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Abstract
We reconsider the recently proposed nonlinear quantum electrodynamics effect of quantum
reflection of photons off an inhomogeneous strong-field region.We present new results for strong
fields varying both in space and time.While such configurations can give rise to new effects such as
frequencymixing, estimated reflection rates based on previous one-dimensional studies are
corroborated. On a conceptual level, we critically re-examine the validity regime of the conventional
locally-constant-field approximation and identify kinematic configurationswhich can be treated
reliably. Our results further underline the discovery potential of quantum reflection as a new signature
of the nonlinearity of the quantum vacuum.

1. Introduction

The vacuumof quantum electrodynamics (QED) can be considered as permeated by virtual electron–positron
fluctuationswhich probe typical distances of the order of the electronComptonwavelength λ = m1c and exist
for typical time scales of the order of theCompton time τ = m1c . Herem is the electronmass, andwe use units
where = = c 1. As electromagnetic fields couple to charges, these virtual charged particle fluctuations can
induce effective nonlinear couplings between electromagnetic fields [1–3], and affect the propagation of
photons. So far, the pure electromagnetic nonlinearity of the quantumvacuum though subject to high-energy
experiments [4, 5] has not been directly verified onmacroscopic scales.

In a recent paper [6], we proposed quantum reflection as a new signature of quantumvacuumnonlinearity
in the presence of strong electromagnetic fields. This phenomenon complements commonly studied nonlinear
vacuumeffects such as direct light-by-light scattering [7, 8], vacuummagnetic birefringence [9–11], photon
splitting [12], and spontaneous vacuumdecay in terms of Schwinger pair-production in electric fields [1, 3, 13];
for recent reviews, see [14–18].

Many proposals to verify quantum vacuumnonlinearities under controlled laboratory conditions rely on a
pump–probe scheme, where awell-controlled probe photon beam traverses a region of space subject to a strong
electromagnetic field (‘pump’). Typical examples for an experimental realization of such a scheme are
experiments intended to verify vacuumbirefringence inmacroscopicmagnetic fields [19, 20]. An analogous
scheme to be realizedwith the aid of high-intensity lasers has been proposed in [21], see also [22–24]. Alternative
concepts suggest the use of time-varying fields and high-precision interferometry [25–27].

With regard to the phenomenon of quantum reflection, we emphasize the viewpoint that the quantum
vacuum subject to strong electromagnetic fields can be interpreted as constituting an effective attractive
potential for the traversing probe photons (see in particular the quantummechanical analogy presented in
appendix A of [6]). Even though the effective potential is attractive, the traversing photons can experience
reflection due to the phenomenon of above-barrier scattering [28], which—as it has no analogue in classical
physics—is also called quantum reflection [29]. In comparison to standard birefringence set-ups, where the
induced quantum-vacuum signature has to be isolated froma large background, our proposal of quantum
reflection inherently allows for a clear separation between signal and background, as the signature of quantum
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reflection amounts to reflected photons in thefield free region, facilitating the use of single-photon detection
techniques. Our ultimate goal is a realistic all-optical pumpprobe set-up to verify quantumvacuum
nonlinearity.

Whereasmany vacuumphenomena exist in both homogeneous and inhomogeneous pump field
configurations, let us emphasize that quantum reflectionmanifestly requires spatially inhomogeneous pump
field profiles. Other optical signatures of quantum vacuumnonlinearities that require inhomogeneous pump
profiles are those based on interference effects [30–32], photon–photon scattering in the formof laser-pulse
collisions [33] and the specific laser photonmerging scenariomediated by an effective four-photon, i.e., below
hexagon order, interaction considered in [34].

In [6] we have introduced and exemplified quantum reflection in the case of a static one-dimensional and
purelymagnetic field inhomogeneity as a prospective and promising candidate for an all-optical probe of
quantum vacuumnonlinearity. The present follow-up study is devoted to the discussion of quantum reflection
inmore general spatio-temporal electromagnetic field inhomogeneities. Againwe resort to the locally constant
field approximation. As will be detailed in themain part of this paper, all basic effects encountered and
discussed in [6] will persist.Moreover, additional effects occur upon the inclusion of temporally varying field
inhomogeneities as well asmore general electromagnetic field alignments, involving, e.g., energy exchange
processes between probe photons and the field inhomogeneity. Such frequencymixing processes have already
been studied in various contexts and suggested as a signature of nonlinearities ofQED [35–38] and
beyond [39].

