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Abstract

We reconsider the recently proposed nonlinear quantum electrodynamics effect of quantum
reflection of photons off an inhomogeneous strong-field region. We present new results for strong
fields varying both in space and time. While such configurations can give rise to new effects such as
frequency mixing, estimated reflection rates based on previous one-dimensional studies are
corroborated. On a conceptual level, we critically re-examine the validity regime of the conventional
locally-constant-field approximation and identify kinematic configurations which can be treated
reliably. Our results further underline the discovery potential of quantum reflection as a new signature
of the nonlinearity of the quantum vacuum.

1. Introduction

The vacuum of quantum electrodynamics (QED) can be considered as permeated by virtual electron—positron
fluctuations which probe typical distances of the order of the electron Compton wavelength 1, = 1/m and exist
for typical time scales of the order of the Compton time 7z, = 1/m. Here m is the electron mass, and we use units
where 7 = ¢ = 1. As electromagnetic fields couple to charges, these virtual charged particle fluctuations can
induce effective nonlinear couplings between electromagnetic fields [ 1-3], and affect the propagation of
photons. So far, the pure electromagnetic nonlinearity of the quantum vacuum though subject to high-energy
experiments [4, 5] has not been directly verified on macroscopic scales.

In arecent paper [6], we proposed quantum reflection as a new signature of quantum vacuum nonlinearity
in the presence of strong electromagnetic fields. This phenomenon complements commonly studied nonlinear
vacuum effects such as direct light-by-light scattering [ 7, 8], vacuum magnetic birefringence [9-11], photon
splitting [12], and spontaneous vacuum decay in terms of Schwinger pair-production in electric fields [ 1, 3, 13];
for recent reviews, see [ 14—18].

Many proposals to verify quantum vacuum nonlinearities under controlled laboratory conditions rely on a
pump—probe scheme, where a well-controlled probe photon beam traverses a region of space subject to a strong
electromagnetic field (‘pump’). Typical examples for an experimental realization of such a scheme are
experiments intended to verify vacuum birefringence in macroscopic magnetic fields 19, 20]. An analogous
scheme to be realized with the aid of high-intensity lasers has been proposed in [21], see also [22-24]. Alternative
concepts suggest the use of time-varying fields and high-precision interferometry [25-27].

With regard to the phenomenon of quantum reflection, we emphasize the viewpoint that the quantum
vacuum subject to strong electromagnetic fields can be interpreted as constituting an effective attractive
potential for the traversing probe photons (see in particular the quantum mechanical analogy presented in
appendix A of [6]). Even though the effective potential is attractive, the traversing photons can experience
reflection due to the phenomenon of above-barrier scattering [28], which—as it has no analogue in classical
physics—is also called quantum reflection [29]. In comparison to standard birefringence set-ups, where the
induced quantum-vacuum signature has to be isolated from a large background, our proposal of quantum
reflection inherently allows for a clear separation between signal and background, as the signature of quantum
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reflection amounts to reflected photons in the field free region, facilitating the use of single-photon detection
techniques. Our ultimate goal is a realistic all-optical pump probe set-up to verify quantum vacuum
nonlinearity.

Whereas many vacuum phenomena exist in both homogeneous and inhomogeneous pump field
configurations, let us emphasize that quantum reflection manifestly requires spatially inhomogeneous pump
field profiles. Other optical signatures of quantum vacuum nonlinearities that require inhomogeneous pump
profiles are those based on interference effects [30—32], photon—photon scattering in the form of laser-pulse
collisions [33] and the specific laser photon merging scenario mediated by an effective four-photon, i.e., below
hexagon order, interaction considered in [34].

In [6] we have introduced and exemplified quantum reflection in the case of a static one-dimensional and
purely magnetic field inhomogeneity as a prospective and promising candidate for an all-optical probe of
quantum vacuum nonlinearity. The present follow-up study is devoted to the discussion of quantum reflection
in more general spatio-temporal electromagnetic field inhomogeneities. Again we resort to the locally constant
field approximation. As will be detailed in the main part of this paper, all basic effects encountered and
discussed in [6] will persist. Moreover, additional effects occur upon the inclusion of temporally varying field
inhomogeneities as well as more general electromagnetic field alignments, involving, e.g., energy exchange
processes between probe photons and the field inhomogeneity. Such frequency mixing processes have already
been studied in various contexts and suggested as a signature of nonlinearities of QED [35-38] and
beyond [39].

Our paper is organized as follows: section 2.1 reviews our approach to tackle the scenario of probe photons
experiencing quantum reflection in electromagnetic fields introduced in [6], putting special emphasis on the
consideration of higher-dimensional field inhomogeneities. In sections 2.2 and 2.3 we discuss explicitly various
types of inhomogeneities and field configurations accessible and treatable within the framework of the locally
constant field approximation. These examples encompass both purely magnetic field inhomogeneities as well as
configurations involving orthogonal electric and magnetic fields (crossed fields). Section 3 gives estimates of the
prospective number of quantum reflected photons attainable with present and near future laser facilities. We
end with conclusions in section 4.

2. Quantum reflection

2.1. Towards quantum reflection in spatio-temporal electromagnetic field inhomogeneities
The starting point of our analysis is the effective theory of photon propagation in an external electromagnetic
field (see, e.g. [14]). The Lagrangian is given by

LIA = =B P = 2 [ 4,01 (6 X104, (), (1)
X

where IT" (x, x'|.A) denotes the photon polarization tensor in the presence of the external field with four-
potential A, (x), accounting for the vacuum fluctuations of the underlying theory. The field-strength tensor of
the propagating photon A, is denoted by F,,, and x is a spatio-temporal four-vector. Our metric convention is
g, = diag(—, +, +, +), such that the momentum four-vector squared reads k? = k% - o Moreover, our
conventions fqr the Fourier transform to momentum space are IT* (x, x') = A /k etk prv (k, k') e ¥ and
Aux) = [ ™A, (k).

The equation of motion for probe photons is inferred straightforwardly from equation (1). In momentum
space, it reads

(K2 g™ — kik+)A, (k) = -fk, 1" (=k, K| A)A, (K), )

where 1" (k, k'|A) = [IT* (k, k'|.A) + IT* (k', k|.A)]/2 is the symmetrized polarization tensor.

As detailed in [6], equation (2) can be directly interpreted in terms of the scenario of quantum reflection,
involving incident probe photons A ™, an inhomogeneous pump field profile A, and induced photons A °":
Neglecting the backreaction of the induced photons on the incident probe photons as well as on the pump field,
we can identify the photon field on the right-hand side of equation (2) with A" and that on the left-hand side
with A", The interaction with .4, is encoded in the photon polarization tensor. Correspondingly, the right-
hand side of equation (2) can be considered as a source term for outgoing reflected photons resulting from an
interaction of A™ with .4, mediated by virtual electron—positron fluctuations.

Here, we encounter two problems: first, equation (2) is a tensor equation of rather involved structure, which
is difficult to solve in closed form for general kinematic situations and electromagnetic field configurations.
Second and conceptually even worse, the polarization tensor is not known in an explicit form for arbitrary field
configurations .4. Even though estimates of the polarization tensor for all-optical setups can be deduced from
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constant-field versions of the polarization tensor, it may not be straightforward to construct approximations of
I1* that satisfy the Ward identity imposed by gauge invariance. In the following, we show that both problems
can be solved simultaneously, if two assumptions hold: (a) first we assume that the tensorial quantities in
equation (2) can be represented as follows,

(Rgm k) =X (7)™ and  I"(-k K|4) = Y1~k k1A (B +Qw, ()
P P

with scalar coefficients I7 - Here (PI; )** and (B, )" correspond to two—a priori unrelated—sets of projectors
fulfilling (P, B)* = 6,4 (B,)", (B,)!, = 1andsimilarly (P,P,)" = 5, ,(P,)*, (P,), = 1.Inthe first
expression in equation (3) an overall factor of k* can be factored out, and the projectors (P, )" correspond to
projectors onto photon polarization modes p to be specified in sections 2.2 and 2.3 below. For the polarization
tensor we explicitly accounted for a residual tensorial contribution Q#* which cannot be expressed in terms of
the projectors (B, )**, and does not necessarily fulfill (B, Q)** = 0 for all p. Note that such contribution is, e.g.,
present in the polarization tensor for generic constant electromagnetic fields; [ 14]. To keep notations simple, we
have omitted any explicit reference to the momentum as well as .4, dependencies for both sets of projectors and
for Q.

