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An inadvertent indexing error has occurred in the derivation of the quantum Langevin equation
presented in appendix A of our paper (2013 New J. Phys. 15 033008). In the previous version,
the summation over the system modes â†

q and the reservoir modes b̂†
r was executed with

independent indices. However, as each system mode is coupled to a different set of reservoir
modes, the summation of the reservoir modes should rather depend on the system mode.
Hence, we introduce a set of reservoir summation indices {rq}q=1,...,M , which are assigned to
the individual system modes â†

q .
While this modification slightly alters equations (A.1)–(A.5) and (B.4)–(B.6), it has no

implications to the results of the derivations, nor does it affect any result or conclusion in the
main part of the paper.
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Appendix A. Quantum Langevin equation for coupled systems

In the following, we deduce the quantum Langevin equation for our systems from a general
approach by principally following similar considerations as in [1]. Regard the total Hamiltonian
of the overall configuration under the assumption of weak coupling between reservoir and loss-
free system with strengths gm,nm ,

Ĥ total = Ĥ 0 + Ĥ reservoir + Ĥ interaction

= h̄
M∑

m=1

{
βm â†

m âm +
M∑

j=1

C j,m â†
j âm

}
+ h̄

∑
m,nm

β̄nm b̂†
nm

b̂nm

+ h̄
∑
m,nm

{
gm,nm â†

m b̂nm + g∗

m,nm
âm b̂†

nm

}
, (A.1)

where β̄nm denotes the propagation constants of the reservoir modes and βm and C j,m are defined
in the main text. Thus, we find the Heisenberg equations for the system field operators â†

q and

the reservoir field operators b̂†
rq

as coupled differential equations:

d â†
q(z)

dz
= −

i

h̄
[â†

q(z), Ĥ total] = −
i

h̄
[ â†

q(z), Ĥ 0] + i
∑

rq

g∗

q,rq
b̂†

rq
, (A.2)

d b̂†
rq
(z)

dz
= −

i

h̄
[ b̂†

rq
(z), Ĥ total] = iβ̄rq b̂†

rq
(z) + igq,rq â†

q(z) . (A.3)

Integrating equation (A.3) and plugging into equation (A.2) yields

d â†
q(z)

dz
= −

i

h̄
[â†

q(z), Ĥ 0] + i
∑

rq

g∗

q,rq
b̂†

rq
(0) eiβ̄rq z

−

∫ z

0
dζ

∑
rq

|gq,rq |
2eiβ̄rq (z−ζ ) â†

q(ζ ) , (A.4)

where the second term on the rhs acts as a noise operator f̂ †
q = i

∑
rq

g∗

q,rq
b̂†

rq
(0)eiβ̄rq z. For the last

term on the rhs we replace the summation by an integral
∑

rq
→

V
(2π)3

∫
d3k̄rq →

∫
dβ̄rq D(β̄rq )

with the spectral density of states D(β):

d â†
q(z)

dz
= −

i

h̄
[â†

q(z), Ĥ 0] −

∫ z

0
dζ

∫
dβ̄rq D(β̄rq )|gq(β̄rq )|

2ei(β̄rq −βq )(z−ζ ) â†
q(ζ )eiβq (z−ζ ) + f̂ †

q(z)

= −
i

h̄
[â†

q(z), Ĥ 0] −

∫ z

0
dζ D(βq)|gq(βq)|

2πδ(z − ζ ) â†
q(ζ )eiβq (z−ζ ) + f̂ †

q(z)

=
i

h̄
[â†

q(z), Ĥ 0] − π D(βq)|gq(βq)|
2 â†

q(z) + f̂ †
q(z)

= −
i

h̄
[â†

q(z), Ĥ 0] −
γq

2
â†

q(z) + f̂ †
q(z) . (A.5)
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With Fermi’s golden rule decay rates γq = 2π D(βq)|gq(βq)|
2 and the introduction of Ĥ system =

Ĥ 0 + i Âloss = Ĥ 0 + ih̄
∑M

m=1
γm

2 â†
m âm one obtains the quantum Langevin equation:

d â†
q(z)

dz
= −

i

h̄
[â†

q(z), Ĥ system] + f̂ †
q(z) = i

M∑
j=1

C̃q, j â†
j (z) + f̂ †

q(z), (A.6)

where C̃q, j = (β j + iγ j

2 )δ j,q + Cq, j . With the linear propagation operator Uq, j(z) = (ei ˆ̃Cz)q, j the
formal solution of (A.6) is

â†
q(z) =

M∑
j=1

Uq, j(z) â†
j (0) +

∫ z

0
dζ

M∑
j=1

Uq, j(z − ζ ) f̂ †
q(ζ ). (A.7)

Appendix B. Calculation of the particle number correlation

Here we present an extensive derivation of the particle number correlation and prove that this
quantity does not depend on the noise operators. Calculating the particle number correlations
by using (A.7)

