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Abstract. We experimentally observe anomalous wavepacket evolution in a
realization of a one-dimensional finite binary Anderson model in the presence
of short-range correlations. To this end, we employ weakly-coupled optical
waveguides with propagation constants ε1 and ε2. The correlations enforce the
creation of dimers, i.e. two adjacent waveguides with the same ε, randomly
placed along the lattice. A transition from a ballistic to a superdiffusive
wavepacket expansion and, eventually, to localization is observed as the contrast
between the two propagation constants increases.
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1. Introduction

The common belief that in one-dimensional (1D) lattices the presence of any amount of
disorder leads to exponential localization of all the eigenstates has been around since the
seminal work by Anderson [1]. It is well known that in random 1D systems one never
encounters mobility edges; that is, energy thresholds separating localized (insulating) states
from the extended (conducting) ones. As a result, one observes a complete halt of diffusion
and a suppression of any wavepacket expansion—a process observed in numerous experiments
spanning many area of physics, such as optics [2–9], matter waves [10, 11], and even sound
waves [12]. In recent years, this popular view has been critically reexamined in a number
of theoretical studies through counter-examples, where correlations in a disordered potential
can facilitate wavepacket delocalization [13] and long-range transport (for a recent review
see [14]). The prototypical case considered in these works was that of a random dimer model
(RDM) [15–17] where (in the context of a tight-binding Hamiltonian) pairs of adjacent on-site
energies (dimers) are assigned at random positions in the lattice, leading to two-site correlations
in an otherwise random binary model. For finite samples and below a certain disorder
threshold, a number of transparent states emerge, and their existence results in a diffusive
and superdiffusive wavepacket evolution. Indirect experimental evidences of delocalized
eigenstates in such short-range correlated systems were previously reported [18–20]. However,
a direct experimental demonstration of (super-)diffusive transport in such systems still remains
elusive.

In this article, we report the first direct experimental observation of a 1D localization–
delocalization transition in finite binary Anderson lattices as a result of short-range correlations.
Our experimental set-up utilizes an optical waveguide array [21, 22] as a model system
consisting of two types of waveguides with propagation constants ε1 and ε2 which are
coupled evanescently with a tunneling rate C . We show that if ε1 (or ε2) is assigned at
random to pairs of dimer lattice elements (that is, two waveguides in succession), an initially
localized beam or wavepacket can become delocalized. Specifically, our measurements reveal an
anomalous superdiffusive wavepacket spreading (something that was observed so far only in 3D
systems [23]) which is suppressed once the disorder contrast between dimers exceeds a critical
value 1 ≡ |ε1 − ε2| > 2C . The findings reported in this work might open up new possibilities
for controlling the transport of light via potential correlations and may shed new light on the
understanding of wavepacket evolution in other areas of physics (like ultracold atoms, where
correlations in experimentally induced disorder appears naturally).
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Figure 1. Upper row: sketch of a random dimer array. Each dimer consists of
two adjacent waveguides, where both waveguides exhibit the same propagation
constant ε1 or ε2, that is assigned at random. Lower row: microscope image of a
fabricated waveguide array.

2. The model

Our experimental setup, illustrated in figure 1, consists of a 1D waveguide array fabricated in
fused silica, using the laser direct-writing technology [24]. The writing procedure is described
in detail in [25]. The waveguides exhibit a binary distribution ε1 or ε2 of the waveguide
propagation constants (compare the upper part of figure 1 for a sketch of a dimer realization)
which appear in pairs of subsequent sites, with probability k and 1 − k respectively, where k is a
random number in the interval [0,1]. Without loss of generality we consider the most disordered
case, k = 0.5, for which

ε2n = ε2n+1 =

{
ε1 if κ 6 1

2 ,

ε2 if κ > 1
2 .