(b) Second we assume that there is at least a single global projector (P, )* which fulfills
( 13}, W= (P = (PI’, )# and (ﬁp Q)* = 0. Takinginto account the above assumptions, a contraction of
equation (2) with this particular projector results in

RAZK) = = [ (K KIOAR K), @)

where have we introduced photons A} = }5: “A, polarized in mode p. As the equation of motion loses
any nontrivial Lorentz index structure, we have dropped the trivial Lorentz indices of the photon
fields, A, , (k) = A, (k). The resulting scalar equation (4) can be solved straightforwardly with Green’s
function methods. Below, we will show that assumptions (a) and (b) invoked above are in fact satisfied
in several cases of physical interest. Actually, all our subsequent considerations and insights will be
based thereon.

Let us emphasize that no analytical results are available for the photon polarization tensor in generic
inhomogeneous fields. However, the polarization tensor is known explicitly at one-loop accuracy for several
special background fields that can be divided into two classes: homogeneous electric and/or magnetic fields [40—
46] (see also [14, 47] and references therein), and generic plane wave backgrounds [48, 49]; see [50] for amore
recent derivation and an alternative representation, and [34] for a novel systematic expansion especially suited
for all-optical experimental scenarios. Numerical results for inhomogeneous magnetic backgrounds are
available from worldline Monte Carlo simulations [51].

In [6] we have devised a strategy to nevertheless gain analytical insights into the photon polarization
tensor in the presence of inhomogeneous backgrounds, more specifically for inhomogeneous field
configurations that may locally be approximated by a constant: as already mentioned in the introduction,
virtual electron—positron fluctuations probe typical distances of (@ (4,) and exist for typical time scales of
O (z.). Hence, for inhomogeneities with typical scales of spatial and temporal variations w and = much larger
than the Compton wavelength and the Compton time of the virtual charged particles, i.e., w > 1, and
7> 1., using the constant field expressions locally is well justified. In [6] we exemplified our procedure to
build in the desired inhomogeneous field profile a posteriori for the special case of a static one-dimensional
purely magnetic field inhomogeneity starting from the photon polarization tensor in the corresponding
homogeneous background. This strategy can be straightforwardly adapted to higher-dimensional field
inhomogeneities. Here we exclusively focus on inhomogeneities to be characterized by a single field
amplitude profile £ (x). Aiming at the polarization tensor in the presence of a particularly oriented and
shaped electromagnetic field inhomogeneity, this suggests the following two-step procedure: First, we
identify an explicitly known photon polarization tensor with the desired field alignments. Second, we
incorporate the amplitude profile of the inhomogeneity by the strategy devised in [6]. Here we limit
ourselves to homogeneous background fields as starting point; starting from plane wave backgrounds would
require minimal modifications (see also the last paragraph of section 2.3.2 below).

As a consequence of Furry’s theorem (charge conjugation symmetry of QED), the resulting photon
polarization tensor in position space is even in the combined parameter e€ (x). A corresponding perturbative
expansion can be compactly represented in momentum space as (see section Il of [6])

ﬂﬂb(k’ k’|€) - Zﬂélrj’)(k’ ) // ei(k+k’)x’[e£(x/)]2f) (5)
£=0 *
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Figure 1. Schematic depiction of quantum reflection for a static one-dimensional field inhomogeneity [6]. The incident probe
photons with four wave vector ki = wj, (1, cos f3, sin 3, 0) propagate towards the inhomogeneity of amplitude profile £ (x) which
asymptotically falls off to zero for large values of |x|. The inhomogeneity is infinitely extended in the transversal directions.

where we introduced the tensorial quantity
1
nli (k, k') = E[17(;;;,(1@ + 115, () |, (6)

which is completely independent of the background field amplitude. The expansion coefficients /7)) can be
read off from a Taylor expansion of the respective photon polarization tensor for £ = const. about e€ = 0.

We emphasize that the polarization tensor (5) constructed along these lines may violate the Ward identity,

k, 1# (k, k') = 0 = IT* (k, k') k,. This is more obvious in position space, where the Ward identity reads
001+ (x, x'|E) = 0 = 9,IT" (x, x'| €) holding for any background-field &£;if now IT# (x, x'|£) has been
computed for constant &, the naive insertion of an inhomogeneous field £ (x) into IT* (x, x'|£€) can generically
be expected to be in conflict with the Ward identity. This is, because the position space derivatives will also hit
the position space dependence of the background field £(x).

The important point now is that the assumptions (a) and (b) above in fact amount to a restriction on
tensorial components of equation (5) for which the Ward identity is fully satisfied also for an inhomogeneous £:
for the explicitly known expressions of the polarization tensor in homogeneous and plane wave backgrounds
serving as starting point in our locally-constant-field approximation, the tensor structure can always—at least
partially—be written in terms of projectors onto photon polarization modes. Of course the outgoing photon
projectors (P,)* in equation (3) can be chosen accordingly, and the transversal structure (k* g* — k*k*) be
decomposed in terms of these projectors. For equation (5) to be compatible with the assumptions (a) and (b)
above, we have to single out a projector which constitutes a global projector of the polarization tensor (5), i.e.,
fulfills (15? W = (P)* (k) = (B,)" (k). This in turn implies that the assumptions (a) and (b) together with
equation (5) ensure the Ward identity to remain intact for the tensorial structure of the polarization tensor (5)
projected out by the global projector (B,)**, as then of course k, (B, )* = (P,)*k, = 0 holds exactly.

Asin [6], we limit ourselves to incident probe photons with wave vector in the x—y plane in the present paper.
Moreover, the incident probe photons will always be assumed to propagate on the light cone and to be described
by a positive-energy plane wave, A i; (x) = a(wy, ) e@nx s f+ysinf=1) of energy w;, > 0and amplitude a(w;y ),
whose propagation direction is controlled by the choice of the angle f € (—=z...x] (see figure 1).

Aiming at the detection of induced outgoing photons in the field free region at distances far away from the
inhomogeneity, we transform equation (4) with the appropriate boundary conditions to position space,

OA3" 0 = [ A, (6 ¥ | OAG () =, (0. (7)

The induced current j,(x) in equation (7) is nonzero only where the background field deviates from zero, i.e.,
within the spacetime region where the electromagnetic field inhomogeneity is localized, and falls off rapidly to
zero outside. This implies that the incident probe photons can only give rise to induced outgoing photons in the
region where they experience a nonvanishing background electromagnetic field. It is then convenient to make
use of a mixed position-momentum space representation of the photon polarization tensor, i.e., perform a
partial Fourier transform with respect to its second argument, and write

jp(x) :ﬁp(x) kinlA)a(win)) (8)

with k¥ = iy, (1, cos f3, sin 8, 0), fulfilling k.2 = 0. As Jjp(x) is nonzero only in the spacetime region where the
electromagnetic field inhomogeneity is localized, we can extend the integration ranges to oo when determining
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A 1‘,) “(x) in terms of a Green’s function integral,
A = [ GRex X)), ). 9)

Here GF denotes the positive energy branch’ of the retarded Green’s function GX = G + G X for the
D’Alembert operator [] = d*d,, which is determined straightforwardly in momentum space, where its defining
equation reads

—[k2 - (w+ ie)z]GR(k, k)= Qn)*sk+k). (10)
A useful integral representation of this Green’s function is
!
(27 2i\k?

with kf = (i\/P , k)and k; = 0, encompassing both positive and negative energy waves propagating on the

Gt x)=0(t-1) [ (et = eiitemd), (11)

light cone. Causality is ensured by the overall Heaviside function, nullifying G® (x, x") for t — ¢’ < 0.Inasense
this Heaviside function also provides the time arrow, and thus a means to distinguish between positive and
negative energies. Correspondingly, we have

dSk 1 eik:(x—x')‘
(27)° 2iVk?
In our calculation we will always assume t — ¢’ > 0 to be fulfilled, such that the detection takes place at times

tafter the interaction, but nevertheless extend the ¢’ integration up to +oco. For inhomogeneities localized in time
this is clearly justified for the reasons given above."