0q,r(z) = 〈â†
q(z) â†

r (z)âr(z)âq(z)〉 =

16∑
α=1

0(α)
q,r (z) (B.1)

yields 16 terms 0(α)
q,r . They can be categorized in how often a noise operator appears. One finds

contributions without noise operator (0(1)
q,r ), with one (0(2...5)

q,r ), two (0(6...11)
q,r ), three (0(12...15)

q,r ) and
four (0(16)

q,r ) noise operators. In the following we will show exemplarily the contribution of each
group by an extended calculation for one member. For the sake of clarity we slip the z-argument
of the propagation operator elements U j,k . Any other dependence will be written explicitly.
Taking into account that the noise operators are Markovian and the average value of the noise
equals zero as well as the zero temperature approximation (ZTA) for the reservoir, we get:

α = 1:

0(1)
q,r =

M∑
j,k,l,p=1

Uq, jUr,kU ∗

r,lU
∗

q,p〈â
†
j (0) â†

k (0)âl(0)âp(0)〉. (B.2)

α = 2, . . . , 5:

0(2)
q,r =

M∑
k,l,p=1

Ur,kU ∗

r,lU
∗

q,p

∫ z

0
dζ

M∑
j=1

Uq, j(z − ζ )〈 f̂ †
q (ζ ) â†

k (0)âl(0)âp(0)〉

=

M∑
k,l,p=1

Ur,kU ∗

r,lU
∗

q,p

∫ z

0
dζ

M∑
j=1

Uq, j(z − ζ ) 〈 f̂ †
q (ζ )〉︸ ︷︷ ︸
= 0

〈â†
k (0)âl(0)âp(0)〉

= 0. (B.3)
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α = 6, . . . , 11:

0(6)
q,r =

M∑
l,p=1

U ∗

r,lU
∗

q,p

z∫
0

dζ

z∫
0

dζ ′

M∑
j,k=1

Uq, j(z − ζ )Ur,k(z − ζ ′)〈 f̂ †
q (ζ ) f̂ †

r (ζ ′)âl(0)âp(0)〉

=

M∑
l,p=1

U ∗

r,lU
∗

q,p

z∫
0

dζ

z∫
0

ζdζ ′

M∑
j,k=1

Uq, j(z − ζ )Ur,k(z − ζ ′)〈 f̂ †
q (ζ ) f̂ †

r (ζ ′)〉〈âl(0)âp(0)〉

=

M∑
l,p=1

U ∗

r,lU
∗

q,p

z∫
0

dζ

z∫
0

dζ ′

M∑
j,k=1

Uq, j(z − ζ )Ur,k(z − ζ ′)

×

∑
ιq ,κr

g∗

q,ιq
g∗

r,κr
〈b̂†

ιq
(0) b̂†

κr
(0)〈︸ ︷︷ ︸

= 0

eiβ̄ιq ζ eiβ̄κr ζ ′

〈âl(0)âp(0)〉

= 0. (B.4)

α = 12, . . . , 15:

0(12)
q,r =

M∑
p=1

U ∗

q,p

∫ z

0
dζ

∫ z

0
dζ ′

∫ z

0
dζ ′′

M∑
j,k,l=1

Uq, j(z − ζ )Ur,k(z − ζ ′)U ∗

r,l(z − ζ ′′)

× 〈 f̂ †
q (ζ ) f̂ †

r (ζ ′) f̂r(ζ
′′)âp(0)〉

=

M∑
p=1

U ∗

q,p

∫ z

0
dζ

∫ z

0
dζ ′

∫ z

0
dζ ′′

M∑
j,k,l=1

Uq, j(z − ζ )Ur,k(z − ζ ′)U ∗

r,l(z − ζ ′′)

× 〈 f̂ †
q (ζ ) f̂ †

r (ζ ′) f̂r(ζ
′′)〉〈âp(0)〉

=

M∑
p=1

U ∗

q,p

∫ z

0
dζ

∫ z

0
dζ ′

∫ z

0
dζ ′′

M∑
j,k,l=1

Uq, j(z − ζ )Ur,k(z − ζ ′)U ∗

r,l(z − ζ ′′)

×

∑
ιq ,κr ,λr

g∗

q,ιq
g∗

r,κr
gr,λr 〈b̂†

ιq
(0) b̂†

κr
(0)b̂λr (0)〉︸ ︷︷ ︸

= 0

eiβ̄ιq ζ eiβ̄κr ζ ′

e−iβ̄λr ζ ′′

〈âp(0)〉

= 0. (B.5)

α = 16:

0(16)
q,r =

∫ z

0
dζ

∫ z

0
dζ ′

∫ z

0
dζ ′′

∫ z

0
dζ ′′′

M∑
j,k,l,p=1

Uq, j(z − ζ )Ur,k(z − ζ ′)U ∗

r,l(z − ζ ′′)U ∗

q,p(z − ζ ′′′)

