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Abstract

Every interesting quantity to be investigated in the realm of bound-state quantum electrody-

namics (BSQED), such as, for example, the Lamb shift, the (hyper)fine-splitting or the g-factor,

is closely or remotely connected to the energy levels of the considered system. Therefore, as a

prerequisite, it is mandatory to have the ability to accurately assess energy levels of increas-

ingly sophisticated electronic configurations of atoms or ions. BSQED predictive powers are

nowadays limited to either simple light systems, where an αZ expansion is justified, or heavy

few-electron highly-charged ions, where specialized all-order methods in αZ are required,

to reliably capture interelectronic interactions. The redefined vacuum state approach, which

is frequently employed in the many-body perturbation theory, proved to be a powerful tool

allowing analytical insights.

This thesis elaborates on this approach within BSQED perturbation theory, based on the

two-time Green’s function method. In addition to a rather formal formulation, the partic-

ular example of a single-particle (electron or hole) excitation with respect to the redefined

vacuum state is considered. Starting with simple one-particle Feynman diagrams, character-

ized by radiative corrections to identical single incoming and single outgoing state, first- and

second-order many-electron contributions are derived, namely screened self-energy, screened

vacuum-polarization, one-photon-exchange, and two-photon-exchange. The redefined vacuum

state approach provides a straightforward and streamlined derivation facilitating its application

to any electronic configuration. Moreover, based on the gauge invariance of the one-particle

diagrams, various gauge-invariant subsets within analyzed many-electron QED contributions

are identified.

Building on the gathered expertise, the framework is extended to account for valence-hole

excitation from the redefined vacuum state. Full first-order corrections in α are inferred, as

a validation of the established formalism, and gauge-invariant subsets are highlighted. To

showcase on the strength offered by the use of a vacuum state redefinition, a partial third-order

interelectronic calculation is worked out, relying on the extension of the direct two-photon-

exchange gauge invariant subset. The resulting formulas are cross-checked with an independent

perturbative derivation, and the cancellation of infrared divergences is demonstrated explicitly.

The identification of gauge-invariant subsets in the framework of the proposed approach opens

a way to tackle more complex diagrams, where the decomposition into simpler subsets is

crucial for a successful calculation.
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Zusammenfassung

Jede interessante Größe, die im Bereich der Quantenelektrodynamik mit gebundenen

Zuständen (BSQED) untersucht werden soll, wie z. B. die Lamb-Verschiebung, die (Hyper-

)Feinaufspaltung oder der g-Faktor, steht in engem oder entferntem Zusammenhang mit den

Energieniveaus des betrachteten Systems. Daher ist es zwingend erforderlich, dass man in der

Lage ist, die Energieniveaus von immer komplizierteren elektronischen Konfigurationen von

Atomen oder Ionen genau zu bestimmen. Die Vorhersagekraft der BSQED ist heutzutage en-

tweder auf einfache leichte Systeme beschränkt, bei denen eine αZ-Entwicklung gerechtfertigt

ist, oder auf schwere, hochgeladene Ionen mit wenigen Elektronen, bei denen spezialisierte

Methoden erforderlich sind, die Beiträge aller Ordnungen in αZ berücksichtigen, um interelek-

tronische Wechselwirkungen zuverlässig zu erfassen. Der neu definierte Vakuumansatz, der

häufig in der Vielteilchen-Störungstheorie verwendet wird, erwies sich als ein leistungsfähiges

Werkzeug, das analytische Einblicke ermöglicht.

In dieser Arbeit wird dieser Ansatz im Rahmen der BSQED-Störungstheorie auf Grund-

lage der Green’schen-Funktions-Methode weiterentwickelt. Zusätzlich zu einer eher formalen

Formulierung wird das spezielle Beispiel einer Ein-Teilchen-Anregung (Elektron oder Loch)

in Bezug auf den neu definierten Vakuumzustand betrachtet. Ausgehend von einfachen Ein-

Teilchen-Feynman-Diagrammen, die durch Strahlungskorrekturen eines einzigen eintretenden

und austretenden Zustand gekennzeichnet sind, werden Beiträge erster und zweiter Ordnung

für viele Elektronen abgeleitet, nämlich abgeschirmte Selbstenergie, abgeschirmte Vakuumpo-

larisation, Ein-Photonen-Austausch und Zwei-Photonen-Austausch. Der neu definierte Vaku-

umzustandsansatz bietet eine unkomplizierte und rationalisierte Herleitung, die die Anwendung

auf jede elektronische Konfiguration erleichtert. Darüber hinaus werden, basierend auf der

Eichinvarianz der Ein-Teilchen-Diagramme, verschiedene eichinvariante Untergruppen inner-

halb der analysierten Vielelektronen-QED-Beiträge identifiziert.

Aufbauend auf dem gesammelten Fachwissen wird der Rahmen erweitert, um die Valen-

zlochanregung aus dem neu definierten Vakuumzustand zu berücksichtigen. Als Bestätigung

des etablierten Formalismus werden vollständige Korrekturen erster Ordnung in α hergeleitet

und eichinvariante Teilmengen werden hervorgehoben. Um die Stärke der Neudefinition des

Vakuumzustands zu demonstrieren, wird eine partielle interelektronische Berechnung drit-

ter Ordnung durchgeführt, die sich auf die Erweiterung der eichinvarianten Untermenge des

direkten Zwei-Photonen-Austauschs stützt. Die sich ergebenden Formeln werden mit einer

unabhängigen perturbativen Herleitung überprüft, und die Aufhebung von Infrarot-Divergenzen

wird explizit demonstriert. Die Identifizierung eichinvarianter Teilmengen im Rahmen des
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vorgeschlagenen Ansatzes eröffnet einen Weg, komplexere Diagramme anzugehen, bei denen

die Zerlegung in einfachere Teilmengen entscheidend für eine erfolgreiche Berechnung ist.
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CHAPTER 1.

INTRODUCTION

Quantum electrodynamics (QED) is the cornerstone of modern physics. Its development led

to massive progresses in the understanding of Nature and the Universe, resulting in the Standard

Model of particle physics, the pinnacle of human knowledge pertaining three of the four

fundamental interactions. The genesis of quantum mechanics started almost simultaneously,

with Heisenberg and his non-commutative matrix mechanics [1], and with Schrödinger and

his famous partial differential equation [2]. Born introduced the probabilistic interpretation of

Schrödinger’s wave equation later in the same year [3, 4]. Dirac, being puzzled by the absence

of Lorentz covariance in Schrödinger’s framework, devised his solution to the problem, namely

Dirac’s one-electron space-time equation [5, 6]. A very intriguing feature of the solution to his

equation is the negative-energy states, the Dirac sea, also sometimes referred to as hole theory.

It took him a year or two to properly understand their roles. The (real) development of QED

started with the measurement conducted in 1947 by Lamb and Retherford on the transition

energy between the 2s1/2 and 2p1/2 states in hydrogen atom [7], which is now referred to as

the Lamb shift. According to Dirac’s prediction, both states should have been degenerated,

which turned out to be inaccurate. Another striking discovery enhanced the spark to ignite

extensive developments in the field, the anomalous magnetic moment of the electron, nowadays

called g-factor. Owing to Dirac’s prediction, its value was supposedly equal to two, but the one

measured by Kusch and Foley [8] revealed a slightly greater magnetic moment. These enigmatic

discrepancies lead to seminal works from Bethe [9], Feynman [10, 11], Schwinger [12–15] and

many others. It gave birth to a common framework to describe the electromagnetic interaction,

compatible with special relativity and quantum mechanics. The first1 Lorentz-covariant wave

equation for two interacting particles was proposed by Bethe and Salpeter [19]. Sucher extended

Salpeter’s work [20] and made a decisive step forward, the S-matrix [21], applying the QED

formalism to calculate a two-electron system in an external Coulomb field, in his case the

helium atom [22]. Later, Logunov and Tavkhelidze [23], and Faustov [24] dealt with a quasi-

potential method to circumvent the many-body problem.

In principle, QED can be applied to any many-electron atoms. However, the computations

are so far limited to selected, relatively simple systems not only due to the complexity of

1Nambu wrote down this expression at the end of a paper without explanation a year before [16]. Schwinger
formulated it too [17], as well a Gell-Mann and Low [18], in the same year as Bethe and Salpeter.

1
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numerical calculations but also because of difficulties in deriving tractable formal expressions.

In this regard, highly-charged ions became a field of interest both from the theoretical and

experimental sides. From the former perspective, it has the advantage that QED corrections

enter on the same footing as the correlation effects. In the latter point of view, the transition

energies in many-electron ions, which spread from soft x-ray to ultraviolet, and therefore,

are accessible by laser spectroscopy techniques over a wide range of Z values [25], with Z

the nuclear charge or effective charge in the case of the outer electrons. Furthermore, highly-

charged ions are currently considered as one of the best available natural laboratories to access

strong-field effects [26]. They allow to probe QED corrections up to second-order in α [27, 28],

the fine-structure constant, although being a demanding task. This requires to go beyond

the perturbative regime since for high Z, the αZ expansion parameter is comparable to one

(for uranium, αZ ≈ 0.67). Hence, calculations to all orders in αZ are sought, which require

special methods of bound-state QED (BSQED) to be developed within the corresponding

framework, known as the Furry picture [29]. The evaluation of the dynamical properties and

the structure of highly relativistic, tightly bound electrons in highly-charged ions with utmost

accuracy represents one of the most important and demanding problems in modern theoretical

atomic physics. As a consequence, ab initio calculations are the holy grail in the quest for

many-electron atoms in the frame of BSQED. Moreover, pushing QED, in the presence of the

binding nuclear field, to its limits is a great way to earn in-depth knowledge about the theory

and to probe potential new physics [30].

QED is most deeply developed for hydrogen [31] and hydrogen-like ions [32], where

the accuracy of the calculations has reached a remarkably high level. In the case of highly-

charged ions, the comparison of the experimental value of the 1s Lamb shift, 460.2± 4.6

eV [33], allows one to test the first-order QED effects on a level of 1.7% [26]. However,

the probe of the second-order QED effects, which contribute −1.26(33) eV [34], are limited

by the experimental accuracy, where improvements represent a rather challenging task [35].

Nevertheless, the increasing experimental precision pushes theoretical predictions to their

limits and enforces an accurate description of complex electrons dynamics. In this view, the

treatment of the interelectronic interaction is a fundament for accurate theoretical predictions

of the energy levels in many-electron atoms or ions. Several approximate methods, such

as the relativistic many-body perturbation theory (RMBPT), the relativistic configuration-

interaction (RCI) method, or the multi-configuration Dirac-Fock (MCDF) method, usually

treat the electron-electron interaction within the Breit approximation on the basis of the so-

called no-pair Hamiltonian [24, 36]. However, the use of this approximation allows one to

evaluate energy levels accurately only up to the order (αZ)2, having nonetheless access to

higher-order corrections. In order to account for higher-order effects, one has to employ the
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BSQED formalism. The QED treatment of the interelectronic interaction yields additional

corrections of the order (αZ)3 and higher, which in many cases become comparable with the

experimental uncertainty and the accuracy reached for correlation effects.

Highly-charged ions are such systems. As a consequence, the (αZ)3 corrections beyond the

no-pair Hamiltonian should be taken into account by theory in order to achieve an agreement

with the numerous dedicated high-precision experimental investigations carried over the years

in a variety of system, ranging from H-like [33, 35, 37], He-like [38–42], Li-like [43, 44] and

Be-like [45, 46], to B-like [47–50] and F-like [51–53] ions. Other examples of many-electron

ions where the correlation energies can be grasped rather accurately, from a theoretical point of

view, are F-like [54–56], Na-like [57], Mg-like [58], Al-like [59] and Co-like [60] ions. Within

BSQED, the interelectronic interaction is usually treated perturbatively as an expansion over

the number of exchanged photons. While the first-order contribution, which corresponds to

the one-photon-exchange, is relatively simple to deal with, most of the attention is paid to

the next order, namely, the two-photon-exchange. The two-photon-exchange diagrams were

first calculated in the milestone paper by Blundell et al. [61] for the ground state of He-like

ions. Later, the results were confirmed by several groups and the calculations were extended to

their excited states [62–70]. Presently, the two-photon-exchange has been also evaluated for

Li-like [65, 66, 71–76], Be-like [77–79], B-like [80–82], and Na-like [83] ions. The current

experimental and theoretical developments recently reviewed by Indelicato [26] suggest the

necessity to extend these computations also to other systems with more complicated electronic

structures.

In this context, the question following arises: can we perform ab initio QED calculations

for many-electron systems? An essential step towards this goal is to derive the explicit formulas

for the corresponding diagrams. All the derivations performed so far used a zeroth-order many-

electron wave function constructed as a Slater determinant (or sum of Slater determinants) with

all electrons involved [61, 83, 84]. Such a derivation becomes increasingly difficult for many-

electron systems. The vacuum state redefinition approach in QED, which is extensively used in

RMBPT to describe the states with many electrons involved, is proposed in this thesis as a path

towards an extension of the calculations of QED corrections to the energy shifts of other ions

and atoms. The redefined vacuum state formalism is implemented within the two-time Green’s

function (TTGF) method introduced by Shabaev [85]. In this respect, the effectiveness of the

vacuum state redefinition approach is demonstrated for closed-shells systems with the following

extra configurations: (i) a single-valence electron, (ii) an electronic vacancy (single-hole state),

and (iii) a valence-hole excitation. The advantages of the method are as follows. First, the

effective one-particle frame makes formulas valid for any system with respect to configurations

(i) and (ii). An analogous statement holds true for the effective two-particle case with regard
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to configuration (iii). Second, the transposition of the one-particle many-loop gauge-invariant

(GI) subsets into the generic many-electron system allows to identify simple GI subsets. The

identification of GI subsets offers the possibility to verify the consistency of the results piece

by piece, as cross-checks along the way, rather than solely the final expressions. Third, instead

of the all-particle states, one deals with few-particle states, which amounts to a much smaller

Hilbert space. Moreover, the redefinition of the vacuum state allows to focus on the particles

distinguishing between the different electronic configurations investigated. Overall, it opens a

way to apprehend high-order corrections by providing cross-checks and benchmarks on the

way, namely via the identification of GI subsets.

1.1. Structure of the thesis

The thesis is organized as follows. Chapter 2 starts with the Dirac equation and derives the

QED Lagrangian relying on the gauge invariance of the theory. A small digression on the

renormalization of the Lagrangian is conducted after the gauge fixing of the photon propagator

is discussed. Afterwards, the Furry picture of QED is introduced, accounting for the presence

of a classical external field. The framework of BSQED is based on the resummation of all

Feynman diagrams involving the interaction of the (free) electron with the classical field of

the nucleus. Such a procedure, applied by Weinberg [86], leads to the bound-state electron

propagator. The procedure presented thereafter is different but closely related. The eigen-

energies of the Dirac equation for the point-like nucleus case are discussed briefly. The

attention is then focused on the vacuum state of the theory and the derivation of the electron

propagator, in the non-interacting field approximation, as well as an explicit expression for the

photon propagator. Later on, the redefinition of the vacuum state and its effects are addressed.

Moreover, it is discussed how the interelectronic interactions are retrieved as a difference of the

two vacua, or equivalently as the difference of a contour integral over two different integration

paths. The interaction Hamiltonian is introduced, and the philosophy of perturbation theory in

the BSQED realm is sketched at the end of the chapter.

The two-time Green’s function method applied in this work to handle perturbation theory in

the Furry picture, is discussed in Chapter 3. Following Shabaev, the spectral representation of

the two-time Green’s function is derived, but from the perspective of the redefined vacuum state.

In line with that, the positron term, that corresponds to electronic vacancies (or hole states) in

the filled electronic shells, is investigated as well. Cornerstone integral expressions are derived

for the energy shift of an N-particle state, involving either only electrons or only holes. An

odd-parity symmetry, with respect to the redefined Fermi level, in the expressions of the energy
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shifts between valence and holes states is demonstrated. The single-valence electron state and

the single-hole state QED corrections to the energy shifts are worked out in details up second

order in the fine-structure constant. The gauge invariance of many-electron subsets, based on

the effective one-particle picture applied in the derivation, is demonstrated analytically and

numerically for the single-electron state. In the single-hole state case the reduction to RMBPT

formulas is carried out, for the two-photon-exchange corrections, to cross-check and validate

the derivation with previously derived expressions.

Having at the disposal the necessary ingredients to describe a valence-hole state, the

associated two-time Green’s function is lacking. Upon discussion of the spectral representation

of the two-time Green’s function, it has been observed that no neutrally charged states were

allowed. The framework suited to achieve a valence-hole excitation in closed shells system is

devised in Chapter 4. The derivation is based on a different initial equal-time choice (compared

to Shabaev’s one) to infer the appropriate two-time Green’s function. Its spectral representation

is worked out, which allows to see that its poles are located at the valence-hole excitation

energies. The cornerstone expression to calculate the energy shift is derived as a contour

integral, and expanded to the first order. There, the different Feynman diagrams are investigated

and the first-order energy correction is calculated by applying the formalism of the redefinition

of the vacuum state. The results are mapped to the standard vacuum case, where the one-

photon-exchange expression is reduced to the RMBPT case for verification.

Chapter 5 is the most ambitious and challenging part of this work. Relying on the redefined

vacuum state approach, partial third-order interelectronic corrections are investigated, based

on one-particle three-loop Feynman diagrams. The idea is to begin with simple one-particle

GI subsets and keep track of them in the many-electron frame, which is a strong asset of the

formalism. In order to minimize the occurrence of mistakes, an independent derivation is

undertaken with the help of perturbation theory. This two-method scheme helps to resolve how

the different terms are distributed among three- and four-electron contributions. Furthermore,

it provides a tool to overcome the difficulties related to the derivation of reducible terms, which

are tricky to deal with. The out-coming formulas contain infrared (IR) divergences. They are

investigated and regularized by the introduction of a photon mass term. It is shown that the IR

divergent terms are compensated by contributions belonging to the same GI subsets proposed.

In the end, Chapter 6 wraps up the developments found along the different analyses

conducted throughout the thesis. A concluding discussion provides an outlook for future

research works.
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1.2. Notation and conventions

Throughout the thesis natural units are used (h̄ = c = me = 1) as well as the Heaviside-

Lorentz convention for the charge, hence the fine-structure constant is α = e2/4π and e < 0.

Whenever it may be convenient the electron mass me is restored in some expressions. The

contravariant four-vector is xµ = (x0, x) ≡ (t, x) and the covariant four-vector reads xµ =

ηµνxν. The metric tensor is

ηµν = ηµν =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1




.

The Einstein convention is applied, where repeated indices are summed over. The four-vector

scalar product is defined as kx = kµxµ = k0x0 − k · x. Greek indices run from 0 to 3, or

equivalently over t, x, y, z, and Roman indices only over spatial coordinates. Boldface type

indicates three-vectors, whereas four-vectors are denoted by italic type and scalars as Roman

style. The 4-by-4 Dirac matrices αµ = γ0γµ are represented via their "standard representation"

for γ matrices, namely the Dirac basis.

γ0 ≡ β =


12 0

0 −12


 , γ =


 0 σ

−σ 0


 , hence α0 =


12 0

0 12


 , α =


0 σ

σ 0


 ,

and the Pauli matrices are 2-by-2 matrices

σ1 =


0 1

1 0


 , σ2 =


0 −i

i 0


 , σ3 =


1 0

0 −1


 .

1d is a d× d unitary matrix, which dimension is indicated by the subscript d. Unless explicitly

stated all integrals are meant to be on the interval ]− ∞,+∞[.



CHAPTER 2.

BOUND-STATE QUANTUM

ELECTRODYNAMICS

Symmetries, either intact or broken, have proved to be at the heart of how matter interacts.

The prototype gauge theory is QED, the quantum relativistic description of the interaction

between the electron-positron field with the electromagnetic field. QED is a local Abelian

U(1) theory. In the following, it is shown how such local symmetry can be used to generate

dynamics, or gauge interactions, starting from the Dirac Lagrangian, according to the derivation

presented in Ref. [87]. Then, the BSQED framework is introduced with the description of

the (extended) Furry picture. Later, the redefinition of the vacuum state, a commonly used

principle in relativistic many-body perturbation theory, is brought in to facilitate the derivation

of tractable formal expressions. The difference between the vacuum states allows to retrieve

the interelectronic interactions with previously hidden core electrons. Perturbation theory is

briefly introduced at the very end of the chapter.

2.1. Gauge invariance in Dirac Theory: from free electron

theory to QED

If fields at different space-time points transform in the same manner under a symmetry trans-

formation, the symmetry is said to be a global one; the parameter describing the symmetry

transformation is space-time independent. A contrario, if the symmetry transformation is space-

time dependent, the symmetry is said to be a local one or a gauge symmetry; the parameter

describing the transformation is space-time dependent.

To illustrate the difference, let us take the Lagrangian describing a free electron-positron

field (spin-1/2 particle) in the Heisenberg representation, denoted by the subscript H,

LDirac = ψ̄H(x)
(

iγµ∂µ − me

)
ψH(x) , (2.1)

7
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where ψ̄H(x) = ψ†
H(x)γ0, and see how QED arises from the requirement of gauge invariance.

This Lagrangian is invariant under a global U(1) symmetry, namely a change in the phase of

the field ψ(x)

ψH(x) → ψ′
H(x) = e−iαψH(x) , ψ̄H(x) → ψ̄′

H = eiαψ̄H(x) . (2.2)

The global symmetry is turned into a gauge symmetry when α is promoted to α(x). The

transformation reads now

ψH(x) → ψ′
H(x) = e−iα(x)ψH(x) . (2.3)

The transformation for ψ̄H(x) is given by the Hermitian conjugate of the previous equation.

The derivative term transforms in a more complicated manner

ψ̄H(x)∂µψH(x) → ψ̄′
H(x)∂µψ′

H(x) = ψ̄H(x)∂µψH(x)− iψ̄H(x)∂µα(x)ψH(x) . (2.4)

The second term spoils the invariance. To remove the extra term coming from the derivative

and keep the form of the transformation unchanged, one has to come up with a gauge covariant

derivative Dµ to replace ∂µ such that

DµψH(x) →
[

DµψH(x)
]′

= e−iα(x)DµψH(x) , (2.5)

in order for ψ̄H(x)DµψH(x) to be invariant under the local symmetry. A new vector field

Aµ(x), the gauge field, extends the theory to form the gauge covariant derivative

Dµ = ∂µ + ieAµ(x) , (2.6)

where e is a free parameter, identified with the electric charge. For Eq. (2.5) to be fulfilled,

Aµ(x) has to transform as

Aµ(x) → A′
µ(x) = Aµ(x) +

1

e
∂µα(x) . (2.7)

So far the gauge field is not a true dynamical variable since no term involving its derivatives is

present. To achieve this purpose, one introduces the simplest gauge-invariant four dimensional

entity

LMaxwell = −1

4
Fµν(x)Fµν(x) , where Fµν(x) = ∂µ Aν(x)− ∂ν Aµ(x) . (2.8)
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In fact, the electromagnetic field tensor Fµν(x) is already gauge invariant by itself, nevertheless

it can be written in term of covariant derivative

[Dµ, Dν] = ieFµν . (2.9)

Collecting together the gauge field dynamics describing its interactions (2.8) and the initial

Lagrangian (2.1) in term of gauge covariant derivative (2.6), the obtained Lagrangian provides

the description of interactions between light and matter (of the first lepton generation)

LQED = ψ̄H(x)
(

iγµ∂µ − me

)
ψH(x)− 1

4
Fµν(x)Fµν(x)− eψ̄H(x)γµψH(x)Aµ(x)

= LDirac + LMaxwell + Lint . (2.10)

Hence, starting from the free electron-positron field Lagrangian and requiring gauge-invariance

under the U(1) group, the QED Lagrangian has been derived. An important point to make

is that the gauge-field is massless, the term Aµ(x)Aµ(x) is not gauge invariant. One shall

now proceed to derive the gauge field propagator D̃
µν
F (k). A detailed treatment based on

the functional method in path integral language can be found in Ref. [88]. Recall that the

propagator is found as the inverse of the quadratic term in the field of interest in the Lagrangian

[see Eq. (3.4)]. One notices that the matrix equation associated to the quadratic term in Aµ(x)

is twofold singular; in momentum space it reads

(
−k2ηµν + kµkν

)
D̃νρ(k) = iδρ

µ . (2.11)

A first singularity occurs due to the 1/k2 behaviour in the photon propagator D̃νρ(k). When the

momentum goes to zero, the result is ill-defined. This issue is cured by the adjunction of a small

imaginary part, the iε prescription, to the denominator, arising from causality considerations.

The second singularity is related to the fact that the inverse matrix is not uniquely determined,

the transverse part is defined up to a constant. The introduction of a term called gauge fixing

term solves the second issue,

LG.F = − 1

2ξ
[∂µ Aµ(x)]2 . (2.12)

The matrix can now be inverted, and the resulting gauge field propagator is

D̃
µν
F (k) =

−i

k2 + iε

(
ηµν − (1 − ξ)

kµkµ

k2

)
. (2.13)
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The subscript F means Feynman propagator in the sense of the Feynman iε prescription, not

the propagator in the Feynman gauge. In practical calculation the value of the ξ parameter

is usually chosen to a fixed one. Common choices are ξ = (0, 1, 3), which corresponds

respectively to Landau gauge, Feynman gauge and Fried-Yennie gauge. The latter one is used

mainly in BSQED, where such a choice produces cancellations that are difficult to obtained

otherwise [89]. Although this thesis deals with BSQED, the Feynman gauge is the considered

covariant gauge. Later on, in the presence of the external classical field coming from the

nucleus, the photon propagator in the Coulomb gauge (∂i A
i(x) = 0) is going to be introduced

[see Eq. (2.39)].

The Lagrangian (2.10) discussed so far is well suited for tree-level considerations. However,

starting from the one-loop level (UV) divergences are encountered in the loop integrals. Those

infinities should be cancelled in some way. The procedure developed to cure theses badly

divergent behaviours, which inevitable arise in the loops calculations based on the "naive"

Lagrangian (2.10), is called renormalization. It necessitates the introduction of so-called

counterterms. In that respect, the electron mass me and the electric charge e are to be formally

understood as bare quantities: the bare electron mass me,0 and the bare electric charge e0.

Therefore, the derivations should be understood on a formal level. It is only after carrying out

the renormalization procedure that one can speak of the physical mass me and the physical

electric charge e. A detailed discussion of the renormalization procedure in free QED can

be found in Ref. [88]. In a nutshell, each field is rescaled by a constant Z, i.e. ψ = Z1/2
2 ψr

and Aµ = Z1/2
3 Aµ

r . Z2 is the electron field-strength renormalization constant and Z3 is

the photon field-strength renormalization constant. Interestingly, the interaction term is now

e0Z2Z1/2
3 ψ̄rγµψr Arµ. The physical electric charge is introduced by defining a scaling factor

Z1, such that

e0Z2Z1/2
3 = eZ1 . (2.14)

Z1 is the vertex renormalization constant. As a side comment, the Ward-Takahashi identity

ensures Z1 = Z2 at all orders in perturbation theory, hence e =
√

Z3e0, at one-loop level. The

renormalized Lagrangian is then split into two pieces, and reads [88]

LQED = −1

4

(
Fµν

r

)2
+ ψ̄r (i/∂ − me)ψr − eψ̄rγµψr Ar,µ

−1

4
δ3

(
Fµν

r

)2
+ ψ̄r (iδ2/∂ − δme)ψr − eδ1ψ̄rγµψr Ar,µ . (2.15)
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The Feynman slash notation /p = γµ pµ is applied and the argument of the fields are dropped

out. The counterterms are given by

δi = Zi − 1 , i = 1, 2, 3 and δme = Z2me, 0 − me , (2.16)

where δme is the mass counterterm and δ1 the charge counterterm. Renormalization conditions

define, among others, the electron physical charge and mass. The electron physical mass

is fixed by the condition that the electron self-energy Σ vanishes for on-shell momentum,

whereas the physical electric charge is fixed by the requirement that the vertex function Γ
µ at

zero-momentum transfer is the standard gamma matrix,

Σ(/p = me) = 0 , and − ieΓ
µ(p′ − p = 0) = ieγµ . (2.17)

The connection between the bare and physical electric charge is established and solely depends

on the photon field-strength renormalization constant (at one-loop order). The connection

between the bare and physical mass depends on the regularization scheme used and the order

considered in perturbation theory.

2.2. Furry Picture

The previous discussion considered free QED in the sense of the absence of a binding potential,

but was however an interacting theory due to the presence of a coupling term between electron-

positron field and the photon field in Lint [see Eq. (2.10)]. This section discusses how the

presence of a classical external field Aµ(x), which describes the interaction of the electron-

positron field with the (classical) nucleus, modifies the previous framework. To emphasis on

the difference a superscript (0) is introduced to distinguish from the considerations made in

the previous section. ψ
(0)
H (x) denotes the BSQED zeroth-order term in interaction with the

electromagnetic field but in the presence of the classical field of the nucleus. Let us write the

vector potential associated to the classical external field as

Aµ(x) =

(
Vnucl(x)

e
, 0

)
. (2.18)

A few comments should be made regarding the nuclear potential introduced. The nucleus

is considered to be significantly more massive than the electron, Mnucl � me (mp / me ≈
1836). Therefore, recoil corrections are not accounted for in the following. Due to the infinite

mass of the nucleus (in comparison to the electron one) the nuclear potential is taken to be
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static, since its motion is negligible with respect to the time frame of the electronic motion,

hence the time-independence of the nuclear potential. The attractive potential of the nucleus

affects the matter content of the Lagrangian, as electrons are captured in its vicinity to form

bound states. The parts involving the electromagnetic field are not considered in what follows.

The Lagrangian of the (non-interacting) electron-positron field in the presence of the external

classical field is

LDirac+nucl = ψ̄
(0)
H (x)

(
iγµ∂µ − me − eγµAµ

)
ψ
(0)
H (x) . (2.19)

The interaction of the electron-positron field with the external classical field of the nucleus

is taken into account non-perturbatively from the beginning by solving Dirac equation in the

presence of the binding potential

(
iγµ∂µ − me − eγµAµ

)
ψ
(0)
H (x) = 0 . (2.20)

The equation of motion of the electron-positron field ψ
(0)
H (x) (2.20) is referred to as the Furry

picture of QED [29] or BSQED. Upon a Legendre transformation, the Dirac Hamiltonian in

the Furry picture is obtained

hDφk(x) = [−iα ·∇+ βme + Vnucl(x)] φk(x) = εkφk(x) , (2.21)

where φk(x) are the solutions of the stationary Dirac equation and k stands for all quantum

numbers. The time-depend solution is the stationary solution φk(x) multiplied by the phase

factor exp
(
−iεkx0

)
. Upon second quantization, the (non-interacting) electron-positron field

can be expanded in terms of creation and annihilation operators

ψ
(0)
H (x) = ∑

εk>EF

akφk(x)e
−iεkx0

+ ∑
εk<EF

b†
k φk(x)e

−iεkx0

, (2.22)

where ak (bk) is the electron (positron) annihilation operator for an electron (positron) in the

state k and a†
k (b†

k ) is the electron (positron) creation operator for an electron (positron) in the

state k, fulfilling the usual equal-time anti-commutations relations

{ai, a†
j } = δij , {bi, b†

j } = δij . (2.23)

All other anti-commutators are trivially zero. The Fermi level EF is set to EF = 0, separating

the negative-energy continuum (Dirac sea) from the rest of the spectrum. The unperturbed
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normal ordered Hamiltonian is given by [90]

H0 =
∫

d3x : ψ
(0)†
H (x)hDψ

(0)
H (x) : . (2.24)

The external static potential is given explicitly, under the hypothesis that the interaction is

described by the electric field generated by the nucleus

Vnucl(x) = VC(x) = −αZ

|x| . (2.25)

One recognises the expression for the Coulomb potential of a point-like nucleus. Consequently,

φk(x) are solutions to all order in αZ, in other words going beyond the perturbative regime

αZ � 1. The Dirac equation for the point-like nucleus is solvable analytically and the

eigenvalues are given by [90]

εk ≡ εnκ = me


1 +


 αZ

n − |κ|+
√

κ2 − (αZ)2




2



− 1
2

. (2.26)

The eigenfunctions φk(x) are characterized by three quantum numbers k = (nk, κk, mk). The

relativistic angular momentum number κ takes non-zero integer values and is related to the total

angular momentum j and the orbital angular momentum quantum number l of the Schrödinger

hydrogen-like (H-like) atom by κ = (−1)j+l+1/2 (j + 1/2). For light systems, meaning small

Z, the condition αZ � 1 is fulfilled [91] and the energy eigenvalues can be expanded as

εnκ = me

[
1 − 1

2

(
αZ

n

)2

− 1

2

(
αZ

n

)4
(

n

j + 1
2

− 3

4

)
+ . . .

