP32 is
the leading metadata standard for datasets of the European Union, its member states and
further European countries. In 2023, the European data portal33 contains 1.5 Mio datasets
from 179 catalogs and 36 countries. A quality assessment tool is also provided to check
whether a dataset complies with the FAIR principles [Wentzel et al., 2023].

In contrast to scientific and governmental data repositories using the original metadata
in data repositores and search applications, Google follows a different approach. It har-
vests the (X)HTML-based landing pages of datasets in data repositories, but only if

31DCAT, https://www.w3.org/TR/vocab-dcat-2/
32DCAT-AP, https://semiceu.github.io/DCAT-AP/releases/3.0.0/
33European data portal, https://data.europa.eu

https://www.w3.org/TR/vocab-dcat-2/
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schema.org34 entities are contained. This semantic enrichment of (X)HTML pages allows
additional filtering or supports the presentation of search results, such as information on
author, location, publication year or dataset type. For applied domains, extensions such
as bioschemas.org35 have been developed to describe domain specific entity types, e.g.,
taxon or gene.

At the time of our research, in the Life Sciences, datasets in semantic formats were
not used on a large scale, and vocabularies were rarely reused in metadata. However, over
the last years, we observed an increasing usage of schema.org entities being utilized on
data repositories’ landing pages (see also Chapter 10).

2.4 Biodiversity Research

The term biodiversity is a short form of biological diversity and was first used at the
US National Forum on BioDiversity in 1986 [Wilson, 1988]. A few years later, at the
United Nations Conference on Environment and Development in Rio in 1992, the Con-
vention on Biological Diversity (CBD) was created [Loreau, 2010] and signed by 150
countries [Convention on Biological Diversity, 1992]. The definition of the term biod-
iversity (Definition 2) that was formulated at this event is still valid today.

Definition 2. “‘Biological diversity’ means the variability among living organisms from

all sources including, inter alia, terrestrial, marine and other aquatic ecosystems and

the ecological complexes of which they are part; this includes diversity within species,

between species and of ecosystems.” [Convention on Biological Diversity, 1992]

According to the CBD definition, biodiversity research can be characterized on three
levels [Loreau, 2010]:

• (1) the variety of species (taxonomic diversity),

• (2) the genetic diversity

• (3) and the ecological diversity comprising the different and manifold ecosystems
including the interactions between species and their habitats.

Nowadays, it is undisputed that human interventions cause a dramatic decline of the
biological diversity. The rising population, land use or environmental pollution are only a
few human actions that change the biological diversity [NKGCF, 2008] on a large scale.
Species extinction, the loss of genetic information and entire ecosystems call for more
research efforts to provide answers on what causes and drives this development and how
to counteract [Loreau, 2010].

34schema.org, https://schema.org/
35bioschemas.org, https://bioschemas.org/
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Therefore, several research projects in Germany have been established over the past
decade to collect and provide data supporting decision makers in politics and society.
In this work, we use data from several biodiversity research related projects that in the
following are introduced in detail:

• AquaDiva The CRC AquaDiva36 aims for a better understanding of the Earth’s
Critical Zone (CZ), a thin and permeable layer between the surface and the sub-
surface. The Critical Zone is the living environment of a variety of plants and
animals including humans. Due to pollution, land use and climate change, the CZ
is changing, and it is not fully clear what the consequences are of these human in-
terventions. In particular, the subsurface, the region “below the highest density of
plant roots and extending into the aquifers” [AquaDiva, 2022] has been less stud-
ied. Hence, the research question that more than 40 people in 17 research groups
want to answer focuses on an improved understanding of the connections between
the surface and subsurface. Special attention is given to organisms and processes
influencing this environment. The CRC AquaDiva was established in 2014 and is
primarily located in Jena, Germany.

We collected around 90 search questions among 49 researchers on an AquaDiva
workshop in 2015. We asked for full natural language questions and keywords
associated with the question representing scholars’ current information needs with
respect to their research. No personal information was gathered. The questions
were analyzed and utilized to develop an information architecture for dataset search
in biodiversity research (Chapter 4).

• idiv The German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-

Leipzig [idiv, 2019] is a large research center with about 400 employees from sev-
eral universities and research institutes. It was established in 2013 and is primar-
ily located in Halle, Jena and Leipzig. Funded by the German Research Founda-
tion (DFG), scientists from 30 countries work on four core research questions: (1)
“biodiversity patterns: What is the current state of biodiversity, and how are natural
and human influences changing biodiversity in space and time?” [idiv, 2019], (2)
“biodiversity processes: Which evolutionary and ecological processes create and
maintain biodiversity?” [idiv, 2019], (3) “biodiversity functions: What role does
biodiversity play in the functioning of ecosystems and the services that ecosystems
provide for us?” [idiv, 2019] and (4) “biodiversity society: How can we protect and
conserve biodiversity in managing the resources of our planet?” [idiv, 2019]. In the
few years of its existence, the iDiv research center received world-wide attention
with more than 2500 scientific publications in 2021. A key role plays the syn-
thesis center sDiv. At sDiv workshops, scientists with various backgrounds come

36CRC AquaDiva, http://www.aquadiva.uni-jena.de
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together and attempt to re-evaluate scattered data based on new research questions.
This approach is unique in the world and attracts many international researchers
to visit Leipzig. Numerous idiv researchers are also members of the World Biod-
iversity Council IPBES (Intergovernmental Science-Policy Platform on Biodiversity

and Ecosystem Services), which was founded in 2012.

We collected search questions and associated keywords at an iDiv conference in
2016. In total, four researchers provided 12 questions and keywords. The ques-
tions are introduced and analyzed in Chapter 4. In addition, we utilized ten public
metadata files in a small Named Entity Recognition corpus established to evaluate
the proposed text mining pipeline (Chapter 6).

• BEF-China The main research aim in the BEF-China37 project was to explore
Biodiversity-Ecosystem Functions (BEF) in a large and highly species-rich forest
in the subtropics. In order to measure ecosystem functions such as carbon and
nitrogen storage, nutrient cycling and the prevention of soil erosion, large experi-
ments were conducted in a subtropical forest site in Jiangxi Province, China. The
project was divided into 12 sub-projects which examined different aspects of eco-
system functions, e.g., primary production, plant growth and demography, woody
decomposition and microbial biomass and activity. The project run from 2008 to
2016 and integrated 15 universities and research institutes from China, Germany
and Switzerland.

We utilized all 372 public metadata files to set up a test collection for dataset search
(Chapter 7) with 14 questions. Ten out of 372 metadata files were also used in the
QEMP corpus, a Named Entity Recognition corpus introduced in Chapter 6.

• Biodiversity Exploratories The Biodiversity Exploratories38 are a large biodiversity
project that have been funded by the German Research Foundation (DFG)39 since
2006. The three sites, the Biosphere Reserve Schorfheide-Chorin, the National Park

Hainich and the Biosphere Reserve Schwäbische Alb form the backbone to establish
a framework addressing the research aims, namely, “to understand the relationship
between biodiversity of different taxa and levels”, “to understand the role of land
use and management for biodiversity” and “to understand the role of biodiversity
for ecosystem processes” [Biodiversity Exploratories, 2022]. In its sixth phase (in
2022), more than 250 members from 47 institutes in Germany and other European
countries are involved in 40 projects.

We utilized ten publicly available metadata files for the development of the QEMP
corpus, a Named Entity Recognition corpus introduced in Chapter 6.

37BEF-China, http://www.bef-china.de
38Biodiversity Exploratories, https://www.biodiversity-exploratories.de
39DFG, https://www.dfg.de
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• GFBio and NFDI4Biodiversity The German Federation for Biological Data (GF-

Bio)40 was a DFG-funded research project with the aim to establish a national
infrastructure and to become a contact point for all topics around research data
management of biological and environmental data [Diepenbroek et al., 2014]. Run-
ning from 2013 to 2021, the main goal was to support scholars in all steps of the
data life cycle, starting from data acquisition to archiving and data publication.
In 2021, GFBio was integrated into the newly established Nationale Forschungs-

dateninfrastruktur - NFDI4Biodiversity. The data portal was revised and nowadays
provides access to more than 16 Mio biodiversity metadata files. The majority
of this data is linked with primary research data, which can be further analyzed
in an interactive visualization tool. Moreover, NFDI4Biodiversity is the national
contact point for submitting biological data to ensure sustainable, long-term pre-
servation and publication of research data. Data curators guide scholars to the
submission process and forward the data to dedicated data centers. In addition,
NFDI4Biodiversity organizes and supports education and training of scholars on all
aspects of research data management. Associated data archives are PANGAEA41

(environmental data), EBI/ENA42 (genome data) and numerous German natural
collections and museums such as Senckenberg Gesellschaft für Naturforschung –
Leibniz Institute, Frankfurt43, Staatliche Naturwissenschaftliche Sammlungen Bay-
erns – SNSB IT Center, München44, Leibniz Institute for Research on Evolution
and Biodiversity, Berlin45, Botanic Garden and Botanical Museum Berlin, Freie
Universität Berlin46, State Museum of Natural History Stuttgart47, Leibniz Institute
DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig48,
Zoologisches Museum Alexander König49 and the Plant Genomics and Phenomics
Research Data Repository (e!DAL-PGP)50.

We collected 69 search questions and keywords from 20 GFBio members. Some of
them were visited in person at their working environment. The questions were utilized
for the evaluations described in Chapter 3 as well as in the analysis and establishment
of an information architecture presented in Chapter 4. In addition, eight questions were
selected for the final user evaluation introduced in Chapter 8.

40GFBio, https://www.gfbio.org
41PANGAEA, https://pangaea.de/
42EBI/ENA, https://www.ebi.ac.uk/
43SGN, https://www.senckenberg.de/
44SNSB, https://snsb.de
45MfN, https://www.museumfuernaturkunde.berlin/de
46BGBM, https://www.bgbm.org
47SMNS, https://www.naturkundemuseum-bw.de/
48DSMZ, https://www.dsmz.de/
49ZFMK, https://bonn.leibniz-lib.de/en
50eDAL, https://www.ipk-gatersleben.de/

https://www.gfbio.org
https://pangaea.de/
https://www.ebi.ac.uk/
https://www.senckenberg.de/
https://snsb.de
https://www.museumfuernaturkunde.berlin/de
https://www.bgbm.org
https://www.naturkundemuseum-bw.de/
https://www.dsmz.de/
https://bonn.leibniz-lib.de/en
https://www.ipk-gatersleben.de/
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Apart from search questions, we also used GFBio/NFDI4Biodiversity metadata files
in the evaluations described in Chapter 4 and Chapter 8. Ten metadata files from PANGAEA
were utilized in the Named Entity Recognition corpus presented in Chapter 6.

2.5 Summary

In this chapter, we briefly introduced the research fields this work is built on. User-

centered Design is the process to achieve a usable and user-friendly system. This goal is
also called Usability. User-centered design is characterized by active user participation in
all four steps of the developement (context of use, requirements collection, design solu-
tion and evaluation). In order to assess whether an application is usable and user-friendly,
different user testing methodologies were developed. Formative evaluations aim to eval-
uate a system in an early stage of the development, while a summative evaluation aims to
determine whether a system meets the user requirements. It is mainly conducted at the
end of development cycles. There are multiple metrics to measure usability on different
scales. Performance-based metrics aim to measure efficiency-based criteria, such as time
on task or task success. Issue-based metrics focus on occuring usability issues that prevent
users to fulfill their tasks, and self-reported metrics collect subjective and self-assessing
feedback in surveys.

Information retrieval is the research field of search engines. There are several keyword-
based retrieval algorithms to convert text into a mathematical representation that machines
are able to understand. Evaluation is mainly focused on the accuracy of the retrieval mod-
els to determine the relevance of the returned information. A major initiative towards
more user engagement in evaluations was the TREC Interactive Track, which ran from
1997 to 2002. The aim was to balance system-focused and user-focused evaluation stud-
ies.

A quite new field of research is the Semantic Web. Once the world wide web has
emerged in the mid-nineties, there was the desire to provide and query for more mean-
ingful information in the web. Thus, all web resources got unique identifiers that can
be shared and linked, but they remain stable in the world wide web. Over the past two
decades, formal models were developed that allow the modeling of the real world in a
logic way and to link unique identifiers. For most domains, separate vocabularies and
ontologies have been established that, in best case, are also interlinked among each other.
The Life Sciences are one of the most active domains producing such terminologies. All
web resources and their formally described relationships represent a network that ma-
chines can read and understand (Linked Open Data). These networks (nowadays also
called Knowledge Graphs) and their applications form again new research fields being
addressed at numerous conferences and scientific journals.

This work aims to support scholars in Biodiversity Research to find relevant datasets
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for their research. Driven by the dramatic loss of biological diversity on earth, a variety of
research projects have been established to understand the relationships among species and
ecosystems to draw conclusions and develop approaches on how to overcome biodiversity
loss. For the purpose of this work, we collected search questions and used metadata files
from different biodiversity projects mainly located in Germany.





Chapter 3

Dataset Search and Improvements by
Semantic Enrichment

“Having the right data is usually better than having more data.”

- Christine L. Borgman in ‘Big Data, Little Data and No Data’, Information scientist

Finding relevant scientific data is a time-consuming and difficult task due to many reas-
ons [Borgman, 2015]. Often scholars can not retrieve any data, because data do not exist,
are not available or the provided search tools to do not support scholars properly (see also
Chapter 1.3). In the Life Sciences, only very few studies exist that evaluate current data
portals and explore the obstacles in dataset search. Therefore, this chapter addresses H1

and aims to identify the problems in the retrieval process of current dataset search in the
biodiversity domain. We also explore whether semantic techniques can help to overcome
these issues.

At first, we provide an overview of related work in Section 3.1 with respect to dataset
search, evaluations of current data portals and semantic search approaches in the Life
Sciences. Subsequently, we evaluate the dataset search of GFBio, a data portal providing
numerous datasets for environmental, ecology and biodiversity science (see also Chapter
2.4). In this evaluation, we focus on two aspects of the user perspective (Section 3.2): (A)
We conduct a user study to determine the relevance of the search results. (B) In addition,
the overall user experience is explored in a survey.

In a second study, we analyze the usefulness of semantic technologies for dataset
search in biodiversity research, and we examine whether users actually benefit from a
semantic search. The search results from a keyword based search are compared to the
results obtained from a prototypical semantic search (Section 3.3). This second study
and its results were published at SEMANTiCS’16 [Löffler and Klan, 2016]. The findings
led to the development of a first version of a semantic dataset search in the scope of the
GFBio project published as demo paper at ESWC’17 [Löffler et al., 2017].

66
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3.1 Related Work

The more scientific articles were available for search at scientific publishers, the more the
desire grew to have access to the underlying data, too. Numerous data archives in the Life
Sciences have been established over the past decades. In contrast to information retrieval,
which aims to find documents (unstructured textual resources), dataset search wants to
retrieve datasets [Chapman et al., 2019]. We introduce studies evaluating dataset search
applications in Section 3.1.1. In particular, we focus on evaluation studies that assess the
relevance of datasets in a retrieval system or that explore usability aspects.

The aim in information retrieval is to find relevant documents for a specific query.
Conventional retrieval algorithms can only find documents that syntactically match a
user’s query keywords. This is an obstacle when looking for scientific terms with dif-
ferent spellings and namings. For instance, information seekers might look for genes,
proteins or species with common names, but data providers used scientific terms in data
descriptions. Providing search applications that go beyond syntactic matches was one mo-
tivation for several semantic search approaches in the Life Sciences, which we introduce
in Section 3.1.2.

3.1.1 Dataset Retrieval

User studies aiming to improve dataset search are rare. The work by
[Megler and Maier, 2013] and [Castelo et al., 2021] are approaches to enhance dataset
retrieval in terms of filtering for spatial and temporal areas. [Megler and Maier, 2013]
developed an approach that extracts features from primary data and adds it to metadata al-
lowing an enhanced query for particular spatial and temportal parameters.
[Castelo et al., 2021] presents, besides a keyword-search, a data integration approach that
permits to join columns from multiple datasets.

To the best of our knowledge, very little studies exist that evaluate dataset search
applications. [Megler and Maier, 2015] and [Kalantari et al., 2020, Kalantari et al., 2021]
are examples from the earth observation and oceanography domain (spatial and temporal
data). The studies by [Dixit et al., 2017] and [Chen et al., 2018] are based on the Datamed
portal1, a federated approach providing biomedical datasets from 76 data repositories,
and the evaluation by [Volentine et al., 2015] was conducted in the scope of DataONE2,
another federated approach collecting environmental and biological datasets from various
sources and providing a single point of access to all harvested datasets.

Most studies are qualitative user studies with less than 30 participants, and a main
focus is on the evaluation of the usability. For evaluation data collection, the studies

1Datamed, https://datamed.org/
2DataONE, https://www.dataone.org/

https://datamed.org/
https://www.dataone.org/
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used various methods of qualitative evaluation such as thinking-aloud, questionnaires and
interviews (see also Chapter 2.1).

[Megler and Maier, 2015] also assessed the relevance of the retrieved datasets. The
participants were permitted to search for at least three own information needs based on
their research backgrounds. They rated the Top25 results on a four-point Likert scale, the
recall was estimated. The study authors report on a very high MAP value (MAP 0.96) for
the Top10 results. In contrast, [Dixit et al., 2017] states that users were not able to assess
the relevance, as the metadata quality of the respective datasets was too low. In addition,
[Chen et al., 2018] explored the relevance of the datasets in the Datamed portal (2.3 Mio
datasets in July 2017) based on the bioCADDIE benchmark [Cohen et al., 2017b], a test
collection for dataset retrieval with 800,000 datasets, 15 questions and relevance judg-
ments on the Top300 results (see also Chapter 7 for more information). Without any en-
hancements, the infAP (0.098), infNDCG (0.259) and P@10(0.468) (see also Chapter 2.2.3
for the metrics) were low to moderate. The Datamed portal provides an improved search
based on query expansion and the UMLS3 terminology service (see also Section 3.1.2).
Utilizing this improvement, the performance increased (infAP: 0.203, infNDCG: 0.354,
P@10:0.602).

Apart from [Chen et al., 2018], all other studies report on usability issues, which can
be classified into two main topics.

• Metadata quality: The biggest usability issue in all studies were incomplete metadata
[Volentine et al., 2015, Dixit et al., 2017, Kalantari et al., 2020]. For instance, users
looking for biomedical datasets would like to see information on biomedical con-
cepts, data type, data collection method, data format, data processing, sample de-
scription, date of collection or variables measured [Dixit et al., 2017]. However,
this information was not present. Participants of the DataONE study
[Volentine et al., 2015] suggested to have an option to open metadata in a separate
tab to facilitate the comparision of multiple datasets. They also would prefer more
hover functions for additional information. Users in the study of
[Kalantari et al., 2020] complained about missing filters, tags being not relevant to
the data and completely irrelevant results. In addition, [Megler and Maier, 2015]
report on different spellings of variable names, which led to no results.

• User interface: A major issue with respect to the presentation of search results
was the usage of acronyms, terminologies or the wording of buttons and filters that
users could not understand [Volentine et al., 2015, Kalantari et al., 2020]. Another
problem was inconsistent information in title and description, and users disliked
the solely textual presentation [Kalantari et al., 2020]. Users from the biomedical

3UMLS, https://www.nlm.nih.gov/research/umls/

https://www.nlm.nih.gov/research/umls/
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domain were missing an enhanced search input [Dixit et al., 2017] to search for
multiple topics, e.g., a search for phenotypes and genes.

Based on these identified usability issues, [Kalantari et al., 2021] developed an im-
proved user interface with more metadata information for a data portal providing spatial
and temporal data. The improvements include filters based on user interests, metadata
presented as a table, attributes displayed in a separate tab, and per dataset users could
define use cases to describe for what purpose the data had been used in the past. In inter-
views, they asked eight users about their impressions. The participants particularly liked
the improved titles, filters and the metadata tab. They were also very pleased about clear
instructions how to open the metadata tab and a map view.

When we started our research in 2015, only two studies on user evaluations in dataset
search were available. Seven years later, only very few studies have been added. The RDA
survey of the Data Discovery Interest Group from 2018 [Khalsa et al., 2018] also confirms
our assumption that only few data repositories evaluate their systems. In particular, eval-
uations in the Life Sciences (and specifically in biodiversity research) are missing. There
are few studies exploring the relevance in dataset search applications, comparing different
retrieval algorithms or retrieval technologies. Addressing this research gap, we conducted
a relevance evaluation study in the scope of the GFBio project being introduced in the
next Section 3.2.

3.1.2 Semantic Search in the Life Sciences

Semantic search is a broad field that requires a more precise classification on what data
it operates and what kind of search is meant by the term ’semantic’. [Bast et al., 2016]
distinguish between nine different types of semantic search approaches along two dimen-
sions: the indexed data source and the search approach.

Data sources for indexing are either plain text (e.g., web documents, scientific articles,
blog posts, emails, tweets or news articles) or knowledge bases (KB) containing structured
information as triples in semantic formats such as RDF and OWL. A third category of data
sources is a combination of text and knowledge bases. More specifically, combined data
refer to text being enriched with semantic annotations. A semantic annotation is a link of
a keyword to an entity (concept) in a knowledge base. The process to match keywords and
entities is called Named Entity Recognition (NER) and entity linking or entity resolution

(see also Chapter 2.2.1 for basics in Natural Language Processing). Combined data also
include merges of multiple knowledge bases. The result are large knowledge graphs such
as DBpedia4 or Wikidata5.

4DBpedia, https://www.dbpedia.org
5Wikidata, https://www.wikidata.org

https://www.dbpedia.org
https://www.wikidata.org
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With respect to the search approach, [Bast et al., 2016] differ between three categor-
ies: keyword search, structured search and natural language search. A keyword search

is the most common search approach. Users type, in accordance to their information
need, relevant terms into an input field. They obtain documents or entities (or both) that
are relevant to their query. This approach is easy and fast for users, but the search is
limited to a syntactic match of query keywords and terms in data sources; semantically
related documents can not be obtained. In contrast to keyword search, a structured search

aims to obtain entries from a knowledge base with query languages such as SPARQL.
Formulating these structured queries is the mightiest semantic approach and allows the
maximum “precise semantics” [Bast et al., 2016]. However, constructing these queries
requires specific knowledge and can get very complex. Hence, it is difficult for end-users
to use systems with a structured input. Natural language interfaces aim to overcome both
limitations and permit to enter a phrase or a full natural language query. Usually, such a
query starts with a W-question word (e.g., what, why), and users expect to obtain exact
answers on their questions. Entering natural language is easy and convenient for users,
but very difficult to understand for machines. Ambiguity is one of the biggest obstacles
in these interfaces, because a term can have several meanings in different contexts.

The authors argue that this classification also contains ‘grey zones’ and some aspects
are implied implicitly. For instance, the search result is not separately considered, but
is a result of the data source (used for indexing) and the search approach. Also, ‘search
approach’ does not only refer to the query input and explicit retrieval systems, but also
considers related tasks such as informantion extraction and possible add-on search tasks.

Figure 3.1 presents an overview of all nine categories. Starting from a classical
keyword search over text (upper left corner), the ultimate semantic search is a natural
language search over combined data (lower right corner). Systems such as IBM Wat-
son [Ferrucci, 2012], WolframAlpha6 or recent developments in the Semantic Web and
NLP community ([Diefenbach et al., 2020, Shen et al., 2019, Plepi et al., 2021]) are cur-
rently getting increasing attention and have brought up multiple challenges in question
answering, e.g., the QALD challenge7 or the BioASQ challenge in the Life Sciences8.
In particular, question answering approaches based on Google’s BERT language model
[Devlin et al., 2019] have attracted many researchers, e.g., [Qu et al., 2019]
[Wang et al., 2019, He et al., 2020]. However, returning an exact answer on a query is
not the desired result for all use cases. As the aim in dataset search is to obtain rel-
evant datasets (see also Subsection 3.1.1), the whole third column in Figure 3.1 is out
of scope of this work. We also do not want to focus on systems that only search over
knowledge bases. Even if there are a couple of approaches in the Life Sciences that offer

6WolframAlpha, https://www.wolframalpha.com
7QALD, http://qald.aksw.org/
8BioASQ, http://bioasq.org/

https://www.wolframalpha.com
http://qald.aksw.org/
http://bioasq.org/
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Figure 3.1: Semantic search categories based on [Bast et al., 2016] along two dimensions: data
sources (row) and search approach (column). The orange colored categories are not considered in
this work, only the blue colored groups are introduced.

a keyword search, a structured search or visual interfaces over biomedical knowledge
bases [Belleau et al., 2008, Sy et al., 2012, Schweiger et al., 2014, Kamdar et al., 2014,
Hoehndorf et al., 2015, Zaki and Tennakoon, 2017], we want to focus on systems that are
based on text or combined data, because in dataset retrieval (which we aim to improve),
metadata usually have at least some textual resources. Therefore, in the following list, we
briefly introduce the four categories based on [Bast et al., 2016] that are relevant for the
subsequent literature study on semantic search systems in the Life Sciences.

• KST - Keyword Search on Text: Users enter some keywords that are relevant for
their information need and obtain a list of documents. The system finds and ranks
documents based on frequent words occuring in the documents, or they learn the
relevance from pre-trained past data. These classical search systems provide good
results when users enter keywords that exist in the documents or that occur in ex-
ternal resources. However, more complex questions requiring to go beyond this
syntactic match are not possible. Most existing search engines and data portals sup-
port this type of search. It is the most common approach and also includes search
applications that automatically expand entered keywords on related terms (query
expansion).

• SDET - Structured Data Extraction from Text: In this approach, search is not the
primary goal but an add-on task. The motivation for this method is driven by the
fact that users need support in getting a quick overview of a text to decide whether a
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document is relevant for their information need or not. Therefore, the primary goal
is to identify important terms or entities or relations in text and to highlight them in
the result. This information extraction task is a pre-processing step before a search
is added, or the enhanced structured query is forwarded to systems that obtain entit-
ies from KBs (Structured Search in Knowledge Bases). The extracted information
is either stored in a triple store or is used to obtain additional information from one
or multiple knowledge bases. The search process is performed on a classical text-
based index. Most search systems in the Life Sciences fall into this category. Main
entities such as genes, diseases or species are extracted from text by means of query
or entity expansion. The entered keywords are expanded and the extracted entities
are highlighted in the result snippets. These extractions can also include links and
URIs to resources in the Linked Open Data cloud. Users benefit from this approach
as it combines information extraction and search. However, determining the correct
meaning of the extracted information is a challenge and often does not result in high
precision and recall values. Moreover, not all information needs can be formulated
in a structured format.

• KSCD - Keyword Search on Combined Data: The underlying data in these types
of approaches are either text with entity annotations or Semantic Web data (know-
ledge graphs). The aim is to provide a keyword search and to return a ranked list
of concepts. The result may also contain text snippets that are relevant to the query.
This approach combines techniques from KST and knowledge bases. The input
could be either keywords or entities. For keywords, matching URIs are looked up.
For entities, a virtual document is created based on string literals or relations from
the knowledge base. This virtual text is then used for a search with classical tech-
niques from KST to retrieve relevant documents. Another approach is to perform a
keyword search over text at first. Afterwards, occuring entities in the result are ex-
tracted and ranked. This is an easy approach that makes use of conventional search
techniques. However, it is mostly a keyword search and therefore, it faces the same
limitations as in KST approaches.

• SSCD - Semi-structured Search on Combined Data: As in the previous category,
combined data are the data source for these approaches. The query input can be
either keywords or a structured search or a combination of both. And the result
are ranked lists of entities, matching documents or result snippets and information
from knowledge bases. The main idea of this approach is to store text and know-
ledge bases either in separated indexes or in a combined-index. According to the
query input, different user interfaces are required. Users benefit from this approach
as it merges the advantages from keyword search over text (widley spread and well-
known) and core semantic technologies (structured search - the most powerful se-
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mantic query). A limitation of this approach is that a structured query input requires
knowledge about the query language, which can get very complex and thus, it is dif-
ficult for end-users.

The Life Sciences, and in particular the biomedical domain, are a very active com-
munity in terms of semantic search approaches. Based on a variety of vocabularies and on-
tologies in the Linked Open Data cloud (see Chapter 2.3.4), numerous search approaches
have been developed over knowledge bases ([Belleau et al., 2008, Sy et al., 2012]
[Schweiger et al., 2014, Kamdar et al., 2014, Hoehndorf et al., 2015]
[Zaki and Tennakoon, 2017]). The second large research community is inspired by NLP
approaches and a series of workshops with different focus areas, e.g., BioNLP9 (Named
Entity Recognition of important biological entities, relation extraction, co-reference res-
olution, summarization, question answering), BioCreative10 (gene, protein detection, re-
lations between chemical compounds/drugs and genes/proteins, semantic indexing, pro-
vision of gold standards) and BioASQ11 (semantic indexing and question answering).
Table 3.1 provides an overview of semantic search applications in the Life Sciences with
a focus on systems using text or combined data as data sources and systems providing a
keyword based or structured input (the blue highlighted categories in Figure 3.1). The aim
in all systems is to return textual information from publications or metadata. All systems
were categorized based on their data sources, the extracted information and the supported
semantic search approach.

All systems listed in Table 3.1 provide a user interface. Most developments (in par-
ticular the older ones) are not online anymore. Moreover, source code is only available
for very few approaches [Pachzelt et al., 2021]13, [Chen et al., 2018]14. Therefore, we
assessed the semantic search approach based on the provided descriptions in the pub-
lications. Almost all applications use either PubMed 15 articles, a subset of PubMed
articles or other biomedical publications and clinial trials as data source. Only Datamed
[Chen et al., 2018] utilizes biomedical datasets from several data repositories, and BioFID
[Pachzelt et al., 2021] is the only approach with textual data sources from the biodiversity
domain. Systems focusing on the biomedical domain mainly extract information on
genes, proteins, diseases, drugs and relations from text. In contrast, BioFID
[Pachzelt et al., 2021] highlights different entities that are more relevant to biodiversity re-
search such as taxons, habitats, geographic locations and temporal information. Most sys-
tems are approaches that extract structured information from text (SDET). Often the result
snippets or the whole text provide highlightings of occurring entities, e.g.,

9BioNLP, https://aclanthology.org/venues/bionlp/
10BioCreative, https://biocreative.bioinformatics.udel.edu/
11BioASQ, http://bioasq.org/
13BioFID, https://github.com/FID-Biodiversity
14Datamed, https://github.com/biocaddie
15PubMed, https://pubmed.ncbi.nlm.nih.gov

https://aclanthology.org/venues/bionlp/
https://biocreative.bioinformatics.udel.edu/
http://bioasq.org/
https://github.com/FID-Biodiversity
https://github.com/biocaddie
https://pubmed.ncbi.nlm.nih.gov


74 Chapter 3. Dataset Search and Improvements by Semantic Enrichment

System Data source Entity types Approach Terminologies

ESSIE [Ide et al., 2007] ClinicalTrials.gov - KST, text based index, query
expansion on search input

UMLS [UMLS, 2022]

Textpresso
[Müller et al., 2008]

PubMed articles
related to neuros-
cience

receptor, brain
area, cellular
component +
relation

SDET, text based index, main
categories identified and ad-
ded to the index

GO [GO, 2021]

GoWeb
[Dietze and Schroeder, 2009]

PubMed genes, diseases SDET, text-based search, re-
trieved snippets are enriched
with NLP pipelines and onto-
logy terms

MeSH [MeSH, 2022],
GO [GO, 2021]

GeneView
[Thomas et al., 2012]

PubMed articles genes, mutations,
species, chem-
icals, mentions
of cell types,
drugs, diseases,
enzymes, tissues

SDET, text based index, dif-
ferent text mining pipelines
to extract entities and re-
lations which are stored in
an RDBM, allows structured,
entity-wise search

MeSH [MeSH, 2022]

Pubtator [Wei et al., 2013,
Wei et al., 2019]

PubMed abstracts
and articles

diseases, species,
mutations, chem-
icals and genes

SDET, text based approach,
pre-annotaion with various
NLP pipelines

MeSH [MeSH, 2022],
NCBITaxon
[NCBITaxon, 2022], NCBI-
Gene [NCBIGene, 2022],
GNormPlus [Cai et al., 2015]

PolySearch2
[Liu et al., 2015]

Biomedical liter-
ature and data-
bases

genes, disease,
proteins, path-
ways, toxins,
organs, MESH
and GO terms

SDET, text based approach,
patterns to identify relations

GO [GO, 2021],
MeSH [MeSH, 2022]

DeepLife/LongLife
[Ernst et al., 2016,
Ernst et al., 2019,
Terolli et al., 2020]

biomedial art-
icles, clinical
trials, health
forum posts

genes, diseases,
anatomic parts,
symptoms, treat-
ments

SDET, text based approach,
entity detection and entity
expansion, linar combination
of TF-IDF scores (keywords,
entities, entity types), rule
based and probabilistic entity
recognition

UMLS [UMLS, 2022]

BEST [Lee et al., 2016,
Choi et al., 2012]

PubMed articles genes, diseases,
drugs, chemical
compounds, tran-
scription factors,
miRNAs, toxins,
pathways, muta-
tions

SSCD, combined text and en-
tity index, returns text and
ranked entities, TF-IDF rank-
ing, dictionary based ap-
proach for NER

GO [GO, 2021],
MeSH [MeSH, 2022],
FDA [FDA, 2022]

LIVIVO
[Müller et al., 2017]

50 biomedical
literature sources
such as Pubmed
and Agricola

- SDET, text-based index,
graph store (Neo4J) used in
addition, TF-IDF ranking,
query expansion

MeSH [MeSH, 2022], Drug-
Bank [Wishart et al., 2018],
AGROVOC
[AGROVOC, 2022]

semedico
[Faessler and Hahn, 2017]

PubMed abstracts
+ full text

Genes, Proteins,
Species

SDET, text-based index,
graph store used in addition
(Neo4J), rule based and
machine learning based NLP
pipelines, TF-IDF ranking

MeSH [MeSH, 2022],
GO [GO, 2021], GRO
[Beisswanger et al., 2008]

LitVar [Allot et al., 2018] PubMed genomic variants,
genes, chemicals,
diseases, species

SDET, various NLP pipelines
to extract entities

MeSH [MeSH, 2022]

Thalia [Soto et al., 2018] PubMed abstracts chemicals, drugs,
metabolites,
genes, diseases,
proteins, species,
anatomical entit-
ies

SDET, dictionary matching
and conditional random fields
models, query expansion

ChEBI [Hastings et al., 2016],
DrugBank
[Wishart et al., 2018],
HMDB [Wishart et al., 2007],
HGNC [HGNC, 2022],
UMLS [UMLS, 2022], Uni-
Prot [Consortium, 2020],
NCBITaxon
[NCBITaxon, 2022],
CARO [CARO, 2022]

Datamed [Chen et al., 2018] 76 biomedical
data repositories

diseases, chemic-
als, genes, biolo-
gical processes

KST, text-based index, Mon-
goDB for extracted entity
types, rule-based and ma-
chine learning-based NLP
pipelines, query expansion

UMLS [UMLS, 2022],
MeSH [MeSH, 2022]

BioFID
[Pachzelt et al., 2021]

Digital Collec-
tion Biology
(German) 12

taxon, plant,
animal, location,
time

SDET, text-based index, link-
age to external sources, ma-
chine learning-based NER

GBIF [GBIF, 2020],
EOL [Parr et al., 2014],
wikidata [Wikidata, 2022],
wikipedia
[Wikipedia, 2022], Geo-
names [Geonames, 2022],
GND [GND, 2022], Word-
net [WordNet, 2022]

Table 3.1: Semantic search approaches in the Life Sciences
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[Müller et al., 2017, Soto et al., 2018, Chen et al., 2018, Allot et al., 2018, Wei et al., 2019],
and in some approaches, these highlights also include related information on synonyms
or other expansions on hierarchical relations such as more specific terms or broader terms
[Faessler and Hahn, 2017, Terolli et al., 2020]. Highlightings may also contain connec-
tions to external resources [Pachzelt et al., 2021] or the identified concepts are linked to
knowledge bases [Lee et al., 2016, Wei et al., 2019]. Only one system is an approach on
combined data [Lee et al., 2016]. It allows a keyword search on a mixed index containing
text and semantic annotations (matching URIs from ontologies). The result are a ranked
list of entities and relevant articles.

The analysis of related work reveals that systems on combined data are still very rare.
In particular, there are no approaches in the Life Sciences enabling a keyword search
and a structured search with query languages such as SPARQL. Outside the Life Sci-
ences, a few systems have emerged that offer such an enhanced search on combined
data [Bast and Buchhold, 2013, Bast and Buchhold, 2017, Cunningham et al., 2013]
[Bontcheva et al., 2014].

However, the challenge for appropriate user interfaces remains. In order to avoid
complex query languages in the user interface, more approaches are needed that combine
the benefits from structured search over text (highlighting of important entities, search
over categories) and knowledge bases (full semantic knowledge).

3.2 Evaluation of GFBio’s dataset search

User evaluations in dataset search are rare. In order to address the need for more user stud-
ies, we evaluated the dataset search of the GFBio portal (Chapter 2.4) in a user study with
six scholars in 2016. We measured the relevance of the returned datasets and conducted a
user survey to determine the overall user experience and satisfaction.

3.2.1 Data Corpus

In 2015, the search index mainly consisted of datasets from an environmental data archive
- PANGAEA - and selected datasets from natural collections and museums in Germany
(named in Chapter 2). The search index was based on metadata, descriptive information
of the primary data. As the various data archives are built upon different data structures
and metadata schemes, GFBio agreed to map collection data from the collections’ specific
metadata schema ABCD 2.0616 (see also Chapter 4.3) to pansimple17, a Dublin Core-
based metadata schema developed by PANGAEA. Users benefit from a unified metadata
schema in the search interface, as a limited and thoroughly selected amount of metadata

16ABCD 2.06, https://abcd.tdwg.org/xml/documentation/primer/2.06/
17pansimple, https://ws.pangaea.de/schemas/pansimple/pansimple.xsd

https://abcd.tdwg.org/xml/documentation/primer/2.06/
https://ws.pangaea.de/schemas/pansimple/pansimple.xsd
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fields allows a facted search over the different datasets [Hearst, 2006]. Listing 3.1 contains
an example of a metadata file in pansimple metadata schema.

Listing 3.1: Metadata file in pansimple format (excerpt) [Frenzel et al., 2016]

<dataset>
<dc:title>Wild bee monitoring in six agriculturally dominated
landscapes of Saxony−Anhalt (Germany) in 2014</dc:title>
<dc:creator>Frenzel, Mark</dc:creator>
<dc:creator>[...]</dc:creator>
<dc:source>Helmholtz Centre for Environmental Research − UFZ</dc:source>
<dc:publisher>PANGAEA</dc:publisher>
<dataCenter>PANGAEA: [...]</dataCenter>
<dc:date>2016−09−29</dc:date>
<dc:type>Dataset</dc:type>
<dc:format>text/tab−separated−values, 47557 data points</dc:format>
<dc:identifier>doi:10.1594/PANGAEA.865100</dc:identifier>
<parentIdentifier>doi:10.1594/PANGAEA.864908</parentIdentifier>
<dc:relation>Papanikolaou, Alexandra D; Kuehn, Ingolf; Frenzel, Mark; Schweiger, Oliver (2016):
Semi−natural habitats mitigate the effects of temperature rise on wild bees. Journal of Applied Ecology,
doi:10.1111/1365−2664.12763</dc:relation>
[...]
</dataset>

The number of data records in GFBio’s search index is quite dynamic and steadily
increased over time. In February 2017, the search comprised 4.6 Mio datasets. In fall
2018, more than 5 Mio datasets were indexed and in March 2020, 15 Mio datasets were
accessible (but 14 Mio from one data center - SNSB). In April 2022, around 17 Mio data-
sets were available including metadata files from the molecular data archive EBI/ENA18.
Figure 3.2 presents a screenshot of the search in January 2016. The result items are listed
in the middle of the browser window. Each item provides the title of the dataset, the data
center hosting this data, a summary of provided parameters, links to the landing page of
the dataset at its respective data center and a link to download the data (if the data policy
allows it). The left pane displays facets for filtering, e.g., geographic region or data cen-
ter. The right pane contains a map for visualizing the geographic location of the dataset if
coordinates are available. Below the map, the results from GFBio’s Terminology Service
(TS) [Karam et al., 2016] are displayed. All search terms are sent to the TS to look for
matching URI concepts in the knowledge base.

3.2.2 Relevance Evaluation

Relevance evaluations in information retrieval consist of three components: a corpus,
queries and human judgments (see also Chapter 2.2.2). The corpus in this evaluation
comprised all available datasets in the GFBio search in February 2016 ( 2 Mio datasets).
In order to get genuine scholarly search interests, we asked scholars from GFBio part-

18EBI/ENA, https://www.ebi.ac.uk/

https://www.ebi.ac.uk/
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Figure 3.2: GFBio search interface in February 2016: Users can select datasets (shopping cart
icon) to be displayed on the map if coordinates are available. Facets for dataset filtering are
provided on the left, and results from GFBio’s Terminology Service [Karam et al., 2016] are
presented on the right.

ner institutions to provide search questions from their research background. In total, six
researcher provided 25 search questions. In addition, we obtained search logs of the Biod-

iversity Exploratories (Chapter 2.4). We reviewed all queries and search log entries with
respect to the results in the evaluation corpus. As we did not retrieve datasets for all quer-
ies, we utilized only these queries that actually led to results. The final search query pool
contained 16 questions and search log entries.

Two queries of this search pool were provided to each participant. The users rated the
Top 25 search results per query on a 7-point-Likert scale from ’0’(irrelevant) to ’6’(highly
relevant). Afterwards, we asked the users to provide and rate up to two own queries.
Table 3.2 presents all questions that received ratings. The asterisk denotes questions that
were provided by the users during the evaluation. The question corpus was quite het-
erogeneous and comprised questions to obtain species-related datasets, datasets contain-
ing environmental information or measurements on specific data parameters. Concern-
ing the complexity and granualarity, the question corpus was very diverse, too. Schol-
ars were interested in specific data, e.g., What can I find about ’bee’/’bees’?, but were
also looking for data to answer more complex questions such as Which are habitat data

for specific taxa?. All user ratings were saved in csv files and are available at Zenodo
[Löffler and Opasjumruskit, 2022].
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Query User Question Query Terms

Q1 User 1 (Test ) What data is there for vegetation data from west africa? vegetation data West Africa
Q2 User 1 (Test ) What data is there for root length? root length
Q3* User 1 (Test ) What data is there for foraminifera and benthic? foraminifera, benthic
Q4 User 4 Which data exist for ‘food webs’ in the north sea? food webs, north sea
Q5 User 4 How is the distribution of Holothuroidea (sea cucumber) in the

Arctic Ocean?
Holothuroidea, Arctic Ocean

Q6* User 4 What information is there on bird distribution in Germany? Bird distribution Germany
Q7 User 5 What data is there for ‘root length’? root length
Q8 User 5 Which are the habitat data for specific taxa? ecological variables, land use
Q9* User 5 What can I find about ‘bee’/‘bees’? bee
Q10* User 5 Is there any data for ‘land abandonment’? land abandonment
Q11 User 6 How high are sulfate reduction rates at cold seeps? cold seeps, sulfate reduction

rate
Q12 User6 How has ‘Goldenrod’ spread over Europe? Solidago canadensis
Q13* User 6 Is there a global map and dataset of tree species diversity? tree species diversity, global
Q14 User 7 How high are benthic oxygen uptake rates in den Atlantic? Atlantic, oxygen uptake, res-

piration
Q15 User 7 Is there data about the leaf area index and in particular about

diversity?
leaf area index, diversity

Q16* User 7 Is the diversity of hosts influencing the diversity of plant patho-
gens?

plant pathogen, host, diversity

Q17* User 7 Is the prevalence of diseases influenced by climate change? climate change, disease
Q18 User 8 What data is there for Thysanoptera on sunflowers? Thysanoptera, Helianthus
Q19 User 8 What data is in the repository for the ‘tree of the year’ 2016

(Tilia cordata)?
Tilia cordata

Q20* User 8 What data is there on the population abundance of millipedes? Abundance and Diplopoda
Q21* User 8 What data is there on the abundance of Pollinators e.g. Bees

Bees
Bees Bees

Q22 User 10 What data exist for microbial activities in groundwater? microbial activities, groundwa-
ter

Q23 User 10 What data is in the repository for nutrients in soil? nutrients, soil
Q24* User 10 What data is in the repository on forest cover change in Africa? forest cover change, Africa
Q25* User 10 What data is in the repository on ocean acidification and coral

bleaching
ocean acidification, bleaching

Q26 User 11 Is there data about the forest-specific diversity of vascular
plants?

vascular plant, diversity, forest

Q27 User 11 Are there soil samples in Germany including measurements of
pH and water content?

soil, pH, water content, Ger-
many

Q28* User 11 Is there data about plant traits influenced by precipitation and
grazing?

plant traits, precipitation, graz-
ing

Table 3.2: Overview of questions and search terms

* query was not given, user provided question and keywords

MAP, relevant: all ratings > 0 MAP, relevant: all ratings > 3 nDCG

0,69 0,57 0,68

Table 3.3: Retrieval metrics over all 253 ratings
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(a) Distribution of ratings on a 7-point Likert scale
from 0 (irrelevant) to 6 (highly relevant).