Gl x) =00 -1) [ (12)

Plugging the integral representation (12) of GR into equation (9) and making use of fx ek b (X', kin|A)
= II,(—ky, kin| A), we finally obtain
(ks Kl )
iie
i.e., the induced photon field can be written in terms of a Fourier integral of the photon polarization tensor in

momentum space I7, (k, k’|A) accounting for a given field inhomogeneity A (x).

Asboth in- and out-going four-momenta fulfill k2 = k? = 0, the photon polarization tensor only has to be

evaluated on the light cone. In this limit it is of a particularly simple form. We emphasize that equation (13)
accounts for all induced positive energy photon modes. An induced contribution is to be considered as physical
atagiven far-field position if it amounts to an outgoing wave originating from the inhomogeneity.

When adapted to the particular kinematics in equation (13) and contracted with the respective global
projector, equation (5) reads

3
A @) = alon) [ e (13)

I, (=ky, kin|A) = Zﬂp,(Zf) (—ks, kin) / elkin=k)x' (g (x") P, (14)
r=1 x

where we omitted the zero field (£ = 0) contribution as it vanishes on the light cone. If an electromagnetic field
inhomogeneity characterized by £ (x) does not depend on a given coordinate, equation (14) gives rise toa §
function ensuring the conservation of the corresponding momentum component. This in turn can be employed
to reduce the dimension of the integral to be performed in equation (13). If, e.g., the inhomogeneity depends on
the x coordinate only, i.e., £ (x) = £ (x), we show that the result for a static one-dimensional inhomogeneity
derived in [6] is reproduced. In this limit equation (14) becomes

- . ~1di
I, (=ky, kin| A) = (27)° 6 (ky — win sin )6 (k,) 6 (VK* — 0in) [T, (—ky, @in cos f|A), (15)
SW' . . . _ Skl ket 0 _ \/_2
ith regard to the Fock space representation of the photon field in position space [A, (x)) = eay, |0), where k° = vk,

(@n)® 20

4 Let us briefly comment on a subtlety associated with field inhomogeneities infinitely extended in time. Namely, we argue that also in this
case we can formally extend the ¢’ integration up to +oo: our calculation, assuming a continuous inflow of plane-wave probe photons
actually is for a steady state. Hence, we do not expect the induced photon fields to exhibit any explicit time dependence apart from a trivial
time dependence in the exponential. Other explicit references to time scales in intermediate steps of the calculation should drop out. The
corresponding scattering rates mediating incident probe photons into induced photons involve a modulus squared and are then rendered
time independent, as expected for a steady state (see below). Moreover, for a given incident photon, the interaction with the inhomogeneity
is always limited to that section of its trajectory traversing the inhomogeneity (see above). Hence, also in case of a field inhomogeneity
infinitely extended in time the detection takes place well after the actual interaction, and can formally be assumed to happen at asymptotic
times.

only positive energy waves amount to propagating real photons.
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~1dim < 7 ail @in cos f—ky )x’ ’
1, (= 0in €05 BIA) = Y 5,001 (=i kin) iz sinptmo [ A’ ellom Ik [eg () P4, (16)
=1

where we only account for the non-conserved x momentum components in the argument of I7 ;dim. Taking into
account the 6 functions for theyand z momentum components, we can rewrite the § function implementing
energy conservation as & (\/P win) — /3 I — 40 (kx — lowj, cos f3). Correspondingly, upon performing
the integration over three-momenta, equatlon (13) decomposes into two contributions,

1d1m 1d1m

out _ ain ( —®in COS ﬂ Win COS ﬂ IA) —i2winx cosﬂ (wm Cos ﬁ Win COS ﬂlA)
APt (x) = A () +e , (17)
2iwi, | cos B 2iwi, |cos f]

with A)" (x) = a(w;,)el@n(x0sf+ysinf=1) The first expression in the curly braces describes induced photons
transmitted in forward direction with unmodified momentum components. The second expression amounts to
the reflected part of the induced photon field, with all momentum components apart from the x momentum
component conserved. In the latter case the x momentum component is reversed, i.e., a momentum of
magnitude 2w;, |cos f|hasbeen absorbed from the electromagnetic field inhomogeneity. The associated
reflection coefficient is defined as the modulus squared of the reflected wave normalized by the incident wave
amplitude and reads

ldlm
(@in €08 fi, win cos f A)

R, = , 18
r 2w;y, cos (18)

which agrees with the expression given in equation (17) of [6].

In the following, we go beyond static one-dimensional field inhomogeneities and discuss two generic classes
of inhomogeneities, characterized by a single field amplitude profile £ (x): first, purely magnetic field
inhomogeneities for which B(x) = & (x) B, with the magnetic field pointing into a fixed direction B. Second,
electromagnetic field mhomogeneltles featuring both electric E(x) = & (x) E and magnetic B(x) = & (x) B field
components constrained by E L B, with fixed unit vectors E and B.

2.2. Purely magnetic background fields
In the purely magnetic field case B provides a global spatial reference direction, with respect to which vectors can
be decomposed into parallel and perpendicular components. In particular,

kt=kf + kf, ki = (o, k), kf=1(0,ky), (19)

with k = (k - B)Band k, = k — ky. In the same way tensors can be decomposed, e.g., g** = g””” + g/ As
detailed in the previous section, to determine the induced photon field equation (13) we only need the photon
polarization tensor on the light cone. In this particular limit and for k 4 B, which is implicitly assumed here (for
subtleties associated with the special alignment k || B we refer to [47]), the tensor structure of the respective
photon polarization tensor is spanned by just two projectors,

kf'ky kfkt
e =g - S e =g - S o)
1

They project onto photon modes polarized parallel and perpendicular to the plane spanned by B and k,
respectively.

The main effort in adopting the strategy outlined above is to identify inhomogeneous field configurations
compatible with the existence of a global projector (P, )**. We emphasize that even though the polarization
tensor is finally only evaluated on the light cone (see equation (13)), the requirement for a global projector is that
it remains invariant both on and off the light cone. Taking into account equation (5) the induced photon field is
then inferred straightforwardly from equation (13).

Each of the projectors in equation (20) depends on two independent four-momentum components. This
implies that in order to allow for the definition of an invariant global projector as required by our approach, at
least two four-momentum components have to remain unaffected by the inhomogeneity. The momentum
components to be affected can be inferred from the coordinates the amplitude profile £ depends on, e.g., an
inhomogeneity described by the amplitude profile £ (x, t) can impact photon energies and momenta along ey.
Correspondingly, in the magnetic field case we can study inhomogeneities varying at most in time and one
spatial direction or alternatively static inhomogeneities varying in two spatial directions.

6
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The case of a static one-dimensional magnetic field inhomogeneity has been discussed in detail in [6], where
two different situations compatible with a global projector were identified. Here we slightly generalize these
situations to allow also for insights into higher dimensional and spatio-temporal field inhomogeneities. These
situations require special alignments of the direction of the inhomogeneity VE(x) with respect to the magnetic
field vector B:

(i) kf0,EX) =0 — Pk =PrK)=P" and kf=k>
(i): kf'0,E(x)=0 — Pk =PK)=P" and kZ=kp> (21)

In case (i) the parallel momentum components are not affected by the inhomogeneity and correspondingly the
parallel polarization mode does not sense the inhomogeneity. For (ii) the perpendicular momentum
components remain invariant such that the perpendicular polarization mode is conserved. Obviously only case
(i1), being independent of @, is compatible with a magnetic field inhomogeneity that varies in both space and
time. Here we can study an inhomogeneity which varies at mostin 1 + 1dimensions with V€ (x) ~ B.
Assuming the spatial variation along x such that the profile of the inhomogeneity is given by £ (x, ¢) thisimplies
that B ~ e,. Conversely, in case (i) we can only study purely spatial—at most two dimensional—
inhomogeneities. Aiming at an inhomogeneity which w.l.0.g. depends on the coordinates x and v, i.e., £ (x, y),
the condition (7) in equation (21) can only be fulfilled if B ~ e,.