]
. (2.27)

The first term in the expansion is the electron’s rest mass, the second one is the non-relativistic

energy level obtained by solving Schrödinger’s equation for the H-like atom. The first relativis-

tic or leading relativistic corrections enters at order (αZ)4, hence a (αZ)2 correction to the

Schrödinger’s energy level. Thereby, the parametrization EQED(n, j, l) = α
π
(αZ)4

n3 F(n,j,l)(αZ)

(in units of me) [26], valid in such regime. Notice that this term also depends on the total

angular momentum j. Thus, the degeneracy between states with the same principal quantum

number is lifted, for example between the 2p1/2 and 2p3/2 states. The splitting in the energy

spectrum introduced by the presence of the total angular momentum j is usually referred to as

the fine-structure splitting. It should not be confused with the Lamb shift, which arises from

the interactions of the electron with (quantum) vacuum energy fluctuations. Initially, the Lamb
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shift described the energy difference between the 2s1/2 and 2p1/2 states [92] but the term has a

broader use nowadays. Detailed consideration of QED corrections are discussed in Chapter 3.

The extended Furry picture complements the previous treatment with the inclusion of a

screening potential U(x) in Eq. (2.25). It partially accounts for interelectronic interactions

and/or correlations among electrons in many-electron system. Examples of screening potentials

are core-Hartree potential [93–96] or Kohn-Sham potential [97] . In the extended Furry picture

the subscript "nuclear" of the potential is dropped and one simply writes

V(x) = VC(x) + U(x) . (2.28)

A counterpotential term is to be introduced in Lint to compensate the potential added above.

The vacuum state of the theory can be addressed now. Since this thesis deals with radiative

and interelectronic corrections, it implies that no real photons are present. All photon considered

are virtual ones mediating the interactions among electrons and positrons. This explains why

only even power are obtained as energy corrections (2.27), each vertex is proportional to e

and enters twice. The vacuum state of the theory in the presence of the Coulomb field of the

nucleus (2.19) is denoted as |0〉. It fulfills the usual requirement that the annihilation operators

cannot decrease its occupation number in the Fock space

ak|0〉 = 0 , bk|0〉 = 0 . (2.29)

The vacuum expectation value of the time-ordered product of two electron-positron field

operators defines the electron propagator. The bound state expansion in term of creation and

annihilation operators of non-interacting electron-positron field (2.22) allows to write it as

〈0|T
[
ψ
(0)
H (x)ψ̄

(0)
H (y)

]
|0〉 = i

2π

∫
dω ∑

k

φk(x)φ̄k(y)

ω − εk(1 − iε)
e−i(x0−y0)ω , (2.30)

where ε > 0 implies the limit to zero. For later use, let us define u = 1 − iε. T stands for the

time-ordering operator and is written explicitly in terms of the Heaviside function. The integral

representation of the latter is used to get to the result (2.30)

θ(x0) = ± 1

2πi

∫
dω

1

ω ∓ iε
e± iωx0

. (2.31)

Note that the propagator depends only on the time difference x0 − y0. One could Fourier

transform with respect to the time variable and obtain an expression of the electron propagator
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as a function of coordinates and energy

i

2π
S(ω, x, y) =

i

2π ∑
k

φk(x)φ†
k (y)

ω − εk(1 − iε)
. (2.32)

The electron propagator has poles, which define the bound state energies of the electron, and

branch cuts from (−∞,−me] and [me,+∞), see Fig. 2.1(a). The photon propagator is defined

similarly to the electron propagator, being the vacuum expectation value of the time-ordered

product of two electromagnetic field operators. An explicit expression in position space is

calculated from expression (2.13) in the Feynman gauge

〈0|T
[
Aµ(x)Aν(y)

]
|0〉 =

∫
d4k

(2π)4
D̃

µν
F (k)|ξ=1 = −iηµν

∫
d4k

(2π)4

e−ik(x−y)

k2 + iε
. (2.33)

Fourier transforms the previous expression with respect to the time variable leads to coordinates-

energy representation of the photon propagator in the Feynman gauge, denoted by the F

subscript

D
µν
F (ω, x − y) = −ηµν

∫
d3k

(2π)3

eik · (x−y)

ω2 − k
2 + iε

=
ηµν

4π|x − y| e
i
√

ω2+iε|x−y| . (2.34)

The branch of the square root is fixed by the condition Im
√

ω2 + iε > 0. D
µν
F (ω, x − y) is an

analytical function of ω in the complex ω plane with cuts beginning at the points ω = +iε

and ω = −iε, see Fig. 2.1(b) .

Figure 2.1.: (a) Singularities of the electron propagator in the complex ω plane. The dots denote
the bound-states and the thick lines represent the branch-cuts. (b) Singularities of the
photon propagator in the complex ω plane for a non-zero photon mass µ. Massless case is
recovered by setting µ = 0.

Some notations and relevant quantities for later calculations are introduced. Here and in

what follows, the RMBPT notations of Lindgren and Morisson [98] and Johnson [99] are used:

v and h designate the valence electron and the hole state, respectively, a, b, c, . . . stand for
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core orbitals, and i, j, k, l, p correspond to any arbitrary states. The interelectronic-interaction

operator I stands for

I(ω, x − y) = e2αµανDµν(ω, x − y) , and I′(ω, x − y) ≡ dI(ω, x − y)

dω
. (2.35)

In the Feynman and Coulomb gauges, these operators fulfill the symmetry properties

I(ω, x − y) = I(−ω, x − y) , I′(ω, x − y) = −I′(−ω, x − y) ⇒ I′(0, x − y) = 0 .(2.36)

The following shorthand notation for the matrix element will be used throughout the whole

thesis

Iijkl(ω) =
∫

d3xd3yφ†
i (x)φ†

j (y)I(ω, x − y)φk(x)φl(y) , (2.37)

for which the symmetry property holds

Iijkl(ω) = Ijilk(ω) . (2.38)

The photon propagator, in the Coulomb gauge, is given by

DC
00(ω, x − y) =

1

4π|x − y| ,

DC
i0(ω, x − y) = DC

0j(ω, x − y) = 0 ,

DC
ij (ω, x − y) = −

δije
i
√

ω2+iε|x−y|

4π|x − y| − ∇(x)
i ∇(y)

j

1 − ei
√

ω2+iε|x−y|

4πω2|x − y|
. (2.39)

Thus, IC can be expressed as

IC(ω, x − y) = α




14 − αx · αyei
√

ω2+iε|x−y|

|x − y| +


(αx ·∇x),


(αy ·∇y),

ei
√

ω2+iε|x−y| − 1

ω2|x − y|







 .

(2.40)

In the Feynman gauge, the operator IF reads

IF(ω, x − y) = α
14 − αx · αy

|x − y| ei
√

ω2+iε|x−y| . (2.41)

Matrices αx and αy act on the Dirac bispinors with the arguments x and y, respectively.
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In Chapter 3.2, the gauge invariance of derived expressions is going to be demonstrated.

For this purpose, it is convenient to consider the difference between the matrix elements with

the photon propagator in the Feynman and Coulomb gauges. This difference is given by

∆Iijkl(ω) ≡ IF
ijkl(ω)− IC

ijkl(ω) = (ω2 + ∆ik∆jl) Ĩijkl(ω) , (2.42)

with

Ĩ(x − y; ω) = α
ei
√

ω2+iε|x−y| − 1

ω2|x − y|
(2.43)

and ∆ij = εi − εj. The previous expression in terms of ∆ij is obtained by noticing that α ·∇
can be replaced by ihD in the commutators, since the scalar parts of the Hamiltonian commute

and cancel out. One also needs its derivative with respect to ω, which can be cast as

∆I′ijkl(ω) = 2ω Ĩijkl(ω) + (ω2 + ∆ik∆jl) Ĩ′ijkl(ω) . (2.44)

In the case of two photon propagators, the following formula is useful to calculate the difference

between the gauges,

IF
i1 j1k1l1

(ω1)IF
i2 j2k2l2

(ω2)− IC
i1 j1k1l1

(ω1)IC
i2 j2k2l2

(ω2) =

1

2

[
∆Ii1 j1k1l1

(ω1)IF
i2 j2k2l2

(ω2) + IC
i1 j1k1l1

(ω1)∆Ii2 j2k2l2
(ω2) + F ↔ C

]
.

(2.45)

Note that it treats symmetrically both I operators with respect to the gauge variation. It applies

as well in the case of derivative terms, replacing Iijkl with I′ijkl. The following rearrangement

formula will be handy to demonstrate the cancellation among terms of the three-electron part,

∑
m

Ii1 j1k1m(∆k1i1
)Imj2k2l2

(∆j2l2
) = ∑

m

Ij2 j1l2m(∆j2l2
)Imi1k2k1

(∆k1i1
) . (2.46)

It is based on the completeness relation and the commutation between the I operators.

2.3. Vacuum state redefinition’s approach

Dealing with many-electron ions is a difficult task due to the numerical complexity involved

as well as to derive tractable formal BSQED expression. That is why ab initio calculations
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are limited so far to a few-electron ions [67, 68, 79] and ions with single valence (or hole)

electron [55, 75, 76, 83]. To facilitate the derivation of tractable formal expressions for many-

electron systems the vacuum state redefinition technique is widely accepted and demonstrated

within the RMBPT formalism [98–101]. However, within BSQED it is not yet broadly

employed. Nevertheless, the vacuum state redefinition method was mainly utilized for single-

valence electron states [85, 102–105] and recently for two-valence electron states [79]. In

Ref. [85], the author considered the case of one electron over closed shells in the context of

the TTGF method developed in that work. In Ref. [83], the problem of the rigorous QED

formulation for many-electron systems within the S-matrix approach was considered and the

usefulness of the vacuum state redefinition by analogy with the RMBPT was emphasized.

Figure 2.2.: (a) Energy spectrum of a bound system. The dots correspond to the bound energies. The
light gray areas correspond to the positive and negative energy continuum, the dark gray
area is the energy gap between the negative continuum and the standard vacuum state, the
hatched area corresponds to the core electrons included in the redefined vacuum state. (b)
Different integration paths over the electron energy ω. C is the contour of integration in the
standard vacuum state according to the Feynman prescription. C′ is the shifted contour of
integration, where the redefined vacuum state encapsulates the (1s)2 shell. Cint = C′ − C
describes the interaction of the reference state (valence electron or hole state) with the
(1s)2-shell electrons. Other notations are identical to Fig. 2.1.

The concept of a vacuum state redefinition naturally arose in quantum field theory due to the

notion of the fully occupied negative-energy continuum of spin-1/2 states, the so-called Dirac

sea. The essential notion in introducing a redefined vacuum state is to separate the electron

dynamics into the “core” and “valence” parts. The first part is relegated to the reference vacuum
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energy [hatched area in Fig. 2.2(a)] and can be neglected when the transition energy, with a

significant many-electron background remaining unchanged, is considered. The key feature is

that the contributions, arising from the interaction between core electrons are canceled in the

difference between the excited and the ground state energies, are not considered from the very

beginning. For example, when the interest lies in the valence electron binding energy or in its

excitation energy, it is convenient to employ the concept of vacuum state redefinition.

This is formulated via a new Fermi level EF
α , which lies above all core electron states

belonging to closed shells, as shown in Fig. 2.2(a). The many-electron contributions are

extracted as the difference of two integrals over altering integration contours, each in link with

its respective vacuum state, as shown in Fig. 2.2(b). In this way, the interaction of the reference

particle (electron or hole) with core electrons is taken into account within the QED framework.

The great advantage of the method is, for example, that instead of the all-electron states one

deals with the few-valence-electron states, which amounts to a much smaller Hilbert space.

Further elaboration on the approach based on the redefinition of the vacuum state within the

QED perturbation theory is presented in the next chapter.

2.3.1. Redefined vacuum state and implications

A new vacuum state, named redefined vacuum state, is introduced in a way that all core orbitals

from the closed shells belong to it [98]. Let it be denoted by |α〉,

|α〉 = a†
aa†

b . . . |0〉 . (2.47)

The corresponding Fermi level EF
α precise location is determined by the redefined vacuum state

|α〉: EF
α lies slightly above the energy level of the highest occupied orbital of the new vacuum

state |α〉. The meaning of creation and annihilation operators is changed for the core shell

electrons (aa → b†
a , a†

a → ba), and the electron-positron field operator reads

ψ
(0)
H, α(x) = ∑

εk>EF
α

akφk(x)e−iεkx0

+ ∑
εk<EF

α

b†
k φk(x)e−iεkx0

. (2.48)

Moreover, annihilation operators obey their usual rules but accordingly to their respective

energy εk compared to Fermi level EF
α [see Eq. (2.48)],

bk|α〉 = 0 , ak|α〉 = 0 . (2.49)
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Attributing a multitude of one-electron states to the redefined vacuum state, the interest is in

describing the dynamics of N-particle (electrons and holes) state A on top of the redefined

vacuum state, which is defined by the expression

|A〉 = a†
v1

a†
v2

. . . b†
hN−1

b†
hN
|α〉 . (2.50)

The zeroth-order energy E
(0)
A is thus given by the state average of the zeroth-order Hamiltonian

(2.24),

E
(0)
A = 〈A|H0|A〉 = ∑

v=v1,v2,...

εv − ∑
h=...,hN−1,hN

εh . (2.51)

Here, one sums up the one-electron energies of the electrons and subtracts the one-electron

energies of the holes. The shift of the Fermi level from EF to EF
α affects the electron propagator

as it affected the expansion of the electron-positron field in creation and annihilation operators

in Eq. (2.48). The expression presented below is suitable for both the redefined vacuum state

and the standard vacuum state, with the replacement EF
α → EF = 0,

〈α|T [ψ
(0)
H, α(x)ψ

(0)†
H, α (y) ]|α〉 =

i

2π

∫
dω ∑

k

φk(x)φ†
k (y)

ω − εk + iε(εj − EF
α )

e−i(x0−y0)ω . (2.52)

Consequently, the expression (2.32) is adapted to

i

2π
Sα(ω, x, y) =

i

2π ∑
k

φk(x)φ†
k (y)

ω − εk + iε(εj − EF
α )

, (2.53)

which is the electron propagator in the framework of the redefined vacuum state, highlighted

by the α subscript. As stated previously, the poles of the electron propagator define the bound-

states energies, but not in the full theory; recall that the interaction of the electron-positron field

with the electromagnetic field was neglected in the discussion of the Furry picture (2.21), hence

the use of ψ
(0)
H, α(x). Thus, the poles are the leading relativistic corrections but do not account

for the radiative corrections arising from the quantum field description of the electromagnetic

field and its interactions with the electron-positron field. In general, the energy levels for an N-

electron system including QED effects are obtained from the poles of the spectral representation

of N-point functions, which one comes at and discusses in details in Chapter 3.1.
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2.3.2. Extraction of interelectronic interactions with core electrons

The core orbitals are by construction1, the discrete part of the negative-energy spectrum due

to the change in the poles circumvention prescription (2.53). It corresponds to a different

integration path in the complex ω plane, see Fig. 2.2(b). The difference in the vacua focuses on

the dynamics occurring in between them [the hatched area in Fig. 2.2(a)], which is of interest

since this part of the spectrum deals with core electrons that were previously "hidden". The

interelectronic interactions are retrieved as the difference between expressions in the redefined

vacuum state and the ones in the standard vacuum state. Formulated in other words, the

expressions obtained in the frame of the redefined vacuum state contain the same expressions,

with respect to the standard vacuum state, plus interelectronic corrections between the core

electrons and the reference state; one-electron radiative corrections are incorporated with the

interelectronic ones in the redefined vacuum framework. Detailed examples are provided in

Section 3.2.1, Eqs. (3.58, 3.59) and in Section 3.2.2, Eq. (3.67).

= − + −

Figure 2.3.: Extraction of the one-photon-exchange correction out of the subtraction of the one-particle
self-energy (SE) and one-particle vacuum-polarization (VP) Feynman diagrams in different
vacua. Thick black lines denote the electron propagator in the redefined vacuum state in an
external potential V. Double lines indicate the electron propagator in the standard vacuum
state in an external potential V. Wavy lines correspond to the photon propagator.

The difference between the propagator in the redefined vacuum state and the propagator in

the standard vacuum state corresponds to a cut of the electron line on the Feynman diagram,

as shown on Fig. 2.3. The application of Sokhotski-Plemelj theorem is introduced as a tool

to simplify this difference and to make the cut explicit. The following equality is meant to be

understood while integrating in the complex ω plane. For p = 1, 2, . . . we have,

∑
j

φj(x)φ̄j(y)

[ω − εj + iε(εj − EF
α )]

p
−∑

j

φj(x)φ̄j(y)

[ω − εj + iε(εj − EF)]p

=
2πi(−1)p

(p − 1)!

d(p−1)

dω(p−1) ∑
a

δ(ω − εa)φa(x)φ̄a(y) . (2.54)

1See comment below Eq.(2.47) and Fig. 2.2(a)
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2.4. Perturbation Theory

Previously, the interaction term Lint was neglected in the discussion. The full theory is

considered now but the highlight is on the latter term. The interaction Hamiltonian is obtained

after a Legendre transformation, and encapsulates the interaction of the electron-positron field

with the quantized electromagnetic field Aµ(x) and the counterpotential −U(x), when one

works within the extended Furry picture,

hint(x) = eαµ Aµ(x)− U(x)− δmeγ
0 . (2.55)

A mass renormalization counterterm is included as well to regularize the ultraviolet diver-

gence occurring in self-energy loops (see Appendix A.1). The corresponding normal-ordered

interaction Hamiltonian is

Hint =
∫

d3x : ψ
(0)†
H, α (x)hint(x)ψ

(0)
H, α(x) : . (2.56)

The bound-state energy corrections due to this interaction Hamiltonian are usually accounted

for via the bound-state QED perturbation theory. In this context the perturbation theory is

based on the fine-structure constant α as an expansion parameter, accounting for order-by-order

corrections, assuming the U(x) expansion converges reasonably fast. In the original Furry

picture, the α perturbative expansion can be enhanced with a further 1/Z expansion at each

order under the hypothesis Z � N, which is fulfilled for heavy few-electron ions. For an

overall correction of order n, contributions range from nth order in α up to nth order in 1/Z,

with all possible intermediates fulfilling the order in α and in 1/Z corrections sum to n. The

order in 1/Z indicates the number of exchanged photons, which mediates the interelectronic

interaction between different electrons.

To date there are several methods employed within the BSQED perturbation theory: the

adiabatic S-matrix approach [90], the two-time Green’s function method [85,106], the covariant-

evolution-operator method [107–109], and the line profile approach [110]. The treatment of

BSQED in this thesis relies on the TTGF method, which is introduced in the next chapter. A

special care is required in the treatment of the contributions where an intermediate-state energy

coincides with the reference-state energy, so-called reducible contributions. As a side comment,

the covariant-evolution-operator method mixes RMBPT with QED. It features two times as

well, even thought one is sent to t → −∞, and can handle quasi-degenerate states, which is

not possible with the S-matrix. The reader is referred to Ref. [107] for a detailed description of

the method and its comparison with the S-matrix one and the TTGF approach.



CHAPTER 3.

TWO-TIME GREEN’S FUNCTION

Along the previous chapter, QED corrections have been teased and the reader was referred to

this chapter for more detailed explanations. One shall proceed to present the two-time Green’s

function method devised by Shabaev [85], based on the approach of a redefined vacuum state,

for both N-electronic and N-positronic (hole) states. However, before doing so, a few words on

the concept of the Green’s function and its use as a tool are provided, according to Ref. [111].

The chapter then goes through the consideration of a single-valence electron state over the

closed shells, where interelectronic corrections are calculated up to the second order. Afterward,

the first order screened radiative corrections are investigated for a single-hole state in the closed

shells, a vacancy in the electronic configuration. The two-photon-exchange corrections are

derived in this case too, and the matching between QED and the RMBPT is achieved as a

cross-check.

The material presented in the chapter is based on the references:

Redefined vacuum approach and gauge-invariant subsets in two-photon-exchange dia-

grams for a closed-shell system with a valence electron [112]

R. N. Soguel, A. V. Volotka, E. V. Tryapitsyna, D. A. Glazov and S. Fritzsche

Phys. Rev. A 103, 042818 (2021)

Many-electron QED with redefined vacuum approach
1 [113]

R. N. Soguel, A. V. Volotka, D. A. Glazov and S. Fritzsche

Symmetry 13(6), 1014 (2021)

Consider an abstract differential operator D acting on some state | f 〉 of a linear space such

that it results in the state |g〉,

D| f 〉 = |g〉 . (3.1)

1Errors found in section 3 are corrected in the thesis.

23
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The formal solution is obtained by solving the homogeneous equation D|hi〉 = 0 for each

linearly independent solution i, plus the particular solution associated to |g〉,

| f 〉 = D−1|g〉+ ∑
i

ci|hi〉 . (3.2)

It involves the inverse differential operator D−1, which meaning will become clearer after

a projection on the coordinates space, and accordingly the insertion of the resolution of the

identity. One arrives to

〈x| f 〉 =
∫ b

a
dx′〈x|D−1|x′〉〈x′|g〉+ ∑

i

ci〈x|hi〉 . (3.3)

The real variable x is taken in some interval (a, b). Per definition, the Green’s function of the

differential operator D is

G̃(x, x′) := 〈x|D−1|x′〉 , (3.4)

which corresponds to the matrix element of the inverse operator D−1 between 〈x| and |x′〉.
The question is, which equation does the Green’s function satisfy, i.e. how to find the Green’s

function. A smart way to get to the result is to start with the scalar product 〈x|x′〉 = δ(x − x′),
to insert the identity DD−1 = 11 in the left hand-side, and then the resolution of the identity

δ(x − x′) = 〈x|DD−1|x′〉 =
∫ b

a
dy〈x|D|y〉〈y|D−1|x′〉

= Dx

∫ b

a
dy δ(x − y)G̃(y, x′) . (3.5)

In the last step, D takes support in a suitable function space with respect to the x variable.

Therefore, one gets the equation obeyed by the Green’s function of some differential operator

DxG̃(x, x′) = δ(x − x′) . (3.6)

It turns out that the Green’s function satisfies the differential equation governing the original

problem, with the inhomogeneous term changed to a δ function. In other words, the Green’s

function describes the response of the system to an instant point source, or impulse. The

previous equation happens also to be given as the defining equation of the Green’s function.

The problem is more conveniently solved in the Fourier space. Once the solution is found, the

constants ci are fixed by the appropriate boundary conditions on | f 〉. In such a way the solution

is uniquely determined. As a side comment, the solution of the problem can also be obtained
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according to another methodology. The solution is obtained by taking the convolution of the

Green’s function with the inhomogeneous term

f (x) =
∫ b

a
dx′G̃(x, x′)g(x′) . (3.7)

In the literature the two-point Green’s function, or two-point correlation function, G̃(x, x′)
and the propagator G(x, x′) coincide, up to an ± i factor. Thus, it may be convenient to

interpret the Green’s function as a correlation function. In the realm of quantum field theory,

correlations functions are vacuum expectation values of time-ordered products of fields [see

Eqs. (2.30, 2.33)]. The rest of this thesis considers correlation functions of 2N bispinor fields

assessed by the vacuum state |Ω0〉 of the full theory [Eqs. (2.10, 2.12, 2.18)],

G(x1, . . . , xN; y1, . . . , yN) = 〈Ω0|T [ψH(x1) · · ·ψH(xN)ψ̄H(yN) · · · ψ̄H(y1)] |Ω0〉 .

(3.8)

The standard way to evaluate this type of expressions is to calculate it perturbatively in the

interaction representation relying on the Gell-Mann-Low formula [18, 88]

〈Ω0|T [ψH(x1) · · ·ψH(xN)ψ̄H(yN) · · · ψ̄H(y1)] |Ω0〉

=

〈0|T
[

ψI(x1) · · ·ψI(xN)ψ̄I(yN) · · · ψ̄I(y1)e
−i
∫

dz0 HI, int

]
|0〉

〈0|T
[

e−i
∫

dz0 HI, int

]
|0〉

. (3.9)

The expression stated above is a great importance; it relates a quantity in the Heisenberg picture

evaluated with respect to the vacuum state of the interaction theory to the same quantity in

the interaction representation but evaluated with respect to the vacuum state of the free theory.

Consequently, the Gell-Mann-Low formula constitutes a bridge between what one is willing

to calculate and what one is able to calculate; one aims to make predictions for the realistic

system (interacting theory) but the calculational abilities are limited to the independent particle

approximation (free theory).

Let us pause and discuss a crucial point: the definition of the zero-point of the energy, also

named the reference energy of the system. On the one side, one has the free theory described by

H0, with the eigenvalues εj and its vacuum (ground) state |0〉. The ground state energy is the

vacuum expectation value 〈0|H0|0〉 = ε0. The zero of energy is conveniently set to the vacuum

energy by defining H0|0〉 = 0, or equivalently ε0 = 0. On the other side, the interacting
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theory is governed by the full Hamiltonian H = H0 + Hint, the associated eigenvalues are

EN and its vacuum state is |Ω0〉. Similarly to the free theory, the ground state energy is

given by 〈Ω0|H|Ω0〉 = E0. A freedom of choice is left to set the reference energy in the

interacting theory; the zero-point energy is simply a constant, which cancels out in calculations

of transition energies. For convenience, like in the free theory, the reference energy in the

interacting system is set as the vacuum energy, E0 = 0. Let us now change perspectives with

the introduction of a redefinition of the vacuum state, and think from this point of view. Its

effects in the free theory have been discussed above and are clear; the redefined vacuum state

is |α〉 and the corresponding Fermi level is EF
α . This vacuum state shows a more involved

structure; the shift in energy induces a composite vacuum state, in the sense that its spectrum

encapsulates the (usual) negative-energy continuum and a discrete part due to the inclusion of

the energy levels of the core electrons. A consequence, radiative and interelectronic corrections

are put on the same footing. When considering the redefined vacuum state |α〉 in the interaction

representation, the vacuum state of the interacting theory in the Heisenberg representation is

changed to |Ωα〉. The repercussion is to introduce an increased complexity in the structure of

the vacuum state. Per definition, the redefined vacuum state is the only state annihilated by

the redefined annihilation operator. Therefore, consistency enforces the mapping |α〉 to |Ωα〉,
which establishes the connection between the vacua of the two theories. In the remainder of this

work, the subscript H is dropped and it is implicitly understood that the fields are considered

within the Heisenberg representation.

3.1. Shabaev’s two-time Green’s function method

According to Shabaev [85], the 2N-time Green’s function Eq. (3.8) contains all the information

about the energy levels of an N-electron atom. The issue is that extracting it is a tedious

and laborious work as the Green’s function depends on 2(N − 1) relative times, in its time

representation. The problem can be reduced to a much simpler one under an equal-time choice,

i.e. keeping only two different times. Let us derive the spectral representation of the two-time

Green’s function within a redefined vacuum state for the case where all ψ share a common

time x0, so as for ψ̄ but with a common time y0. In this special case, Eq. (3.8) is changed
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accordingly to

Gα(x0, x1, . . . , x0, xN;y0, y1, . . . , y0, yN)

= 〈Ωα|T
[
ψα(x0, x1) · · ·ψα(x0, xN)ψ̄α(y

0, yN) · · · ψ̄α(y
0, y1)

]
|Ωα〉 ,

(3.10)

and the expression (3.9) is turned to

〈Ωα|T[ψα(x0, x1) · · ·ψα(x0, xN)ψ̄α(y
0, yN) · · · ψ̄α(y

0, y1)]|Ωα〉

=

〈α|T
[

ψ
(0)
I, α(x0, x1) · · ·ψ

(0)
I, α(x0, xN)ψ̄

(0)
I, α(y

0, yN) · · · ψ̄
(0)
I, α(y

0, y1)e
−i
∫

dz0 HI, int

]
|α〉

〈α|T
[

e−i
∫

dz0 HI, int

]
|α〉

.

(3.11)

The Fourier transformed Green’s function Gα(E, x1, . . . , xN; y1 . . . , yN) is introduced as

Gα(E;x1, . . . , xN; y1, . . . , yN)δ(E − E′)

=
1

2πi

1

N!

∫
dx0dy0eiEx0−iE′y0

Gα(x0, x1, . . . , x0, xN, ; y0, y1, . . . , y0, yN) . (3.12)

The spectral representation of Eq. (3.10) is obtained via the analysis of the Fourier transformed

Green’s function (3.12). A coordinate integrated Green’s function, which is going to be a key

instrument in the analysis, is built out of the time Fourier transformed Green’s function

gα(E) =
1

N!

∫
d3x1 . . . d3xNd3y1 . . . d3yN : ψ(0)†

α (0, x1) · · ·ψ(0)†
α (0, xN)

×Gα(E, x1, . . . , xN; y1, . . . , yN)γ
0
1 · · · γ0

Nψ(0)
α (0, yN) · · ·ψ(0)

α (0, y1) : . (3.13)

In order to extract the energy shift, one has to consider the pole structure of the Green’s

function (3.13). For this purpose, let us rewrite it in term of the creation and annihilation

operators:

gα(E) =
1

N! ∑
εi1

,...,εiN
>EF

α

∑
εj1

,...,εjN
>EF

α

a†
i1
· · · a†

iN
ajN

· · · aj1
gα,i1...iN j1...jN

(E)

+
1

N! ∑
εi1

,...,εiN
<EF

α

∑
εj1

,...,εjN
<EF

α

b†
i1
· · · b†

iN
bjN

· · · bj1
gα,i1...iN j1...jN

(E) . (3.14)
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with

gα,i1...iN j1...jN
(E) =

∫
d3x1 . . . d3xNd3y1 . . . d3yNφ†

i1
(x1) · · · φ†

iN
(xN)

×Gα(E, x1, . . . , xN; y1, . . . , yN)γ
0
1 · · · γ0

Nφj1
(y1) · · · φjN

(yN) . (3.15)

The analysis of the pole structure of gα,i1...iN j1...jN
(E) is conducted according to the steps shown

in Ref. [85]. First, the time-ordering operator in Eq. (3.12) is expanded. The second step is to

apply the time-translation rule for Heisenberg operators

ψ(x0, x) = eiHx0

ψ(0, x)e−iHx0

, (3.16)

where the total Hamiltonian satisfies

H|ΩN 〉 = (H0 + Hint) |ΩN 〉 = EN |ΩN 〉 . (3.17)

The states |ΩN 〉 form a complete basis, ∑N |ΩN 〉〈ΩN | = 1, which is inserted to separate

ψ’s and ψ̄’s in expression (3.10). The subscript indicating the dimensionality of the identity

matrix of the Hilbert space is not displayed, as it is understood that the dimension of the Hilbert

space is infinite. The integral representation of the Heaviside, Eq. (2.31), allows to simplify the

expression to

gα,i1...iN j1...jN
(E) = ∑

N

Ai1...iN j1...jN

E − EN + iε
− (−1)N

∑
N

Bi1...iN j1...jN

E + EN − iε
, (3.18)

with

Ai1...iN j1...jN
=

1

N!

∫
d3x1 . . . d3xNd3y1 . . . d3yNφ†

i1
(x1) · · · φ†

iN
(xN)

× 〈Ωα|ψα(0, x1) · · ·ψα(0, xN)|ΩN 〉〈ΩN |ψ†
α(0, yN) · · ·ψ†

α(0, y1)|Ωα〉
× φj1

(y1) · · · φjN
(yN) (3.19)

and

Bi1...iN j1...jN
=

1

N!

∫
d3x1 . . . d3xNd3y1 . . . d3yNφ†

i1
(x1) · · · φ†

iN
(xN)

× 〈ΩN |ψα(0, x1) · · ·ψα(0, xN)|Ωα〉〈Ωα|ψ†
α(0, y1) · · ·ψ†

α(0, yN)|ΩN 〉
× φj1

(yN) · · · φjN
(y1) . (3.20)
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The summations run over all bound and continuum states of the interacting fields’ system.