(1)

The light evolution along the longitudinal z-axis in these weakly coupled single mode
waveguides is described in general using a coupled mode theory approach. The associated
equations are given by [21]

−i
dan

dz
= εnan + C(an+1 + an−1). (2)

In the above equation n = 1, . . . , N , where the even integer N represents the number of lattice
sites (waveguides), an is the amplitude of the propagating optical field envelope in the nth
waveguide, C is the coupling strength between nearest-neighbor lattice sites, and z is the
longitudinal space coordinate. Equation (2) is effectively identical to the quantum description of
non-interacting electrons in a solid crystal in the tight-binding approximation, provided that the
role of the time variable t is now played by the propagation distance z. The advantage offered
by our system is clearly the ability to directly observe the resulting wavefunction by measuring
the distribution of light intensity during the propagation along the sample [26].

A useful quantity that defines the nature of the dynamical evolution of a wavepacket is the
averaged variance of the intensity pattern as a function of z:

M(z) ≡

〈∑
n

(n − n0)
2
|an|

2

〉
∼ zγ , (3)

where 〈· · · 〉 denotes an average over different disorder realizations (typically 100), and n0 is
the excited lattice site. The spreading exponent γ provides a quantitative description of the
dynamics: γ = 0 corresponds to localization, γ = 1 to diffusion, γ ∈ (1, 2) to superdiffusive
motion and γ = 2 to ballistic motion.
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Figure 2. Theoretical plot of the variance of a propagating wavepacket for
different detunings of the propagation constant between the two dimers. For
γ = 2, one finds ballistic spreading, γ = 1.5 results in superdiffusive dynamics,
γ = 1 corresponds to diffusive behavior and γ = 0 is the signature for Anderson
localization.

We begin by simulating the beam evolution in this RDM array when only one site (δn,n0)
is initially excited—say at the center of the array. To this end, equation (2) has been integrated
numerically using a self-expanding algorithm in order to eliminate finite-size effects. Our results
for M(z) for different values of the disorder contrast 1 are shown in figure 2. For 1 = 0
(periodic lattice) the transport is ballistic resulting in a quadratic growth of the second moment,
i.e.

M =

∑
n

(n − n0)
2
|Jn−n0(2Cz)|2 = 2C2z2, (4)

as expected for discrete diffraction [27]. Here, Jn(x) is the Bessel function of the first kind.
For 1 6= 0 we identify the following three regimes [15, 16]: for 0 < 1 < 2C the motion is
superdiffusive, i.e. M(z) ∝ z3/2, 7 while for 1 > 2C Anderson localization is observed, and the
variance M(z) saturates i.e. M ∝ constant. The transition point between superdiffusive transport
and localization corresponds to 1 = 2C and is characterized by a diffusive spreading where
M(z) ∝ z.

The anomalous (super-)diffusive transport observed for 0 < 16 2C is a new phenomenon
induced via the short range correlations on the on-site potential (see equation (1)). At first
glance, this result is very surprising because the RDM can be mapped to a random binary
alloy with two atoms per unit cell. In this case, the ballistic transport of a photon is inhibited
by wave interferences between the various paths where the particle is multiply scattered by
disorder. The length-scale that dictates the transport is the so-called localization length ξ and it
is usually associated with the inverse of the exponential decay rate of the eigenstates from some

7 Of course in the asymptotic limit z → ∞ the localized nature of the modes—apart from some resonances
which in this limit have measure zero—will be revealed leading to saturation. However, for all practical purposes
associated with finite samples this saturation is irrelevant and it will never be observed.
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localization center. According to the standard theory of 1D localization [28] one expects that all
modes are exponentially localized, which results in a vanishing spreading exponent c → 0.

The origin of the anomalous diffusion can be understood by considering the structural
difference of the eigenmodes associated to the system described by equations (1), (2) and the
standard random binary alloy due to the presence of short-range correlations in the disorder.
As already mentioned above, in 1D almost all eigenstates, except for some isolated stochastic
resonances (the so-called Azbel resonances) [29], are localized in infinitely large samples,
regardless how weak the disorder is. Since the measure of these resonances is zero, and
since they appear randomly in the energy spectrum for each disorder realization, they do not
contribute to transport, and thus one observes a vanishing of the diffusion constant (proportional
to conductance by the Einstein relation) and, therefore, inhibited transport. Moreover, the width
dE of these Azbel resonances as a function of the energy of the incoming particle becomes
exponentially small as the number of elements N of the system (or the strength of the disorder)
increases, i.e. dE ∼ exp(−N/ξ).