To keep the expressions as compact and transparent as possible, the following explicit examples are limited
to the leading contributions in a perturbative expansion in powers of the amplitude of the electromagnetic field
inhomogeneity, i.e., to the # = 1 contribution in equation (5). Such a truncation is also well-justified from an
experimental point of view, as the field strengths available in high-intensity laser facilities all fulfill ;TSZ < I;see
section 3 below. All relevant information about the photon polarization tensor in a constant magnetic
background field is recollected in appendix A. 1.

2.2.1. Static one-dimensional inhomogeneity
Let us briefly recall the results of [6] for a static one-dimensional magnetic field inhomogeneity fulfilling
0,€ (x) ~ ey, depicted in figure 1. As detailed above, we have identified two specific situations where a global
projector (P, )" can be identified. In case (i) we can give results for probe photons in the p = || polarization
mode. Contrarily, in case (ii) this is possible for p = L. For these two cases, the induced photon field (17) is
given by

a €p sin® <« (B, ki)

A () =jain(nZ 2 2 T Y Win
p ) p()ﬂ'90 | cos f|

!’ 2 !’ 2
X { /dx/( e€ (X )) + e—i(Zwm cos ff)x fdx/ ei(2w;n cosﬁ)x’( e€ (X )) } + 0(((2_6;)4)’ (22)
m2 mZ m

with numerical coefficients ¢y = 7, ¢; = 4. The corresponding reflection coefficients read (see equation (18))

+ 0((;—5)(’) (23)

As discussed already in [34], equation (23) diverges for f — i%- This unphysical behavior can be attributed to
the unphysical limit of an infinitely long interaction of the probe photons and the inhomogeneity at ‘grazing
incidence’ (see also section 3). A perturbative treatment of the induced photon field, as employed here, of course
can only be justified for R, < 1.

2

¢p sin® <4(B, ki, . [ e€(x)Y
Ry [ B o o (£19)

7z 90 cos f m

2.2.2. 1 + 1 dimensional spatio-temporal inhomogeneity

Apart from the static one-dimensional inhomogeneity considered in section 2.2.1, case (ii) is also compatible

withal + 1dimensional inhomogeneity of amplitude profile £ (x, t). For this background field, equations (13)
and (14) resultin

dky 1
21 w(ky)

. , o €S )Y 4
X /dX/ /dt/ il @i cos pky)x —<mm—m(kx>>r1( ( k )) + (9((:1_52) ) (24)
m
with @ (k) = \Jk + w2 sin® B.

Equation (24) can readily be used for general field inhomogeneities £ (x, t). For simplicity, we limit ourselves
to field inhomogeneities of the type £ (x, t) = £ (x) cos (£2¢), with frequency £2 > 0. This scenario resembles

Afm (X) =ia (win) ei®in sin ﬁyE; a)i%l Sln2 ﬂ f el(kxx—w(kx)t)

7
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Figure 2. Quantum reflection fora 1 + 1 dimensional field inhomogeneity featuring a harmonic time dependence ~cos (£2t). The
basic scenario is the same as depicted in figure 1 and the inhomogeneity is infinitely extended in the transversal directions. However,
due to the harmonic oscillation with £, apart from the elastic contributions (1 = 0), also inelastic contributions (n = +1) with
frequencies @,, = wj, — 2182 and propagation directions K, ,, = ( % |ky 24|, ®in sin f, 0) areinduced (see main text). We label
induced photon waves propagating into the half-space right of the inhomogeneity with (+) and those propagating into the left half-
space with (—). For convenience we will also speak of ‘backward’ (white) and ‘forward’ (gray-shaded) directions: if the x momentum
component of a given induced contribution has the opposite (same) sign as the x momentum component of the incident probe
photon, itis induced in backward (forward) direction.

figure 1, with the inhomogeneity featuring an additional global harmonic time dependence ~cos (£2t).
The Fourier integral over time can be performed straightforwardly, resulting in

+1

[ oot ot ) = %Zl(l +6.0)0 (win (1~ fsin f) — 2022)
r]ii,]::)l [(5 (kx - |kx,2n|) + 5(kx + |kX,2n|)], (25)

where we have rewritten the d functions for the energy in terms of § functions for k,. Here §,,, is the Kronecker
deltaand k},, = (@i, — 2nQ)? — w;3 sin? B. Correspondingly, the integrals in equation (24) can be reduced to
asingle one. Upon insertion of equation (25) into equation (24), we obtain

. iwoysing 1 @ .
AP () = ia (@) eV o= @i sin' B

+1
1 . )
X Z (1 + 5n0)@(win(1 — |sin ) — ZnQ)_ eilks | x—i(0in-202)t
= | X,2n

N \2

X de/ ei((l)in COSﬂ‘Mx,MI)x’(@)
mZ
"N \2
+ e—ZiIkx,ZnIX /dx/ ei(wxn cosﬂ+|kx72n|)x/(M) N O((e_&;)4)’ (26)
m? "

which is still applicable for arbitrarily shaped amplitude profiles £ (x) compatible with the locally constant field
approximation.

For a transparent discussion (see figure 2), it is convenient to distinguish between induced photon fields
propagating in forward and backward direction, respectively: we consider a given induced wave component as
propagating in forward direction if the x component of its wave vector ky, = +|ky ,, | fulfills
sign (kg kin x) = sign(ky cos #) > 0,and as propagating in backward direction if sign (k, cos ) < 0. Clearly,
the induced photon field (26) is made up of various wave components propagating in forward and backward
direction.

As expected from its harmonic oscillation in time with frequency €2, the background field can absorb and
supply energy to the probe photons. Moreover, as cos® y = % + i (e?* 4 e~2¥), we always encounter elastic
contributions resembling equation (22) without energy transfer from the inhomogeneity. Correspondingly, the
induced photon field is a superposition of plane waves with different positive frequencies w,, = @y, — 2n2 and
propagation directions K, ,, = (*|ky 24|, @i, sin §, 0), where n € {0, +1}. Asthese waves propagate on the

8
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induced

incident

Figure 3. Visualization of quantum reflection in the case of alocalized static two-dimensional field inhomogeneity. Upon interaction
with the inhomogeneity, the incident probe photons with wave vector k;, = wj, (cos f, sin 3, 0) induce outgoing circular photon
waves with wave vector k' = @y, (cos f#', sin f#’, 0). As the inhomogeneity is independent of time, the energy of the induced photons
equals that of the incident probe photons.

light cone and the momentum component along e, is conserved, a change in frequency inevitably alters the x
component of their wave vector and thus their propagation direction. However, in the limit £2 — 0 we recover
equation (22) with p = 1, but sin* < (B, k;,) — sin? 3, with the latter substitution accounting for the different
kinematic situation considered here; the three photon components induced in forward and backward direction
then merge to form a single transmitted and reflected photon wave, respectively.

In close analogy to equation (23) above, for a given induced photon wave of frequency w,, we define
reflection—or more generally scattering—coefficients R{* as the modulus squared of the respective induced
photon field normalized by a (w;, ). For equation (26) this results in

R{5,=0(wn(1 - |sin f]) - 2nQ)

2 2 n2[?
gl + 0o @i Sin ﬁ f dx’ ei(win cosﬂi|kx,2n|)x'( ef ()2( )) + (9((5”_‘(’;)6) (27)

T 90 kx,Zn m

The Heaviside function only allows for contributions satisfying ,, = @y, | sin #|. Forn € {—1, 0} this
condition is trivially fulfilled. By contrast, this condition becomes nontrivial for n = 1: incident probe photons of
energy w;, can induce photons with # =1 only if the modulus of the photon energy after emission of two quanta
of energy Q2 is still large enough to facilitate induced outgoing photons propagating on the light cone while
simultaneously ensuring momentum conservation along y.