(b) Analysis on the information presented for each
dataset in the result set. Raters assessed whether the
provided metadata are sufficient to judge the relev-
ance per dataset returned for a given query.

Figure 3.3: Distribution of ratings and metadata quality results of the GFBio search study in 2016.

Results: Overall, eight domain experts from GFBio and iDiv took part in the evaluation.
Seven scholars had a research background in ecology, and one scholar had expertise in
zoology. In total, the scholars rated 28 queries resulting in 253 judgments. We analyzed
the results with common evaluation metrics in information retrieval, namely MAP and
nDCG [Manning et al., 2008] (Chapter 2.2.3). Table 3.3 presents the final metrics. The
first column contains the MAP values for all ratings above 0 that are considered as relev-
ant. The second column presents the MAP values for ratings larger than 3. The results
indicate a moderate relevance of the returned datasets.

Figure 3.3 presents the distribution over all ratings and illustrates that more than 50%
of all judgments got binary ratings only. Scholars either assessed a dataset as ’irrelevant’
or ’highly relevant’, the other Likert-scale entries were less used, in particular the medium
values. We conclude, too many rating options have probably confused the participants
and therefore, they ’reduced’ the rating scale to an amount that was feasible for them.
Moreover, the distribution also points to a large number of irrelevant results. For the
analysis of irrelevant results, raters were also asked, per dataset returned, whether the
information presented was sufficient to judge its relevance with respect to the given query
or whether they would need the primary data in addition. The results reveal (Figure 3.3)
that the provided information was sufficient to assess the relevance of a dataset.

We also determined the correlation between irrelevant results and not sufficiently de-
scribed metadata (Figure 3.4). The results denote that there is no correlation. Even if
datasets required no primary data to judge the relevance (e.g., Q4 and Q14), the datasets
got rated as ’irrelevant’. On the other hand, datasets with no sufficient metadata did not
get irrelevant ratings, e.g., Q23 and Q24. Hence, good or poor metadata quality does not
lead to higher or irrelevant ratings.
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Figure 3.4: Correlation of insufficiently described datasets in the result set and irrelevant ratings.

3.2.3 User Survey

Following the relevance study, we asked the participants to take part in a survey about
the overall user experience. Users rated statements grouped into four categories on a 5-
point Likert scale from ’completely disagree’ to ’highly agree’. For some statements, only
binary ratings were provided. In total, eight scholars took part in this evaluation, assessed
all 28 statements and provided qualitative feedback in seven free-text comments.

Table 3.4 presents the overall results. The focus of this survey was on the query in-
put, controllability functions and the search result. In a fourth category, we wanted to
obtain feedback on proposed improvements. We received good results with respect to
the query input and the presentation of search results. Users are overall satisfied with the
provided opportunities to enter a query and the information returned per dataset. One user
mentioned that facets for organisms and a specific type of data are desirable. Concern-
ing the amount of data presented in the result set, one scholar suggested to provide less
information and to expand metadata only on demand. Users also evaluated suggested im-
provements. According to these results, users would appreciate a map with geo-reference
refinement. They also favored suggestions from the system on how to improve the query,
or they would like the system to provide examples and templates.

The results for control functions need further considerations. Figure 3.5 presents the
results for the individual binary rated statements. Users’ impression was that control
functions are limited. For instance, users were not aware that quotes for exact matches
are available. Some scholars had difficulties to use AND and OR to combine search terms.
Surprisingly, the rating for the plural/synonym functionality got positive ratings. Plurals
are indeed considered in search, but synonyms are not. Apparently, users only rated the
plural function and overlooked to check whether synonyms are returned. It would have
been better to split that statement into two individual statements.

With respect to the quality of the datasets returned, users had the impression that



Chapter 3. Dataset Search and Improvements by Semantic Enrichment 81

Categories Statements Rating Comments

Query
input

Search box length 3.375 1. longer search box,
2. Is it handling boolean search?clearly labeled 4.25

Search facet
availability 4.375 1. request for facets:

organism, taxa, type of dataoptions are useful/sufficient 3.75
gradual search
refinement 4.375

Search
functionality

Control function

spell check 2.5

Not clear how to use itsupports plural and synonym 3.5
’more like this’ 1.5
store search terms and results 2

Expressiveness
of query

AND | OR 3 1. Unclear if quotes are working
2. Results are not clear
if these expressions work
3. bee AND/OR brazil
return no result.

quotes for exact match 3

* as a placeholder 4

Search
result

Quality

shows all necessary metadata 4
provides access to primary data 4
includes the location 3.625
provides access to the original
landing pages of the data centers
and archives 4.25
results are ranked
by relevance 2.714
no duplicate results 3

Appearance

The search result page shows what
was searched for and it is easy
to edit and resubmit the search. 4 1. The list is a bit long and thin -

a lot of scrolling down.
2. Sometimes you know from
the title it is not good,
perhaps a show/hide button for
the metadata could be used
so you can show the metadata
for those that look useful
- most were not

The search results page makes it
clear how many results were retrieved,
and the number of results per page
can be configured by the user. 4.625

The scope of the search is made ex-
plicit on the search results page.

3.75

Visualization

The handling of the visualization
component is intuitive and easy. 3.875
The provided options for
visualization are sufficient. 4

Improvement

Proposed
improvement

Showing a map with an overview of
results rather than a list of results 3.75 1. Can’t visualize the ’map’ -

do you mean geographic?
That could be a useful option.
2. I prefer the list result,
but map could help when
you work at large scales.
3. a full map, as well as the
list of results, would be
an improvement. the map on
it’s own would not be better.

The visualization component should
provide a search refining with
geo-reference data (e.g., search
within a bounding box). 4.0

Useful hints or
helps to improve
the query

provides ideas for improving the query 3.375
provides templates, examples or hints
on how to use the search effectively 3.25
Handles empty queries politely
and provides alternative search terms 2.75

Table 3.4: Overall results of the user survey. The users rated search statements grouped into four
different categories on a 5-point Likert scale from ’1’ (completely disagree) to ’5’ (highly agree).
For some statements, only binary scales (YES/NO) were provided. In order to make the values
comparable, binary negative ratings were treated as ’completely disagree’ and binary positive
ratings were considered as ’highly agree’. The provided rating values are the average values of all
ratings for this statement. Values equal or below ’3’ are highlighted.
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Figure 3.5: Survey results for statements concerning control functions (left) and statements con-
cerning the expressiveness of the query language (right).

Figure 3.6: Survey result for the quality of the search result.

datasets were not sorted by relevance and contained duplicates (Figure 3.6). However,
the duplicates were actually no duplicates. The large number of individual units in a
collection dataset resulted in the same data descriptions but pointed to different physical
objects. This picture reveals that the provided metadata information either needs to be
improved or similar results have to be grouped to avoid the impression that duplicates are
returned. Moreover, more relevant hits are required. This correlates with the results of the
relevance evaluation. Probably, based on the moderate rating results of the prior relevance
evaluation, users had the experience that the search result was not sorted by relevance.

Overall, we conclude that the users are satisfied with the usage of the query input and
the presentation of search results. However, available control functions need to be better
communicated. As the selected statements were a bit arbitrarly chosen, further studies are
needed to analyze which control functions support users in retrieving more relevant data.
Furthermore, the quality of the returned datasets need to be improved. The relevance of
the search results was only moderate.
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3.3 Comparison of a Keyword-Based Search and a Se-
mantic Search

In a second user study, we aimed to explore the usefulness of semantic technologies in
dataset search. We wanted to analyze whether scholars would be able to retrieve more
relevant datasets in a semantic search and thus would actually benefit from semantic
techniques. Therefore, we developed a prototype of a semantic search based on query
expansion, and we linked key terms of a search task to concepts in domain ontologies.
We expanded the search query with the obtained synonyms, alternate labels and labels
obtained from further hierarchy relations. We conducted user tests with scholars, who
assessed the relevance of the returned results in the semantic search and the keyword-
based search (Subsection 3.3.1). In the following, we provide an extended version of our
publication at SEMANTiCS’16 [Löffler and Klan, 2016].

In order to obtain qualitative feedback, we interviewed the scholars after the relevance
evaluation (Subsection 3.3.2). In total, six scholars with a background in biodiversity
research took part in this time-consuming evaluation. Each visit/ phone call in December
2015 and February 2016 took around two hours. Three users were visited at their working
environments and three users were contacted via telephone. Supplementary material can
be found in our GitHub repository19. The primary data files of the user evaluation were
published at Zenodo [Löffler and Klan, 2022]

3.3.1 Relevance Evaluation

As data sources, we utilized 92,856 metadata files from GFBio (randomly selected). We
indexed the datasets with GATE Mímir [Cunningham et al., 2013], a search engine that
allows searches over a text based and an annotation index. For these experiments, we only
utilized the text based index with a boolean retrieval model and the T F − IDF scoring
function. Hence, we followed a basic search approach (KST), but enhanced each query
in the semantic search with query expansion.

Six biodiversity scholars provided research and search questions related to their field
of expertise. They also indicated relevant search terms for each query. Having both,
the keywords entered for search and the underlying question, allowed us to interpret the
meaning of the search terms correctly and made the query intent explicit. All queries used
in this evaluation are listed in Table 3.5.

GATE Mímir provides a user interface with an own query language, which is not
well suited for an evaluation with end-users. Hence, we integrated the results returned

19Comparative user study, https://github.com/fusion-jena/comparision-keyword-
semantic-search

https://github.com/fusion-jena/comparision-keyword-semantic-search
https://github.com/fusion-jena/comparision-keyword-semantic-search
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Query Question Search Terms

Q1 How high are sulfate reduction rates at cold seeps? cold seeps, sulfate reduction rate
Q2 How high are benthic oxygen uptake rates in den Atlantic? Atlantic, oxygen uptake, respiration
Q3 How is the distribution of Holothuroidea in the Atlantic Ocean? Holothuroidea (sea cucumber), Atlantic
Q4 How high is the organic carbon content in arctic sediments? arctic, sediments, organic carbon
Q5 Where do I find mesopelagic fish of the genus Cyclothone? Cyclothone
Q6 How many eggs do copepods produce (e.g. eggs/female/day)? egg production, copepoda
Q7 How variable is the oxygen concentration (e.g. in unit (mycro)mol/kg)

of sea water in the mesopelagic zone (i.e. between 200-1000 m) of the
global ocean?

oxygen, (mycro)mol/kg, sea water, meso-
pelagic zone

Q8 What data exist for Neogloboquadrina pachyderma or Globigerina bul-
loides?

Neogoboquadrina pachyderma, Globigerina
bulloides

Q9 What data contains samples from surface water? surface water, water sample
Q10 What are associated taxa, for example an insect and its host plant? host (parasite), plant, insecta
Q11 What data exist for invasive grasses, e.g., Poaceae? invasive grasses, e.g., (Poaceae)
Q12 What data is in the repository about ’climate change’? climate change
Q13 What data is there for ’root length’? root, length
Q14 What data exist for butterflies on oaks? lepidoptera, quercus
Q15 What data is there for ’foraminifera’ and ’benthic’? foraminifera, benthic
Q16 What data is there for nutrients in soil? nutrient, soil (terrestric)
Q17 What data is in the repository for the german tree of the year 2016 ’Tilia

cordata’?
Tilia cordata, Germany

Q18 What data exist for ’primula veris’ in Germany? Primula veris, Germany
Q19 Please show me all datasets about ’sunflowers’! sunflower (Helianthus)

Table 3.5: Overview of questions and search terms used in the comparison of a keyword-based
search and a semantic search.

Figure 3.7: User interface displaying the two result sets based on the user-provided keywords (left)
and on the expanded search terms (right)
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Figure 3.8: Experimental setup of the search expansion [Löffler and Klan, 2016]

by the search engine into the open-source portal Liferay20. In Figure 3.7, the left side
of the portlet shows the results obtained from the original user-provided search terms,
the right side displays the datasets that were retrieved using the semantic search. The
users were not told which result set is based on which retrieval technique, however, the
users quickly realized which result was based on which technology. Each search term in
the semantic search was expanded with related terms obtained from GFBio’s knowledge
base [Karam et al., 2016] and Bioportal [Whetzel et al., 2011].

The domain experts assessed two parts of the result: (1) the relevance of the returned
datasets in the keyword search result and the semantic search and (2) the expanded terms
used in the semantic search to determine which expansion strategy performed best. In
case (1), the users evaluated the relevance of the returned Top25 datasets on a 7-point-
Likert-scale from 0 (irrelevant) to 6 (highly relevant). In case (2), ratings were provided
on a binary scale.

Expansion strategies: For all provided search terms, we manually looked for matching
concepts in the knowledge bases. The GFBio TS focuses on vocabularies for environ-
mental, genetic and collection data, whereas Bioportal provides ontologies for the biolo-
gical and medical domain. A preference was given to the GFBio TS since its ontologies
are tailored to the datasets that were available in the GFBio portal. When a given search
term could not be linked to a concept defined in one of the ontologies in the GFBio TS, we
looked for entities in selected GFBio-related ontologies in Bioportal. Since geographic
knowledge is not fully covered by the terminology providers, we only focused on the ex-
pansion of taxonomic information and environmental terms. Table 3.6 lists all ontologies
used and the number of matching concept with search terms over all questions. For 34
out of 36 search terms we found matching concepts in the knowledge bases.

In case of a successful match, both, the original set of keywords and the expanded
version were sent to the search engine for dataset retrieval. This led to two different result

20Liferay, http://www.liferay.com

http://www.liferay.com


86 Chapter 3. Dataset Search and Improvements by Semantic Enrichment

Source Vocabulary Concepts

GFBio TS National Center for Biotechnology Information (NCBI) Organismal Classification
(NCBITaxon) [NCBITaxon, 2022]

13

GFBio TS Computer Retrieval of Information on Scientific Projects Thesaurus (CRISP) [Bair et al., 1996] 9
GFBio TS ENVironmental Ontology (ENVO) [Buttigieg et al., 2016] 8
Bioportal National Cancer Institute Thesaurus (NCIT) [NCIT, 2022] 3
GFBio TS Chemical Entities of Biological Interest Ontology (CHEBI) [Hastings et al., 2016] 2
GFBio TS Observation Ontology (OBOE) [Madin et al., 2007] 2
GFBio TS Phenotypic Quality Ontology (PATO) [Köhler et al., 2019] 1
GFBio TS Quantities, Units, Dimensions, and Types Ontology (QUDT) [FAIRsharing.org: QUDT, 2011] 1
Bioportal Clinical Measurement Ontology [Shimoyama et al., 2012] 1
Bioportal Gene Ontology (GO) [GO, 2021] 1

Table 3.6: List of ontologies used for query expansion and matched resources

sets displayed to the study participants side by side in a portal-based user interface. The
overall flow is presented in Fig. 3.8.

We developed a JAVA command-line tool that expands the search terms following a
certain strategy: We assumed that for a given search term all its synonyms as well as terms
referring to descendant nodes, i.e., more specific concepts, can lead to relevant results,
too. For instance, a user interested in Lepidoptera would probably like to obtain more
specific results, such as Cameraria (certain group of butterflies). For each concept with
a label that matched one of the given search terms, we fetched all synonyms and direct
sub-concepts (narrower concepts) and added them as expansion terms. If no descendant
concepts were available, we selected the next super class (broader concept) and all sibling
nodes. For species names, the genus was regarded as the most specific concept, since
scientific names typically already contain the genus. Therefore, adding labels of sub-
concepts, e.g., species names, would not lead to a higher recall. All expansion terms
derived from an original term were connected with a logical OR, all original terms were
combined among each other with a logical AND. If no corresponding concept was found
for a given search term, just the term itself was included into the expanded query.

In some cases, we got a very large number of expansion terms, e.g., for insects (around
209,000), which required to cut the number down to an amount that was manageable by
the search engine. Therefore, we only utilized expansion terms for which metadata was
present in the corpus. The listing below (Listing 3.2) shows an expanded set of search
terms for the keyword cyclothone (a genus of deep sea fishes) containing an excerpt of
species, synonyms and labels of sibling concepts for the term cyclothone.

Listing 3.2: Query expansion example

((cyclothone) OR (gonostomatidae) OR (diplophidae) OR (bristlemouths) OR (gonostoma
elongatum) OR (cyclothone acclinidens) OR (cyclothone pallida) OR (margrethia obtusirostra)
OR (sigmops) OR (cyclothone parapallida) OR [...] OR (sigmops bathyphilus))

In total, we distingued between four expansion types: synonyms, sub-classes (nar-
rower concepts), sibling classes and super classes (broader concepts). In a first task, the
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Figure 3.9: Result of the user rated expansion types [Löffler and Klan, 2016]

users had to assess the different expansion types. We showed them a list of all potential
expansions per query and let them indicate which expansions were relevant with respect
to their query.

Results: In total, we obtained 581 ratings from 38 queries (19 search tasks in two user
interfaces). In a first analysis, we explored whether a particular expansion strategy res-
ulted in more relevant keywords. Figure 3.9 presents the user ratings on the expansion
types. The result reveals that all types of expansion are relevant from the user perspective.
It is interesting to see that synonyms are not relevant per se (as assumed) and that users
assessed expansions with superclasses as relevant for more than two-third of all provided
terms. The aim of query expansion is to return a larger result set. It needs to be invest-
igated whether this leads to a result with more relevant hits. Therefore, we compared the
outcome of the keyword-based search with the result set of the semantic search (based on
query expansion). We took a closer look on (a) the portion of relevant datasets and (b) on
the user ratings.

(a) Portion of relevant datasets: We used different retrieval metrics (relative precision/
recall, MAP and nDCG, Chapter 2.2.3) to analyze the relevance from various perspect-
ives. As the ground truth was not given, we determined the relative measures of recall and
precision for the Top25, and we compared the results of the keyword search (KS) and the
semantically expanded search (ES). We computed the relative precision as

(1+
# relevant datasets KS
min(# datasets KS, 25)

)/(1+
# relevant datasets ES
min(# datasets ES, 25)

).

If the result set was empty, the absolute precision was set to 0. The relative recall was
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Figure 3.10: Average relative precision (blue) and recall (yellow)

MAP > 0 MAP > 3 nDCG MAP > 0 MAP > 3 nDCG

0.74 0.58 0.72 0.83 0.55 0.79

Table 3.7: MAP and nDCG based on different relevance thresholds (> 0 and > 3) for the keyword
(left) and semantic search (right)

determined as

(1+ # relevant datasets KS)/(1+# relevant datasets ES).

A value of 1 denotes equal precision/ recall, a value lower than 1 points out that the
precision (recall) of the semantic search is higher than the value of the keyword search.
And a value larger than 1 indicates that the precision/ recall of the keyword search is
higher than that of the search based on expanded keywords.

Figure 3.10 presents the relative results over all queries expanded with synonyms (left)
and expansions with sub-concepts (middle and right). As we aimed to explore whether ad-
ditional term expansions lead to a larger relevant result set, we omitted queries for which
the users judged the keywords as irrelevant. The results were computed for different rel-
evance thresholds. Figure 3.10 (left and middle) shows the relative precison and recall
values for the Top25 results, whereas Figure 3.10 (right) refers to the Top10 datasets. The
results reveal that term expansion did not increase the precision of the retrieval process
(relative precision at around 1). However, for synonyms the relative precision is lower
than 1, and thus, it had a slight positive effect on the relevance. For the recall, this effect
is even stronger. The comparision of the Top25 and Top10 results reveal that the increase
of the recall for the semantic search is larger in the Top25 results than in the Top10 results.
This points to a suboptimal ranking. Looking at the MAP and nDCG values (Table 3.7),
this outcome is confirmed. Even if the values for the semantic search are higher than for
the keyword search, the results are not close to a value of 1 (a perfect ranking).

(b) User ratings: Besides the relevance, we also wanted to figure out whether a par-
ticular expansion strategy leads to higher user ratings. For both search applications, we
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Figure 3.11: Distribution of average relevance for keyword-based (blue bars) and semantic search
(green bars)

determined the fraction of the Top25 results with respect to all queries per expansion
strategy (Figure 3.11). As in the relevance analysis, we only used queries with relevant
keywords. The blue bars indicate the results for the pure keyword-based search, the lime
green bars show the results of the semantic search using the term expansion technique. If
the datasets returned are less relevant, the portion of low relevance values would increase
(relevance values 0−2). In contrast, if a particular expansion techniques result in higher
ratings (relevance values 4− 6), we would observe an increase of the portions for high
relevance values. For synonyms (Figure 3.11, left), we observe more highly relevant res-
ults. Hence, adding keywords with synonyms to the query increases the portion of highly
relevant results. Extending the query with subclass labels (Figure 3.11, middle) results in
a larger fraction of irrelevant datasets and in a larger amount of relevant datasets (relev-
ance values 3−5). Adding super classes and sibling labels (Figure 3.11, right) only leads
to more results of low relevance (values 1 and 2).

3.3.2 Interviews

The relevance evaluation was supplemented by subsequent interviews. The questions and
answers are presented in Table 3.8. The result of the third question was already analyzed
in the previous section, so in the following, we summarize the remaining questions.

The answers reveal that users had the impression that the semantic search (the right
tab) overall returned more relevant datasets. We can confirm this impression with the
results from the relevance evaluation, however, the difference is not that large as the result
from the interviews would assume. We also asked the users why they gave low ratings
to datasets obtained from hierarchical terms (see Figure 3.11). It turned out that they
did not know if the presented narrower or broader concepts are somehow related to their
original search terms. Obviously, even domain experts are not familiar with all taxonomic
terms, they need explanations why expanded terms appear in the result set. One user was
sensitized for thoroughly described metadata and put emphasis on qualitative metadata in
search. Two scholars would like to have the opportunity to query for metadata and primary
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Number Question Answers

Q1 Overall from your perspective, which res-
ult set returned better results, the right one
(Semantic Search) or the left one (keyword-
based search)? Why?

left(0), right (3), undecided (tendency for the right result set) (3)

Q2 What did you dislike on the other one? less results (2), only marine results (1), ”depends on the question if
sub-classes are relevant for the query or not” (1)

Q3 Are the following extended search terms ap-
propriate for your search query?

analyzed in the previous section

Q4 Which data portals do you normally use?
Why?

no further data portals used in daily research work (2), GBIF
(1), Bexis (1), GeoportalBayern (1), PANGAEA (1)(extensive
metadata), OBIS (1)+ ENA (1) (specific data, consistent structure,
good geographic overview), EMODNet (1) (specific data, consist-
ent structure, good geographic overview + compiled data products),
SeaDataNet(1) (national oceanographic cruises, metadata avail-
able), WORMS (1) (to check metadata), MarineRegions (1) (to
get controlled vocabs for geographic places), OLSVis (1) (to check
search ontology terms)

Q5 Are there any kinds of queries (from your
research background) where no data portal
could find the right answer?

no answer (4), connection between metadata and data (e.g., re-
turn datasets with measurements from the first 20cm of sea floor)
(1), “no data portal has so far been able to offer enough relevant
data aboubt any question, and often the right answer is hidden in a
huge amount of not relevnat answers. Specific portals are usually
more satisfactory. So queries that combine/include taxonomy, geo-
graphy, rate measurement” (1)

Q6 Are there any further research questions/
search questions you would like to query?

sulfate reduction rate, Were crystalline stones drilled?, What rock
samples are there from the Palocene?

Q7 What do you expect from a semantic search? Surprising results for new ideas (1), question-answering-system
(1), group search terms (1), e.g., ’Artic Ocean’ (Ocean), all trees
(forest), cold seep (mud volcano)

Table 3.8: Interview questions, the number in brackets denotes how often this answer appeared.

data in search. Moreover, the interviews gave interesting insights what a semantic dataset
search could be. The answers ranged from grouping data into meaningful categories,
question answering systems with user-system interaction to “surprising results”.

Discussion Our comparative study of a keyword search and a semantic search reveal
that search queries expanded on synonyms and subclass labels resulted in a larger number
of relevant results and also returned datasets that are highly relevant. Expansions on
other relations require explanations, in particular on how the added terms are related to
the original query. However, we conducted the evaluation with only a small numbers of
users. Thus, more studies are needed to explore the suitability of semantic technologies
in dataset search.

3.4 Summary

This chapter addressed H1 and aimed to explore the current state of dataset search sys-
tems with respect to the retrieval approach. In addition, we investigated the suitability of
semantic techniques to improve the retrieval of relevant datasets.

The results of the GFBio search evaluation reveal that the relevance of returned data-
sets was only moderate. That confirms the users’ impression described in the problem
statement 1.3) that they have difficulties in finding relevant data. Hence, the utilized,
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conventional retrieval algorithms in this inspected dataset search support scholars only to
some extent and do not return a large portion of relevant results.

In order get an idea whether semantic techniques may help to find more relevant data-
sets, we conducted a second user study in which researchers compared the results of a
classical keyword-search with a semantic search based on query expansion. The outcome
reveals that adding synonyms and subclass labels led to a larger number of relevant res-
ults. It is also an effective way of finding datasets that are highly relevant. Utilizing other
semantic relations would need additional information on the returned datasets and their
relation to the original query.

The qualitative evaluation results collected in GFBio’s user survey and the
post-interviews in the second study also reveal that expanding terms based on ontological
criteria are not enough to support scholars effectively. Semantic techniques can support
dataset search, but have to be tailored to the search purpose. As the evaluations show,
scholarly search interests are quite diverse and therefore, further research is needed to
better understand what scholars in biodiversity research are interested in search. In order
to get answers on these questions, we analyzed search questions more deeply described
in Chapter 4.



Chapter 4

Search Interests and Metadata in
Biodiversity Research

“If you want a wise answer, ask a reasonable question.”

- attributed to Johann Wolfgang von Goethe, German poet

“Metadata liberates us, liberates knowledge.”

- David Weinberger in a lecture in 2008, Philosopher

Question corpora are common sources to determine user interests for a particular do-
main. Questions formulated in full natural language allow to capture the context of use
and to obtain a deeper understanding of users’ information needs. This detailed analysis
of the target group and their research aims supports the formulation of requirements for
an improved search and ensures that scholarly search interests are properly considered.

Besides questions, metadata are the other important data source in search. As Wein-
berger summed it up - “Metadata liberates knowledge” [Weinberger, 2008]. Most data
repositories utilize metadata in their search indexes, because primary data are too het-
erogeneous in their formats to be integrated into the search index. Metadata occur in a
variety of metadata schemas. There are general metadata standards as well as domain
specific standards developed for a particular research domain. So far it is unclear what
metadata standards are utilized in common data repositories for the Life Sciences. It is
also not known whether scholarly information needs in biodiversity research are repres-
ented in metadata fields. Information that is not present in metadata can hardly be found.
Therefore, this chapter addresses H2 and aims to analyze whether search interests in the
biodiversity domain are reflected in metadata. We asked scholars working in the field of
biodiversity research to provide questions that are specific for their research. We analyzed
theses questions and identified search topics that represent scholarly information needs in
this domain. In an online survey, nine domain experts evaluated the proposed topics. The

92
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results of this question corpus study are presented in Section 4.2. In a second study, we
compared the identified search interests with existing metadata standards in the Life Sci-
ences to determine whether existing metadata schemas cover scholarly information needs
(Section 4.3). In a third analysis, we selected five large data repositories being relevant
for biodiversity research, and we explored whether all publicly available metadata in these
repositories contain relevant metadata fields identified in the previous study (Section 4.4).

The results of this chapter were published in a journal paper [Löffler et al., 2021]. In
the following, we present a summarized version with a few extensions in related work
(Section 4.1).

4.1 Related Work

In order to capture users’ interests in search, query logs, user surveys or question corpora
are important sources. In the following, we explore related work along these possible
sources (Subsection 4.1.1). In addition, we provide an overview on approaches exploring
the quality of metadata and data repositories (Subsection 4.1.2).

4.1.1 User Interests in Search

Query logs: Search logs provide quantitative data on user interests. nFor dataset search,
oly a few studies are available. [Kacprzak et al., 2018] inspected query logs of different
open data portals in the United Kingdom, Canada and Australia and determined main
query topics. The result reveal that around one third of all search queries were re-
lated to Economy and Society. The authors also analyzed requests by users sent via a
form on the website. Here, geospatial (77.5%) and temporal (44%) information was the
most frequent mentioned topic. More than 40% of the users sent this explicit request
to the data portal, because they could not find relevant data with the search applica-
tion [Kacprzak et al., 2018]. Another recent study analyzed 236441 sessions from the
European Data Portal (EDP)1 over a period of one year [Ibáñez and Simperl, 2022]. The
aim was to explore behavioural patterns and user profiles from internal (start on/search
within the EDP portal) and external search (search via external search engines and link to
result pages of the EDP portal). It turned out that the most important facets in the internal
search were countries (the country in which the publication authority is located) and cat-

egories (high-level domains such as agriculture or energy). For external search sessions,
the tag facet was the most used facet. In the Life Sciences, [Islamaj Dogan et al., 2009]
inspected one month of log data with more than 58 million user queries from PubMed2.
They randomly selected 10,000 queries for a semantic analysis. The most frequent cat-

1EDP, https://data.europa.eu/en
2PubMed, https://www.ncbi.nlm.nih.gov/pubmed/

https://data.europa.eu/en
https://www.ncbi.nlm.nih.gov/pubmed/
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egory over all questions was author name (36%) followed by Disorder (20%) comprising
diseases, abnormalities, dysfunctions etc., and gene/ protein (19 %). Further main topics
were abbreviations (mostly from genes/ proteins) and chemicals/ drugs.

User surveys and interviews: Another opportunity to analyze user needs are surveys
and interviews. In biodiversity research, the GBIF community carried out a large user
study on user needs in 2009 [Faith et al., 2013, Ariño et al., 2013]. The survey aimed
to explore data gaps in the current data landscape and to obtain insights on user needs
with respect to primary data. Based on the feedback from more than 700 participants,
it turned out that scholare were mainly interested in species diversity, taxonomy, and
phenology. For their research, scholars stated to utilize “taxon names, occurrence data
and descriptive data about the species” [Ariño et al., 2013]. In the biomedical domain,
Datamed [Dixit et al., 2017] interviewed 13 scholars with various backgrounds in Clin-
ical Sciences, Biomedical Informatics and Public Health to obtain insights on various
aspects of data discovery [Dixit et al., 2017]. The scientists report on their difficulties in
assessing whether relevant data is available, the lack of proper metadata description and
the variability of data formats which required additional effort to transform the data into
formats they needed for their processes. Thus, the authors of the study conclude that “re-
searchers would benefit from a centralized source and complete metadata documentation
for finding and assessing potentially relevant datasets. Additionally, they need clear pro-
tocols to download the data, the ability to download in multiple formats, and a means to
visually explore datasets” [Dixit et al., 2017].

Question corpora: Besides query logs, user surveys and interviews, question corpora
are another source to determine user needs in search. In the Life Sciences, question
corpora were mainly developed for text mining purposes in the medical and biomed-
ical domain. One of the largest corpora in medicine is the Consumer Health Corpus
[Kilicoglu et al., 2018], a collection of email requests (67%) received by the U.S. Na-
tional Library of Medicine (NLM) customer service and search query logs (33%) of
MedlinePlus, a consumer-oriented NLM website for health information. The final cor-
pus consisted of 2614 questions and was integrated into the Medical Question Answering
Task at TREC 2017 LiveQA [Abacha et al., 2017]. Six trained domain experts were in-
volved in the annotation tasks to label information manually. The experts had to indicate
named entities, e.g., problem, anatomy or measurement, and they labeled question topics
such as the cause of a disease or complications (long term effects of a disease).

A common question corpus in biomedicine is the Genomics Track at TREC confer-
ences [Hersh and Voorhees, 2009]. The topics of the retrieval tasks are formulated as
natural language questions and contain pre-labeled main categories, e.g., What [GENES]

are involved in insect segmentation?. A further large question corpus in biomedicine is the
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question corpus created for the BioASQ challenge [Nentidis et al., 2017], an annual chal-
lenge for researchers working on text mining, machine learning, information retrieval, and
question answering. The provided question corpus was created and annotated by a team
of ten experts, selected with the goal to cover different ages and complementary expert-
ise in the fields of medicine, biology, and bioinformatics [Polychronopoulos et al., 2013].
The experts had to provide 50 questions in English representing “real-life information
needs” [Polychronopoulos et al., 2013]. However, the question providers had to follow a
specific question scheme to match technical needs for question answering. For instance,
the questions had to reflect a certain question type such as Yes/No or factoid questions.
This restriction influenced query formulation and likely led to a bias in the question cor-
pus.

Another question corpus in the biomedical domain is the benchmark developed for the
bioCADDIE Dataset Retrieval Challenge [Cohen et al., 2017b]. This benchmark was ex-
plicitly created for the retrieval of datasets based on metadata and includes 137 questions,
794,992 datasets gathered from different data portals in XML structure, and relevance
judgments for 15 questions. The question providers received instructions on how to for-
mulate the questions, e.g., information on desired entity tyes such as data type, diseases,
biological processes and species.

4.1.2 Studies on the Quality of Metadata and Data Repositories

Since the introduction of the FAIR principles [Wilkinson et al., 2016] in 2015, metadata
quality and quality checks get stronger attentions at publishers, data repositories and
research communities. The four principles (Findability, Accessibility Interoperability
and Reuse) aim to provide guidelines for data publishers and scholars to produce and
release only digital objects that enable machine processing as scholars need compu-
tational support for various tasks in daily research practice. The FAIRshake toolkit3

[Clarke et al., 2019] was launched to allow research communitities to define criteria, to
develop new or extend existing standards and to evaluate digital resources on their level
of FAIRness. In particular for the biomedical domain, multiple digital ressources such
as datasets, projects, repositories and workflows were assessed on their adherence of
the FAIR principles. Another tool for checking the FAIRness of metadata is the sys-
tem provided by [DataONE, 2022]4. It determines whether specific metadata fields are
available in metadata such as title, abstract or publication date.

Besides the more and more upcoming FAIRcheck tools, surveys among various data
repositories also give insights on metadata usage and search practices. A survey by
the Research Data Alliance (RDA) [Khalsa et al., 2018] reveals that almost two-third

3FAIRshake, https://fairshake.cloud/
4DataONE FAIRcheck, https://www.dataone.org/fair/

https://fairshake.cloud/
https://www.dataone.org/fair/
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of of 98 participating data repositories utilize full metadata in their search indexes, and
around 30% integrate data dictionaries or data variables. Another survey among 32 Ca-
nadian and international online data platforms aimed to analyze to what extent repos-
itories support data storage, data transfer curation activities and other data sharing fea-
tures [Austin et al., 2016]. For comparing the features, the authors propose a developed
checklist. The results reveal that data portals offer different kinds of services and that a
heterogenity of features exists. The authors also criticize an inconsistent compliance with
standards and a lack of data repositories being certified.

Another study explored the search interfaces of six Canadian data repositories in
the health domain. The authors inspected the user interfaces manually based on pro-
posed criteria to determine the quality of the offered filter options, the metadata fields
presented in the result list and the opportunity to export the metadata in various formats
[Thornton and Shiri, 2021]. This study focuses solely on general metadata standards and
found out that most metadata fields of the general standards were present in the analyzed
data repositories. They suggest improvements such as the integration of an advanced
search, the support for health specific search terms and the provision of links to related
publications.

To the best of our knowledge, there is no quantitative study that analyzes scholarly
information needs in conjunction with metadata schemas and metadata used at data re-
positories. Second, there is neither a public log analysis nor a question corpus available
for biodiversity research. To enhance dataset retrieval systems, scholarly information
needs are essential. Therefore, Section 4.2 introduces our corpus study with questions
from biodiversity research.

4.2 Question Corpus Study

The question corpus study addresses hypothesis H2 and aims to gather search and research
questions in biodiversity research to identify important information needs (search topics,
categories) in this domain. In the following Subsection 4.2.1, we describe the method-
ology along the paragraphs: question collection, question types, category definition and
annotation process. A more detailed description is available in [Löffler et al., 2021]. The
results are summarized in 4.2.2.

4.2.1 Methodology

Following the question collection and annotation procedure in information retrieval and
question answering [Krallinger et al., 2015, Kilicoglu et al., 2018, Nentidis et al., 2017],
we collected search and research questions in different research projects in 2015 and 2016.
In several rounds, we labeled and classified the noun entities according to annotation
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Question example

Does agriculture influence the groundwater?
List all datasets with organisms in water samples!
What influence do neonicotinoids have on pollinators?
How do geology and soil geochemistry affect the bacterial and archaeal nitrogen-cycling
communities in soil?

Table 4.1: Example questions in the corpus.

guidelines. In order to verify the identified categories, we conducted an online survey
with nine domain experts and asked them to classify important terms and phrases for all
questions into provided categories.

Question collection: We asked 73 scholars from three biodiversity research related pro-
jects in Germany (CRC AquaDiva, GFBio and iDiv, see also Chapter 2.4) to provide up
to five natural language questions that are specific for their research. Full natural lan-
guage questions allowed us to obtain keywords in their search context. The scholars had
very diverse backgrounds, such as biology (e.g., ecology, bio-geochemistry, zoology and
botany) and related fields (e.g., hydro-geology). In total, we received 184 questions, a
number that is comparable to related question corpora in information retrieval (e.g., bio-
CADDIE [Cohen et al., 2017b]). Table 4.1 provides some example questions. As not
all questions were comprehensible, we omitted questions with missing verbs or mislead-
ing grammatical structures. Furthermore, we omitted occurring abbrevations, as they are
fuzzy and can have several meanings. Later in the evaluation with domain experts, we let
the experts decide whether to look these abbrevations up or to leave the question out. The
final question corpus consists of 169 questions and is publicly available 5.

Category definition: Classifying biological terms into semantic categories is a challen-
ging task, because a multitude of terms are fuzzy and specific to a domain. Therefore, we
defined suitable categories for biodiversity research in an iterative process. In a first step,
two authors of this study [Löffler et al., 2021] inspected the clean question corpus manu-
ally. Each author analyzed 50% of the corpus on her own and classified noun entities into
broad categories. In a second round, both annotators discussed the identified categories
in several sessions. The result are 13 categories presented in Table 4.2.

Annotation process: After this manual inspection, we evaluated the defined categories
with domain experts in an online survey. Per question, the experts had to classify main
artifacts (important nouns with adjectives) for each question. As we wanted to obtain
an unbiased feedback in this classification task, the experts did not receive a training but
only short explanations per category. They also did not label the important terms in the

5GitHub, https://github.com/fusion-jena/QuestionsMetadataBiodiv

https://github.com/fusion-jena/QuestionsMetadataBiodiv
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Category Definition Examples

ORGANISM all individual life forms including plants, fungi, bac-
teria, animals and microorganisms

foraminifera, honeybee, Poales

ENVIRONMENT local and global environments species live in (habit-
ats, ecosystems)

below 4000 m, ground water, city, grassland

QUALITY & PHENO-
TYPE

characteristics (traits, phenotypes) that can be ob-
served, measured or computed

length, growth rate, reproduction rate

PROCESS biological, chemical and physical processes that re-
occur and transform materials or organisms due to
chemical reactions or other influencing factors

nitrogen cycling, climate change, ocean
acidification

EVENT processes that appear only once at a specific time and
location, such as environmental disasters

Deepwater Horizon oil spill, Tree of the Year
2016.

MATERIALS & SUB-
STANCES

chemical substances and materials oxygen, CO2, sediment, rock

ANATOMY anatomical structure of organisms, e.g., body or plant
parts, cells and genes

root, leaf, TP53

METHOD methods and experiments leading to a certain research
result

lidar measurements, observation, remote
sensing, genome sequencing

DATA TYPE results of research methods lidar data, genome data, abundance data
LOCATION geospatial information (without coordinates) Atlantic Ocan, Bavaria, Lake Ontario
TIME temporal information such as geological eras, date

and time
current, Triassic

PERSON & ORGANIZA-
TION

creators and authors of research data, research pro-
jects

HUMAN INTERVEN-
TION

human intervention on landscape and environment land use, farming, fishery

Table 4.2: Identified categories after manual inspection and discussion [Löffler et al., 2021]

questions, but they had to group the provided artifacts into one of the provided categories.
We added the categories OTHER to give the annotators the opportunity to provide an own
category when none of the listed categories fit. We also provided the category NONE to
offer the opportunity to leave an artifact out in case the annotators did not know the term
or in case the term was too fuzzy.

All nine annotators (eight postdocs, one project manager) had various backgrounds in
the Life Sciences and Environmental Sciences. We provided a link to an online survey to
conduct the assessment on their own. Figure 4.1 presents a screenshot of the online survey.
Multi-labeling was not permitted, each artifact had to be grouped into one category. If
none of the provided categories were suitable, they were advised to choose ’OTHER’
and to provide an alternative label. For unknown tasks, they could decide to either look
the term up or to omit it. In case they did not label an artifact, the category NONE was
applied automatically. We also told the annotators to spend not too much time per task
and to classify the artifacts based on their expertise, as we aimed to receive an intuitive
classification feedback.

4.2.2 Results

We analyzed the survey along two dimensions: the frequency of each category measuring
the importance of the categories and whether there are categories missing and second,
the comprehensibility and its appropriateness for biodiversity research. Besides theses
responses of the experts, we also inspected the questions with respect to the expected
answer and determined the existing question types.
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Figure 4.1: Excerpt of the classification task with experts. The annotators were only permitted to
select one category per artifact [Löffler et al., 2021].

Predicative
questions

Yes/No ques-
tions

List questions Definition ques-
tions

Comparative
questions

28 49 62 2 3

Explanation
questions

Association
questions

Process ques-
tions

Opinion ques-
tions

Not Classifiable

1 23 2 0 9

Table 4.3: Question type classification

Question types: According to [Unger et al., 2014] search questions can be classified
into nine main types: Factoid questions including predicative questions, yes/no questions
and list questions aim to return facts, whereas the other types point out to definitions,
comparisons, associations, explanations, processes and opinions. Table 4.3 presents the
analysis on the collected 169 search and research questions in the biodiversity research
domain. The question type classification were performed by the same two authors that
also conducted the first two classification rounds.

The dominant question type are factoid questions. This shows that scholars are mainly
interested in specific information needs. The questions also reveal that researchers mainly
expect search results to provide facts or information that assist in answering their inform-
ation needs. The second dominant type are association questions. This result is justified,
as biodiversity research is a domain exploring the relationships among species and their
ecosystems. Finding associations is one major research aim. All other types occur only
in less numbers or are not present (e.g., opinion questions). Concerning granularity, the
question corpus shows that questions in this scholarly domain can be either of a broader
scope, such as a question about ‘tree diversity’, or can be more specific such as a question
about ‘benthic oxygen update rate’.