× 〈 f̂ †
q (ζ ) f̂ †

r (ζ ′) f̂r(ζ
′′) f̂q(ζ

′′′)〉

=

∫ z

0
dζ

∫ z

0
dζ ′

∫ z

0
dζ ′′

∫ z

0
dζ ′′′

M∑
j,k,l,p=1

Uq, j(z − ζ )Ur,k(z − ζ ′)U ∗

r,l(z − ζ ′′)U ∗

q,p(z − ζ ′′′)

×

∑
ιq ,κr ,λr ,πq

g∗

q,ιq
g∗

r,κr
gr,λr gq,πq 〈b̂†

ιq
(0) b̂†

κr
(0)b̂λr (0)b̂πq (0)〉︸ ︷︷ ︸
= 0 (ZTA)

eiβ̄ιq ζ eiβ̄κr ζ ′

e−iβ̄λr ζ ′′

e−iβ̄πq ζ ′′′

= 0. (B.6)
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Note, 〈b̂†
ιq
(0) b̂†

κr
(0)b̂λr (0)b̂πq (0)〉 = 0 because in the ZTA the average particle number for each

reservoir mode vanishes.
As all terms with α > 1 do not contribute it holds for the particle number correlation:

0q,r(z) =

M∑
j,k,l,p=1

Uq, j(z)Ur,k(z)U
∗

r,l(z)U
∗

q,p(z)〈â
†
j (0) â†

k (0)âl(0)âp(0)〉 (B.7)

which is independent of any noise operators.
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Abstract. A novel approach to investigate the dynamics of indistinguishable
particles in non-Hermitian lattice systems is presented, allowing an efficient
calculation of quantum correlations between these particles in the presence of
losses. Particular attention is paid to quasi-parity-time-symmetric systems, for
which we numerically analyze two-particle quantum random walks for a variety
of input states. Our results show how in some scenarios coherence is lost,
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of bosonic and fermionic exchange symmetry prevail.
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1. Introduction

Understanding quantum random walks of indistinguishable particles and their mutual
correlation allows deep insight into the very nature of quantum mechanical processes in
discretized space. In particular waveguiding lattices provide an exceptional tool for the
study of such phenomena [1, 2]. To date, the correlations of identical particles have been
explored in various systems, such as lattices with a transverse potential gradient [3] or
disorder [4], Glauber–Fock lattices [5], two-dimensional lattices [6] and lattices with periodic
boundaries [7]. However, an intrinsic property of all these quantum systems is their Hermiticity.
Recently, parity-time(PT )-symmetric systems attracted much attention throughout the physics
community. First proposed in 1998 [8], such Hamiltonians are not necessarily Hermitian, but
still can exhibit purely real eigenvalue spectra. Since this concept was introduced in optics by
anti-symmetric gain–loss distributions [9], numerous works were devoted to exploring optical
PT -symmetric phenomena [10–15], culminating in the first experimental demonstration ofPT -
symmetry in physics [16, 17]. However, all of the reported effects have a purely classical
origin, leaving the analysis of a true quantum evolution in PT -symmetric lattices an open
question.

Guo et al [12] showed that systems with anti-symmetric modulated loss distribution behave
equivalently to those with gain–loss structure due to a transformation into an exponentially
damped co-moving frame. For example a periodic gain–loss structure with equal gain and loss
is equivalent to a structure with periodic no-loss–loss distribution where the loss is twice as
before. We call such structures ‘quasi-PT -symmetric’. However, due to noise from vacuum
fluctuations we are limited to transformations that result in vanishing net gain for the analysis of
quantum evolution in non-Hermitian lattices. Nevertheless, despite this limitation, quasi-PT -
symmetric quantum systems give rise to fascinating dynamics. In this paper, we provide the
first theoretical analysis of quantum random walks of identical particles in quasi-PT -symmetric
lattices. We further demonstrate how such dissipative quantum systems can be described by a
set of coupled equations that allows the efficient simulation of extended configurations and
investigate the correlation behavior of indistinguishable separable and entangled particles. We
show how the symmetry of the lattice leads to independence or even decoherence of the
quantum walkers for certain input configurations, while preserving strong correlations for
others.
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2. Theory

The general approach to describe a dissipative quantum systems is to weakly couple the loss-free
system with a reservoir. Thus, the total Hamiltonian of the overall configuration is represented
by the sum

Ĥ total = Ĥ 0 + Ĥ reservoir + Ĥ interaction (1)

with the Hamiltonian of the subsystem without losses Ĥ0. The evolution of such an open
system can be analyzed by, e.g. the Lindblad formalism [18] which evaluates the evolution
of the system’s full density matrix subjected to the interaction with the reservoir. Hence, the
numerical effort in solving the evolution equations grows strongly nonlinearly with system
size. In a lattice with M sites the overhead is O(M4), rendering even moderate system sizes
computationally intractable. In our work, we follow a different approach, which scales more
favorably.