2.2.3. Static two-dimensional inhomogeneity

Case (i) also allows for localized static two-dimensional inhomogeneities of amplitude profile £ (x, y) (see
figure 3). Inserting this profile into equations (13) and (14) and performing the integrations over k, and k, by
resorting to polar coordinates, we obtain the following compact expression for the induced photon field,

. T a . P
A”out (x) = la(win)e_lw‘"t%— wii /dzx/ elwm[cosﬂx +sin fy’] ]O(win |X—X/|)
V4

ooy \2
(= ool 21)

withx = (x, y, 0), x' = (x, ', 0)and /dzx’ = fdx’ /dy’.Here J. (x) is the Bessel function of the first kind
of order n € Ny, which for large real valued arguments y behaves as (see formula 8.451.1 of [52])

i) = inlﬂ\/g e[ 1+i(=1) e ]+ 0(772). (29)

For alocalized inhomogeneity, the integral in equation (28) only receives contributions from a limited range
of x'. Conversely, detection is assumed to take place in the far field, i.e., far outside the regime where the integral
over x’ receives any substantial contributions (see section 2.1). Hence, the modulus |x — x’| can be expanded as
follows |x — x| = |x|(1 — X'X; + O(e?)),withe = |x'|/|x| < 1.

Defining k' = winl% =| gin (cos f#', sin f’, 0) and adopting the expansion (29) in equation (28), we
approximate the factor |x — x’|in the phase of the exponential as |x — x'| ~ |x| — w%nk/ - X', and that in the
prefactor justby |x — x’| ~ |x|. Focusing on the contribution describing an outgoing circular wave only, we

obtain
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eiwin(lxl_t)

AP (x) & a(@in) ——=—F (K, kin), (30)
I \/m fII
with scattering amplitude
i [ €€ L Y)Y e \4
(K, i) L2 w2 (k)| EEE2 Y +(9( <V 31
277.'60m 90 n L v e m? (’”2) (31)

For large far-field distances |x| about the scattering center, the modulus-squared of the induced photon field
amplitude through a polar angle interval d#’ is independent of |x|, i.e., |A°"!(x)[*|x| dp’
= |A"(x)P|f (K, ki,)|>dfB’". Hence, the differential cross section for inducing outgoing photons propagating in
direction k' is given by

9 (10, ,,) = A" ) x|

= |f(K, ki) (32)
dp |Ain (x) [

The cross section for photons hitting a detector located at #’ and spanning an opening angle 64’ (f’) abouta
given value of ' is obtained straightforwardly by integration, o [3, ' (f')] = /5 ” dg’ (%). Provided that the
extent of the inhomogeneity is larger than the probe beam diameter wy,ope, the differential number of induced

Nout _ Nprobe do'
Wprobe dp’

corresponding to a cross section ¢ [3, 6ﬂ (ﬁ )1by Nowt [B, 88' ()] = Dprobe o B, 5B (B)].

For completeness, note that equations (30) and (31) resemble the result of a quantum mechanical
calculation in the Born-approximation (see also the quantum mechanical analogy presented in [6]). We can
easily vary detector sizes and analyze the fraction of scattered photons for all angles —z < ' < #

In the standard language of scattering theory, the angle /' is related to the scattering angle by 8 = ' — f3,
where 0 denotes the angle between k;, and k'. As the process is elastic, we have |k;,| = |k’|, such that the
scattering amplitude is in fact only a function of w;,,, @ and, of course, the parameters of the inhomogeneity
(including f).

outgoing photons per angle is given by —, and the number of induced outgoing photons

2.3.Crossed fields

We now focus on crossed fields, i.e., a class of electromagnetic field inhomogeneities featuring both electric and
magnetic field components. The electric and magnetic fields are assumed to be orthogonal to each other, i.e.,

E L1 B with fixed unit vectors E and B, having the same amplitude profile, i.e., E(x) = £ (x) Eand

B(x) = & (x)B. This scenario is, e.g., applicable to linearly polarized plane wave fields.

As outlined above, an inhomogeneous field configuration can only affect those momentum components
which sense the inhomogeneity. Thus, a convenient strategy to find invariant projection operators P** for a
given inhomogeneity of profile £ is to identify specific kinematic situations for which at least one projector is
insensitive to changes in the momentum components associated with the coordinates of the inhomogeneity.

On the light cone, the photon polarization tensor in constant crossed fields is again spanned by just two
projectors denoted by P}* (k) with p € {1, 2} (see equation (A.7)), projecting onto photon polarization modes.
As the explicit expressions for these projectors are less intuitive as in the magnetic field case, we relegate them to
appendix A.2, where also all necessary details for the polarization tensor in constant crossed fields are
recollected. For probe photons polarized in mode p = 1, the electric field component of the photon field is
perpendicular to E, and lies in the plane spanned by the photon’s wave vector k and B. For mode p =2, the roles
of the electric and magnetic background field components are interchanged [14].

2.3.1. Static one-dimensional inhomogeneity

We find that P/*” (k) is invariant under k — k + ¢(k) E, with c(k) denoting an arbitrary function of the
components of k#. Analogously P§”(k) is invariant under k — k + c(k)B. Hence, for V& ~ E the projector
P corresponds to a global projector, while for V& ~ B the projector P/ is a global projector.

For a one-dimensional spatial field inhomogeneity £ (x), the corresponding reflection coefficients essentially
agree with equatlon (23). They are obtained by the substitution sin? < (B, ki) — (1 — s - ey sin )%, with
s=ExB, accounting for the different kinematic s1tuat10n Also, wethen have ¢; = 7, ¢, = 4. Again, the
reflection coefficients generically diverge for # — +~ ~-However, for the speaal caseof s = e, only one divergent
direction remains, while the reflection coefficient approaches zero for § — = The reason for this is that the
propagation of light is not affected by weak crossed background fields, if (k, E B) form the basis of an ortho-
normalized coordinate system [ 14].

We skip the discussionofal + 1dimensional inhomogeneity for crossed fields which would follow
section 2.2.2 and directly jump toa 2 + 1 dimensional inhomogeneity.

10
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k:;}% Y
incident & ~ E(x) cos(Qy — 1))

Figure 4. Schematic depiction of quantum reflection fora 2 + 1 dimensional field inhomogeneity € (x, y, t) = € (x) cos (2(y — t))
for p = 1. This situation grasps the basic features of the experimental scenario of quantum reflection in a high-intensity laser set-up. In
the vicinity of its beam waist the pump field configuration is well compatible with such a field profile (see section 3). Incident probe
photons of four momentum k; traveling in the x—y plane induce outgoing photons of four momentum k'#. As the spacetime
dependence of the field inhomogeneity allows for both energy and momentum exchange between the probe and pump fields, energy
and momentum, and thus also direction of the induced photons in general differ from that of the incident probe photons.

2.3.2. 2 + 1 dimensional spatio-temporal inhomogeneity
In sharp contrast to the case of a purely magnetic field, the projectors can be rendered momentum independent
for crossed fields by setting a single spatial momentum component to zero, say k, = 0, and adjusting the probe
photon polarization accordingly.

Without loss of generality we assume s = E x B = ey, and for the remainder of this paper limit ourselves to
the two special cases

{p:l,ﬁ:—ex,f3=+ez} and {p=2,E=+eZ,l§=+eX}. (33)

These are chosen such that the associated projectors are energy-independent and independent of the kinematics
in the x—y plane (see appendix A.2). Correspondingly, in the first (second) case P/ (P§") amounts to a global
projector, implying that in these cases we can consider spatio-temporal field inhomogeneities of amplitude
profile £ (x, y, t). To keep notations compact, we label our results by p only. One should, however, keep in mind
the additional constraints on the field orientations (33). For a field inhomogeneity of this type, equations (13)
and (14) resultin

dky /& eilkxxtkyy— K24k 1]
2 2w

G a
A% (x) = ia (Wi —P—/
o (%) ( )907[ —

1 . 2
X 7[@%} 1 —sin f)* + (ka +k; - ky) ]
2,0k + K}
% /dt’/dx’ /dy’ il (@in 05 =k )X +(@in sin f—ky )y’ —(@in— k2K ) ']

eE(x,y, t)Y e \4
x(—( mz )) +(9((m—i) ) (34)
where ¢; = 7, ¢, = 4 are the numerical coefficients associated with the two cases in equation (33).