A closer look to the term (3.19) informs that it contains only states with an electric charge

Ne, enforced by charge conservation2. Hence, the first summation over N in Eq. (3.18) runs

exclusively over the electron excitations (with respect to the redefined vacuum state in the free

theory). A similar analysis for the term (3.20) leads to the conclusion that only states with

an electric charge −Ne are present, and the second summation over N in Eq. (3.18) runs

exclusively over states with vacancy excitations (from the redefined vacuum state, in the free

theory) . If the vacuum state of the free theory were not shifted above a closed shell, one

could refer to Bi1...iN j1...jN
as the positronic term. The terminology hole is rather used, since an

electronic vacancy in a shell resembles a lot to the charge transfer in a p-n junction, where such

a vacancy is called a hole state.

An detailed discussion of the analytical continuation3 to the complex energy plane of

Eq. (3.18) is not compulsory to note that the positions of the poles for the electron and hole

states are essentially different, and in what follows a distinction among these two cases will be

made. The poles of the electronic term are located below the right-hand real axis and the ones

of the hole (or positronic) term are located above the left-hand real axis. Nevertheless, it is

important to notice that the analytical continuation of the Green’s function has cuts (−∞, E
(−)
min ]

and [E
(+)
min ,+∞), where E

(± )
min is the minimal energy of the states with electric charge ± Ne.

The poles of the Green’s function correspond to the bound states of the system. Their locations

depend on whether the interest lies on electronic or hole states. A crucial point to emphasis on

is that, as long as the interaction between the electromagnetic field and the electron-positron

field is turned off, the poles are isolated. Switching on the interaction changes the poles to

branch points, due to the zero mass of the photon. In order to proceed with the formulation of

the perturbation theory, the poles corresponding to the bound states have to be isolated from

the related cuts. The isolation of the poles is carried out by the formal introduction of a photon

mass µ. The photon mass is assumed to be larger than the energy shift of the level under

consideration but smaller than the distance to the other levels. It is then set to zero in the final

expression. As a side remark, the cuts below Eq. (2.34) are affected as follow ω = −µ + iε

and ω = µ − iε. The prescription opens a gap where the integration path can be squeezed

in [see Fig. 2.1(b)], and ensures the regularization of infrared divergences at the individual

Feynman diagram level. The instabilities of the excited states are not accounted for, which is

equivalent to neglecting their imaginary component of the energy.

2The charge operator is Q =
∫

d3xψ†(x)ψ(x). Its commutation relation with ψ and ψ̄ reads, respectively,
[Q, ψ(x)] = −eψ(x) and [Q, ψ̄(x)] = eψ̄(x).

3The extension of the domain of a function from the (energy) real axis to the whole (energy) complex plane.
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3.1.1. Electron states

The integral formalism developed in operator theory by Szökefalvi-Nagy [114] and Kato

[115, 116] is applied to generate the perturbation series in E. The focus is on the state |A〉
(2.50) involving only electron states, A ≡ Av. An integration contour ΓAv

is chosen such that

it surrounds anticlockwise only the pole E = E
(0)
Av

, while other singularities are kept outside.

In such a way, one ends up with

1

2πi

∮

ΓAv

dE E〈Av|gα(E)|Av〉 = EAv
Ai1...iN j1...jN

, (3.21)

owing to the fact that the spectral representation (3.18) has the characteristic

〈Av|gα(E)|Av〉 =
Ai1...iN j1...jN

E − EAv

+ regular terms at E∼ E
(0)
Av

. (3.22)

Similarly, one has

1

2πi

∮

ΓAv

dE 〈Av| gα(E)|Av〉 = Ai1...iN j1...jN
. (3.23)

Dividing Eq. (3.21) by Eq. (3.23) leads to

EAv
=

1

2πi

∮

ΓAv

dE E〈Av|gα(E)|Av〉

1

2πi

∮

ΓAv

dE 〈Av|gα(E)|Av〉
. (3.24)

It is more convenient to deal with a formula yielding directly the energy shift ∆EA = EA − E
(0)
A .

The zeroth-order term is the energy obtained by solving the Dirac equation, Eq. (2.51). At the

zeroth-order, the expansion of the electron-positron field in creation and annihilation operators

(2.48) can be inserted in (3.19). Then, the zeroth-order Green’s function is

〈Av|g(0)α (E)|Av〉 =
1

E − E
(0)
Av

. (3.25)
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Denoting ∆gα(E) = gα(E)− g(0)α (E), the energy shift is given by the cornerstone formula

∆EAv
=

1

2πi

∮

ΓAv

dE
(

E − E
(0)
Av

)
〈Av|∆gα(E)|Av〉

1 +
1

2πi

∮

ΓAv

dE 〈Av|∆gα(E)|Av〉
. (3.26)

Here, one should note that in contrast to the expression given in Ref. [85], the matrix elements

in Eq. (3.26) are understood as the matrix elements in the Fock space. One is in position to

develop the perturbation series in the energy E. Replacing the exponentials in Eq. (3.11) by

its Taylor series, one obtains the perturbation expansion in the fine-structure constant α. As a

result, one also finds for the Green’s function ∆gα(E) and the energy shift ∆EAv

∆gα(E) = 〈Av|∆g(1)α (E)|Av〉+ 〈Av|∆g(2)α (E)|Av〉+ 〈Av|∆g(3)α (E)|Av〉 . . . , (3.27)

∆EAv
= ∆E

(1)
Av

+ ∆E
(2)
Av

+ ∆E
(3)
Av

. . . . (3.28)

The expression for the energy corrections ∆E
(i)
Av

at each order is attained by developing

Eq. (3.26) in a geometric series, substituting Eq. (3.27) and Eq. (3.28) and separating out

the individual orders in α. The first order is given by

∆E
(1)
Av

=
1

2πi

∮

ΓAv

dE
(

E − E
(0)
Av

)
〈Av|∆g(1)α (E)|Av〉 , (3.29)

the second order reads

∆E
(2)
Av

=
1

2πi

∮

ΓAv

dE
(

E − E
(0)
Av

)
〈Av|∆g(2)α (E)|Av〉

− 1

2πi

∮

ΓAv

dE
(

E − E
(0)
Av

)
〈Av|∆g(1)α (E)|Av〉

1

2πi

∮

ΓAv

dE′〈Av|∆g(1)α (E′)|Av〉 .

(3.30)
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and the third order is

∆E(3)
v =

1

2πi

∮

ΓAv

dE
(

E − E
(0)
Av

)
〈Av|∆g(3)α (E)|Av〉

− 1

2πi

∮

ΓAv

dE
(

E − E
(0)
Av

)
〈Av|∆g(2)α (E)|Av〉

1

2πi

∮

ΓAv

dE′〈Av|∆g(1)α (E′)|Av〉

− 1

2πi

∮

ΓAv

dE
(

E − E
(0)
Av

)
〈Av|∆g(1)α (E)|Av〉

×





1

2πi

∮

ΓAv

dE′〈Av|∆g(2)α (E′)|Av〉 −
[

1

2πi

∮

ΓAv

dE′〈Av|∆g(1)α (E′)|Av〉
]2


 .

(3.31)

The terms in the second line of Eq. (3.30) and the three last lines of Eq. (3.31) are referred to

as disconnected contributions, and are generally merged with the corresponding irreducible

diagrams. Note that all one-particle-irreducible (1PI) diagrams, any diagram that cannot be

split in two by removing a single line, do not have disconnected contributions. Thus, one has

expressed the energy shift in terms of the matrix elements of the Green’s function gα(E) in the

occupation number space. In the following, particular examples of the state Av are considered.

The first illustrative example is the well-known single-valence-electron state. Consider

an electronic configuration, which has one valence electron above closed shells. After the

assignment of the closed shells to the redefined vacuum state |α〉, the one-valence-electron

state is described by

|v〉 = a†
v|α〉 . (3.32)

Expressing the Green’s function by Eq. (3.14), it is now easy to evaluate the Fock-space matrix

elements 〈Av|∆gα(E)|Av〉 with Av = v, which enters the expression for the determination

of the energy shift (3.26). The expectation value of the one-particle Green’s function [N = 1,

Eq. (3.14)] with respect to the one-valence-electron state is evaluated and the matrix element is

just

〈v|∆gα(E)|v〉 = ∆gα,vv(E) , (3.33)
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where ∆gα,ij(E) is given by Eq. (3.15). Substituting this expression into Eq. (3.26), one easily

gets,

∆Ev =

1

2πi

∮

Γv

dE (E − εv)∆gα,vv(E)

1 +
1

2πi

∮

Γv

dE ∆gα,vv(E)
, (3.34)

where Γv surrounds only the pole E = εv. This expression coincides with the one-valence-

electron result of Ref. [85].

The second example discussed is the two-valence-electron state formed by the one-electron

orbitals v1 and v2. In this case, the first issue to consider is the construction of a coupled two-

electron state. Employing the jj-coupling scheme, the state with the total angular momentum J

and its projection M is built. Thus, the two-valence-electron state under consideration is given

by

|(v1v2)JM〉 = η ∑
mv1

mv2

〈jv1
mv1

jv2
mv2

|JM〉a†
v1

a†
v2
|α〉 ≡ Fv1v2

a†
v1

a†
v2
|α〉 , (3.35)

where jvi
and mvi

are the one-electron total angular momentum and its projection, the Clebsch-

Gordan coefficient is 〈jv1
mv1

jv2
mv2

|JM〉, and η is the normalization factor, which depends on

the degeneracy of the orbitals forming the jj-coupled state [99],

η =





1 if εv1
6= εv2

1/
√

2 if εv1
= εv2

. (3.36)

Then, the expectation value of the two-particle Green’s function [Eq. (3.14), N = 2] with the

state (3.35) reads,

〈(v1v2)JM|∆gα(E)|(v1v2)JM〉 = Fv1v2
Fv1v2

[
∆gα,v1v2v1v2

(E)− ∆gα,v1v2v2v1
(E)
]

. (3.37)

Substituting this expression into Eq. (3.26) , one easily obtains,

∆Ev1v2
=

1

2πi

∮

Γv1v2

dE
(

E − εv1
− εv2

)
Fv1v2

Fv1v2

[
∆gα,v1v2v1v2

(E)− ∆gα,v1v2v2v1
(E)
]

1 +
1

2πi

∮

Γv1v2

dE Fv1v2
Fv1v2

[
∆gα,v1v2v1v2

(E)− ∆gα,v1v2v2v1
(E)
] ,

(3.38)
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where Γv1v2
surrounds only the pole E = εv1

+ εv2
. As one can see from the above formulas,

Eqs. (3.34) and (3.38), the energy shifts are expressed in terms of the one- and two-electron

matrix elements ∆gα,ij(E) and ∆gα,ijkl(E), for which the Feynman rules formulated in Ref. [85]

can be used. The only difference to keep in mind is that the electron propagator has to be

replaced by the one in the redefined vacuum state, defined by Eq. (2.52). Consequences of the

employment of the redefined vacuum state’s propagator will become clear in the next section. A

generalization to three and more valence-electron state is straightforward in terms of N-particle

Green’s function (3.14) and the energy shift (3.26).

3.1.2. Hole states

In order to extract the energy shift for the hole states, one has to consider the second sum in

Eq. (3.18). The state |A〉 is considered to be of hole type A ≡ Ah. Following the same path

as in the electron’s case, the expression for the energy shift ∆EAh
= EAh

− E
(0)
Ah

is derived.

The contour of integration ΓAh
surrounds anticlockwise only the pole E = −E

(0)
Ah

and keeps

all other singularities outside. One has to pay attention that the zeroth-order Green’s function

(3.25) is changed accordingly to

〈Ah|g(0)α |Ah〉 = − (−1)N

E + E
(0)
Ah

. (3.39)

Therefore, the cornerstone expression for the energy shift ∆EAh
is

∆EAh
=

1

2πi

∮

ΓAh

dE
(

E + E
(0)
Ah

)
〈Ah|(−1)N

∆gα(E)|Ah〉

1 − 1

2πi

∮

ΓAh

dE 〈Ah|(−1)N
∆gα(E)|Ah〉

. (3.40)

As previously, replacing the exponentials in Eq. (3.11) by its Taylor series generates the

perturbation expansion in the fine-structure constant α. Hence, the first-order and second-order

corrections to the energy shift ∆EAh
are found

∆E
(1)
Ah

=
1

2πi

∮

ΓAh

dE
(

E + E
(0)
Ah

)
〈Ah|(−1)N

∆g(1)α (E)|Ah〉 , (3.41)
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∆E
(2)
Ah

=
1

2πi

∮

ΓAh

dE
(

E + E
(0)
Ah

)
〈Ah|(−1)N

∆g(2)α (E)|Ah〉

+
1

2πi

∮

ΓAh

dE
(

E + E
(0)
Ah

)
〈Ah|(−1)N

∆g(1)α (E)|Ah〉

× 1

2πi

∮

ΓAh

dE′〈Ah|(−1)N
∆g(1)α (E′)|Ah〉 . (3.42)

Note that from Eq. (3.18), gα,i1...iN j1...jN
(E) contains a −(−1)N factor in front of the hole term,

thus

(−1)N
∆g(i)α (E) ≡ −∆g̃(i)α (E) (3.43)

is always negative whatever the number N of holes considered.

Let us now consider some examples. The first case is the mirror image of the single-valence-

electron configuration, termed as the one-hole state: closed shells with a single electronic

vacancy. In this case, symmetrical to the one-valence-electron state considered above, the Fock

state is defined as follows [98]:

|h〉 = (−1)jh−mh b†
h|α〉 , (3.44)

with the phase factor introduced to restore the rotational invariance of the matrix elements. jh
and mh are the hole total angular momentum and its projection. The zeroth-order energy E

(0)
h ,

given by Eq. (2.51), for one-hole state reads

E
(0)
h = 〈Ah|H0|Ah〉 = −εh . (3.45)

Obviously, E
(0)
h is negative since the hole dynamics occurs below the zero-point energy assigned

to the redefined vacuum state |α〉. Evaluating now the matrix element [N = 1, Eq. (3.14)],

〈h|(−1)∆gα(E)|h〉 = −∆g̃α,hh(E) , (3.46)
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with emphasis on the negative sign as stated in Eq. (3.43), one gets the cornerstone expression

for the energy shift of the one-hole state:

∆Eh = −

1

2πi

∮

Γh

dE (E − εh)∆g̃α,hh(E)

1 +
1

2πi

∮

Γh

dE ∆g̃α,hh(E)
, (3.47)

where Γh surrounds only the pole E = εh. It should be highlighted that the single-valence

cornerstone expression Eq. (3.34) and the single-hole cornerstone expression Eq. (3.47) are

related by an odd-parity symmetry with respect to the redefined vacuum state. In Ref. [101],

it was stated that within the RMBPT framework the expressions for the corrections to the

energy level of a single-hole state are obtained from the formulas of the single-valence

electron under the replacement v to h and each term enters with the opposite sign. Here,

we manifest that such an odd parity symmetry with respect to the redefined Fermi level

also holds within the QED framework. This statement, and its extension to any N-particle

states [electrons: Eq. (3.26), holes: Eq. (3.43) in Eq. (3.40)], is one of the major results of this

thesis.

The second example considered is the two-hole state. Similar to the case of the two-valence-

electron state, the angular momenta of the two holes are coupled via the jj-coupling scheme,

which leads to the following two-hole state,

|(h1h2)JM〉 = η ∑
mh1

mh2

(−1)
jh1

+jh2
−mh1

−mh2 〈jh1
− mh1

jh2
− mh2

|JM〉b†
h1

b†
h2
|α〉

≡ Fh1h2
b†

h1
b†

h2
|α〉 , (3.48)

where jhi
and mhi

are the one-hole total angular momentum and its projection, and the normal-

ization factor η is defined by Eq. (3.36). Then, the matrix element of the two-particle Green’s

function [Eq. (3.14), N = 2] is evaluated for the two-hole state (3.48) with the result,

〈(h1h2)JM|∆gα(E)|(h1h2)JM〉 = Fh1h2
Fh1h2

[
∆g̃α,h1h2h1h2

(E)− ∆g̃α,h1h2h2h1
(E)
]

. (3.49)
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Substituting this expression into Eq. (3.40) and using E
(0)
h1h2

= −εh1
− εh2

, one easily gets

∆Eh1h2
= −

1

2πi

∮

Γh1h2

dE
(

E − εh1
− εh2

)
Fh1h2

Fh1h2

[
∆g̃α,h1h2h1h2

(E)− ∆g̃α,h1h2h2h1
(E)
]

1 +
1

2πi

∮

Γh1h2

dE Fh1h2
Fh1h2

[
∆g̃α,h1h2h1h2

(E)− ∆g̃α,h1h2h2h1
(E)
] ,

(3.50)

where Γh1h2
surrounds only the pole E = εh1

+ εh2
. As one can see from above equations, the

energy shifts of the holes states are expressed in terms of the matrix element of the Green’s

function ∆gα(E). These matrix elements can be evaluated according to the same Feynman

rules as in the electron-state case.

Concluding this section, one notices that despite the arbitrary number of the core electrons,

the energy shift of the electron Av (or hole Ah) state is reduced to the matrix elements of

corresponding valence electrons (or holes).

3.2. Single-valence electron over closed shells

The focus of the section is on the single-electron case [N = 1, Av ≡ v], with the energy

shift given by Eq. (3.34). The investigation is carried out on the interelectronic-interaction

corrections to binding energies, namely, one- and two-photon-exchange, and how they can be

extracted from the one-particle diagrams in the redefined vacuum state formalism. To make it

clear, starting from the first-order correction in α, a subdivision among different terms of the

same order is made, as introduced in Section 2.4. The one-particle loop diagrams are denoted

by (L), the interelectronic-interaction diagrams by (I) and the screened loop diagrams by (S).

The latter will only start to occur to the second order. The first-order correction,

∆E(1)
v = ∆E(1L)

v + ∆E(1I)
v , (3.51)

contains the self-energy (SE) and vacuum-polarization (VP) graphs in the first term, and the

counterpotential (CP) as well as the one-photon exchange in the second one. The second-order

correction,

∆E(2)
v = ∆E(2L)

v + ∆E(2I)
v + ∆E(2S)

v , (3.52)
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provides the one-particle two-loop terms, the two-photon-exchange and the screened one-loop

terms, in the respective order. The focus is in the two-photon-exchange term ∆E(2I)
v . In the next

part, one demonstrates how to extract the interelectronic-interaction correction on an example

of the one-photon-exchange.

3.2.1. One-photon-exchange corrections

Figure 3.1.: First-order one-particle (valence electron or hole state) one-loop Feynman diagrams cor-
responding (from left to right) to SE, VP, and CP corrections in the redefined vacuum
state formalism. The cross inside a circle represents a counterpotential term, −U. Other
notations are the same as in Fig. 2.3

In this subsection, the method and techniques presented above are illustrated by an example

of first-order one-particle diagrams, which are depicted in Fig. 3.1. The matrix elements of the

Green’s function for SE and VP are, using the Feynman rules provided in [85], respectively,

given by

∆g(1)SE
α,vv (E) =

1

(E − εv)
2

i

2π

∫
dω ∑

j

Ivjjv(ω)

E − ω − εj + iε(εj − EF
α )

, (3.53)

∆g(1)VP
α,vv (E) =

−1

(E − εv)
2

i

2π

∫
dω ∑

j

Ivjvj(0)

ω − εj + iε(εj − EF
α )

. (3.54)

They are used as inputs to calculate the energy correction according to Eq. (3.29). The contour

integral contains a first order pole in E = εv, thus the Green’s functions are evaluated at E = εv

leading to

∆E(1)SE
v =

i

2π

∫
dω ∑

j

Ivjjv(ω)

εv − ω − εj + iε(εj − EF
α )

≡ 〈v|Σα(εv)|v〉 , (3.55)

∆E(1)VP
v = − i

2π

∫
dω ∑

j

Ivjvj(0)

ω − εj + iε(εj − EF
α )

≡ 〈v|Υα|v〉 . (3.56)

Hence, one got the first-order self-energy and vacuum-polarization energy corrections in the

redefined vacuum state framework. The SE operator Σα and the VP operator Υα, in the
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redefined vacuum state denoted by the subscript α, are introduced. Both contain ultraviolet

(UV) divergences and should be regularized. The renormalization procedure is discussed in

details in Appendix A.1. The problem is cured with the consideration of the mass counterterm

in Eq. (2.55), so that the renormalized SE operator is

Σα,R(εv) = Σα(εv)− δmeγ
0 . (3.57)

The equality is obviously valid in the standard vacuum state [Eq. (102) in Ref. [85]] but

remains true in the redefined vacuum state, since it amounts to a shift in the energy. The charge

renormalization ensures that the UV divergence in the VP loop is cured, see also Appendix A.1.

The formulas (3.55, 3.56) encapsulate not only the one-particle one-loop corrections, but also

the one-photon-exchange, see also Fig. (2.3). According to Eq. (3.51), in order to obtain the

one-photon-exchange contribution, one should subtract SE and VP corrections calculated in

the framework of the standard vacuum state. With the help of Eq. (2.54), one obtains for the

SE part,

∆E(1I)SE
v = ∆E(1)SE

v − ∆E(1L)SE
v

=
i

2π

∫
dω ∑

j

[
Ivjjv(ω)

εv − ω − εj + iε(εj − EF
α )

−
Ivjjv(ω)

εv − ω − εju

]

= −∑
a

Ivaav(∆va) , (3.58)

and for the VP part,

∆E(1I)VP
v = ∆E(1)VP

v − ∆E(1L)VP
v

= − i

2π

∫
dω ∑

j

[
Ivjvj(0)

ω − εj + iε(εj − EF
α )

−
Ivjvj(0)

ω − εju

]

= ∑
a

Ivava(0) . (3.59)

It is left to evaluate the counterpotential graph. Let us define
∫

d3xφ†
i (x)U(x)φj(x) ≡ Uij,

then the corresponding Green’s function takes the form

∆g(1)CP
α,vv (E) =

−Uvv

(E − εv)
2

. (3.60)
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Following the same line as before, the evaluation of the contour integral in Eq. (3.29) provides

∆E(1I)CP
v = ∆E(1)CP

v = −Uvv , (3.61)

since CP does not participate in radiative corrections belonging to ∆E(1L)
v . The total first-order

correction ∆E(1I)
v is found to be

∆E(1I)
v = ∑

a

[Ivava(0)− Ivaav(∆va)]− Uvv . (3.62)

Let proceed to demonstrate the gauge invariance of the first-order interelectronic correction

∆E(1I)
v . The CP term is obviously gauge invariant. The starting point for the two remaining

terms is Eq. (2.42). Straightforward application of this formula gives

δ∆E(1I)
v = ∑

a

[
(02 + ∆vv∆aa) Ĩvava(0)− (∆2

va + ∆va∆av) Ĩvaav(∆va)
]
= 0 , (3.63)

thus, showing its gauge invariance.

3.2.2. Two-photon-exchange corrections

Figure 3.2.: One-particle two-loop (left group) and one-particle one-loop counterpotential (right group)
Feynman diagrams representing the second-order corrections to the energy shift of a single-
particle (valence or hole) state in the redefined vacuum state formalism. Notations for the
diagrams are as follows, left group: SESE (first row); SEVP (second row); VPVP, V(VP)P,
V(SE)P, and S(VP)E from left to right in the last row; right group: SECP (first row); VPCP
(second row); CPCP (third row). Other notations are same as in Fig. 2.3.
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In order to derive the expressions of the matrix elements for the two-photon-exchange

corrections in the redefined vacuum state framework, one has to start with the complete set of

second-order one-particle diagrams. There are ten two-loop diagrams, which are presented in

Fig. 3.2, left panel. In the extended Furry picture, one has to consider also seven counterpoten-

tial diagrams depicted in Fig. 3.2, right panel. Already such a decomposition allows to identify

nine GI subsets based on the gauge invariance of the one-particle two-loop diagrams [117].

Here are the subsets with labeling presented in Figs. 3.2: SESE, SEVP, VPVP, V(VP)P, V(SE)P,

S(VP)E, SECP, VPCP, and CPCP. The identified subsets should be gauge invariant in both

redefined and standard vacuum state frameworks. This means that the many-electron diagrams

obtained as a difference between redefined and standard vacuum state diagrams can be also

divided according to these subsets. In the following, this statement will be illustrated by the

rigorous derivation and direct proof of the gauge invariance.

To keep track of the source of generated reducible contributions, a subscript is used with

previous notation; for example v1, a1, b1, where εi1
= εi.

SESE subset

The Green’s function for the SESE subset can be cast in the form

∆g(2)SESE
α,vv (E) =

1

(E − εv)
2

(
i

2π

)2

∑
i,j,k

∫
dω1dω2

×
{

Iviij(ω1)Ijkkv(ω2)

[E − ω1 − εi + iε(εi − EF
α )][E − εj + iε(εj − EF

α )][E − ω2 − εk + iε(εk − EF
α )]

+
Ivjik(ω1)Iikjv(ω2)

[E − ω1 − εi + iε(εi − EF
α )][E − ω1 − ω2 − εj + iε(εj − EF

α )][E − ω2 − εk + iε(εk − EF
α )]

+
Ivkiv(ω1)Iijjk(ω2)

[E − ω1 − εi + iε(εi − EF
α )][E − ω1 − ω2 − εj + iε(εj − EF

α )][E − ω1 − εk + iε(εk − EF
α )]

}
,

(3.64)

with the corresponding energy correction [see Eq. (3.30)],

∆E(2)SESE
v =

1

2πi

∮

Γv

dE(E − εv)∆g(2)SESE
α,vv (E)

− 1

2πi

∮

Γv

dE(E − εv)∆g(1)SE
α,vv (E)

1

2πi

∮

Γv

dE′
∆g(1)SE

α,vv (E′) . (3.65)
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Let us now work through the two-photon-exchange extraction procedure,

∆E(2)SESE
v − ∆E(2L)SESE

v = ∆E(2I)SESE
v + ∆E(2S)SESE

v , (3.66)

for the last term of ∆g(2)SESE
α,vv (E) in Eq. (3.64) as an example. In order to not overload the

following steps, the integrals and associated prefactors are ignored for the time being; however,

signs are taken into account accordingly:

∑
i,j,k

{
Ivkiv(ω1)Iijjk(ω2)

[E − ω1 − εi + iε(εi − EF
α )][E − ω1 − ω2 − εj + iε(εj − EF

α )][E − ω1 − εk + iε(εk − EF
α )]

−
Ivkiv(ω1)Iijjk(ω2)

[E − ω1 − εiu][E − ω1 − ω2 − εju][E − ω1 − εku]

}

= 2πi
k 6=a

∑
a,j,k

Ivkav(ω1)Iajjk(ω2)δ(E − ω1 − εa)

(E − ω1 − ω2 − εju)(E − ω1 − εku)

+ 2πi ∑
i,a,k

Ivkiv(ω1)Iiaak(ω2)δ(E − ω1 − ω2 − εa)

(E − ω1 − εiu)(E − ω1 − εku)

+ 2πi
i 6=a

∑
i,j,a

Ivaiv(ω1)Iijja(ω2)δ(E − ω1 − εa)

(E − ω1 − εiu)(E − ω1 − ω2 − εju)

+ (2πi)2
k 6=a

∑
a,b,k

Ivkav(ω1)Iabbk(ω2)δ(E − ω1 − εa)δ(E − ω1 − ω2 − εb)

(E − ω1 − εku)

+ (2πi)2
∑

a,j,a1

Iva1av(ω1)Iajja1
(ω2)

(E − ω1 − ω2 − εju)

d

dω1
δ(E − ω1 − εa)

+ (2πi)2
i 6=b

∑
i,a,b

Ivbiv(ω1)Iiaab(ω2)δ(E − ω1 − ω2 − εa)δ(E − ω1 − εb)

(E − ω1 − εiu)

+ (2πi)2
∑

a,b,a1

Iva1av(ω1)Iabba1
(ω2)δ(E − ω1 − ω2 − εb)

d

dω1
δ(E − ω1 − εa) . (3.67)

After one cut, one gets the first three terms with only one delta function. The first and third of

them correspond to the screened radiative diagrams, while the second one gives the crossed

diagram of the two-photon exchange. At the two-cut level, two three-electron contributions are

found; the fourth and sixth terms with two delta functions. The term which has a derivative

acting on the delta function gives rise to the reducible part of the screened radiative diagram.

The reducible three-electron part is provided by the three-cut term displayed on the last line

of Eq. (3.67). Thus, separating only the interelectronic-interaction terms, one gets for the last
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term of Eq. (3.64):

∆E(2I)SESE
v ∼ 2πi ∑

i,a,k

Ivkiv(ω1)Iiaak(ω2)δ(E − ω1 − ω2 − εa)

(E − ω1 − εiu)(E − ω1 − εku)

+ (2πi)2
k 6=a

∑
a,b,k

Ivkav(ω1)Iabbk(ω2)δ(E − ω1 − εa)δ(E − ω1 − ω2 − εb)

(E − ω1 − εku)

+ (2πi)2
i 6=b

∑
i,a,b

Ivbiv(ω1)Iiaab(ω2)δ(E − ω1 − ω2 − εa)δ(E − ω1 − εb)

(E − ω1 − εiu)

+ (2πi)2
∑

a,b,a1

Iva1av(ω1)Iabba1
(ω2)δ(E − ω1 − ω2 − εb)

d

dω1
δ(E − ω1 − εa1

)

+ ... . (3.68)

Notice that one obtains different types of contribution arising when the same diagram in the

standard vacuum is subtracted: two-electron and three-electron, which are additionally divided

into irreducible and reducible parts. The disconnected SESE part, the second term of Eq. (3.65),

is incorporated into the three-electron reducible part.