We consider a lattice consisting of M coupled sites with an arbitrary transverse loss
profile. The non-Hermitian Hamiltonian of the dissipative system (lattice with no back coupling
from the reservoir) with the creation (annihilation) operator â†

q ( âq) for mode q, is defined as

Ĥsystem = Ĥ0 + i Âloss with the Hermitian Hamiltonian of the loss-free system

Ĥ 0 = h̄
M∑

m=1

βm â†
m âm +

M∑
j=1

C j,m â†
j âm

 (2)

and the Hermitian Operator describing the loss

Âloss = h̄
M∑

m=1

γm

2
â†

m âm. (3)

Here βm are the propagation constants in each lattice site and energy eigenvalues of Ĥ0,
respectively, γm are the loss coefficients and C j,m are the coupling coefficients between sites
j and m that form a matrix Ĉ . Analogously to [19, 20] for weak coupling between system
and reservoir, one can derive the quantum Langevin equation as the corresponding equation of
motion (see appendix A)

d â†
q(z)

dz
= −

i

h̄

[
â†

q(z), Ĥ system

]
+ f̂ †

q(z)= i
M∑

j=1

C̃q, j â†
j(z)+ f̂ †

q(z) (4)

with C̃q, j = (β j + iγ j

2 )δ j,q + Cq, j , z denoting the evolution coordinate of the system and the

noise operators f̂ †
q which ensure the commutator (anti-commutator) relations [ â j , â†

k ] = δ j,k

({ â j , â†
k } = δ j,k) (with the Kronecker delta δ j,k) for bosons (fermions). Formal integration yields

â†
q(z)=

M∑
j=1

Uq, j(z) â†
j(0)+

∫ z

0
dζ

M∑
j=1

Uq, j(z − ζ ) f̂ †
q(ζ ), (5)
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where in analogy to [1, 21] Uq, j(z)= (ei ˆ̃Cz)q, j are the matrix elements of the linear
z-propagation operator Û . The average occupation number nq(z) in mode q is

nq(z)= 〈 â†
q(z) âq(z)〉ψ0

=

M∑
j,k=1

Uq, j(z)U
∗

q,k(z) 〈 â†
j(0) âk(0)〉

+
M∑

j=1

Uq, j(z)
∫ z

0
dζ

M∑
k=1

U ∗

q,k(z − ζ ) 〈 â†
j(0) f̂ q(ζ )〉︸ ︷︷ ︸

=:n(1)q

+
M∑

k=1

U ∗

q,k(z)
∫ z

0
dζ

M∑
j=1

Uq, j(z − ζ ) 〈 f̂ †
q(ζ ) âk(0)〉︸ ︷︷ ︸

=:n(2)q

+
∫ z

0
dζ

∫ z

0
dζ ′

M∑
j,k=1

Uq, j(z − ζ )U ∗

q,k(z − ζ ′) 〈 f̂ †
q(ζ ) f̂ q(ζ

′)〉︸ ︷︷ ︸
=:n(3)q

. (6)

It is typically assumed that the noise operators are Markovian (no memory effect) and the aver-
age value of the noise is equal to zero. This yields n(1)q = n(2)q = 0. Following [19], one obtains

n(3)q ∼ nR with the particle density of the reservoir nR =
(
exp

(
h̄ω
kT

)
− 1

)−1
in equilib-

rium at frequency ω and temperature T . In the zero temperature approximation (ZTA)
this contribution vanishes5. Therefore, we find the remarkable result that nq(z)=∑M

j,k=1 Uq, j(z)U ∗

q,k(z) 〈 â†
j (0) âk(0)〉 is independent of noise because â†

q(0) is not related to
the noise operators. Thus, a numerical treatment of the average occupation number of any
excitation—bosonic, fermionic and irrespective of the number of launched particles—in a lattice
with loss can be performed by neglecting the noise operators in (4), i.e. the standard Heisenberg
equation for the non-Hermitian Hamiltonian Ĥsystem:

d â†
q(z)

dz
= −

i

h̄

[
â†

q(z), Ĥ system

]
. (7)

When only two indistinguishable particles evolve in the lattice, one can analyze their mutual
particle number correlation 0q,r(z), which characterizes the probability to find one particle at
lattice site q and the other one at site r . We find (see appendix B)

0q,r(z)= 〈 â†
q(z) â†

r (z) âr(z) âq(z)〉 =

M∑
j,k,l,p=1

Uq, jUr,kU ∗

r,lU
∗

q,p 〈 â†
j(0) â†

k(0) âl(0) â p(0)〉 , (8)

which is also independent of the noise term and only determined by the z-propagation operator
Û , i.e. by the coupling dynamics. Hence, both the evolution of the average particle number and

5 Note, that exactly the same approximations are made in order to derive the Lindblad formalism.
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the particle number correlation can be computed using the simple equation (7). Note that our
approach reduces the overhead to O(M2), as compared to O(M4) for the Lindblad method,
enabling the numerical analysis of much larger systems without any additional assumptions.
Furthermore, we emphasize that this concept is applicable to any non-Hermitian lattice with
arbitrary loss profile, irrespective of its physical manifestation, e.g., spin chains, electrons in
crystalline solids, Bose- or Fermi–Hubbard systems, molecular chains or photonic lattices.