A much more handy expression is obtained when the amplitude profile of the field inhomogeneity factorizes
into a longitudinal ‘plane wave’ profile ~cos (22 (y — t)) and a transversal profile € (x). This is assumed in the
following, € (x, y, t) = £ (x) cos (£2(y — 1)), see also figure 4. This has several advantages: first, from a
practical point of view, the five integrals to be performed in equation (34) can be reduced to a single remaining
integral in this case. The integrations over y’ and ¢’ yield 6 functions which in turn render the integrations over
ky and k, trivial. Second, this amplitude profile actually approximates the electromagnetic field inhomogeneities
generated by high-intensity lasers (see also section 3 below).

With the help of the following identity, somewhat reminiscent of equation (25) above,

+1
/dt/dy eil(@i sin f=ky)y=(@n=k+k) )1 cos2 (Q (y — 1)) = n2 Z (1 + 5n0)@(k,i2n)
n=-1
JkS + k]

X Tzn‘é(ky — wiy sin f + 2n2)[ 8 (ks -

) + 8 (ke + [k

)| (35)

kx,2n
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wherenow k2, = (@i, — 2n2)> — (@, sin f — 2nQ)* , we obtain

+1
A (x) = 1a(wm)6— 2(1—sinp)? Y (1+06m0)6 (ki)
n=-—1

X 1 ei[lkx,z,,|x+(w;n sin f—2nQ)y—(win—2n2) t]

kx,2n|

{ /dxe in Cosﬁ |kx2"‘) (M)
7 \2

made up of induced photon waves of positive frequencies w,,, = @i, — 2n£2 and wave vectors k, ,,
= (% |kyoul, ®in sin p — 2082, 0), with n € {0, £ 1}. The basic scenario resembles figure 3 above. The
corresponding scattering coefficients are given by (see section 2.2.2)
[ €€ il +ol (£ ) .(37)
m?

Taking into account that @y, > 0and £ > 0, the restriction to kx on = 0 implemented by the Heaviside

22 _ 1+sing
function can alternatively be expressed as — < +n/

@in

¢ (1 + 6,0) — 2
aCp 0) w2 (1 — sin f) /dx’ i win
360 ks.om

.Forn € { —1, 0} this condition is always fulfilled, as

2n82 1+4sinpg

then < 0,while 0 <

< 1. Conversely, for n = 1 the left-hand side of the above condition becomes

in

> 0. This 1mphes that we have to ensure that 22

> 1thisinequality can no longer

1+smﬂ
.For 2
2 Win

be fulﬁlled irrespectively of the value of £ in order to fac1htate any induced photon waves with n = 1 for a given
angle of incidence /5. The physical reason for this is that under these circumstances the probe photon energy is
too small to allow for an energy transfer of 242 to the background field.

For completeness, we remark that the results derived in this section are also attainable from the photon
polarization tensor in a linearly polarized plane wave field, which is a special case of the the polarization tensor in
a generic, elliptically polarized monochromatic plane wave background [48, 49]. A particularly convenient
representation tailored to soft photon fields and perturbative weak field strengths is given in [34]. The only
difference to the procedure outlined in section 2.1 to build in the field inhomogeneity in the constant field
polarization tensor a posteriori, is that the polarization tensor in a linearly polarized plane wave already accounts
for the longitudinal profile of the field inhomogeneity ~cos (22 (y — t)). Hence, only the transversal profile
£ (x) has to be built in along the lines outlined in section 2.1. At O ((e€)?) and on the light cone (in the notation
of [34]: ki = ki = 0), the tensor structure of the photon polarization tensor in a linearly polarized plane wave
(i.e., either & or & of [34] vanishes) is spanned by just two projection operators, conventionally represented as
AFAY and A A, with normalized four vectors A> = A7 = 1[34]. In fact these projectors can be identified
with the projectors P/ and P for constant crossed fields.

2.3.3. Static two-dimensional inhomogeneity

In close analogy to our considerations for a static two-dimensional, purely magnetic field inhomogeneity in
section 2.3.3, we can also investigate the case of a two-dimensional inhomogeneity £ (x, y) featuring crossed
fields. Specializing to s = e, and the special cases in equation (33) we obtain (see section 2.2.3 and figure 3)

iwin(|x|~1)

€

—=/, (K ki),
TN

A (x) & a(win) (38)

with scattering amplitude

i c G 2 o 2
f (k’, km): i Sa (1 =sinp) + (1 —sinp) ol
p 27wy 90 7 2

/dz i(kink)- (65 (Xlz’ y) )2 + (9((6—":2)4) (39)
" m
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Figure 5. Plot of the outgoing angle ' = < (k’, ey) asa function of the incidence angle = <« (k;,, ey), adopting the design
parameters of the Jena high-intensity laser systems, JETI 200 and POLARIS (see main text) in the n=0and n = —1 channels; no
photons are induced in the n = 1 channel for this set-up. Quantum reflection gives rise to induced photons propagating in ‘forward’
(gray-shaded) and ‘backward’ (white) directions; see also figure 3.

3. Towards experimental estimates

Let us now discuss the results more quantitatively, adopting real laser parameters. We consider an experimental
scenario of an all-optics pump—probe type experiment employing two high intensity lasers. An electromagnetic
field inhomogeneity is generated in the focal spot of the pump laser, and probed by a second probelaser. The
probe beam is assumed to intersect the pump laser beam right at its waist under an angle of # (see figure 4). The
number of induced photons is measured by a detector in the field free region, thereby facilitating a clear
geometric signal to background separation.

The electromagnetic field pulses as generated by high intensity lasers evolve along the well-defined envelope
of a Gaussian beam, whose transversal profile is of Gaussian type. Correspondingly, we exclusively limit
ourselves to transversal field profiles £(x) = € e~ 3% of amplitude &, with w, denoting the full width at 1/e of
its maximum. Of course, an optimization of amplitude profiles could certainly allow for a substantial
enhancement of the induced photon signal. As a freely propagating Gaussian beam is moreover characterized by
modulated crossed fields, the inhomogeneities featuring crossed electric and magnetic fields are of most direct
relevance with respect to an actual experimental realization. In particular, linearly polarized Gaussian beams
correspond to fixed orientations E and B. The experimental realization of purely magnetic fields by means of
high intensity lasers requires additional efforts like, e.g., the superposition of two counter propagating laser
beams to mutually cancel the electric field components at the beam waist.

To maximize the intensity, the focus area is preferably rendered as small as possible. However, in generic
high-intensity laser experiments the focal spot area cannot be chosen at will, but is limited by diffraction.
Assuming Gaussian beams, the effective focus area is conventionally defined to contain 86% of the beam energy
(1/€? criterion for the intensity). The minimum value of the beam diameter w in the focus is given by twice the
laser wavelength multiplied with f#, the so-called f-number, defined as the ratio of the focal length and the
diameter of the focusing aperture [53]; f-numbers aslowas f* = 1 can be realized experimentally. Thus,
assuming the pump laser (energy Wy,mp, wavelength A,ump, pulse duration z,,mp) to be focused down to the
diffraction limit, i.e., wy, = 2 pump» the attainable field strengths are of the order of

0.86 Wpump
E = Ipymp ¥ —————, (40)
Tpump Opump

with focal area 6yymp = mlpzump. The typical scale of variation associated with the longitudinal evolution of the

pump laser beam, i.e., the temporal variation as well as the spatial variation along the pump’s propagation
direction, is set by the laser wavelength A,,,m,,. Hence, the typical temporal variation is clearly of the same
order as the typical spatial scales characterizing the field inhomogeneity generated in the focal spot of the
pump laser. Therefore, accounting for the temporal variation is crucial, and a static approximation cannot be
justified.