In the rest of the section one summarizes the results for the SESE subset. The two-electron

irreducible part ∆E(2I)SESE,2e,irr
v is given by

∆E(2I)SESE,2e,irr
v = − i

2π

∫
dω

[
′

∑
a,i,j

Ivjiv(ω)Iiaaj(∆va − ω)

(εv − ω − εiu)(εv − ω − εju)

+
(i,j) 6=(a,v)

∑
a,i,j

Ivaij(ω)Iijav(∆va − ω)

(εv − ω − εiu)(εa + ω − εju)

]
, (3.69)

where the first term resembles the crossed-exchange graph considered above in details, while the

second one gives the ladder-exchange diagram. Following Ref. [72], one excludes (prime on the

sum) from the crossed irreducible term the contributions with εi + εj = 2εv and εi + εj = 2εa

and attribute them to the reducible term. The two-electron reducible part ∆E(2I)SESE,2e,red
v ,

which corresponds to εi + εj = εa + εv restriction in the ladder term and the contributions
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excluded in the irreducible crossed term, reads

∆E(2I)SESE,2e,red
v =

i

2π

∫
dω

(ω + iε)2

{
− ∑

a,v1,v2

Ivv2v1v(ω)Iv1aav2
(∆va + ω)

+ ∑
a,a1,v1

[
Ivav1a1

(ω)Iv1a1av(∆va + ω) + Ivaa1v1
(∆va − ω)Ia1v1av(ω)

]

− ∑
a,a1,a2

Iva2a1v(∆va − ω)Ia1aaa2
(ω)

}
. (3.70)

The three-electron irreducible part ∆E(2I)SESE,3e,irr
v is given by

∆E(2I)SESE,3e,irr
v =

i 6=b

∑
a,b,i

Ivibv(∆vb)Ibaai(∆ba) + Ivbiv(∆vb)Iiaab(∆ab)

(εb − εi)

+
(i,b) 6=(v,a)

∑
a,b,i

Ivabi(∆vb)Ibiav(∆ba) + Ivaib(∆ba)Iibav(∆vb)

(εv + εa − εb − εi)

+
i 6=v

∑
a,b,i

Ivaai(∆va)Iibbv(∆vb)

(εv − εi)
+ ∑

a,b,i

Iviab(∆va)Iabiv(∆vb)

(εa + εb − εv − εi)
. (3.71)

The derivative term arising from the ladder-exchange graph as well as the disconnected SESE

part from the second term in Eq. (3.65) are merged into the reducible part, leading to

∆E(2I)SESE,3e,red
v = ∑

a,b,a1

[
Iva1av(∆va)I′abba1

(∆ab)− I′va1av(∆va)Iabba1
(∆ab)

]

+ ∑
a,b,v1

I′vaav1
(∆va)Iv1bbv(∆vb) + ∑

a,a1,v1

I′vaa1v1
(∆va)Ia1v1av(0) . (3.72)

Since the contributions summarized above are derived from the GI SESE subset, one assumes

that they form a GI subset as well. Moreover, the gauge invariance also persists for two- and

three-electron contributions independently. The gauge invariance of the three-electron SESE

subset can be demonstrated analytically. With the help of Eq. (2.45), once the denominators

have been canceled and the sum completed with the appropriated missing terms, the gauge
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difference δ∆E(2),SESE,3e,irr
v is turned into

δ∆E(2I)SESE,3e,irr
v =

1

2 ∑
a,b,i

[
∆bv Ĩvibv(∆vb)IF

baai(∆ba) + ∆ba IC
vibv(∆vb) Ĩbaai(∆ba)

+ ∆vb Ĩibav(∆vb)IF
vaib(∆ab) + ∆ab IC

ibav(∆vb) Ĩvaib(∆ab)

+ ∆bv Ĩvbiv(∆vb)IF
iaab(∆ab) + ∆ba IC

vbiv(∆vb) Ĩiaab(∆ab)

+ ∆vb Ĩvabi(∆vb)IF
biav(∆ba) + ∆ab IC

vabi(∆vb) Ĩbiav(∆ba)

+ ∆va Ĩvaai(∆va)IF
ibbv(∆vb) + ∆vb IC

vaai(∆va) Ĩibbv(∆vb)

+ ∆av Ĩviab(∆va)IF
abiv(∆vb) + ∆bv IC

viab(∆va) Ĩabiv(∆vb)
]

+F ↔ C − δSESE
completion . (3.73)

Applying then Eq. (2.46) on the first and second terms with appropriate use of symmetry

property (2.38) allows to rewrite them exactly as the third and fourth terms but with an opposite

sign, therefore canceling them. And doing similar for other terms shows the absence of

contribution coming from the complete sum. The remaining terms arising from the completion

of the sum are given by the expression

δSESE
completion = ∑

a,b,a1

[
∆av Ĩva1av(∆va)IF

abba1
(∆ab) + ∆ab IC

va1av(∆va) Ĩabba1
(∆ab)

]

+
1

2 ∑
a,b,v1

[
∆va Ĩvaav1

(∆va)IF
v1bbv(∆vb) + ∆vb IC

vaav1
(∆va) Ĩv1bbv(∆vb)

]

+ ∑
a,b,v1

∆vb Ĩvabv1
(∆vb)IF

bv1av(0) + F ↔ C . (3.74)

The contribution from the reducible part reads

δ∆E(2I)SESE,3e,red
v = ∑

a,b,a1

[
∆av Ĩva1av(∆va)IF

abba1
(∆ab) + ∆ab IC

va1av(∆va) Ĩabba1
(∆ab)

]

+ ∑
a,b,v1

[
∆vb Ĩvabv1

(∆vb)IF
bv1av(0) + ∆va Ĩvaav1

(∆va)IF
v1bbv(∆vb)

]

+ F ↔ C . (3.75)

One can see that the first, second and fifth terms of the completion term cancel out the first

three terms of the reducible part. The remaining ones vanish when their counterparts in F ↔ C

are taken into account, which leads to the desired result.
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SEVP subset

The SEVP subset contains only three-electron contribution, which gives the following irre-

ducible part ∆E(2I)SEVP,3e,irr
v ,

∆E(2I)SEVP,3e,irr
v = −

i 6=v

∑
a,b,i

Ivaai(∆va)Iibvb(0) + Iibbv(∆vb)Ivaia(0)

(εv − εi)

−
i 6=a

∑
a,b,i

Iviav(∆va)Iabib(0) + Ivaiv(∆va)Iibab(0)

(εa − εi)
, (3.76)

and the reducible part being merged with the disconnected SEVP one yields

∆E(2I)SEVP,3e,red
v = − ∑

a,b,v1

I′vaav1
(∆va)Iv1bvb(0) + ∑

a,b,a1

I′va1av(∆va)Iaba1b(0) . (3.77)

In order to show its gauge invariance, the first thing one has to do after using Eq. (2.45) and

canceling the denominator is to complete the sum. These extra terms cancel the reducible part

after simple a ↔ b renaming where necessary. One is left with

δ∆E(2I)SEVP,3e,irr
v = − 1

2 ∑
a,b,i

[
∆va Ĩvaan(∆va)IF

nbvb(0) + ∆vb Ĩnbbv(∆vb)IF
vana(0) (3.78)

+ ∆av Ĩvnav(∆va)IF
abnb(0) + ∆av Ĩvanv(∆va)IF

nbab(0) + F ↔ C
]

.

Applying Eq. (2.46) on the two first terms and after minor rewriting based on the symmetry

property, it gives exactly the same terms as the two last ones but with an opposite sign. Thus,

the complete sum gives zero contribution and the subset is gauge invariant.

S(VP)E subset

Two-electron contribution is also found in the S(VP)E subset, in addition to the three-electron

one. Let us now consider them separately and start with the first one. The two-electron

irreducible part ∆E(2I)S(VP)E,2e,irr
v reads

∆E(2I)S(VP)E,2e,irr
v =

i

2π

∫
dω

[
′

∑
a,i,j

Ivjia(ω)Iiavj(ω)

(εv − ω − εiu)(εa − ω − εju)

+
(i,j) 6=(a,v)

∑
a,i,j

Ivaij(ω)Iijva(ω)

(εv − ω − εiu)(εa + ω − εju)

]
, (3.79)
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where one again excludes the contribution with εi = εv and εj = εa from the crossed-direct

term (first item) by hand and note this by the prime on the sum. The two-electron reducible

part ∆E(2I)S(VP)E,2e,red
v , coming from the ladder direct restriction εi + εj = εa + εv together

with the excluded part from the irreducible crossed-direct term, yields4

∆E(2I)S(VP)E,2e,red
v = − i

4π

∫
dω

[
1

(ω + iε)2
+

1

(−ω + iε)2

]

× ∑
a,a1,v1

Ivaa1v1
(∆va − ω)Ia1v1va(∆va − ω) . (3.80)

The three-electron irreducible part ∆E(2I)S(VP)E,3e,irr
v yields

∆E(2I)S(VP)E,3e,irr
v = −

(i,b) 6=(v,a)

∑
a,b,i

Ivabi(∆vb)Ibiva(∆vb) + Ivaib(∆ba)Iibva(∆ba)

(εv + εa − εb − εi)

− ∑
a,b,i

Iviba(∆vb)Ibavi(∆vb)

(εa + εb − εv − εi)
, (3.81)

together with the corresponding reducible part,

∆E(2I)S(VP)E,3e,red
v = − ∑

a,a1,v1

Ivaa1v1
(∆va)I′a1v1va(∆va) . (3.82)

The recipe to show gauge invariance is always the same: apply Eq. (2.45), cancel the denomi-

nators, and complete the sum. One obtains afterward for the three-electron part

δ∆E(2I)S(VP)E,3e,irr
v = − 1

2 ∑
a,b,i

{
∆bv

[
Ĩviba(∆vb)IF

bavi(∆vb) + IC
viba(∆vb) Ĩbavi(∆vb)

]

+ ∆vb

[
Ĩvabi(∆vb)IF

biva(∆vb) + IC
vabi(∆vb) Ĩbiva(∆vb)

]

+ ∆ab

[
Ĩvaib(∆ba)IF

ibva(∆ba) + IC
vaib(∆ba) Ĩibva(∆ba)

]}

+ F ↔ C − δS(VP)E
completion . (3.83)

The first two terms of the sum are rewritten with the help of Eq. (2.46) and symmetry property

as the third and fourth terms. Only the prefactor differs by the sign, leading to their cancellation.

The part proportional to ∆ab is canceled in the same way, the major difference lies in the fact

4The expression −1

(x+iε)2 +
1

(−x+iε)2 = 2π
i ∂xδ(x) was used to symmetrize the ω-flow in the VP loop, or in other

words, to symmetrize the pole structure with respect to the real-line axis.
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that they will be cancelled by their counterpart in F ↔ C. The same applies to the reducible

part in order to cancel the completion term δS(VP)E
completion.

VPVP subset

The VPVP graph provides only one term, a three-electron contribution,

∆E(2I)VPVP,3e
v =

i 6=v

∑
a,b,i

Ivaia(0)Iibvb(0)

(εv − εi)
. (3.84)

As has been shown in the one-photon exchange section, it is straightforward to see that the

difference between Feynman and Coulomb gauges vanishes since the argument of the photon

propagator is zero.

V(VP)P subset

In the case of the V(VP)P graph, there is also only a three-electron contribution which can be

found,

∆E(2I)V(VP)P,3e
v =

i 6=a

∑
a,b,i

Ivavi(0)Iibab(0) + Iviva(0)Iabib(0)

(εa − εi)
. (3.85)

Similar as in the previous subset, the difference between Feynman and Coulomb gauges is zero

due to the zero argument of the photon propagator.

V(SE)P subset

The V(SE)P subset contains the three-electron irreducible contribution ∆E(2I)V(SE)P,3e,irr
v ,

∆E(2I)V(SE)P,3e,irr
v = −

i 6=b

∑
a,b,i

[
Ivbvi(0)Iaiba(∆ba) + Ivivb(0)Iabia(∆ba)

(εb − εi)

]
, (3.86)

together with the three-electron reducible term ∆E(2I)V(SE)P,3e,red
v ,

∆E(2I)V(SE)P,3e,red
v = − ∑

a,b,a1

Ivava1
(0)I′ba1ab(∆ab) . (3.87)
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As the reducible part arises from the excluded term in the sum, completing the sum will

automatically cancel the reducible part. The only subtlety is to break the reducible contribution

into two pieces and use the symmetry property to rewrite it in proper shape.

SECP subset

Let us turn now to the counterpotential terms and its previously proposed decomposition. Since,

after extraction of the interelectronic-interaction parts, all diagrams will be either two-electron

(SECP and VPCP subsets) or one-electron (CPCP subset), one does not identify this superscript

directly. In the case of the SECP subset, it is easy to obtain the following expression for the

corresponding irreducible part ∆E(2I)SECP,irr
v ,

∆E(2I)SECP,irr
v =

i 6=v

∑
a,i

Uvi Iiaav(∆va) + Ivaai(∆va)Uiv

(εv − εi)
+

i 6=a

∑
a,i

Ivaiv(∆va)Uia + Iviav(∆va)Uai

(εa − εi)
.

(3.88)

The reducible part, which encapsulates also the disconnected SECP part of the second term of

Eq. (3.30), can be written as

∆E(2I)SECP,red
v = ∑

a,v1

I′vaav1
(∆va)Uv1v − ∑

a,a1

I′vaa1v(∆va)Ua1a . (3.89)

It is left to demonstrate the gauge invariance of this subset. As previously, use Eq. (2.42),

cancel the denominators, and complete the sum one gets for the gauge difference

δ∆E(2I)SECP,irr
v = 2 ∑

a,i

[
∆va Ĩvaai(∆va)Uiv + ∆av Ĩviav(∆va)Uai

]

− 2 ∑
a,v1

∆va Ĩvaav1
(∆va)Uv1v − 2 ∑

a,a1

∆av Ĩva1av(∆va)Uaa1
. (3.90)

Then Eq. (2.44) applied on the reducible part will provide the appropriate terms to cancel the

second line of the previous equation. With [I(x − y), V(z)] = 0 in mind, a similar formula as

Eq. (2.46) shows that the complete sum vanishes; therefore, this ends the proof of the gauge

invariance.
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VPCP subset

The diagrams of the VPCP subset give only one term, which yields

∆E(2I)VPCP
v = −

i 6=v

∑
a,i

Ivaia(0)Uiv + Uvi Iiava(0)

(εv − εi)
−

i 6=a

∑
a,i

Ivavi(0)Uia + Uai Iviva(0)

(εa − εi)
. (3.91)

As the argument of the photon propagator is zero and the counterpotential is not influenced by

any gauge change, the gauge invariance of this term is straightforwardly guaranteed.

CPCP subset

The CPCP subset contains only one term, which corresponds to the diagram itself,

∆E(2I)CPCP
v =

i 6=v

∑
i

UviUiv

(εv − εi)
, (3.92)

since as in the case of the one-photon exchange, there is no such term in the radiative correction

set. By the construction it is gauge invariant.

Final expressions

Thus, in the previous section, one identified eight GI subsets in the original Furry picture: SESE

(two- and three-electron subsets), SEVP, S(VP)E (two- and three-electron subsets), VPVP,

V(VP)P, and V(SE)P. In an extended Furry picture, they are completed by three additional

counterpotential subsets: SECP, VPCP, and CPCP. The final expression for the total two-photon

exchange correction ∆E(2I)
v ,

∆E(2I)
v =

(
∆E(2I)SESE,2e,irr

v + ∆E(2I)SESE,2e,red
v

)
+
(

∆E(2I)SESE,3e,irr
v + ∆E(2I)SESE,3e,red

v

)

+
(

∆E(2I)SEVP,3e,irr
v + ∆E(2I)SEVP,3e,red

v

)
+
(

∆E(2I)S(VP)E,2e,irr
v + ∆E(2I)S(VP)E,2e,red

v

)

+
(

∆E(2I)S(VP)E,3e,irr
v + ∆E(2I)S(VP)E,3e,red

v

)
+ ∆E(2I)VPVP,3e

v + ∆E(2I)V(VP)P,3e,irr
v

+
(

∆E(2I)V(SE)P,3e,irr
v + ∆E(2I)V(SE)P,3e,red

v

)
+
(

∆E(2I)SECP,irr
v + ∆E(2I)SECP,red

v

)

+ ∆E(2I)VPCP
v + ∆E(2I)CPCP

v , (3.93)
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is given by a sum of equations (3.69) – (3.72), (3.76), (3.77), (3.79) – (3.82), (3.84) – (3.89),

(3.91), and (3.92). The terms in Eq. (3.93) are grouped into the GI subsets.

Figure 3.3.: Feynman diagrams representing the two-photon-exchange corrections to the energy shift of
a single-particle (valence or hole) state. Notations for the diagrams are as follows, from left
to right: two-particle ladder, two-particle crossed, three-particle, and two counterpotential
graphs. Other notations are the same as in Fig. 2.3.

The two-photon-exchange corrections can be also identified by the many-electron diagrams

depicted in Fig. 3.3. All of the contributions originated from these diagrams have been obtained

within the redefined vacuum state approach and are presented with Eq. (3.93). To compare these

results based on the effective one-particle approach with the ones obtained within consideration

of many-electron diagrams, one gathers them in accordance with the separation published

previously [72, 73, 82]. First, the expression for the two-electron irreducible contribution

∆E(2I)2e,irr
v , which is obtained by summing up Eqs. (3.69) and (3.79), is presented

∆E(2I)2e,irr
v =

i

2π

∫
dω

{
(i,j) 6=(a,v)

∑
a,i,j

Ivaij(ω)Iijva(ω)

(εv − ω − εiu)(εa + ω − εju)

+
′

∑
a,i,j

Ivjia(ω)Iiavj(ω)

(εv − ω − εiu)(εa − ω − εju)
−

(i,j) 6=(a,v)

∑
a,i,j

Ivaij(ω)Iijav(∆va − ω)

(εv − ω − εiu)(εa + ω − εju)

−
′

∑
a,i,j

Ivjiv(ω)Iiaaj(∆va − ω)

(εv − ω − εiu)(εv − ω − εju)

}
. (3.94)

The first two terms are direct parts [Eq. (3.79)], ladder and crossed, respectively, while the

second two are the exchange counterparts [Eq. (3.69)], again ladder and crossed, respectively.

The primes on the sums are meant for the omitted terms, namely, i = v and j = a for the

crossed-direct term and (i, j) = {(a, a), (v, v)} for the crossed-exchange term. The two-
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electron reducible contribution ∆E(2I)2e,red
v is given by a sum of Eqs. (3.70) and (3.80),

∆E(2I)2e,red
v =

i

2π

∫
dω

(ω + iε)2

{

∑
a,a1,v1

[
Ivav1a1

(ω)Iv1a1av(∆va + ω)

+ Ivaa1v1
(∆va − ω)Ia1v1av(ω)− 1

2
Ivaa1v1

(∆va − ω)Ia1v1va(∆va − ω)

− 1

2
Ivaa1v1

(∆va + ω)Ia1v1va(∆va + ω)

]
− ∑

a,a1,a2

Iva2a1v(∆va − ω)Ia1aaa2
(ω)

− ∑
a,v1,v2

Ivv2v1v(ω)Iv1aav2
(ω + ∆va)

}
. (3.95)

The expressions of the two-electron contribution presented in such a way agree with the results

of Refs. [72, 73, 82]. In Refs. [76, 83], the two-electron contribution is not separated into

irreducible and reducible parts and given as in Eq. (3.94) but without any sums’ restrictions.

One recalls the separations made between irreducible and reducible parts. Concerning the

two-electron crossed terms, the reducible parts are separated artificially and can be added back,

thus, removing the restrictions in the second and fourth sums in Eq. (3.94). In contrast, the

two-electron ladder term is leading to a discrepancy. In order to restore the completeness of

the first and third sums in Eq. (3.94), the omitted terms (i, j) = (a, v) should have the pole

structure (ω + iε)(ω − iε). However, as one can see from Eq. (3.95) all contributions have a

different pole topology, namely, (ω + iε)2.

Collecting all three-electron irreducible terms given by Eqs. (3.71), (3.76), (3.81), (3.84),

(3.85), and (3.86) together with the counterpotential irreducible terms, Eqs. (3.88), (3.91), and
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(3.92), one comes to the following total three-electron contribution:

∆E(2I)3e,irr
v =

i 6=a

∑
a,b,i

{
[Iibab(0)− Iibba(∆ab)] [Ivavi(0)− Ivaiv(∆va)]

εa − εi

+
[Iabib(0)− Ibaib(∆ab)] [Iviva(0)− Iviav(∆va)]

εa − εi

}

+
i 6=v

∑
a,b,i

[Ivaai(∆va)− Ivaia(0)] [Iibbv(∆vb)− Iibvb(0)]

εv − εi

+ ∑
a,b,i

[Iabiv(∆vb)− Iabvi(∆va)] Iviab(∆va)

εa + εb − εv − εi

+
(i,b) 6=(v,a)

∑
a,b,i

[Ivabi(∆vb)− Ivaib(∆ba)] [Ibiav(∆ba)− Ibiva(∆vb)]

εv + εa − εb − εi

+
i 6=v

∑
a,i

Uvi [Iiaav(∆va)− Iiava(0)] + [Ivaai(∆va)− Ivaia(0)]Uiv

εv − εi

+
i 6=a

∑
a,i

Uai [Iviav(∆va)− Iviva(0)] + [Ivaiv(∆va)− Ivavi(0)]Uia

εa − εi
+

i 6=v

∑
i

UviUiv

εv − εi
.

(3.96)

In the same way, summing Eqs. (3.72), (3.77), (3.82), (3.87), and (3.89) one derives the total

three-electron reducible contribution:

∆E(2I)3e,red
v = ∑

a,b,a1

{
I′va1av(∆va)

[
Iaba1b(0)− Iabba1

(∆ab)
]

+ I′abba1
(∆ab)

[
Iva1av(∆va)− Iva1va(0)

]}

+ ∑
a,b,v1

I′vaav1
(∆va)

[
Iv1bbv(∆vb)− Iv1bvb(0)

]
− ∑

a,a1

I′vaa1v(∆va)Ua1a

+ ∑
a,v1

I′vaav1
(∆va)Uv1v + ∑

a,a1,v1

I′vaa1v1
(∆va)

[
Ia1v1av(0)− Ia1v1va(∆va)

]
.

(3.97)

In contrast to the two-electron contribution, the three-electron contribution has a more com-

plicated structure and can not be easily generalized. Therefore, they were mainly derived for

a particular state, e.g., for Li-like ions in Refs. [72, 73] or B-like ions in Ref. [82], and for

these special cases the presented expressions agree with the mentioned papers. However, in

Refs. [76, 83], the general expressions for the three-electron terms are given, e.g., E2F as the

irreducible part and E2F′ as the reducible part in accordance with Ref. [83]. Comparing the
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derived expressions (3.96) and (3.97) with those of Sapirstein and Cheng, one finds an almost

perfect agreement for the irreducible part, except for an absence of a restriction in the fourth

sum in Eq. (3.96). Whereas, the reducible part strongly disagrees. Comparing term by term,

one notices problems with expressions in the first and third lines of Eq. (3.97). For example,

the last expression is written with b state instead of a1, meaning the summations over all core

electrons independently. The first expression in the first line is written with apparent misprints

(odd number of electron states in matrix elements). Moreover, there is no expression like the

second term in the first line in Ref. [83]. Here, one should note that the gauge invariance

condition dictates the exact form of the reducible part. The detailed analysis of gauge invariance

for each subset of diagrams performed here makes one believe that this result is more reliable.

3.2.3. Numerical evaluation for Lithium-like ions

One is now in a position to support numerically the gauge invariance of the identified subsets –

the strength of the developed approach. The computations are performed for the 2s, 2p1/2, and

2p3/2 binding energies in Li-like tin ion. The finite nuclear size is accounted for by using the

Fermi model for the nucleus charge distribution with the root-mean-square radius of 4.6519

fm [118]. The ω integration in the two-electron terms was performed with the Wick rotation to

the integration contours chosen as in Ref. [64]. The infinite summations over the whole Dirac

spectrum are performed using the dual-kinetic-balance finite basis set method [119] for the

Dirac equation. The basis functions are constructed from B-splines [120]. The number of basis

functions is systematically increased to achieve a clear convergence pattern of the calculated

results. Then the extrapolation to an infinite number of basis functions is undertaken. The

partial wave summation over the Dirac quantum number κ was terminated at κmax = 8, and the

remainder was estimated by the least-squares inverse polynomial fitting. More details on the

numerical convergence are provided in appendix A.3. The numerical uncertainty is estimated

to be less than 3× 10−6 atomic units.

The numerical evaluations are performed in both Feynman and Coulomb gauges to demon-

strate the gauge invariance of the identified subsets. The individual contributions and sums for

each subset are presented in Tables 3.1 and A.1 in atomic units. In Table 3.1, the results for

the case of Coulomb potential (original Furry picture) are presented. As one can see from the

table, the values for each of eight identified subsets are gauge invariant within the numerical

uncertainty. Notice that the term ∆E(2I)V(SE)P,3el,red is not displayed, since it gives zero con-

tribution in the case of Li-like ions, i.e., ions with only one closed shell. For a comparison,

results from Ref. [72] for the 2s and 2p1/2 states and from Ref. [73] for the 2p3/2 state are
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presented. The comparison shows an excellent agreement with values obtained in the present

work. In Table A.1, the results for the extended Furry picture are displayed. The self-consistent

core-Hartree potential has been used in this case. In addition to the subsets presented already

in the original Furry picture case, three additional subsets coming from the counterpotential

diagrams are present. Again, as in the former case, the values presented in this table confirm all

identified subsets’ gauge invariance.

Presenting now the accurate control on numerical results, calculations are performed for

the most compelling experimental cases; Li-like bismuth and uranium ions are presented. In

Table 3.2, the ionization potentials and transition energies for the 2s and 2p3/2 states in the

case of Li-like Bi and for the 2s and 2p1/2 states in the case of Li-like U ions are displayed.

The following nuclear radii 5.531 fm and 5.860 fm are employed for bismuth and uranium,

respectively, following Ref. [76]. As in Ref. [76] the Kohn-Sham potential is used as the

starting potential and compared term by term the zeroth-order energy E0 as well as the first-

order ∆E(1) and second-order ∆E(2) corrections. As one can see from the table, the zeroth- and

first-order terms are in perfect agreement to all given digits. At the same time, the two-photon

exchange (second-order) correction is slightly different. The reason for this may be precisely

the discrepancy in the reducible two- and three-electron contributions stated above. Since

the reducible terms are always much smaller than the dominant irreducible one, it is rather

difficult to identify the correctness of its calculation. Here, one should emphasize again that the

reducible terms are responsible for restoring the gauge invariance, and within the developed

method, one has excellent control on this issue.

To compare with the experiments, one has to add additional correction ∆Erest, which

incorporates three-photon-exchange, recoil, radiative, and screened-radiative contributions.

These contributions are taken directly from Ref. [76]. Comparing now the total values of the

energies for the 2p3/2 − 2s transition in bismuth and the 2p1/2 − 2s transition in uranium, one

can see overall good agreement between both theoretical calculations and experimental results

within the given error bars. Nevertheless, the conviction is that these independent calculations

are essential for future more precise comparisons.



TWO-TIME GREEN’S FUNCTION 56

2s 2p1/2 2p3/2

Feynman Coulomb Feynman Coulomb Feynman Coulomb

SESE,2e,irr 0.026650 0.029926 0.022374 0.025697 0.027738 0.031426

SESE,2e,red 0.003036 -0.000240 0.002901 -0.000422 0.003839 0.000151

SESE,2e 0.029686 0.029686 0.025275 0.025275 0.031578 0.031578

0.02968a 0.02967a,∗ 0.02528a 0.02529a 0.03156b

S(VP)E,2e,irr -0.187925 -0.187589 -0.323212 -0.323137 -0.212025 -0.211837

S(VP)E,2e,red 0.000338 0.000001 0.000052 -0.000022 0.000187 -0.000002

S(VP)E,2e -0.187588 -0.187587 -0.323159 -0.323159 -0.211838 -0.211838

-0.18759a -0.18759a -0.32317a -0.32317a -0.21185b

SESE,3e,irr -0.026028 -0.027012 -0.015884 -0.017989 -0.022614 -0.024791

SESE,3e,red -0.000933 0.000052 -0.002146 -0.000041 -0.002602 -0.000424

SESE,3e -0.026960 -0.026960 -0.018030 -0.018030 -0.025215 -0.025215

SEVP,3e,irr 0.035264 0.037506 0.018094 0.022872 0.037953 0.042854

SEVP,3e,red 0.002122 -0.000120 0.004866 0.000088 0.005850 0.000949

SEVP,3e 0.037386 0.037386 0.022960 0.022960 0.043803 0.043803

S(VP)E,3e,irr 0.176478 0.176348 0.305829 0.305787 0.197613 0.197495

S(VP)E,3e,red -0.000130 0.000000 -0.000041 0.000001 -0.000140 -0.000022

S(VP)E,3e 0.176348 0.176348 0.305788 0.305788 0.197473 0.197473

VPVP,3e -0.302978 -0.302978 -0.483510 -0.483510 -0.430804 -0.430804

V(VP)P,3e -0.050230 -0.050230 -0.038836 -0.038836 -0.029621 -0.029621

V(SE)P,3e,irr 0.021757 0.021757 0.017132 0.017132 0.013100 0.013100

Total 3-electron -0.144678 -0.144678 -0.194497 -0.194497 -0.231265 -0.231265

-0.14468a -0.14468a -0.19450a -0.19449a -0.23126b

Total -0.302579 -0.302579 -0.492381 -0.492381 -0.411525 -0.411526

-0.30259a -0.30259a -0.49239a -0.49237a -0.41156b

a Yerokhin et al. [72]; sphere model for the nuclear charge distribution used.
b Artemyev et al. [73]; sphere model for the nuclear charge distribution used.
∗ Misprint corrected: Table III, ∆E2el

ir (exch) 0.02995 a.u. is used instead of 0.02595 a.u.

Table 3.1.: Contributions of the identified gauge-invariant subsets to the two-photon-exchange correc-
tions for the 2s, 2p1/2, and 2p3/2 states of the Li-like Sn (Z = 50) ion, in atomic units.
The values are obtained within the original Furry picture (Coulomb potential). The results
of the Feynman and Coulomb gauges are given. The Fermi model of the nuclear charge
distribution is employed.
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2s 2p3/2 2p3/2 − 2s

Z = 83 Ref. [76] This work Ref. [76] This work Ref. [76] This work

E(0) −937.4309 −937.43089 −833.7473 −833.74735 103.6836 103.68354

∆E(1) −6.5674 −6.56746 −6.8275 −6.82756 −0.2601 −0.26010

∆E(2) −0.0178 −0.01725 −0.0159 −0.01491 0.0019 0.00234

∆Erest 1.1413 1.1413 0.1747 0.1747 −0.9666(18) −0.9666(18)

Etheo −942.8748 −942.87431 −840.4160 −840.41512 102.4588(18) 102.4592(18)

Eexp [121] 102.4622(14)

2s 2p1/2 2p1/2 − 2s

Z = 92 Ref. [76] This work Ref. [76] This work Ref. [76] This work

E(0) −1201.067 −1201.06660 −1192.233 −1192.23254 8.834 8.83406

∆E(1) −7.360 −7.36038 −4.305 −4.30548 3.055 3.05490

∆E(2) −0.023 −0.02187 −0.070 −0.06914 −0.047 −0.04727

∆Erest 1.731 1.731 0.202 0.202 −1.529(3) −1.529(3)

Etheo −1206.719 −1206.71785 −1196.406 −1196.40515 10.313(3) 10.3127(30)

Eexp [44] 10.3135(5)

Table 3.2.: Individual contributions to the ionization potentials (a.u.) and transition energies (a.u.)
for the 2s and 2p3/2 states in the case of Li-like Bi (upper half) and for the 2s and 2p1/2

states in case of the Li-like U (lower half). The Dirac energy E(0), one-photon ∆E(1) and
two-photon ∆E(2) exchange corrections are compared with the results of Ref. [76]. The
Kohn-Sham potential is employed as the starting potential. Other correction ∆Erest, which
includes three-photon-exchange, recoil, radiative, and screened-radiative contributions, is
taken from Ref. [76] and also used for calculation of our total theory results. A comparison
with existing experimental values is given.

3.3. Single-hole (electronic vacancy) in closed shells

The investigations are focused on the one-hole state [ N = 1, Ah ≡ h]. Such an example is

chosen due to the fact that two-photon-exchange correction is still uncalculated for fluorine-like

ions [54–56] as well as due to recent experimental efforts for such systems [51, 52]. Having

derived the formal expressions for the energy shift, Eq. (3.47), in this section the formalism is

applied for the derivation of the first- and second-order corrections. Special attention is paid to
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the allocation of the GI subsets, which is the key aspect of the developed formalism, as was

demonstrated previously for the one-valence-electron case in Section 3.2.2 .

3.3.1. One- and two-photon-exchange corrections

The separation of different contributions to the energy shift at each perturbative order is

done exactly as in Eqs. (3.51, 3.52). Owing to the symmetry argument developed below

Eq. (3.47), the derivation of the one-photon-exchange correction ∆E
(1I)
h and two-photon-

exchange correction ∆E
(2I)
h is straightforward; for every expression previously derived, the

hole’s case is obtained under the change of labelling v → h and each formula enters with the

opposite sign. Therefore, those steps are spared but the end result is recalled. The one-photon-

exchange corrections is

∆E
(1I)
h = −∑

a

[Ihaha(0)− Ihaah(∆ha)] + Uhh , (3.98)

and final expression for the total two-photon-exchange correction, ∆E
(2I)
h , reads,

∆E
(2I)
h =∆E

(2I)SESE,2e
h + ∆E

(2I)SESE,3e
h + ∆E

(2I)SEVP,3e
h + ∆E

(2I)S(VP)E,2e
h + ∆E

(2I)S(VP)E,3e
h

+ ∆E
(2I)V(SE)P,3e
h + ∆E

(2I)VPVP,3e
h + ∆E

(2I)V(VP)P,3e
h + ∆E

(2I)SECP
h + ∆E

(2I)VPCP
h

+ ∆E
(2I)CPCP
h , (3.99)

which is given by a sum of Eqs. (3.69)–(3.92), presented in section 3.2.2 (under the sign flip and

the exchange of labels). The expressions in Eq. (3.99) are derived for the first time and require

a critical view. Therefore, the Breit approximation is applied to these results, in Appendix A.4,

and the outcome compared with the RMBPT expressions of Ref. [101]. A full agreement is

encountered. Each term in Eq. (3.99) is individually GI. Generally, this statement is based on

the gauge invariance of the corresponding subsets of one-electron diagrams [117] depicted in

Fig. 3.2.