Relevance for biodiversity research: The frequency of each category is a measure
for the relevance or importance of a category. Figure 4.2 presents the frequency of all
categories studied. All categories were used, which is a strong indicator that all categories
are relevant for biodiversity research. Seven categories (ENVIRONMENT, ORGANISM,
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Figure 4.2: The frequency of the categories with and without QUALITY correc-
tion [Löffler et al., 2021].

MATERIAL & SUBSTANCES, QUALITY, PROCESS, LOCATION and DATA TYPE)
were assigned to more than 15% of all labeled artifacts. Information that can be classified
into these categories is highly relevant for biodiversity research.

However, the results also point out that several artifacts could not be classified into any
of the given categories. For 46% of the artifacts, at least one expert selected the category
OTHER, for 24% of the artifacts at least 24% of the scholars labeled the phrase or term
with the category OTHER. This strongly indicates that categories are missing. However,
at least the suggested categories represent a high domain coverage.

We also examined why the category OTHER was selected for so many artifacts. We
inspected these cases manually and took a closer look on the comments provided. (1)
Some artifacts were completly unknown to the annotators, e.g., shed precipitation. How-
ever, they had the impression that this phrase or term is relevant for the domain. So, they
did not omit the artifact and selected OTHER. (2) A multitude of artifacts refering to data
parameters, such as soil moisture or oxygen uptake rate, were labeled with the category
OTHER. They were supposed to be labeled with the category QUALITY, but obviously
the labeling of the category QUALITY was misunderstanding. In the comment fields, the
annotators proposed alternative categories, e.g. “variable” or “parameter”. We corrected
the results for these cases and added them to the QUALITY category. Thus, the results
for the category OTHER decreased to 37% for one expert and 13% for two experts. (3)
Another reason for the high number of ratings of the category OTHER are questions with
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a broader scope. Generic terms such as diversity, pattern or distribution need further
context to assign an appropriate category. The classification of these terms need further
discussions in the research community.

Consensus of the categories: In addition to the relevance, we explored whether the
naming of the given categories is well-defined and comprehensible to domain exerts. In
order to assess comprehensibility, we computed the inter-rater agreement and inter-rater
reliability using Fleiss’ Kappa (κ statistics) [Fleiss, 1971] and Gwet’s AC [Gwet, 2008].
These measures determine how much homogeneity exists among scholars’ judgments.
The inter-rater reliability determines the observed agreement among raters “and then ad-
justs the result by determining how much agreement could be expected from random
chance” [Quarfoot and Levine, 2016]. κ values occur in a range of −1 and +1. Values
less than 0 point to poorer than chance agreement, values greater than 0 are an indicator
for better than chance agreement. [Landis and Koch, 1977] recommend to consider val-
ues below 0.4 as a fair agreement beyond chance. Results between 0.4 and 0.6 point to
a moderate agreement and values between 0.6 and 0.8 are an indicator for a substantial
agreement. Values higher than 0.80 denote a perfect agreement. In case the distribution of
the raters’ scores is unbalanaced, κ statistics result in negative values, even if the observed
agreement is high [Quarfoot and Levine, 2016]. To counteract this paradox, [Gwet, 2008]
introduced a more robust statistic, the Gwet’s AC, considering the response categories in
the agreement by chance. Gwet’s AC values can range from 0 to 1.

The experts’ agreement over all categories point to a moderate result with a Fleiss’
Kappa value of 0.48 and a Gwet’s AC value of 0.51. We observe a slight increase includ-
ing the QUALITY correction (0.49 for Fleiss’ Kappa and 0.52 for Gwet’s AC). Figure 4.3
shows the Fleiss’ Kappa for the categories with QUALITY correction. The annotators
were able to classify terms into the categories TIME and ORGANIZATION without any
difficulties. Hence, these categories received an excellent agreement. An intermediate to
good agreement is observed for the categories PERSON & ORGANIZATION, LOCA-
TION, PROCESS, MATERIALS & SUBSTANCES and ENVIRONMENT. A fair agree-
ment exists for the categories EVENT, HUMAN INTERVENTION, ANATOMY, DATA
TYPE, METHOD and QUALITY.

We assume that the classification of some artifacts was indeed difficult, in particular
for longer phrases with more than two terms. For these cases, the annotators got the in-
struction not to select a category. However, for 5% of the phrases two annotators did not
provide a category and for 2% of the artifacts three or more annotators did not provide a
classification. This correlates with our observations for the category QUALITY. For the
remaining categories (EVENT, HUMAN INTERVENTION, ANATOMY, DATA TYPE,
METHOD), there is no such evidence. Here, further discussions in the research com-
munity are needed.
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(a) Fleiss’ Kappa values per category with and
without QUALITY correction.

(b) Fleiss’ Kappa values per category for artifacts
with one and two terms (with QUALITY correc-
tion).

Figure 4.3: Fleiss’ Kappa values for the individual information categories [Löffler et al., 2021].

Overall One Term Two Terms >= Three Terms

Fleiss′Kappa 0.49 0.54 0.50 0.33

Gwet ′sAC 0.52 0.57 0.53 0.37

Table 4.4: Annotator’s agreement with QUALITY correction overall and for one term, two terms,
three terms and more per artifact [Löffler et al., 2021].

Comparison of short and long artifacts Table 4.4 presents the results for artifacts
with one term, two terms, three and more terms (with quality correction). Further insights
can be obtained from Figure 4.3b. One-term artifacts resulted in excellent agreements
(> 0.8) for the categories ORGANISM, TIME and LOCATION and a moderate agree-
ment for ENVIRONMENT, MATERIAL, PROCESS and DATA TYPE. For the category
PERSON, the results show a negative value (poor agreement) for one-term artifacts but
a high agreement for two terms. This result is justified, as person names usually consist
of two parts, and the corpus also does not provide person names with only one term. We
observed an excellent agreement for two terms for the categories ORGANISM (species’
names also consists of two terms) and PROCESS (0.76). The latter is a strong evidence
that biological and chemical processes are also mainly defined by two terms, e.g., climate
change, nitrogen cycling or sulfate reduction. The same applies for the category EVENT
(e.g., oil spill) and HUMAN INTERVENTION (e.g., land use).

Discussion Seven out of 13 information categories received a moderate or high agree-
ment (> 0.4). In addition, five out of these seven were frequently mentioned in the ques-
tions (> 15%), namely ENVIRONMENT (e.g., habitats, climate zone, soil, weather con-
ditions), MATERIAL (e.g., chemicals, geological information), ORGANISM (species,
taxonomy), PROCESS (biological and chemical processes) and LOCATION (coordin-
ates, altitude, geographic description) (Figure 4.4). We conclude that these classes are
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Figure 4.4: Frequency of category mentions and inter-rater agreement with QUALITY correc-
tion [Löffler et al., 2021].

important search interests for biodiversity research. For 45% out of 592 annotations,
at least one scholar did not use any of the given categories but selected OTHER. This
strongly indicates that either further classes are missing or the artifacts are too fuzzy to
classify.

Our results show that there is room for improvement. One reason for fair or bad
agreements for the categories QUALITY (data parameters measured) and DATA TYPE
(nature or genre of the primary data) are incomprehensible category names. Here, further
discussions in the research community are needed. In particular it should be discussed
whether category names need to be changed or whether categories need to be merged.

We aimed to obtain an unbiased feedback of scholars working in the field of biod-
iversity research when looking for research data. Therefore, no training took place and
the annotators’ agreement was not excellent. Another reason for the moderate agreement
values are the diverse research backgrounds of the scholars. Each research field uses its
own specialized language with inconsistent and imprecise namings [Thessen et al., 2012,
Ananiadou et al., 2004]. Therefore, annotating and classifying biological entities is diffi-
cult and remains a challenge.

4.3 Metadata Standards in the Life Sciences

This section introduces existing metadata standards in the Life Sciences and explores
whether their elements correspond to the identified information categories of the previous
section (Section 4.2).
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Standard Name Domain Semantic
Format

Examples

Dublin Core (205)
[DCMI Usage Board, 2020]

general research data Yes (RDF) Pangaea, Dryad, GBIF, Zenodo,
Figshare

DataCite (111)
[DataCite Working Group., 2017]

general research data No Pangaea, Zenodo, Figshare, Radar

ISO19115 (47) [ISO, 2019] geospatial data No Pangaea, NSF Arctic Data Center,
coastMap

CSDGM (42) [FGDC, 1998] geographic information No Dataverse, NSF Arctic Data Center

Darwin Core (28)
[Darwin Core Interest Group, 2021]

biodiversity data Yes (RDF) GFBio, GBIF, VerNET, Atlas of
Living Australia, WORMS

EML (26) [Jones et al., 2019] ecological data No GBIF, GFBio, SNSB, Senckenberg,
WORMS, NSF Arctic Data Center

RDF Data Cube (20) [W3C, 2014] statistical data Yes Dryad (only RDF with Dublin
Core)

ISA-Model (13)
[ISA Community, 2016]

biological experiments Yes Data Inra, GigaDB

ABCD (11) [TDWG, 2005] biological collection data Yes (ABCD 3.0
in RDF)

GBIF, BioCase Network

OAI ORE (11)
[Open Archives Initiative, 2014]

general research data Yes (RDF) Environmental Data Initiative Re-
pository, Dryad

DCAT (9) [W3C, 2020] data catalogs, data sets Yes Data.gov.au, European Data Portal

DIF (9) [Olsen and Stevens, 2010] geospatial metadata No Pangaea, Australian Antarctic Data
Center, Marine Environmental Data
Section

CF (7) [Eaton et al., 2021] climate and forecast No WORMS, NSF Arctic Data Center,
coastMap

Table 4.5: Metadata standards in the (Life) Sciences obtained from re3data [re3data, 2018]
and RDA Metadata Standards Catalog [Research Data Alliance, 2020]. The number
in brackets denotes the number of repositories supporting the standard (provided in
re3data) [Löffler et al., 2021].

4.3.1 Methodology

Metadata provide additional information about scientific primary data such as experi-
ments, tabular data, images and acoustic files. This extra information is mostly stored
in structured formats, e.g., XML or JSON, which allows a further machine processing.
Metadata possess a schema stored in an XSD file outlining which elements and attributes
exist and which of them are mandatory and/or repeatable. In order to become a metadata
standard, a schema needs to be formally adopted by a standards’ organization such as the
International Organization for Standardization 6 or by the research community.

There are a variety of metadata standards available for the Life Sciences. Table 4.5
presents a list of 12 metadata standards obtained from re3data [re3data, 2018] and RDA
Metadata Standards Catalog (v 2.0) [Research Data Alliance, 2020] in 2019. In re3data,
we filtered for “Life Sciences” and received a list of 30 standards. We merged it with
the RDA Metadata Standards Catalog (version 2) list and cleaned the result along the fol-
lowing criteria: We did not use the categories Other and Repository-Developed Metadata

Schema. We omitted deprecated standards or standards with outdated information on the
website, and we also did not consider standards from domains not related to the Life Sci-

6ISO, https://www.iso.org

https://www.iso.org
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ences. We selected all other standards that were used in at least five repositories. Further
information on the selection process is available in our GitHub repository7. We compared
the standards along the focused domain and its support for semantic web formats, e.g.,
RDF or OWL. According to the FAIR principles [Wilkinson et al., 2016], community
standards, semantic formats, and ontologies ensure interoperability and data reuse. The
last column contains examples of data archives supporting the standard.

The most frequently utilized metadata standard is the general metadata standard Dub-

lin Core. It consists of 15 main metadata fields such as contributor, coverage,
description and identifier. The second most frequently used standard is Data Cite,
another general metadata standard with a few more metadata fields than Dublin Core. For
instance, for the description of collection and publication date Data Cite offers separate
elements whereas Dublin Core only provides one field. Examples for domain-specific
standards are ISO19115 (geospatial data) or EML (ecological data). The RDF Data Cube

Vocabulary is not utilized at all. We assume, the abbreviation RDF DC led to some con-
fusion and misunderstanding as DC is often used as abbrevation for Dublin Core and not
‘Data Cube’.

The standards strongly differ in their granularity. General standards such as Dublin

Core or DataCite provide only general fields such as title, description and type.
In contrast, domain-specific standards, e.g., EML or ABCD, offer metadata fields for sci-
entific names, methods and data parameters. However, all standards provide elements that
refer to the W-questions: Who? What? Where? When? and Why? and offer elements for
author or contact person, collection or publication date and geographic location. Semantic
formats are also increasingly supported. ABCD, Darwin Core, DCAT and OAI-ORE are
either fully semantic standards or are currently being transformed to semantic formats.
ISA Model supports the integration of controlled vocabularies, and Dublin Core provides
a additional RDF format called qualified qualified Dublin Core8.

4.3.2 Results

We related the identified information categories to the available fields of the metadata
schemas. The results are presented in Table 4.6. More detailed explanations and the exact
matching of metadata elements and categories are availble in our GitHub repository.

There is no metadata standard or schema that reflects all information categories. As
we are aware that our information model is not complete, we also did not expect to find a
standard covering all interests. Apart from only one category (HUMAN INTERVEN-
TION) all scholarly interests are covered by different metadata schemes. TIME and

7Metadata standard selection, https://github.com/fusion-jena/QuestionsMetadataBiodiv/
tree/master/metadataStandards

8Qualified Dublin Core, https://www.dublincore.org/specifications/dublin-core/dcq-
rdf-xml/

https://github.com/fusion-jena/QuestionsMetadataBiodiv/tree/master/metadataStandards
https://github.com/fusion-jena/QuestionsMetadataBiodiv/tree/master/metadataStandards
https://www.dublincore.org/specifications/dublin-core/dcq-rdf-xml/
https://www.dublincore.org/specifications/dublin-core/dcq-rdf-xml/
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DublinCore

DataCite

ISO19115

CSDGM

EML

DarwinCore

RDFDataCube

ISA−Model

DIF

CF

ABCD

DCAT

OAI −ORE

Table key
■ Not provided ■ Unspecific (general element) ■ Available (one or more elements)

Table 4.6: Overview of the identified metadata standards in the Life Sciences and corresponding
information categories sorted by their occurrence frequency. The asterix marks the categories with
a fair agreement (< 0.4) [Löffler et al., 2021] .

PERSON are information categories that are supported by almost all analyzed standards
and frameworks. DATA TYPE and LOCATION are interests that are covered by most
schemes. However, we observe a strong difference between general and domain spe-
cific standards. While general standards provide general fields, e.g., subject, to describe
concrete search interests, domain-specific standards offer concrete metadata elements for
the description of further important biological entities. For instance, ISA Model, Darwin

Core and ABCD offer metadata elements to provide information about collected or ana-
lyzed species. In addition, EML supports the description of environmental information
(studyAreaDescription) and research methods used (methods). The ISA Model is the
onliest analyzed framework that provides metadata fields for the description of materials
and biological and chemical processes.

The open question we address in the next section is to study whether these general or
domain-specific standards are applied in data repositores.

4.4 Study on Metadata in Data Repositories

In a third analysis, we explored the usage of metadata standards in data repositories. We
selected five data archives from Nature’s list of recommended data repositories
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[Nature, 2018] and inspected the metadata standards used, the utilized metadata elements
in these standards, and we took a closer look on the content of descriptive metadata fields,
e.g., title and description. In the following subsections, we describe the methodology and
the results.

4.4.1 Methodology

We selected five data repositories, namely Figshare, Dryad, Zenodo (all three are gen-
eral data repositories), GBIF (taxonomic data) and PANGAEA (environmental data) and
parsed all available metadata from their OAI-PMH 9 interfaces in May 2019. GBIF

already provides its primary data - species occurrence records - in Darwin Core metadata
schema [Gaiji et al., 2013]. These primary data files are organized and grouped in ’data-
sets’. We assumed to be able to retrieve both, the metadata of these ’datasets’ and the
individual occurrence records. However, in the OAI-PMH interface, only the download
of the metadata of the ’datasets’ was possible. Hence, we could not analyze the occurrence
records.

Table 4.7 presents the available standards in the inspected data repositories. Besides
the already introduced metadata standards, a few more are listed in the table. “OAI-DC

is an abbreviation for Dublin Core, a mandatory standard in OAI-PMH interfaces. QCD

means qualified DublinCore and denotes an extended Dublin Core extending or refining
the 15 core elements” [Löffler et al., 2021]. Pan-MD is a metadata schema introduced
by PANGAEA that extends Dublin Core with more fine-grained geographic information
such as bounding boxes or adds information on data collection, e.g., projects, paramet-
ers and methods. We ommited all standards that are mainly used for bibliographic data
(MARC21, MARCXML and METS) and other formats and standards that are not primar-
ily developed to describe research data (CERIF, OAI-ORE). However, we considered
the repository-developed schema Pan-MD to analyze how data archives extend metadata
standards. We took RDF into account, too, although RDF is an encoding of metadata and
not a metadata standard. A closer look into the metadata revealed that repositories besides
Dublin Core already reuse vocabularies. For instance, Figshare uses the VIVO Core Onto-
logy [Corson-Rikert et al., 2012, VIVO, ] and the Bibliographic Ontology [BIBO, 2016].

We parsed each downloaded metadata file with a script to determine whether a metadata
field of the respective standard is present (boolean value 1) or not present (boolean value
0). The final outcome is a csv file containing dataset IDs and metadata elements used 10.

Content analysis: Apart from different metadata schemas used, datasets can also differ
in its textual descriptions. Some datasets only provide a title and some keywords, other

9OAI-PMH, https://www.openarchives.org/pmh/
10GitHub, https://github.com/fusion-jena/QuestionsMetadataBiodiv

https://www.openarchives.org/pmh/
https://github.com/fusion-jena/QuestionsMetadataBiodiv
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Dryad GBIF PANGAEA Zenodo Figshare

METS EML DATACITE3 DATACITE CERIF
OAI-DC OAI-DC DIF DATACITE3 METS
OAI-ORE ISO19139 DATACITE4 OAI-DATACITE
RDF ISO19139.IODP MARCXML OAI-DC

OAI-DC MARC21 QDC
PAN-MD OAI-DATACITE RDF

OAI-DATACITE3
OAI-DC

Table 4.7: Available metadata schemes in the five selected data repositories in May
2019 [Löffler et al., 2021].

datasets contain an extensive abstract with further information, e.g., on the research meth-
odolgy and parameters measured. This additional descriptive information might contain
relevant data for information seekers and might only occur in longer text fields. Hence, it
is not that present and visual at one glance and additional services are required to extract
important biological entities. In order to determine whether additional metadata enrich-
ments correspond to scholarly search interests in the biodiversity domain, we explored
the information content in general, descriptive metadata fields with existing Natural Lan-
guage Processing (NLP) tools.

In November and December 2019, we downloaded descriptive metadata fields
(dc:title, dc:description and dc:subject in OAI-DC format) from all five data
repositories. In addition, we gathered the keywords of the subject fields. For the sub-
sequent NLP analysis, we used a subset of 10,000 metadata files per repository, as NLP-
processing is time-consuming and requires larger hardware resources. We utilized exist-
ing NLP pipelines of the GATE framework [Cunningham et al., 2013], such as the AN-
NIE pipeline [Cunningham et al., 2013] and the OrganismTagger [Naderi et al., 2011] to
extract geographic locations, persons, organizations and organisms from the descriptive
metadata fields. Unfortunately, at the time of this study, taggers for other important entit-
ies, e.g., data parameters or habitats did not exist.

4.4.2 Results

The total numbers of downloaded metadata files per metadata schema are presented in
Table 4.8. Most repositories utilize general standards, while PANGAEA and GBIF also
provide metadata in domain-specific schemas. Semantic formats are also applied. Dryad

and Figshare offer metadata in RDF format. Moreover, Figshare provides metadata also
in Qualified Dublin Core (QDC), an extended Dublin Core with additional elements to
describe relations to data sources. For the further analysis, we only used metadata files
with a publication date and a valid status. For instance, in Dryad, numerous datasets were
described with the status “Item is not available”. Therefore, we omitted these datasets.
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Metadata Schema Dryad PANGAEA GBIF Zenodo Figshare

OAI-DC 186951 (142329) 383899 (383899) 44718 (42444) 255000 (255000) 3128798 (3128798)
QDC 1718059 (1718059)
RDF 186955 (142989) 3157347 (3157347)
DATACITE 1268155 (1268155)
DATACITE3 383906 (383906) 1268232 (1268232)
OAI-DATACITE 1266522 (1266522) 3134958 (3134958)
OAI-DATACITE3 1268679 (1268679)
DATACITE4 1268262 (1268262)
EML 44718 (42444)
DIF 383899 (383899)
ISO19139 383899 (383899)
ISO19139.iodp 383899 (383899)
PAN-MD 383899 (383899)

Table 4.8: “Total number of datasets parsed per data repository and metadata schema. The num-
bers in brackets denote the number of datasets used for the analysis. All datasets were harvested
and parsed in May 2019” [Löffler et al., 2021].

Figure 4.5 displays the percentage of metadata fields filled for each data repository
and its best matching standard. More detailed information is available in our GitHub
repository. For Dryad, the best matching standard was Dublin Core. Nine out of fifteen
metadata elements were filled for most datasets (80%), e.g., dc:title, dc:description
and dc:subject. Contact information such as dc:contributor or dc:publisher were
hardly present (20%). As the EML standard does not determine any mandatory fields,
we analyzed all 129 metadata elements for the available datasets in GBIF. The majority
of elements (89 fields) were empty. General information, such as data about author, title
and description, were mostly provided (80%), but the eml:keyword field was utilized in
one fifth of all analyzed datasets. The best matching format for PANGAEA is its own-
developed Pan-MD format. 43 out of 124 provided fields were utilized in most metadata
files (80%). Examples for used metadata elements are author, project name, geographic
information with coordinates, data parameters and devices. For Zenodo, DataCite was
the metadata standard with the best fit. All mandatory fields such as identifier, creator,
title, publisher and publication year were always filled. Further metadata elements, e.g.,
title, rights and descriptions, were also mostly present (99%). Keywords (subject) were
only utilized in 45% of the analyzed metadata files. Figshare’s utilized fields of Qualified
Dublic Core (12 out of 17) were always filled.

Apart from the occurrence and non-occurrence of individual metadata elements, we
also analyzed the semantic matching of the information categories identified in Section 4.2
and metadata fields. For each data repository and metadata format, we generated bar
charts visualizing to what percentage each metadata field was filled and to what category
it is related. Table 4.9 provides a summary of all inspected data repositories analyzed
and their best matching standard. More information and the individual field-to-category
mapping are available in our repository as supplementary material. Temporal inform-
ation (TIME) and contact details, e.g., on author and/or creator (PERSON) are present
in all data repositories. Most data repositories indicates the publication date. In addi-
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Figure 4.5: Overview of metadata elements used (best matching metadata standard) in the five
data repositories analyzed [Löffler et al., 2021].

tion, PANGAEA also provides the collection date. Apart from GBIF, all data repositories
provide information on data type and data formats.

Our result reveal that two data repositories partially cover the search categories with
respect to the metadata standards and formats used. Multiple metadata fields of the
EML metadata standard in GBIF correlate to several information categories, but ele-
ments that are related to information on ENVIRONMENT, ORGANISM, DATA TYPE
and METHOD were rarely filled. The second repository that cover most categories is
PANGAEA with its repository-developed standard Pan-MD. Metadata files in this format
always provide data on parameters measured (QUALITY) and geographic locations. Re-
search methods and devices utilized were also mostly present in the inspected metadata
files of PANGAEA. For biological, chemical and physical processes as well as materials
and chemical substances none of the inspected data repositories provide explicit metadata
fields that are filled.

Content analysis: Besides the analysis on the usage of metadata fields, we also ex-
plored the content of descriptive metadata fields. In a first step, we determined the most
frequent keywords in the metadata field dc:subject. Table 4.10 presents the results. All
keyword lists can be found in our repository. We received an empty dc:subject field for
81% of GBIF datasets. For Zenodo, in only 52% of the analyzed metadata files keywords
were present. In general, we observed inconsistencies in spelling across all repositor-
ies. For instance, upper and lower case as well as different spellings resulted in separate
entries. The results for PANGAEA and Dryad indicate that both repositories provide mar-
ine data, such as data parameters measured and research devices used. The results for
Dryad reveal that also terrestrial data are available, e.g., Insects (1296) (insects (180)) or
pollination (471) (Pollination (170)). The keyword lists for Zenodo and Figshare point to
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GBIF (EML) 3% 11% 35% (8%) 18% 100% >90%
Dryad (OAI −
DC)

60% 100% 80%

PANGAEA
(Pan−MD)

(>90%) 100% 100% 90% 100% 100%

Zenodo (OAI −
Datacite)

100% 100% 100%

Figshare
(QDC)

100% 100% 100%

Table key
■ Unspecific (generic element) ■ Available (one or more elements)

Amount in brackets denotes the percentage the element is filled.

Table 4.9: Summary of the analysis on the semantic matching of information categories and the
best matching standard per data repository. The categories are ranked by their frequency in the
question analysis; an agreement less than 0.4 is marked with an asterisk [Löffler et al., 2021].

data repositories with a large number of collection data. We took a closer look on these
results and searched in their data portals for the term ‘Biodiversity’. We found out that
data from the Meise Botanic Garden 11 occurred very often in the result set. As collection
datasets consist of several individual records that are indexed separately, each occurrence
record in our result set counted as hit and contained the label ‘Biodiversity’. Figshare’s list
also contains a high number for the keyword ‘Biodiversity’ (219022). Here, we figured
out that Figshare harvests Zenodo’s data.

In addition to the most frequent keywords, we also determined Named Entities oc-
curring in descriptive metadata fields. For this analysis, we selected 10,000 datasets per
repository based on a filter strategy: For the domain-specific archives (PANGAEA and
GBIF), we used 10,000 datasets randomly. Here, we assumed that all data are poten-
tially relevant for the biodiversity research domain. For Zenodo and Figshare we selected
10,000 files with the keyword ‘Biodiversity’. We know that this filter might cause a high
number with only collection data due to the large number of collection datasets in these
repositories. For Dryad, the available amount of data with the keyword ‘biodiversity’ was
too small. Therefore, we determined a group of relevant keywords. Further details on the
selection strategy can be found in [Löffler et al., 2021].

Table 4.11 presents the results of the NLP analysis. Species are mentioned in all in-
spected files (Figshare 85%, Dryad 36%, PANGAEA 32.5%, Zenodo 29%, GBIF 12%).
In GBIF, the number of ORGANISM annotations is low, as the datasets usually provide
broader descriptions of the study taxonomic terms, such as ‘Family’ or ‘Order’. The
concrete species are only mentioned in the individual occurrence records. As assumed,

11Meise Botanic Garden, https://www.plantentuinmeise.be

https://www.plantentuinmeise.be
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PANGAEA GBIF Dryad Zenodo Figshare

water
(201102)

Occurrence
(6510), occur-
rence (46)

Temperature
(16652),
temperature
(15916)

Taxonomy
(459877),
taxonomy
(105)

Medicine
(1057684),
medicine
(240)

DEPTH
(198349),
Depth(71916)

Specimen
(3046), speci-
men (22)

Integrated
Ocean Ob-
serving Sys-
tem (16373)

Biodiversity
(458336),
biodiversity
(8593)

Biochemistry
(1015906),
biochemistry
(92)

Spectral
irradiance
(175373)

Observation
(2425), obser-
vation (24)

IOOS (16373) Herbarium
(270110),
herbarium
(91)

Biological
Sciences not
elsewhere
classified
(983829)

DATE/TIME
(128917)

Checklist
(589), check-
list (43)

Oceanographic
Sensor Data
(15015)

Terrestrial
(269900),
terrestrial
(177)

Chemical
Sciences not
elsewhere
classified
(842865)

Temperature
(118522),
temperature
(50)

Plantas (368),
plantas (42)

continental
shelf (15015)

Animalia
(205242), an-
imalia (261)

Biotechnology
(792223), bi-
otechnology
(23978)

empty
dc:subject

0 38296 15436 705730 0

Table 4.10: The most frequent keywords in the metadata field dc:subject [Löffler et al., 2021].

Pangaea GBIF Dryad Zenodo Figshare

Location 9088 5718 3530 4644 9978
Person 3789 6687 3030 3201 1773
Organization 3307 1762 1486 1674 9542
Organism 3251 1217 3603 2891 8542

Table 4.11: “Number of datasets with Named Entities (out of 10,000 processed files in a reduced
OAI-DC schema) per repository. Each file contains a subset of the original metadata, namely,
dc:title, dc:description, dc:subject and dc:date.” [Löffler et al., 2021]

Figshare metadata files contain a high number of ORGANISM annotations, as they are
mainly obtained from collection data. However, other entity types do not occur in Fig-

share’s descriptive fields. PANGAEA metadata files provide the highest number of an-
notations for the categories MATERIAL (86%) and QUALITY (78%). In contrast, Dryad

achieved the highest result for the categories ENVIRONMENT (52%) and PROCESS
(67%).

Even if our results are only based on a subset of available data, and even if text-
mining pipelines are mainly developed for longer textual resources and might contain
false positive results (wrongly annotated terms and phrases), the outcome of this short
NLP analysis shows that descriptive metadata fields contain information that is relevant
for information seekers. Current NLP tools can support and leverage the extraction of
biological entities from text.
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4.4.3 Discussion

The outcomes of this study reveal that general metadata standards such as Dublin Core

and Data Cite are widespread metadata standards used at general data repositories. In con-
trast, domain-specific repositories are more likely to use further domain-relevant formats
such a EML or Pan-MD. For GBIF, we could not determine a full picture as we only
analyzed the datasets and not the individual occurrence records.

The results also show that information categories representing scholarly search in-
terests and metadata semantically poorly match. Apart from temporal information (TIME)
and contact details (PERSON), important information needs such as information on en-
vironments, materials or species are not explicitly given in most inspected metadata
files. To compensate for these limitations, repositories enrich metadata with keywords
in general fields such as ‘subject’. However, our results of the content analysis reveal
that the occurring keywords in these general fields reflect scholarly information needs
only to some extent. The description of research data varies in granularity and qual-
ity. Keywords can be either arbitrary chosen in different spellings, can be very broad,
e.g., subject categories, or very specific such as concrete measuring methods. These
poor data descriptions are one reason why searching for research data is time-consuming
[Parker et al., 2016] [Ramakers et al., 2018] [Culina et al., 2018]. As most repositories
use keyword-based retrieval techniques [Khalsa et al., 2018], data can only be found when
the search term matches entries in the dataset. Therefore, scholars are more likely to send
explicit data requests to data repositories [Kacprzak et al., 2018] or to use general search
engines [Gregory et al., 2020] to find relevant research data.

4.5 Summary

This chapter aimed to analyze the coverage of scholarly information needs in biodiversity
research and current metadata in data repositories. Addressing H2, the goal was to determ-
ine whether metadata reflect search interests and to quantify the gap between information
needs and metadata.

The question corpus study shows that scholarly search interests are as diverse and
complex as the data. Information needs in biodiversity research go beyond the search for
species and cover questions about environmental terms, geographic locations, processes
and materials. Further relevant entity types are data parameters and data type. However,
for these types the research community needs to discuss the namings. Categories that
occur, but that are not mentioned frequently, are events (processes at a specific time and
location) and information on human interventions in the environment.

Our second and third study reveal that current metadata in data repositories match
scholarly search interests in biodiversity research only to some extent. Although, a variety
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of metadata standards are available related to biodiversity research, only domain-specific
repositories tend to use these standards. In our study, we figured out that these data-
specific fields are not always filled. Here, further research is needed why this is the case.
Metadata fields for describing the actual content of research data are mostly limited to
descriptive fields like title, description and keywords. A second issue hampering dataset
retrieval are arbitrary keywords in metadata fields. Keywords may have several meanings
in different disciplines and scholars describe data from their research perspective, but
information seekers search with different keywords. Only if proper aligned keywords are
contained in general or descriptive fields, conventional retrieval systems are able to find
relevant datasets.

In the following chapter, we introduce our concept for an improved dataset search
based on these findings.





Chapter 5

Concept for a Semantic Dataset Search

“We’re flooding people with information. We need to feed it through a

processor. A human must turn information into intelligence or knowledge.

We’ve tended to forget that no computer will ever ask a new question.”

- Grace Hopper [Schieber, 1987], pioneer in Computer Science

Artifical intelligence (AI) aims to develop systems that replicate human thinking and
acting. In order to achieve this “intelligence”, different approaches and technologies have
to be combined. One example for such a promising technology is the idea of a “se-
mantic web”, first introduced by [Berners-Lee and Hendler, 2001]. The Semantic Web
belongs to the research field of symbolic AI approaches and pursues the vision of a world
wide web allowing machines to ’understand’ human information. Understanding in this
context does not mean that machines need to interpret every sentence. Rather, human
language should be presented in a formalized and structured way enabling machines to
draw conclusions, or as the authors describe it “to solve well-defined problems by per-
forming well-defined operations on well-defined data” [Berners-Lee and Hendler, 2001].
These formalized and structured data are stored in domain specific ontologies (see also
Chapter 2.3). Linking words of human language to entries in ontologies enable machines
to exploit additional knowledge not being present in the given resource. This semantic
enrichment has the potential to enhance existing systems tremendously, for instance in
search applications. As data discovery is a complex and time-consuming but necessary
task in daily research practice, additional domain knowledge could support users in find-
ing more relevant data.

In this chapter, we summarize the findings from the previous chapters (Section 5.1),
list and discuss improvements (Section 5.2) and introduce a concept for a semantic dataset
search (Section 5.4).

116
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5.1 Identified Obstacles

In a first study, we explored whether scholars are able to retrieve relevant data for biod-
iversity research in a current data portal (Chapter 3.2). In a prototype, we also compared
a keyword based retrieval approach and a semantic search approach. Our findings show
that keyword based retrieval approaches result in moderately relevant results, while a se-
mantic search approach returned more relevant datasets (H1, Chapter 3.3). The findings
also reveal that scholars need explanations to understand results going beyond keywords.

A second outcome are identified search interests in biodiversity science (Chapter 4.2).
Scholars are interested in information about organisms (ORGANISM), environmental
information (ENVIRONMENT), materials and chemicals (MATERIAL), involved pro-
cesses (PROCESS), data parameters measured and phenotypes (QUALITY), geographic
locations (LOCATION) and data types (DATA TYPE). Further relevant categories are
information on events (EVENT) and human impacts on habitats (HUMAN INTERVEN-
TION). Apart from this topical diversity, information needs can also vary in granularity.
Queries can contain very specific terms, e.g., queries for species and data parameters, but
can be also broader containing terms which require additional knowledge for understand-
ing and answering, e.g., questions containing terms such as microbial diversity, mobile

organic matter, plants and insects. Moreover, questions in biodiversity research differ
also in complexity. Scholars, who ask for simple factoid questions, expect concrete facts
in the result set. This type of question accounted for the largest share of the question
corpus. 20% of the analyzable questions were more complex questions such as questions
for definitions, explanations or association questions, e.g., How do environmental factors

impact soil moisture patterns?. For such information needs, we imply that scholars only
expect datasets containing hints rather than concrete answers.

A third outcome are results on metadata usage in data repositories. A main obstacle
for dataset search in biodiversity science is the usage of general metadata standards with
high-level and non-domain specific information, such as author, title, collection or pub-
lication date and citation. Explicit domain-specific information is often missing, e.g.,
data parameters measured, habitats or biological processes. General metadata standards
are too coarse grained and reflect scholarly information needs in biodiversity research
only partially (Chapter 4.3). Domain-specific repositories tend to utilize domain-specific
standards in addition to the general ones. However, our study shows (Chapter 4.3) that
these domain-specific fields are not always filled or that further domain relevant informa-
tion is not present. Another key issue are missing controlled vocabularies. We found out
that large data repositories use controlled vocabularies only partially. None of the inspec-
ted repositories link metadata to information in knowledge bases. However, our study
shows that descriptive fields, such as title, description and keywords, contain relevant
information, which can be enriched with text mining techniques (H2, Chapter 4.3).



118 Chapter 5. Concept for a Semantic Dataset Search

In the following, we summarize and list the identified obstacles in dataset search for
biodiversity research.

A - Obstacles in Data:

• Metadata are mostly provided in fields of general metadata standards, which cover
search interests only to some extent.

• Keywords in metadata are less aligned to controlled vocabularies and are not linked
to available terminologies.

B - Obstacles in the Data Retrieval Process:

• Conventional retrieval approaches are focused on keyword based text retrieval, but
scholarly information needs are diverse in complexity, granularity and topics and
go beyond keywords.

• Most data providers use common search engines, which are based on keyword
based retrieval methods.

C - Obstacles in Queries:

• Query terms in dataset search are diverse in topical coverage.

• Query terms in dataset search are diverse in granularity.

• Query terms in dataset search are diverse in complexity

5.2 Suggestions for Improvement

Based on these identified obstacles, we propose the following improvements:

5.2.1 Data Enhancements

General metadata standards often do not contain domain specific fields (Obstacle A).
Therefore, filtering and querying for domain relevant categories are not possible. A fa-
ceted search, which allows browsing and filtering on grouped information, is only possible
if information is aggregated in a pre-processing step. In search engines, these aggrega-
tions are mainly taken from existing metadata fields. If domain relevant categories are
not present in metadata, they can not be searched for. Hence, domain specific informa-
tion needs to be added to metadata. Apart from short information, e.g., contact details,
data type or location, all metadata standards contain longer textual resources, such as
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title, description and abstract. Most of them contain useful information for search, e.g.,
information on species observed or habitats (Chapter 4.3).

However, existing (poor) metadata can not be enhanced manually, but require auto-
matic processes. Implicit information being present in longer textual fields in metadata
can be extracted with text mining techniques. Relevant terms and categories can be
identified and linked to concepts in terminologies. This additional information can be
added to metadata as semantic annotations. The linkage to URI concepts also enables the
extraction of further related concepts in the terminology, which can be added to metadata,
too. These enrichments finally allow a category and URI-based search.

5.2.2 Enhancements in the Retrieval Process

Scholary information needs are complex, diverse and difficult to describe with a few
keywords. Classical retrieval models based on keywords are therefore less suited for
dataset search (Obstacle B).

Concept based retrieval models are a promising approach to counteract the draw-
backs of exact matches with keywords (Chapter 3.1.2). Concept or entity based re-
trieval utilizes URIs in the search process instead of keywords (see also Chapter 7). This
broadens the search on all semantically related terms being represented by this URI, e.g.,
synonyms, common names or different languages. Moreover, the usage of URIs enables
the population of further domain knowledge into the retrieval process. The search could
be expanded on related concepts addressing the need for a search beyond keywords, e.g.,
by including concepts higher in hierarchy. In order to allow a search within domain-
specific categories, entity types need to be extracted and indexed, too.

5.2.3 Query Enhancements and User Interface

Query Enhancements: Search interests are usually expressed in a few keywords, which
reflect a range of topics on different levels in complexity and granularity (Obstacle C).

To achieve a concept based retrieval, besides the data, query keywords also need to
be linked to entries in ontologies. An URI based query enables an URI based search
and also allows the expansion on further relevant semantic relations. Expanding user
queries on related terms can help to overcome the obstacles of a keyword based search.
However, expansions can also lead to the opposite result, in particular when flooding the
result set with data that is semantically related but not relevant for the information seeker.
Therefore, only tailored expansions will lead to more relevant results.

User Interface: The literature studies about existing semantic search systems in the
Life Sciences (Chapter 3.1.2) and user studies about dataset search (Chapter 3.1.1) as
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well as our own findings on a question corpus (Chapter 4.2) reveal that scholars need dif-
ferent opportunities to enter information needs. Scholarly search interests in biodiversity
research are diverse in granularity and can vary between specific interests in facts (e.g.,
butterflies on calcareous grasslands), but they can also be broad und fuzzy (insects [OR-
GANISM] on grassland [ENVIRONMENT]). However, in our question study, we showed
that information needs can be classified into a limited amount of entity types.

Based on these findings, we propose a structured search input that provides the op-
portunity to search within the identified search categories. In addition, our findings in
the user evaluations comparing a keyword based and a semantic search (Chapter 3.3) re-
veal, that user interfaces with search results going beyond keywords need explanations.
Scientists are no experts in semantic relations and scientific terms of a determined do-
main. Therefore, the returned datasets in a search summary should provide explanations
on why they are displayed and what relation their entries have to the originally entered
key terms. Following the suggestions for user interfaces by [Shneiderman et al., 2016],
user interfaces need to provide an overview first and details on demand. In order to get a
fast overview of what is inside a dataset, text hightlights and labels drawing the user’s
attention on important terms or facts are helpful improvements in search result presenta-
tions. They can also be utilized to explain search results by highlighting the query terms
or text snippets being relevant to the query terms.

For dataset search, there are some additional requirements in contrast to a search over
articles or web pages with respect to the user interface. Dataset evaluation studies 3.1.1
show that major obstacles in current data portals, besides incomplete metadata (addressed
in Section 5.2.1), are missing information in the result presentation. The studies also
show that improved user interfaces increase user satisfaction and system acceptance. In
particular, users appreciated full metadata descriptions, details on demand and aligned
terminologies. The Research Data Alliance’s (RDA) data discovery group on dataset
search confirms these suggestions for improving data discoverability. They published
ten recommendations for data providers to enhance dataset search and the user’s search
experience [Wu et al., 2019]. The recommendations comprise suggestions with respect
to the query input (“Provide a range of query interfaces to accommodate various data
search behaviours” [Wu et al., 2019]), the presentation of search results (“Make it easier
for researchers to judge relevance, accessibility and reusability of a data collection from a
search summary” [Wu et al., 2019]) including highlightings of search terms and machine
readable access for interoperability (“Follow API search standards and community adop-
ted vocabularies for interoperability” [Wu et al., 2019]). Novel user interfaces in dataset
search should consider these RDA recommendations in the development process.
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5.3 Requirements

In the following, we sort the above mentioned improvements into functional requirements
for the proposed semantic dataset search. Functional requirements describe what con-
crete tasks or functions a system should fulfill. In contrast, non-functional requirements
describe how these functions should be achieved. They comprise system relevant charac-
teristics that are not function specific.

Functional Requirements:

• R1 search for datasets beyond keywords: As keyword based retrieval is a ma-
jor obstacle in finding research data in biodiversity research (addressing Subsec-
tion 5.2.1 and 5.2.2), the proposed system should provide datasets in the result set
that go beyond a syntactic keyword match, but that are semantically related to the
search terms.

• R2 category based search: Although scholarly user interests are very diverse, they
can be grouped into a limited set of categories. Therefore, the proposed system
should provide the opportunity to search within information categories (addressing
Subsection 5.2.3).

• R3 comprehensible search result: If the search is extended on semantically related
information, it is necessary to provide explanations on the relationship of informa-
tion in the result set and the search input. Users need to understand why a certain
dataset appears in the search result (addressing Subsection 5.2.3). Highlights in the
search result support users in getting a quick overview of what is inside a dataset
and what relation the dataset has to the query terms.

Non-Functional Requirements

• R4 easy to use: Complicated user interfaces with many different settings confuse
users and reduce satisfaction in usage [Bakalov et al., 2011]. Therefore, the pro-
posed system should follow the mantra of [Shneiderman et al., 2016] and needs to
provide an overview first and details on demand.

• R5 adherence of user-centered design principles: In order to properly address R3
and R4, users need to be involved into the entire development process.
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5.4 Proposed System

Our literature study about semantic search approaches in the Life Sciences (Chapter 3.1.2)
shows that search systems on combined data (text and URIs) are still rare. However, they
are the most promising approach towards a semantic search [Bast and Buchhold, 2013,
Bast and Buchhold, 2017, Cunningham et al., 2013, Bontcheva et al., 2014]. In particu-
lar, these systems are based on a concept based retrieval model rather than keywords, or
they combine several different indexes, e.g., tokens and URIs. To address Requirement

R1, we decided to continue work in this research direction and to build the retrieval on a
concept based model.