In the present study, we do however not aim at a realistic modelling of the pump laser, requiring in particular
acloser look at the longitudinal pulse shape evolution. Instead, we rather intend to account for the most relevant
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Figure 6. Number of induced photons for the field inhomogeneity (41),p=1and n € { —1, 0} plotted as a function of the incidence
angle f for the JETI 200 and POLARIS set-up detailed in the main text; no photons with # = 1 are induced. For = 90°all
contributions vanish. Conversely, for # = —90° the number of induced photons with # = 0 diverges (see main text). The
corresponding outgoing angles can be inferred from figure 5. The results for p = 2 follow by multiplication with a factor of
(ca/c1)? =~ 0.33. Left: forward direction. While the n = 0 contribution is induced in probe laser direction, # # 0 contributions are
deflected. Right: backward direction.

10 : : : : : : : 10 : : : : : : :
10% 1 w0 L . j
10? n=0 , 102 1
10" + 1 10t + —
Nout 100 Nput 100
101} ] 101 ¢ = 50zr k
¢ =10zr
1072 , 1072+ 1
(= 5zp -
1073+ 1 TS ¢= = 1
~101.79 ~78.21
04 1 1 1 1 1 1 1 10~4 1 1 1 1 1 1 1
-110  -105  -100 -95 -90 -85 -80 -75 70 -110 -105  -100  -95 -90 -85 -80 -75 =70
807 817
Figure 7. Number of induced photons in backward direction in the angular range where N, 2 1. Left: close up of figure 6 (right) for
the 2 + 1 dimensional inhomogeneity (41). Right: static two dimensional inhomogeneity (43). For this result, we integrated over all

photons induced in backward direction for elastic kinematics (see main text). The divergence at f = —90° is physically regularized by
the finite extent of the inhomogeneity along e, specified here in multiples of the Rayleigh range z.

features in the vicinity of the beam waist where the field strengths are maximal, while on the other hand keeping
the resulting expressions as simple and compact as possible. Therefore, we focus on the following 2 + 1
dimensional amplitude profile (see section 2.3.2),

£y, 1) = E(X) cos(R(y — 1)), where E(x) =& e (2x/m)) (41)

for both cases (33), to mimic the field inhomogeneity generated in the focal spot of a linearly polarized pump
laser (see figure 4). This field profile accounts for the plane-wave character of the longitudinal submodulation of
the pump laser field.

With respect to an actual experimental realization the field profile in equation (41) involves several
limitations: first, we neglect the effect of diffraction spreading about the beam waist, which we expect to
constitute a viable approximation within the Rayleigh range zy of the pump laser; in the diffraction limit we
have zg = A ump [53]. Second, we do not account for finite pulse length and longitudinal focusing effects in the
field amplitude profile, assuming that these effects amount to sub-leading corrections within the Rayleigh range
and for sufficiently long pulse durations 7.

The transversal amplitude profile £(x) in equation (41) squared is easily Fourier transformed to
momentum space, such that all residual integrations in equation (37) can be performed straightforwardly,
resulting in
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with p € {1, 2}, n € {0, =1}, ¢; = 7 and ¢, = 4. The number of available photons of frequency

Win = 27 [Aprobe for probing can be estimated from the probe laser energy Wiobe> Nprobe & Wprobe [®in. The
number of induced photons per shot with particular reflection or transmission kinematics is estimated as

Nout — p ) ﬁm brobe> Where we have introduced a factor f, , = min {1, :'; ‘:: }, providing a first estimate of the

fraction of the number of incident probe photons interacting with the inhomogeneity.

Asin [6] and [34] we exemplarily adopt the design parameters of the two high-intensity laser systems to
become available in Jena’: the terawatt-class laser system JETI 200 [54] (Aprobe = 800 nm ~ 4.06 eV,
Wrobe = 4] & 2.50 X 10" eV, Tprope = 20 fs & 30.4 eV™') as probe, and the petawatt-class laser system

POLARIS [55] (Apump = 1030 nm & 5.22 eV}, Woymp = 150 ] & 9.36 X 100 €V, ymp = 150 fs ~ 228 eV ™)
as pump. Hence, the frequency scale 2 governing the submodulation in equation (41) is to be identified with
Q =27 [2pump>and fi; = 1. We will specialize to these parameters in the remainder of this paper.

As discussed in section 2.3.2 above, additional requirements have to be met in order to allow for
nonvamshmg contributions for n =1 in equation (42). Namely, we have to ensure that 22 < 1and
p > arcsin (— — 1).For the JETT 200-POLARIS set-up outlined above, these relatlons cannot be fulfilled, such
that the = I channel does not give rise to nonzero contributionsand R, (£) — 0. Figure 5 depicts the emission
directions of the induced photons, to be characterized by the angle ' € ( 180°...180°] (see figure 4),asa
function of the incidence angle § € (—180°...180°]: as detailed above, apart from the elastic channel without
energy exchange between probe photons and pump beam (straight lines labeled by = 0), we encounter an
inelastic channel (curved lines; n = —1). In the first case, the outgoing directions are fully determined by the
kinematics of the probe photons. Conversely, in the latter case the outgoing directions do not only depend on
the probe photon kinematics, but also on the frequency £2 of the pump beam; see Equations (36) and (37).

In figures 6 and 7 we plot the number N,"* of induced photons as a function of the incidence angle /5. The
corresponding outgoing angles can be read off from figure 5. Highest numbers of induced photons are achieved
for the elastic channel (n = 0), while the contributions in the nonvanishing inelastic channel (n = —1) are
considerably smaller. For f = + 90° the induced contributions vanish for all channels, reflecting the well
known fact that the invariant (sk) [iz—o = k - (E X B) — @ vanishes in crossed fields of the same amplitude for
this particular choice of # (see appendix A.2). Contrarily, for f = —90° the induced contributions in the elastic
channel diverge; the reason for this unphysical divergence is the idealization of an infinite extent of the
inhomogeneity along ey, allowing for an infinitely long interaction region at ‘grazing incidence’. This divergence
is physically cut oft by the finite range of any experimentally attainable field inhomogeneity, see also section 3.

However, we still expect to retain the basic features of figures 6 and 7 (left), like a substantial enhancement of
the number of induced photons to N°* > 1in the vicinity of § = —90°, particularly in the angle range depicted
in figure 7. Let us demonstrate that this is indeed the case. As the divergence is encountered in the elasticn =0
contribution, we argue that it is sufficient to show that the induced contributions independent of £2 do no longer
diverge for # — —90° when the extent of the inhomogeneity along e, is rendered finite. Correspondingly, for
the present discussion we can specialize to £ = 0 from the outset [see also the argument given in the second
paragraph below equation (26)]. Recall, that the longitudinal field profile of a real Gaussian beam about its beam
waist depletes as ~1 / 1 + (y/zg)?, with Rayleigh range zy [53]. In order to demonstrate that the divergence is
regularized as soon as the extent of the field inhomogeneity along e, finite, we thus focus on the alignments (33)
and a static two-dimensional field profile,

E(x)

N

This corresponds to equation (41) evaluated at £2 = 0 and multiplied with an overall longitudinal damping

Ex,y) = where &(x) = £ e=@/m ), (43)

factor of 1 / 1 + (y/¢)*. For the choice { = zg = 7Apump the longitudinal field profile decreases in the same
way as a Gaussian beam. Conversely, for { — oo the infinitely extended inhomogeneity is recovered. Plugging
the field profile (43) into the scattering amplitude (39), we determine the number of reflected photons in the
following way: we integrate the differential cross section (32) over all values of " which characterize induced
photon waves propagating into the backward half-space (see figure 2), and multiply the results by Nprobe /Wprobe-

5 See Helmholtz Institute Jena: http://www.hi-jena.de.
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Assuming also the probe beam to be focused down to the diffraction limit, we identify wyrghe = 24probe- In
figure 7 (right) we depict our results for different values of { = {1, 5, 10, 50} zg. The emergence of an
unphysical divergence at f — —90° when increasing { to large (unphysical) values is clearly visible. The
numbers of induced photons tend to be somewhat larger than in figure 7 (left), which can be attributed to the f’
integration over all backward directions, covering an angular range of z. As a function of the incidence angle j,
the number of induced photons in the elastic mode becomes larger than one in roughly the same angular range
for all choices of { depicted in figure 7 (right), most importantly also for the physically motivated choice of

¢ = zg. Amore in depth analysis of the precise behavior about = —90° is outside the scope of our present
work, and will be subject of further investigations.