3.3.2. Screened-radiative corrections

The interest is, thus, focused on the many-electron term not treated so far, the screened-radiative

corrections ∆E
(2S)
h . Some of these terms were presented in Eq. (3.67) but no further comments

were made. The procedure goes as before, first applying the Feynman rules for each of the
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diagrams depicted in Fig. 3.2, one writes down the expression for the second-order Green’s

function ∆g
(2)
α,hh(E). The next step is the identification of the two-particle one-loop radiative

corrections. Details concerning this procedure are similar to the one-valence-electron case,

which was already provided in great details in Section 3.2.2. For this reason, the full-length

derivation is not provided here and one restricts itself to the presentation of final formulas.

Let us start with the two terms, which originate from the one-particle diagrams with a VP

loop only: VPVP and V(VP)P,

∆E
(2S)VPVP
h =

i

2π

∫
dω

i 6=h

∑
a,i,j

2Ihaia(0)Iijhj(0)

(εh − εi)(ω − εju)
(3.100)

and

∆E
(2S)V(VP)P
h =

i

2π

∫
dω

[
i 6=a

∑
a,i,j

2Ihahi(0)Iijaj(0)

(εa − εi)(ω − εju)
+ ∑

a,i,j

Ihihj(0)Ijaia(0)

(ω − εiu)(ω − εju)

]
,(3.101)

respectively. The next three subsets displayed come from the diagrams with both SE and VP

loops. One begins with the SEVP term, where the disconnected SEVP part [second term in

Eq. (3.42)] is included,

∆E
(2S)SEVP
h = − i

2π

∫
dω

{
i 6=h

∑
a,i,j

2Ihaai(∆ha)Iijhj(0)

(εh − εi)(ω − εju)
+

i 6=a

∑
a,i,j

2Ihaih(∆ha)Iijaj(0)

(εa − εi)(ω − εju)

+
j 6=h

∑
a,i,j

2Ihiij(ω)Ijaha(0)

(εh − ω − εiu)(εh − εj)
+ ∑

a,i,j

Ihjih(ω)Iiaja(0)

(εh − ω − εiu)(εh − ω − εju)

+ ∑
a,i,h1

[
I′haah1

(∆ha)Ih1ihi(0)

(ω − εiu)
−

Ihiih1
(ω)Ih1aha(0)

(εh − ω − εiu)
2

]

− ∑
a,i,a1

I′haa1h(∆ha)Ia1iai(0)

(ω − εiu)

}
. (3.102)

The second subset falling into this category is the V(SE)P one,

∆E
(2S)V(SE)P
h = − i

2π

∫
dω

[
j 6=a

∑
a,i,j

2Iaiij(ω)Ihjha(0)

(εa − ω − εiu)(εa − εj)

+ ∑
a,i,j

Iajia(ω)Ihihj(0)

(εa − ω − εiu)(εa − ω − εju)
− ∑

a,i,a1

Iaiia1
(ω)Iha1ha(0)

(εa − ω − εiu)
2

]
,

(3.103)
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and finally the S(VP)E graph yields

∆E
(2S)S(VP)E
h = − i

2π

∫
dω ∑

a,i,j

Ihjai(∆ha)Iaihj(∆ha)

(ω − εiu)(ω − ∆ha − εju)
. (3.104)

Last, but not least, the SESE subset comes from the diagrams involving only self-energy loops.

It includes also the SESE disconnected part [second term in Eq. (3.42)], and leads to the

following expression,

∆E
(2S)SESE
h =

i

2π

∫
dω

{
j 6=h

∑
a,i,j

2Ihiij(ω)Ijaah(∆ha)

(εh − ω − εiu)(εh − εj)
+

j 6=a

∑
a,i,j

2Iaiij(ω)Ihjah(∆ha)

(εa − ω − εiu)(εa − εj)

+ ∑
a,i,j

2Iajih(ω)Ihiaj(∆ha)

(εa − ω − εiu)(εh − ω − εju)
+ ∑

a,i,h1

[
Ihiih1

(ω)I′h1aah(∆ha)

(εh − ω − εiu)

−
Ihiih1

(ω)Ih1aah(∆ha)

(εh − ω − εiu)
2

]
− ∑

i,a,a1

[
Iaiia1

(ω)I′ha1ah(∆ha)

(εa − ω − εiu)
+

Iha1ah(∆ha)Iaiia1
(ω)

(εa − ω − εiu)
2

]}
.

(3.105)

Furthermore, in the extended Furry picture, two counterpotential subsets emerge. The first one,

VPCP, is associated to a vacuum-polarization loop,

∆E
(2S)VPCP
h = − i

2π

∫
dω

[

∑
a,i,j

Ihjhi(0)Uij

(ω − εiu)(ω − εju)
+

i 6=h

∑
a,i,j

2Uhi Iijhj(0)

(εh − εi)(ω − εju)

]
,(3.106)

while the second, SECP, arises from the diagram with a self-energy loop and the disconnected

SECP part [second term in Eq. (3.42)],

∆E
(2S)SECP
h =

i

2π

∫
dω

[

∑
a,i,j

Ihjih(ω)Uij

(εh − ω − εiu)(εh − ω − εju)

+
i 6=h

∑
a,i,j

2Uhi Iijjh(ω)

(εh − εi)(εh − ω − εju)
− ∑

a,i,h1

Uhh1
Ih1iih(ω)

(εh − ω − εiu)
2

]
. (3.107)
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Finals expressions

The eight different GI subsets for the screened-radiative corrections are identified from the

general expression for each diagram and presented here

∆E
(2S)
h =∆E

(2S)VPVP
h + ∆E

(2S)V(VP)P
h + ∆E

(2S)SEVP
h + ∆E

(2S)V(SE)P
h + ∆E

(2S)S(VP)E
h

+ ∆E
(2S)SESE
h + ∆E

(2S)VPCP
h + ∆E

(2S)SECP
h , (3.108)

where corresponding terms were explicitly given above by Eqs. (3.100)–(3.105) and by

Eqs. (3.106) and (3.107) for the counterpotential terms. The identified subsets should be

gauge invariant in both redefined and standard vacuum state frameworks. It implies that the

screened-radiative contributions obtained as a difference between the redefined and the standard

vacuum state expressions also form the same GI subsets. Explicit proof of this statement has

been performed for the two-photon-exchange subsets in the case of one-valence-electron in

Section 3.2.2.

In what follows, one also rearranges the screened-radiative corrections according to its usual

representation by the many-electron diagrams in the ordinary vacuum formalism, displayed in

Fig. 3.4:

∆E
(2S)
h = ∆E

(2S)SE,ver
h + ∆E

(2S)SE,wf
h + ∆E

(2S)VP,wf
h + ∆E

(2S)VP,int
h + ∆E

(2S)CP
h , (3.109)

where ∆E
(2S)SE,ver
h and ∆E

(2S)SE,wf
h represent the screened self-energy correction (vertex

Figure 3.4.: Feynman diagrams representing the one-particle screened self-energy and one-particle
screened vacuum-polarization corrections to the energy shift of single-particle (valence or
hole) state. Notations for the diagrams are as follows, SE,ver, SE,wf, VP,wf, and VP,int
(upper raw) and CP (lower raw). Other notations are the same as in Fig. 2.3
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and wave function parts), ∆E
(2S)VP,wf
h and ∆E

(2S)VP,int
h correspond to the screened vacuum-

polarization correction (wave function and internal-loop parts), and, finally, ∆E
(2S)CP
h is the

counterpotential term. The self-energy vertex part is given by the expression,

∆E
(2S)SE,ver
h = − i

2π

∫
dω ∑

a,i,j

[
Ihjih(ω)Iiaja(0)

(εh − ω − εiu)(εh − ω − εju)
(3.110)

+
Iajia(ω)Ihihj(0)

(εa − ω − εiu)(εa − ω − εju)
−

2Iajih(ω)Ihiaj(∆ha)

(εa − ω − εiu)(εh − ω − εju)

]
,

which arises from the fourth sum in Eq. (3.102), the second one in Eq. (3.103), and the third

one in Eq. (3.105). The self-energy wave function part reads

∆E
(2S)SE,wf
h = − i

2π

∫
dω





j 6=h

∑
a,i,j

2Ihiij(ω)
[

Ijaha(0)− Ijaah(∆ha)
]

(εh − ω − εiu)(εh − εj)

− ∑
a,i,h1

Ihiih1
(ω)I′h1aah(∆ha)

(εh − ω − εiu)
+

j 6=a

∑
a,i,j

2Iaiij(ω)
[

Ihjha(0)− Ihjah(∆ha)
]

(εa − ω − εiu)(εa − εj)

+ ∑
a,i,a1

Iaiia1
(ω)I′ha1ah(∆ha)

(εa − ω − εiu)
− ∑

a,i,h1

Ihiih1
(ω)

[
Ih1aha(0)− Ih1aah(∆ha)

]

(εh − ω − εiu)
2

− ∑
a,i,a1

Iaiia1
(ω)

[
Iha1ha(0)− Iha1ah(∆ha)

]

(εa − ω − εiu)
2



 , (3.111)

where the third sum and second term of the fifth sum in Eq. (3.102), the first and third sums in

Eq. (3.103), as well as the first, second, fourth and fifth sums in Eq. (3.105) are added together.

The vacuum-polarization wave function part reads,

∆E
(2S)VP,wf
h =

i

2π

∫
dω

{
i 6=h

∑
a,i,j

2 [Ihaia(0)− Ihaai(∆ha)] Iijhj(0)

(εh − εi)(ω − εju)
− ∑

a,h1,j

I′haah1
(∆ha)Ih1 jhj(0)

(ω − εju)

+
i 6=a

∑
a,i,j

2 [Ihahi(0)− Ihaih(∆ha)] Iijaj(0)

(εa − εi)(ω − εju)
+ ∑

a,a1,j

I′haa1h(∆ha)Ia1 jaj(0)

(ω − εju)

}
,

(3.112)

which comes from Eq. (3.100), the first sum in Eq. (3.101), and the first and second sums as

well as the first term in fifth sum and the sixth sum in Eq. (3.102). For the vacuum-polarization
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internal-loop term one obtains,

∆E
(2S)VP,int
h =

i

2π

∫
dω ∑

a,i,j

[
Ihihj(0)Ijaia(0)

(ω − εiu)(ω − εju)
−

Ihjai(∆ha)Iaihj(∆ha)

(ω − εiu)(ω − ∆ha − εju)

]

(3.113)

by adding the second sum in Eq. (3.101) and Eq. (3.104). Finally, the counterpotential term

reads,

∆E
(2S)CP
h =

i

2π

∫
dω

{

∑
a,i,j

[
Ihjih(ω)Uij

(εh − ω − εiu)(εh − ω − εju)
−

Ihjhi(0)Uij

(ω − εiu)(ω − εju)

]

+
i 6=h

∑
a,i,j

[
2Uhi Iijjh(ω)

(εh − εi)(εh − ω − εju)
−

2Uhi Iijhj(0)

(εh − εi)(ω − εju)

]

− ∑
a,h1,j

Uhh1
Ih1 jjh(ω)

(εh − ω − εju)
2

}
, (3.114)

found as the sums of Eqs. (3.106) and (3.107). The expressions above provide all contributions

to the screened self-energy and screened vacuum-polarization. Both type of screened corrections

should be renormalized; the reader is referred to Ref. [55] and references therein for more

details. Here, one notes that the screened self-energy formulas perfectly agree with the ones of

Ref. [55], where they were obtained by considering the diagrams depicted in Fig. 3.4 directly.

3.4. Discussion

The redefined vacuum state approach within BSQED was presented in details and applied to

the derivation of the one- and two-photon-exchange corrections for atoms with a single-valence

electron over closed shells. The general formulas for the two-photon-exchange correction

are presented. The employment of the redefined vacuum state approach allows to identify GI

subsets at two- and three-electron diagrams and to separate between the direct and exchange

parts at two-electron graphs. Such separation was observed numerically in Ref. [72]. The

redefined vacuum state formalism has furnished the explanation for this GI separation; they

originate from different one-particle two-loop Feynman diagrams. In total, eight GI subsets

were identified in the case of the original Furry picture. In the case of the screening potential

involved, an additional three subsets are originated from the counterpotential diagrams. The

gauge invariance of the identified subsets is verified analytically for three-electron contribution
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and numerically for all of the subsets on the example of Li-like ions. The possibility of checking

the gauge invariance allows to control the correctness of the derived expressions and verify the

numerical calculations by comparing the results for each identified subset in different gauges.

As a second example, the method is applied to atoms with a single-hole electronic configu-

ration, which occurs in halogen atoms such as fluorine, chlorine, etc. The particular interest

in this system is twofold. First, in Refs. [54–56] it was demonstrated that highly accurate

theoretical predictions are possible in such atoms, and thus accurate tests of the QED effects

become feasible. The reason for this is a drastic reduction of the correlations due to Layzer

quenching effects [122]. Second, recent measurements of the fine-structure splitting in fluorine-

like systems [51, 52] emphasize the necessity of improvement in theoretical predictions for

such systems. The accuracy of experimental results is at least of the same order as that of the

theoretical predictions, while for some ions it is an order of magnitude better. Moreover, an

improvement in the experimental precision is foreseen in the near future [51]. The formulas

for the QED corrections up to second order in α for the single-hole configuration have been

derived. The screened radiative and two-photon-exchange corrections have been carefully

extracted from the rigorous formulas obtained within the redefined vacuum state formalism.

In the extended Furry picture, eight different GI subsets have been identified in the screened-

radiative corrections, based on the corresponding subsets of one-particle diagrams. It highlights

the advantage of the employed formalism. The two-photon-exchange corrections have been

checked, by the comparison of the Breit approximation applied to the derived expression, with

the RMBPT expressions previously obtained.



CHAPTER 4.

VALENCE-HOLE EXCITATION IN

CLOSED-SHELL SYSTEMS

So far the TTFG method was applied to electronic structures generalised to either N-

valence-electrons or N-hole states. Thus, the situation when both valence electrons and holes

are involved in the description of a state has not been considered yet within the vacuum state

redefinition method. The aim of this chapter is to provide a rigorous ab initio derivation of

the BSQED perturbation theory for a valence-hole excitation in a closed shell system with

the redefined vacuum state approach. It is shown that with the appropriate initial equal-time-

choice conditions a Green’s function with the proper two-body state normalization in the

non-interacting field limit can be constructed. Its spectral representation identifies poles at the

valence-hole excitation energies and the integral formula for the energy shift to the binding

energy is obtained. The latter expression is expanded to the first order, where one-particle

radiative and one-photon-exchange corrections are explicitly derived. Reduction to the standard

vacuum electron propagator is shown, which agrees in the Breit approximation with the RMBPT

expressions for the valence-hole excitation energy.

The material presented in the chapter is based on the reference:

QED approach to valence-hole excitation in closed-shell systems [123]

R. N. Soguel, A. V. Volotka and S. Fritzsche

Phys. Rev. A 106, 012802 (2022)

4.1. Devise the valence-hole two-time Green’s function

Let us derive the Green’s function describing the valence-hole excitation in a closed shell

system and show that its spectral representation indeed has poles at valence-hole excitation

energies. To begin, consider the general four-point Green’s function [N = 2, Eq. (3.8)]

G(x1, x2; y1, y2) = 〈Ω0|T [ψH(x1)ψH(x2)ψ̄H(y2)ψ̄H(y1)] |Ω0〉 . (4.1)

65
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As stated previously, this Green’s function contains all the information about the two-particle

dynamics in presence of the nuclear Coulomb field. To get the energy levels it is enough to

consider a two-time Green’s function. In the original work [85], Shabaev proposed considering

the following equal-time choices x0
1 = x0

2 = x0 and y0
1 = y0

2 = y0:

G(x0, x1, x0, x2; y0, y1, y0, y2)

=〈Ω0|T
[
ψH(x0, x1)ψH(x0, x2)ψ̄H(y

0, y2)ψ̄H(y
0, y1)

]
|Ω0〉 . (4.2)

However, the spectral representation of the Green’s function for this particular choice of times

unambiguously reveals poles only for pure electron (charge 2e) or positron (charge −2e) states1.

This is a clear message that such an equal-time Green’s function cannot deal with valence-hole

excitation. Thus, one has to come up with a different Green’s function to describe such a

system. Notice that although the choice of times was motivated and justified a posteriori when

the spectral representation is derived, it is nevertheless an arbitrary choice. A priori one can

also choose to have equal times such as x0
1 = y0

1 = x0 and x0
2 = y0

2 = y0; then the resulting

Green’s function reads

G(x0, x1, y0, x2; x0, y1, y0, y2)

=〈Ω0|T
[
ψH(x0, x1)ψH(y

0, x2)ψ̄H(y
0, y2)ψ̄H(x0, y1)

]
|Ω0〉 . (4.3)

Similar Green’s functions were studied previously by Logunov and Tavkhelidze [23], Fetter

and Walecka [124], Oddershede and Jörgensen [125] and Liegener [126]. The subscript H

denoting the Heisenberg representation is dropped in the rest of the chapter. In order to achieve

the desired structure and for normalization reasons, as can be seen in Appendix A.5, one has

to take into account three extra terms. One might argue that other structures are possible; by

virtue of Ockham’s razor the one proposed here is, to our view, the simplest one. Hence, the

Green’s function one has to consider takes the following form in the redefined vacuum state:

Gα(x0, x1, y0, x2; x0, y1, y0, y2) = 〈Ωα|T
[
ψα(x0, x1)ψα(y

0, x2)ψ̄α(y
0, y2)ψ̄α(x0, y1)

− ψα(x0, x2)ψα(y
0, x1)ψ̄α(y

0, y2)ψ̄α(x0, y1)

− ψα(x0, x1)ψα(y
0, x2)ψ̄α(y

0, y1)ψ̄α(x0, y2)

+ ψα(x0, x2)ψα(y
0, x1)ψ̄α(y

0, y1)ψ̄α(x0, y2)
]
|Ωα〉 .

(4.4)

1See Eq. (3.18) and analysis below.
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To demonstrate that this Green’s function has the expected pole structure, one has to consider its

spectral representation, which is obtained by taking the Fourier transform of the Green’s func-

tion. For the sake of clarity, the steps that need to be performed are briefly described. The first

one is to rearrange the Dirac spinors to get identical times close to each other, keeping in mind

that for equal time the only non-zero anti-commutator is {ψα(x0, x), ψ†
α(x0, y)} = δ(3)(x− y).

The next step is to proceed with the time ordering. Once that is done, a completeness relation,

1 = ∑N |ΩN 〉〈ΩN |, is inserted to separate terms with different times within the time-ordered

product. Then, the Heisenberg’s time translation rule for the field operator is used (3.16) and

the integral representation of the Heaviside function (2.31) is applied. One ends up with

Gα(E; x1, x2; y1, y2)δ(E − E′)

=
1

2πi

1

2!

∫
dx0dy0eiEx0−iE′y0

Gα(x0, x1, y0, x2; x0, y1, y0, y2)

=
1

4π2

1

2!

∫
dx0dy0eiEx0−iE′y0

∫
dωe−iω(x0−y0)

×
{

∑
N

A(x1, x2; y1, y2)

ω − EN + iε
− ∑

N

B(x1, x2; y1, y2)

ω + EN − iε

}

=
δ(E − E′)

2!

{

∑
N

A(x1, x2; y1, y2)

E − EN + iε
− ∑

N

B(x1, x2; y1, y2)

E + EN − iε

}
, (4.5)

where the A term is given by

A(x1, x2; y1, y2) = 〈Ωα| [ψα(0, x1)ψ̄α(0, y1)|ΩN 〉〈ΩN |ψα(0, x2)ψ̄α(0, y2)

−ψα(0, x2)ψ̄α(0, y1)|ΩN 〉〈ΩN |ψα(0, x1)ψ̄α(0, y2)

− ψα(0, x1)ψ̄α(0, y2)|ΩN 〉〈ΩN |ψα(0, x2)ψ̄α(0, y1)

+ψα(0, x2)ψ̄α(0, y2)|ΩN 〉〈ΩN |ψα(0, x1)ψ̄α(0, y1)] |Ωα〉 , (4.6)

and the B one is

B(x1, x2; y1, y2) = 〈Ωα| [ψα(0, x2)ψ̄α(0, y2)|ΩN 〉〈ΩN |ψα(0, x1)ψ̄α(0, y1)

−ψα(0, x1)ψ̄α(0, y2)|ΩN 〉〈ΩN |ψα(0, x2)ψ̄α(0, y1)

− ψα(0, x2)ψ̄α(0, y1)|ΩN 〉〈ΩN |ψα(0, x1)ψ̄α(0, y2)

+ ψα(0, x1)ψ̄α(0, y1)|ΩN 〉〈ΩN |ψα(0, x2)ψ̄α(0, y2)] |Ωα〉 . (4.7)

As previously, the summations run over all bound and continuum states of the interacting fields’

system. Thus, the spectral representation of expression (4.4) was derived. Under the assumption
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of non-interacting electron-positron fields and their expansion in creation and annihilation

operators, as in Eq. (2.48), the only consistent zeroth-order |0N 〉 states are found to be

|0N 〉 =
{
|vh〉 = a†

vb†
h|α〉, |α〉

}
. (4.8)

Now that the Green’s function spectral representation is obtained as a function of E, one can

define its analytic continuation in the complex E plane. Some remarks are important here. First,

although Eq. (4.5) looks similar to the one obtained in Eq. (3.18), it has poles at essentially

different energies. In analogy to the discussion held in Chapter 3.1, the poles at the valence-hole

excitation energies are located below the right-hand real axis for the former term and above

the left-hand real axis for the latter one. Second, despite the structure of A and B looks

complicated, in the non-interacting case it contains neutral charged states corresponding to

valence-hole excitations of a closed shell. Hence, the analytical continuation of the Green’s

function has cuts (−∞,−E
(0)
min] and [E

(0)
min,+∞), where E

(0)
min is the minimal energy of the states

with zero total electric charge, and one sees the presence of poles at the valence-hole excitation

energies Evh and −Evh as well as at the zero (vacuum energy). Third and most important, it

leads to normalized two-particle wave functions in the zeroth order, as can be seen in appendix

A.5. A coordinate integrated Green’s function is built out of spectral representation of the

Green’s function, as in Eq. (3.13),

gα(E) =
1

2!

∫
d3x1d3x2d3y1d3y2

× : ψ(0)†
α (x1)ψ

(0)†
α (x2)Gα(E; x1, x2; y1, y2)γ

0
1γ0

2ψ(0)
α (y2)ψ

(0)
α (y1) : . (4.9)

Accordingly to the two-particle cases treated in Section 3.1 [Eqs. (3.35, 3.48)], one employs the

occupation number representation as in the RMBPT description provided by Lindgren [127] to

construct the two-particle operator. Since the interest lies in the valence-hole state described

by [100, 101]

|(vh)JM〉 = ∑
mv,mh

〈jvmv jh − mh|JM〉(−1)jh−mh a†
vb†

h|α〉 ≡ Fvha†
vb†

h|α〉 , (4.10)

where the jj-coupling scheme is applied to form a state with total angular momentum J and its

projection M, one works out and retains only the six terms involving two a and two b operators.
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After normal ordering one arrives to the expression

gα(E) ∼=





∑
εi,εj>EF

α ,εk,εl<EF
α

a†
i a†

j b†
l b†

k − ∑
εk,εl>EF

α ,εi,εj<EF
α

akalbibj + ∑
εi,εl>EF

α ,εj,εk<EF
α

a†
i alb

†
k bj

+ ∑
εj,εk>EF

α ,εi,εl<EF
α

a†
j akb†

l bi − ∑
εi,εk>EF

α ,εj,εl<EF
α

a†
i akb†

l bj − ∑
εj,εl>EF

α ,i,k<EF
α

a†
j alb

†
k bi





× 1

2!
gα,ijkl(E) ,

(4.11)

with

gα,ijkl(E) =
∫

d3x1d3x2d3y1d3y2

× φ†
i (x1)φ

†
j (x2)Gα(E; x1, x2; y1, y2)γ

0
1γ0

2φk(y1)φl(y2) . (4.12)

Further, one has to evaluate the matrix element of gα(E) with the valence-hole state defined by

Eq. (4.10). The first two terms in Eq. (4.11) do not contribute as they cannot be fully contracted

with the valence-hole state. Computing the matrix element, one gets

〈(vh)JM|gα(E)|(vh)JM〉 = Fv1h1
Fv2h2

[
gα,v1h2h1v2

(E)− gα,v1h2v2h1
(E)
]

. (4.13)

Note that whereas in the two-valence case [Eq. (3.37)] and two-hole case [Eq. (3.49)], the

matrix elements read "direct - exchange" part, the above expression is "exchange - direct" part.

Now all the necessary pieces are available to derive the formula for the energy shift to the

valence-hole binding energy. Applying the integral formalism introduced in Section 3.1 and

focusing only on the first term with the integral contour Γvh surrounding anticlockwise only

the pole E∼ E
(0)
vh ,

E
(0)
vh = 〈vh|H0|vh〉 = εv − εh , (4.14)

while all others singularities are kept outside, one ends up to the expression

Evh =

1

2πi

∮

Γvh

dE E〈(vh)JM|gα(E)|(vh)JM〉
1

2πi

∮

Γvh

dE 〈(vh)JM|gα(E)|(vh)JM〉
. (4.15)
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Evaluating the zeroth-order Green’s function

〈(vh)JM|g(0)α (E)|(vh)JM〉 = 1

E − E
(0)
vh

(4.16)

(the detailed calculation is presented in appendix A.5), the cornerstone expression for the

energy shift ∆Evh = Evh − E
(0)
vh is derived:

∆Evh =

1

2πi

∮

Γvh

dE
(

E − E
(0)
vh

)
〈(vh)JM|∆gα(E)|(vh)JM〉

1 +
1

2πi

∮

Γvh

dE 〈(vh)JM|∆gα(E)|(vh)JM〉
, (4.17)

where ∆gα(E) = gα(E)− g(0)α (E). A similar equation to Eq. (3.11) exists for the valence-hole

excitation case. Taylor expanding its exponential into a series in the fine-structure constant

α leads to the perturbative expansion, ∆gα(E) = ∆g(1)α (E) + ∆g(2)α (E) + ..., and combining

the terms of the same order, one easily obtains the BSQED perturbation expansion for the

valence-hole energy shift ∆Evh = ∆E
(1)
vh + ∆E

(2)
vh + .... Thus, in this section the TTGF suited

for the treatment of valence-hole states is obtained and the cornerstone expression for the

energy shift to the binding energy, as contour integrals of the Green’s function, is derived. In

the next section, the formalism is applied to evaluate the first-order correction to the energy of

the valence-hole excitation.

4.2. First-order shift to valence-hole binding energy

The first-order energy correction, obtained from the expansion of Eq. (4.17), yields

∆E
(1)
vh =

1

2πi
Fv1h1

Fv2h2

∮

Γvh

dE
(

E − E
(0)
vh

) [
∆g

(1)
α,v1h2h1v2

(E)− ∆g
(1)
α,v1h2v2h1

(E)
]

. (4.18)

The energy correction can be split into one-particle (∆E
(1)1
vh ) and two-particle (∆E

(1)2
vh ) terms:

∆E
(1)
vh = ∆E

(1)1
vh + ∆E

(1)2
vh . (4.19)

In turn, the one-particle contribution originates from three Feynman diagrams: self-energy,

vacuum-polarization, and counterpotential, which are depicted in Fig. 3.1 and give rise to the
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following terms in the Green’s function:

∆g(1)1α (E) = ∆g(1)SE
α (E) + ∆g(1)VP

α (E) + ∆g(1)CP
α (E) . (4.20)

The two-particle contribution corresponds to the Green’s function ∆g(1)2α and the valence-hole

one-photon exchange diagram presented in Fig. 4.1. The one-particle diagrams are considered

first.

Figure 4.1.: Valence-hole one-photon-exchange Feynman diagram. Notations are the same as in Fig. 2.3.

4.2.1. One-particle contributions

Formally, for single particle graphs, SE, VP or CP, a second disconnected line (propagator)

is present. However, these diagrams reduce to the single-particle case since the disconnected

line can be integrated out, as it will be shown below. In what follows the SE correction is

considered in details, which can be further divided into two terms, one in which the SE loop is

located on the valence electron line ∆g(1)SEv
α and one in which it is located on the hole line

∆g(1)SEh
α . Let us consider the valence SE graph with disconnected hole line first. The Feynman

rules, according to Ref. [85] but noting that hole’s energy formally flows in the negative x0

direction while being a positive quantity, provides the following expression:

∆g
(1)SEv
α,v1h2v2h1

(E)δ(E − E′) = e2
(

i

2π

)2 ∫
d3xd3ydp0

1dp0
2dωdk0

× δ(E − p0
1 + p0

2)δ(E′ − p0
1 + p0

2)δ(p0
1 − ω − k0)

×
ψ̄v1

(y)

p0
1 − εv + iε

γµ
∑

j

ψj(y)ψ̄j(x)

k0 − εj + iε(εj − EF
α )

Dµν(ω, y − x)γν ψv2
(x)

p0
1 − εv + iε

δh1h2

p0
2 − εh − iε

=

(
i

2π

)2 ∫
dp0

1dω ∑
j

Iv1 jjv2
(ω)

p0
1 − ω − εj + iε(εj − EF

α )

δ(E − E′)
[

p0
1 − εv + iε

]2

δh1h2

p0
1 − E − εh − iε

,

(4.21)
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where two momentum integrations have been carried out with the help of δ-functions and

further simplified due to the orthogonality of the wave functions. One should highlight the

fact that p0
2 and p′02 are the hole’s energy in all calculations and that the δ- functions taking

care of the energy conservation of initial and final states are affected, as can be expected from

Eq. (4.14). Notice also that the zeroth-order energy of each particle does not depend on its spin

projection, i.e., εv1
= εv2

= εv, εh1
= εh2

= εh. Since the integration over energy E is the

next step, the singularities in E − E
(0)
vh should be analyzed. Notice that

1
[

p0
1 − εv + iε

]2

1

p0
1 − E − εh − iε

=
1

(E − E
(0)
vh )

2

[
1

p0
1 − E − εh − iε

− 1

p0
1 − εv + iε

]

− 1

E − E
(0)
vh

1
[

p0
1 − εv + iε

]2
. (4.22)

Only the most singular part is to retain to access the irreducible contribution2. It leads to

∆E
(1)SEv
vh = − 1

2πi
Fv1h1

Fv2h2

∮

Γvh

dE(E − E
(0)
vh )∆g

(1)SEv
α,v1h2v2h1

(E)

=
i

2π
Fv1h1

Fv2h2

∫
dω ∑

j

Iv1 jjv2
(ω)δh1h2

εv − ω − εj + iε(εj − EF
α )

≡ Fv1h1
Fv2h2

δh1h2
〈v1|Σα(εv)|v2〉 , (4.23)

and the identity

δ(x) =
i

2π

(
1

x + iε
+

1

−x + iε

)
(4.24)

was utilized. Since the investigated graph is the SE matrix element for a single valence electron,

there is no need to distinguish between the initial state v1 and the final state v2 because the SE

operator preserves the spin projection, which was the sole difference between them. Hence,

one can write δv1v2
, and the previous prefactor is then Fv1h1

Fv2h2
δv1v2

δh1h2
= 1 [100]. The

same calculation is performed for the SE graph located on the hole line, and the electron line is

2Reducible contributions give rise to higher-order poles, hence, derivative terms of the evaluated expressions,
especially for high-order diagrams.
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integrated out this time:

∆g
(1)SEh
α,v1h2v2h1

(E) =

(
i

2π

)2 ∫
dp0

2dω ∑
j

Ih2 jjh1
(ω)

p0
2 − ω − εj + iε(εj − EF

α )

1
[

p0
2 − εh − iε

]2

×
δv1v2

E + p0
2 − εv + iε

. (4.25)

As previously, one isolates the most singular part to get

∆E
(1)SEh
vh = − 1

2πi
Fv1h1

Fv2h2

∮

Γvh

dE(E − E
(0)
vh )∆g

(1)SEh
α,v1h2v2h1

(E)

= − i

2π
Fv1h1

Fv2h2

∫
dω ∑

j

Ih2 jjh1
(ω)δv1v2

εh1
− ω − εj + iε(εj − EF

α )

≡ −Fv1h1
Fv2h2

δv1v2
〈h2|Σα(εh)|h1〉 . (4.26)

As before, the SE contribution to a single hole state is considered, thus δh1h2
and the prefactor

reduces to 1. The one-particle result is recovered in both cases. Such calculations can be

extended to the VP graph under the modification 〈v1|Σα(εv)|v2〉 to

〈v1|Υα|v2〉 = − ie2

2π

∫
d3xd3yψ†

v1
(y)αµDµν(0, y − x)

×
∫

dωTr

[

∑
j

ψj(x)ψ
†
j (x)

ω − εj + iε(εj − EF
α )

αν

]
ψv2

(y)

≡− i

2π

∫
dω ∑

j

Iv1 jv2 j(0)

ω − εj + iε(εj − EF
α )

(4.27)

and accordingly for the hole case: 〈h2|Σα(εh)|h1〉 to 〈h2|Υα|h1〉. Hence, the one-particle

graph contributions in the redefined vacuum state framework are given by3

∆E
(1)1
vh = Fv1h1

Fv2h2
δv1v2

δh1h2

[
〈v1|Σα(εv)|v2〉+ 〈v1|Υα|v2〉 − Uv1v2

− 〈h2|Σα(εh)|h1〉 − 〈h2|Υα|h1〉+ Uh2h1

]

= 〈v|Σα(εv)|v〉+ 〈v|Υα|v〉 − Uvv − 〈h|Σα(εh)|h〉 − 〈h|Υα|h〉+ Uhh . (4.28)

3The renormalization procedure for the self-energy and vacuum-polarization loops is found in Appendix A.1,
and the renormalized self-energy operator is given in Eq. (3.57).
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Two counterpotential terms Uij = 〈i|U|j〉 are added into the formula above to accommodate

for the extended Furry picture. Their treatment is straightforward and does not need to be given

in details.