The decision for a concept based model requires URIs, in the underlying metadata
and the queries. Therefore, in a pre-processing step, important keywords in descriptive
metadata fields have to be linked to entries in ontologies. These metadata analysis should
also determine the entity type information of the extracted terms. The result of that pre-
processing step are semantic annotations being added to metadata with information on
(1) entity type, (2) URI and (3) start and end node. The same text extraction and entity
linking process has to take place on query side.

Semantic search approaches on combined data still lack of an appropriate user inter-
face (Chapter 3.1.2) and often require to know the correct URIs. As this hampers users
with no background knowledge in Semantic Web in using semantic search systems, a
keyword based input should be offered, too. In case of keywords, appropriate URIs are
determined and inserted into SPARQL templates. In order to address Requirements R2

and R3, the category information of the semantic annotations in metadata needs to be
added to the search index to allow a category based search in the user frontend.

These considerations lead to three major subsequent components. Here, we only
briefly introduce the main idea of each component. They are individually introduced
in the following chapters.

1. Pre-processing Component: At first, metadata are loaded from a datastore and are
analyzed by various NLP pipelines. Important terms and phrases in descriptive
metadata fields such as title, description and abstract are extracted and classified
into the identified information categories (Chapter 4.2). Furthermore, the terms
are linked to selected terminologies in a knowledge base that are relevant for biod-
iversity research. The outcome are semantic annotations (with information on the
entity type, the URI and start and end node), which are added as additional inform-
ation to metadata (Chapter 6).

2. Retrieval Component: The retrieval component is responsible for the actual search
and ranking. A semantic index on both, URIs and tokens ensures a URI-based
retrieval by default, but allows a keyword search in case no URI can be linked to a
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Figure 5.1: Architecture of the proposed system. The blue color denotes components that we
integrated into the system, but have been proposed in related work. All green colored components
are the new components introduced and developed in the scope of this thesis.

term. We analyze whether existing entity based retrieval approaches are sufficient
and whether additional semantic relations enhance dataset search (Chapter 7).

3. Presentation Component: The user interface denotes the third major component
and consists of a UI frontend and a middleware handling the requests to the search
engine (Chapter 8). The UI component takes the user query, links the entered
keywords to entities in the knowledge base and generates an expanded entity query
(based on templates) being sent to the search engine.

The overall idea of the proposed system is to utilize semantic technologies in the en-
tire system. Instead of keywords, URIs (concepts) should be used for matching datasets
and search queries. Along the semantic search classification of Bast [Bast et al., 2016],
the proposed system falls into the category SSCD - Semi-structured Search on Combined

Data. The idea is to operate on combined data sources, text and knowledge bases. Con-
cerning the search approach it should be possible to search with plain text (keywords) and
entities. The expected outcome are relevant metadata files and not entries in knowledge
bases. However, semantic relations obtained from knowledge bases should be considered
in the retrieval process.

Figure 5.1 presents the overall architecture with three layers: data, service and present-
ation. In the data layer, the original metadata files as well as the annotated metadata files
are hosted in a datastore. A strong focus lies on the integration of controlled vocabular-
ies, in particular on ontologies in semantic formats such as RDF and OWL. Therefore,
a knowledge base (triple store) hosting various Life Science ontologies serves as know-
ledge source for the other components. We introduce the used ontologies in Chapter 6,
Section 6.3.1. The service layer consists of the pre-processing component with the NLP
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Figure 5.2: Data perspective of the proposed approach. Independent of the metadata schema of
the original datasets important entity types and entities are extracted and indexed. This URI-
based index approach finally allows a search beyond keywords. Excerpts of datasets (from left to
right):[Assmann and Schuldt, 2008, Curators Herbarium B, 2020, Zahiri et al., 2021]

pipelines, the search engine and two additional services providing access to NLP pipelines
via a REST interface, and the application server encapsulating the access to the search in-
dex. The presentation layer is the user frontend of the search. This modular architecture
allows the replacement of individual components or services.

From the data perspective (Figure 5.2), the main advantage of an URI-based index
is its independence of the metadata schema of the datasets. While former federated ap-
proaches [Löffler et al., 2017] map different metadata schemas to one schema, the recog-
nition of entity types, entities and an URI-based index allows a search over datasets with
various metadata schemas. Relevant semantic relations can be either obtained during the
annotation process and can be added to the index, or they can be integrated into a SPARQL
query in the actual search phase. Another advantage is the search over keywords, categor-
ies and URIs. Users are able to search with keywords that are mapped to URIs and
SPARQL queries in the backend, or they can retrieve datasets within a domain category.
For experts, it is also possible to search for a specific URI in a category. However, as
not all scholars are familiar with ontologies and URIs, supportive filtering and search
approaches should be provided in the user interface. More detailed information on the
suggested user interface are presented in Chapter 8.
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5.5 Use Cases

To illustrate the enhancements of our proposed system, we describe two use cases, which
are very difficult or time consuming in data portals with conventional keyword based
retrieval techniques and which we would like to improve. We could not utilize the use
cases of Chapter 1.2, because not enough data are available in the GFBio data portal,
the reference metadata corpus we utilized in the final usability evaluation (Chapter 8).
Therefore, we selected similar use cases of the collected question corpus (Chapter 4.2).

• Use Case 1: How variable is the oxygen concentration of sea water of the global
ocean?

To find suitable datasets for this question, scholars would need to search for various
data parameters with the search term ‘oxygen’ or the chemical formular ‘O2’ and
‘sea water’, ‘sea water’ or ‘ocean’. Moreover, the key term ‘sea water’ can be
grouped into two entity types. It can occur in the context of materials or as an
environment. An enhancement would be if scholars could specify the context with
a category search. The results should consider various spellings and synonyms.

• Use Case 2: What microbial communities such as bacteria occur in groundwater?

For this use case, scholars need to think about microbial communities, e.g., specific
bacteria species. The key term ‘groundwater’ can also occur in different spellings.
Therefore, an improvement in search would be if the search expands the result on
more specific terms. For the query term ‘bacteria’, it would be helpful to automat-
ically return bacterial species. For the term ‘groundwater’, various spellings and
synonyms should be considered.

5.6 Summary

In this chapter, we summarized the findings from the previous chapters and introduced
our concept for a semantic dataset search. The main focus is on a proper integration of
controlled vocabularies into the whole search process. We propose a system that consists
of three main components: (1) a data pre-processing component that analyzes the datasets
syntactically and semantically (Chapter 6), (2) the search engine that indexes and ranks
the datasets (Chapter 7) and (3) a user interface that takes the query input and presents the
search result (Chapter 8).



Chapter 6

Semantic Annotation of Biodiversity
Metadata

“All knowledge is connected to all other knowledge. The fun is in making

the connections.”

- attributed to Arthur Aufderheide, Physician and pioneer in paleopathology

Text mining pipelines allow the extraction of semantic information, e.g., persons, loc-
ations and temporal information. In recent years, more and more text mining approaches
have emerged that also support the linkage to concepts in terminologies. We assume, en-
riching metadata with this additional knowledge enhances dataset descriptions and thus
dataset retrieval.

Therefore, this chapter introduces the pre-processing component of the proposed se-
mantic dataset search (Chapter 5.4), a text mining pipeline extracting and linking im-
portant entities in biodiversity metadata to concepts in a knowledge base. In order to
evaluate this pipeline, we created a manually annotated metadata corpus (gold standard)
and compared the automatically created annotations from the pipeline with the manual
annotations. This gold standard is the very first manually labeled metadata corpus for
the biodiversity domain. At first, we present related work in Section 6.1. Afterwards,
we introduce our manually created metadata corpus in Section 6.2. In Section 6.3, we
summarize the existing textmining pipelines and ontologies that represent the identified
information categories from Chapter 4. Moreover, we introduce our text mining pipeline
BiodivTagger and present the evaluation results in Section 6.4.

This work has been published at the Language Resource and Evaluation Conference
(LREC2020) [Löffler et al., 2020]. The following chapter contains the results from this
publication, but provides extensions in related work and methodology.

126



Chapter 6. Semantic Annotation of Biodiversity Metadata 127

6.1 Related Work

The term semantic annotation can have different meanings in scientific literature. Some
publications only refer to the identification of entity types
[Campillos et al., 2018, Kilicoglu et al., 2018], others denote the linkage to entity types
and ontology classes as semantic annotation [Balog, 2018, Jovanović and Bagheri, 2017,
Maynard et al., 2017]. Therefore, in the following subsections, we distinguish between
simple semantic annotations when talking about annotations that solely extract entity
types (categories) and extended semantic annotations that, in addition to the entity type
information, also include the URI to an ontology concept.

6.1.1 Semantic Annotation in the Life Sciences

In the Life Sciences, a large variety of taggers were developed to extract information in
particular from medical text such as diseases, treatments, chemical compounds, genes, en-
zymes and proteins [Hawizy et al., 2011, Pyysalo and Ananiadou, 2013],
[Cunningham et al., 2013, Campillos et al., 2018, Jovanović and Bagheri, 2017]. A ma-
jority of these approaches focus on simple semantic annotations [Hawizy et al., 2011,
Pyysalo and Ananiadou, 2013, Cunningham et al., 2013, Campillos et al., 2018]. How-
ever, more and more services are launched that also provide linkage to URI concepts.
For instance, Bioportal’s annotator [Tchechmedjiev et al., 2018] offers a graphical inter-
face and programmatic access to its hosted terminologies. Users and developers obtain
a list of matching ontology concepts for entered keywords. In case of several matches
for a given keyword, all possible matching concepts are returned, disambiguation is not
provided. A large step towards precise and distinct extended semantic annotations is the
approach by [Kim et al., 2019]. Their service is based on a recently introduced new lan-
guage model for the biomedical domain (BioBERT) [Lee et al., 2019]. The returned ex-
tended semantic annotations contain a classification into one of the given categories, e.g.,
genes, diseases, drugs/chemicals and species, and also provide links to knowledge bases
(if available), e.g., MESH [MeSH, 2022] and NCBI Taxon [NCBITaxon, 2022]. How-
ever, the recognition of biological entities remains challenging as the scientific language
in the Life Sciences is fuzzy and can provide inconsistent namings [Thessen et al., 2012]
[Ananiadou et al., 2004]. The outcomes of the study by [Gurulingappa et al., 2010] reveal
that the usage of ontologies is suitable for Named Entity Recognition (NER) tasks. Util-
izing multiple ontologies achieves a good coverage of ontology concepts in biomedical
literature.

Taggers and terminology services for biodiversity research: While a multitude of
Named Entity Recognition tools are available for the biomedical domain, only very few
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approaches study the requirements and needs for biodiversity research. Some taggers
were developed for the extraction of taxonomic information and species names, e.g.,
[Naderi et al., 2011, Pafilis et al., 2013] and TaxonFinder 1. The recognition of morpho-
logical characters or phylogenetic attributes succeeded with approaches introduced by
[Balhoff et al., 2010, Eliason et al., 2019]. [Naderi et al., 2011] and [Balhoff et al., 2010]
provided extended semantic annotations with linkage to NCBITaxon [NCBITaxon, 2022]
and PATO [Gkoutos, G. et al., 2022]. Bioportal [Whetzel et al., 2011] is a large termino-
logy service in the Life Sciences offering a multiude of ontologies for the biomedical do-
main. In contrast, GFBio’s terminology service (GFBio TS) [Karam et al., 2016] was in-
troduced to offer programmtic access to terminologies dedicated to biodiversity research,
e.g., ENVO [Buttigieg et al., 2016] or PATO [Gkoutos, G. et al., 2022]. The GFBio TS
has a stronger focus on collection data and marine data. Therefore, further vocabularies
such as Catalogue of Life (COL) [Bánki et al., 2022] and WORMS [Horton et al., 2022]
were added to the repository. Disambiguation and entity type detection are not provided.
A newer service developed by [Dimitrova et al., 2020] is a tagger looking for matching
entities from ENVO [Buttigieg et al., 2016] and PATO [Gkoutos, G. et al., 2022].

6.1.2 Available Gold Standards in the Life Sciences

The development of text mining pipelines is heavily influenced by available manually
labeled text corpora. These so-called gold standards are necessary to assess the accur-
acy of automatically generated annotations of text mining pipelines in comparision to
manually labeled annotations (see also Chapter 2.2.1). Two main workshop series in the
last decade encouraged the emergence of different labeled corpora in the Life Sciences,
namely BioNLP2 and BioCreative VI3.

BioNLP has a stronger focus on the extraction of genes, proteins and diseases includ-
ing extended semantic annotations. For example, one outcome of the BioNLP workshops
is the CRAFT corpus [Cohen et al., 2017a], a resource that consists of 97 full-text art-
icles with 100.000 concept annotations from the biomedical domain. In the first version,
the corpus only provided simple annotations for genes, the latest version (version 5.0)
already includes concept annotations from various OBO Foundry4 ontologies, an initiat-
ive that aims to interlink ontological concepts, e.g., Chemical Entities of Biological In-
terests (ChEBI) [Hastings et al., 2016], NCBITaxon [NCBITaxon, 2022] and the Protein
Ontology (PRO) [Natale et al., 2017].

BioCreative is more oriented towards the chemical domain and relation extraction.
One result of these workshops is the CHEMDER corpus [Krallinger et al., 2015]. It con-

1TaxonFinder, http://taxonfinder.org/
2BioNLP, http://bionlp-corpora.sourceforge.net/index.shtml, https://aclanthology.org/venues/bionlp/
3BioCreative, https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vi/
4OBO Foundry, http://www.obofoundry.org/

http://taxonfinder.org/
http://bionlp-corpora.sourceforge.net/index.shtml
https://aclanthology.org/venues/bionlp/
https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vi/
http://www.obofoundry.org/
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tains 85,000 manually labeled chemical annotations in 10,000 PubMed abstracts. Curat-
ors with expertise in Chemistry were trainined in the labeling of various chemical types
such as formulas (e.g., O2), chemical families (e.g., ketolides) and abbrevations (e.g.,
ATP). Approaches for relation extraction in the chemical domain are for instance gene-
disease relations [Bravo et al., 2015, van Mulligen et al., 2012] and chemical-protein re-
lations [Peng et al., 2018]. All these approaches offer simple annotations, however, ter-
minologies were partially used to determine the correct entity type.

A further known corpus is the GENIA corpus [Kim et al., 2003]. In the original
version, the GENIA corpus provides 96 582 manual annotations in 2000 PubMed ab-
stracts. The annotations are classified into 47 bio-medical categories obtained from an
own-developed GENIA ontology. A corpus with textual resources in multiple languages
is the Mantra GSC corpus [Kors et al., 2015]. It comprises scientific abstract titles, drug
labels and biomedical patent claims being decomposed in units (titles or sentences). Per
source and language (English, French, German, Dutch, Spanish) 100 units were selected
for the final corpus. In total, 12 annotators were involved to label ten semantic types such
as anatomy, chemicals and drugs, disorders, devices, phenomena and procedures. Pre-
annotations were given from UMLS [UMLS, 2022]. The final extended semantic annota-
tions contain the entity type information and the respective UMLS concepts. The above
mentioned corpora are only a few out of a multitude of available labeled resources for the
biomedical domain. Recent research approaches in this domain are more and more fo-
cused on the construction of Knowledge Graphs [Xu et al., 2020], a subsequent research
aim once entity recognition and relation extraction have been successfully processed.

Gold standards for biodiversity research: The domain coverage of the above men-
tioned corpora mainly comprises drugs, genes, diseases and chemical compounds. These
categories address information needs in biodiversity research only partially. For biod-
iversity research, we need resources with labeled species, environmental terms, data para-
meters, materials and processes. Only very few corpora exist that are suited for this
purpose.

Species are the most prominent semantic category being covered in a couple of cor-
pora. For instance, Linnaeus [Gerner et al., 2010] provides species mentions in 100 full-
text articles from PubMed. The annotations also provide NCBITaxon [NCBITaxon, 2022]
identifiers. Species-800 [Pafilis et al., 2013] is another corpus focused on the annotation
of organisms. It provides taxon entity annotations from 800 PubMed abstracts and the
species mentions were linked to the corresponding NCBI identifiers [NCBITaxon, 2022].
The Bacteria Biotope (BB) [Deléger et al., 2016] corpus was created in the scope of the
BioNLP workshop series. PubMed titles and abstracts were manually labeled by seven
annotators with simple bacteria mentions (no linkage to URI concepts) and their locations
such as habitats or geographic information. The COPIOUS corpus [Nguyen et al., 2019]
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is another gold standard corpus with simple annotations of the following entity types: geo-
graphical locations, habitats, temporal expressions and person name entities. The corpus
uses pages from the Biodiversity Heritage Library (BHL) [Gwinn and Rinaldo, 2009], an
open access library with legacy literature on biodiversity research. For the German lan-
guage, [Ahmed et al., 2019] introduced the BIOFid corpus, a manually annotated corpus
of 969 scientific articles for biodiversity research with general, simple entity type annota-
tions, such as person, organization, time, geographic information and taxon names.

The literature study reveals that, to the best of our knowledge, no gold standard for re-
search metadata exists. Moreover, for biodiversity research, there are only corpora based
on legacy documents. Due to this lack of labeled corpora, in the past decade, only very
few tools were introduced to extract important entities and phrases for biodiversity re-
search. Therefore, in the next sections, we introduce our labeled metadata corpus and a
novel text mining pipeline that allows the automatic extraction of biological entities, e.g.,
processes, environmental information or data parameters.

6.2 A Metadata Gold standard for Biodiversity Research

In the Life Sciences, a variety of metadata standards were developed for different pur-
poses and sub-domains (Chapter 4). The proposed metadata corpus aims to reflect this
heterogeneity and diversity of biological metadata standards. Therefore, we selected five
data repositories and project databases with various metadata formats, namely Dryad 5 (a
generic data repository) in Dublin Core 6 format, PANGAEA 7 (a data archive for environ-
mental data) in an extended Dublin Core format called PanMD 8 and three project-related
portals and databases such as BEFChina 9 (a joint Chinese-German-Swiss biodiversity re-
search project) in EML10 format, iDiv 11 (The German Centre for Integrative Biodiversity
Research Halle-Jena-Leipzig) and the Biodiversity Exploratories 12 (a large, long-running
functional biodiversity research project in Germany), both providing an own XML based
metadata schema (see also Chapter 2.4). For each data repository, ten representative files
were utilized for the annotation task. An excerpt of a metadata file from BEFChina in
EML format is shown in Listing 6.1.

5Dryad, https://https://datadryad.org
6Dublin Core, https://dublincore.org/
7PANGAEA, https://www.pangaea.de/
8PanMD, https://wiki.pangaea.de/wiki/Metadata
9BEFChina, http://china.befdata.biow.uni-leipzig.de/

10EML, https://knb.ecoinformatics.org/tools/eml
11iDiv, https://idata.idiv.de/
12Biodiversity Exploratories, https://www.bexis.uni-jena.de

https://https://datadryad.org
https://dublincore.org/
https://www.pangaea.de/
https://wiki.pangaea.de/wiki/Metadata
http://china.befdata.biow.uni-leipzig.de/
https://knb.ecoinformatics.org/tools/eml
https://idata.idiv.de/
https://www.bexis.uni-jena.de


Chapter 6. Semantic Annotation of Biodiversity Metadata 131

Listing 6.1: Metadata file in EML (excerpt) [Germany and Erfmeier, 2019]

<eml:eml [...]><dataset id=’577’>
<alternateIdentifier>http://china.befdata.biow.uni−leipzig.de/datasets/577</alternateIdentifier>
<title>Main Experiment: Seedling addition experiment − growth and biomass data</title>
<creator id=’markus_ger’>
<individualName>
<givenName>Markus</givenName><surName>Germany</surName>
</individualName>
[...]
<abstract>
<para>While coexistence in plant communities is frequently explained
by effects of resource niche partitioning, the Janzen−Connell (J−C)
hypothesis is an alternative approach that has been assumed as a
major ecological mechanism explaining high species richness levels,
in particular, in tropical forest ecosystems. [...]</para>
</abstract>
<keywordSet>
<keyword>janzen connell</keyword>
<keyword>Main Experiment</keyword>
<keyword>seedling addition</keyword>
<keyword>seedling performance</keyword>
[...]
<keyword>Leaves_Dam</keyword>
<keyword>Leaves_Dead</keyword>
<keyword>Damage_pro</keyword>
<keyword>Biomass_Above</keyword>
<keyword>Biomass_Below<
[...]
</dataset></eml>

Annotation guidelines: The annotation guidelines were built on the guidelines presen-
ted in our previous work [Löffler et al., 2021]. We only labeled noun entities and adject-
ives, as the focus for this corpus is on biological entities, relations are omitted. Based on
the identified main search interests in biodiversity research (Chapter 4), we concentrated
on the labeling of phenotypic qualities and characteristics that can be measured or ob-
served (QUALITY), environmental terms (ENVIRONMENT), chemical compounds and
materials (MATERIAL) and biological, chemical and physical processes (PROCESS).
We did not consider categories that are not only specific for biodiversity research, are
not frequently mentioned and for which corpora already exist, e.g., ORGANISM, LOC-
ATION, PERSON, TIME. The first letters of the used categories (Q - QUALITY, E -
ENVIRONMENT, M - MATERIAL, P - PROCESS) formed the name of the novel corpus
- QEMP.

For each compound nouns (nouns with two words, e.g., rain forest), we determined
its domain relevance. In case a term or phrase is relevant to biodiversity research such
as “climate change” or “ocean acidification”, we labeled the two words as a whole. The
first word in these compound nouns describes nouns more closely. We considered these
nested entities, when they represent a biological term. For instance, “ocean” additionally
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got the annotation [ENVIRONMENT]. To facilitate the decision whether a term is domain
specific, the annotators were permitted to look up the phrases in additional sources, e.g.,
BioPortal 13 or BiodiversityA-Z 14. Furthermore, the annotators had the opportunity to use
the labeled questions of our previous research [Löffler et al., 2021]. Abbreviations and
units were omitted, but multi-labeling was permitted, as for some terms several meanings
applied, e.g., “biomass” [MATERIAL, QUALITY].

Annotation process: Four PhD students in computer science annotated the metadata
corpus manually. A postdoc in biology gave advice concerning the category definitions
and complex biological terms. We utilized the text mining framework GATE
[Cunningham et al., 2013] as annotation tool. GATE supports manual annotation tasks
and offers functions to merge different annotation sets into a final gold standard and to
compute inter-annotator agreement (IAA) measures. A main challenge was to achieve a
proper training of the group, because not all team members had expertise with biodiversity
data. Hence, we decided to have three training phases over a period of two months. In
a trial round, the annotators got familiar with the categories and labeled five files indi-
vidually. The outcomes were discussed in the group and the annotation guidelines were
refined accordingly. In the pilot phase, we formed two annotator pairs. Each pair double-
annotated four metadata files. The results were discussed, and the annotation guidelines
were finalized. For the main phase, each annotator team labeled 25 metadata files.

Evaluation of the annotation process: The average inter-rater agreement measures
per data repository are presented in Table 6.1. The detailed results are available in our
GitHub repository15. Usually, IAA is computed with Cohen’s Kappa (two annotators)
or Fleiss Kappa (> two annotators) [Fleiss, 1971]. However, the usage of κ statistics
requires the counting of missing values. For instance, annotators might label different
mentions. If the second annotator labeled the term, it would count as non-entity for
the first annotator. It is not clear and defined how many terms this non-entity com-
prises, but Kappa metrics can only be computed if the amount of these negative cases
is quantified. Therefore, in Named Entity Recognition tasks, other metrics are preferred
such as precision, recall and f-Measure (see also Chapter 2.2.3) from information re-
trieval [Hripcsak and Rothschild, 2005]. Here, one annotator set is used as “key” set,
whereas the other annotator set is used as reference set. At first, some statistics need to be
computed: the exact matches (both annotators labeled that term or phrase with the exact
start/end offset), partial matches (annotations are overlapping but not identical in span),
the missing phrases in annotator set A and the spurious annotations from annotator set B.
Precision, recall and f-Measure are computed as stated in Section 6.4.

13BioPortal, https://bioportal.bioontology.org/annotator
14BiodiversityA-Z, https://www.biodiversitya-z.org
15BiodivTagger, https://github.com/fusion-jena/BiodivTagger/tree/master/QEMP

https://bioportal.bioontology.org/annotator
https://www.biodiversitya-z.org
https://github.com/fusion-jena/BiodivTagger/tree/master/QEMP
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Precision Recall F-Score

BExIS 0.53076 0.53182 0.4423
BEFChina 0.77537 0.67081 0.65824
PANGAEA 0.60154 0.63092 0.61244

Dryad 0.41434 0.68081 0.47059
idiv 0.57993 0.7409 0.6221

Table 6.1: Average inter-annotator agreement measures per data repository.

The F-score values in Table 6.1 are low to moderate. Even with a thorough train-
ing, biological entities are difficult to classify and fuzzy. Terms for which the meaning
or classification was unknown or difficult were collected in a list. The postdoc in bio-
logy looked through these terms and phrases and took the final annotation decision. The
expert’s decisions were added to the final metadata annotations.

Corpus statistics: The statistics of the QEMP corpus are introduced in Table 6.2. Most
annotations were classified into the category QUALITY (37.1%), representing data para-
meters measured. This large portion is not surprising as metadata of PANGAEA, iDiv,
BExIS and GBIF usually contains information on measured variables. Out of 5357 total
annotations, 26.22 % of the labeled terms and phrases were grouped into the category
ENVIRONMENT and 31.9% into MATERIAL. PROCESS annotations occurred in 4.6%
of the annotated tokens. Processes are less represented in metadata fields. Therefore, data
providers and data curators can only utilize general fields to describe biological, chemical
or physical processes (see Chapter 4.4.2). We assume, if concrete metadata fields are
missing, data providers and data curators are not aware of adding this additional inform-
ation to metadata.

Figure 6.1 illustrates the distribution of entity types over all tokens (left) and the
number of annotated tokens per data repository (right). Most tokens were annotated for
BEFChina files. The EML metadata schema used by BEFChina provides fine-grained
metadata fields for various aspects in data collection, data structure and methodology.
Most of these elements are filled, however, we also noticed duplicate text in abstracts and
methodology descriptions. Thus, BEFChina files are larger and provide more text to an-
notate, which resulted in this large amount of annotations. Concerning the distribution of
the categories per entity types, Figure 6.1 (left) emphasizes the diverse content of the data
in the repositories. Information on materials and chemical compounds are mainly present
in metadata files from BEFChina and PANGAEA, environmental terms are the most fre-
quent category in iDIV, BExIS and Dryad. Data parameters measured can be found in all
data repositories. However, per data repository less than 10% of the available tokens were
annotated. Most tokens in the sentences are either too general and not domain-specific,
are to fuzzy and difficult to classify or do not fall in any of the provided categories.
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Dryad PANGAEA BEFChina BExIS iDiv Total

All Token 3943 14069 47388 22817 4640 92857
ENVIRONMENT 71 135 643 390 166 1405

MATERIAL 17 283 1132 254 27 1713
PROCESS 50 74 45 43 39 251
QUALITY 72 202 1359 232 123 1988

Total 210 694 3179 919 355 5357

Table 6.2: QEMP corpus statistics: the total number of annotated tokens per entity type and data
source.

Figure 6.1: Distribution of entity types over all tokens per data repository (left) and the number of
annotated tokens per data repository (right).

The QEMP corpus is publicly available in our GitHub repository16

6.3 A Text Mining Pipeline for Biodiversity Metadata

The overview of related work in Section 6.1.1 shows that only very few text mining
approaches exist for the recognition of relevant entity types in biodiversity research.
Table 6.3 summarizes the available taggers for each category. Non Life Sciences spe-
cific entity types such as Location, Person and Time are already covered by a variety of
text mining approaches. The detection of species is also possible with at least two taggers.
Both approaches also link the extracted species to the identifier in the NCBI Taxonomy.
All other relevant categories for biodiversity research are only partially covered or not
covered at all. Therefore, our methodology focuses on these partially or not yet covered
entity types, namely ENVIRONMENT, QUALITY, PROCESS, MATERIAL and DATA
TYPE.

Our approach for entity type extraction is based on ontological gazetteers
[Saggion et al., 2007] using knowledge bases to form large gazetteer lists. One or sev-
eral ontologies are assigned to categories. In case an ontology covers more than one
category, we assign selected concepts of the ontology to an entity type. Lookup services
match terms and entities of these selected terminologies. Thus, a resulting annotation re-

16BiodivTagger and QEMP corpus, https://github.com/fusion-jena/BiodivTagger

https://github.com/fusion-jena/BiodivTagger
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Category Tagger Coverage

ORGANISM* OrganismTagger [Naderi et al., 2011] species only, no hierarchy considered,
SPECIES [Pafilis et al., 2013] linkage to NCBITaxon ID

ENVIRONMENT* Pensoft [Dimitrova et al., 2020] no category recognition,
ENVO [Buttigieg et al., 2016] entity lookup

LOCATION*

ANNIE [Cunningham et al., 2013] extraction of geographic names
CoreNLP [Manning et al., 2014] or geographic gazetteer lists (GeoNames)
NTLK [Bird and Loper, 2004]
SpaCy 17

Stanza [Qi et al., 2020]
GeoNames 18

DBpediaTagger [Sateli and Witte, 2015] linkage to LOD
Process* -

QUALITY* Pensoft [Dimitrova et al., 2020] no category recognition,
PATO [Gkoutos, G. et al., 2022] entity lookup

MATERIAL* ChemicalTagger [Cunningham et al., 2013] chemical elements and compounds
DATA TYPE* -

ANATOMY AnatomyTagger anatomical entities, e.g., organs,
[Pyysalo and Ananiadou, 2013] tissue, cell (no URIs)

Methodology -
Event -
Human Intervention -

PERSON

ANNIE [Cunningham et al., 2013] names for humans and organizations
CoreNLP [Manning et al., 2014]
NTLK [Bird and Loper, 2004]
SpaCy 19

Stanza [Qi et al., 2020]

TIME

ANNIE [Cunningham et al., 2013] temporal information
CoreNLP [Manning et al., 2014]
NTLK [Bird and Loper, 2004]
SpaCy 20

Stanza [Qi et al., 2020]

Table 6.3: Important entity types in biodiversity research and available taggers. The asterisk
denotes the categories that were mentioned frequently in the question corpus study (Chapter 4.2).

ceives an URI and a category (the category assigned to the ontology or the ontology part).
The following subsections introduce the selected ontologies (Subsection 6.3.1), present
the architecture (Subsection 6.3.2) and describe the evaluation (Subsection 6.4). Finally,
we discuss the results in Subsection 6.4.1.

6.3.1 Ontology Selection

A comprehensive knowledge graph for biodiversity is still missing (Chapter 2.3.4). Nu-
merous ontologies have been developed in biology and biomedicine in the past decade.
Most of them are available in open data repositories such as Bioportal [Whetzel et al., 2011]
or the GFBio Terminology Service21. Initiatives such as the OBO Foundry22 aim to
provide terminologies that are interlinked and adhere to several principles including open
use and strictly-tailored content. This well-structured domain knowledge can be used as
ontological gazetteers in information extraction tasks [Saggion et al., 2007]. We set up
an own local triple store instead of using existing services such as Bioportal or GFBioTS

to be able to integrate new ontologies and to avoid dependencies during the develop-
ment process. Table 6.4 presents the final categories considered in the pipeline and their

21GFBio TS, https://terminologies.gfbio.org
22OBO Foundry, http://www.obofoundry.org/

https://terminologies.gfbio.org
http://www.obofoundry.org/
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Category Terminology (:starting node) Description

ORGANISM NCBI Taxonomy [NCBITaxon, 2022] organisms in the public sequence databases

ENVIRONMENT

ENVO [Buttigieg et al., 2016]
:environmental feature ( ENVO_00002297),
:environmental condition ( ENVO_01000203),
:environmental system ( ENVO_01000254)
:immaterial entity ( BFO_0000141) description of environmental entities

QUALITY &
PHENOTYPE

PATO [Gkoutos, G. et al., 2022]
:cellular quality ( PATO_0001396),
:molecular quality ( PATO_0002182),
:physical quality ( PATO_0001018),
:process quality ( PATO_0001236),
:morphology ( PATO_0000051) phenotypic qualities
TO [Cooper et al., 2017] phenotypic traits in plants
FLOPO [Hoehndorf et al., 2016] ontology of phenotypes reported in Floras
ENVO [Buttigieg et al., 2016]
:quality ( PATO_0000001) description of environmental entities
PPO [Walls, R. et al., 2022]
:plant phenological trait ( PPO_0002000),
:specifically dependent continuant ( BFO_0000020)

phenology of individual plants and populations of
plants

PROCESS

ENVO [Buttigieg et al., 2016]
:process ( BFO_0000015) description of environmental entities
UBERON [Mungall et al., 2012]
:processual_entity ( UBERON_0000000)

integrated cross-species anatomy ontology
representing a variety of entities

OBI [Bandrowski et al., 2016a]
:process ( BFO_0000015)

ontology of investigations, the protocols and
instrumentation

PO [Cooper et al., 2013]
:plant structure development stage( PO_0009012)

links plant anatomy, morphology and growth and
development to plant genomics data

REX [OBOFoundry, 2022]
:physical and chemical process ( REX_0000001) ontology of physico-chemical processes

GO [Ashburner et al., 2000, Cooper et al., 2017]
:biological_process ( GO_0008150)

vocabularies for the annotation of gene products
with respect to their molecular function,
cellular component, and biological role

MATERIAL &
SUBSTANCE

ChEBI [Hastings et al., 2016] chemical compounds of biological relevance
ENVO [Buttigieg et al., 2016]
:environmental material ( ENVO_00010483) description of environmental entities

Table 6.4: Terminologies that match the defined search categories. If no start node is provided, the
entire ontology reflect the category.

corresponding ontologies. We omitted categories which are not specific to the Life Sci-
ences (LOCATION, PERSON, TIME). We only analyzed ontologies from OBO-Foundry
to ensure the linkage to other vocabularies. We also only considered ontologies that are
still maintained and which are provided in full semantic formats such as RDF and OWL.
For the category DATA TYPE only very few ontologies exist, e.g., the Biological Col-
lections Ontology (BCO)23. The entry information content entity, IAO_0000030
provides subnodes that only partially reflect the category DATA TYPE such as journal art-
icles, graphical layouts, and graphs. Therefore, we decided not to consider the category
DATA TYPE in our text mining pipeline.

We concentrated on the detection of environmental terms such as habitats or environ-
mental features (ENVIRONMENT), biological, chemical and physical processes (PRO-
CESS), chemical compounds and materials (MATERIAL), phenotypic qualities and char-
acteristics that can be measured or observed (QUALITY). The ENVO ontology
[Buttigieg et al., 2016] was used to extract environmental terms. Due to its wide scope,
ENVO also contains processes, materials and quality concepts. Therefore, we only con-
sidered entities starting from nodes addressing our definition of Environment (Chapter 4.2.1).

23BCO, https://github.com/BiodiversityOntologies/bco

https://bioportal.bioontology.org/ontologies/ENVO/?p=classes&conceptid=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FENVO_00002297
http://purl.obolibrary.org/obo/https://bioportal.bioontology.org/ontologies/ENVO/?p=classes&conceptid=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FENVO_01000203
https://bioportal.bioontology.org/ontologies/ENVO/?p=classes&conceptid=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FENVO_01000254
https://bioportal.bioontology.org/ontologies/ENVO/?p=classes&conceptid=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FBFO_0000141
https://bioportal.bioontology.org/ontologies/PATO/?p=classes&conceptid=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FPATO_0001396
https://bioportal.bioontology.org/ontologies/PATO/?p=classes&conceptid=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FPATO_0002182
https://bioportal.bioontology.org/ontologies/PATO/?p=classes&conceptid=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FPATO_0001018
https://bioportal.bioontology.org/ontologies/PATO/?p=classes&conceptid=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FPATO_0001236
https://bioportal.bioontology.org/ontologies/PATO/?p=classes&conceptid=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FPATO_0000051
https://bioportal.bioontology.org/ontologies/ENVO/?p=classes&conceptid=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FPATO_0000001
https://bioportal.bioontology.org/ontologies/PPO/?p=classes&conceptid=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FPPO_0002000
https://bioportal.bioontology.org/ontologies/PPO/?p=classes&conceptid=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FBFO_0000020
https://bioportal.bioontology.org/ontologies/ENVO/?p=classes&conceptid=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FBFO_0000015
https://bioportal.bioontology.org/ontologies/UBERON/?p=classes&conceptid=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FUBERON_0000000
https://bioportal.bioontology.org/ontologies/OBI/?p=classes&conceptid=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FBFO_0000015
https://bioportal.bioontology.org/ontologies/PO/?p=classes&conceptid=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FPO_0009012
https://bioportal.bioontology.org/ontologies/REX/?p=classes&conceptid=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FREX_0000001
https://bioportal.bioontology.org/ontologies/GO/?p=classes&conceptid=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FGO_0008150
https://bioportal.bioontology.org/ontologies/ENVO/?p=classes&conceptid=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FENVO_00010483
https://github.com/BiodiversityOntologies/bco
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Figure 6.2: Overall flow with all processing resources executed sequentially [Löffler et al., 2020].

For PATO24 and the detection of phenotypic qualities we also only used concepts from
specific nodes as PATO also contains concepts that are too broad for our purpose. We
utilized multiple ontologies to cover process entities, e.g., ENVO, Gene Ontology (GO)25

and UBERON26. In order to extract materials, we used the Chemical Entities of Biological
Interest (ChEBI)27 and nodes from ENVO describing environmental materials.

6.3.2 Architecture

We build our approach on the text mining framework GATE [Cunningham et al., 2013]
offering basic text mining functions and various plugins for the Life Sciences. The overall
workflow is illustrated in Figure 6.2.

In the first syntactical phase, we use GATE’s in-build processing steps: At first, the
XML structure of the metadata files is analyzed and all textual resources are extracted.
Subsequently, tokenization, sentence splitting and Part-Of-Speech (POS) tagging take
place. The result are tokens with annotations containing information on occuring noun en-
tities, verbs and adjectives. We also lemmatize the document’s text to utilize all inflected
forms of nouns (singular vs. plural).

24PATO, http://purl.obolibrary.org/obo/pato.owl
25GO, http://geneontology.org/
26UBERON, http://uberon.org
27ChEBI, https://www.ebi.ac.uk/chebi/

http://purl.obolibrary.org/obo/pato.owl
http://geneontology.org/
http://uberon.org
https://www.ebi.ac.uk/chebi/
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Following the syntactic pre-processing steps, the semantic analysis is executed. It also
represents our own contribution. Each category (entity type) consists of large ontological
gazetteer lists. GATE’s Large Knowledge Base (LKB) Gazetteer plugin allows access to
remote knowledge bases via a SPARQL28 interface. Instead of using external providers
for access to terminologies, we downloaded and host all ontologies in an own GraphDB29

triple store. Therefore, we are not depended on possible maintenance downtimes or onto-
logy upgrades occuring regularly at external terminology providers. All SPARQL queries
are stored in text files. The LKB plugin uses these queries and sends them to the SPARQL
interface of the GraphDB triple store. The result are lists with ontology concepts includ-
ing URIs and labels.

Listing 6.2: SPARQL query excerpt to retrieve concepts and subconcepts for entity type Environ-

ment [Löffler et al., 2020]

prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#>
prefix obo: <http://purl.obolibrary.org/obo/>
prefix oboInOwl: <http://www.geneontology.org/formats/oboInOwl#>

SELECT DISTINCT ?la ?entity
FROM NAMED <http://gfbio−git.inf−bb.uni−jena.de/BIODIV/ENVO>
WHERE {

#environmental system
{ GRAPH <http://gfbio−git.inf−bb.uni−jena.de/BIODIV/ENVO>{

?entity rdfs:subClassOf∗ <http://purl.obolibrary.org/obo/ENVO_01000254>.
{ ?entity rdfs:label ?la.}
UNION
{ ?entity oboInOwl:hasRelatedSynonym ?la.}
UNION
{?entity oboInOwl:hasExactSynonym ?la.}

}
}

#environmental feature
UNION{

GRAPH <http://gfbio−git.inf−bb.uni−jena.de/BIODIV/ENVO>{
?entity rdfs:subClassOf∗ <http://purl.obolibrary.org/obo/ENVO_00002297>
{ ?entity rdfs:label ?la.}
UNION
{?entity oboInOwl:hasRelatedSynonym ?la.}
UNION
{?entity oboInOwl:hasExactSynonym ?la.}

}
}
#environmental condition
UNION {[...]}
#immaterial entity
UNION {[...]}

}

The SPARQL queries also integrate semantic relations with the same meaning such
as hasRelatedSynonym and hasExactSynonym. Transducers match the received ontolo-

28SPARQL, https://www.w3.org/TR/rdf-sparql-query/
29GraphDB, http://graphdb.ontotext.com/

https://www.w3.org/TR/rdf-sparql-query/
http://graphdb.ontotext.com/
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Figure 6.3: Screenshot of GATE’s graphical editor presenting a dataset from BEFChina
[Germany and Erfmeier, 2019] with semantic annotations and their matching URI concepts
[Löffler et al., 2020].

gical lists against the document’s tokens. A positive match leads to a semantic annotation
with a link to the corresponding resource URI. This look up also considers different con-
straints such as case-insensitive, word order-sensitive and all possible string matches. We
utilize GATE’s Chemical Tagger [Cunningham et al., 2013] for the extraction of chem-
ical compounds and elements. Again, by means of the LKB, the annotated tokens are
linked to concepts in the CHEBI ontology. ENVO also provides a large amount of envir-
onmental materials. Therefore, the Material LKB gathers these concepts via a SPARQL
query and the transducer adds them to the annotation MATERIAL. Multiple URI con-
cepts are permitted per annotation. One example is “grassland” being linked to eight URI
concepts. This also includes sub-classes, because the sub-class “prairie” contains “grass-
land” as synonym. In a cleaning step at the end, we eliminate Named Entities such as
Person, Location, Organization, Date, Time and Address (extracted by GATE’s default
ANNIE pipeline [Cunningham et al., 2013]) as they would lead to mismatches. Further
erroneously annotated elements such as latitude and longitude (e.g., ‘N’ is labeled with
‘nitrogen’) are also removed.

6.4 Evaluation & Results

Figure 6.3 provides a screenshot of GATE’s graphical interface and illustrates the resulting
semantic annotations. The right panel shows the created annotations for the various cat-
egories, whereas the bottom panel presents more detailed information on the individual
annotation such as the URI concepts. We ran the BiodivTagger pipeline on the QEMP
corpus and compared the pipeline outcome with the QEMP gold standard.

Measurements: Frequently used metrics in information retrieval tasks are precision,
recall and f-score [Manning et al., 2008]. For the evaluation of ontology-based informa-
tion extraction tasks, [Maynard et al., 2006] proposed adapted metrics based on precision
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and recall. At first, statistics of ‘correct’ (exact match), ‘missing’ (no URI found), ‘spuri-
ous’ (entry in the ontology but not labeled in the gold standard) and ‘partial’ (ontological
concepts cover the tokens in text only partially) matches are computed. Hence, preci-
sion, recall and f-Measure in ontology-based information extraction tasks are defined as
follows:

Precision =
Correct + 1

2Partial
Correct +Spurious+Partial

(6.1)

Recall =
Correct + 1

2Partial
Correct +Missing+Partial

(6.2)

F-Measure =
(β 2 +1)P∗R
(β 2P)+R

(6.3)

“β denotes the weighting of precision versus recall. If precision and recall should be
weighted equally, β is 1. In order to put more emphasis on the precision, β is set to 0.5.
If it is set to 2, the recall is twice as weighted as the precision.” [Löffler et al., 2020]

The overall performance can be determined with macro and micro measurements.
The macro measurement is a single value representing the averaged desired metric with
an equal weight to all entity types. In contrast, micro measurement considers the corpus
as one large document and is prefered in unbalanced datasets [McCowan et al., 2004].