Focusing on the results of the 2 + 1dimensional calculation, for the JETT 200-POLARIS set-up, the number
of reflected photons becomes larger than one for angles in the range between f = —101.79° & ' = —78.21°
and f = —78.21° < ' = —101.79° (see figure 5), i.e., both incident and outgoing angles within ~ +10° about
—e,. This should be compared to the divergence of a Gaussian beam focused down to the diffraction limit,

0~ i ~ 18°. This makes the detection of reflected photons within 10° about the beam axis a nontrivial
experimental issue. In the present ‘two-color’ JETT 200-POLARIS set-up, we expect that frequency filtering
techniques can be used for sufficient background suppression. In a single laser set-up using a suitably split beam,
background suppression may require special pulse design and a high time resolution for the probe photon
detection. Finally, let us emphasize that our estimates presented here are of the same order of magnitude and
thus compatible with our previous—much less realistic—estimates based on a static one-dimensional, purely
magnetic field inhomogeneity [6].

4, Conclusions

In this paper we have investigated the phenomenon of quantum reflection of probe photons off a strong
inhomogeneous field for a large class of field inhomogeneities. This includes spatio-temporal field
inhomogeneities with up to two nontrivial spatial directions facilitating the exploration of this phenomenon on
anew level. In particular the time-dependence gives rise to new effects such as frequency mixing though on a
quantitatively sub-dominant level. In general, our new results—though much more detailed and realistic—
support our earlier estimates based on one-dimensional static inhomogeneities [6]. This endorses our viewpoint
that quantum reflection can become a valuable novel means to probe the nonlinearity of the quantum vacuum.
A particularly beneficial feature is given by the fact that a signal-to-background separation is supported by the
kinematics of searching for reflected photons in the field free region.

Our approach as already suggested in [6] heavily relies on analytical insights into the photon polarization
tensor in constant and homogeneous electromagnetic field backgrounds. Resorting to a given electromagnetic
field alignment the inhomogeneity is built in a posteriori by means of the locally constant field approximation. In
the present paper we have discussed both purely magnetic field and crossed-field inhomogeneities. For the
application of our approach, it is important to realize, that the Ward identity can in fact be violated within this
approximation scheme. However, we have been able to identify those kinematic and polarization configurations
for which the Ward identity can be guaranteed to hold exactly even within the approximation scheme. The
resulting requirements include 2 + 1dimensional inhomogeneities compatible with field configurations
attainable in realistic high-intensity laser experiments. We emphasize, however, that the present approach if
applied to generic 3 + 1dimensional field inhomogeneities would need new theoretical insights that go beyond
the locally constant field approximation.

Building on contemporary knowledge about the photon polarization tensor, we present fully analytical
estimates for the effect of quantum reflection in a pump—probe type set-up consisting of a typical terawatt- and
petawatt-class high-intensity laser system. In support of our previous results [6], our new estimates are based on
much more realistic, spatio-temporal electromagnetic field configurations, compatible with the
inhomogeneous fields attainable in the focal spots of high-intensity laser systems. The fact that we obtain similar
numbers of induced photons experiencing quantum reflection, corroborates the robustness of the effect with
respect to generalizations of the inhomogeneity. Correspondingly, our investigations establish quantum
reflection as a prospective candidate for the experimental verification of quantum vacuum nonlinearity in strong
electromagnetic fields.
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Appendix A. Photon polarization tensor in the weak-field limit

A.1.Magnetic background field

On the light cone k* = 0, the photon polarization tensor in a constant homogeneous magnetic field takes a
particularly simple form. In the perturbative weak-field limit it is conveniently represented as (see [14, 47] and
references therein)

k)|, = 1185 (k) (eB)* + O (eB)"), (A1)
with tensorial coefficient

g (k) = 4%%(7 ki P (k) — 4 k2 Pt (K)) (A2)

L
m*’
and projectors onto photon polarization modes defined in equation (20). Here we expressed the tensorial
coefficient (A.2) in a particularly suggestive form, making use of k> = 0 < k”2 = —k for the scalar prefactors
of the projectors P}* (k).

In this particular limit, the tensorial quantity 7/} (k, k') as defined in equation (6) is obtained
straightforwardly. For a purely magnetic background, it is given by

s (ky k) = %%[m,ﬁ PR (k) + k{® P(* (K')) — 4(k2 P (k) + k[ Pj_’”(k’))]#. (A3)

For the two cases specified in equation (21), a contraction with the corresponding global projector 15: “ results in
7 a 1 4a,,1

i) mpop=——ki —, and (i): =« =—-———kj —. A4
(1) me prant R (i) 7m0 prgel (A4)

A.2. Constant crossed fields

Analogous statements hold for the photon polarization tensor in constant crossed fields, characterized by

E - B = 0and &€ = |E| = |B|,i.e,, perpendicular electric and magnetic fields of the same magnitude [41]. In this
case it is convenient to introduce the four vector s# = (1, E x B). In the weak-field limit and for k* = 0 the
photon polarization tensor is then given by (see also [14])

™ (k) ‘kz_o = 11 (k) () + O((e8)"), (A5)
with tensorial coefficient
la 1
11 (k) = ——=(sk)* (7 P (k) + 4 P4 (k) ) —, (A6)
45 m
and projectors onto photon polarization modes defined as

(“Fk)* (“Fk)*
&% (sk)?

L P (k) = ERIERT (A7)

R = £2(sk)?

Here *F# = %e"wﬂ F, denotes the dual field strength tensor, and we have made use of the shorthand notation
(sk) = 5%, (*Fk)* =*F#*k, and (Fk)* = F"%k,.Correspondingly, we obtain [see equation (6)]

il y K) = == 2 [ 7((h7 P (0) + (K PP (k) ) + 4( (k)7 P (k) + (K P (k)]

90 7 (48)

1
m
For this particular field configuration it is convenient to make use of a more explicit representation of the
projectors: without loss of generality we set s = e, and write the directions of the magnetic and electric fields as
B= (cos @, 0, sin @) and E= (—sin @, 0, cos @), respectively. The angle ¢ € [0...27) parameterizes all
possible orientations of the electric and magnetic field vectors for constant crossed fields fulfilling s = e,. The
projectors (A.7) can then be represented as P/ = uf'u) and P§* = uf'uy with

k, sin @ + kx cos ¢ k, sin ¢ + ky cos ¢ .
PO el e Sl SR, LR PT XY
uy < 0 , —COS @, =) , —SIn @ ),
k,cosp —kysing . k, cos ¢ — ky sin ¢
M = —_— S —_—
uf ( = , sin @, - , —COS @ |. (A.9)

It is easy to see that for general kinematic situations u/' is invariant under k — k + c(k)E, while u# is invariant
under k — k + ¢(k)B, where c(k) is an arbitrary function of the components of k*.
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For the special situation where k, = 0, we can identify two cases where either u{ or u4 assumes a particularly
simple form: for ¢ = % and k, = O wehave u{ = (0, —e,), while for ¢ = 0 and k, = 0 we have u = (0, —e,).
Obviously, for these special choices the projectors P/ or P§*, respectively, are independent of the values of k,
k, and w, i.e., are conserved for general kinematics restricted to the x—y plane.

For the cases considered in section 2.3 a contraction with the corresponding global projector 15;’ " yields

mo o k)= ——2 LTS C 0 and m (k k) = -2 LT D (A0
vor (b k) = =700 2w o (b K0 = =00 2 o MO
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