In contrast to random binary lattices, in the case of the RDM it was found that short-
range correlations in the disorder potential as given by equation (1) lead to fully transparent
(resonant) states at energies Er = ε1 and Er = ε2. RDM resonances differ substantially from
Azbel resonances since they appear for any realization of the random potential. Moreover, it was
found that the nearby eigenstates with energies E = Er ± δ have a diverging localization length
ξ(Er ± δ) ∼ 1/δ2 if 1 < 2C and n(Er ± d) ∼ 1/d if 1 = 2C [30]. In the case 1 < 2C there exist√

N modes that appear as if they are extended for any finite sample of length N < ξ(Er ± δ)

and contribute to the spreading of an initial single-site excitation δn,n0 [30]. The associated
diffusion constant can be calculated through the Boltzmann relation D(E) = v(E)ξ(E), as the
energy intergral of D(E), where the integration will be over the energy interval Er ± δ which
supports the

√
N ‘extended’ states that participate in the transport. Note that in the Boltzmann

relation we have substituted the mean free path with the localization length ξ(E) as these two
characteristic lengths are approximately equal in the 1D case. Furthermore, assuming that the
transport velocity is approximately constant v(E) = v in this energy window, we find that

Dtot =

∫
D(E) dE ∼ vδ ξ(E). (5)

Substitution of the expression for ξ(E) near the resonance energies leads to

Dtot ∼ v/δ for 1 < 2C, (6)

Dtot ∼ v for 1 = 2C. (7)

For the case 1 = 2C , equation (7) immediately results in M(z) ∼ Dtotz ∼ z. In order to analyze
the case 1 < 2C one needs to recall that the number of modes which are extended over the
whole system of size N is

√
N ∼

√
ξ ∼ 1/δ. Substituting the latter expression in equation (6)

we get

Dtot ∼ v
√

N ∼ v
√

z. (8)

Here we assume again that the extended states traverse the system with constant velocity and
thus the ‘time’ z and the system size N can be interchanged. Consequently for 1 < 2C , the
mean square displacement grows as M(z) ∼ z3/2. The above heuristic arguments are nicely
confirmed by simulations shown in figure 2.
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Figure 3. Averaged experimental fluorescence images (15 realizations) for
different writing velocities: (a) ballistic spreading (va = v2 = 60 mm min−1),
(b) superdiffusive behavior (v1 = 60 mm min−1, v2 = 67 mm min−1), (c) Ander-
son localization (v1 = 60 mm min−1, v2 = 75 mm min−1). Corresponding aver-
aged simulations (100 realizations): (d) ballistic spreading 1 = 0, (e) superdif-
fusive spreading 1 = C and (f) Anderson localization 1 = 4C .

3. The experiment

In order to experimentally realize our RDM waveguide array, during the fabrication process we
choose two different writing velocities v1 or v2 for each waveguide pair. This corresponds to a
binary distribution ε1 or ε2 of the waveguide propagation constants. For reasons of simplicity,
we fixed v1 = 60 mm min−1, and varied only v2. Note that in all our experiments the difference
in the writing velocities is sufficiently small to effectively not change the evanescent coupling
between the guides, that is determined as Cexp = 1.1 cm−1. Light transport in the waveguide
arrays is analyzed using a fluorescence microscopy technique [26], where a light beam at
λ = 633 nm is launched into one of the two central lattice sites using a 10× microscope
objective. Five configurations of different values of 1 are investigated by controlling v2. For
each of the five 1 values, we prepare an array of 100 mm length consisting of 100 waveguides
each, where each individual guide has a transverse dimension of 4 × 11 µm, and an average
over 15 excitations of different waveguides is carried out to obtain M(z). In figures 3(a)–(c)
three examples of averaged experimental fluorescence intensity patterns are shown. From these
diffraction patterns, we extract the variance of the spreading wavepacket. In figures 3(d)–(f) the
corresponding simulations using equation (2) are plotted.