All metrics introduced above were implemented in a Python script. We processed all
corpus files in a batch mode and counted a correct match in case the annotation possessed
the correct entity type and at least one URI concept. A partial match was found when the
category was correct but the span of the ontology concept and the labeled term partially
matched. In case a labeled term in the gold standard did not receive a URI concept, we
counted it as ‘missing’. The pipeline annotated multiple terms additionally to the gold
standard. We considered that as ‘spurious’ in the evaluation. All scripts and results are
available in our Github repository 30.

Outcomes: The precision is a measure to determine how many system generated an-
notations are correct. In contrast, the recall denotes how many of the expected annotations
were actually returned. In information retrieval tasks, the precision is usually considered
to be more important. However, in information extraction tasks both metrics have the
same importance as the recall implicitly describes the ontological coverage.

We provide the overall results per entity type in Table 6.5. We achieved precison
values between 0.423 and 0.589 and recall values between 0.38 and 0.74. Both metrics
are moderate as the pipeline annotated lots of additional terms. For instance, for pro-
cesses the pipeline found twice the number of annotations (spurious) as correct matches.

30BiodivTagger, https://github.com/fusion-jena/BiodivTagger

https://github.com/fusion-jena/BiodivTagger
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Correct Missing Spurious Partial Precision Recall F-Score

ENVIRONMENT 647 720 559 22 0.536 0.474 0.503
PROCESS 89 148 123 9 0.423 0.38 0.4

MATERIAL 1111 591 1016 2 0.522 0.653 0.58
QUALITY 1414 472 974 75 0.589 0.74 0.656

Macro 0.518 0.562 0.535
Micro 0.549 0.625 0.585

Table 6.5: Results for all documents per category (equal weight of precision and re-
call) [Löffler et al., 2020].

Moreover, multiple process terms could not be linked to an URI, which resulted in low
recall values. For the entity type PROCESS various ontologies are already integrated into
the pipeline. However, our results reveal that the ontological coverage is low. The recall
values for environmental terms are low, too, as matching terms occur in the ontology only
with a different category. One example is the term ‘soil’. It got the label ENVIRON-
MENT in the gold standard, but the ENVO ontology provides an entry under the node
‘environmental material’ (MATERIAL). The QEMP corpus consists of multiple datasets
with soil measurements. Therefore, the number of correct annotations is low and the
number of missing annotations is high. In our GitHub repository, we provide a lists of
terms that are (from our perspective) misclassified and for which no URI could be found.
The BiodivTagger achieved good evaluation results for the recall values of the categories
MATERIAL and QUALITY. This reveals that a majority of terms in the gold standard
could be linked to concepts in ontologies.

We also determined precision and recall values per data repository (Table 6.6). This
also allows the analysis of various dataset length as datasets from Bexis and BEFChina

are longer in terms of size and descriptions than datasets from PANGAEA, Dryad and
iDiv. The results show no significant difference between shorter and longer datasets.
For idiv datasets, eight out of 10 idiv files come from the same research group, and the
overall ontological coverage in these files were good. This resulted in slightly higher
metric values compared to the other repositories. Taking a closer look on the differences
of the recall values between biodiversity projects (idiv, BEFChina and BExIS) and data
repositories, the evaluation results show that the project repositories achieved slightly
higher recall values than the data archives. As the projects are focused on current research
questions in biodiversity research, our selection of ontologies is right and confirms their
suitability for semantic annotation of biodiversity research data.

6.4.1 Discussion

This study aimed to explore the suitability of biological ontologies for information extrac-
tion and NER tasks. Due to the large amount of available biological terminologies, our
assumption was that this domain knowledge should be covered by multiple domain onto-
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Correct Missing Spurious Partial Precision Recall F-Score

Dryad 128 76 86 3 0.574 0.589 0.563
PANGAEA 404 268 322 14 0.524 0.603 0.551

BExIS. 571 308 696 26 0.476 0.619 0.514
BEFChina 1921 1169 1418 52 0.566 0.657 0.596

idiv 237 110 150 13 0.614 0.741 0.652

Table 6.6: Evaluation results per data repository [Löffler et al., 2020].

logies. Maintenance and interoperability are essential in ontology management. Hence,
we only utilized terminologies being organized by large research communities. This en-
sures interlinkage among each other and the strictly tailored scope of each terminology.

Basically our assumption is confirmed. Most of the studied entity types being relevant
for biodiversity research achieved good recall values. This reveals an overall good cover-
age of biodiversity terms in available existing ontologies. However, our approach heavily
depends on a specific ontology version. All SPARQL queries would require updates in
case ontology nodes are moved, renamed or eliminated. Thus, all used ontologies are
provided locally in the pipeline as cached versions to countact this problem.

Nevertheless, all metrics leave room for improvement. For instance, there is a large
number of missing terms. In particular, for biological, chemical and physical processes
the ontological coverage is low. This calls for more discussions in the biodiversity re-
search community to extend existing terminologies. Moreover, misclassifications in the
ontologies also resulted in decreased recall values. The precision values are only moder-
ate, as we received a multitude of spurious annotations from the ontological gazetteers.
For instance, too broad terms such as “position” or “content” got annotated by the pipeline.
We already excluded specific nodes of the ontologies in the SPARQL statements to avoid
these spurious broad annotations. However, this needs further analysis and revision. One
further solution could be the integration of additional machine learning approaches to
increase the precison values, but this would require a larger labeled training corpus.

6.5 Summary

The overall aim of this chapter was to develop and evaluate an approach for the extraction
of relevant biological entities from metadata (H3, second part). Due to the large amount
of available terminologies in the Life Sciences, one requirement was to make use of this
domain knowledge in the extraction process.

The outcomes of this chapter are two-fold. At first, a metadata gold standard was
developed. Fifty metadata files from five data repositories and project databases rel-
evant for biodiversity research were manually labeled with four entity types, namely
ENVIRONMENT, PROCESS, MATERIAL and QUALITY. Second, a novel text min-
ing pipeline (BiodivTagger) was developed identifying these categories based on ontolo-
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gical gazetteers. For that purpose, multiple ontologies from the OBO Foundry initiative
were analyzed and integrated into Large Knowledge Base Gazetteers (LKB) via complex
SPARQL queries. Per category various different ontologies were either fully or partially
(starting from a specific node) added and cached as local knowledge bases. The pipeline
performs a look-up per category in these cached knowledge bases and links the ontology
entries with the tokens occuring in metadata in case of a successful match. Thus, semantic
annotations are created consisting of concept URIs, spans with start and end nodes and
the category information.

The evaluation of the BiodivTagger pipeline shows moderate results. We achieved
good results for the recall values for the categories MATERIAL and QUALITY (data
parameters), but moderate precision and recall values for the other entity types. How-
ever, it is the very first text mining pipeline for the extraction of important entity types for
metadata in biodiversity research. Moreover, the selection of the currently used ontologies
is right and suitable for semantic annotation tasks. Now, further work is needed to im-
prove the current approach, e.g., with additional machine learning techniques or ontology
extensions.



Chapter 7

Semantic Dataset Retrieval

“Intelligence is not the ability to store information, but to know where to

find it.”

- attributed to Albert Einstein, Physicist and Nobel prize winner

Search engines are the major component in retrieval applications. Improving search
engines towards results going beyond keywords is the main goal in the research field of
semantic search. One approach for such as enhanced search are entity-based retrieval
models. Data sources and queries are represented by entities enabling a search over text
and knowledge bases.

After the presentation and evaluation of the pre-processing component (Chapter 6)
analyzing and annotating metadata with important biological entity types and URIs of the
LOD cloud, we now present retrieval component, the second component of our proposed
semantic dataset search. We explore various entity expansion techniques, various entity-
based retrieval models, and we also introduce a novel test collection for the evaluation of
dataset retrieval. At first, we present related work about entity-based retrieval approaches
and available test collections in the Life Sciences (Section 7.1) followed by some prelim-
inary considerations (Section 7.2). Afterwards, we describe a small user study to gather
requirements for a semantic retrieval system in biodiversity research (Section 7.3) and
present the a novel test collection for dataset retrieval in Section 7.4. The expansion
strategies are introduced in Section 7.5, and the explored retrieval models are described
in Section 7.6. We present the evaluation setup in Section 7.7 and the results in Section
7.8.

The test collection for dataset search in biodiversity research was published as short
paper in the RIO Journal [Löffler et al., 2021].

144
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7.1 Related Work

Entity-based retrieval is part of research in the field of semantic search [Balog, 2018,
Bast et al., 2016]. Entities are usually represented by Internationalized Resource Identifi-
ers (URIs). According to Balog [Balog, 2018], the word ’entity’ is mainly used in terms
of Named Entities such as geographic locations (e.g., “Atlantic Ocean”) or persons (e.g.,
“Jane Goodall”). Abstract objects such as data parameters (e.g., “length”, “growth rate”)
or vegetation layers (e.g., “shrub layer”) are mainly referred to as ’concepts’. In this work,
we use the words ’entity’ and ’concept’ synonymously. In contrast to the classical bag-
of-words representation of text such as in the Vector Space Model [Salton et al., 1975]
or BM25 [Sparck Jones et al., 2000] (Chapter 2.2.2), entity-based retrieval models utilize
entities extracted from keywords as representations of text. Words are linked to entit-
ies by entity linking approaches [Guo et al., 2009, Meij et al., 2011, Hasibi et al., 2015,
Blanco et al., 2015, Carmel et al., 2014]. These linkages are utilized to incorporate addi-
tional related information from knowledge bases to documents and queries. That allows
for a richer textual representation of query terms by including synonyms, or in case of
disambiguation explicit knowledge can be used to select the correct sense. In the follow-
ing, we present related work in the field of entity-based retrieval models for document
retrieval. At first, we focus on non-domain specific entity-based retrieval approaches
(Subsection 7.1.1), followed by entity-based retrieval approaches in the Life Sciences
(Subsection 7.1.2). Afterwards, we introduce available test collections in the Life Sci-
ences in Subsection 7.1.3.

7.1.1 Entity-Based Retrieval and Ranking

Driven by the emergence of knowledge graphs such as DBpedia1 and Wikidata2, research
on entity-based retrieval has increased. One of the earliest approaches was proposed by
Goosen et al. [Goossen et al., 2011] employing the Vector Space Model on ontological
concepts (CF-IDF) in a news personalization system. The term ’bag-of-entity’ represent-
ation was introduced by Xiong et al. [Xiong et al., 2016] aiming at a simple entity-based
model. They suggested two ranking scores: Coordinate Match (COOR) (documents were
ranked by the number of query entities contained in a document) and Entity Frequency
(EF) computing a document score based on the frequency of query entities occuring in
the document.

These models showed promising results but did not consider any additional knowledge
about the represented entity in the query. A first entity-based retrieval approach exploiting
further semantic relations was the model presented by [Waitelonis et al., 2015]. Inspired

1DBpedia, https://www.dbpedia.org/
2Wikidata, https://www.wikidata.org

https://www.dbpedia.org/
https://www.wikidata.org
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by the General Vector Space Model (GVSM) multiplying document and query vectors
with measures of semantic relateness [Tsatsaronis and Panagiotopoulou, 2009], Waitel-
onis extended the GVSM and replaced terms with entities. Document and query vectors
were expanded with semantic relations. For each entity, the set of its classes from the
YAGO3 knowledge base was incorporated into the vectors (e.g., entity:
dbp:Neil_Armstrong, classes: yago:Astronaut, yago:Person). The model distinguished
between exact matches and related matches and gave more credit to exact matches. To de-
termine if two entities are an exact or a related match, the semantic similarity between en-
tities was computed with Resnik’s relatedness measure [Resnik, 1999]. This result served
as weight to express the relevance of a class to its entity. [Nishioka and Scherp, 2016] also
suggested a similar approach assuming that knowledge bases have hierarchical structures.
Therefore, they proposed HCF-IDF, a hierarchical ranking utilizing the information on
which hierarchy level a concept and its neighbouring concepts were located in an onto-
logy or taxonomy. This idea avoided providing too high weights to generic concepts and
was developed for short text messages in social media.

A novel approach using entity embeddings to determine features for ranking was pro-
posed by [Xiong et al., 2017c]. In order to improve the ranking of scientific publica-
tions on the popular platform Semantic Scholar4, they constructed a knowledge graph
from publications indexed in Semantic Scholar and Freebase5 containing entities, de-
scriptions, context and relations to authors and venues. Entity embeddings were trained
from the graph structure and were used to determine the semantic relatedness between
query and document entities. By means of two pooling steps the entity matches were
used as ranking features. Finally, a learning to rank model was applied to compute the
final document score. A variety of subsequent approaches exploited this idea to improve
the model to combine entity linking and entity-based ranking [Xiong et al., 2017b], to in-
corporate words and entities [Xiong et al., 2017a] and to study the importance of entities
[Li et al., 2019].

7.1.2 Entity-Based Retrieval and Ranking in the Life Sciences

The Life Sciences can build on a very active research community providing and curating
domain knowledge in ontologies and controlled vocabularies. In May 2020, one third of
the 1,301 datasets in the LOD cloud came from the Life Sciences [McCrae et al., 2020],
in particular the biomedical domain. Hence, a couple of retrieval approaches have been
developed for scientific articles, clinical trials and health forum posts exploiting this ad-
ditional knowledge.

3YAGO, https://yago-knowledge.org/
4Semantic Scholar, https://www.semanticscholar.org/
5Freebase was a large knowledge graph, but its development was stopped in 2016. It is partially integ-

rated into Wikidata.

https://yago-knowledge.org/
https://www.semanticscholar.org/
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Most approaches were based on query expansion [Dietze and Schroeder, 2009],
[Stoyanovich et al., 2011, Sy et al., 2012, Berlanga et al., 2015, Löffler et al., 2017],
[Faessler and Hahn, 2017, Ernst et al., 2019] linking query keywords to ontological con-
cepts and considering synonyms [Dietze and Schroeder, 2009, Löffler et al., 2017],
[Faessler and Hahn, 2017] or further hierarchically related concepts such as hyponyms
(sub-classes, narrower concepts, descendants) and hypernyms (super classes, broader
concepts or ancestors) [Stoyanovich et al., 2011, Sy et al., 2012, Berlanga et al., 2015].
Other approaches also considered the entity type in the document vector [Ernst et al., 2016,
Ernst et al., 2019, Terolli et al., 2020] to improve the retrieval of scientific publications,
clinical trials and health forum posts. In the query and documents vector they used
TF-IDF weights of the query keywords, entities and related categories (entity types).
[Terolli et al., 2020] gave evidence that entity expansion outperforms classical keyword
search. Focused entity expansion based on a greedy method further improved the retrieval
of clinical trials and health forum posts.

As query expansion increases recall [Manning et al., 2008] but potentially lowers pre-
cision, the consideration of hierarchy relations requires additional approaches to improve
the precision. One option is to compute the semantic similarity between query and doc-
ument concepts [Stoyanovich et al., 2011, Sy et al., 2012] and to consider not only ex-
act matches but also all descendants. [Berlanga et al., 2015] proposed a language model
based on the knowledge resource that aims at the identification of concepts that are related
to the target corpus, and [Ernst et al., 2016] used boost factors to give more credit to the
original keywords. Entities and categories obtained smaller boost factors.

All entity-based approaches in the Life Sciences are focused on the retrieval of sci-
entific articles, clinical trials or health forum posts. In contrast, dataset search aims to
retrieve scientific data based on metadata. Metadata descriptions vary greatly in their
scope. In common data archives such as Dryad6, EBI/ENA7 or Zenodo8 metadata de-
scriptions can be very rich or sparse. Entity-based expansion and retrieval might alleviate
the current problems in dataset search such as different spellings and the usage of differ-
ent terms in data descriptions. However, studies are missing that explore entity expansion
approaches for dataset retrieval in the Life Sciences and that compare different semantic
ranking approaches.

7.1.3 Test Collections in the Life Sciences

As very few approaches are available providing semantically annotated questions or data
with entities in the Life Sciences, we introduce all publicly available test collections in
the Life Sciences based on scientific articles and datasets.

6Dryad, https://datadryad.org
7EBI/ENA, https://www.ebi.ac.uk/
8Zenodo, https://zenodo.org/

https://datadryad.org
https://www.ebi.ac.uk/
https://zenodo.org/


148 Chapter 7. Semantic Dataset Retrieval

The Genomics Track Challenge [Hersh and Voorhees, 2009] was based on PubMed
articles and natural language questions. The questions were marked with entity types be-
ing relevant for the biomedical domain such as [PROTEINS], [GENES] or [DISEASES]
(e.g., “What [GENES] are involved in the melanogenesis of human lung cancers?”). The
provided binary human assessments denoted the relevance of a document to a question.
The annual BioASQ Challenge [Tsatsaronis et al., 2015] has a focus on Question Answer-
ing [Unger et al., 2014] and consists of three competition tasks. The first one comprises
the extraction of entities. In the second task, the participants have to convert natural lan-
guage questions into semantic formats such as RDF triples 9. Finally, in the last task, the
aim is to find the exact answer to a natural language query. The document corpus consists
of PubMed articles, and the topical focus in the questions is on biomedical entity types
such as diseases, genes, proteins, species and drugs.

To the best of our knowledge, the only available test collection for dataset search is the
bioCADDIE Test Collection [Cohen et al., 2017b]. The data corpus comprises 794,000
biomedical metadata files from various data repositories. The provided 137 questions
with information needs from biomedicine were created by domain experts. The experts
got question templates with the advice to consider specific entity types, such as data type,
disease type, biological processes and organisms. The data corpus was indexed in multiple
search engines, and 15 questions were selected for the final test collection. For each
question, two runs in each search engine were performed, and the results were merged.
Annotators with biomedical expertise judged the relevance of the top ranked results and
determined whether a dataset was relevant, partially relevant or not relevant.

To the best of our knowledge, there is no test collection available for dataset search
in biodiversity research. Therefore, we developed a novel test collection for this domain
being presented in Section 7.4.

7.2 Preliminary Considerations

Search queries with tailored entity expansion resulted in more relevant scientific publica-
tions, clinical trials and health forum posts than search queries without entity expansion
[Terolli et al., 2020]. This also correlates with our study on the comparison between a
keyword search without query expansion and a semantic search in which keywords were
linked to entities. The queries were expanded with synonyms and further related terms
obtained from the hierarchy (Chapter 3.3). However, expanding only the query terms
does not represent a semantic full text search. In order to allow a search over entities and
full text, entities and their respective types need to be added to the index. Concept-based
retrieval techniques introduced in Subsection 7.1.1 enable such a search on entities and
full text. Entities with URIs also allow the incorporation of further semantic relations,

9RDF Primer, https://www.w3.org/TR/rdf11-primer/

https://www.w3.org/TR/rdf11-primer/
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Figure 7.1: Overall flow of the retrieval study.

such as subClassOf (hierarchy relations) or partOf (core relations). The BFO ontology
[Smith et al., 2005] and the Relation Ontology (RO)10 are upper ontologies providing a
basic set of semantic core concepts and relations. These core relations are utilized in
multiple Life Science related ontologies, e.g., in the ontologies of the OBO Foundry initi-
ative11, a framework of terminologies being interlinked among each other and containing
only strictly-tailored content. Hence, our main idea for the retrieval component is to com-
bine these different considerations in one component. We aim to:

1. Explore different entity expansion strategies with various hierarchy and core se-
mantic relations on datasets for biodiversity research.

2. Explore different entity-based retrieval models for dataset search in biodiversity
research.

We introduce them in detail in Section 7.5 and Section 7.6. Both research questions
address H4 and Requirements R1, a dataset search beyond keywords, and R2, a search
in domain specific categories (Chapter 5.3). Following Requirement R5 (user-centered
design), we conducted a user study and collected user preferences for entity expansion and
the ranking of datasets in the search result. Due to the lack of existing test collections for
dataset search, we also created a novel metadata test collection for biodiversity research
in cooperation with a domain expert in biodiversity research.

Figure 7.1 presents the overall flow of the following study. At first, we collected pref-
erences on expansions and rankings of datasets among scholars (Section 7.3). Next, we
generated a novel metadata test collection for biodiversity research (Section 7.4). Based
on these insights, we studied various expansion strategies (Section 7.5) and entity-based
retrieval models (Section 7.6) being suitable for dataset search in the Life Sciences. Our
implementation is based on the GATE framework [Cunningham et al., 2013], and the
evaluation was carried out on our novel dataset test collection and on the bioCADDIE

10RO, https://oborel.github.io/
11OBO Foundry, http://www.obofoundry.org/

https://oborel.github.io/
http://www.obofoundry.org/
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test collection (Section 7.7). The results of this summative evaluation and the discussion
are described in Section 7.8.

7.3 User Study for Requirement Analysis

In order to better understand user preferences for entity-based retrieval in dataset search,
we conducted a user survey among biodiversity experts from November 2018 to March
2019.

7.3.1 Methodology

Presenting scenarios to a target group is a common technique to capture functional user re-
quirements [Sommerville, 2021]. Usually, it is difficult for users to specify requirements.
Confronting them with concrete examples from their daily working life is therefore easier
to identify obstacles and improvements. As biodiversity research is very heterogenous
research field and scholars’ backgrounds and expertise vary greatly (Chapter 4.2), we de-
cided to provide search scenarios on a higher, general level and to tell participants to think
about concrete examples from their own research perspective. However, to enhance ima-
gination and to illustrate theses general search scenarios, we listed some concrete search
cases as examples.

In an online survey, 26 biodiversity experts from collections, museums and further
biodiversity research related scientific projects (in the scope of the GFBio 12 project) as-
sessed four general search scenarios with five questions each. Three questions focused
on possible expansion strategies, ranking preferences and further topical recommenda-
tions in search and provided pre-defined answers users had to select. Two questions were
open questions and allowed the participants to give qualitative feedback. All questions
were optional and participants could skip questions they did not want to answer. For
some questions, it was also permitted to provide multiple answers. The five questions
were provided as follows: The four scenarios comprised searches for organisms, envir-
onmental terms, data parameters and materials. These categories are the most frequently
mentioned topics in the analyzed search questions (Chapter 4.2).

1. What primary data and metadata do you need in the result set when searching for
organisms (environmental terms | data parameters | materials)? Possible answers:

[exact matches, synonyms, more specific terms, broader terms]

2. What further information should be integrated in the search result? [open question]

12GFBio, https://www.gfbio.org

https://www.gfbio.org
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Figure 7.2: User preferences with respect to entity expansion (left) and ranking (right) in search
results.

3. What primary data and metadata do you want to be ranked on top when search-
ing for organisms (environmental terms | data parameters | materials)? Possible

answers: [exact matches, synonyms, more specific terms, broader terms]

4. Would you be interested in recommendations with related information when search-
ing for organisms (environmental terms | data parameters | materials)? Possible

answers: [environmental information | species | data parameters | processes | ma-

terials]

5. What further information should be recommended when searching for organism
(environmental terms | data parameters | materials)? [open question]

7.3.2 Results

Figure 7.2 (left) presents users’ assessments on entity expansion preferences. The parti-
cipants have the assumption that all types of hierarchical entity expansions are relevant
for dataset search in biodiversity research. However, there are slight different preferences
for the four given categories. When searching for datasets with organisms, users would
prefer to see results containing synonyms (17 votes) and exact matches (15 votes) over
datasets with more specific concepts (12 votes) or broader concepts (10 votes). In con-
trast, in a search for environmental terms, biodiversity experts would like to see exact
matches (22 votes) and narrower concepts (18 votes) on top than datasets containing syn-
onyms (13 votes) or broader concepts (9 votes). For dataset search scenarios with a focus
on data parameters, users would prefer to obtain datasets with exact matches (18 votes)
and synonyms (17 votes) than datasets with narrower concept (11 votes) or broader con-
cepts (7). For a search for materials, the values differ only slightly between 18 votes for
exact matches and 13 votes for datasets containing broader concepts. It stands out that for
materials an expansion with broader concepts obviously matters more than for other scen-
arios. In the scenario on materials, we provided the following concrete examples: What
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Figure 7.3: Results of user preferences with respect to recommendations on further related con-
textual information.

primary data and metadata do you need in the result set when searching for material sub-

stances (chemical compounds)? (a) exact search terms, e.g., ‘neonicotinoid insecticide’,

(b) synonyms such as chemical formulas, different descriptions, (c) more specific res-

ults, e.g., ‘acetamiprid’, ‘clothianidin’, (d) broader terms such as ‘neurotoxin’. Scholars
answered that they would like to see results containing concepts from a higher hierarchy
level such as ‘neurotoxin’ and not only datasets containing synonyms or narrower con-
cepts.

Figure 7.2 (right) shows a decreasing linear progression. Ranking preferences for all
categories got the highest values for exact matches, followed by synonyms and descendant
concepts. Expansions with broader concepts should be listed at the end of search results.
The only exception are environmental terms. Only 15 experts took part in the voting for
this category. We assume that participants from the GFBio project dropped here as they
are more familiar with collection data. However, these 15 participants all agreed that
expansions with descendants should be higher ranked than synonyms.

Per search scenario, we also asked the scholars whether they would like to receive
recommendations on further related contextual information with respect to the search
terms (Figure 7.3). For instance, when looking for datasets with species, we wanted to
know whether it would be helpful for scientists to see supplement information on the
environment in which species live or relations to other species. It turned out that all
provided recommendation options are relevant for biodiversity research. However, the
frequency values for all given recommendation options are very close to each other.
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Search Scenario Additional search preferences Recommendations

Organism “Common terms and family name”, “additional
information on the species is welcome.”,“First
descriptor is important information to validate spe-
cies names.”, “distribution”,“geographical locations,
ecosystems”,“Essential: selector on data quality (spa-
tial accuracy; presence vs. presence/absence in-
ventory; time interval; ...)”, “What sort of data
(e.g. abundance, presence, collected specimen, etc.)?
Where/Who/When collected.”, “Conservation pat-
terns if any and ecological specificities”

“Source (Observation, literature, ...)”, “When applic-
able, short notice on ecosystem function of e.g. lar-
vae abundance”, “distributional ranges (e.g., with
map), closest relatives, information of possible hy-
bridisation/ different ploidy levels within the spe-
cies, refugium during ice ages, elevational range, El-
lenberg Indicator values for plants.”, “distribution of
species”,“Resource preferences, habitat preferences,
etc.”, “population dynamics and trends, invasive alien
species...”, “When proposing environmental paramet-
ers (e.g. bioclimatic conditions) some background
should be available on whether the information comes
from actual field observations, or instead from labor-
atory measurements, or other sources”

Environment “phytosociological information needed. elevational
range and exact location (e.g., North America or
South Africa) would refine the term grassland.”,“key
species”, “If part of a classification (e.g. if it is a
class of a given land-cover layer), background on the
classification scheme (minimum: list of classes, and
bibliographic reference) should be available”, “loca-
tion (country or continent)” , “specific values (incl.
ranges) for specific parameters. I.e. for terrestrial
habitats: habitat types, vegetation, soil parameters,
climate etc.”

“phytosociological information needed. elevational
range and exact location (e.g., North America or
South Africa) would refine the term grassland.”, “el-
evation, climate parameters”, “Maybe how these hab-
itats are linked to/classified in global data layers
of habitat cover/land use”, “land cover/use, climate
date”, “role in N (nitrogen), P (phosphorus), K (po-
tassium) or carbon cycle”, “Mean annual precipita-
tion, mean annual temperature”,“(range) values for
specific parameters”

Data parameters “units of the measurments and the range of meas-
urements recorded previously. definitions of the
terms (sometimes not clear what is reported exactly)”,
“Parameters from individual or community sampling?
For example, root biomass might be from 1 plant, or
from a soil core taken in a habitat.”

“as mentioned the range of the measurements. Time
of the day/ phenological stage when the measurement
has been recorded”,“used method - how the para-
meter was measured”, “soil parameters”, “Are there
repeated measures over a given time, or one-time
measure only?”

Materials “for medicial use is needed or effects of the com-
pounts as well as derivates”, “Maybe concentrations
or measurement of the amount?”, “scientific (peer
reviewed) results, or authoritative opinions clearly
flagged”

“just the effects on other organisms, possible uses,
other products related to that compound.”, “suspi-
cions for which no scientific evidence is yet avail-
able.”, “See previous answer on environmental condi-
tions (do they come from field observations? Labor-
atory analysis? Other? This piece of informa-
tion should be available, with supporting literature)”,
“Reason product is used in a given environment.”

Table 7.1: Selected user suggestions for topical extensions in dataset search
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We also collected qualitative feedback in comment fields. User had the opportunity to
provide feedback on topical extensions in search. Table 7.1 presents selected user com-
ments sorted into additional search preferences (semantic extensions users would like to
see in a search result but that are not listed in the previous answer options) and recom-
mendations (information that would be helpful for data exploration and that could be ex-
panded on demand). For organisms, user prefer to get more information on species, such
as “common terms”, “family name” or the “first descriptor”. Depending on the scientific
background and research questions, criteria also play an important role, e.g., “selector on
data quality”, geographic location and distribution. As further relevant and related con-
tent users listed “distribution”, threats and nutrition of organisms. For the second search
scenario - environments, the suggestions for the search preferences vary greatly and range
from “location” and “elevation” to “habitat type”, “vegetation” and “soil parameter”. Re-
commendations could be information on “land cover/use”, climate parameters and “the
role of N (nitrogen), P (phosphorus), K (potassium) and carbon cycle”. In the scenario
about data parameters, the participants would like to see information on the “units of
measurements and the range of measurements recorded” and whether the measured data
come from individuals or communities. As additional topic they would like to get in-
formation about the frequency of measurement (one-time or repeated measures). For the
search scenario about materials, users emphasized the need for synonyms as “many chem-
icals have common names or manufactured brand names”. The survey results are publicly
available [Löffler et al., 2022a].

Overall, all proposed entity expansion and ranking preferences seem to be relevant for
scholars in biodiversity research. The relevance of the different entity expansion strategies
vary slightly between the individual categories. For the ranking preferences, the result is
a bit clearer. The stronger preference is given to exact matches followed by synonoyms.
However, the frequency values for narrower and broader concepts are also not too far
away and therefore can not be neglected. Hence, we conclude, that a more detailed and
summative evaluation is necessary to confirm or to correct users’ assessments.

7.4 BEF-China Test Collection

We utilized all publicly available metadata files of the BEF-China (Section 2.4) project as
data corpus of the test collection. The BEF-China project aims to explore Biodiversity-
Ecosystem Functions (BEF) in a species-rich forest in the subtropics [Bruelheide et al., 2011,
Bruelheide et al., 2014]. The collected primary data are described by 372 metadata files
in EML metadata schema13. An excerpt of a BEF-China metadata file can be found in the
publication [Löffler et al., 2021].

13EML, https://eml.ecoinformatics.org/

https://eml.ecoinformatics.org/
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Question
number

Question # datasets being relevant to
this question

Q1 Name 3 species that occur in the shrub layer. 16
Q2 Find 3 plant species where root lengths (depth) have been

considered
1

Q3 Find 3 datasets from oaks where nitrogen content have
been measured.

18

Q4 Find 3 datasets where dry weights from conifers have
been measured.

5

Q5 Which nutrients occur in soil? 20
Q6 Identify all parameters that are correlated to soil depth. 24
Q7 Which taxa associated with tree species have been found,

for example, insects on host trees?
46

Q8 Which soil samples in BEF-China data show a low pH
value?

6

Q9 Does tree diversity reduce competition? 40
Q10 Do the soil carbon concentrations increase with soil

depth?
6

Q11 Are there data about the leaf area index (LAI) and, in
particular, in combination with diversity?

8

Q12 How has tree height been measured in BEF-China exper-
iments?

25

Q13 How does the nitrogen cycle interact with water? 20
Q14 How significant is the role of throughfall as water input

to the forest floor?
4

Table 7.2: BEF-China question corpus [Löffler et al., 2021]

In the novel test collection, we aimed to ensure two requirements: First, we wanted to
use search questions reflecting real world information needs from biodiversity research,
and second, the data corpus need to contain datasets being relevant to the selected ques-
tions. Based on these considerations, we selected six questions from the question corpus
introduced in Chapter 4. As six questions are too few questions, we created question tem-
plates of the question corpus (e.g., <PROCESS> influences <ENVIRONMENT>) and
generated eight more questions focusing on ecosystem functioning. Table 7.2 lists the
final questions and datasets being relevant to the question.

Besides the questions and a data corpus, human assessments are necessary in a test
collection to determine what dataset is relevant or not relevant to a question. We asked the
data manager of the BEF-China project to provide these assessments. He went through
all datasets and 14 questions, which resulted in 5208 binary relevance judgments (14
questions x 372 datasets). 239 of these 5208 relevance judgments were marked as relevant
or partially relevant. We provide the relevance judgments in the TREC benchmark data
format <Question number> <Iteration> <Dataset#> <Relevance judgment>14.

14BEF-China test collection, https://github.com/fusion-jena/befchina-test-collection

https://github.com/fusion-jena/befchina-test-collection
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Ontology Object property Number

ENVO [Buttigieg et al., 2016] partiallySurroundedBy (ENVO:01001307) 35
surroundedBy (RO:0002219) 23

PATO [Gkoutos, G. et al., 2022] pato#increased_in_magnitude_relative_to 108
pato#decreased_in_magnitude_relative_to 107

CHEBI [Hastings et al., 2016] hasRole (RO:0000087) 34119
chebi#has_functional_parent 13419

UBERON [Mungall et al., 2012] partOf (BFO:0000050) 15313
developsFrom (RO:0002202) 2180

GO [Ashburner et al., 2000, GO, 2021] partOf (BFO:0000050) 10893
regulates (RO:0002211) 7048

Table 7.3: The two most frequent occuring object properties of selected knowledge resources in
the Life Sciences.

An example entry looks as follows:

1 0 161 1

Datasets being not mentioned for a question are considered to be not relevant and
therefore are not listed in the relevance file.

7.5 Entity Expansion Strategies

Knowledge resources are terminologies describing the knowledge of a specific domain.
Most of them are organized in tree-based (hierarchical) structures and consist of is-a or
subClassOf relations. In addition, some of these terminologies provide further semantic
relations between entities (object properties). We analyzed nine ontologies with respect to
the available object properties and their frequencies. An excerpt of the two most frequent
object properties in selected ontologies in the Life Sciences is provided in Table 7.3. The
full object property metrics of these ontologies are in our GitHub repository15. So far it
has not been studied whether the usage of these relations or the usage of the hierachical
structure of the ontology leads to more relevant results in entity expansion.

Basic semantic relations between entities are defined in the Basic Formal Ontology
(BFO) [Smith et al., 2005], an upper-level ontology that describes core entities and their
relations. It is a non domain-specific ontology and only provides basic constructs to de-
velop domain-specific ontologies. The Relation Ontology (RO)16 is based on BFO 2.0
[Smith et al., 2015] and provides in its core set17 foundational relations that can be used
to define domain and range axioms in domain-specific ontologies. Examples for such ba-
sic relations are for instance hepatic cell (BTO:0000575) that isPartOf (BFO:0000050)
liver (BTO:0000759) or calcium atom (CHEBI:22984) hasRole (RO:0000087) macronu-

15Ontology property metrics, https://github.com/fusion-jena/entity-retrieval-evaluation/tree/main/
Expansion/ontology_relation_metrics

16RO, https://oborel.github.io/
17RO core, https://github.com/oborel/obo-relations/wiki/ROCore

https://github.com/fusion-jena/entity-retrieval-evaluation/tree/main/Expansion/ontology_relation_metrics
https://github.com/fusion-jena/entity-retrieval-evaluation/tree/main/Expansion/ontology_relation_metrics
https://oborel.github.io/
https://github.com/oborel/obo-relations/wiki/ROCore
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Figure 7.4: Excerpt of the Environment Ontology (ENVO) for the concept ’soil’ with its hierarch-
ical and core relations.

trient (CHEBI:33937). As search is usually an ad-hoc task consisting of less keywords,
entity expansion on this additional implicit knowledge, which users might possess but
do not enter explicitally, could lead to more relevant results. Hence, as first expansion
strategy we utilize all object properties defined in the core set of the Relation Ontology
including object properties such as isPartOf (BFO:0000050), hasRole (RO:0000087)
and locatedIn (RO:0001025). In addition to the BFO core relations we also want to
explore hierarchical expansions, because ontologies in the Life Sciences mainly consist
of hierarchy relations. They are determined with the object property rdfs:subClassOf.
As informations needs in biodiversity research can contain terms of a broader scope such
as ‘vegetation’ or ‘bacteria’, expansions on descendant concepts and siblings and their
descendants might return more relevant datasets in the result set. An example for all
expansion strategies utilized in the following evaluation is provided in Figure 7.4. The
baseline is the original query keyword linked to a corresponding URI in an ontology.
An entity expansion contains the original concept URI + the entities resulting from the
respective semantic relation.

7.6 Evaluated Entity-based Retrieval Models

We aimed to make use of the large amount of domain knowledge in the Life Sciences.
Therefore, we selected entity-based retrieval approaches from related work (Section 7.1)
that enable a flexible usage of different semantic relations of a concept in the retrieval
process and that differ between exact matches (exact URI in query and metadata) and
related matches (URIs in query and metadata are related, e.g., a child concept or a parent
concept). We only considered entities. We omitted the original keywords, and we did
not use entity type information, because [Terolli et al., 2020] have shown that entity type
information did not result in an improved retrieval.
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CF-IDF The adapted concept-based TF-IDF weighting scheme, CF-IDF, was intro-
duced by [Goossen et al., 2011] for the recommendation of news items. In CF-IDF, en-
tities or concepts of knowledge bases are linked to keywords. The frequency of each
concept within a document and across the entire corpus determines a weight of interest
in this document. This approach permits to include synonyms instead of using the plain
keyword in the weighting scheme. We used this idea for metadata files as presented in
Equation 7.1. The weight of a concept c in a metadata file m is composed of the concept

frequency c fc,m (Equation 7.2) and the inverse metadata frequency id fc (Equation 7.3).
The inverse metadata frequency denotes how often a concept c appears in all metadata
files |M| in the corpus.

wc f−id f (c,m) = c fc,m ∗ id fc (7.1)

c fc,m =
nc,m

lm
(7.2)

id fc = log
|M|

|m : c ∈ m|
, (7.3)

There are a number of variants for the computation of the concept frequency

[Manning et al., 2008]. We computed the concept frequency as presented in Equation
7.2 where nc,m denotes the number of occurrences of a concept c in metadata file m and
lm denotes the character length of metadata file m. This adaption mitigates the problem of
higher concept frequency values in longer documents [Manning et al., 2008].

HCF-IDF The hierarchy-based retrieval model HCF-IDF [Nishioka and Scherp, 2016]
was developed for recommending social media items such as short text messages based on
user interests. Metadata are usually also short text passages, and Life Science vocabular-
ies are mainly hierarchy based. Hence, HCF-IDF is worth considering for dataset search.
Each weight whc f−id f (c,m) for a concept c in a metadata file m is computed by a BellLog
function BL(c,m) [Kapanipathi et al., 2014] and the classical IDF part that denotes how
often the concept appears over all metadata (Equation 7.4). The BellLog function (Equa-
tion 7.5) is a recursive computation that weights the frequency c fc,m of a concept c based
on its hierarchy level l in the knowledge base where FL(c) = 1

log10(nodes(h(c)+1)) . Nodes

returns the number of concepts that occur on the same level as the given concept, h(c)

denotes the hierarchy level of a given concept c in a knowledge base and Cl(c) is the set
of child concepts of concept c at hierarchy level l.
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whc f−id f (c,m) = BL(c,m)∗ log
|M|

|m : c ∈ m|
(7.4)

BL(c,m) = c fc,m +FL(c)∗ ∑
c j∈Cl(c)

BL(c j,m) (7.5)

Linked data enabled General Vector Space Model [Waitelonis et al., 2015] intro-
duced a model that takes taxonomic relations into account. It used DBpedia as knowledge
graph in which entities are instances of classes (rdf:type property) and sub-classes and
super classes are identified with rdfs:subClassOf property. As sub-class relations dom-
inate Life Science vocabularies, we also selected this retrieval model for our analysis of
metadata files. The weight for a given term vector −→t or a weight wtax(e,m) in a metadata
file m is computed by the entity vector −→e of the linked entity and the set of its related
classes (concepts) c(e) (Equation 7.6). The weight wtax(c,e) determines the influence of
a related concept c on entity e. It represents a semantic relatedness measure and is com-
puted by Resnik’s information content IC [Resnik, 1999]. αe and αc are factors (αe,αc ∈
[0,1]:) that determine how strongly exact matches of the query are preferred over matches
of related entities (Equation 7.7).

wtax(e,m) = αee+αc
v
|v|

,v = ∑wtax(c,e) · c (7.6)

αe =
α√

α2 +(1−α)2
,αc =

1−α√
α2 +(1−α)2

(7.7)

The final scoring of retrieved datasets for a query q followed the overlap score meas-

ure [Manning et al., 2008] and was determined by the sum over all entity weights wtax(e,m)

in a metadata file m (Equation 7.8).

scoreq,m = ∑
e∈q

wtax(e,m)) (7.8)

7.7 Evaluation Setup

We aim to explore entity-based dataset retrieval along two dimensions: (1) entity expan-
sion on core and hierarchical relations and (2) different entity-based retrieval models. The
overall evaluation architecture is depicted in Figure 7.5. For our experiments we utilized
two metadata corpora from the Life Sciences. In a pre-processing phase, important biolo-
gical terms in the metadata files were linked with concepts from Life Science ontologies
with NLP pipelines. Afterwards, all annotated metadata files were added to a semantic
index. In a second phase, prepared and manually annotated search tasks were sent to
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Figure 7.5: The overall architecture of the retrieval component.

Test Collection Question

BEF-China
Name 3 species that occur in woodland area.

Are soil samples in BEF China data acidic?

bioCADDIE

Find protein sequencing data related to
bacterial chemotaxis across all databases.

Find all data types related to inflammation
during oxidative stress in human hepatic cells.

Table 7.4: Example search tasks from the test collections.

the semantic index. The retrieval process included SPARQL queries in the backend to
expand the query on further related entities. We explored different entity-based models.
Finally, the retrieved result list was evaluated with the gold standards provided in the test
collections. In the following, we describe all steps in detail.

Metadata test collections: Test collections in information retrieval providing metadata
as data source are rare. We utilized the two metadata test collections in the Life Sciences
that are publicly available. As first benchmark, we used the BEF-China test collection
with 372 metadata files and 14 questions we developed for dataset search in biodiversity
research [Löffler et al., 2021]. The BEF-china test collection only provides binary relev-
ance judgments. The metadata files being relevant for a query also include partial results.
As second test collection, we selected the bioCADDIE dataset [Cohen et al., 2017b], a
test collection with 15 questions and 794992 metadata files from the biomedical domain.
The relevance judgments in the bioCADDIE corpus are given as a three-point Likert-
scale: 0-non relevant, 1-partially relevant, 2-relevant. In the annotation guidelines, a
dataset is only considered as relevant if it provides all key terms and an answer on the
question (or if the mentioned search terms are related to each other). The annotators were
requested to judge a dataset as partially relevant if only partila key terms are contained in
the dataset or if the key terms are present but without any relationship. Example questions
for both test collections are presented in Table 7.4.
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Entity type Tagger Ontology

Organism OrganismTagger [Naderi et al., 2011] NCBITaxon [NCBITaxon, 2022]
Environment BiodivTagger [Löffler et al., 2020] ENVO [Buttigieg et al., 2016]

Material BiodivTagger [Löffler et al., 2020] ENVO [Buttigieg et al., 2016]
CHEBI [Hastings et al., 2016]

Quality BiodivTagger [Löffler et al., 2020]

ENVO [Buttigieg et al., 2016]
PATO [Gkoutos, G. et al., 2022]
FLOPO [Hoehndorf et al., 2016]

PPO [Walls, R. et al., 2022]
TO [Cooper et al., 2017]

Process BiodivTagger [Löffler et al., 2020]

ENVO [Buttigieg et al., 2016]
UBERON [Mungall et al., 2012]

REX [OBOFoundry, 2022]
PO [Cooper et al., 2013]

GO [Ashburner et al., 2000, GO, 2021]
OBI [Bandrowski et al., 2016b]

INO [Özgür et al., 2016]

Table 7.5: Entity linking for the BEF-China corpus: In the taggers (middle column), we utilized
the ontologies listed in the right column to ensure a good domain coverage for each entity type.