4.2.2. Two-particle contributions

The only two-particle correction found at this order is the valence-hole one-photon-exchange,

with exchange part ∆E
(1)2exc
vh minus direct part ∆E

(1)2dir
vh according to Eq. (4.18):

∆E
(1)2exc
vh =

1

2πi
Fv1h1

Fv2h2

∮

Γvh

dE(E − E
(0)
vh )∆g

(1)2exc
α,v1h2h1v2

(E) , (4.29)

∆E
(1)2dir
vh = − 1

2πi
Fv1h1

Fv2h2

∮

Γvh

dE(E − E
(0)
vh )∆g

(1)2dir
α,v1h2v2h1

(E) . (4.30)

Let us tackle first the direct graph, keeping in mind that the hole’s energies are flowing backward

in time. Similar to previous calculations, trivial steps are already performed, and the expression

is given by

∆g
(1)dir
α,v1h2v2h1

(E)δ(E − E′) = e2
(

i

2π

)2 ∫
d3xd3ydp0

1dp′01 dp0
2dp′02 dω

× δ(E − p0
1 + p0

2)δ(E′ − p′01 + p′02 )δ(p0
1 − ω − p′01 )δ(p′02 + ω − p0

2)

×
ψ̄v1

(x)

p′01 − εv + iε

ψ̄h2
(y)

p′02 − εh − iε
γµγνDµν(ω, x − y)

ψv2
(x)

p0
1 − εv + iε

ψh1
(y)

p0
2 − εh − iε

=

(
i

2π

)2 ∫
dp0

2dp′02
Iv1h2v2h1

(p0
2 − p′02 )

E + p′02 − εv + iε

1

p′02 − εh − iε

δ(E − E′)

E + p0
2 − εv + iε

1

p0
2 − εh − iε

.

(4.31)

Rewriting the denominators to pull out the singular part as

1

E + p′02 − εv + iε

1

p′02 − εh − iε
=

1

E − E
(0)
vh

(
1

p′02 − εh − iε
− 1

E + p′02 − εv + iε

)
,

1

E + p0
2 − εv + iε

1

p0
2 − εh − iε

=
1

E − E
(0)
vh

(
1

p0
2 − εh − iε

− 1

E + p0
2 − εv + iε

)
,

(4.32)
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one gets to

∆E
(1)2dir
vh = −Fv1h1

Fv2h2
Iv1h2v2h1

(0) . (4.33)

Last, but not least, is the exchange graph . The partially simplified expression is found to be

∆g
(1)2exc
α,v1h2h1v2

(E)δ(E − E′) = e2
(

i

2π

)2 ∫
d3xd3ydp0

1dp′01 dp0
2dp′02 dω

× δ(E − p0
1 + p0

2)δ(E′ − p′01 + p′02 )δ(p0
2 − ω − p′01 )δ(p′02 + ω − p0

1)

×
ψ̄v1

(x)

p′01 − εv + iε

ψ̄h2
(y)

p′02 − εh − iε
γµγνDµν(ω, x − y)

ψh1
(x)

p0
2 − εh − iε

ψv2
(y)

p0
1 − εv + iε

=

(
i

2π

)2 ∫
dp0

1dp′02
Iv1h2h1v2

(p′02 − p0
1)

E + p′02 − εv + iε

1

p′02 − εh − iε

δ(E − E′)

p0
1 − E − εh − iε

1

p0
1 − εv + iε

.

(4.34)

As before, the singular part of the denominators are separated. Hence, the energy integration

gives

∆E
(1)2exc
vh = Fv1h1

Fv2h2
Iv1h2h1v2

(∆hv) , (4.35)

and the total two-particle contribution is

∆E
(1)2
vh = Fv1h1

Fv2h2

[
Iv1h2h1v2

(∆hv)− Iv1h2v2h1
(0)
]

. (4.36)

4.2.3. Standard vacuum description

So far the formulas for the first-order energy corrections obtained in the previous subsections,

∆E
(1)
vh = Fv1h1

Fv2h2

[
Iv1h2h1v2

(∆hv)− Iv1h2v2h1
(0)
]

+ 〈v|Σα(εv)|v〉+ 〈v|Υα|v〉 − Uvv − 〈h|Σα(εh)|h〉 − 〈h|Υα|h〉+ Uhh , (4.37)

have been written for the case when the redefined vacuum state is employed in the electron

propagator [see Eq. (2.53)]. In Eq. (4.37) the first term in square brackets corresponds to the

interelectronic interaction between valence and hole particles taken with a minus sign; the next

two blocks of three terms are the one-particle corrections (self-energy, vacuum-polarization,

and counterterm) for the valence and hole particles, respectively. It is clear that excitation

of an electron from state h to v leads to the subtraction of an one-electron hole energy and
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addition of an one-electron valence energy [See Eq. (4.14)]. The interelectronic interaction

between valence (hole) particle with core electrons is not explicitly recognizable in Eq. (4.37).

In fact, the SE and VP terms with the redefined vacuum state propagator contain also the

interelectronic interaction with the core electrons. The redefined vacuum state expressions

are linked to the usual ones for the valence SE and VP contributions. One has the following

relationship [Eqs. (3.58, 3.59)]:

〈v|Σα(εv)|v〉 = 〈v|Σ(εv)|v〉 − ∑
a

Ivaav(∆va) , (4.38)

〈v|Υα|v〉 = 〈v|Υ|v〉+ ∑
a

Ivava(0) , (4.39)

where Σ and Υ operators differ from the corresponding operators with the subscript α just

by setting in Eqs. (4.23) and (4.27) EF
α = 0. In other words, to extract the interelectronic

interactions arising from the one-particle graphs in the redefined vacuum state Eq. (4.28), one

has to subtract the identical graph in the standard vacuum state, as inferred from the above

equations. Obviously, the two-particle contribution (4.36) is not affected by such manipulations.

The resulting first-order energy correction in the standard vacuum state can be written as

∆E
(1)
vh = ∑

a

[Ivava(0)− Ivaav(∆va)]− ∑
a

[Ihaha(0)− Ihaah(∆ha)]

+Fv1h1
Fv2h2

[
Iv1h2h1v2

(∆hv)− Iv1h2v2h1
(0)
]

+〈v|Σ(εv)|v〉+ 〈v|Υ|v〉 − Uvv − 〈h|Σ(εh)|h〉 − 〈h|Υ|h〉+ Uhh . (4.40)

Now, the interaction between valence and hole particles with core electrons appears in the

first line of Eq. (4.40), respectively. Furthermore, the interelectronic interaction obtained [the

three terms involving square brackets in Eq. (4.40)] is in perfect agreement, when the Breit

approximation [Eqs. (A.14, A.15)] is applied in the Coulomb gauge, with the one found in

Ref. [101], where RMBPT corrections to the valence-hole state up to second order were derived.

The other contributions (line three) found are the SE and VP corrections to each particle, as

expected.

Last, but not least, employing of a vacuum state redefinition allows us to identify GI subsets

in the standard vacuum state. Following the logic and proofs presented in Sections 3.2.1

and 3.2.2, the contributions involving square brackets in Eq. (4.40) are independently gauge

invariant. Moreover, each term in line three is also separately gauge invariant.
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4.3. Discussion

The formalism and expressions presented in this chapter are ready to be applied to a closed-shell

atom or ion, such as Be- and Ne-like ions. Be-like ions having the least number of electrons

were already treated within the complete BSQED description. In particular, the ground-state

and ionization energies were evaluated in Refs. [77, 78], respectively, while the transition

energies between low-lying levels were just recently addressed in Ref. [79]. In last case [79],

the formal expressions were derived with the TTGF method employing the redefined vacuum

state prescription, where the 1s2 shell was considered to belong to the vacuum state and the

other two electrons were treated as the valence electrons. For Ne-like ions such decomposition

is rather complicated since one has to consider eight electrons to be the valence ones.

The energy levels in Ne-like ions have been investigated for a long time within the RMBPT

approach [100, 101, 128, 129]. The discrepancies between theory and experiment for different

transitions and ions, in absolute value, were less than 2 eV in the earliest work, which shrunk

down to less than 1 eV in a more recent one [130]. In the case of Ne-like Ge a recent study [131]

reports remarkable agreement up to 10−4 relative uncertainty between RMBPT calculations

and measured values. The QED effects have been incorporated at the first order via the

model Lamb-shift-operator approach [56,132–134], and the interelectronic interaction has been

captured with the Breit interaction treated in the vanishing frequency limit. Results have been

compared with previous computations performed by Safronova et al. [130] for Ne-like Mo

and showed a difference less than 0.25 eV, in absolute value, except for one case. Another

recent measurement campaign on Ne-like Eu [135] showed agreement, in absolute value, of

the order of 1 eV between RMBPT predictions and experimental values. Overall, these results

show that RMBPT treatment reliably captures the essence of the energy difference in Ne-like

ions. Nevertheless, a rigorous BSQED treatment of valence-hole excitation in closed-shell

system has been lacking so far. BSQED contributions could fill the energy gap by rigorously

including all first-order corrections in α. It could help to achieve outstanding agreement among

theory and experiment, which could be especially interesting in view of possible applications

as optical atomic clocks with valence-hole transitions in B+, Al+, In+, and Tl+ ions [136], or

in Ni12+ [137]. An additional application might be seen in searching for an explanation of the

disagreement in oscillator-strength ratio in Ne-like Fe [138, 139]4.

4At the time when this study was conducted, the Letter [139] was not yet published.



78



CHAPTER 5.

THREE-PHOTON-EXCHANGE

CORRECTIONS FOR SINGLE-VALENCE

ELECTRON OVER CLOSED SHELLS

This chapter treats (a partial) third-order interelectronic corrections to a single-valence

state [N = 1, Eq. (3.14)] over closed-shells. The aim is to demonstrate that it is feasible to

assess third-order interelectronic corrections even though such calculations are challenging

and especially difficult. To overcome the high likelihood of mistakes occurrence, and as a

cross-check of the derived expressions, two different methods are utilised to obtain the results.

The first one is an effective one-particle approach, which relies on the redefinition of the

vacuum state, and deals with one-particle three-loop diagrams. The idea is to provide a proof-

of-principle that third-order interelectronic corrections can be tackled, in the redefined vacuum

state framework, owing to the transcription of the one-particle GI subsets to many-electron

diagrams. The second one considers a perturbation theory approach to a two-photon-exchange

subset, involving a loop contribution, under the regard of a perturbative potential-like interaction.

Then, the results are mapped to the three-photon-exchange corrections. In such a way, the

formulas are derived independently and the possibly occurring mistakes are minimized as

much as possible. The resulting expressions contain infrared divergences. They are inspected,

regularized by the introduction of a photon mass term, and it is shown that they are cancelled

by terms within the expected-to-be GI subsets.

5.1. Redefined vacuum state approach

The effective one-particle approach, based on a redefinition of the vacuum state, is applied to

more involved Feynman diagrams, as a proof-of-principle that advanced calculation can be

undertaken in this way. The investigation is carried out for the state given by Eq. (3.32). Its

Green’s function matrix element is provided in Eq. (3.33), which is inserted into the third-order

correction to the energy shift given in Eq. (3.31).

79



THREE-PHOTON-EXCHANGE CORRECTIONS FOR SINGLE-VALENCE ELECTRON OVER

CLOSED SHELLS 80

Knowledge gathered from the two-photon-exchange corrections is exploited to select the

possible subsets to inspect. Recall that the ladder- and crossed-loop arose from the SESE

and S(VP)E subsets1. The S(VP)E subset, based on one diagram, generates the direct parts

of the two-photon-exchange. Thus, the decision made to pick it out as a starting point. The

one-particle three-loop Feynman diagrams, corresponding to all possible insertion of a VP

loop2 in the S(VP)E graph, are given in Figs. 5.1 [S[V(VP)P]E subset] and 5.2 [S(VP)EVP

subset]. Note that the inclusion of an extra interelectronic operator, arising from the cut in

the inserted VP loop, does not spoil gauge invariance [see Eq. (3.63)]. An important point to

highlight is that the ω integration in the VP loop must be symmetrized in the final expressions

in order to achieve gauge invariance. It was a crucial step when dealing with the S(VP)E subset

[see the footnote in Section 3.2.2]. The equality stated there, and its third-order-pole version,

were applied to the derived expressions in order to compare them with those based on the

perturbation theory approach.

S[V(VP)P]E subset

Figure 5.1.: One-particle three-loop Feynman diagrams of the S[V(VP)P]E subset participating to the
third-order contribution to the energy shift of a single-particle (valence or hole) state. They
are denoted by H1 (left) and H2 (right). Notations are similar to Fig. 2.3.

The Green’s function corresponding to each diagram in the subset is given by

∆g(3)H1
α, vv (E) =

1

(E − εv)
2

(
i

2π

)3

∑
i,j,k,l,p

∫
dωdk1dk2

Ivpik(ω)

[E − ω − εi + iε(εi − EF
α )]

×
Ikjl j(0)

[k1 − εj + iε(εj − EF
α )][k2 − εk + iε(εk − EF

α )][k2 − εl + iε(εl − EF
α )]

×
Ilipv(ω)

[k2 − ω − εp + iε(εp − EF
α )]

, (5.1)

1See below Eq. (3.69) and Eq. (3.79), respectively.
2The simplest extension towards a one-loop three-photon-exchange corrections.



THREE-PHOTON-EXCHANGE CORRECTIONS FOR SINGLE-VALENCE ELECTRON OVER

CLOSED SHELLS 81

for H1 and by

∆g(3)H2
α, vv (E) =

1

(E − εv)
2

(
i

2π

)3

∑
i,j,k,l,p

∫
dωdk1dk2

Ivkij(ω)

[E − ω − εi + iε(εi − EF
α )]

×
Ilpkp(0)

[k1 − εj + iε(εj − EF
α )][k1 − ω − εk + iε(εk − EF

α )][k1 − ω − εl + iε(εl − EF
α )]

×
Ijilv(ω)

[k2 − εp + iε(εp − EF
α )]

. (5.2)

for H2. According to the line of reasoning presented in the treatment of the SESE subset

(Chapter 3.2.2), starting from the previous Green’s functions, the extraction of the different

three-photon-exchange corrections is carried out with the subtraction of the corresponding

expression in the standard vacuum state. As the diagrams are 1PI, one does not need to worry

about the disconnected terms in Eq. (3.31). Note that double cuts are possible in both diagrams,

leading to so called non-diagrammatic terms, that are important to consider in order to properly

treat the reducible elements. The results are separated in three- and four-electron contributions.

To keep things short, as the resulting expressions are already lengthy, only the final results

are displayed. The term-by-term three-electron contribution (loop diagram) is given explicitly

below. The four-electron terms are displayed in appendix A.6.1, for a comparison with the

perturbation theory approach.

The presentation of the results starts with expressions arising from the H1 Feynman diagram.

One distinguishes between three different type of terms: irreducible (irr), reducible 1 (red1)

and reducible 2 (red2). The different terms corresponding to crossed graphs are found to be

∆E
(3I)3e,cross,irr
v, H1

=
i

2π

∫
dω

k 6=b

∑
i,j,k

Ivjib(ω)Ibaka(0)Ikijv(ω)

(εv − ω − εiu)(εb − ω − εju)(εb − εku)
, (5.3)

∆E
(3I)3e,cross,irr
v, H1

=
i

2π

∫
dω

k 6=b

∑
i,j,k

Ivjik(ω)Ikaba(0)Ibijv(ω)

(εv − ω − εiu)(εb − ω − εju)(εb − εku)
. (5.4)
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The terms associated to ladder graphs are given as follows,

∆E
(3I)3e,lad,irr
v, H1

=
i

2π

∫
dω

{i,j}6={v,b},{i,k}6={v,b}
∑
i,j,k

Ivbij(ω)Ijaka(0)Ikibv(ω)

(εv − ω − εiu)(εb + ω − εju)(εb + ω − εku)
,

(5.5)

∆E
(3I)3e,lad,red1
v, H1

= − i

2π

∫
dω

{i,j}={v,b},{i,k}6={v,b}
∑
i,j,k

Ivbij(ω)Ijaka(0)Ikibv(ω)

(εv − ω − εiu)
2(εb + ω − εku)

,

(5.6)

∆E
(3I)3e,lad,red1
v, H1

= − i

2π

∫
dω

{i,j}6={v,b},{i,k}={v,b}
∑
i,j,k

Ivbij(ω)Ijaka(0)Ikibv(ω)

(εv − ω − εiu)
2(εb + ω − εju)

, (5.7)

∆E
(3I)3e,lad,red2
v, H1

=
i

2π

∫
dω

{i,j}={v,b},{i,k}={v,b}
∑
i,j,k

Ivbij(ω)Ijaka(0)Ikibv(ω)

(εv − ω − εiu)
3

. (5.8)

The non-diagrammatic part for H1 reads

∆E
(3I)3e,cross,red1
v, H1

= − i

2π

∫
dω ∑

i,j

Ivjib(ω)Ibab1a(0)Ib1ijv(ω)

(εv − ω − εiu)(εb − ω − εju)
2

. (5.9)

The expressions extracted from the H2 Feynman diagram are found as follows,

∆E
(3I)3e,cross
v, H2

=
i

2π

∫
dω ∑

i,j,k

Ivjib(ω)Ikaja(0)Ibikv(ω)

(εv − ω − εiu)(εb − ω − εju)(εb − ω − εku)
, (5.10)

∆E
(3I)3e,lad,irr
v, H2

=
i

2π

∫
dω

k 6=b,{i,j}6={b,v}
∑
i,j,k

Ivbij(ω)Ikaba(0)Ijikv(ω)

(εv − ω − εiu)(εb + ω − εju)(εb − εku)
,

(5.11)

∆E
(3I)3e,lad,red1
v, H2

= − i

2π

∫
dω

k 6=b,{i,j}={b,v}
∑
i,j,k

Ivbij(ω)Ikaba(0)Ijikv(ω)

(εv − ω − εiu)
2(εb − εku)

, (5.12)
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∆E
(3I)3e,lad,irr
v, H2

=
i

2π

∫
dω

k 6=b,{i,j}6={b,v}
∑
i,j,k

Ivkij(ω)Ibaka(0)Ijibv(ω)

(εv − ω − εiu)(εb + ω − εju)(εb − εku)
,

(5.13)

∆E
(3I)lad,red1
v, H2

= − i

2π

∫
dω

k 6=b,{i,j}={b,v}
∑
i,j,k

Ivkij(ω)Ibaka(0)Ijibv(ω)

(εv − ω − εiu)
2(εb − εku)

. (5.14)

The non-diagrammatic term for H2 are found to be

∆E
(3I)3e,lad,red1
v, H2

= − i

2π

∫
dω

{i,j}6={b,v}
∑
i,j

Ivbij(ω)Ib1aba(0)Ijib1v(ω)

(εv − ω − εiu)(εb + ω − εju)
2

, (5.15)

∆E
(3I)3e,lad,red2
v, H2

= − i

2π

∫
dω

{i,j}={b,v}
∑
i,j

Ivbij(ω)Ib1aba(0)Ijib1v(ω)

(εv − ω − εiu)
3

. (5.16)

The expressions presented above are the bare results after carrying out the difference of the

vacuum states to extract the interelectronic interactions. The IR divergences are extracted

and regularized later on, such as the symmetrization of the poles with regard to the real axis.

The final expressions are found in Appendix A.6.2, when comparing with the results from the

perturbation theory approach.

S(VP)EVP subset

Figure 5.2.: One-particle three-loop Feynman diagrams of the S(VP)EVP subset participating to the
third-order contribution to the energy shift of a single-particle (valence or hole) state. They
are denoted by F1 (left), F2 (middle) and F3 (right). Notations are similar to Fig. 2.3.
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Within this subset, the Green’s function associated to each diagram reads

∆g(3)F1
α, vv (E) =

1

(E − εv)
2

(
i

2π

)3

∑
i,j,k,l,p

∫
dωdk1dk2

Iviji(0)

[k1 − εi + iε(εi − EF
α )]

×
Ijpkl(ω)

[E − εj + iε(εj − EF
α )][E − ω − εk + iε(εk − EF

α )][k2 − εl + iε(εl − EF
α )]

×
Iklvp(ω)

[k2 − ω − εp + iε(εp − EF
α )]

, (5.17)

for F1,

∆g(3)F2
α, vv (E) =

1

(E − εv)
2

(
i

2π

)3

∑
i,j,k,l,p

∫
dωdk1dk2

Ivlil(ω)

[E − ω − εi + iε(εp − EF
α )]

×
Iijkj(0)

[k1 − εj + iε(εj − EF
α )][E − ω − εk + iε(εp − EF

α )][k2 − εl + iε(εl − EF
α )]

×
Ilkpv(ω)

[k2 − ω − εp + iε(εp − EF
α )]

, (5.18)

for F2, and

∆g(3)F3
α, vv (E) =

1

(E − εv)
2

(
i

2π

)3

∑
i,j,k,l,p

∫
dωdk1dk2

Ivkij(ω)

[E − ω − εi + iε(εi − EF
α )]

×
Iijlk(ω)

[k1 − εj + iε(εj − EF
α )][k1 − ω − εk + iε(εk − EF

α )][E − εl + iε(εl − EF
α )]

×
Ilpvp(0)

[k2 − εp + iε(εp − EF
α )]

. (5.19)

for F3. The identical procedure as stated above is applied to infer the three-photon-exchange

corrections. The diagrams are not 1PI, with the exception of F2. Therefore, one has to consider

the second-order Green’s function ∆g(2)S(VP)E
α and the first-order one ∆g(1)VP

α to evaluate the

disconnected terms in Eq. (3.31). It turns out that only the first part of the fourth line survives.

The disconnected terms take care to have a single exemplar of the reducible elements. To

illustrate, F1 and F3 give redundant reducible terms, but the disconnected contributions remove

the extra ones, coming from F1 in this case. A small nuance is nevertheless needed if an extra

pole is explicitly extracted. In such a case, this reducible term is kept, first because it can not be

generated in the disconnected ones, second and more importantly to achieve the IR finiteness
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of the expressions in the subset. Hence, for the S(VP)EVP subset, on the top of the peculiar

extra-pole-term in F1, only the F2 and F3 reducible IR divergent expressions are displayed in

Table 5.1. Non-diagrammatic terms are only present in the F2 diagram, and are of four-electron

type. The results are separated in three- and four-electron contributions. As stated before, only

the end formulas are provided. The term-by-term loop contribution, three-electron contribution,

is given below. The four-electron terms are displayed, when comparing with the perturbation

theory approach, in appendix A.6.1.

The extraction procedure is carried out for the F1 Feynman diagram, which contributes as

follow. The terms associated to the crossed graphs are

∆E
(3I)3e,cross,irr
v, F1

=
i

2π

∫
dω

i 6=v

∑
i,j,k

Ivaia(0)Iikjb(ω)Ibjkv(ω)

(εv − εi)(εv − ω − εju)(εb − ω − εku)
, (5.20)

∆E
(3I)3e,cross,red1
v, F1

= − i

2π

∫
dω ∑

i,j

Ivav1a(0)Iv1kjb(ω)Ibjkv(ω)

(εv − ω − εju)
2(εb − ω − εku)

. (5.21)

The expressions corresponding to the ladder-loop graph read

∆E
(3I)3e,lad,irr
v, F1

=
i

2π

∫
dω

i 6=v,{j,k}6={v,b}
∑
i,j,k

Ivaia(0)Iibjk(ω)Ijkvb(ω)

(εv − εiu)(εv − ω − εju)(εb + ω − εku)
,

(5.22)

∆E
(3I)3e,lad,red1
v, F1

= − i

2π

∫
dω

{j,k}6={v,b}
∑
i,j,k

Ivav1a(0)Iv1bjk(ω)Ijkvb(ω)

(εv − ω − εju)
2(εb + ω − εku)

, (5.23)

∆E
(3I)3e,lad,red1
v, F1

= − i

2π

∫
dω

i 6=v,{j,k}={v,b}
∑
i,j,k

{
Ivaia(0)Iibjk(ω)Ijkvb(ω)

(εv − εiu)
2

[
1

(εv − ω − εju)

+
1

(εb + ω − εku)

]
+

Ivaia(0)Iibjk(ω)Ijkvb(ω)

(εv − εiu)(εv − ω − εju)
2

}
, (5.24)

∆E
(3I)3e,lad,red2
v, F1

=
i

2π

∫
dω

{j,k}={v,b}
∑
j,k

Ivav1a(0)Iv1bjk(ω)Ijkvb(ω)

(εv − ω − εju)
3

. (5.25)
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For the disconnected parts, the terms presented below cancel the reducible elements found in

F1, namely the term on the first line cancels (5.21), the term on the second line cancels (5.23)

and the term on the third line cancels (5.25). It leaves only the irreducible expressions and the

ladder reducible 1 term (5.24).

∆E
(3I)3e,disc
v, F =

i

2π

∫
dω ∑

i,j

Ivava(0)Iv1 jib(ω)Iibv1 j(ω)

(εv − ω − εiu)
2(εb − ω − εju)

+
i

2π

∫
dω

{i,j}6={b,v}
∑
i,j

Ivava(0)Iv1bij(ω)Iijv1bj(ω)

(εv − ω − εiu)
2(εb + ω − εju)

− i

2π

∫
dω

{i,j}={b,v}
∑
i,j

Ivava(0)Iv1bij(ω)Iijv1bj(ω)

(εv − ω − εiu)
3

. (5.26)

The Feynman diagram F2 leads to the subsequent terms. Only a term associated to a crossed-

loop graph is found

∆E
(3I)3e,cross
v, F2

=
i

2π

∫
dω ∑

i,j,k

Ivkib(ω)Iiaja(0)Ibjkv(ω)

(εv − ω − εiu)(εv − ω − εju)(εb − ω − εku)
, (5.27)

so it is for the ladder-loop graph, but incorporating the different types stated above

∆E
(3I)3e,lad,irr
v, F2

=
i

2π

∫
dω

{i,k}6={v,b},{j,k}6={v,b}
∑
i,j,k

Ivbik(ω)Iiaja(0)Ikjbv(ω)

(εv − ω − εiu)(εv − ω − εju)(εb + ω − εku)
,

(5.28)

∆E
(3I)3e,lad,red1
v, F2

=− i

2π

∫
dω

{i,k}={v,b},{j,k}6={v,b}
∑
i,j,k

{
Ivbik(ω)Iiaja(0)Ikjbv(ω)

(εv − ω − εju)
2

[
1

(εv − ω − εiu)

+
1

(εb + ω − εku)

]
+

Ivbik(ω)Iiaja(0)Ikjbv(ω)

(εv − ω − εiu)
2(εv − ω − εju)

}
, (5.29)

∆E
(3I)3e,lad,red1
v, F2

=− i

2π

∫
dω

{i,k}6={v,b},{j,k}={v,b}
∑
i,j,k

{
Ivbik(ω)Iiaja(0)Ikjbv(ω)

(εv − ω − εiu)
2

[
1

(εv − ω − εju)

+
1

(εb + ω − εku)

]
+

Ivbik(ω)Iiaja(0)Ikjbv(ω)

(εv − ω − εiu)(εv − ω − εju)
2

}
, (5.30)
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∆E
(3I)3e,lad,red2
v, F2

=
i

2π

∫
dω

{i,k}={v,b},{j,k}={v,b}
∑
i,j,k

{
Ivbik(ω)Iiaja(0)Ikjbv(ω)

(εv − ω − εiu)
3

−
Ivbik(ω)Iiaja(0)Ikjbv(ω)

(εv − ω − εiu)(εv − ω − εju)

[
1

(εv − ω − εiu)
+

1

(εv − ω − εju)

]}
.

(5.31)

From the F3 Feynman diagram arises the coming terms. Similarly to the F1 graph, the terms

corresponding to the crossed graph are

∆E
(3I)3e,cross,irr
v, F3

=
i

2π

∫
dω

k 6=v

∑
i,j,k

Ivjib(ω)Iibkj(ω)Ikava(0)

(εv − ω − εiu)(εb − ω − εju)(εv − εku)
, (5.32)

∆E
(3I)3e,cross,red
v, F3

=
−i

2π

∫
dω ∑

i,j

Ivjib(ω)Iibv1 j(ω)Iv1ava(0)

(εv − ω − εiu)
2(εb − ω − εju)

. (5.33)

The ones associated to the ladder graph read

∆E
(3I)3e,lad,irr
v, F3

=
i

2π

∫
dω

{i,j}6={b,v},k 6=v

∑
i,j,k

Ivbij(ω)Iijkb(ω)Ikava(0)

(εv − ω − εiu)(εb + ω − εju)(εv − εku)
,

(5.34)

∆E
(3I)lad,red1
v, F3

=
−i

2π

∫
dω

{i,j}6={b,v}
∑
i,j

Ivbij(ω)Iijv1b(ω)Iv1ava(0)

(εv − ω − εiu)
2(εb + ω − εju)

, (5.35)

∆E
(3I)3e,lad,red1
v, F3

=
−i

2π

∫
dω

{i,j}={b,v},k 6=v

∑
i,j,k

{
Ivbij(ω)Iijkb(ω)Ikava(0)

(εv − εku)2

[
1

(εv − ω − εiu)

+
1

(εb + ω − εju)

]
+

Ivbij(ω)Iijkb(ω)Ikava(0)

(εv − ω − εiu)
2(εv − εku)

}
, (5.36)

∆E
(3I)3e,lad,red2
v, F3

=
i

2π

∫
dω

{i,j}={b,v}
∑
i,j

Ivbij(ω)Iijv1b(ω)Iv1ava(0)

(εv − ω − εiu)
3

. (5.37)
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As in the case of the S[V(VP)P]E subset, the expressions displayed are the results obtained

in the extraction procedure of the interelectronic interaction, as the difference of the vacuum

states. Some more work is required to extract the IR divergences, to regularize them, as well

as to symmetrize the poles with regard to the real axis. The final expressions are found in

Appendix A.6.2, when comparing with the results from the perturbation theory approach.