The measurements for M(z) versus z are shown in figure 4(a) for five representative
cases corresponding to 1 = 0, 0 < 1 < 2C and 1 > 2C . Note the log–log-plot, allowing to
directly extrapolate the slope to the spreading exponent. In the case of v1 = v2 = 60 mm min−1,
all waveguides are identical and hence we expect ballistic spreading of an initially localized
wavepacket (blue line). A different transport regime is observed when we choose v2 =

65 mm min−1 (green line), v2 = 67 mm min−1 (red line) and v2 = 69 mm min−1 (yellow line),
respectively. In these cases, we fulfill the condition of 1 < 2C , resulting in the formation of
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Figure 4. (a) Directly extracted variances for various values of disorder 1, as
a function of the propagation distance. Note that in this log–log-plot, in the
superdiffusive case, the slope of the variance is identical for the three different
dimer configurations. (b) The ratio of the three variances in the superdiffusive
regime and the ballistic variance in a double-logarithmic plot. The three graphs
show a slope of ≈ −0.33 ± 0.2. Hence, taking into account the theoretical value
of γball = 2, the diffusion exponent in the diffusive regime is γdiff = 1.68 ± 0.2.
This is very close to the predicted exponent of γtheory = 1.5 and, moreover,
(almost) independent of the exact value of 1.

extended near-resonance eigenmodes. The experimental data clearly shows that the slopes are
identical (i.e. the spreading exponent is the same) but strongly reduced compared to the ballistic
regime. Consequently, a spreading still occurs though it is sub-ballistic. Eventually, when we
choose v2 = 75 mm min−1, the disorder between the dimers is so strong that we enter the regime
where 1 > 2C , where one expects a full suppression of transport, i.e. Anderson localization.
This is clearly shown in our experiments, as the width of the wavepacket (gray line in figure 4(a))
saturates with a vanishing spreading exponent γ = 0.

The directly extracted variance of the evolving wavepacket is significantly lower than the
predicted behavior. This is mainly due to the existence of noise in the experiments that heavily
affects the measured slope of the variance. Additionally, the fluorescence of the waveguides
slightly decreases in time during the averaging process. However, we are able to calibrate
our experimental results, by computing the ratio M(z)/Mball(z) ∼ za where Mball(z) is the
experimentally measured spreading for the ballistic case. As both variances are equally affected
by noise and bleaching, the measurement of the α-values allowed us to extract the spreading
exponent γ = γball + α where γball = 2 as expected from equation (4), in the absence of noise
and bleaching. The ratios of the measured variances are shown in figure 4(b). The green,
red and yellow lines show the aforementioned ratio for the writing speeds v2 = 65 mm min−1,
v2 = 67 mm min−1 and v2 = 69 mm min−1, respectively, having respective slopes of −0.35,
−0.32 and −0.3. We therefore find an experimental value for the spreading exponent in the
superdiffusive regime of γdiff = 1.68 ± 0.2 for these three configurations. This measured value is
very close to the predicted exponent of γtheory = 1.5 associated with the superdiffusive spreading
in our RDM. Additionally, as the model predicts, γ is (almost) independent of the exact value
of 1, as long as one has 0 < 1 < 2C .
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In intuitive terms, we attribute the appearance of superdiffusion to the coexistence of
the weak ballistic lobes and the central localized fraction of the wave. When computing the
variance, the small but distant ballistic component has a significant effect, therefore resulting in
the anomalous superdiffusive behavior of the wavepacket broadening.

4. Conclusion

In conclusion, we observed the transition between superdiffusive long-range transport and
localization in a 1D random-dimer chain with short range-correlations between lattice sites.
Below the transition, the transport is characterized by an anomalous (super-)diffusive spreading
of the wave function. Our measurements were implemented in optical waveguide arrays, where
the dynamics can be directly imaged from the top of the sample. We note that our findings are
quite general and can apply to any physical setting where a RDM is applicable.
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