3. Numerical investigations

Let us now consider two identical bosons (b)/fermions (f) being launched into the lattice at sites
m and n (m 6= n). These separable input states |ψ (b/f)

〉 = â†
m(0) â†

n(0) |0〉 (with the vacuum state
|0〉) yield the particle number correlations [1, 4]

0(b/f)q,r (z)=
∣∣Uq,mUr,n ± Uq,nUr,m

∣∣2
, (9)

where ‘+’ corresponds to bosons and ‘−’ to fermions. In contrast, injecting two bosons
simultaneously into either site m or n results in a symmetric (s) or anti-symmetric (a) path-
entangled input state |ψ (s/a)

〉 =
1
2

(
( â†

m)
2
± ( â†

n)
2
)
|0〉 [3, 21]

0(s/a)q,r (z)=
∣∣Uq,mUr,m ± Uq,nUr,n

∣∣2
. (10)

For all considered input states one finds nq(z)=
∣∣Uq,m

∣∣2
+

∣∣Uq,n

∣∣2
.

To answer the open question of a true quantum evolution in loss-modulated quasi-PT -
symmetric systems, we consider a lattice where only even numbered sites exhibit loss (see
figure 1(a)). Furthermore, the coupling shall be restricted to adjacent sites such that C j,m =

C δ j,m±1. In order to investigate the impact of such a loss structure on the mutual correlation
of bosons, we consider an array of evanescently coupled optical waveguides [22] with identical
propagation constants βm = β. Thus, the lattice can be described in a frame co-propagating with

β so that rapid phase oscillations can be separated from the transverse dynamics ( ˆ̃a
†

q = â†
q e−iβz).

Fermions, on the other hand, can be investigated directly in cold atoms trapped in optical
lattices [23], where the spatial coordinate z is replaced by time, or simulated in waveguides
lattices [24, 25]. We performed extensive numerical simulations for an array of M = 50 sites,
a length of 15 cm, a coupling constant C = 1 cm−1 and alternating loss with γq = 0 cm−1

for odd and γq = 4 cm−1 for even q. In an envisioned experiment, this can be realized by a
controlled variation of the fabrication parameters of the waveguides [26]. We consider three
different scenarios: (i) two particles are injected into two adjacent channels m = 25 (lossless)
and n = 26 (lossy) (figure 1(b)); (ii) two particles are injected into next-nearest sites m = 24 and
n = 26 (both lossy) (figure 1(c)) and (iii) lossless next-nearest neighbors m = 25 and n = 27
(figure 1(d)). All other possible input states result in similar dynamics as long as the particles
do not reach the boundary, depending on whether an even or an odd number of lattice sites is
in between the input channels. A striking feature of these quasi-PT -symmetric lattices is that
they give rise to a diffusive wave evolution despite being invariant along z. This means the
variance of the wave packet spreads linearly with the propagation which can only be achieved
by longitudinal disorder, i. e., propagation constants randomly varying along z (corresponding
to a temporal fluctuation in the quantum mechanical context) [27] in the Hermitian system.

Figure 2 shows the correlation functions 0(b/f)q,r for separable bosonic/fermionic particles
as well as for the symmetric/anti-symmetric path-entangled bosons 0(s/a)q,r after a quantum
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Figure 1. (a) Arrangement of alternating loss (red) and loss-free (blue) lattice
sites. (b)–(d) Output distribution and evolution of the average particle number nq

for two adjacent inputs (b) and next neighbor injection in lossy (c) or loss-free (d)
channels for coupling constant of C = 1 cm−1 and loss coefficient γq = 4 cm−1

for even q. The output distributions are normalized to their maximum value
respectively.

random walk with an evolution distance of z = 15 cm, for the three input conditions described
above. As a first intuitive result we mention that in all observed cases the average particle
number distribution nq almost vanishes in the lossy channels (see figure 1) and the particle
number correlation 0q,r approaches significant values only in the loss-free sites (see figure 2).
Comparing these results with the loss-free case (cq = 0, ∀ q) one can clearly observe
circumstances where the shapes of the correlations are changed drastically due to loss whereas
being basically preserved in others.