5.2. Perturbation theory approach

The idea behind this approach is to perturb a two-photon-exchange correction by the presence

of some potential-like interaction V , to its first order. This method was applied in Ref. [140] to

generate the two-photon-exchange corrections to the g-factor of Li-like ions. Specifically, the

one-electron external wave function is perturbed as

|i〉 → |i〉+ |δi〉, |δi〉 = ∑
j 6=i

|j〉Vji

εi − εj
, (5.38)

the energy accordingly to

εi → εi + δεi, δεi = Vii , (5.39)

leading to the perturbation in the argument of the interelectronic operator

I(∆va) → I(∆va + δ∆va) ≈ I(∆va) + I′(∆va)(δεv − δεa) . (5.40)

The electron propagator (2.53) involved in the loops has to be perturbed as well. One finds

SδV (εk ±ω; x, y) = δV

(

∑
i

|i〉〈i|
εk ±ω − εiu

)

= ∑
i,j

|i〉Vij〈j|
(εk ±ω − εiu)(εk ±ω − εju)

− ∑
i

|i〉Vkk〈i|
(εk ±ω − εiu)

2
. (5.41)

It is a slight generalization of the propagator found in Ref. [141]. This expression is also valid

in the case ω = 0, namely for the four-electron subset. However, one should consider two

cases: (i) if both parenthesis (εk ±ω − εi,ju) are non-zero, then the first piece of the perturbed

propagator is to be used, (ii) if one of the parenthesis (εk ±ω − εi,ju) is zero, then the second

piece of the perturbed propagator is to be used, with the appropriate index. In such a way, it

reproduces the operator Ξ of Eq. (46) in Ref. [140].
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In the end, one trades the potential-link interaction matrix element for a one-photon-

exchange one,

Vij → Iiaja(0) , (5.42)

to match the three-photon-exchange formulas. Let us pause and comment the last step presented

above. A link between the potential-like interaction and the one-photon-exchange interaction is

drawn. The logic goes as follows; consider for example, the Wichmann-Kroll potential [142].

It accounts for an all-order treatment, in αZ, of the interaction of the free-electron vacuum-

polarization loop (first order in α) with the Coulomb potential3. As a side comment, the Uehling

potential [148], which takes into account the electric polarization of the vacuum (state), is the

lowest order approximation (in αZ) of the vacuum-polarization loop within the Coulomb field

of the nucleus. One usually considers that the Wichmann-Kroll potential does not take the

Uehling potential into account. Albeit the Wichmann-Kroll potential is such a potential-like

interaction, it deals with the full Green’s function. Though, the potential-like interaction

considered above incorporates only the core electrons. Therefore, going half a step back, one

can imagine to have an all-order αZ Wichmann-Kroll potential-like mapped to the vacuum-

polarization loop only for the core electrons. The inner structure of the "vacuum-polarization

potential-like" interaction is then unravelled by a cut in the loop. Hence, one can think of the

potential-like interaction as an effective one-electron operator, but hiding a corrected wave

function or representing a screened correction.

Figure 5.3.: One-particle two-loop Feynman diagram corresponding to the perturbed S(VP)P subset in
the redefined vacuum state formalism in an external potential V. The triple line indicates
the electron propagator perturbed by the potential-like interaction V . Notation is similar to
Fig. 2.3.

The reasons invoked in the previous section to select a GI subset are still relevant. Thus,

one perturbs the S(VP)E equations (3.79)–(3.82) according to Eqs. (5.38–5.41) and finds the

desired formulas under the replacement (5.42). The Feynman diagram corresponding to the

V-perturbed, represented by the triple line notation, S(VP)E subset is displayed in Fig. 5.3.

3A potential which accounts for a partial two-loop (second order in α) VP correction is the Källén-Sabry
potential [143–147].
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It was shown that the two-electron subset and the three-electron subset are gauge invariant

separately4. It implies that the gauge invariance of the selected three-photon-exchange subsets,

at the three- and four-electron level, independently, is expected since the perturbation is initially

a potential-like interaction V , turned into a one-photon-exchange operator5. The open question

is whether the separation into S(VP)EVP and S[V(VP)P]E subsets holds also at the three- and

four-electron level, as it is though to be the case. Hence, starting from the V-perturbed S(VP)E

GI expressions, one should be able to disentangle the various terms found via the redefinition

of the vacuum state approach and assign them either to the three- or four-electron contribution.

The results relying on this method are displayed in Appendix A.6.

5.3. Regularization of infrared divergences

Infrared divergences occur when the energy flowing through the loop (ω) leads to a vanishing

denominator of the electron propagator at ω → 0. At the two-photon-exchange level, it was

only met in ladder reducible terms6, where the removal of terms in the crossed parts was carried

out to cancel IR divergences in the ladder terms [72]. In the case of the three-photon-exchange

corrections, it can also arise from crossed reducible terms. The analysis of IR divergences is

conducted in the Feynman gauge, but the resulting pairing of the expressions is valid generally

in virtue of gauge invariance. According to Shabaev [85], one introduces the following integral

representation for the complex-exponential term of the photon propagator (2.34), including a

photon mass term µ,

ei

√
ω2−µ2+iε|x−y| =

−2

π

∫ ∞

0
dk

k sin(k|x − y|)
(ω2 − k2 − µ2 + iε)

. (5.43)

The photon mass plays the role of a energy cutoff (IR regulator). Notice that the condition on

the branch of the square root is changed to Im(
√

ω2 − µ2 + iε) > 0. In the rest of the chapter,

the use of r12 ≡ |x− y| is preferred. Such type of integrals are met when facing IR divergences

In,m± ,p ≡ −i

2π

∫
dω

I(ω)I(ω)I(0)

(−ω + iε)n(∆±ω + iε)m
∆̃

p , (5.44)

4The proof for the former is given numerically in Tables 3.1 and A.1 at the corresponding lines, and analytically
for the later in Eq. (3.83).

5The one-photon-exchange operator was shown to be gauge invariant in Eq. (3.63).
6See Eqs. (3.69, 3.79) and comments below them.
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with n = 1, 2, 3, m = 0, 1, p = 0, 1 and the constraint n + m + p = 3. The + sign stands for

the IR divergent ladder reducible terms and the − sign for the compensating crossed terms.

Calculations are performed by the application of #3.773(3) [or #3.729(2)] in Gradshteyn and

Ryzhik [149]. The first step is to show that for a first-order pole, n = 1, the result is IR finite.

There is no necessity to introduce a photon mass nor to use the integral representation of the

complex exponential. It is sufficient to Wick rotate the integration contour with the substitution

ω = iωE. Afterward, the principal value of the integral, denoted by P , is considered. One

shall start with the simplest case,

I1,0,2 =
−i

2∆̃
2

I(0)I(0)I(0) +
I(0)

2π∆̃
2
P
∫ i∞

0
dωE

I(−iωE)I(−iωE)− I(iωE)I(iωE)

iωE
.

(5.45)

The integral term reads explicitly

α2

r12r34
α1µα

µ
2 α3ναν

4 P
∫ i∞

0
dωE

e−ωER − eωER

iωE
, (5.46)

giving a finite contribution in the limit ω → 0. R stands for R = r12 + r34. One sees that the

real part is IR finite, the imaginary one as well in this simple example. The second case, I1,2−,0,

requires one more step, a partial fraction decomposition, so that the Cauchy principal value can

be applied. Recall that the principal value picks only the residues, hence no contribution from

second or higher order poles.

I1,2−,0 =
−i

∆
2
[I(0)I(0)− I(∆)I(∆)] I(0)

+
I(0)

2π∆
2
P
∫ i∞

0
dωE

{
I(−iωE)I(−iωE)− I(iωE)I(iωE)

iωE

− I(−iωE)I(−iωE)

∆ + iωE
− I(iωE)I(iωE)

∆ − iωE

}
. (5.47)

The first integrand was shown to IR finite just above. For the remaining two integrands, it is

clear that ∆ plays the role of an IR cutoff, preventing the expression to diverge in the limit

ω → 0. The case I1,1−,1 is not met in the diagrams under consideration and is therefore not

assessed. Let us discuss the IR divergences arising from second-order poles. The first case

considers the insertion of the interelectronic operator on the external leg of a one-loop diagram.
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One has,

I2,0,1 =
−α3R

πr12r34r56∆̃
α1µα

µ
2 α3ναν

4α5ρα
ρ
6K0(µR)

≈ −α3R

πr12r34r56∆̃
α1µα

µ
2 α3ναν

4α5ρα
ρ
6

(
ln

µ

2
+ γ + ln R

)
, (5.48)

in the limit µ → 0. Kn(x) are imaginary Bessel functions of the second kind. The identical

IR logarithmic divergent behaviour as in the two-photon-exchange ladder reducible case is

recovered [85]. The corresponding crossed diagram cancels the IR divergent term, leaving

a well-behaved expression. The second case is when the interelectronic operator is inserted

within the loop. One faces

I2,1+,0 =
α3

πr12r34r56
α1µα

µ
2 α3ναν

4α5ρα
ρ
6

×
∫ ∞

0
dkk sin(kR)


 1

(k2 + µ2)3/2(∆ −
√

k2 + µ2)
− 2

(k2 + µ2)∆2


 . (5.49)

The IR divergence is compensated by a similar crossed graph, where the interelectronic operator

is also inserted within the loop

I2,1−,0 =
−α3

πr12r34r56
α1µα

µ
2 α3ναν

4α5ρα
ρ
6

∫ ∞

0
dkk sin(kR)

×

 −1

(k2 + µ2)3/2(∆ +
√

k2 + µ2)
+

2

(k2 + µ2 − ∆
2)∆2

− 2

(k2 + µ2)∆2


 .

(5.50)

However, the cancellation is not obvious at this step. A partial fraction decomposition allows

to greatly simplify the previous expressions, when they are added together.

I2,1−,0 + I2,1+,0 =
−2α3

πr12r34r56∆
2

α1µα
µ
2 α3ναν

4α5ρα
ρ
6

∫ ∞

0
dk

k sin(kR)

k2 + µ2

=
−2α3

πr12r34r56∆
2

α1µα
µ
2 α3ναν

4α5ρα
ρ
6

√
πµR

2
K1/2(µR)

≈ α3

r12r34r56∆
2

α1µα
µ
2 α3ναν

4α5ρα
ρ
6 (µR − 1) . (5.51)
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Thus, it turned out to be a spurious divergence; the IR divergence is ruled out and a finite part

remains in the limit µ → 0. Last, but not least, the IR divergence arising from the third-order

pole is treated. The corresponding integral to evaluate is

I3,0,0 =
−α3

πr12r34r56
α1µα

µ
2 α3ναν

4α5ρα
ρ
6

√
πR

2µ

R

2
K1/2(µR)

≈ −α3R

4r12r34r56
α1µα

µ
2 α3ναν

4α5ρα
ρ
6

(
1

µ
− R

)
, (5.52)

leading to a singular behaviour when the limit µ → 0 is taken. The behaviour of the IR diver-

gence arising from the third-order pole is in agreement with the one presented in Ref. [141],

where a similar analysis was performed for the self-energy screening effects in g-factor calcu-

lations. Similarly to the IR divergence arising from the second-order pole, one looks for the

compensating crossed diagram to ensure that the total expression is finite. A different treatment

for the regularization of IR divergence for these terms, based on a symmetry argument, is

proposed in Appendix A.7.

The explicit cancellation of IR divergences, at the individual Feynman diagram level by

the appropriate crossed term, is demonstrated in Table 5.1. An exception is met for the ladder

reducible 2 terms, which compensate themselves. A swapping of the indices in the expressions

presented in Chapter 5.1 might be sometimes necessary in order to make the compensation

apparent. Moreover, it was shown that IR divergences are absorbed by expressions belonging

to the same subset. This is a very engaging indication towards the gauge invariance of the

selected subsets.
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∆E(3I)3e
v ∈ S[V(VP)P]E

type of IR divergence Crossed IR compensation

H1: ladder red 1 (5.6) I2,1+,0 H2: crossed (5.10) I2,1−,0

H1: ladder red 1(5.7) I2,1+,0 H2: crossed (5.10) I2,1−,0

H1: ladder red 2 (5.8) I3,0,0 H2: ladder red 2 (5.16 ) I3,0,0

H1: crossed red (5.9) I2,1−,0 , I3,0,0 H2: crossed (5.10) I2,1−,0, I3,0,0

H2: ladder red 1 (5.12) I2,0,1 H1: crossed irr (5.4) I2,0,1

H2: ladder red 1 (5.14) I2,0,1 H1: crossed irr (5.3) I2,0,1

H2: ladder red 2 (5.16) I3,0,0 H1: ladder red 2 (5.8) I3,0,0

∆E(3I)3e
v ∈ S(VP)EVP

type of IR divergence Crossed IR compensation

F1: ladder red 1 (5.24) I2,0,1 F1 : crossed (5.20) I2,0,1

F2: ladder red 1(5.29) I2,1+,0 F2: crossed (5.27) I2,1−,0

F2: ladder red 1 (5.30) I2,1+,0 F2 : crossed (5.27) I2,1−,0

F2: ladder red 2 (5.31) I3,0,0 F2: crossed (5.27) I3,0,0

F3: ladder red 1 (5.36) I2,0,1 F3: crossed irr (5.32) I2,0,1

F3: ladder red 2 (5.37) I3,0,0 F3: crossed red (5.33) I3,0,0

F3: crossed red (5.33) I2,1−,0 F2 : crossed (5.27) I2,1−,0

Table 5.1.: IR divergences regularization at the individual Feynman diagram level. IR divergences are
found in the reducible expressions, both for ladder- and crossed-loops. Crossed stands for
the crossed compensating term. In,m± ,p describes the type of divergent integral met in the
graph. Each term can be found in Chapter. 5.1, following the referenced equation. The
labels are simplified in comparison to the ones presented there, only the difference among
them is highlighted.

5.4. Comparison

Two different approaches were utilized to infer a partial third-order interelectronic correction

to the energy shift. A comparison between the results of each of these two approaches is

undertaken in this section.

The discussion begins with the four-electron contribution, which involves three types of

terms: the irreducible [∆E(3I)4e,irr
v (A.28, A.29)], the reducible 1 [∆E(3I)4e,red1

v (A.30, A.31)]

and the reducible 2 [∆E(3I)4e,red2
v (A.32, A.33)]. For every type previously stated, agreement
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between the perturbative treatment of the V-perturbed S(VP)E three-electron subset and the

effective one-particle approach is met. Hence, the separation of the different terms, according

to the two one-particle three-loop sets, provided when presenting the results in the appendix

A.6.1.

For the three-electron contribution, an identical separation as above is conducted. The ir-

reducible type is composed of three parts, two of which correspond to crossed diagrams,

[∆E(3I)3e,cross
v (A.37,A.38), ∆E(3I)3e,cross,irr

v (A.35, A.36)] and one corresponding to ladder dia-

grams [∆E(3I)3e,lad,irr
v (A.39, A.40)]. The outcomes of the two methods are in full concordance

for these terms. Regarding the reducible 1 type, the cross reducible [∆E(3I)3e,cross,red
v (A.41,

A.42)] and the ladder reducible 1 IR free ω [∆E
(3I)lad,red1
v, IR free ω (A.47, A.48)] terms extracted from

the two treatments are in good agreement.

However, for the remaining reducible 1 terms [∆E
(3I)3e,lad,red1
v, IR div (A.43, A.44), ∆E

(3I)3e,lad,red1
v, IR free

(A.45, A.46)] a discrepancy is encountered. Yerokhin, in Ref. [140], already pointed out

that the perturbation theory approach runs into troubles to deal with reducible terms7. He is

invoking gauge invariance to fix the problem. If proceeding as explained at the end of the

section dedicated to perturbation theory approach, an identical problem to the one highlighted

by Yerokhin is met, namely that the poles differ by the sign of the iε prescription8,

1

(ω + iε)(−ω + iε)
versus

1

(ω + iε)2
or

1

(−ω + iε)2
, (5.53)

when facing ladder reducible 1 terms, ∆E
(3I)3e,lad,red1
v, IR div and ∆E

(3I)3e,lad,red1
v, IR free . The difference in

the topology of the poles arises from unaccounted restrictions in the summations. Surprisingly,

and possibly related to the topology problem associated with the poles, the two approaches

differ regarding the extra terms

∆E
(3I)3e,red1
v, S[V(VP)P]E =

i 6=v

∑
a,b,b1,v1,i

Ivbb1v1
(∆vb)Iv1aia(0)Iib1bv(∆vb)

(εv − εi)
2

, (5.54)

∆E
(3I)3e,red1
v, S(VP)EVP = −

i 6=b

∑
a,b,b1,v1,i

Ivbb1v1
(∆vb)Ib1aia(0)Iiv1vb(∆vb)

(εb − εi)
2

. (5.55)

These are not found via the perturbative analysis but are present in the redefined vacuum state

approach. They are obtained as the interplay among terms generated from the ladder reducible

1 terms, upon the symmetrisation of the energy flow in the loop, and four-electron reducible

7See remarks below Eqs. (32, 35, 37) in Ref. [140].
8The same problem was met when comparing the two-photon-exchange expressions with the ones derived by

Sapirstein and Cheng, see below Eq. (3.95).
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1 terms. The former originates from H1 while the latter originates from F2. They look like

four-electron reducible 1 contribution, due to the absence of the ω integration. According to the

gauge invariance of the three-electron S(VP)E subset of the two-photon-exchange corrections,

they should be incorporated in the three-electron contribution of the three-photon-exchange

corrections. The structure of these terms suggests them to be included in the reducible 1

contribution. The last point to be made concerning these two terms is that they are obviously

IR finite.

The reducible 2 type contains only ladder reducible 2 terms, the IR free one [∆E
(3I)3e,lad,red2
v, IR free

(A.51, A.52)] , and the IR divergent one [∆E
(3I)3e,lad,red2
v, IR div (A.49, A.50)]. The expressions

obtained from the two different methods are identical.

Overall, a reasonable agreement is met and the comparison made strongly suggests the

absence of mistakes in the derived expressions. Stated differently, if errors occurred in the

different three-electron types, one would expect to see repercussions in the four-electron

contribution. The four-electron contribution would suffer from discrepancies between the two

methods, which is not the case. Thereby, it hints towards a decent agreement between both

approaches, and is moreover a good sanity check of the obtained formulas. The perturbation

theory approach also helped to sort out the three- and four-electron contributions, especially for

the extra terms given in Eqs. (5.54, 5.55). Last, but not least, a successful verification was also

carried out for the three-electron contribution with the g-factor formulas derived in Ref. [105],

under the replacement (5.42). Note that the extra terms are also present in those formulas;

they manifest themselves when one proceeds towards numerical evaluations9. In summary, the

gathered cluster of clues points towards the consistency and the absence of mistakes of the

derived formulas.

Concerning the separation into the proposed GI subsets, S[V(VP)P]E and S(VP)EVP, the

cancellation of IR divergences by elements from the same subset is very assuring. A numerical

evaluation of the derived expressions is the sole way to either infirm this statement, based on

analytical considerations, or confirm it and turn it into a claim.

9Private communication with A. Volotka.



CHAPTER 6.

CONCLUSION AND OUTLOOKS

In recent years, the accuracy of large-scale correlation calculations of transition energies

in many-electron atoms and ions drastically improved [30, 54, 60, 150–152]. Various highly

efficient computer codes have been developed for this purpose [56, 133, 134, 153–158]. In

view of this rapid progress, it becomes increasingly important to include QED effects in

these calculations as well. At present, such an account is mainly based on the approximate

treatment via QED model potentials [159, 160]. Even though effective methods provide access

to higher-order contributions, it is usually not clear how one can reliably estimate the accuracy

of the results. In contrast, ab initio calculations are more accurate up to the corresponding

order and allow for a good control over uncertainties. However, ab initio QED calculations

for many-electron atoms constitute a rather difficult problem. The first step towards these

challenging calculations is to develop the framework that simplifies the derivation of the

BSQED formulas. In this thesis, an efficient method was presented in details, based on the

vacuum state redefinition and the TTGF approach, to derive calculationally tractable expressions

within the rigorous BSQED framework. A redefined vacuum state allows to drastically reduce

the complexity of the many-electron ab initio QED formulation, keeping only valence electrons

or vacancies under consideration. Contributions to the binding energy are expressed in terms

of Green’s function matrix elements involving active particles (electrons or holes) only. The

interaction of these active particles with core electrons is included via the consideration of

radiative corrections.

The spectral representation of the two-time Green’s function, in a redefined vacuum state,

showed a odd-parity symmetry between the energy shift of an N-valence state and the one of an

N-hole state, with respect to the redefined Fermi level (separating the dynamics into "core" and

"valence" electrons). This odd-parity claim was stated within the RMBPT realm [101] but was

so far not established in a field theoretical framework. It is manifest for the single-particle case,

and can furthermore be extended to any N-particle state. The single-electron state over closed

shells served as an illustrative example to introduce the techniques of the formalism. It was

shown that the one-particle GI subsets, in the effective one-particle approach, are transcribed

to the many-electron frame. This explained the numerically observed gauge invariance [72]

among the direct and exchange parts in the loop contribution to the two-photon-exchange

corrections. Building on this ability to transcript GI subsets from one framework to the other,

97
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the complete second-order corrections in the fine-structure constant were investigated and

the GI subsets were identified in the many-electron description. The two-photon-exchange-

corrections extraction and analysis was carried out for a single-valence electron state, whereas

the screened-radiative corrections were tackled for the single-hole state. In both cases, the

derivation was performed in the extended Furry picture, thus, the presence of a counterpotential,

its associated diagrams and GI subsets. The decomposition in GI subsets was demonstrated, for

the two-photon-exchange corrections, both analytically and numerically. Moreover, a different

initial equal-time choice for the TTGF enables to consider systems with neutrally charged states,

which was not possible in Shabaev’s framework. The proper two-time Green’s function suited

for a valence-hole excitation in closed-shell systems, within the rigorous BSQED framework,

was derived in the redefined vacuum state formalism. Its spectral representation confirms the

poles at valence-hole excitation energies. A contour integral formula, which connects the

energy shift and the Green’s function was derived. The complete first-order corrections were

considered and the explicit formulas were derived. The resulting expressions were mapped to

the standard vacuum state case and the GI subsets were identified. These results can readily be

applied for the rigorous BSQED calculations of the transition energies in a closed-shell system.

The one-photon-exchange formula, upon Breit approximation, matches with the RMBPT

expression derived in Ref. [101]. This constitutes a sound validation of the framework devised.

The method based on a vacuum state redefinition in QED has been shown, in this thesis,

to be a well-suited tool to tackle atoms with a complicated electronic structure. In contrast to

other methods, it permits the identification of GI subsets and, thus, checks the consistency of

the obtained results. Developing on this intrinsic characteristic, and to highlight the possibility

to apply the formalism for advanced calculations, an investigation on third-order interelectronic

corrections was carried out. The three-photon-exchange formulas were derived for two expected-

to-be GI subsets arising from two classes of one-particle three-loop Feynman diagrams. An

independent derivation was conducted with the help of perturbation theory. It helped to

resolve the different reducible types (red1 and red2) and to sort out the distribution of different

terms (three-electron and four-electron) in each contribution of the subsets (S[V(VP)P]E and

S(VP)EVP). A reasonable agreement among the two results was met. The explicit cancellation

of IR divergences, within each subset, is very assuring.

The presented redefined vacuum state approach can be further employed for atoms with

a (more) sophisticated electronic structure, as it allows to focus only on the particles that

differentiate between the configurations. Moreover, the identification of GI expressions within

this approach paves the way for calculating higher-order corrections, which can be split into GI

subsets and tackled one after the other. This asset can be very useful in future derivations of

higher-order contributions since it provides a robust verification.
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APPENDIX A.

APPENDICES

“Le savant n’étudie pas la nature parce que cela est utile;

il l’étudie parce qu’il y prend plaisir,

et il y prend plaisir parce qu’elle est belle.”

— Henri Poincaré, 1854–1912

A.1. Renormalization of the free-electron self-energy and

vertex operators

The renormalization procedure was developed, in the Feynman gauge, in Refs. [161–163] for

the one-loop radiative corrections; the self-energy operator and the vertex operator 1. The two-

loop case was addressed in Ref. [165]. In the Coulomb gauge, the renormalization procedure

was presented by Adkins, in Ref. [166] for the electron self-energy loop, in Ref. [167] for the

vertex function, and summarized in Ref. [168]. Ref. [169] deals with the two-loop case.

The results presented in this appendix are those found in Ref. [163]. The free-electron

self-energy operator in the Feynman gauge reads

Σ
(0)(p) = −4πiα

∫
d4k

(2π)4

1

k2
γσ

/p − /k + me

(p − k)2 − m2
e

γσ . (A.1)

This expression is ultraviolet divergent (high k regime) but remains finite in the infrared (low k

regime). In a covariant regularization scheme, such as the dimensional regularization one, with

d = 4 − 2ε, it can be shown to be logarithmically divergent. The ultraviolet divergence part of

Z2, the electron field-strength renormalization constant, is separated as follow

Σ
(0)(p) = δme −

α

4π
(/p − me)

1

ε̃
+ Σ

(0)
R (p) , (A.2)

1Tadpole, or vacuum-polarization diagram vanishes in free QED due to Furry’s theorem [164].
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with

δme =
3α

4π
me

(
1

ε̃
+

4

3

)
(A.3)

and

1

ε̃
=

1

ε
− γE + ln

(
4π

m2
e

)
. (A.4)

γE is the Euler-Mascheroni constant. The renormalized self-energy operator is given by

Σ
(0)
R (p) =

α

4π
[a(ρ) + b(ρ)/p] , (A.5)

with

a(ρ) = 2

(
1 +

2ρ

1 − ρ
ln ρ

)
, (A.6)

b(ρ) = −2 − ρ

1 − ρ

(
1 +

ρ

1 − ρ
ln ρ

)
, (A.7)

where ρ = (m2
e − p2)/m2

e .

The free-electron vertex operator in the Feynman gauge is

Γ
µ(p′, p) = −4πiα

∫
d4k

(2π)4

1

k2
γσ

/p
′ − /k + me

(p′ − k)2 − m2
e

γµ /p − /k + me

(p − k)2 − m2
e

γσ . (A.8)

This expression is ultraviolet divergent (high k regime) but remains finite in the infrared (low k

regime). As in the previous case, dimensional regularization handles the logarithmic divergence.

Only the ultraviolet divergent part of Z1, the vertex renormalization constant, is separated

Γ
µ(p′, p) =

α

4π
γµ 1

ε̃
+ Γ

µ
R(p′, p) . (A.9)

For the sake of brevity, and because the renormalization condition is given for zero momentum

transfer, q = p − p′ = 0, [see Eq. (2.17)], the renormalized expression for identical argument

is displayed

Γ
µ
R(p, p) =

α

4π

[
b1(ρ)γ

µ + b2(ρ)/ppµ + b3(ρ)pµ] , (A.10)
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where

b1(ρ) =
2 − ρ

1 − ρ

(
1 +

ρ

1 − ρ
ln ρ

)
, (A.11)

b2(ρ) = − 2

(1 − ρ)2

(
3 − ρ +

2

1 − ρ
ln ρ

)
, (A.12)

b3(ρ) =
8

1 − ρ

(
1 +

1

1 − ρ
ln ρ

)
. (A.13)

A.2. Convergence plots for the principal values

contributions in the truncated κ expansion

Sparse details were provided in section 3.2.2, especially concerning the convergence of the

computed values. This is a important concern in achieving numerical results, see for example

Mohr’s original papers on the evaluation of the self-energy correction to 1s1/2 state in hydrogen-

like system [161, 170]. Hence, the following figures are presented to show the convergence

for the principal values contributions in the truncated κ expansion, the most time-consuming

numerical step (ranging from a day to a week of calculation’s time).

2 4 6 8

-0.005

0.005

Figure A.1.: Sum of the principal value (PV) contributions for each κ ranging from 0 to 8, in absolute
value. The dashed line represents the value obtained after fitting the values. Computations
are carried out for the 2s (blue), 2p1/2 (purple) and 2p3/2 (orange) state in the Coulomb
gauge, using Nbasis = 80 basis functions for Lithium-like Uranium (Z = 92). Kohn-Sham
potential is used as the starting screening potential (extended Furry picture).
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2 4 6 8
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0.008

Figure A.2.: Sum of the principal value (PV) contributions for each κ ranging from 0 to 8, in absolute
value. The dashed line represents the value obtained after fitting the values. Computations
are carried out for the the 2s (blue), 2p1/2 (purple) and 2p3/2 (orange) state in the Feynman
gauge, using Nbasis = 80 basis functions for Lithium-like Bismuth (Z = 83). Kohn-Sham
potential is used as the starting starting screening potential (extended Furry picture).

Note that only the values computed for Nbasis = 80 are presented, since the difference

in the values obtained with Nbasis = 40 and Nbasis = 60 are tiny, and therefore difficult to

observe on a figure, see below.
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Figure A.3.: Sum of the principal value (PV) contributions for each κ ranging from 0 to 8, in absolute
value. The dashed line represents the value obtained after fitting the values. Computations
are carried out for the 2s state for Nbasis = 40 (orange), Nbasis = 60 (green) andNbasis =
80 (blue), in the Coulomb gauge, for Lithium-like Uranium (Z = 92). Kohn-Sham
potential is used as the starting screening potential (extended Furry picture).
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The least-squares inverse polynomial fitting provides a fitted value starting from |κ| =
5, since a fourth-order polynomial is used. The summation over κ is truncated once the

error/uncertainty of the fitted value is below the error of the sum, which includes the last

contribution in the κ-expansion. The uncertainty of the fitted values is usually of the order of

1, ..× 10−6 a.u. . The fitted values are added to the pole contributions arising from both the

direct and exchange part. This final value is then extrapolated, applying a linear regression in

1/Nbasis, to infer Nbasis → ∞ limit. This extrapolated value is the one displayed in the two

tables.

A.3. Two-photon-exchange gauge-invariant subsets in

extended Furry picture
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2s 2p1/2 2p3/2

Feynman Coulomb Feynman Coulomb Feynman Coulomb

SESE,2e,irr 0.027109 0.030293 0.023004 0.026182 0.027727 0.031227

SESE,2e,red 0.002958 -0.000226 0.002785 -0.000394 0.003631 0.000130

SESE,2e 0.030067 0.030066 0.025789 0.025789 0.031358 0.031357

S(VP)E,2e,irr -0.189003 -0.188689 -0.324700 -0.324633 -0.214022 -0.213855

S(VP)E,2e,red 0.000316 0.000001 0.000048 -0.000019 0.000164 -0.000002

S(VP)E,2e -0.188687 -0.188688 -0.324652 -0.324652 -0.213857 -0.213857

SESE,3e,irr -0.026394 -0.027326 -0.016618 -0.018611 -0.022634 -0.024685

SESE,3e,red -0.000886 0.000048 -0.002033 -0.000040 -0.002437 -0.000386

SESE,3e -0.027280 -0.027280 -0.018651 -0.018651 -0.025071 -0.025071

SEVP,3e,irr 0.035830 0.037949 0.019778 0.024279 0.038359 0.042952

SEVP,3e,red 0.002009 -0.000110 0.004585 0.000085 0.005452 0.000859

SEVP,3e 0.037839 0.037839 0.024364 0.024364 0.043811 0.043811

S(VP)E,3e,irr 0.177970 0.177851 0.308182 0.308145 0.200231 0.200128

S(VP)E,3e,red -0.000119 0.000000 -0.000037 0.000001 -0.000122 -0.000018

S(VP)E,3e 0.177851 0.177851 0.308145 0.308146 0.200109 0.200110

VPVP,3e -0.306234 -0.306234 -0.488841 -0.488841 -0.436894 -0.436894

V(VP)P,3e -0.049365 -0.049365 -0.036796 -0.036796 -0.028280 -0.028280

V(SE)P,3e,irr 0.021462 0.021462 0.016290 0.016290 0.012550 0.012550

SECP,irr -0.035830 -0.037949 -0.019778 -0.024279 -0.038359 -0.042952

SECP,red -0.002009 0.000110 -0.004585 -0.000085 -0.005452 -0.000859

SECP -0.037839 -0.037839 -0.024364 -0.024364 -0.043811 -0.043811

VPCP 0.661834 0.661834 1.014480 1.014480 0.902069 0.902069

CPCP -0.306235 -0.488842 -0.436895

Total 0.013412 0.013410 0.006921 0.006921 0.005089 0.005088

Table A.1.: Contributions of the identified gauge-invariant subsets to the two-photon exchange correc-
tions for the 2s, 2p1/2, and 2p3/2 states of the Li-like Sn (Z = 50) ion, in atomic units.
The values are obtained within the extended Furry picture (core-Hartree potential). The
results of the Feynman and Coulomb gauges are given. The Fermi model of the nuclear
charge distribution is employed.
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A.4. Two-photon-exchange corrections: matching between

QED and RMBPT

The expressions in Eq. (3.99) are derived for the first time and require a critical view. Therefore,

the Breit approximation is applied to the expressions presented in Eqs. (3.94)–(3.97), under a

sign flip and the exchange v → h of the labels. The outcome is compared with the RMBPT

expressions of Ref. [101]. To this end, let us first introduce the interelectronic-interaction

operator in the Breit approximation:

IB = IC(0) , (A.14)

where “C” means the Coulomb gauge. Since IB is ω-independent, the reducible contributions,

which contain derivatives of I, vanish within this approximation. The second implication of the

Breit approximation is to consider only the positive-energy states in summations, i.e.,

∑
i

= ∑
m

+∑
a

, (A.15)

where now i (and later j) means only positive-energy state, m (and later n) is an excited state,

εm > EF
α > 0, and a (and b) denotes one of the core states, 0 < εa < EF

α . One first applies the

Breit approximation to the three-electron contribution, composed of Eqs. (3.96) and (3.97) ,

which is rewritten as follows,

∆E
(2I)3e,B
h = − ∑

a,b,m

2
[

IB
mbab − IB

mbba

] [
IB
hahm − IB

hamh

]

εa − εm
−

i 6=h

∑
a,b,i

[
IB
haai − IB

haia

] [
IB
ibbh − IB

ibhb

]

εh − εi

− ∑
a,b,m

[
IB
abmh − IB

abhm

]
IB
hmab

εa + εb − εh − εm
− ∑

a,b,m

[
IB
habm − IB

hamb

] [
IB
bmah − IB

bmha

]

εh + εa − εb − εm
,

(A.16)

and

∆E
(2I)CP,B
h = −

i 6=h

∑
a,i

2Uhi

[
IB
iaah − IB

iaha

]

εh − εi
− ∑

a,m

2Uam

[
IB
hmah − IB

hmha

]

εa − εm
−

i 6=h

∑
i

UhiUih

εh − εi
.