Entity linking in metadata: All noun entities in the metadata files of both corpora
were linked with entities. We used the GATE framework [Cunningham et al., 2013] and
various existing NLP pipelines and ontologies from the OBO Foundry18 collection to
extract entities and their URIs.

For the BEF-China corpus we extracted five entity types with the OrganismTagger
[Naderi et al., 2011] and the BiodivTagger [Löffler et al., 2020]: Organism, Environment,
Materials (including chemicals), Process (biological, chemical and physical processes)
and Quality (data parameters and phenotypes). Table 7.5 provides an overview of the
selected taggers and ontologies.

The bioCADDIE metadata files were annotated with taggers available in the GATE
framework and the OrganismTagger [Naderi et al., 2011] to extract entity types such as
organisms, genes and proteins (Table 7.6). For entity linking, we added additional steps
in the NLP pipeline to connect the identified terms and phrases with URIs in ontologies.
In case a phrase could not be linked to an URI, at least the annotation was created with
a default URI as we did not want to loose the entity type information. For the extraction
of materials (e.g., chemical compounds), anatomical entities and diseases, we utilized
an extended version of the BiodivTagger[Löffler et al., 2020] with additional ontologies.
Entity linking in these taggers is mainly based on look-up services with a SPARQL query
considering not only exact matches in the rdfs:label attribute but also synonyms.

In addition to the exact URIs, we also added URIs of super classes linked via a sub-
class relationship with the entity class in the knowledge base. Therefore, a keyword fi-
nally possessed two types of annotations: (a) inst annotations that denote the URI of con-
cepts exactly matching the semantics of a keyword (including synonyms) and (b) broader

18OBO Foundry, http://www.obofoundry.org/

http://www.obofoundry.org/
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Entity type Tagger/ Methodology Ontology

Organism OrganismTagger [Naderi et al., 2011] NCBITaxon [NCBITaxon, 2022]

Genes & Proteins
AbnerTagger [Cunningham et al., 2013] NCIT [NCIT, 2022]

PennBioTagger [Cunningham et al., 2013] GO [Ashburner et al., 2000, GO, 2021]
OGG [He et al., 2014]

Material BiodivTagger [Löffler et al., 2020]
ENVO [Buttigieg et al., 2016]
CHEBI [Hastings et al., 2016]

NCIT [NCIT, 2022]

Process BiodivTagger [Löffler et al., 2020]

ENVO [Buttigieg et al., 2016]
UBERON [Mungall et al., 2012]

REX [OBOFoundry, 2022]
PO [Cooper et al., 2013]

GO [Ashburner et al., 2000, GO, 2021]
OBI [Bandrowski et al., 2016b]

INO [Özgür et al., 2016]
MOP [Batchelor, C. et al., 2022]

NCIT [NCIT, 2022]

Anatomy Dictionary LookUp

UBERON [Mungall et al., 2012]
BTO [Gremse et al., 2011]

CL [Diehl et al., 2016]
NCIT [NCIT, 2022]

Disease Dictionary LookUp

DOID [Kibbe et al., 2015]
SYMP [Schriml et al., 2021]

HP [Köhler et al., 2019]
NCIT [NCIT, 2022]

Table 7.6: Entity linking for the bioCADDIE corpus

annotations providing linkage to related concepts located higher in the hierarchy of the
knowledge base (Figure 7.6). Later in search, these two types of annotations allowed a
flexible and fast semantic querying of either exact entity URIs or querying for descendant
concepts containing broader annotations. The source code for both pipelines is available
in our GitHub repository19.

Semantic indexing: All annotated metadata files were indexed with GATE Mímir20

[Cunningham et al., 2013], a search engine that enables the indexing of semantic annota-
tions and allows the integration of SPARQL statements into the search query. In case of
semantic annotations, GATE Mímir creates an annotation index per entity type and in-
dexes the defined features (in this case the URIs) of each annotation. Plain keywords are
indexed in token indexes. Based on the query and the existence of semantic annotations
in the query, GATE Mímir performs a search on either the token or the semantic index or
on both.

19Entity Retrieval, https://github.com/fusion-jena/entity-retrieval-evaluation
20The bioCADDIE corpus contains some large files ( > 1MB) for which the annotation process resulted

in a timeout. It was also not possible to split these files into smaller portions. Therefore, we decided to omit
these nine files. The indexed bioCADDIE corpus consists of 794983 metadata files.

https://github.com/fusion-jena/entity-retrieval-evaluation
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Figure 7.6: GATE screenshot with inst and broader annotations for a dataset of the BEF-China
corpus [Germany and Erfmeier, 2019]. inst annotations denote exact URI linking of a keyword
including synonyms and broader annotations link the keyword to concepts that are located on a
higher hierarchy level in the knowledge base. Each annotation is classified into domain specific
categories, e.g., the keyword forest is an ENVIRONMENT annotation.

Entity linking of search tasks and entity expansion: The original queries from the test
corpora were manually annotated and linked to concepts that best reflect their semantics
in ontologies from OBO Foundry. These linked queries were our baseline (simple URI
search = no expansion). As a first expansion strategy we utilized all object properties
defined in the core set of the Relation Ontology with respect to a query term’s corres-
ponding concept. We also explored hierarchical concepts and expanded the query on
descendant nodes as well as on sibling concepts and their descendants. In order to sim-
ulate an adaptive system, we also determined the best expansion strategy per query and
evaluated the scorers across this adapted expansion strategy. Listing 7.1 provides an ex-
ample query with an expansion on descendant nodes being sent to the search engine.
Keywords are not contained in the queries but only entities from respective ontologies
matching the keyword. We combined the original concepts from the query with a logical
AND, but added the concepts obtained from expansion strategies with OR. Based on the
given annotation in the query, GATE Mímir either searches for matches in the inst (exact
match) or broader (related match) annotations. The same query could also be performed
with a SPARQL statement (Listing 7.2)21. As SPARQL statements at run time can take
some seconds to come back (depending on the complexity of the statement), we decided
to move this entity expansion to the pre-processing step and to add hierarchy relations as
semantic annotations to the metadata.

21In order to obtain only ancestor concepts from the selected ontology (ENVO in this case) and not from
the upper level ontology BFO a statement for the ancestor label has to be added. BFO concepts do not
possess labels.
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{Organism} AND {Environment inst = "http://purl.obolibrary.org/obo/ENVO_00000109"}
OR {Environment broader="http://purl.obolibrary.org/obo/ENVO_00000109"}}

Listing 7.1: Example of a search query expanded with descendants.

{Organism} AND {Environment sparql=
SELECT DISTINCT ?parent
FROM NAMED <http://example.org/BIODIV/ENVO>
WHERE{GRAPH ?g{

VALUES ?child{<http://purl.obolibrary.org/obo/ENVO_00000109>}
?child rdfs:subClassOf* ?parent.
?parent rdfs:label ?parentLabel}}}

Listing 7.2: Example of a search query using a SPARQL statement.

Ranking functions: In GATE Mímir, datasets are retrieved with a boolean retrieval
model (provided by the underlying MG4J framework [Boldi and Vigna, 2005]) and ranked
in a second step. GATE Mímir permits to add own scoring plugins to enable the im-
plementation of user-defined ranking strategies. Therefore, we implemented all rank-
ing functions presented in Section 7.6 via appropriate scorers. GATE Mímir includes
a TF-IDF and BM25 scorer. In case the query only contains entities (annotations with
URIs), both ranking algorithms already work concept based. Hence, BM25 uses entit-
ies with URIs instead of keywords. We added a variation of CF-IDF (called CF-IDF

exact) to consider only hits with URIs occurring in the query. This gives more credit
to matches with URIs, in case the entity linking did not work properly and could only
extract a semantic type but not a concept in an ontology. We implemented the scorers
CF-IDF exact, HCF-IDF and Taxonomic Scorer as strict URI-based scoring functions to
evaluate a full URI-based entity retrieval system. In case no URI could be linked, the
annotation is not considered in scoring. For the computation of the semantic similarity
between two concepts (needed in the taxonomic ranking of [Waitelonis et al., 2015]), we
used the SML library from Harispe [Harispe et al., 2015]. We evaluated this scoring func-
tion with the similarity measure IC: Zhou/Resnik, which performed best in the evaluation
of [Waitelonis et al., 2015]. Supplementary information are in the GitHub repository22.

7.8 Results

In the following, we present our results with respect to entity expansion (Section 7.8.1)
and the evaluation of the ranking functions (Section 7.8.2). The results are publicly avail-
able [Löffler et al., 2022b]

22Entity Retrieval, https://github.com/fusion-jena/entity-retrieval-evaluation

https://github.com/fusion-jena/entity-retrieval-evaluation
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7.8.1 Entity Expansion

The final results are presented in Table 7.7 and Table 7.8. We computed Mean Average
Precision (MAP), Precision@K, and normalized Discounted Cumulated Gain (nDCG)
[Manning et al., 2008] for all returned metadata files with the latest TREC script23. TREC
only considers binary judgments even if a more fine grained scale (e.g., ‘partially relev-
ant’ and ‘relevant’) is provided 24. All metrics were computed with the ‘-c’ parameter
which penalizes for queries with no results. While the P@k metric measures the preci-
sion at a specific cut-off rank per query (equal weight per rank), the MAP is a measure
of the precision over all queries and P@k values until a cut-off rank. MAP and nDCG
compute the precision over all retrieved documents, but nDCG gives more credit to top
ranked documents. In addition to these classical metrics we used the evaluation script
from the Precision Medicine Track25 to determine the inferred average precision (infAP)
and inferred normalized Discounted Cumulated Gain (infNDCG) [Yilmaz et al., 2008]
for the bioCADDIE corpus. The inferred measures are more robust measures for bench-
marks with incomplete relevance judgments. Since bioCADDIE’s relevance judgments
are based on depth-k pooling, the relevance judgments might be incomplete as only top
k documents retrieved by the systems were judged and the rest of the documents were
deemed non-relevant26.

BEF-China: The manually annotated 14 questions resulted in 41 entities from seven
ontologies. Concerning the expansion strategies, adding descendant entities to the query
resulted in the highest precision values in the BEF-China corpus (Table 7.7, Figure 7.7).
This holds for all tested algorithms. In comparison to the simple URI queries without any
expansion (nDCG: 0.2248 - 0.2697), the expansion with descendants resulted in nDCG
values between 0.3646 to 0.4156. The second best strategy was the expansion with sib-
ling nodes and their descendants. This strongly indicates that hierarchy expansion leads
to more relevant results. However, against our expectations, the expansion with core
concepts from the BFO ontology did not result in more relevant hits. We obtained 44
additional entities from core relation expansion (based on 11 entities in the original query
providing core relations). We think that these expansions against our assumption go too
far away from the original query term and therefore do not result in more relevant hits. A
simple ANOVA test per column (expansion strategy) and per nDCG, MAP and P@k val-
ues results in p < 0.01 for all three metrics. This give clear evidence that the differences

23TREC script, https://trec.nist.gov/trec_eval/
24TREC Data, https://trec.nist.gov/data/reljudge_eng.html
25Precision Medicine Track, https://trec.nist.gov/data/clinical/sample_eval.pl
26The computation for the inferred measures requires a 5-column ‘qrels’ file (instead of 4 columns in the

usual TREC scripts) with the relevance judgments. As this was not provided by the challenge organizers,
we added the 4th column (identification which category/stratum a document comes from) ourselves. The
adapted ‘qrels’ file is in our repository.

https://trec.nist.gov/trec_eval/
https://trec.nist.gov/data/reljudge_eng.html
https://trec.nist.gov/data/clinical/sample_eval.pl
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Figure 7.7: TREC metrics for BEF-China (top) and bioCADDIE (bottom)

for the various entity expansion strategies are statistically significant.

bioCADDIE: In total, 92 entities were manually extracted from 13 ontologies for 15
questions. In terms of the expansion strategies, adding descendant nodes to the query
resulted in more relevant results across all scoring functions (Table 7.8). This strongly
indicates that entity expansion with descendants in general has a positive effect in dataset
search in the Life Sciences. What stands out is that the expansion with sibling nodes and
all descendants also resulted in more relevant hits (higher MAP and nDCG values than
for descendants) for the BM25 scorer. However, they are not top scored (P@10 is lower
for sibling + descendants than for descendants). Here, further investigations are needed
whether this holds only for this specific domain. Despite the fact that the biomedical
domain has a large amount of available ontologies including BFO relations, the expansion
with core relations did not result in more relevant hits. We obtained 20 additional entities
from the core relation expansion (based on given 18 entities providing core relations).
Again, we think that these expansions with core relation entities go too far away from
the original search intent. An adaptive expansion (best case per question) strategy further
improves the retrieval of datasets (Table 7.8). Using an adaptive expansion strategy leads
to a further improvement of 18% for the nDCG values and 28% in terms of MAP values.
The statistical analysis with a simple ANOVA per column (expansion strategy) results in
p ≤ 0.05 (MAP). This shows that the results for the entity expansion strategies in this
corpus are statistically significant, too.

7.8.2 Ranking Functions

BEF-China: If no expansion strategy was applied, the CF-IDF resulted in the highest
nDCG values (0.2697), but the more hierarchy expanded concepts were added to the
query, the better the Taxonomic Scorer performed (nDCG 0.4156 for the expansion with
descendants and nDCG 0.4189 for the expansion with siblings and their descendants).
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The difference in the MAP and nDCG values between the BM25 and Taxonomic Scorer
is larger for the expansion with siblings and their descendants (column ’siblings and des-
cendants’, Table 7.7) than in the expansion with narrower concepts (column ’descend-
ants’, Table 7.7). However, the statistical analysis with a simple ANOVA per row (ranking
functions) results in p values > 0.05 (MAP:0.13, P@10:0.51, nDCG:0.78)

bioCADDIE: The results for the bioCADDIE test collection reveal a different picture
(Table 7.8, Figure 7.7). Here, the classical scorers provide higher MAP, P@10 and
nDCG values in contrast to the scorers considering semantic relations. In particular, the
differences between the scorers are larger in the queries expanded with siblings and their
descendant than in the other strategies. The statistical analysis with a simple ANOVA per
row for one metric results in p values > 0.05 (MAP:0.02, P@10:0.008, nDCG:0.49).

This result shows that we can not conclude that a particular scorer leads to an improved
ranking for all expansion strategies. Here more studies are required to investigate whether
more queries and search tasks are needed or whether there are other dependencies.

7.8.3 Discussion

For the bioCADDIE corpus, we compared our results with the bioCADDIE retrieval chal-
lenge [Roberts et al., 2017]. To do so, we used the results from the adapted expansion
strategy with a BM25 scorer. Our infNDCG (0.4196) is very close to the median and
mean infNDCG of the bioCADDIE challenge (best run per participant) with 0.423 and
0.425. Taking into account that we combined core concepts with a logical AND to en-
sure the correct interpretation of the original query, which resulted in 0 results for three
queries (Figure 7.8), our result is notable. For the top scored datasets (Figure 7.8, P@10)
for 9 out of 15 queries our P@10 values are either equal or higher than the mean values
over all participants of the bioCADDIE challenge. For the infNDCG values measuring
the long tail of the search result set for 7 out of 15 queries our system (BM25 scorer,
adapted expansion strategy) returns more relevant hits than the mean of the bioCADDIE
participants.

The results reveal that entity expansion improves dataset retrieval in the Life Sciences.
In addition to the findings by [Terolli et al., 2020], we showed that in particular the expan-
sion on descendant nodes leads to more relevant results for both corpora. The expansion
with descendants in the BEF-China corpus resulted in a larger difference to the baseline
than in the bioCADDIE corpus. More studies on further corpora and more questions are
needed to analyze whether these differences are domain-specific, query-dependent or due
to a different ontology coverage of the corpus.

In comparison to the results of the user survey and expansion and ranking preferences
(Section 7.3), the results of both test collections show that the expansion with concepts of
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Figure 7.8: Comparision of bioCADDIE participants’ results (orange) with our best run (BM25,
adapted = best case per question) (blue) per question: P@10 values (left) and infNDCG values
(right)

the hierarchy led to more relevant results. This confirms users’ assessment that not only
exact matches are relevant in dataset search but also related hierarchical entities.

Our work has a limitation concerning the analysis on the different entity-based ranking
functions. The number of questions provided in the test corpora are very small (14 and
15). According to the annual TREC competitions27, at least 50 queries or more are needed
to evaluate different ranking scorers.

Overall, our values in all measures are very low. Here, only an in detail error analysis
would help to determine the reasons. An error analyis by [Bast et al., 2018] showed that
in semantic search documents can be found that are relevant but that are not part of the
given relevance judgments (ground truth). In this case, these additional documents were
not counted as positive match and thus lowered the final evaluation metrics. Whether this
also holds for our results needs to be analyzed with domain experts. In particular for the
biomedical corpus, additional expertise in biomedicine is needed, which we will address
in future work.

7.9 Summary

This chapter introduced the retrieval component of our proposed semantic dataset search.
It aimed to explore various entity expansion strategies and entity-based retrieval models
addressing H4. Our solution is based on the GATE framework with a semantic index con-
sisting of an annotation index with relevant entity types for biodiversity research and URIs
extracted from metadata. Concerning the proposed entity expansion, it turned out that the
expansion with descendant concepts of the terminology returned more relevant datasets.
Moreover, our results show that the expansion on broader releations such as siblings and
their descendants resulted in more relevant datasets with respect to the queries without
expansion, too. Hence, we can confirm H4. Tailored entity expansion with hierarchy re-
lations lead to more relevant results with respect to a plain entity-based retrieval without

27TREC, https://trec.nist.gov/

https://trec.nist.gov/
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any expansion. Concerning the various retrieval models and the consideration of the dif-
ferent semantic relations in scoring, we can not draw any conclusions, as the variability in
our result set was too large. Therefore, more studies and larger test collections with more
questions are needed to explore the differences in entity-based retrieval models.



Chapter 8

User Interfaces for Dataset Search and
Usability Evaluation

“Usability is about people and how they understand and use things, not

about technology.”

- Steve Krug in ‘Don’t Make Me Think’ [Krug, 2013], user experience professional

A variety of user interfaces (UI) and frameworks are available for search applications,
but very few user studies exploring their usability are publicly available. User studies are
time-consuming and personnel-intensive, which are very likely the main causes for the
current lack of available studies in research. However, user studies give valuable insights
on attitudes, expectations and usage. Therefore, the awareness that the success of a novel
system depends on functionality, design AND usability must be increased.

The aim of this chapter is to address the needs for more insights on the usability
of semantic search systems. User studies about a dataset search (Chapter 3.2) and the
exploration of search interests in biodiversity research (Chapter 4.2) have already been
introduced. Now, as last component of our proposed dataset search (Chapter 5.4), we
present the user interface and its development and evaluation with users. As an easy to
use and transparent interface is essential for the acceptance and effectiveness of a novel
system, it is crucial to involve users not only in testing and evaluation but also in the
design and development process.

Following the user experience design principles (Chapter 2.1), we present the overall
approach for the development and evaluation of the user interface of our semantic dataset
search in Section 8.2 after a section about related work (Section 8.1) introducing existing
user interfaces and discussing evaluation frameworks and user studies on semantic search
systems. We also present the results of a first formative evaluation with a focus group
and a paper prototype. Afterwards, we introduce the architecture and implementation of
our proposed user interface in Section 8.3 followed by the user evaluation setup in Section

171
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8.4. The results of the evaluation on the usability of our proposed user interface are finally
presented in Section 8.5.

A first version of the implemented user interface has been published at the S4biodiv
workshop [Shafiei et al., 2021] as demo paper.

8.1 Related Work

Scholarly information needs are as diverse and heterogenous as data. Therefore, retrieval
systems must meet these challenges and must adapt to these enhanced search require-
ments. The RDA Data Discovery Paradigms Interest Group1 addressed this need for im-
proved dataset retrieval systems and published ten recommendations for enhanced dataset
search and user experience [Wu et al., 2019]. For these guidelines, the authors collected
79 data discovery use cases, conducted heuristic evaluations and interviewed scholars.
The recommendations include among others (1) multiple search inputs to support dif-
ferent information needs, (3) comprehensible search summaries to judge the relevance,
accessibility and reusability of datasets, (5) bibliographic information, (7) consistency in
the presentation and (10) usage of API search standards and domain terminologies.

The available user studies for dataset search have already been introduced in Chapter
3.1.1. In the following section, we present existing work on user interfaces for semantic
search applications in the Life Sciences (Section 8.1.1). We do not only focus on dataset
search, but we expand the analysis on systems offering scientific literature. Afterwards,
we introduce evaluation frameworks and evaluation studies exploring the usability in se-
mantic search systems (Section 8.1.2). As very few user studies are available for semantic
search systems in the Life Sciences, we expand the view on evaluation studies about all
kinds of semantic search systems.

8.1.1 User Interfaces in Semantic Search Systems in the Life Sciences

The Semantic Web community is a very active community in terms of novel interfaces
over Linked Data. Therefore, most existing approaches of user interfaces for a semantic
search are visualizations and user interfaces to browse and filter data in triple stores con-
taining ontologies or knowledge graphs. [Koho et al., 2016, Vega-Gorgojo et al., 2016a,
Khalili et al., 2016, Khalili et al., 2018, Ikkala et al., 2022]. Current metadata files are
primarly available in half-structured formats, such as JSON or XML with longer textual
resources. Hence, approaches over Linked Data are not a complete solution, but semantic
full text approaches with combined search indexes on text (documents or metadata) and
URIs are needed. In this research domain, only very few user interfaces for end users ex-
ist. One system was Broccoli, a semantic full text search proposed by

1RDA DDP IG, https://rd-alliance.org/node/52248/outputs

https://rd-alliance.org/node/52248/outputs


Chapter 8. User Interfaces for Dataset Search and Usability Evaluation 173

Figure 8.1: Screenshot of the semantic search LitVar [Allot et al., 2018]. Biological concepts are
highlighted in different colors. On demand users can get further information on these highlighted
terms, e.g., in which organisms this variant occurs and links to the respective concept in a termin-
ology.

[Bast and Buchhold, 2013]. The system allowed a search over Wikipedia articles and
enabled filtering over facets from the knowledge base YAGO [Suchanek et al., 2008].
The full query was visualized as a tree and provided linkage to all matching entities and
classes. It permitted a search with keywords and ontological concepts. Queries were
interpreted as a tree with relations. The system supported two types of relations: rela-
tions obtained from the ontology and ‘occurs-with’ relations denoting the existence of a
term, instance or class in a sentence. The successor QLever2 [Bast and Buchhold, 2017]
provides an improved efficient semantic index on combined data with a SPARQL inter-
face, which is not suitable for end users.

Due to the lack of search interfaces over text and Linked Data, we took a closer look
again on semantic search approaches in the Life Sciences, which are mainly based on text
indexes but provide query expansion (KST) or information extraction techniques with
additional search services (SDET) (Chapter 3.1.2). For the following overview (Table
8.1), we only selected systems that are publicly available as demonstration. We inspected
them concerning two main aspects in search, (1) the query input (e.g., natural language
interface/ one input field/ form-based search) and filtering options such as facets and (2)
the presentation of search results with a search summary containing information on relev-
ance, data access and reusability. In our comparision study between a keyword search and
a semantic search, we figured out that scholars need explanations on the extended search
result in the semantic search [Löffler and Klan, 2016]. Therefore, as a third aspect (3), we
analyzed whether the search applications offer supplementary information on the search
result.

Keyword search and faceted search are supported by all systems. Narrowing the

2QLever, https://qlever.cs.uni-freiburg.de

https://qlever.cs.uni-freiburg.de
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System Sources Query Input/ Facets Search Summary Explanations
PolySearch2
[Liu et al., 2015]

Biomedical liter-
ature and data-
bases

keyword input and type
search, e.g., drugs, dis-
ease, gene and proteins

search term and match-
ing entities with syn-
onyms shown, number of
hits per document

highlightings of se-
mantic categories on
landing page, legend for
highlighting

LIVIVO
[Müller et al., 2017]

50 biomedical
literature sources
such as Pubmed

keyword input, facets for
publication years, sub-
jects, document types,
databases and languages

search terms highlighted
in title, data source
present, subjects shown
as icons

-

LitVar
[Allot et al., 2018]

PubMed articles keyword input and
named entities on vari-
ants of genes, facets
for publications years,
article sections and
journals

search term + further
biomedical terms high-
lighted, different colors
for different categories,
data source and citation
present

descriptions on matched
entities with linkage to
terminology concepts

Thalia
[Soto et al., 2018]

PubMed articles keyword input and
search for named entities
in domain categories,
facets for year, journal,
author, type

search terms highlighted
in search result

matching entities listed
and sorted into entity
types (chemicals, dis-
eases, drugs, genes) in
separate boxes

Datamed
[Chen et al., 2018]

76 biomedical
data repositories

keyword input, facets for
data types, repositories
and accessibility

search terms and syn-
onyms highlighted, data
source present

full search query and
used synonyms dis-
played in a separate box

BioFID
[Pachzelt et al., 2021]

fulltext from
the Digital Col-
lection Biology
(German) 3

keyword input, factes
for database, publication
year and authors

search terms and se-
mantic categories
(Taxon, Plant, Animal,
Location, Time) in
different colors high-
lighted, data format and
citation available

per entity additional in-
formation from Wikipe-
dia displayed in a separ-
ate box

Table 8.1: Comparision of functionalities in the user interface of selected semantic search ap-
proaches in the Life Sciences.

search on specific domain categories (either in separate input fields or with a query
language) is only provided in [Liu et al., 2015, Soto et al., 2018, Allot et al., 2018]. In-
formation on where the datasets or articles come from are mostly present in search sum-
maries. Moreover, the retrieved entries in the result set contain textual highlightings to
give users a quick overview on matched query terms. In particular, the text highlight-
ings in PolySearch2 [Liu et al., 2015], LitVar [Allot et al., 2018] (Figure 8.1) and BioFID
[Pachzelt et al., 2021] (Figure 8.2) distinguish between search terms and further relev-
ant keywords belonging to different domain categories. Further important information
on the data format is only available in [Pachzelt et al., 2021]. Bibliographic data are
provided in [Pachzelt et al., 2021] and [Allot et al., 2018]. The search summary in the
user interface of [Liu et al., 2015] displays the numbers of hits per document, and in
[Müller et al., 2017] subject areas are visualized with icons. Information on semantic cat-
egories are available in the search summaries of [Pachzelt et al., 2021, Allot et al., 2018].
With respect to explanations, some systems provide explanations on the matching entit-
ies, either in separate boxes or dialogs with information about the used ontology, class and
concept ID. The most comprehensive explanations offers LitVar 4. Each search term or
biological keyword occuring in the result documents is highlighted and clickable. Upon
request, users get more information on the highlighted term, e.g., a link is provided to
browse to the respective ontology or terminology. In Datamed [Chen et al., 2018], a sep-

4LitVar, https://www.ncbi.nlm.nih.gov/research/litvar2/

https://www.ncbi.nlm.nih.gov/research/litvar2/
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Figure 8.2: Screenshot of BioFID’s semantic search [Pachzelt et al., 2021]. Biological entities are
highlighted, and users can obtain more information from external resources on demand.

arate box shows the full search query being sent to the search engine. In addition, another
box gives information on the synonyms utilized in the query. Further ontological inform-
ation such as data about used ontologies is not provided.

As discussed above, semantic dataset search applications are hardly present. Most of
the introduced systems provide a semantic search over literature. Only very few systems
are available offering a search in domain categories. Moreover, explanations on matched
entities are rare and not used at all in the introduced dataset search applications. There-
fore, our study focus is primarily on different search inputs in a semantic dataset search,
including a search in domain categories, and explanations to better understand the search
result.

8.1.2 Evaluation Frameworks and User Studies in Semantic Search

The evaluation of semantic search systems is mainly influenced by classical Informa-
tion Retrieval (IR) evaluation approaches [Elbedweihy et al., 2015]. The Cranfield model
with a test collection, a document corpus and relevance judgments (Chapter 2.2.3) is still
present in evaluation campaigns in semantic search. We first present approaches about
general semantic search evaluation frameworks followed by a paragraph introducing con-
crete studies with user engagement.

Semantic search evaluation frameworks: One of the first evaluation initiatives was
the SemSearch workshop series in 20105 and 20116 with a focus on ad-hoc object re-
trieval over Linked Data. The evaluation used the Billion Triples Challenge Dataset

5SemSearch 2010, http://km.aifb.kit.edu/ws/semsearch10/
6SemSearch 2011, http://km.aifb.kit.edu/ws/semsearch11/

http://km.aifb.kit.edu/ws/semsearch10/
http://km.aifb.kit.edu/ws/semsearch11/
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[Herrera et al., 2019], and the test collection was constructed by human judges using
Amazon’s Mechanical Turk crowdsourcing marketplace7. The expected input of the se-
mantic search was a set of keywords and the output was a ranked list of concepts re-
trieved from the Billion triple dataset. Classical IR metrics (MAP, P@k and nDCG, see
also Chapter 2.2.3) were utilized to assess the relevancy of the returned list of URIs. Par-
ticipating systems mainly used classical retrieval approaches and made only very little
use of additional data from the knowledge base to improve the retrieval or to expand the
queries [Elbedweihy et al., 2015]. Other initiatives are the annual Question Answering
over Linked Data (QALD) challenge8 and the Entity track at TREC9. The QALD uses
multiple RDF datasets and additional knowledge sources as data sources, and queries are
formulated as natural language questions or keywords. The search result are correct an-
swers or SPARQL queries retrieving these answers. In contrast, the Entity track aimed to
return results from text and Linked Data. It operated on the ClueWeb 2009 web corpus, a
corpus of web pages with entities (not linked to existing knowledge bases but own IDs).
The information need was provided in a semi-structured format with a given query entity,
a type (mapped to the DBpedia10 ontology) and an information need in free text. The
Entity track consists of two main tasks: (1) the extraction of ClueWeb entities related to
the target type in the information need including documents supporting the query and (2)
a list of entities related to the ClueWeb query entity in the associated knowledge base
(Sindice [Campinas et al., 2011]).

All of the introduced initiatives used constructed queries over knowledge bases or
text with general data (non domain specific data). They also did not involve users. An
example for an evaluation approach towards real informations needs was the Question
Answering track at TREC11. It aimed to retrieve exact answers on user questions from
the medical domain. The information were obtained from web pages of the National In-
stitutes of Health (NIH). However, even if real user’s information needs were utilized in
this campaign, the study only measured the relevancy of search results and did not in-
clude any active user studies. To the best of our knowledge, there was only one semantic
search evaluation initiative that considered user aspects. The SEALS evaluation frame-
work [Wrigley et al., 2010] favored a two-phase evaluation with an automatic phase and
a user-in-the-loop (UTIL) phase. In the automatic phase, performance based measures
(Chapter 2.1.2) were determined, such as execution success on search queries, results
(e.g., relevancy of search results) and time to receive the result. In the second phase, users
got search tasks and had to enter queries in the respective query language. This additional
task could get challenging depending on the complexity of the query language. There-

7MTurk, https://www.mturk.com/
8QALD, https://qald.aksw.org/
9Entity Track, https://trec.nist.gov/data/entity.html

10DBpedia, https://www.dbpedia.org/
11LiveQA, https://github.com/abachaa/LiveQA_MedicalTask_TREC2017

https://www.mturk.com/
https://qald.aksw.org/
https://trec.nist.gov/data/entity.html
https://www.dbpedia.org/
https://github.com/abachaa/LiveQA_MedicalTask_TREC2017
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fore, besides the execution success und returned results, in this phase, further measures
were added, such as the underlying query (in the tool’s internal format, e.g., SPARQL)
and user-specific statistics, e.g., the time required to obtain the answer, demographics
and the System Usability Scale (SUS) as well as an in-depth satisfaction questionnaire.
Unfortunately, no documents and code are available anymore for the SEALS evaluation
framework. An existing evaluation campaign focusing on the usage of semantic web tech-
niques in NLP approaches is the International Workshop on Semantic Evaluation12. This
initiative addresses several NLP tasks such as Named Entity Recognition, disambiguation
or the identification of social attitudes, but there are no Information Retrieval tasks.

Due to this lack of evaluation frameworks for semantic search systems, user studies for
semantic search evaluations follow their own evaluation strategy. Most of the introduced
studies below are inspired by the TREC Interactive Search track (Chapter 2.2.3) including
user tasks and questionnaires.

User studies on semantic search systems: One of the earliest user study on four dif-
ferent user interfaces was the work by Kaufmann et al [Kaufmann and Bernstein, 2007].
The authors implemented four different query interfaces and setup a search over the
Mooney Natural Language Learning Data, a knowledge base with geographical inform-
ation about the US and their logical representations [Tang and Mooney, 2001]. The aim
was to explore the usefulness of Natural Language Interfaces and different query lan-
guages. 48 participants carried out four search tasks per system and assessed the usab-
ility with the SUS questionnaire (see also Chapter 2.1.2). The system, which required
full English questions as query input, got the highest SUS score (75.73) and also resul-
ted in the highest success rate. Users “appreciated the freedom of the query language”
[Kaufmann and Bernstein, 2007].

[Elbedweihy et al., 2012] extended these studies and explored different user types (ex-
perts and casual) and their preferences for various query input formats (natural language
in free form, natural language with a controlled query language, form based and graph
based) on the same data source. Ten casual users and ten experts (unfortunately, the study
does not report on what ‘expert’ exactly means, e.g., domain expert, expert in search, se-
mantic web expert) had to perform search tasks in five different user interfaces (one nat-
ural language based system in free form, one natural language system with a controlled
query language, one form-based and two grap-based tools). The expected result were
exact answers and not documents. While casual users preferred the form-based query
interface, expert users favored the graph-based approach. The user interface with the con-
trolled query language provided most support for casual users, but it limited experts in
expressing their information needs [Elbedweihy et al., 2012].

Another comprehensive user study on a semantic search was conducted by

12SemEval, https://semeval.github.io/

https://semeval.github.io/
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[Bontcheva et al., 2012]. The authors compared a keyword search and a semantic search.
The semantic search was based on a combined index (scientific documents from the en-
vironmental domain, DBpedia13 and GeoNames14). 17 subjects performed four search
tasks per system (A/B testing) and filled out a SUS questionnaire afterwards. The results
reveal that in the semantic search, users were more often able to complete the tasks. In
addition, the semantic search reached a higher SUS score (72.3).

An evaluation with users and different visual query interfaces over a semantic data-
set was the study by [Vega-Gorgojo et al., 2016b]. Following the TREC IIR methodology
with an A/B testing, 15 users got four search tasks in random order in two semantic search
systems over an RDF dataset with administrative and financial information of Norwegian
companies. Per system, the participants performed four different tasks. Before and after
each search tasks they had to answer a few questions in a questionnaire. After each sys-
tem, the filled out a post-session questionnaire (not SUS) and finally, at the very end,
an exit questionnaire. Their results confirm the outcome of [Elbedweihy et al., 2012].
The form-based system PepeSearch [Vega-Gorgojo et al., 2016a] was preferred by cas-
ual users, whereas OptiqueVS [Soylu et al., 2013], a graph-based user interface, received
better assessments from expert users.

Apart from user tests and questionnaires, other usability methods such as eye-tracking
also give valuable insights on a user’s behaviour. The study by [Liu et al., 2017] examined
domain experts’ gaze interactions in a search over biomedical documents enhanced with
MeSH [MeSH, 2022] terms. In total, four user interfaces with different approaches for the
integration and display of MeSH terms were provided. For example, in one user interface,
MeSH terms were collected for all documents on top of the search result page, while in
another interface MeSH terms were displayed per document. The 32 participants had to
execute four search tasks in only two of the four user interfaces. For each task, users
had only a limited time (7 min) to perform the search. The authors measured how often
people looked at specific areas of interests (AOI), such as title, author, abstract and MeSH
terms. They also collected information on users’ domain background and their usage of
search applications. The results reveal that the level of domain expertise affects eye gaze
behaviour. For instance, “users with a high level of domain knowledge are less likely
to attend to the element of title” [Liu et al., 2017]. Another correlation of background
knowledge and gaze behaviour had also been found. Participants who indicated to use
search engines frequently payed more attention to author information and MeSH terms in
the result set as subjects who use search applications not frequently [Liu et al., 2017].

The presented studies mainly focus on the analysis of the query input and the user
interface overall. There is no study examing individual components in the search result
presentation. In addition, we still do not know whether the current findings also hold for

13DBpedia, https://www.dbpedia.org/
14GeoNames, https://www.geonames.org/

https://www.dbpedia.org/
https://www.geonames.org/
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dataset search (all presented studies were conducted over scientific documents or Linked
Data). In particular, it is unclear to what extent additional semantic information obtained
from knowledge bases to enhance the search result should be displayed in the user in-
terface explicitly. Do users want to be informed about this additional knowledge and
should matching entities be presented in a prominent way (e.g., with links to the respect-
ive ontology) or do users prefer a less explanatory user interface? In order to answer these
questions, we developed two user interfaces and conducted a usability study with scholars
being presented in the following sections.

8.2 Study Overview and Formative Evaluation

In this section, we introduce preliminary considerations and the overall goals of the study.
We also present the overall study procedure and the results of the formative evaluation
(focus group and paper prototype).

8.2.1 Preliminary Considerations

In Chapter 3.1.1, the introduced evaluation studies on dataset search applications report on
shortcomings concerning the metadata quality, e.g., poor information on domain specific
concepts, data variables measured, data type, data format, data collection process and
unaligned terminologies. In addition, the study by [Dixit et al., 2017] about a dataset
search and the study by [Elbedweihy et al., 2012] on a semantic search also underline the
need for a category based search.

Therefore, we utilized our text mining pipeline BiodivTagger (Chapter 6) and the Or-

ganismTagger [Naderi et al., 2011] to enhance the quality of metadata files and to extract
relevant biological entities from selected terminologies. This additional information was
added as semantic annotation to metadata and enabled an entity-based search. It also
allowed a search beyond keywords including synonyms, common names or alternate la-
bels provided in the matching URI (aligned vocabulary). Moreover, the question corpus
study (Chapter 4) reveals that user interests can be very broad. In Chapter 7, we utilized
the matching entities of the metadata files for the expansion on descendant nodes and
obtained an higher amount of relevant results. Therefore, a search beyond keywords in
the proposed novel semantic dataset search includes descendant nodes and enables a hier-
archy search (addressing R1 of the functional requirements introduced in Chapter 5.3).

In addition to entities, the taggers also return information on domain specific entity
types such as Organism, Quality, Environment, Material, Process. These categories reflect
domain specific information needs in biodiversity research (Chapter 4). This type of
information was added to metadata, too, allowing a category based search (addressing R2

of the functional requirements introduced in Chapter 5.3).
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Concerning an improved user interface for dataset search, we mainly followed the
recommendations of the RDA Data Discovery Interest Group [Wu et al., 2019]. In par-
ticular, we concentrated on the above mentioned five recommendations focusing on im-
provements in the user interface. The information in brackets denotes how we addressed
the recommendations in the implementation:

• (1) - Provide multiple access points to find data: Form-based input based on domain
specific categories and a classical one input field

• (3) - Make it easier for researchers to judge relevance, accessibility and reusability

of a data collection from a search summary: Labels are provided per dataset in
the result summary to highlight general dataset characteristics such as publication
date, data center, accessibility. Title, author and publication year are highlighted
and linked to the landing page of the data repository hosting the dataset. Data
parameters measured and abstract can be expanded if available. Query terms or
phrases matching the query terms are highlighted in the search result.

• (5) - Enable sharing and downloading of bibliographic references: As it is not a
strong focus in the evaluation, only a simple citation information is shown.

• (7) - Strive for consistency with other repositories: Result summary presentation
according to GFBio15, PANGAEA16, Zenodo17

• (10) - Follow API search standards and community adopted vocabularies for in-

teroperability: usage of OBO-Foundry terminologies (Chapter 6), REST API for
search results with a Swagger18 documentation

Four out of the other five recommendations can be primarily implemented by the data
providers. Due to conceptional reasons, we did not consider the second recommendation
(R2) for providing different entry points in a user interface, e.g., facets. Different query
inputs and filtering options would interfere with each other in an evaluation, as both ad-
dress the input of a user’s information need. Therefore, we decided to leave facets our for
this study.

In addition to these recommendations, the novel user interface also includes explana-
tions on the search result (addressing R3, a comprehensible search result). Our findings
in a first semantic search study reveals (Chapter 3.3) that users need more explanations on
the search results when the search goes beyond keywords. In particular, highlightings are
a simple but effective approach to emphasize the query terms or related terms and phrases

15GFBio, https://www.gfbio.org/
16PANGAEA, https://pangaea.de/
17Zenodo, https://zenodo.org/
18Swagger, https://swagger.io/

https://www.gfbio.org/
https://pangaea.de/
https://zenodo.org/
https://swagger.io/
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in the result datasets. Furthermore, matching entities to the query terms or other biolo-
gical entities not explicitly given in the query terms are highlighted. On demand users can
obtain more information. Full query explanations give insights on the query interpretation
and the exact query being sent to the search engine.

In order to address R4 - non-functional requirements introduced in Chapter 5.3, we
conducted a summative user study to explore the usability of the novel semantic dataset
search. We focused on the comparision of a form-based user interface and user interface
with one input field as existing studies report that casual users prefer a form-based input
[Elbedweihy et al., 2012] and that scholars like to search in topics [Dixit et al., 2017].
We also explored what kinds of explanations on system (e.g., full query) and background
information (matching entities, terminologies) are desired in a semantic dataset search.
Therefore, users were not only involved in the summative evaluation (R5 - non-functional

requirements), but participated actively in the development process being described in the
next subsection.

8.2.2 Study Goal and Evaluation Flow

The overall goal of this study was to develop an improved user interface for a semantic
search over metadata files and domain vocabularies. Following a user-centered design,
domain experts were involved in the design and development process. We aimed to study
two query inputs, a form-based approach as it performed best in previous studies for cas-
ual users and a one input field as users are familiar with this kind of search. Therefore, we
developed several user interfaces and evaluated the systems with scholars working in the
field of Life Sciences and Environmental Sciences. The main focus in the evaluation is on
the usability of two search components: the query input and the presentation of explan-
ations in the search summary. We limited the evaluation on these two parts, as usability
evaluations usually examine user interfaces as a whole. In particular, it has not been stud-
ied so far what kind of explanations are benefical for dataset search. In a semantic search,
the additional challenge is to figure out whether information on utilized terminologies and
matching URIs confuse users who are not familiar with semantic technologies. From the
research projects we are involved in, we know that most scholars in the Life Sciences
and Environmental Sciences are casual search users with little experience in taxonomies
and ontologies. However, as FAIR data management is getting increasing attention in
academia, it would be helpful to better understand what additional information should be
present in a dataset search going beyond keywords. For the user evaluation, we mainly
follow the TREC Interactive Search track (Chapter 2.2.3) guidelines with search tasks and
questionnaires. However, we adapted that concepts for our needs. Further information can
be found in Section 8.4.
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Study goal: Based on the above mentioned prelimary considerations, we formulate the
following research goals: (A) We want to explore whether users prefer a form-based
search input with given domain-specific categories or whether they favor the classical
single input field search. Second, (B) we want to analyze whether users prefer a specific
explanation strategy (less information versus explicit information on matching entities,
used terminologies and full queries). These high level goals need to be further specified
with concrete usability criteria. Usability is characterized by five components: Learn-
ability, Efficiency, Memorability, Errors and Satisfaction (Chapter 2.1). Here, we only
address four out of five components as Memorability is a characteristic that can only be
measured when the system is shown to users at least a second time. Therefore, we focus
on the remaining four components and add further characteristics for the second goal. The
information in brackets gives first ideas on how to measure this study goal being further
explained in Section 8.4.