The correlation function of bosons launched into adjacent waveguides (figure 2(a))
maintains the characteristic bimodal shape of the Hermitian loss-free case [1], with the peaks
being slightly broadened and closer to the excited sites due to the diffusive propagation.
In contrast, for next-nearest neighbor excitation of lossy channels the bosons are no longer
correlated and thus evolve as independent but coherent wave packets through the structure as
evident from the equal height of the four peaks (figure 2(b)). The situation changes completely
when both bosons are launched into loss-free next-nearest channels. In this case, the non-
classical correlation of a coherent random walker is destroyed and the classical broad Gaussian-
shaped correlation of two incoherent diffusive particles is formed around the excitation center
(figure 2(c)).

For fermions, we find that launching two separable particles into adjacent lattice sites
again preserves the main features of the anti-bunching correlation pattern of the Hermitian
system, (see figure 2(d)). However, fermions injected in next-nearest channels show a behavior
that is very different from that in the Hermitian system, where the correlation pattern shows a
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Figure 2. Correlation patterns for a separable bosonic input state launched in
(a) two neighboring lattice sites, (b) two next-nearest lossy channels and (c)
two next-nearest loss-free sites. (d)–(l) Correlation maps with the same input
configurations for separable fermions (d)–(f), an entangled symmetric (g)–(i) and
anti-symmetric (j)–(l) input state.

square shape indicating that both fermions will travel with high probability far from the excited
channels and will always be found in different guides (due to the Pauli exclusion principle).
In contrast, in our system, the correlation function 0(f)q,r changes significantly. When both input
sites exhibit loss, we find a complex correlation pattern that shows signatures of anti-bunching
as well as distinct correlation ridges parallel to the bunching diagonal (figure 2(e)). Note that the
row sum of the correlation function

∑
r 0q,r does not equal the average particle number nq (see

figure 3) as in a Hermitian system [1, 2]. While the former quantity accounts for probabilities
of two particle events, the latter also includes scenarios where one particle is lost.

Nevertheless, also in the quasi-PT -symmetric system the fermions always occupy different
sites. When the input channels are loss-free, a distinct anti-bunching behavior of the correlation
function is observed (figure 2(f)), very similar to the case where two neighboring modes are
excited. These transitions strikingly demonstrate how the loss profile affects the correlation
patterns of the evolving particles.

In the case of the symmetric and anti-symmetric input states one finds similarly a strong
dependence of the correlations on the input configuration. For adjacent site excitation 0(s/a)q,r
shows how the presence of losses can lead to full decoherence as heralded from the single
Gaussian peak in figures 2(g)–(j). On the other hand for next-nearest neighbor excitation the
particle number correlations explicitly show the random walkers’ behavior of indistinguishable
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Figure 3. (a) The average particle number and (b) the row sum of the particle
number correlation at z = 15 cm for injection of fermions in next-nearest lossy
sites.

bosons (figure 2(l)) as well as the behavior of distinguishable but coherent walkers (figure 2(h))
and fully classical incoherent walkers (figure 2(i)) and additional an intricate shape exhibiting
bunching as well as anti-bunching properties (figure 2(k)).

4. Conclusion

Summarized, we have introduced a new method to efficiently investigate the quantum random
walks of identical particles in lattice structures with arbitrary loss profile. By virtue of this
method, we analyzed the correlations of separable bosonic and fermionic input states as well as
entangled symmetric and anti-symmetric input states in a quasi-PT -symmetric lattice structure.
We found that, depending on the position of the excited sites, the quantum correlations of
a corresponding homogeneous loss-free system may either prevail, alter significantly or get
destroyed forming the correlation of distinguishable or even classical random walkers.
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Appendix A. Quantum Langevin equation for coupled systems

In the following, we deduce the quantum Langevin equation for our systems from a
general approach by principally following similar considerations as in [19]. Regard the total
Hamiltonian of the overall configuration under the assumption of weak coupling between
reservoir and loss-free system with strengths gm,n

Ĥ total = Ĥ 0 + Ĥ reservoir + Ĥ interaction

= h̄
M∑

m=1

βm â†
m âm +

M∑
j=1

C j,m â†
j âm

 + h̄
∑

n

β̄n b̂†
n b̂n

+ h̄
∑
m,n

{
gm,n â†

m b̂n + g∗

m,n âm b̂†
n

}
, (A.1)
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where β̄n denotes the propagation constants of the reservoir modes and βm and C j,m are defined
in the main text. Thus, we find the Heisenberg equations for the system field operators â†

q and

the reservoir field operators b̂†
r as coupled differential equations

d â†
q(z)

dz
= −

i

h̄

[
â†

q(z), Ĥ total

]
= −

i

h̄

[
â†

q(z), Ĥ 0

]
+ i

∑
r

g∗

q,r b̂†
r , (A.2)

d b̂†
r (z)

dz
= −

i

h̄

[
b̂†

r (z), Ĥ total

]
= iβ̄r b̂†

r (z)+ i
∑

q

gq,r â†
q(z). (A.3)