(A.17)

The summations were rewritten using Eq. (A.15). Notice that the core-electron contribution

vanishes altogether upon relabeling of the indices and applying the symmetry propertie (2.38).
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Furthermore, sums involving εh in the denominators are kept intact since the energy of the

hole state lies in the positive-energy spectrum. The replacement also allows one to remove the

restrictions in all the other sums.

It is left to evaluate the two-electron contribution. Recall that the integration path closes

in the upper-half of the complex plane ,to consider only positive intermediate energy states,

and that no reducible contributions are present. Let us divide the expressions in Eq. (3.94)

into ladder and crossed parts, namely, the first and third terms are the direct- and exchange-

ladder parts respectively and the second and the fourth are the direct- and exchange-crossed

ones respectively. One starts by showing that both crossed parts vanish due to their pole

structure. The crossed-exchange poles are ω = εh − εi,j + iε and the crossed-direct poles are

ω = εh − εi + iε and ω = εa − εj + iε, for εi, εj > EF
α . It leads to the corresponding residue

integration

∆E
(2I)cr,B
h =

i

2π

∫
dω ∑

a,i,j

[
IB
hjih IB

iaaj

(εh − ω − εiu)(εh − ω − εju)

−
IB
hjia IB

iahj

(εh − ω − εiu)(εa − ω − εju)

]
= 0 . (A.18)

Next, one inspects the ladder poles, which are found to be in ω = εh − εi + iε and ω =

εj − εa − iε, same for both direct and exchange parts. Performing the Cauchy integration, one

finds

∆E
(2I)lad,B
h =

i

2π

∫
dω

(i,j) 6=(a,h)

∑
a,i,j

[
IB
haij I

B
ijah − IB

haij I
B
ijha

(εh − ω − εiu)(εa + ω − εju)

]

=
(i,j) 6=(a,h)

∑
a,i,j

IB
haij I

B
ijah − IB

haij I
B
ijha

εh + εa − εi − εj

= ∑
a,m,n

IB
hamn

[
IB
mnah − IB

mnha

]

εh + εa − εm − εn
− ∑

a,b,m

[
IB
hamb − IB

habm

] [
IB
mbha − IB

mbah

]

εh + εa − εb − εm
, (A.19)

where the first term in the last line is the one sought, while the second one compensates the

fourth sum in Eq. (A.16). Thus, the final expression for the two-photon-exchange corrections
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within the Breit approximation yields

∆E
(2I)B
h = − ∑

a,b,m

2
[

IB
mbab − IB

mbba

] [
IB
hahm − IB

hamh

]

εa − εm
−

i 6=h

∑
a,b,i

[
IB
haai − IB

haia

] [
IB
ibbh − IB

ibhb

]

εh − εi

− ∑
a,b,m

[
IB
abmh − IB

abhm

]
IB
hmab

εa + εb − εh − εm
− ∑

a,m,n

IB
hamn

[
IB
mnha − IB

mnah

]

εh + εa − εm − εn

−
i 6=h

∑
a,i

2Uhi

[
IB
iaah − IB

iaha

]

εh − εi
− ∑

a,m

2Uam

[
IB
hmah − IB

hmha

]

εa − εm
−

i 6=h

∑
i

UhiUih

εh − εi
, (A.20)

which is in full agreement with the RMBPT result of Ref. [101].

A.5. Valence-hole zeroth-order Green function

Here, the zeroth-order Green’s function in Eq. (4.16) is calculated explicitly. The reason for the

previously added terms and the role of prefactors will become clearer. Let us start by expressing

the matrix element of the zero-order Green’s function as

〈(vh)JM|g(0)α (E)|(vh)JM〉 (A.21)

= FvhFvh〈α|bhav

[
1

2!

∫
d3x1d3x2d3y1d3y2S̃(E; x1, x2; y1, y2)

]
a†

vb†
h|α〉 ,

where

S̃(E; x1, x2; y1, y2) (A.22)

= ∑
εi,εl>EF

α , εj,εk<EF
α

a†
i alb

†
k bj

[
φ†

i (x1)φ
†
j (x2)G(0)

α (E; x1, x2; y1, y2)γ
0
1γ0

2φk(y1)φl(y2)
]

+ ∑
εj,εk>EF

α , εi,εl<EF
α

a†
j akb†

l bi

[
φ†

i (x1)φ
†
j (x2)G(0)

α (E; x1, x2; y1, y2)γ
0
1γ0

2φk(y1)φl(y2)
]

− ∑
εi,εk>EF

α , εj,εl<EF
α

a†
i akb†

l bj

[
φ†

i (x1)φ
†
j (x2)G(0)

α (E; x1, x2; y1, y2)γ
0
1γ0

2φk(y1)φl(y2)
]

− ∑
εj,εl>EF

α , εi,εk<EF
α

a†
j alb

†
k bi

[
φ†

i (x1)φ
†
j (x2)G(0)

α (E; x1, x2; y1, y2)γ
0
1γ0

2φk(y1)φl(y2)
]

.
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The zeroth-order spectral representation of the Green’s function is given by

G(0)
α (E; x1, x2; y1, y2) =

1

2!

A(0)
vh (x1, x2; y1, y2)

E − E
(0)
vh + iε

, (A.23)

with

A(0)
vh (x1, x2; y1, y2) = 〈α|

[
ψ(0)

α (0, x1)ψ̄
(0)
α (0, y1)|(vh)JM〉〈(vh)JM|ψ(0)

α (0, x2)ψ̄
(0)
α (0, y2)

− ψ(0)
α (0, x2)ψ̄

(0)
α (0, y1)|(vh)JM〉〈(vh)JM|ψ(0)

α (0, x1)ψ̄
(0)
α (0, y2)

− ψ(0)
α (0, x1)ψ̄

(0)
α (0, y2)|(vh)JM〉〈(vh)JM|ψ(0)

α (0, x2)ψ̄
(0)
α (0, y1)

+ ψ(0)
α (0, x2)ψ̄

(0)
α (0, y2)|(vh)JM〉〈(vh)JM|ψ(0)

α (0, x1)ψ̄
(0)
α (0, y1)

]
|α〉 .

(A.24)

As a first step the previous expression, A(0)
vh (x1, x2; y1, y2), can be further evaluated. Recalling

that ai|α〉 = 0, bj|α〉 = 0, ψ̄ = ψ†γ0, and FvhFvh = 1, one easily gets

A(0)
vh (x1, x2; y1, y2) = [φv(x1)φh(x2)− φh(x1)φv(x2)] [φ̄h(y1)φ̄v(y2)− φ̄v(y1)φ̄h(y2)] .

(A.25)

Two comments should be made at this point. If one were to consider Eq. (4.3), only the first

term from the above expanded expression would be found. Furthermore, in Eq. (4.9), a factor
1
2! was introduced. The reason is to get a proper normalized two-body wave-function in the

non-interacting case, as will be seen in the following. Using Eq. (4.11), one contracts the

operators to obtain

〈(vh)JM|g(0)α (E)|(vh)JM〉 (A.26)

=
1

2!

[
g
(0)
α,v1h2h1v2

(E)− g
(0)
α,v1h2v2h1

(E) + g
(0)
α,h2v1v2h1

(E)− g
(0)
α,h2v1h1v2

(E)
]

,
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which can be rewritten according to Eq. (4.12) as

〈(vh)JM|g(0)α (E)|(vh)JM〉 = 1

E − E
(0)
vh + iε

×
∫

d3x1d3x2
1

2!

[
φ†

v(x1)φ
†
h(x2)− φ†

h(x1)φ
†
v(x2)

]
[φv(x1)φh(x2)− φh(x1)φv(x2)]

×
∫

d3y1d3y2
1

2!

[
φ†

h(y1)φ
†
v(y2)− φ†

v(y1)φ
†
h(y2)

]
[φh(y1)φv(y2)− φv(y1)φh(y2)]

=
1

E − E0
vh + iε

. (A.27)

A.6. Third-order interelectronic corrections derived by a

perturbative treatment

A.6.1. Four-electron subset

One perturbs the S(VP)E three-electron expressions (3.81, 3.82) according to Eqs. (5.38–5.41)

and finds, under the replacement (5.42), three different types of four-electron contribution:

irreducible (irr), reducible 1 (red1) and reducible 2 (red2). They are displayed below, and

furthermore separated into S(V(VP)P)E and S(VP)VP subsets. This separation relies on the

redefined vacuum state analysis and its comparison with the perturbative one.
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Irreducible terms

The four-electron irreducible contribution is found to be

∆E
(3I)4e,irr
v, S(VP)EVP =−

j 6=v,(i,c) 6=(v,b)

∑
a,b,c,i,j





Iavaj(0)
[

Ijbci(∆vc)Icivb(∆vc) + Ijbic(∆cb)Iicvb(∆cb)
]

(εv + εb − εc − εi)(εv − εj)

+

[
Icijb(∆vc)Ivbci(∆vc) + Ivbic(∆cb)Iicjb(∆cb)

]
Ijava(0)

(εv + εb − εc − εi)(εv − εj)





−
j 6=v

∑
a,b,c,i,j

Iavaj(0)Ijicb(∆vc)Icbvi(∆vc) + Ivicb(∆vc)Icbji(∆vc)Ijava(0)

(εb + εc − εv − εi)(εv − εj)

−
j 6=c

∑
a,b,c,i,j

Ivijb(∆vc)Ijaca(0)Icbvi(∆vc) + Ivicb(∆vc)Iacaj(0)Ijbvi(∆vc)

(εb + εc − εv − εi)(εc − εj)

−
j 6=c,(i,c) 6=(v,b)

∑
a,b,c,i,j

Iacaj(0)Ivbci(∆vc)Ijivb(∆vc) + Ivbji(∆vc)Icivb(∆vc)Ijaca(0)

(εv + εb − εc − εi)(εc − εj)

− ∑
i,j

Ivicb(∆vc)Iiaja(0)Icbvj(∆vc)

(εb + εc − εv − εi)(εb + εc − εv − εj)
, (A.28)

for the S(VP)EVP subset and,

∆E
(3I)4e,irr
v, S[V(VP)P]E =−

j 6=b,(i,c) 6=(v,b)

∑
a,b,c,i,j





Iabaj(0)
[

Ivjci(∆vc)Icivb(∆vc) + Ivjic(∆cb)Iicvb(∆cb)
]

(εv + εb − εc − εi)(εb − εj)

+

[
Icivj(∆vc)Ivbci(∆vc) + Ivbic(∆cb)Iicvj(∆cb)

]
Ijaba(0)

(εv + εb − εc − εi)(εb − εj)





−
j 6=b

∑
a,b,c,i,j

Ivicj(∆vc)Ijaba(0)Icbvi(∆vc) + Ivicb(∆vc)Iabaj(0)Icjvi(∆vc)

(εb + εc − εv − εi)(εb − εj)

−
(i,c) 6=(v,b),(j,c) 6=(v,b)

∑
a,b,c,i,j

Ivbci(∆vc)Iiaja(0)Icjvb(∆vc) + Ivbic(∆cb)Iiaja(0)Ijcvb(∆cb)

(εv + εb − εc − εi)(εv + εb − εc − εj)

−
j 6=c,(i,c) 6=(v,b)

∑
a,b,c,i,j

Ivbij(∆cb)Iicvb(∆cb)Ijaca(0) + +Iacaj(0)Ivbic(∆cb)Iijvb(∆cb)

(εv + εb − εc − εi)(εc − εj)
,

(A.29)

for the S[V(VP)P]E one.
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Reducible 1 terms

The reducible 1 contribution is also split into S(VP)EVP and S[V(VP)P]E subsets, respectively,

and can be cast in the form

∆E
(3I)4e,red1
v, S(VP)EVP =−

i 6=b

∑
a,b,b1,v1,i

Ivbb1v1
(∆vb)Iab1ai(0)I′iv1vb(∆vb) + Iabai(0)Ivib1v1

(∆vb)I′b1v1vb(∆vb)

(εb − εi)

−
i 6=v

∑
a,b,b1,v1,i

Ivbb1i(∆vb)Iiav1a(0)I′b1v1vb(∆vb) + Ivbb1v1
(∆vb)I′b1v1ib(∆vb)Iiava(0)

(εv − εi)

−
(i,c) 6=(v,b)

∑
a,b,c,v1,i

[
Ivbci(∆vc)I′civb(∆vc) + I′vbci(∆vc)Icivb(∆vc)

]
Iv1av1a(0)

(εv + εb − εc − εi)

+
(i,c) 6=(v,b)

∑
a,b,c,c1,i

[
Ivbci(∆vc)I′civb(∆vc) + I′vbci(∆vc)Icivb(∆vc)

]
Ic1ac1a(0)

(εv + εb − εc − εi)

− ∑
a,b,c,v1,i

[
Ivicb(∆vc)I′cbvi(∆vc) + I′vicb(∆vc)Icbvi(∆vc)

]
Iv1av1a(0)

(εb + εc − εv − εi)

+ ∑
a,b,c,c1,i

[
Ivicb(∆vc)I′cbvi(∆vc) + I′vicb(∆vc)Icbvi(∆vc)

]
Ic1ac1a(0)

(εb + εc − εv − εi)

+
(i,c) 6=(v,b)

∑
a,b,c,v1,i

Iv1av1a(0) [Ivbci(∆vc)Icivb(∆vc) + Ivbic(∆cb)Iicvb(∆cb)]

(εv + εb − εc − εi)
2

− ∑
a,b,c,v1,i

Iv1av1a(0)Ivicb(∆vc)Icbvi(∆vc)

(εb + εc − εv − εi)
2

+ ∑
a,b,c,c1,i

Ic1ac1a(0)Ivicb(∆vc)Icbvi(∆vc)

(εb + εc − εv − εi)
2

−
(i,c) 6=(v,b)

∑
a,b,c,c1,i

Ic1ac1a(0)Ivbci(∆vc)Icivb(∆vc)

(εv + εb − εc − εi)
2

, (A.30)
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and

∆E
(3I)4e,red1
v, S[V(VP)P]E =−

i 6=v

∑
a,b,b1,v1,i

Iavai(0)Iibb1v1
(∆vb)I′b1v1vb(∆vb) + Ivbb1v1

(∆vb)Iav1ai(0)I′b1ivb(∆vb)

(εv − εi)

−
i 6=b

∑
a,b,b1,v1,i

Ivbb1v1
(∆vb)I′b1v1vi(∆vb)Iiaba(0) + Ivbiv1

(∆vb)Iiab1a(0)I′b1v1vb(∆vb)

(εb − εi)

−
(i,c) 6=(v,b)

∑
a,b,c,c1,i

[
Ivbic(∆cb)I′icvb(∆cb) + I′vbic(∆cb)Iicvb(∆cb)

]
Ic1ac1

(0)

(εv + εb − εc − εi)

+
(i,c) 6=(v,b)

∑
a,b,c,b1,i

[
Ivbic(∆cb)I′icvb(∆cb) + I′vbic(∆cb)Iicvb(∆cb)

]
Ib1ab1a(0)

(εv + εb − εc − εi)

+
(i,c) 6=(v,b)

∑
a,b,c,b1,i

Ib1ab1a(0) [Ivbci(∆vc)Icivb(∆vc) + Ivbic(∆cb)Iicvb(∆cb)]

(εv + εb − εc − εi)
2

+ ∑
a,b,c,b1,i

Ib1ab1a(0)Ivicb(∆vc)Icbvi(∆vc)

(εb + εc − εv − εi)
2

−
(i,c) 6=(v,b)

∑
a,b,c,c1,i

Ic1ac1a(0)Ivbic(∆cb)Iicvb(∆cb)

(εv + εb − εc − εi)
2

. (A.31)

Reducible 2 terms

Each of the inspected subset participates equally to the reducible 2 contribution. One finds

∆E
(3I)4e,red2
v, S(VP)EVP =− 1

2 ∑
a,b,b1,v1,v2

[
Ivbb1v1

(∆vb)I′′b1v1vb(∆vb) + I′vbb1v1
(∆vb)I′b1v1vb

]
Iv2av2a(0)

+
1

2 ∑
a,b,b1,b2,v1

[
Ivbb1v1

(∆vb)I′′b1v1vb(∆vb) + I′vbb1v1
(∆vb)I′b1v1vb

]
Ib2ab2a(0) ,

(A.32)

originated from the H diagrams, as well as

∆E
(3I)4e,red2
v, S[V(VP)P]E =− 1

2 ∑
a,b,b1,v1,v2

[
Ivbb1v1

(∆vb)I′′b1v1vb(∆vb) + I′vbb1v1
(∆vb)I′b1v1vb

]
Iv2av2a(0)

+
1

2 ∑
a,b,b1,b2,v1

[
Ivbb1v1

(∆vb)I′′b1v1vb(∆vb) + I′vbb1v1
(∆vb)I′b1v1vb

]
Ib2ab2a(0) ,

(A.33)



APPENDICES 115

for the F diagrams.

A.6.2. Three-electron subset

The idea would be to proceed similarly as in the four-electron subset; one perturbs the S(VP)E

two-electron expressions (3.79, 3.80) according to Eqs. (5.38–5.41) and finds the desired

formulas under the replacement (5.42). However, the issue is, as already pointed out by

Yerokhin in Ref. [140], that this approach suffers from troubles to deal with reducible terms2.

He is invoking gauge invariance to fix the problem. If proceeding as explained just above, an

identical problem to the one highlighted by Yerokhin is met, namely that the poles differ by the

sign of the iε prescription3,

1

(ω + iε)(−ω + iε)
versus

1

(ω + iε)2
or

1

(−ω + iε)2
, (A.34)

when facing ladder reducible 1 contributions, ∆E
(3I)3e,lad,red1
v, IR div and ∆E

(3I)3e,lad,red1
v, IR free . The dif-

ference in the topology of the poles arises from unaccounted restrictions in the summations.

Nevertheless, for the sake of the verification, it is worth tackling this perturbative analysis and

see how far one can get. However, due to this previous discrepancy, the different three-electron

terms presented below are those derived within the redefinition of the vacuum state formalism.

They are separated into irreducible (irr), reducible 1 (red1) and reducible 2 (red2) types, and

moreover into S[V(VP)P]E and S(VP)EVP according to their originated diagrams.

Irreducible terms

The crossed irreducible expression, a new feature showing up at this order, is presented first. A

separation according to the belonging to each subset is conducted,

∆E
(3I)3e,cross,irr
v, S[V(VP)P]E =

i

2π

∫
dω

k 6=b

∑
a,b,i,j,k

Ivjib(ω)Ibaka(0)Iikvj(ω) + Ivjik(ω)Ikaba(0)Iibvj(ω)

(εv − ω − εiu)(εb − ω − εju)∆bk
,

(A.35)

2See remarks below Eqs. (32, 35, 37) in Ref. [140].
3The same problem was met when comparing the two-photon-exchange expressions with the ones derived by

Sapirstein and Cheng, see below Eq. (3.95).
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∆E
(3I)3e,cross,irr
v, S(VP)EVP =

i

2π

∫
dω

i 6=v

∑
a,b,i,j,k

Ivaia(0)Iikjb(ω)Ibjkv(ω) + Ivkjb(ω)Ijbik(ω)Iaiav(0)

∆vi(εv − ω − εju)(εb − ω − εku)
.

(A.36)

Then, the crossed expression, also separated according to their origin diagrams, is displayed,

∆E
(3I)3e,cross
v, S[V(VP)P]E =

i

2π

∫
dω ∑

a,b,i,j,k

Ivjib(ω)Iakaj(0)Iibvk(ω)

(εv − ω − εiu)(εb − ω − εju)(εb − ω − εku)
(A.37)

∆E
(3I)3e,cross
v, S(VP)EVP =

i

2π

∫
dω ∑

a,b,i,j,k

Ivkib(ω)Iiaja(0)Ibjkv(ω)

(εv − ω − εiu)(εv − ω − εju)(εb − ω − εku)
. (A.38)

Finally, the ladder irreducible expression is found as

∆E
(3I)3e,lad,irr
v, S[V(VP)P]E =

i

2π

∫
dω

[
k 6=b,{i,j}6={v,b}

∑
a,b,i,j,k

Ivbij(ω)Iakab(0)Iijvk(ω) + Ivkij(ω)Iabak(0)Iijvb(ω)

(εv − ω − εiu)(εb + ω − εju)∆bk

+
{i,j}6={v,b},{i,k}6={v,b}

∑
a,b,i,j,k

Ivbij(ω)Ijaka(0)Iikvb(ω)

(εv − ω − εiu)(εb + ω − εju)(εb + ω − εku)

]
,

(A.39)

∆E
(3I)3e,lad,irr
v, S(VP)EVP =

i

2π

∫
dω

[
i 6=v,{j,k}6={v,b}

∑
a,b,i,j,k

Ivaia(0)Iibjk(ω)Ikjbv(ω) + Ivbjk(ω)Ijkib(ω)Iaiav(0)

∆vi(εv − ω − εju)(εb + ω − εku)

+
{i,k}6={v,b},{j,k}6={v,b}

∑
a,b,i,j,k

Ivbik(ω)Iiaja(0)Ikjbv(ω)

(εv − ω − εiu)(εv − ω − εju)(εb + ω − εku)

]
.

(A.40)

Reducible 1 terms

Since a crossed irreducible expression exist, the associated crossed reducible terms are found

and worked out. The result is separated as well according to the originated subset, and reads

∆E
(3I)3e,cross,red
v, S[V(VP)P]E = − i

2π

∫
dω ∑

a,b,b1,i,j

Ivjib(ω)Ibab1a(0)Iib1vj(ω)

(εv − ω − εiu)(εb − ω − εju)
2

, (A.41)
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∆E
(3I)3e,cross,red
v, S(VP)EVP = − i

2π

∫
dω ∑

a,b,v1,i,j

Ivjib(ω)Ibijv1
(ω)Iav1av(0)

(εv − ω − εiu)
2(εb − ω − εju)

. (A.42)

Each ladder reducible 1 term is separated into an IR free and an IR divergent part, and displayed

according to its provenance. Beginning with the latter, one has

∆E
(3I)3e,lad,red1
v, S[V(VP)P]E, IR div = − i

2π

∫
dω

(−ω + iε)2

i 6=b

∑
a,b,b1,v1,i[

Ivbv1b1
(ω)Iaiab(0)Iv1b1vi(ω) + Iviv1b1

(ω)Iabai(0)Iv1b1vb(ω)

∆bi

+
Ivbv1b1

(ω)Ib1aia(0)Iv1ivb(ω) + Ivbv1i(ω)Iiab1a(0)Iv1b1vb(ω)

(∆bi + ω + iε)

]
,

(A.43)

∆E
(3I)3e,lad,red1
v, S(VP)EVP, IR div = − i

2π

∫
dω

(−ω + iε)2

i 6=v

∑
a,b,b1,v1,i[

Ivaia(0)Iibv1b1
(ω)Ib1v1bv(ω) + Ivbv1b1

(ω)Iv1b1ib(ω)Iaiav(0)

∆vi

+
Ivbib1

(ω)Iiav1a(0)Ib1v1bv(ω) + Ivbv1b1
(ω)Iv1aia(0)Ib1ibv(ω)

(∆vi − ω + iε)

]
,

(A.44)

for the IR divergent part. The IR finite part is further separated, because its first part is the

counterpart of the previously introduced IR divergent terms,

∆E
(3I)3e,lad,red1
v, S[V(VP)P]E, IR free = − i

4π

∫
dω

[
1

(∆vb − ω + iε)2
+

1

(∆vb − ω − iε)2

]

×
[

i 6=v

∑
a,b,b1,v1,i

Ivbb1v1
(ω)Iv1aia(0)Ib1ivb(ω) + Ivbb1i(ω)Iiav1a(0)Ib1v1vb(ω)

(∆bi + ω + iε)

+
i 6=b

∑
a,b,b1,v1,i

Ivbb1v1
(ω)Iaiab(0)Ib1v1vi(ω) + Ivib1v1

(ω)Iabai(0)Ib1v1vb(ω)

∆bi

]
,

(A.45)
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∆E
(3I)3e,lad,red1
v, S(VP)EVP, IR free = − i

4π

∫
dω

[
1

(∆vb − ω + iε)2
+

1

(∆vb − ω − iε)2

]

×
[

i 6=v

∑
a,b,b1,v1,i

Ivaia(0)Iibb1v1
(ω)Iv1b1bv(ω) + Ivbb1v1

(ω)Ib1v1ib(ω)Iaiav(0)

∆vi

+
i 6=b

∑
a,b,b1,v1,i

Ivbb1v(ω)Ib1aia(0)Iv1ibv(ω) + Ivbiv1
(ω)Iiab1a(0)Iv1b1bv(ω)

(∆vi − ω + iε)

]
,

(A.46)

while its second part is simply the terms excluded in sums of certain diagrams,

∆E
(3I)3e,lad,red1
v, S[V(VP)P]E, IR free ω = − i

2π

∫
dω

{i,j}6={v,b}
∑

a,b,b1,i,j

Ivbij(ω)Iab1ab(0)Iijvb1
(ω)

(εv − ω − εiu)(εb + ω − εju)
2

, (A.47)

∆E
(3I)3e,lad,red1
v, S(VP)EVP, IR free ω = − i

2π

∫
dω

{i,j}6={v,b}
∑

a,b,v1,i,j

Ivbij(ω)Iijv1b(ω)Iav1av(0)

(εv − ω − εiu)
2(εb + ω − εju)

. (A.48)

Reducible 2 terms

Facing now the reducible 2 contribution, the identical separation into IR divergent and IR

free terms is conducted, on the top of the distinction among the two different subsets. The IR

divergent terms are

∆E
(3I)3e,lad,red2
v, S[V(VP)P]E, IR div =

i

2π

∫
dω

(−ω + iε)3 ∑
a,b,b1,b2,v1[

Ivbv1b1
(ω)Ib1ab2a(0)Iv1b2vb(ω)− Ivbv1b2

(ω)Iab1ab(0)Iv1b2vb1
(ω)

]
,

(A.49)

∆E
(3I)3e,lad,red2
v, S(VP)EVP, IR div =

i

2π

∫
dω

(−ω + iε)3 ∑
a,b,b1,v1,v2[

Ivbv1b1
(ω)Iv1b1v2b(ω)Iav2av(0)− Ivbv1b1

(ω)Iv1av2a(0)Ib1v2bv(ω)
]

,

(A.50)
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and the IR free ones are

∆E
(3I)3e,lad,red2
v, S[V(VP)P]E, IR free =

i

4π

∫
dω

[
1

(∆vb − ω + iε)3
+

1

(∆vb − ω − iε)3

]

×
[

∑
a,b,b1,v1,v2

Ivbb1v1
(ω)Iv1av2a(0)Ib1v2vb(ω)

− ∑
a,b,b1,,b2,v1

Ivbb2v1
(ω)Iab1ab(0)Ib2v1vb1

(ω)

]
, (A.51)

∆E
(3I)3e,lad,red2
v, S(VP)EVP, IR free =

i

4π

∫
dω

[
1

(∆vb − ω + iε)3
+

1

(∆vb − ω − iε)3

]

×
[

∑
a,b,b1,v1,v2

Ivbb1v1
(ω)Ib1v1v2b(ω)Iav2av(0)

− ∑
a,b,b1,b2,v1

Ivbb1v1
(ω)Ib2v1vb(ω)Ib1ab2a(0)

]
. (A.52)

Extra terms

The remaining terms

∆E
(3I)3e,red1
v, S[V(VP)P]E =

i 6=v

∑
a,b,b1,v1,i

Ivbb1v1
(∆vb)Iv1aia(0)Iib1bv(∆vb)

(εv − εi)
2

, (A.53)

∆E
(3I)3e,red1
v, S(VP)EVP = −

i 6=b

∑
a,b,b1,v1,i

Ivbb1v1
(∆vb)Ib1aia(0)Iiv1vb(∆vb)

(εb − εi)
2

, (A.54)

are not found via the perturbative analysis but are present in the redefined vacuum state

approach. They are obtained as the interplay among terms generated from the ladder reducible

1 terms, upon the symmetrization of the energy flow in the loop, and four-electron reducible

1 terms. The former originates from H1 while the latter originates from F2. They look like

four-electron reducible 1 contribution, due to the absence of the ω integration. According to the

gauge invariance of the three-electron S(VP)E subset of the two-photon-exchange corrections,

they should be incorporated in the three-electron contribution of the three-photon-exchange

corrections. The structure of these terms suggests then to be included in the reducible 1

contribution.
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A.7. Symmetry argument for vanishing ladder reducible 2

terms

The cancellation of the 1/µ IR divergence in ladder reducible 2 terms was shown in Table 5.1.

This was achieved by searching for a compensating term within the subset of the investigated

term. A symmetry argument might also rule out this issue at the individual Feynman diagram

level, without the need of a term to absorb its divergence. The naive way to argue would be as

follows. Recall that in Feynman gauge, I(ω) is a symmetric operator. Therefore, when the

IR divergence is met in the ladder reducible 2 term, one faces a symmetric numerator divided

by an anti-symmetric denominator integrated over a symmetric interval. It vanishes due to

parity consideration. However, the problem is that the iε prescription spoils the anti-symmetric

behaviour of the denominator. Hence, a Wick rotation is applied and the expression looks as

i

2π

∫ ∞

−∞
dω

I(ω)I(ω)I(0)

(−ω + iε)3
=

−I(0)

2π

∫ i∞

0
dωE

[
I(−iωE)I(−iωE)

(iωE + iε)3
+

I(iωE)I(iωE)

(−iωE + iε)3

]

=
−I(0)

2π
P
∫ i∞

0
dωE

I(−iωE)I(−iωE)− I(iωE)I(iωE)

(iωE)
3

∝
−i

2π
I(0)P

∫ i∞

0
dωE

2 sinh ωER

ω3
E

B.H
=

−iR

3π
I(0)P

∫ i∞

0
dωE

cosh ωER

ω2
E

Taylor≈ −iR

3π
I(0)P

∫ i∞

0
dωE

[
1

ω2
E

+
1

2!
R2

]
(A.55)

Only the principal value is considered since the third order pole does not contribution to the

pole term. One can take the exponential terms of the interelectronic operators out and rephrase

them as a hyperbolic sine. Then, Bernoulli-L’Hospital rule is applied once and the hyperbolic

cosine is Taylor expanded. Here R stands for R = r12 + r34. An interesting feature is seen at

this point, it leads to a pure imaginary end result. Furthermore, one retrieves the 1/µ divergent

behavior encountered previously. The imaginary contribution to the energy, the decay rate,

accounts for the possible instability of the excited states. One can neglect it since, in Chapter

3.1, it was said that this pure imaginary part is not considered. For completeness, if the ground

state is under consideration, it features obviously no instabilities.
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