(A) Determine whether users prefer a form-based input or a classical one input field
for a semantic dataset search

• Efficiency and Effectiveness of Use (conduct user tasks):

– Completeness (measurement of task success/ performance based metrics): Can
users achieve their goals?

– Efficiency (measurement of task time/ performance based metric): In what
time?

– Navigation (numbers of clicks/ performance based metric): How many clicks
are necessary to reach the goal?

– Errors (number of occuring errors or usability issues/ issue based metric): Do
errors occur that prevent users from achieving their tasks?

• Easy to Learn (measured by questionnaires/ self-reported metric and observation/
issue based metric): Does the system architecture match users’ mental model? Can
users start doing their search task?

• Satisfaction (measured by questionnaires/ self-reported metric): What components
do users like? What do they dislike?

(B) Explore whether the presence of entity information from knowledge bases and
full query information supports the comprehensibility of search results in a semantic
dataset search or whether it is disturbing and distracting

• Comprehensibility (questionnaire/ self-reported metric and observation/ issue based
metric): Do users understand the provided information on additional knowledge
resources?
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Figure 8.3: Overall development and evaluation flow: In a focus group, we discussed attitudes
and expectations for a semantic dataset search. Based on these discussions, we provided three
clickable paper prototypes to specify and revise the functions needed in the user interface. The
focus group discussed and decided on the final user interfaces. After the implementation, system
tests and evaluation setup took place in parallel. In a fourth phase, we conducted a user study with
20 domain experts.

• Completeness (questionnaire/ self-reported metric): Do users require more inform-
ation on the provided data or is the given content sufficient?

• Satisfaction (questionnaire/ self-reported metric): What additional information as
explanation do users like? What do they dislike?

In order to achieve these research goals, we discussed and implemented several user
interfaces in close conjunction with domain experts. The overall development and evalu-
ation flow is presented in Figure 8.3.

Evaluation and development flow: In a focus group, first insights on previous search
experiences, attitudes and expectations were discussed with three experts from various
projects in biodiversity research. Afterwards, based on these discussions and the prelim-
inary considerations, three user interfaces were developed as clickable paper prototypes.
They were again discussed with the focus group. Once the final decisions for two user
interfaces were made, the interfaces were developed and tested. In parallel, we already
setup the evaluation with surveys and user tasks following the guidelines of the TREC In-
teractive Track. Finally, the usability evaluation with 20 domain experts took place over
a period of six weeks in June and July 2022.

8.2.3 Focus Group Meetings

A focus group is a qualitative research method to collect attitudes, expectations and prior
experience in a group meeting with around 6-9 target users [Nielsen and Norman, 2022].
The discussion is usually only around a certain (focused) topic and provides the opportun-
ity to get fast feedback on a product. Therefore, we utilized this method to gather insights
before the development of the user interfaces has started.
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Expert Issue/ Use Cases

1 “I wanna search for biome” (= return all datasets for this biome)
1 “I wanna search for a species name” (but what they actually mean is a higher

level in the taxonomy, e.g., a genus or a family and they think the system is
already smart enough to return all narrower species)

1 “I wanna search for a location.” (return all datasets for this location – data
collected/observed in that area)

1 “How many of these datasets have replicats?” (Has it been already reproduced
or reused?)

2 datasets with data of family Apidae on given plots
2 abundance data of wild bees (listed in the red list) in Baden-Württemberg,

extract the list of protected species from those datasets, get coordinates or loc-
ation information about the site where the bees were found and the name of
the persons identifying the bee species

2 search for datasets describing silvicultural management strategies and manage-
ment intensity of grasslands, search for soil data and climate data of grasslands

Table 8.2: Use cases collected in the focus group meetings.

The focus group consisted of three postdocs with a background in biology and ex-
pertise in biodiversity research and a moderator (the thesis author). We did not ask more
scholars, as we wanted to have various insights from different projects, and we wanted
to keep the pool of scholars being suitable for the subsequent evaluation as large a pos-
sible. The three focus group members did not take part in the final user evaluation. We
conducted three online sessions of two hours each in winter 2021/22. The focus in the
first meeting was on general attitudes and expectations, in the second and third meeting
we discussed the clickable paper prototypes.

Experience and expectations: We asked the expert group if they have own experiences
with dataset search applications or semantic search approaches. If so, we also asked for
concrete examples, problems or any other occuring issues. None of the three experts
had own experiences in dataset search or semantic search approaches. However, all of
them are in close contact to scholars who need to search for datasets frequently. Two of
three experts are data curators, and one Post-Doc is a scientific coordinator of a research
data management unit. Two experts report on some issues or use cases in dataset search
presented in Table 8.2. The listed issues are similar to the search interest introduced in
Chapter 4 and also reflect the diversity with respect to granularity (broad questions such
as data about a specific biome versus detailed questions, e.g., data on specific species) and
topic (species (ORGANISM), biome (ENVIRONMENT), abundance data, climate data
(DATA TYPE), given plots (LOCATION)).

To the question about expectations on a semantic search, the experts answered that
users “don‘t care about the technology” and they would believe that the system returns
all concrete species when looking for a higher taxa level, e.g., bacteria or insect. Another
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A B C

Input type form-based input (cat-
egories)

form-based input (cat-
egories)

one query field

Input terms keywords keywords - entities keywords
Auto-
completion

search index terminology index search index

Entity Link-
ing

automatic by user automatic

Entity expan-
sion

automatic entity expan-
sion on descendants

no automatic entity expan-
sion but only on demand

automatic entity expan-
sion on descendants

Query Ex-
planations

no URIs, no ontology in-
formation

URIs and ontologies
shown

query interpretation is
shown, explanations
without URIs and on-
tologies but visible on
demand

Full query not shown, only a simple
query

fully query displayed in-
cluding SPARQL

excerpt of query presen-
ted, full query on demand

Table 8.3: Proposed user interfaces - concepts

Focus group member said that it depends on the background and experience of users: “If
users have the experience that the system only returns an exact match they don’t expect
more detailed results. However, if you want to get an overview, e.g., to see what data are
in the repository, search filters help to start the search.”

Concerning improvements, the experts agreed that a search over domain categories
would improve the search experience. In general, they found that existing data portals are
already a big step. Ten years ago no data portal was available and scholars searched for
literature first. Only in a second step they looked for associated data. Nowadays, scholars
go to e.g., Web of Science19 or GenBank (for genoms, now part of the International
Sequence Database Collection (INSDC)20), and a few scholars have also started using the
Google Dataset Search21.

Paper prototype: Based on the insights of the first meeting, we proposed three user in-
terfaces as clickable paper prototype and discussed these sketches with the Focus Group
in two further sessions. Table 8.3 presents the concepts for the proposed user interfaces
(UI). All three UI concepts have in common that the presentation of search results ad-
heres the RDA recommendation for dataset search. The main difference between the
three UIs is the display of semantic information. In UI A (Figure 8.4), the idea is to
hide the semantic enhancements and to link keywords to entities automatically to provide
no information on utilized terminologies and URIs and to present only a simple query
explanation. The query terms are entered into several pre-defined categories (form-based
approach), which are considered in the query, and the auto-complete function presents the

19Web of Science, https://clarivate.com/products/web-of-science/
20INSDC, https://www.insdc.org/
21Google Dataset Search, https://datasetsearch.research.google.com/

https://clarivate.com/products/web-of-science/
https://www.insdc.org/
https://datasetsearch.research.google.com/
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Figure 8.4: Paper prototype of user interface A

terms from the search index and is provided per category input field. This user interface
takes all the burden from users to deal with semantic information and is supposed to be
the most convenient approach. UI B also follows a category-based input, but in contrast,
users have to link the typed keywords per category explicitly to suggested entities from
the terminology index, or users have to provide URIs explicitly. There is also no auto-
matic expansion on descendant nodes, but users would have the opportunity to select an
expansion strategy. All semantic information are presented in detail including matching
entities and ontologies as well as a full query with SPARQL statements. This UI gives
users the most freedom to steer the semantic search process but requires some semantic
web knowledge. The third suggested UI, UI C (Figure 8.5), provides only one input field
and is similiar to all existing dataset search systems. It follows a hybrid approach with
an automatic entity linking and entity expansion. The matching entities are shown in a
query interpretation section and only an excerpt of the full query is shown to the user. On
demand users can expand the full query.

The focus group’s feedback on the UI A was quite positive. In contrast, they assessed
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Figure 8.5: Paper prototype of user interface C

the second interface (UI B) as too complex with too much knowledge needed to fulfill a
search task. The third UI (UI C) got a mixed feedback from the focus group. The experts
were unsure whether matching URIs confuse or delight users. Originally, we wanted
to conduct the evaluation with two user groups, scholars who are not familiar with the
Semantic Web and scholars who have already some experience in semantic web techno-
logies (at least in its usage, e.g., working with ontologies). All three experts of the focus
group agreed that it would be very difficult in recruiting a sufficent number of scholars
with expertise in the Life Sciences and Semantic Web. Therefore, we finally decided
to go for a ’within subject’ evaluation with only one user group, namely scholars with
background in the Life Sciences and Environmental Sciences. Due to these decisions, we
agreed to omit the second UI and to implement only UI A (Figure 8.4) and C (Figure 8.5)
with the following adaptions in UI C: Full query information is shown at once. Matching
URIs and ontologies are presented explicitally and not on demand including links to the
respective ontology entries. These adaptions make the distinction between the two UIs
clearer.

8.3 System Architecture and Implementation

The overall architecture of the user interface component is presented in Figure 8.6. We
named the system [Dai:Si] in accordance to the phonetic relationship to the terms ‘data-
set search’. We present a new version targeted at functions needed for the user evalu-
ation22. An earlierer version of [Dai:Si] has been presented at the S4biodiv workshop
[Shafiei et al., 2021]. The backend consists of the local terminology service introduced

22[Dai:Si] Semantic Search, https://github.com/fusion-jena/daisi-semantic-search

https://github.com/fusion-jena/daisi-semantic-search
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Figure 8.6: [Dai:Si]’s architecture and overall flow.

in Chapter 6.3.2 and a semantic index over metadata files generated with GATE Mímir
(Chapter 7). In order to link query terms to concepts in ontologies, we use an updated
version of the Semantic Assistants framework [Witte and Gitzinger, 2008]. In this new
version based on a spring boot application, GATE pipelines are exposed via REST inter-
faces23. Currently, three pipelines are available (GATE ANNIE [Cunningham et al., 2013],
BiodivTagger [Löffler et al., 2020] and OrganismTagger [Naderi et al., 2011]). The mid-
dleware was implemented with NodeJS24, and the frontend is an Angular25 application.
The NodeJS server provides REST APIs to communicate with the backend applications.

As modularity is a main characteristic of [Dai:Si], the domain and business unit are
separated from functional components. This allows an easy replacement of a search index
or permits to add further search indexes. Each search index needs an own module being
added to the middleware. In order to utilize the frontend components, the search index
needs to support specific metadata fields according to the data model. More details are
described on our GitHub page. Replacing the terminology service is also possible. The
middleware provides a configuration file with different settings such as the URL to the
terminology service, the search index and the term suggestion service. To the best of
our knowledge, there are no protocols or standards for terminology services. Hence,
replacing the service may cause adjustments to the middleware, in particular concerning
the API requests and responses.

Both implemented UIs consist of two main components: a search input and a search
result. A data basket is provided to collect datasets during search and to download the
whole basket. To start a search, users enter keywords into the query input field (1), either
per category or in the one input field (see paragraph below for the characteristics of the
two different UI). For the one input field query, the query terms are sent to the Semantic
Assistants first to obtain the entity types and if available URIs (1A - 1B). Then, the query
terms are forwarded to the terminology service (2). Per query term matching URIs are

23SA2.0, https://github.com/fusion-jena/semantic-assistants-2.0
24NodeJS, https://nodejs.org/en/
25Angular, https://angular.io/

https://github.com/fusion-jena/semantic-assistants-2.0
https://nodejs.org/en/
https://angular.io/
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determined and returned to the middleware (3). Afterwards, these matching URIs are
utilized to form full queries being sent to the semantic search index (4). The result (5) is
returned to the frontend, and the datasets are displayed (6).

Dataset corpus preparation and indexing: For the user evaluation study we used se-
lected metadata files from GFBio as data corpus. To ensure that appropriate data are
available for the search tasks, we only downloaded metadata from the GFBio search API
with relevant query keywords and expanded terms. As the aim of our semantic dataset
search was to receive datasets beyond keywords, but GFBio only provides a keyword
search, we followed an exhaustive query expansion process to obtain not only datasets
that exactly match occuring terms in the search tasks but also synonyms and more spe-
cific terms. Therefore, we annotated 13 search tasks manually with categories (Organism,
Environment, Data Parameter, Process, Material) and URIs from relevant OBO Foundry
ontologies. These terminologies were the same as for the development of the BiodivTag-
ger. We used the URIs to form a SPARQL query and to expand the search on narrower
concepts. These additional labels and synonyms were added to the original keywords,
and the expanded queries were sent to the GFBio search API. As these queries got very
large, we cut them into blocks and ran the queries subsequently. We downloaded only the
first 100 datasets per subquery to receive a corpus size that is managable and fast to index.
We finally downloaded 52.000 metadata files. The code for the metadata download26 and
query expansion27 are publicly available.

We annotated the obtained GFBio metadata files with the OrganismTagger and the
BiodivTagger. This resulted in annotations for the following entity types: Organism, En-
vironment, Data Parameter, Process, Material. We extended the taggers on GATE’s Se-
mantic Enrichment Processing Resource to add all parent nodes of each entity as semantic
annotation (subClassOf* relations), too. This resulted in larger files in size, however, it
allows a faster search at run time. SPARQL queries at runtime (e.g., in the search inter-
face) can get very complex, and it might take several seconds or even minutes to return a
result. Hence, to ensure a fast search result within a few seconds, we added hierarchy rela-
tions such as subClassOf relations in the pre-processing phase and used templates linked
to these ‘broader’ annotations in the search phase. In our previous study in Chapter 7, we
could not confirm a benefit for the consideration of semantic relations in search. There-
fore, we utilized the CF-IDF ranking as retrieval model, which treats all semantic relations
equally.

User interface A - Biodiv 1: Figure 8.7 presents a screenshot of [Dai:Si]’s UI A named
‘Biodiv 1’. Keywords are entered per given category. Each keyword is looked up in the

26GFBio Metadata, https://github.com/fusion-jena/GFBioMetadata
27Query Expansion, https://github.com/fusion-jena/semantic-search-usability-analysis/tree/main/

data_corpus_preparation/QuestionExpansion

https://github.com/fusion-jena/GFBioMetadata
https://github.com/fusion-jena/semantic-search-usability-analysis/tree/main/data_corpus_preparation/QuestionExpansion
https://github.com/fusion-jena/semantic-search-usability-analysis/tree/main/data_corpus_preparation/QuestionExpansion
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Figure 8.7: User interface Biodiv1 representing a category based input with no explicit semantic
information.

terminology service. The matching entities and the selected categories are utilized in the
final query to the index. We also consider the keywords as tokens in the query, ensuring
a keyword search in case no matching entity can be found. However, also for a keyword
search the selected categories are considered. The full query for Figure 8.7 is presented
in Listing 8.1.

((((‘‘honeybee’’ IN {Organism}) OR (‘‘honeybee’’ OVER {Organism}) OR (‘‘honeybee’’ AND {Organism}))
OR ({Organism broader=‘‘http://purl.obolibrary.org/obo/NCBITaxon_7460’’} OR {Organism inst=‘‘
http://purl.obolibrary.org/obo/NCBITaxon_7460’’})))

Listing 8.1: Full query for the search ‘honeybee’.

The result set contains datasets with the exact match of query terms as well as syn-
onyms or if available further narrower concepts. The query terms are highlighted in bold
fonts in the result set. In case URIs can be found for a keyword, query terms are also
underlined in green and users can get more information by hovering over them. An ex-
planation dialog displays the category and synonyms or alternate labels, URIs are miss-
ing in this user interfaces. In addition to the mouseover explanations, users also have
the opportunity to get further information by expanding the ‘explanation’ tab. It shows a
shortened query and again lists all query terms and their synonyms. The button ‘biological
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Figure 8.8: Screenshot with highlightings from the biological entity function in Biodiv 1.

Figure 8.9: User interface Biodiv 2 with displayed URIs and terminology links.

entities’ enables an additional highlighting of biological terms. The whole textual dataset
information is sent to the Semantic Assistants. The system calls the BiodivTagger and
OrganismTagger and returns a highlighted text to the user with the identified biological
entities, e.g., data parameters, environmental terms, process, materials and species. These
highlightings do not necessarily correspond to the search terms. To visualize this differ-
ence to the user, the biological entity highlights are underlined in blue color. Figure 8.8
presents a screenshot of a dataset result and active biological entity highlighting. Again,
further semantic information such as URIs are missing in this highlighting.

User interface C - Biodiv 2: The second user interface, Biodiv 2 (Figure 8.9), provides
a classical one query input field. The entered keywords are sent to the Semantic Assist-
ants first to obtain categories and URIs. In addition, the keywords are also sent to the
terminology service to increase the likelihood to find URIs. The obtained categories and
URIs are presented to the user in a ‘query interpretation’ tab and are utilized to form
the final query to the search index. The example in Figure 8.9 shows that the result is
the same as for Biodiv 1 and hence is the same full query. The highlightings in Biodiv2
also provide URIs, in addition to alternate labels and synonyms. The same applies for
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the explanation tab and biological entities function. All URIs are also linked to external
terminology services (Ontobee28 and Bioportal29) to provide the opportunity to look for
further information. Instead of a simple query, this user interface provides full query
information.

8.4 Usability Study

We followed the TREC-9 guidelines30 for an A/B testing (Chapter 2.2.3) with user tasks
and questionnaires. We asked 22 scholars to take part in the study and resulted in 20
final user sessions. Each participant had to do eight search tasks in different ordering.
Ten users started with Biodiv 1, and the other ten users started with Biodiv 2. This setup
allowed a within subject study to analyze whether there are differences for these two
systems within the group. All 20 subjects had a background in the Life Sciences or
Environmental Sciences and spoke and understood English. We did not ask for age and
sex, but we requested some statistical information at the end of the study (graduation,
research background, usage of dataset search applications).

Experimental design: The participants’ task was to find datasets which are relevant for
a given search task within a maximum of five minutes. Before and after searching the
scholars were asked if they expect specific content in the datasets and how certain they
are about it. It was a within-subject design and every subject had to search on all the
questions. The questions were provided in pseudo-random fashion, with 16 variations
to ensure that each task is performed at a different position (1st through 8th) for each
system. Hence, a complete round of the experiment required 16 subjects. However, to
have a backup we conducted 20 user sessions. For the last four users, we kept the same
ordering of questions but with opposite systems. In the result section, we provide the
results for 16 and 20 users, respectively. The final experimental matrix is provided in
Table 8.4.

We visited most subjects at their working places, namely iDiv, Leipzig31 | Sencken-
berg, Frankfurt32 | Georg-August-Universität Göttingen33 | TU Ilmenau34 | BGBM Ber-
lin35 | UFZ Halle36 | DSMZ Braunschweig37, and conducted the study with four parti-

28Ontobee, https://ontobee.org
29Bioportal, https://bioportal.bioontology.org
30TREC Interactive Track, https://trec.nist.gov/data/t9i/t9i.html
31iDiv, https://www.idiv.de/
32Senckenberg, https://www.senckenberg.de
33Uni Göttingen, https://www.uni-goettingen.de
34TU Ilmenau, https://www.tu-ilmenau.de/
35BGBM, https://www.bgbm.org
36UFZ Halle, https://www.ufz.de/
37DSMZ, https://www.dsmz.de/

https://ontobee.org
https://bioportal.bioontology.org
https://trec.nist.gov/data/t9i/t9i.html
https://www.idiv.de/
https://www.senckenberg.de
https://www.uni-goettingen.de
https://www.tu-ilmenau.de/
https://www.bgbm.org
https://www.ufz.de/
https://www.dsmz.de/
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Subject Block 1 Block 2

1 Biodiv 2: 4-7-5-8 Biodiv 1: 1-3-2-6
2 Biodiv 1: 3-5-7-1 Biodiv 2: 8-4-6-2
3 Biodiv 1: 1-3-4-6 Biodiv 2: 2-8-7-5
4 Biodiv 1: 5-2-6-3 Biodiv 2: 4-7-1-8
5 Biodiv 2: 7-6-2-4 Biodiv 1: 3-5-8-1
6 Biodiv 2: 8-4-3-2 Biodiv 1: 6-1-5-7
7 Biodiv 1: 6-1-8-7 Biodiv 2: 5-2-4-3
8 Biodiv 2: 2-8-1-5 Biodiv 1: 7-6-3-4
9 Biodiv 1: 4-7-5-8 Biodiv 2: 1-3-2-6
10 Biodiv 2: 3-5-7-1 Biodiv 1: 8-4-6-2
11 Biodiv 2: 1-3-4-6 Biodiv 1: 2-8-7-5
12 Biodiv 2: 5-2-6-3 Biodiv 1: 4-7-1-8
13 Biodiv 1: 7-6-2-4 Biodiv 2: 3-5-8-1
14 Biodiv 1: 8-4-3-2 Biodiv 2: 6-1-5-7
15 Biodiv 2: 6-1-8-7 Biodiv 1: 5-2-4-3
16 Biodiv 1: 2-8-1-5 Biodiv 2: 7-6-3-4
17 Biodiv 2: 4-7-5-8 Biodiv 1: 1-3-2-6
18 Biodiv 1: 4-7-5-8 Biodiv 2: 1-3-2-6
19 Biodiv 2: 8-4-3-2 Biodiv 1: 6-1-5-7
20 Biodiv 1: 8-4-3-2 Biodiv 2: 6-1-5-7

Table 8.4: Experimental matrix of the user evaluation

cipants in our lab at the FSU Jena. In a moderated live session, we collected quantitat-
ive and qualitative feedback. The moderator guided the participants through the whole
study. The questionnaires were provided in an online form (LimeSurvey38) to facilitate
the analysis. We provided a laptop (Windows NT 10.0, Win64), a mobile keyboard and
a mouse. All search tasks and surveys were carried out in a Mozilla Firefox browser
(Version 102.0). Thus, all participants took part in the study under the same technical
conditions. We explicitly decided not to use the participants normal working environ-
ment, as different browsers and screens could have had an influence on the impression
and satisfaction of the displayed search results.

The total evaluation time per user was around 120 minutes. The search part of the
experiment took around 80 minutes. Each task was around ten minutes: One minute
before the search to answer the questionnaire, five minutes to find the datasets, and two
minutes after the search to answer questions about the result. Another two minutes were
scheduled to go to the next question and to report usability issues. The participants had
to add appropriate datasets to the data basket by selecting them. The moderator stopped
the time per task manually. After five minutes at the latest, the task was stopped and the
users had to download the basket.

The non-search part took around 40 minutes. We scheduled 25 minutes for the post
system questionnaires (SUS score, two systems, ten minutes each) and the exit question-
naire with questions about a comparision between the two interfaces and some statistic
questions. Another 15 minutes in the beginning were utilized for some introductory ex-

38LimeSurvey, https://www.limesurvey.org

https://www.limesurvey.org
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Search tasks in the user evaluation

1.) What data are in the repository for Foraminifera (forams, single-cell organisms) in
the benthic zone (water layer in the ocean floor)?
2.) How variable is the oxygen concentration of sea water of the global ocean?
3.) What data exist for Poales (invasive grasses), e.g., Poaceae (grass family)?
4.) How high are sulfate reduction rates at cold seeps (cold vents, areas in the ocean
floor where hydrocarbon-rich fluids are leaking)?
5.) What data are in the repository on ocean acidification or coral bleaching?
6.) What data exist in the repository for bacteria in the groundwater?
7.) What data exist for Lepidoptera (butterflies, moths) on oaks (Quercus)?
8.) What data in the repository contain samples from surface water?

Table 8.5: Search tasks in the user evaluation

Figure 8.10: Overview of the overall survey flow for the first three users.

planations (welcome, purpose of the study) and some training information. We wanted
to minimize the ‘training effect’, so that participants can do and start the search imme-
diately. We told the participants that the first interface needs keywords and categories
as input, while the second user interface recognizes the categories on its own. We also
explained that both interfaces provide a search beyond keywords and that the system auto-
matically adds synonyms and more specific terms of a query term. We briefly explained
the highlighting: bold font denotes search terms and its relative terms, a green underline
allows a further inspection of synonyms and the biological entity function highlights addi-
tional biological terms (not necessarily related to the search term) in blue. We did neither
explain the individual categories nor the differences in the explanations.

Search tasks: The largest group of question types in the question corpus study were
factoid questions (Chapter 4). Thus, we solely selected search tasks of this question type
from that corpus as it denotes the highest demand on information needs. Furthermore, we
also looked for questions where data is available in GFBio. In addition, the questions also
had to match the studied entity types relevant for biodiversity research, namely Organism,
Environment, Material, Process, Quality. The final eight search tasks are presented in
Table 8.5. We provided brief explanations on the main keywords, but we permitted the
subjects to look for further descriptions in external services such as Wikipedia39 if needed.
We also encouraged them to search with other keywords than the provided ones.

39Wikipedia, https://www.wikipedia.de/

https://www.wikipedia.de/
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Figure 8.11: The post task questions provided after each search task.

Questionnaires: The users were guided through all questionnaires and search tasks in
a survey. For each user, we prepared a separate survey according to the experimental
matrix (Table 8.4). The overall survey flow is shown in Figure 8.10. Before each search
task, the users were asked if they expected a certain content in the datasets (in case they
were familiar with the research topic) and how sure they were about their answers. After
each search task, they were asked why the selected datasets were relevant, and they had
to answer questions on satisfaction, ease of use, ease of learnability and time (Figure
8.11). The questions were mainly taken from the NIST questionnaires, but were adapted
to dataset search. The full questionnaires are provided at Zenodo [Löffler et al., 2022c].

After using each system, users had to fill out a SUS questionnaire. We adapted the
ten statements according to the topics we wanted to explore. Therefore, the questionnaire
consisted of two questions on the query input, three questions on the default highlightings,
three questions on the biological entities highlighting and two questions on the provided
query explanations. However, we followed the SUS schema with five positive and five
negative statements.

Data collection and metrics: We utilized a mixture of performance-based metrics, self-
reported metrics and issue-based metrics (Chapter 2.1.2) for the user study. Performance-
based metrics were primarily used for the measurement of the efficiency of use. Oc-
curring errors and usability issues (issue-based metrics) were collected orally in the live
sessions as well as in comment functions in the surveys. The different questionnaires
before and after each search task as well as the SUS questionnaires after each system
provided self-reported metrics to measure satisfaction, learnability, comprehensibility and
completeness. Table 8.6 presents the evaluation model with the evaluation criteria and the
measurements.
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(A) Determine whether users prefer a form-based input or a classical one input field for a semantic dataset search
Criteria Measurement
Efficiency of Use User tasks: 4 search tasks per user interface, 5 min to solve the task

Task success Level of Success

• complete success: at least 3 datasets are downloaded

• partial success: 1 or 2 datasets are downloaded

• failure: no datasets found/ downloaded or time over

Task time Per task, the time is manually stopped by the moderator
Navigation Log file analysis: the number of clicks counted per user interface until the download

button of the data basket is pressed
Errors Errors and issues are collected orally in the live sessions and in comment functions

in the surveys, they are classified into four categories: functional (technical issues),
content (questions unclear or data missing), comprehensibility (confusing descrip-
tions or functions), presentation (highlightings, icons, colors, fonts)

Easy to Learn Questionnaaires after each search task, exit questionnaire, observation
Satisfaction Questionnaaires after each search task, SUS questionnaire, exit questionnaire, orally

described impressions during live sessions

(B) Explore whether the presence of entity information from knowledge bases and full query information supports
the comprehensibility and acceptance of a semantic dataset search or whether it is disturbing and distracting
Criteria Measurement
Comprehensibility of highlightings
and explanations

SUS questionnaire, observation during live sessions

Completeness of highlightings SUS questionnaire
Satisfaction of highlightings and
explanations

SUS questionnaire

Usage of biological entity high-
lighting

Log file analysis: numbers of clicks on ’biological entities’ button

Table 8.6: Evaluation Model presenting the explored criteria and their measurements

Figure 8.12: The SUS questionnaire provided after each system.



Chapter 8. User Interfaces for Dataset Search and Usability Evaluation 197

PhD Postdoc Researcher Data Curator
0

2

4

6

8

10

12

U
se

rs
Education and Profession

Once in a year Once in a month Weekly Daily
0

1

2

3

4

5

6

7

U
se

rs

How often do you use dataset search applications?

Figure 8.13: Statistical information on the participants.
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Figure 8.14: Results on the search experience (questions taken from TREC Interactive Track).

8.5 Results

The results of the surveys and observations as well as the task success were compiled into
one large csv file. By means of a Jupyter notebook40, we analyzed the individual results.
The code is publicly available at GitHub41.

Figure 8.13 presents some statistical information. All 20 participants are experienced
scholars in the Life Sciences or Environmental Sciences with background in Botany, Eco-
logy and Biodiversity. Two-third of them use dataset search application only from time
to time, e.g., monthly or once in a year. Seven scholars indicated to look for datasets fre-
quently (daily or weekly). The provided search tasks were similar to search tasks from the
scholars’ daily research practise (Figure 8.14). Thus, the selected search tasks represent
real information needs.

The overall SUS scores are above average for both interfaces (68 for Biodiv 1 and 71
for Biodiv 2). This denotes an overall good usability for both interfaces as a value higher
than 68 is desired. Figure 8.15 gives more insights on the dispersion and shows that in
particular for Biodiv 2 the dispersion is large. The values for Biodiv 2 are in a range from
42 to 97. Looking at the results for each user, the result indicates that 11 users gave higher
ratings for Biodiv 2 than for Biodiv 1. However, the SUS scores alone do not give a full

40Jupyter notebook, https://jupyter.org/
41Analysis, https://github.com/fusion-jena/semantic-search-usability-analysis

https://jupyter.org/
https://github.com/fusion-jena/semantic-search-usability-analysis
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Figure 8.16: Results on the ease of use, learnability and best overall (Exit questionnaire)

picture. The results of the exit questions on the ease of use and learnability (Figure 8.16)
show that Biodiv 1 was not so easy to learn but easier to use. Probably, that is the reason
why there is no winner as ’best overall’. This result also correlates with the answers
on the open exit questions on what users liked and disliked. Users liked the pre-defined
categories in Biodiv 1, because they “helped to narrow down the search criteria and to
get pertinent results.” The term suggestion per category was also emphasized positively.
However, a couple of participants also a liked Biodiv 2, because it is “easier, as it goes
straight forward without thinking about categories” and it “is more general and helped in
searching for topics that I was unfamiliar with”.

8.5.1 Search Input

The overall results for task success and task time are depicted in Figure 8.17. In Biodiv
2, more participants were able to find 3 datasets being relevant for the search task than in
Biodiv 1. In addition, the result for Biodiv 2 contains less failure cases. Concerning the
time, the differences are small. The average times are 225 ms for Biodiv 1 and 204 ms for
Biodiv 2, respectively.

A more detailed picture provides the task-based analysis. For almost all tasks users
were able to find 3 datasets in both user interfaces (Figure 8.18). For only two tasks, the
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Figure 8.18: Task success per task.

task success is low. For task 7 (Lepidoptera on oaks), no participants found 3 relevant
datasets. Looking at the orally reported and written comments gives further insights on
these cases. Several users complained that the returned datasets for task 7 “are not rel-
evant” or that only partial data is contained in the datasets, e.g., “Quercus contained in
datasets but no butterflies?” The same applies for task 2 (oxygen concentration of sea
water). Not many users were able to find three relevant datasets in both user interfaces.
Here, the scholars argued again that “a few relevant datasets” were returned, e.g., the sys-
tem “picks up carbon but I entered oxygen”. Obviously, for these two tasks, the corpus
did not provide sufficient data. Another circumstance to consider in the analyis of the task
success is that most users were no experts in the proposed search tasks (Figure 8.19). As
biodiversity research is a broad and heterogenous topic, this was also not to be expected.
Therefore, with respect to the task success, the search interface with a single input field
and automatic category recognition is more suitable for unknown search topics.

The total numbers of clicks for both user interfaces are 448 for Biodiv 1 and 456
for Biodiv 2, respectively. As these values are very close together, we can not draw any
conclusion for the efficiency concerning the total clicks.

Table 8.7 lists the most occurring issues mentioned by at least three users and classi-
fied into four categories. Only one of the presented issues prevented users from fulfilling
the search task. The search with three or more terms did not work at all time. As we
had a few other network issues during the live session, e.g., WiFi connection lost, we
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Figure 8.19: Topical expertise per task.
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highlighting of query
terms missing

Sorting the search res-
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Not all Poales are invas-
ive grasses (task 3)

“invasive” – unclear
which category to
choose

miss-highlighting or too
many highlightings

Biological highlighting
didn’t work for all data-
sets

Too many similar data-
sets (task 4)

not clear how the results
are sorted

Search did not come
back when entering more
than 3 search terms

partially relevant data in
the datasets (task 2)

Facets should come up
with the search result

less relevant data avail-
able, e.g., ‘Quercus con-
tained in datasets but
butterflies?’ (task 7)

Table 8.7: Orally reported and written comments on errors and usability issues sorted into four
categories. For each group, up to five issues are listed, reported by at least three subjects. If not
stated in brackets otherwise, all listed issues occurred in both interfaces.
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Figure 8.20: Learnability (top row) and easy of use (bottom row) per task.

assume that this mentioned issue is also related to the sometimes instable network con-
nection. In general, both interfaces are capable to perform a search with more than three
search terms. However, two classical usability issues have been detected. Several subjects
missed a ‘delete button’ in Biodiv 1 to clean all input fields at once for the next search.
And second, a confirmation statement is missing after the data basket has been deleted.
Apart from problems or confusing issues, the participants also indicated further necessary
improvements for a productive usage. Several times users requested a sorting by data
repository or data type. This also addresses the reported issues on the unclear sorting in
the comprehensibility column. Moreover, once the first search results are shown, users
would like to have facets for narrowing the result. The participants also reported multiple
times that the highlightings of query terms are missing, which is a hint that they had used
this explanation and missed it in case it was not present.

Concerning the learnability, the results in Figure 8.20 (top row) reveal that the ratings
for Biodiv 2 are slightly higher than for Biodiv 1. Hence, it is easier for users to get
started with Biodiv 2. However, the results for the ease of use (Figure 8.20 (bottom row))
are balanced between the two user interfaces. Users were able to do the tasks with Biodiv
1, but it took some time to get familiar with the UI. These answers are also reflected in the
results of the statements about the search input in the SUS score. On the statement “The
search is easy to use”, Biodiv 2 got the highest rating almost twice as high as the ratings
for Biodiv 1. However, the sums of all high ratings (4 - agree and 5 - strongly agree) over
all users are close together (Biodiv 1: 18 users, Biodiv 2: 19 users). The results for the
overall satisfaction per task are displayed in Figure 8.21. The high ratings (4 - agree and
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Figure 8.21: Satisfaction per task.
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Figure 8.22: SUS questions to the search input.

5 - strongly agree) occur more often for Biodiv 2 than for Biodiv 1. Again, the answers
on the statement “The search input limits me in expressing my information need” in the
SUS questionnaire show that users tend to agree more with that statement for Biodiv 1
than Biodiv 2.

8.5.2 Highlightings and Explanations

For the majority of users (Biodiv 1: 15, Biodiv 2: 13), highlightingss of query terms and
related terms are helpful (ratings of 4 and 5) in both interfaces (Figure 8.23 (left)). In
most cases, the provided information is sufficient. However, in some datasets the high-
lightings were missing (see also Table 8.7) and users were a bit confused when they were
not present. The participants also noticed some mis-highlightings and complained about
too many terms being displayed in bold font. Hence, they gave a medium rating. The
presented information for the highlighting of query terms is comprehensible for the ma-
jority of scholars in both interfaces (Figure 8.23 (right)). However, due to the mentioned
issues several users gave only medium ratings, and some users also wish to get more
explanations on the highlighted query terms.

Based on our observations, only 50% of the participants used the biological entities
function to get further explanations of the biological terms mentioned in the datasets. In
the logs, we counted 101 clicks on the button ‘biological entities’ for Biodiv 1 and 75
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Figure 8.23: SUS statements on the default highlighting of query terms in bold font.

clicks for Biodiv 2. When rating the statements in the SUS questionnaire, some parti-
cipants looked back into the user interface to figure out what this function is doing in
order to be able to rate it. One user also gave an oral feedback that he “always give
neutral ratings (3) when he is not familiar with something or when he has not used a
function yet”. In general, the participants liked the biological entities function in both
interfaces (Figure 8.24 (left)). However, for datasets with longer text, e.g, abstract or
description, the call to the Semantic Assistants takes a few seconds to come back. In
worst case, the function did not return a result. Thus, we counted that as a functional
issue (Table 8.7). The presented information for each biological entity is comprehensible
(Figure 8.24 (middle)), however, it leaves room for improvement. For Biodiv 2, more
than twice users as for Biodiv 1 indicated that the provided information is not sufficient
(Figure 8.24 (right)). During the live sessions, for both user interfaces, we noticed that
users looked up terms in Google42 or Wikipedia43 (which was permitted) to get further
information. In particular, this happened for terms that were not highlighted or for which
the biological entities function did not return a result. Hence, there is a demand for ad-
ditional explanations, such as detailed descriptions for a term. Concerning the negative
statements on the comprehensibility, for both kinds of highlightings, default (query terms
and their relatives, Figure 8.23 (middle)) and biological entities (Figure 8.24 (middle)),
the participants gave low ratings, which means they disagreed with the statements and
the highlightings are comprehensible. The differences between both UIs in terms of the
lowest ratings ((1) strongly disagree and (2) disagree) for the comprehensibility of the
highlightings are too small to conclude which kind of explanation (the simple explantion
with no semantic information or the extended explanation with terminology information
and URI) is more useful. However, together with the results on the completeness and our
observations, we infer that there is a tendence that additional terminology information and
URIs do not confuse users and more additional information is desired.

Similar to the biological entities function, we also observed low usage of the query
explanation tab. Thus, the ratings for the query explanations (Figure 8.24) are not that

42Google, https://www.google.de/
43Wikipedia, https://de.wikipedia.org

https://www.google.de/
https://de.wikipedia.org
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Figure 8.24: SUS statements on the biological entities function.
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Figure 8.25: SUS statements on the query explanation

high and most users again gave a medium rating for the statement on the helpfulness. The
ratings for the second statement on the comprehensibility show a slight preference for the
simpler query explanations in Biodiv 1 without the full SPARQL information.

8.5.3 Discussion

Our presented results are based on the responses of 20 users. For four search tasks in two
user interfaces, the official TREC evaluation matrix needs only 16 subjects. Therefore, we
also computed all results for 16 users and provide the figures in the GitHub repository 44.
Figure 8.26 presents the SUS score and the responses on the exit questions for 16 users.
The result reveals that for 16 users the dispersion in the SUS score is as large as for
20 users and more users resulted in a higher SUS score in Biodiv 2 than in Biodiv 1.
However, the results for 16 users on the exit questions show that in terms of the ease of
use Biodiv 1 was preferred. Therefore, the overall results for 16 subjects correspond to
the outcomes with 20 subjects.

Hence, concerning the research goal to explore the different search inputs in a se-
mantic dataset search (form-based with pre-defined categories versus a single input field
with automatic category detection) we conclude that overall both interfaces are suitable
for dataset search. For unknown search tasks, as provided in this study, a user interface
with a single input field and automatic category detection is more suitable. For search

44Analysis, https://github.com/fusion-jena/semantic-search-usability-analysis

https://github.com/fusion-jena/semantic-search-usability-analysis
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topics users are familiar with, a category-based search could be a good solution as well.
However, for this assumption further long-term studies are needed. The highlighting of
query terms and related terms are in general helpful. The provided semantic information
on terminologies and URIs in Biodiv 2 did not confuse the subjects but were appreciated.
In particular, the highlightings of the biological entities function were useful. However,
further additional resources, such as links to Wikipedia, might be helpful to allow users
to obtain further descriptions immediately. In terms of the query explanations our results
show that full query information with SPARQL statements can be omitted. Simple query
information on extended terms is sufficient.

The reported issues during the live sessions and in the comments show that further
functions are needed to use our system in production. The most desired functions in both
user interfaces are additional facets to narrow down the results after a search and filters to
sort the datasets according to different metadata fields such as data repository, data type
or collection date.

With respect to other studies in semantic search [Elbedweihy et al., 2012]
[Vega-Gorgojo et al., 2016b], our results reveal that in a semantic dataset search both user
inputs are proper search accesses. It depends on the expertise of the scholars what inter-
face to take. For search tasks they are not familiar with (as provided in the study), the task
success was slightly higher in the interface with one input field. However, users overall
liked both proposed interfaces and gave positive feedback on the form-based category
search.

Our study also provides some limitations. For at least two tasks, the corpus consisted
of too little appropriate datasets influencing the task success. As we took care that all
tasks are performed in both interfaces in the same number, it does not influence the overall
result. In addition, some functions are still prototypical and not fully functional such as
the highlighting of search terms and the biological entity function. However, the users’
feedback on the highlightings and in particular on the biological entity function are overall
positive. Future studies are needed to explore semantic dataset search in long-term usage
allowing insights on daily working context with own information needs.

8.6 Summary

The last component of our proposed semantic dataset search focused on the comparision
between a structured, form-based search input based on categories and a classical one in-
put field. Second, we explored different explanation approaches. In particular, we wanted
to know whether semantic information about utilized terminologies and URIs confuse
users or whethers they appreciate this additional information. Both research questions
address H5.

We found out that the choice of the search input depends on the expertise of the schol-
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Figure 8.26: SUS score for 16 users (top row) and results of the exit questionnaire for 16 users
(bottom row))

ars and how familiar they are with the search topics. In case users are no experts in
the topic for which they need datasets, a classical one input field with an automatic de-
tection of semantic categories is preferred. However, users gave positive feedback on a
form-based search input with the opportunity to explicitely provide the semantic category.
Here, further research with long-term studies is needed to explore the suitability in daily
research practise. Therefore, our hypothesis has not been confirmed. However, we are
also not completly wrong with our assumption. Concerning the proposed explanation
approaches, our results reveal that full query explanations are not necessary but simple
explanations on extended terms and utilized categories are sufficient. In terms of text
highlightings, we conclude that it is highly recommended to highlight search terms and
related terms in search results. On demand, users also like to obtain additional informa-
tion such as the semantic category and linked terminologies and URIs. Moreover, further
integrated resources such as Wikipedia could be helpful to provide additional descriptions
on unknown terms.



Chapter 9

Summary and Discussion

“Some people call this artificial intelligence, but the reality is this tech-

nology will enhance us. So instead of artificial intelligence, I think we’ll

augment our intelligence.”

- attributed to Virginia M. Rometty, CEO of IBM, 2012 - 2020

The emergence of the Semantic Web allows to link research artifacts, experiments,
code and publications. Every single part of research can now be described in a way
enabling machines to access data, to find data and hence to reuse data. The Semantic Web
allows insights into data we have not seen before, and we can draw conclusions that were
not possible before.

This work aimed to analyze the current obstacles in dataset retrieval. It was also
targeted to develop a novel semantic dataset search supporting scholars in biodiversity
research to find more relevant research data and to enable a semantic search beyond
keywords. This chapter summarizes the findings (Section 9.1) and discusses the results
(Section 9.2).