Integrating equation (A.3) and plugging into equation (A.2) yields

d â†
q(z)

dz
= −

i

h̄

[
â†

q(z), Ĥ 0

]
+ i

∑
r

g∗

q,r b̂†
r (0) eiβ̄r z

−

∫ z

0
dζ

∑
q,r

|gq,r |
2 eiβ̄r (z−ζ ) â†

q(ζ ), (A.4)

where the second term on the rhs acts as a noise operator f̂ †
q = i

∑
r g∗

q,r b̂†
r (0) eiβ̄r z. For the

last term on the rhs we replace one summation by an integral
∑

r →
V

(2π)3

∫
d3k̄r →

∫
dβ̄r D(β̄r)

with the spectral density of states D(β)

d â†
q(z)

dz
= −

i

h̄

[
â†

q(z), Ĥ 0

]
−

∑
q

∫ z

0
dζ

∫
dβ̄r D(β̄r)|gq,r(β̄r)|

2 ei(β̄r −βq )(z−ζ )

×â†
q(ζ ) eiβq (z−ζ ) + f̂ †

q(z)

= −
i

h̄

[
â†

q(z), Ĥ 0

]
−

∑
q

∫ z

0
dζD(βq)|gq,r(βq)|

2πδ(z − ζ ) â†
q(ζ ) eiβq (z−ζ )

+ f̂ †
q(z)

= −
i

h̄

[
â†

q(z), Ĥ 0

]
−

∑
q

πD(βq)|gq,r(βq)|
2 â†

q(z) + f̂ †
q(z)

= −
i

h̄

[
â†

q(z), Ĥ 0

]
−

∑
q

γq

2
â†

q(z) + f̂ †
q(z). (A.5)

One obtains with decay rates γq = 2πD(βq)|gq,r(βq)|
2 from Fermi’s golden rule and the

introduction of Ĥsystem = Ĥ0 + i Âloss = Ĥ0 + ih̄
∑M

m=1
γm

2 â†
m âm the quantum Langevin

equation

d â†
q(z)

dz
= −

i

h̄

[
â†

q(z), Ĥ system

]
+ f̂ †

q(z)= i
M∑

j=1

C̃q, j â†
j(z)+ f̂ †

q(z), (A.6)

where C̃q, j = (β j + iγ j

2 )δ j,q + Cq, j . With the linear propagation operator Uq, j(z)= (ei ˆ̃Cz)q, j the
formal solution of (4) is

â†
q(z)=

M∑
j=1

Uq, j(z) â†
j(0)+

∫ z

0
dζ

M∑
j=1

Uq, j(z − ζ ) f̂ †
q(ζ ). (A.7)
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Appendix B. Calculation of the particle number correlation

Here we present an extensive derivation of the particle number correlation and prove that this
quantity does not depend on the noise operators. Calculating the particle number correlations
by using (5)

0q,r(z)= 〈 â†
q(z) â†

r (z) âr(z) âq(z)〉 =

16∑
α=1

0(α)q,r (z) (B.1)

yields 16 terms 0(α)q,r . They can be categorized in how often a noise operator appears. One finds
contributions without noise operator (0(1)q,r ), with one (0(2...5)q,r ), two (0(6...11)

q,r ), three (0(12...15)
q,r ) and

four (0(16)
q,r ) noise operators. In the following we will show exemplarily the contribution of each

group by an extended calculation for one member. Taking into account that the noise operators
are Markovian and the average value of the noise equals zero as well as the ZTA for the reservoir,
we get

α = 1 :

0(1)q,r =

M∑
j,k,l,p=1

Uq, jUr,kU ∗

r,lU
∗

q,p 〈 â†
j(0) â†

k(0) âl(0) â p(0)〉 , (B.2)

α = 2, . . . , 5:

0(2)q,r =

M∑
k,l,p=1

Ur,kU ∗

r,lU
∗

q,p

∫ z

0
dζ

M∑
j=1

Uq, j(z − ζ ) 〈 f̂ †
q(ζ ) â†

k(0) âl(0) â p(0)〉

=

M∑
k,l,p=1

Ur,kU ∗

r,lU
∗

q,p

∫ z

0
dζ

M∑
j=1

Uq, j(z − ζ ) 〈 f̂ †
q(ζ )〉︸ ︷︷ ︸
= 0

〈 â†
k(0) âl(0) â p(0)〉

= 0, (B.3)

α = 6, . . . , 11:

0(6)q,r =

M∑
l,p=1

U ∗

r,lU
∗

q,p

∫ z

0
dζ

∫ z

0
dζ ′

M∑
j,k=1

Uq, j(z − ζ )Ur,k(z − ζ ′) 〈 f̂ †
q(ζ ) f̂ †

r (ζ
′) âl(0) â p(0)〉

=

M∑
l,p=1

U ∗

r,lU
∗

q,p

∫ z

0
dζ

∫ z

0
ζdζ ′

M∑
j,k=1

Uq, j(z − ζ )Ur,k(z − ζ ′) 〈 f̂ †
q(ζ ) f̂ †

r (ζ
′)〉 〈 âl(0) â p(0)〉

=

M∑
l,p=1

U ∗

r,lU
∗

q,p

∫ z

0
dζ

∫ z

0
dζ ′

M∑
j,k=1

Uq, j(z − ζ )Ur,k(z − ζ ′)

×

∑
ι,κ

g∗

q,ιg
∗

r,κ 〈 b̂†
ι (0) b̂†

κ(0)〉︸ ︷︷ ︸
= 0 (ZTA)

eiβ̄ιζeiβ̄κζ ′

〈 âl(0) â p(0)〉

= 0. (B.4)

Obviously 〈 b̂†
ι (0) b̂†

κ(0)〉 = 0. In this group one can get expressions like 〈 f̂ †
q (ζ ) f̂r(ζ

′)〉 which
are consequently direct proportional to the average particle density in the reservoir nR which
equals zero in the ZTA as mentioned in the main text.

New Journal of Physics 15 (2013) 033008 (http://www.njp.org/)

http://www.njp.org/


11

α = 12, . . . , 15:

0(12)
q,r =

M∑
p=1

U ∗

q,p

∫ z

0
dζ

∫ z

0
dζ ′

∫ z

0
dζ ′′

M∑
j,k,l=1

Uq, j(z − ζ )Ur,k(z − ζ ′)U ∗

r,l(z − ζ ′′)

× 〈 f̂ †
q(ζ ) f̂ †

r (ζ
′) f̂ r(ζ

′′) â p(0)〉

=

M∑
p=1

U ∗

q,p

∫ z

0
dζ

∫ z

0
dζ ′

∫ z

0
dζ ′′

M∑
j,k,l=1

Uq, j(z − ζ )Ur,k(z − ζ ′)U ∗

r,l(z − ζ ′′)

× 〈 f̂ †
q(ζ ) f̂ †

r (ζ
′) f̂ r(ζ

′′)〉 〈 â p(0)〉

=

M∑
p=1

U ∗

q,p

∫ z

0
dζ

∫ z

0
dζ ′

∫ z

0
dζ ′′

M∑
j,k,l=1

Uq, j(z − ζ )Ur,k(z − ζ ′)U ∗

r,l(z − ζ ′′)

×

∑
ι,κ,λ

g∗

q,ιg
∗

r,κgr,λ 〈 b̂†
ι (0) b̂†

κ(0) b̂λ(0)〉︸ ︷︷ ︸
= 0

eiβ̄ιζ eiβ̄κζ ′

e−iβ̄λζ ′′

〈 â p(0)〉

= 0, (B.5)

α = 16:

0(16)
q,r =

∫ z

0
dζ

∫ z

0
dζ ′

∫ z

0
dζ ′′

∫ z

0
dζ ′′′

M∑
j,k,l,p=1

Uq, j(z − ζ )Ur,k(z − ζ ′)U ∗

r,l(z − ζ ′′)U ∗

q,p(z − ζ ′′′)

× 〈 f̂ †
q(ζ ) f̂ †

r (ζ
′) f̂ r(ζ

′′) f̂ q(ζ
′′′)〉

=

∫ z

0
dζ

∫ z

0
dζ ′

∫ z

0
dζ ′′

∫ z

0
dζ ′′′

M∑
j,k,l,p=1

Uq, j(z − ζ )Ur,k(z − ζ ′)U ∗

r,l(z − ζ ′′)U ∗

q,p(z − ζ ′′′)

×

∑
ι,κ,λ,π

g∗

q,ιg
∗

r,κgr,λgq,π 〈 b̂†
ι (0) b̂†

κ(0) b̂λ(0) b̂π(0)〉︸ ︷︷ ︸
= 0 (ZTA)

eiβ̄ιζ eiβ̄κζ ′

e−iβ̄λζ ′′

e−iβ̄π ζ ′′′

= 0. (B.6)

Note, 〈 b̂†
ι (0) b̂†

κ(0) b̂λ(0) b̂π(0)〉 = 0 because in the ZTA the average particle number for each
reservoir mode vanishes.

As all terms with α > 1 do not contribute it holds for the particle number correlation

0q,r(z)=

M∑
j,k,l,p=1

Uq, jUr,kU ∗

r,lU
∗

q,p 〈 â†
j(0) â†

k(0) âl(0) â p(0)〉 , (B.7)

which is independent of any noise operators.
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