9.1 Contributions

In this work, we addressed two objectives and five hypotheses. In the following, we repeat
the objectives, hypotheses and describe briefly how we addressed these research aims and
what we have achieved. Limitations are presented in Subsection 9.1.1.

Objective 1: The first objective (O1) aimed to identify obstacles in current dataset
search systems based on the three components in a retrieval system (questions, data, re-
trieval approach).

Hypothesis H1 focused on the current issues in dataset search applications concern-
ing the retrieval approach and the accuracy of the returned results. We wanted to figure

207
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out whether scholars in biodiversity research are able to find relevant datasets in a current
dataset search system. In a summative evaluation (Chapter 3.2), eight domain experts as-
sessed 28 search tasks from biodiversity research. The scholars answered a questionnaire
afterwards. This allowed us to get further qualitative feedback. In a second user study
(Chapter 3.3), we explored the differences in a keyword search with no query expansion
and a semantic search with query expansion including an adapted hierarchical expansion
strategy. This gave us insights on the overall usefulness of semantic technologies for
dataset search.

The evaluation of GFBio’s dataset search resulted in moderate MAP and nDCG val-
ues (Chapter 3.2). Hence, users are able to retrieve relevant datasets in a current keyword
based data portal with conventional retrieval models such as TF-IDF, but the results
leave room for improvements. Therefore, our study is a contribution towards quanti-
fying the current problems in dataset search. In general, users’ impressions of a dif-
ficult and time-consuming search introduced in the problem statement are confirmed.
However, the GFBio project, with PANGAEA hosting the search index, already aimed
to improve metadata descriptions, and therefore, the project utilized a domain-specific
metadata standard (panSimple) with domain-specific metadata fields being mostly filled
(see also Chapter 4.4). We think, that these improvements already enhanced dataset re-
trieval and thus, the evaluation did not result in poor MAP and nDCG values as one
could assume based on the descriptions in the problem statement. Concerning the user
interface, users were overall satisfied with the query input and the presentation of search
results, but the given control functions need to be better communicated. The comparitive
study between a keyword and a semantic search (based on query expansion but including
hierarchical terms) resulted in a larger number of relevant datasets with search queries ex-
panded on synonyms and subclass labels, and the returned datasets are also highly relev-
ant. Other semantic relations, in particular expansions on siblings and their descendants,
require further explanations. Therefore our study reveals that the usage of terminologies
and ontologies enhance the retrieval process in dataset search significantly.

The results of the comparative study have been published as a poster paper at SE-

MANTiCS’16 [Löffler and Klan, 2016]. The findings of this study were incorporated into
a first version of a semantic dataset search in the scope of the GFBio project, published
as demo paper at ESWC’17 [Löffler et al., 2017].

In Hypothesis H2, we aimed to analyze information needs and metadata in biod-
iversity research. In order to get insights on what scholars in biodiversity research are in-
terested in for dataset search, we gathered search questions in three biodiversity research
related projects (Chapter 4.2). We inspected the questions manually, developed an in-
formation model and classified the noun entities into domain categories. These proposed
categories were evaluated with nine domain experts. The scholars had to sort the pre-
labeled noun entities and adjectives into the given categories. This formative evaluation
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(card sorting) aimed to verify the completeness and comprehensibility of the suggested
domain classes and thus to verify the information model. In order to study whether these
information needs are reflected in metadata, we analyzed metadata standards (Chapter
4.3) and utilized metadata fields in five large data repositories (Chapter 4.4). In a con-
tent study, we also explored whether existing text mining pipelines are able to identify
important entity types for biodiversity research and to enhance and improve metadata
descriptions.

One major outcome is a question corpus with 169 search questions collected in three
biodiversity research related projects (Chapter 4.2). Based on these questions, we grouped
noun entities into domain categories and evaluated the proposed classes with domain ex-
perts. Seven out of 13 proposed domain categories turned out to be highly relevant (En-
vironment, Quality, Material, Organism, Process, Location and Data Type) in scholarly
search interests. The study also showed that information needs in biodiversity research
are very diverse. They have a wide range in terms of complexity and can change over
time. However, a large portion of artifacts and phrases in the search questions could not
be grouped into any of the given categories. Hence, our results also show that the determ-
ined categories do not form a complete picture and further discussion in the community
are needed to extend, to merge or to rename categories. Based on the main existing
metadata standards for the Life Sciences, we analyzed metadata in five large data repos-
itories on what metadata standards they utilize and whether these metadata fields contain
scholarly information needs. Out results reveal that general data repositories tend to use
only general metadata standards. Domain-specific data repositories are more likely to util-
ize domain specific standards. This result might not be surprising, however, what stands
out is that even if a domain specific metadata standard is utilized, the respective fields are
not always filled. Moreover, in general standards, the field dc:subject can be utilized
to provide domain specific information. However, even those fields are not always filled.
In our content study, we showed that descriptive fields such as dc:subject, dc:title
and dc:description indeed contain hidden information being relevant for information
seekers. Therefore, we conclude, that current metadata reflect scholarly search interests
only to some extent. A major problem are insufficiently described metadata. The results
of Hypothesis H2 (Chapter 4) were published in a journal paper [Löffler et al., 2021].

With the results of H1 and H2 Objective 1 is achieved. Obstacles in data are sparse
and insufficient descriptions. Information needs in biodiversity research are diverse, have
a wide complexity range and can change over time. Concerning the retrieval process,
it turned out that conventional keyword based retrieval approaches result in moderate
accuracy values and semantic expansions help to retrieve more relevant datasets. In the
user interface, improvements are needed in terms of explanations of search results and
control options.
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Objective 2: The second objective (O2) focused on the design and development of
an improved dataset search taking scholarly information needs into account, describing
scientific data appropriately and returning relevant results being comprehensible and re-
usable. Three hypotheses were related to this goal.

Hypothesis H3 argued that descriptive metadata fields, such as title or abstract, con-
tain useful information implicitly, reflecting information needs of the respective domain.
This hidden data could be extracted and semantically enriched with text mining tech-
niques. We analyzed this hypothesis by means of a text mining pipeline BiodivTagger rep-
resenting the pre-processing component of our proposed semantic dataset search (Chapter
6.4). For the evaluation, we created a metadata gold standard with manually labeled cat-
egories (Chapter 6.2). Extracting domain specific entity types and URIs was also the first
step towards a search beyond keywords (Requirement R1) and a search within categories
(Requirement R2).

The inter-annotator agreement measure of the labeled metadata corpus QEMP showed
that biological entities are fuzzy and difficult to classify. Even though a thorough training
of the annotators took place, the f-score values were low to moderate (Chapter 6.2). The
novel text mining pipeline BiodivTagger was developed based on rules and look-up ser-
vices in selected domain specific terminologies. The evaluation results with the QEMP
corpus show moderate results (Chapter 6.4). For the categories MATERIAL and QUAL-
ITY we achieved good results in terms of the recall values, but for the other entity types
the precision and recall values point to a moderate result. However, our BiodivTagger

pipeline is the very first text mining pipeline for the extraction of important entity types
and URIs for metadata in biodiversity research. We showed that domain ontologies (or
selected nodes) are a good starting point for semantic annotations of metadata and that
hidden information in metadata fields can indeed be extracted with text mining pipelines.
Future work is needed to improve the current approach, e.g., with additional rules, ma-
chine learning techniques or ontology extensions (see also Chapter 10). The analysis and
results of Hypothesis H3 (Chapter 6) were published as conference paper at LREC2020
[Löffler et al., 2020].

In Hypothesis H4, we aimed to evaluate various concept based retrieval models. We
analyzed whether an entity based retrieval model considering semantic relations in rank-
ing returns more relevant results than a concept based retrieval model using no additional
semantic relations in ranking. Therefore, we implemented several entity based retrieval
models and proposed various entity expansions based on core and hierarchy relations
of the respective domain terminologies (Chapter 7.7). Based on the results of the pre-
processing component, we established a semantic index over semantic annotations (URIs
and entity types), which also addressed Requirements R1 and R2. For the evaluation of
biodiversity metadata, we created a test collection with 14 questions and binary human
judgments for 372 metadata fields from the BEFChina project (Chapter 7.4). In order to
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evaluate the models and expansions in another Life Sciences related domain, we utilized
the bioCADDIE test collection with 15 questions and about 792.000 datasets.

Besides the test collection, the implementation of three existing entity based retrieval
models being publicly available as GATE Mímir plugins is another contribution (Chapter
7.7). The evaluation on different entity expansion strategies with two dataset corpora
(BEFChina and bioCADDIE) showed significant increased Precision values for the entity
expansion with descendant nodes of the linked ontologies (Chapter 7.8). The second
best entity expansion strategy was the expansion with sibling nodes and their descendants
with respect to the baseline without any expansion. In contrast to our assumption, the
expansion with core relations such as partOf did not result in more relevant datasets.
Concerning the inspected entity retrieval models, we could not draw any conclusion that
a particular scorer leads to an improved ranking for a specific entity expansion strategy.
The values for all metrics were very close, and the number of questions provided in the
test corpora were less than usually provided at TREC competitions. We conclude that
more studies are required to investigate whether more queries and search tasks are needed
or whether there are other dependencies. The novel dataset test collection (Chapter 7.4)
was published as short paper in the RIO journal [Löffler et al., 2021].

H3 and H4 both addressed Requirements R1 and R2 (search beyond keywords and a
search within domain specific categories). Both requirements were achieved by using a
semantic index over URIs and categories. Due to an entity based retrieval model using
URIs, a search beyond keywords includes synonyms and alternative labels if this inform-
ation is provided in the ontology. In addition, entity expansion allows the integration of
further semantic relations. The proposed architecture based on the GATE framework even
enables SPARQL queries at run time. However, as SPARQL queries are too complicated
for end users and can take several seconds or minutes to come back, we utilized tem-
plates in the frontend and SPARQL statements (to obtain related hierarchy concepts) in
the pre-processing phase.

Hypothesis H5 addressed the usability in a semantic dataset search (Chapter 8.4).
The research aim was to figure out whether users are more efficient in a search over se-
mantic categories in comparison to a semantic dataset search offering a one input field
as search input (Requirement R3). In addition, we also wanted to explore various ex-
planation strategies (Requirement R4). In particular, we were interested whether users
appreciate semantic information such as URIs and terminology names or whether they
prefer simpler explanations. To verify this hypothesis, we developed two user interfaces
on top a semantic index and conducted a summative evaluation in a user study with 20
participants, eight search tasks and surveys before and after each search task, after each
system (SUS questionnaire) and at the end of the survey (Chapter 8.4).

One outcome is a modular frontend framework called [Dai:Si] to easily replace or ex-
tend the search index, terminology service or the frontend technology (Chapter 8.3). It is
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publicly available, and a first version is now integrated into the services of
NFDI4Biodiversity1. Another contribution is a comprehensive user study with 20 schol-
ars (Chapter 8.5). The usability evaluation revealed that for unknown search tasks users
prefer the classical one input field search. However, the results for the SUS score and
task success of the second proposed user interface with a category based search were
very close to the results for the one input field search. Several users also emphasized
the advantages of a category based search in oral or written comments. Hence, further
long-term user studies are needed to explore dataset search applications in daily research
practice. In terms of the search input, our hypothesis has not been confirmed, but we are
also not completely wrong. The second focus in the user study was on the exploration of
different explanation strategies. Our results reveal that simple explanations on extended
terms and utilized categories are sufficient. Highlights of search terms and related terms
in the search results are very helpful for users to easily recognize the relationship of the
originally entered keywords and the datasets in the result set. Users were not confused by
information about the linked terminology and URI. Moreover, further integrated resources
such as Wikipedia could be helpful to provide additional descriptions on unknown terms.
The first version of [Dai:Si] was published as demo paper at the s4biodiv workshop in
2021 [Shafiei et al., 2021].

Hypothesis H5 addressed Requirements R3 and R4, a comprehensible search provid-
ing explanations and an easy-to-use search interface. As both user interfaces reached
high SUS scores above the state-of-the-art threshold of 68 and explanations are given by
highlightings and additional functions, both requirements are fulfilled.

Therefore, as H3 - H5 are addressed, Objective 2 is also achieved: We proposed and
developed an improved dataset search. We ensured a modular structure replace individual
components easily. However, the pre-processing component is a domain specific solu-
tion. Setting the same infrastructure up for a new domain would require to establish a
domain specific information model. Suitable terminologies and taggers need to be found
or developed. The retrieval component is capable to replace or to add further domain
categories, and a modular structure in the user frontend is also given. The search index
only needs to provide specific fields of the data model (described in the documentation on
GitHub).

Use Cases: In Chapter 5, we introduced two use cases that we aimed to improve with
our semantic dataset search. Figure 9.1 provides screenshots of the first use case in Biodiv
1, where users have the opportunity to sort the key term ‘sea water’ into different cat-
egories. Depending on the selected classification (Material or Environment), the system
considers this user input in the query and only returns datasets with ‘sea water’ in the
specified context. A demonstration of the second use case is depicted in Figure 9.2. A

1GFBio@NFDI4Biodiversity, https://search.gfbio.org/

https://search.gfbio.org/
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Figure 9.1: Screenshots for the first use case. A search with the key term ‘sea water’ returns differ-
ent results for the category Material and Environment and also considers the spelling ‘seawater’.

query for ‘bacteria’ now returns concrete bacterial species and takes the burden from the
user to recall or to look up the concrete species names.

Taking a look at the overall Hypothesis,

It is possible to analyze, describe and enrich scientific datasets and scholarly inform-

ation needs so that scholars are able to retrieve, understand, and reuse scientific datasets

with an improved retrieval system.

Our achievements reveal that domain-specific semantic annotations based on the LOD
cloud help to enhance metadata. These improvements support scholars in finding, under-
standing and reusing scientific data in biodiversity research.

9.1.1 Limitations

Our proposed semantic dataset search approach has some limitations, which we discuss
in more detail below.

Pre-processing Component: The current text mining pipeline BiodivTagger does not
contain a disambiguity component. Thus, in case several entries in ontologies match, we
take all suggested entities. Furthermore, the gold standard we introduced was only built
on a small size of 50 metadata files. In a new study, we developed a second improved
metadata gold standard with a larger amount of metadata files (150 metadata files) and
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Figure 9.2: Screenshot for the second use case. A search with the key term ‘bacteria’ returns
concrete bacterial species.

six domain categories being labeled [Abdelmageed et al., 2022]. In order to support ma-
chine learning tasks, we also provide this novel gold standard in the BIO-scheme format.
However, what is still completely missing are metadata gold standards with labeled entity
types and URIs (see also Chapter 10).

Retrieval Component: Updates in ontologies are currently not considered in our ap-
proach. In case a concept is moved, deleted or points to a different entity type, it is also
necessary to update the semantic annotations. A second issue is the graph computation in
memory. During the boot process, all required ontologies are loaded into the memory to
allow a fast access in the retrieval process (for HCF-IDF and the TaxScorer). However,
even then the computation can take several seconds or minutes. Another limitation is the
increased metadata size. Adding semantic annotations including hierarchy information
to metadata increases the file size, which also increases the index time. In worst case,
metadata files can grow from a few KB to several MB.

Presentation Component: Concerning the implementation, the main issue reported by
the users were missing highlightings or wrongly highlighted phrases. Second, the high-
lighting of biological entities is still an unstable function. A limitation in the evaluation is
the fact that we did not study data reuse. It would be interesting to explore for what pur-
pose the discovered datasets are reused and to quantify the benefit of a semantic dataset
search.
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9.2 Discussion

Based on Bast’s categorization of semantic search systems [Bast et al., 2016], the utilized
search engine GATE Mímir is a “Semi-Structured Search on Combined Data”. Due to
a semantic index of URIs and entity types, it allows the usage of keywords, entity types
and SPARQL statements in the query. The results are text snippets from datasets and
matching information from knowledge bases. As SPARQL queries are too complex for
end users, we developed a frontend framework providing a keyword based search over a
GATE Mímir semantic index. The keywords are linked to URIs, and the URIs are added
to templates enabling a search including descendant nodes.

The proposed classification of semantic search systems by [Bast et al., 2016] has some
limitations. For instance, it does not distinguish between query input and retrieval ap-
proach (Chapter 3.1.2). The user interface and the complexity of information needs
are also not considered. Therefore, we propose the following extended dimensions for
the classification of semantic search system being inspired by [Bast et al., 2016] and
[Unger et al., 2014]. We take the two dimensions (search approach and data sources)
introduced by [Bast et al., 2016], but we split the search approach into two groups, query
input and retrieval approach. The work by [Unger et al., 2014] focuses on question an-
swering, a specific type of semantic search systems, and suggests three characteristics:
question/answer type (nature and semantic of question and answer), data sources (un-
structured, semi-structured, structured) and semantic complexity (e.g., disambiguity). In
addition to data sources, overlapping with [Bast et al., 2016], we add the dimensions ques-
tion/answer type and complexity to our proposed classification. As a completely novel
dimension, we incorporate explanations. Explanations are essential for comprehensibility
in dataset search, in particular to understand whether a result item belongs to the originally
entered query terms or not. We categorize each dimension along three levels. Figure 9.3
presents a radar chart with all six dimensions including a classification of our proposed
system to what extend it supports the individual variables.

According to [Bast et al., 2016], Query input can be grouped into keyword search,
structured search (type based, specific query languages or formal query languages such as
SPARQL) and natural language search. Our system supports a keyword search, however,
the underlying system GATE Mímir also allows a structured search using entity types and
SPARQL sub queries. Hence, our system can be considered as an approach supporting
keyword and structured search.

The dimension Data describes the structure of data sources and comprises completely
unstructured data (e.g., text) or partially structured data with unstructured text fields (e.g.,
metadata, documents in XML format), structured data (knowledge resources in RDF and
OWL format) and a combination of both unstructured/partially structured and structured
data (e.g., documents and linked entities) [Bast et al., 2016]. Our system is mainly de-
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Figure 9.3: Variables influencing a search process.

signed for semi-structured metadata with short text passages as it occurs in title or abstract
metadata fields. Metadata and queries are enriched with domain categories and entities.
The output are datasets and information on utilized terminologies and entities. Therefore,
our system supports combined data.

Question and Answer type characterize the question on the level of difficulty. Accord-
ing to [Unger et al., 2014], we distinguish between simple factoid questions, definition
questions and further more sophisticated questions such as association questions or opin-
ion questions. Based on the findings in Chapter 4.2, we recognized that most questions
in biodiversity research are factoid questions expecting datasets containing the desired in-
formation. Our system is not designed as a full question-answering-system and therefore
can not provide a perfect answer. Therefore, we classify our approach not on a high level
for this variable but on a level mainly supporting factoid questions returning datasets that
either contain the required answer or that provide hints to answer the question.

In the Retrieval approach, according to [Bast et al., 2016], we differ between keyword
based retrieval, keyword based retrieval but with ontology support (query-expansion or
entity highlighting in result set) and fully concept based ranking. Our approach is fully
concept based and integrates further relations through additional SPARQL queries. The
result set contains metadata files additionally enriched with concepts from knowledge
bases.

Inspired by [Unger et al., 2014], we add the Complexity of a search task as another di-
mension. It comprises the comprehensibility and interpretability of an information need.
As a search does not aim to provide an exact answer (as in question answering), we do not
consider all suggested subclasses by [Unger et al., 2014] but only take the subclass ’se-
mantic complexity’, which describes the “complexity of the domain, the amount of ambi-
guity and vagueness in the question, as well as data hetero- geneity” [Unger et al., 2014].
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As this classification is difficult to rank, we propose the following three levels based on
the suggested subclasses: low complexity (no or only one subclass partially considered
in the proposed system), medium complexity (two or more dimensions partially or fully
considered), high complexity (all dimensions fully addressed). Our system does not sup-
port disambiguation, but offers a search over heterogenous data in biodiversity research,
a highly complex domain, we assign our system to a medium level.

The outcomes of the first user evaluation of our semantic search prototype (Chapter
3.3) indicate the importance of Explanations in the user interface. Incorporating addi-
tional knowledge into the search process requires improved guidance and explanations
why a result is returned and how it is related to the original query. This dimension re-
flects the degree of explanations in the user interface. We differ between explanations on
the search query, highlights of search terms and related terms in the result set and addi-
tional highlightings such as further relevant entities. Our system fulfills all three kinds of
explanations.

With this work, we proved the feasability of integrating additional semantic know-
ledge into the retrieval process. We also showed that domain knowledge improves dataset
search significantly. In order to achieve these goals, we combined results and findings
of several research fields in computer science, namely text mining, information retrieval
and semantic web. In the future, similar to biodiversity research, new innovations and
technological breakthroughs in computer science will only happen when interdisciplinary
thinking and research is conducted. A lot of challenges remain, which we address in the
next chapter.
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Future Work

“The Web as I envisaged it, we have not seen it yet. The future is still so

much bigger than the past.”

- Sir Tim Berners-Lee [Silva, 2009], Inventor of the World Wide Web

and winner of the Turing Award

Ontologies and knowledge graphs are increasinly becoming the backbone of FAIR
data management in academia and industry. This accomplishment is based on semantic
web technologies and belong to the research field of symbolic AI, the classical, rule-based
artifical intelligence. In some areas, the outcomes of symbolic AI have been overtaken by
subsymbolic approaches such as deep learning and neural networks, e.g., language mod-
els such as BERT achieve impressive accuracy values in various NLP tasks. The same
also applies to learning-to-rank approaches in information retrieval. However, only the
classical, symbolic AI approaches enable reasoning, the inference of logical implications,
and are closer to human thinking. In the future, we assume that both, subsymbolic and
symbolic AI, will be combined to form declarative, unbiased intelligent applications such
as semantic dataset search. In the following chapter, we point to future research direc-
tions for different topics addressed in this work. In particular, we focus on novel ideas
to improve research data, approaches in text mining and information retrieval to link and
combine symbolic and subsymbolic AI approaches, further ideas for improving and eval-
uating user interfaces in dataset search, and we give an outlook on extended functions in
search such as personalization.

Improvements of research data: Our research on scholarly search interests and
metadata (Chapter 4) reveal that general metadata standards reflect scholarly informa-
tion needs only partially. Hence, we recommend data providers to utilize domain spe-
cific metadata standards when available. Since a couple of domain standards provide
a large number of metadata fields, it is necessary to determine mandatory and optional
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metadata fields being aligned to relevant domain categories. In addition to domain spe-
cific metadata standards, it is also essential to support scholars in the data submission
process. In particular, data curation services are needed to describe data with proper ter-
minologies and identifiers. Linked Open Data [Heath and Bizer, 2011] permits to link
datasets, code and publications fostering an improved data findability and data reuse.
In the long run, we assume that metadata standards will develop towards full semantic
formats such as RDF. One example is ABCD 3.01, a standard for collections and mu-
seums in biodiversity research. Approaches to map CSV, TSC and XML to RDF already
exists2 [Dimou et al., 2014].

Initiatiaves such as schema.org3 and domain specific variants, e.g., bioschemas.org4

could be another improvement for landing pages at data archives. The idea of schema.org
is to provide meaningful entities with unique identifiers inside the HTML tags (instead of
keywords) to label authors, organizations, datasets, geographic and temporal information
in web pages. These enrichments enhance data crawling for external search engines, e.g.,
Google’s dataset search5 as well as data findability. We assume that this extension will
become popular in the near future due to its easy integration. In 2023, already three
of our five studied data repositories, namely GBIF, DRYAD and PANGAEA, provide
schema.org and/or bioschemas.org entities on their landing pages.

Improvements in the pre-processing component: The proposed text mining pipeline
BiodivTagger (Chapter 6.3) is based on simple look-up services in specific domain on-
tologies or ontology nodes. A further disambiguation is currently not provided. Hence,
in case several entries in an ontology match, we import all matching URIs. A disam-
biguation component could compare the descriptions of matching entries in ontologies
with the given text. The best matching entries could be ranked on top. The score of
this ranking process could determine whether an entry is considered as semantic annota-
tion or not. Other approaches for Named Entity Recognition utilize language models
such as BERT [Devlin et al., 2019] to extract the correct entity type, which requires large
manually annotated corpora. Recently, we already proposed a larger metadata corpus
over 150 metadata files for biodiversity research [Abdelmageed et al., 2022]. This novel
gold standard also includes species annotations, the annotations are provided in a format
suitable for machine learning tasks, and we also extended the manual annotations on
relations to leverage relation extraction tasks and finally knowledge graph creation. How-
ever, gold standards with URIs are still missing. As gold standards with URIs are a very
time-consuming task, silver standards with automatic semantic annotations (by means of

1ABCD 3.0, https://abcd.tdwg.org/3.0/
2RML, https://rml.io/specs/rml/
3schema.org, https://schema.org
4bioschemas.org, https://bioschemas.org/
5Google Dataset Search, https://datasetsearch.research.google.com/

https://abcd.tdwg.org/3.0/
https://rml.io/specs/rml/
https://schema.org
https://bioschemas.org/
https://datasetsearch.research.google.com/
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look-up services) and manual corrections might be a solution.

Improvements in the retrieval component: Besides classical NLP tasks, the BERT
language model was successfully applied to learning-to-rank approaches
[Yates et al., 2021]. Similar to learning approaches for Named Entity Recognition, large
ground truth information is needed to develop or adapt such models for other domains.
However, if the ground truth is either large enough or provides the necessary data covering
the respective domain, learning-to-rank approaches could be an opportunity to overcome
the current technical limitations (see Chapter 9.1.1). Once more relations are added to
existing ontologies, it would be also interesting to study further semantic relations, e.g.,
for exploratory search or recommendation.

Ideas for further user studies: In our study (Chapter 8), the search tasks were unknown
to the subjects. Therefore, a long-term study would be helpful to analyze the usage in
daily working context with own search terms. In addition, an eye-tracking study could
supplement the current results on behavioural information. Furthermore, data reuse was
not a main focus in our evaluation. This could be also explored in a long-term study. As
dataset search is a broad field, and we mainly focused on biodiversity research, further
research opportunities would be to study other application domains. Moreover, exploring
explanations in other semantic search approaches (not specificly tied to dataset search)
could also be a topic for future research.

Towards question answering: In the current system, users enter keywords and obtain
datasets with either partial or full information on the desired information need. As this
is the expected behaviour of search engines, a full question answering system was out
of scope of this work. Nevertheless, future research might develop towards intelligent
agents and assistants giving complete and exact answers on a natural language question.
This requires improved concepts in the query input, such as a question understanding
component and a translation of the question into semantic triples with machting entities.
Afterwards, SPARQL queries can be created to find the answer or to retrieve relevant
entities from the knowledge base. As supplementary information or provenance data,
datasets supporting the answers could be displayed.

Towards personalization: Searching for data is an active tasks where users have to
take some time to find relevant information. In contrast, recommending data does not
require human participation. Based on a user profile, relevant data could be proactively
presented or sent to consumers. From the technical point of view, content based recom-
mendations work similar as search engines [Pazzani and Billsus, 2007]. Instead of search
queries, user profiles are utilized to find relevant data. Extending our approach to content
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recommendations requires semantic user models with URIs as interests. In collaboration
with the Semantic Software Lab in Montréal, Canada, we developed an approach to con-
struct semantic user models out of research publications [Sateli et al., 2017]. We took
publications as input and extracted competences with various NLP techniques including a
syntactic and a semantic analysis. We also linked the competences to entries in the LOD
cloud by means of the LODTagger6. Finally, we exported the competences to a triple
store7. In order to provide more transparency for users on what is extracted and stored in
their user profile, we also developed a visualization component [Löffler et al., 2020]. The
application displayed all extracted competences in different visualizations, e.g., table,
force-directed graph and cord chart, in an ordered sequence. It also provided proven-
ance information and listed all publications from which the competences were extracted.
However, extracting and storing personal data is not liked by everybody. Due to security
concerns, people hestitate in providing personal data. Therefore, future work could also
concentrate on decentralized approaches, such as SOLID 8. SOLID inverts the idea of
storing personal data. Their vision is to store and manage personal data in secure pods
and only on approval, personal information are forwarded to applications and third parties.

As we have shown, there are many open research questions that still need to be ad-
dressed in semantic dataset search. In particular, interdisciplinary approaches are deman-
ded as well as further application domain specific research testing semantic technologies
in practice. Only if we can identify and close these research gaps, a search in the web of
data9 will be successful.

6LODTagger, https://www.semanticsoftware.info/lodtagger
7LODExporter, https://www.semanticsoftware.info/lodexporter
8SOLID, https://solidproject.org/
9W3C, https://www.w3.org/standards/semanticweb/data

https://www.semanticsoftware.info/lodtagger
https://www.semanticsoftware.info/lodexporter
https://solidproject.org/
https://www.w3.org/standards/semanticweb/data
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Lange, C., editors, The Semantic Web, pages 146–150, Cham. Springer International
Publishing.

[Vega-Gorgojo et al., 2016b] Vega-Gorgojo, G., Slaughter, L., Giese, M., Heggestøyl, S.,
Soylu, A., and Waaler, A. (2016b). Visual query interfaces for semantic datasets: An
evaluation study. Journal of Web Semantics, 39:81–96.

[VIVO, ] VIVO. VIVO Core Ontology. http://vivoweb.org/ontology/core. ac-
cessed on 01.09.2023.

[Volentine et al., 2015] Volentine, R., Owens, A., Tenopir, C., and Frame, M. (2015).
Usability Testing to Improve Research Data Services. Qualitative and Quantitative

Methods in Libraries, 4(1):59–68.

https://www.nlm.nih.gov/research/umls/
https://www.nlm.nih.gov/research/umls/
http://vivoweb.org/ontology/core


BIBLIOGRAPHY 261

[W3C, 2014] W3C (2014). The RDF Data Cube Vocabulary. https://www.w3.org/
TR/vocab-data-cube/, accessed on 12th July 2022.

[W3C, 2020] W3C (2020). Data Catalog Vocabulary (DCAT). https://www.w3.org/
TR/vocab-dcat/, accessed on 13th July 2022.

[Waitelonis et al., 2015] Waitelonis, J., Exeler, C., and Sack, H. (2015). Enabled Gen-
eralized Vector Space Model to Improve Document Retrieval. In Proceedings of the

Third NLP & DBpedia Workshop (NLP & DBpedia 2015) co-located with the 14th In-

ternational Semantic Web Conference 2015 (ISWC 2015) in Bethlehem, Pennsylvania,

USA, October 11, 2015.

[Walls et al., 2014] Walls, R. L., Deck, J., Guralnick, R., Baskauf, S., Beaman, R., and
et al. (2014). Semantics in Support of Biodiversity Knowledge Discovery: An Intro-
duction to the Biological Collections Ontology and Related Ontologies. PLoS ONE

9(3): e89606.

[Walls, R. et al., 2022] Walls, R. et al. (2022). Plant Phenology Ontology: An ontology
for describing the phenology of individual plants and populations of plants, and for
integrating plant phenological data across sources and scales. https://obofoundry.
org/ontology/ppo.html. accessed on Jan 4, 2022.

[Wang et al., 2019] Wang, Z., Ng, P., Ma, X., Nallapati, R., and Xiang, B. (2019). Multi-
passage BERT: A globally normalized BERT model for open-domain question an-
swering. In Proceedings of the 2019 Conference on Empirical Methods in Natural

Language Processing and the 9th International Joint Conference on Natural Language

Processing (EMNLP-IJCNLP), pages 5878–5882, Hong Kong, China. Association for
Computational Linguistics.

[Wei et al., 2019] Wei, C.-H., Allot, A., Leaman, R., and Lu, Z. (2019). PubTator central:
automated concept annotation for biomedical full text articles. Nucleic Acids Research,
47(W1):W587–W593.

[Wei et al., 2013] Wei, C.-H., Kao, H.-Y., and Lu, Z. (2013). PubTator: a web-based text
mining tool for assisting biocuration. Nucleic acids research, 41:W518–22.

[Weinberger, 2008] Weinberger, D. (2008). Knowledge at the End of the Information
Age, Bertha Bassum lecture at the Faculty of Information at the University of Toronto.
https://archive.org/details/KnowledgeAtTheEndOfTheInformationAge,
accessed on 06 August 2023.

[Wentzel et al., 2023] Wentzel, B., Kirstein, F., Jastrow, T., Sturm, R., Peters, M., and
Schimmler, S. (2023). An extensive methodology and framework for quality assess-
ment of dcat-ap datasets. In Lindgren, I., Csáki, C., Kalampokis, E., Janssen, M.,

https://www.w3.org/TR/vocab-data-cube/
https://www.w3.org/TR/vocab-data-cube/
https://www.w3.org/TR/vocab-dcat/
https://www.w3.org/TR/vocab-dcat/
https://obofoundry.org/ontology/ppo.html
https://obofoundry.org/ontology/ppo.html
https://archive.org/details/KnowledgeAtTheEndOfTheInformationAge


262 BIBLIOGRAPHY

Viale Pereira, G., Virkar, S., Tambouris, E., and Zuiderwijk, A., editors, Electronic

Government, pages 262–278, Cham. Springer Nature Switzerland.

[Whetzel et al., 2011] Whetzel, P. L., Noy, N. F., Shah, N. H., Alexander, P. R., Nyulas,
C., Tudorache, T., and Musen, M. A. (2011). BioPortal: enhanced functionality via
new Web services from the National Center for Biomedical Ontology to access and
use ontologies in software applications. Nucleic Acids Research, 39(suppl 2):W541–
W545.

[Wikidata, 2022] Wikidata (2022). Wikidata. https://www.wikidata.org. accessed
on April 22, 2022.

[Wikipedia, 2022] Wikipedia (2022). Wikipedia. https://www.wikipedia.org/. ac-
cessed on April 22, 2022.

[Wilkinson et al., 2016] Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton,
G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne,
P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Ed-
munds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J., Groth, P.,
Goble, C., Grethe, J. S., Heringa, J., ’t Hoen, P. A., Hooft, R., Kuhn, T., Kok, R., Kok,
J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P.,
Roos, M., van Schaik, R., Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn,
G., Swertz, M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waag-
meester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B. (2016). The FAIR
Guiding Principles for scientific data management and stewardship. Scientific Data 3,
(160018).

[Wilson, 1988] Wilson, E. O. e. a. (1988). Commission on Life Sciences, Division on

Earth and Life Studies, National Academy of Sciences/Smithsonian Institution: Biod-

iversity. National Academies Press.

[Wishart et al., 2018] Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A.,
Grant, J. R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., Assempour, N., Iynkkaran, I.,
Liu, Y., Maciejewski, A., Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D., Pon,
A., Knox, C., and Wilson, M. (2018). DrugBank 5.0: a major update to the DrugBank
database for 2018. Nucleic acids research, 46:D1074–D1082.

[Wishart et al., 2007] Wishart, D. S., Tzur, D., Knox, C., Eisner, R., Guo, A. C., Young,
N., Cheng, D., Jewell, K., Arndt, D., Sawhney, S., Fung, C., Nikolai, L., Lewis, M.,
Coutouly, M.-A., Forsythe, I., Tang, P., Shrivastava, S., Jeroncic, K., Stothard, P.,
Amegbey, G., Block, D., Hau, D. D., Wagner, J., Miniaci, J., Clements, M., Gebremed-
hin, M., Guo, N., Zhang, Y., Duggan, G. E., Macinnis, G. D., Weljie, A. M., Dow-
latabadi, R., Bamforth, F., Clive, D., Greiner, R., Li, L., Marrie, T., Sykes, B. D.,

https://www.wikidata.org
https://www.wikipedia.org/


BIBLIOGRAPHY 263

Vogel, H. J., and Querengesser, L. (2007). HMDB: the Human Metabolome Database.
Nucleic acids research, 35:D521–6.

[Witte and Gitzinger, 2008] Witte, R. and Gitzinger, T. (2008). Semantic Assistants –
User-Centric Natural Language Processing Services for Desktop Clients. In Domin-
gue, J. and Anutariya, C., editors, The Semantic Web, pages 360–374, Berlin, Heidel-
berg. Springer Berlin Heidelberg.

[WordNet, 2022] WordNet (2022). WordNet: A Lexical Database for English. https:
//wordnet.princeton.edu/. accessed on 22.04.2022.

[Wrigley et al., 2010] Wrigley, S. N., Elbedweihy, K., Reinhard, D., Bernstein, A., and
Ciravegna, F. (2010). Evaluating Semantic Search Tools using the SEALS plat-
form. In Proceedings of the International Workshop on Evaluation of Semantic Tech-

nologies (IWEST 2010)Workshop at the 9th International Semantic Web Conference

(ISWC2010) - ISWC 2010 Workshops Volume IIIShanghai, China, November 8, 2010.

[Wu et al., 2019] Wu, M., Psomopoulos, F., Khalsa, S. J., and de Waard, A. (2019). Data
Discovery Paradigms: User Requirements and Recommendations for Data Repositor-
ies. Data Science Journal, 18(1):3.

[Xiong et al., 2016] Xiong, C., Callan, J., and Liu, T.-Y. (2016). Bag-of-Entities Repres-
entation for Ranking. In Proceedings of the 2016 ACM International Conference on

the Theory of Information Retrieval, ICTIR ’16, page 181–184, New York, NY, USA.
Association for Computing Machinery.

[Xiong et al., 2017a] Xiong, C., Callan, J., and Liu, T.-Y. (2017a). Word-Entity Duet
Representations for Document Ranking. In Proceedings of the 40th International ACM

SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’17,
page 763–772, New York, NY, USA. Association for Computing Machinery.

[Xiong et al., 2017b] Xiong, C., Liu, Z., Callan, J., and Hovy, E. (2017b). Jointsem:
Combining query entity linking and entity based document ranking. In Proceedings

of the 2017 ACM on Conference on Information and Knowledge Management, CIKM
’17, page 2391–2394, New York, NY, USA. Association for Computing Machinery.

[Xiong et al., 2017c] Xiong, C., Power, R., and Callan, J. (2017c). Explicit Semantic
Ranking for Academic Search via Knowledge Graph Embedding. In Proceedings of

the 26th International Conference on World Wide Web, WWW ’17, page 1271–1279,
Republic and Canton of Geneva, CHE. International World Wide Web Conferences
Steering Committee.

https://wordnet.princeton.edu/
https://wordnet.princeton.edu/


264 BIBLIOGRAPHY

[Xu and Zhuge, 2014] Xu, B. and Zhuge, H. (2014). Automatic faceted navigation. Fu-

ture Generation Computer Systems, 32:187 – 197. Special Section: The Management
of Cloud Systems, Special Section: Cyber-Physical Society and Special Section: Spe-
cial Issue on Exploiting Semantic Technologies with Particularization on Linked Data
over Grid and Cloud Architectures.

[Xu et al., 2020] Xu, J., Kim, S., Song, M., Jeong, M., Kim, D., Kang, J., Rousseau, J. F.,
Li, X., Xu, W., Torvik, V. I., Bu, Y., Chen, C., Ebeid, I. A., Li, D., and Ding, Y. (2020).
Building a PubMed knowledge graph. Scientific data, 7:205.

[Yates et al., 2021] Yates, A., Nogueira, R., and Lin, J. (2021). Pretrained Transformers

for Text Ranking: BERT and Beyond, page 1154–1156. Association for Computing
Machinery, New York, NY, USA.

[Yilmaz et al., 2008] Yilmaz, E., Kanoulas, E., and Aslam, J. A. (2008). A Simple and
Efficient Sampling Method for Estimating AP and NDCG. In Proceedings of the 31st

Annual International ACM SIGIR Conference on Research and Development in In-

formation Retrieval, SIGIR ’08, page 603–610, New York, NY, USA. Association for
Computing Machinery.

[Zahiri et al., 2021] Zahiri, R., Tarmann, G., Efetov, K. A., Rajaei, H., Fatahi, M., Seidel,
M., Jaenicke, B., Dalsgaard, T., Sikora, M., and Husemann, M. (2021). Supplementary
material 1 from: Zahiri R, Tarmann G, Efetov KA, Rajaei H, Fatahi M, Seidel M,
Jaenicke B, Dalsgaard T, Sikora M, Husemann M (2021) An illustrated catalogue of the
type specimens of Lepidoptera (Insecta) housed in the Zoological Museum Hamburg
(ZMH): Part I. superfamilies Hepialoidea, Cossoidea, and Zygaenoidea. Evolutionary
Systematics 5(1): 39-70. https://doi.org/10.3897/evolsyst.5.62003.

[Zaki and Tennakoon, 2017] Zaki, N. and Tennakoon, C. (2017). BioCarian: search en-
gine for exploratory searches in heterogeneous biological databases. BMC Bioinform-

atics, 18(1):435.

[Özgür et al., 2016] Özgür, A., Hur, J., and He, Y. (2016). The Interaction Network
Ontology-supported modeling and mining of complex interactions represented with
multiple keywords in biomedical literature. BioData Mining, 9(1):41.

https://doi.org/10.3897/evolsyst.5.62003

	Introduction
	Motivation
	Data-Intensive Research
	Dataset Retrieval
	Semantic Search
	User Experience
	Goal

	Use Cases
	Problem Statement
	Hypotheses
	Objectives
	Overview of the Proposed Solution
	Research Methodology
	Research Contributions
	Structure of the thesis

	Background
	User-Centered Design
	Usability Testing
	Usability Metrics

	Information Extraction and Information Retrieval
	Natural Language Processing and Information Extraction
	The Retrieval Process
	Evaluation of Retrieval Systems
	Dataset Retrieval

	Semantic Web
	RDF/RDFS
	OWL
	SPARQL
	Linked Open Data and Vocabularies in the Life Sciences
	Semantic Formats for Datasets

	Biodiversity Research
	Summary

	Dataset Search and Improvements by Semantic Enrichment
	Related Work
	Dataset Retrieval
	Semantic Search in the Life Sciences

	Evaluation of GFBio's dataset search
	Data Corpus
	Relevance Evaluation
	User Survey

	Comparison of a Keyword-Based Search and a Semantic Search
	Relevance Evaluation
	Interviews

	Summary

	Search Interests and Metadata in Biodiversity Research
	Related Work
	User Interests in Search
	Studies on the Quality of Metadata and Data Repositories

	Question Corpus Study
	Methodology
	Results

	Metadata Standards in the Life Sciences
	Methodology
	Results

	Study on Metadata in Data Repositories
	Methodology
	Results
	Discussion

	Summary

	Concept for a Semantic Dataset Search
	Identified Obstacles
	Suggestions for Improvement
	Data Enhancements
	Enhancements in the Retrieval Process
	Query Enhancements and User Interface

	Requirements
	Proposed System
	Use Cases
	Summary

	Semantic Annotation of Biodiversity Metadata
	Related Work
	Semantic Annotation in the Life Sciences
	Available Gold Standards in the Life Sciences

	A Metadata Gold standard for Biodiversity Research
	A Text Mining Pipeline for Biodiversity Metadata
	Ontology Selection
	Architecture

	Evaluation & Results
	Discussion

	Summary

	Semantic Dataset Retrieval
	Related Work
	Entity-Based Retrieval and Ranking
	Entity-Based Retrieval and Ranking in the Life Sciences
	Test Collections in the Life Sciences

	Preliminary Considerations
	User Study for Requirement Analysis
	Methodology
	Results

	BEF-China Test Collection
	Entity Expansion Strategies
	Evaluated Entity-based Retrieval Models
	Evaluation Setup
	Results
	Entity Expansion
	Ranking Functions
	Discussion

	Summary

	User Interfaces for Dataset Search and Usability Evaluation
	Related Work
	User Interfaces in Semantic Search Systems in the Life Sciences
	Evaluation Frameworks and User Studies in Semantic Search

	Study Overview and Formative Evaluation
	Preliminary Considerations
	Study Goal and Evaluation Flow
	Focus Group Meetings

	System Architecture and Implementation
	Usability Study
	Results
	Search Input
	Highlightings and Explanations
	Discussion

	Summary

	Summary and Discussion
	Contributions
	Limitations

	Discussion

	Future Work