Our paper is organized as follows: section 2.1 reviews our approach to tackle the scenario of probe photons
experiencing quantum reflection in electromagnetic fields introduced in [6], putting special emphasis on the
consideration of higher-dimensional field inhomogeneities. In sections 2.2 and 2.3we discuss explicitly various
types of inhomogeneities andfield configurations accessible and treatable within the framework of the locally
constant field approximation. These examples encompass both purelymagnetic field inhomogeneities as well as
configurations involving orthogonal electric andmagnetic fields (crossedfields). Section 3 gives estimates of the
prospective number of quantum reflected photons attainable with present and near future laser facilities.We
endwith conclusions in section 4.

2.Quantum reflection

2.1. Towards quantum reflection in spatio-temporal electromagneticfield inhomogeneities
The starting point of our analysis is the effective theory of photon propagation in an external electromagnetic
field (see, e.g. [14]). The Lagrangian is given by

 ∫ Π= − − ′ ′μν
μν

μ
μν

ν
′

A F F A x x x A x[ ]
1

4

1

2
( ) ( , ) ( ), (1)

x

where Π ′∣μν x x( , )denotes the photon polarization tensor in the presence of the externalfieldwith four-
potential μ x( ), accounting for the vacuumfluctuations of the underlying theory. Thefield-strength tensor of
the propagating photon μA is denoted by μνF , and x is a spatio-temporal four-vector. Ourmetric convention is

= − + + +μνg diag( , , , ), such that themomentum four-vector squared reads ω= −k k2 2 2.Moreover, our
conventions for the Fourier transform tomomentum space are ∫ ∫Π Π′ = ′μν μν

′
− − ′ ′x x k k( , ) e ( , )e

k k
kx k xi i and

∫=μ μA x A k( ) e ( )
k

xki .
The equation ofmotion for probe photons is inferred straightforwardly from equation (1). Inmomentum

space, it reads

∫ Π− = − − ′ ′μν μ ν
ν

μν
ν

′( )k g k k A k k k A k( ) ˜ ( , ) ( ), (2)
k

2

where   Π Π Π′∣ ≡ ′∣ + ′ ∣μν μν νμk k k k k k˜ ( , ) [ ( , ) ( , )] 2 is the symmetrized polarization tensor.
As detailed in [6], equation (2) can be directly interpreted in terms of the scenario of quantum reflection,

involving incident probe photons νA in, an inhomogeneous pump field profile ν and induced photons νA out:
Neglecting the backreaction of the induced photons on the incident probe photons aswell as on the pumpfield,
we can identify the photon field on the right-hand side of equation (2)with νA in and that on the left-hand side
with νA out. The interactionwith ν is encoded in the photon polarization tensor. Correspondingly, the right-
hand side of equation (2) can be considered as a source term for outgoing reflected photons resulting from an
interaction of νA in with ν mediated by virtual electron–positronfluctuations.

Here, we encounter two problems: first, equation (2) is a tensor equation of rather involved structure, which
is difficult to solve in closed form for general kinematic situations and electromagnetic field configurations.
Second and conceptually evenworse, the polarization tensor is not known in an explicit form for arbitraryfield
configurations . Even though estimates of the polarization tensor for all-optical setups can be deduced from
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constant-field versions of the polarization tensor, itmay not be straightforward to construct approximations of
Π μν that satisfy theWard identity imposed by gauge invariance. In the following, we show that both problems
can be solved simultaneously, if two assumptions hold: a( )first we assume that the tensorial quantities in
equation (2) can be represented as follows,

 ∑ ∑Π Π− = ′ − ′ = − ′ +μν μ ν μν μν μν μν( ) ( ) ( )k g k k k P k k k k P Qand ˜ ( , ) ˜ ( , ) , (3)
p

p

p

p p
2 2

with scalar coefficients Π̃p. Here ′ μνP( )p and μνP( )p correspond to two—a priori unrelated—sets of projectors
fulfilling δ=μν μνP P P( ) ( )p q p q p, , =μ

μP( ) 1p and similarly δ′ ′ = ′μν μνP P P( ) ( )p q p q p, , ′ =μ
μP( ) 1p . In thefirst

expression in equation (3) an overall factor of k2 can be factored out, and the projectors ′ μνP( )p correspond to
projectors onto photon polarizationmodes p to be specified in sections 2.2 and 2.3 below. For the polarization
tensorwe explicitly accounted for a residual tensorial contribution μνQ which cannot be expressed in terms of
the projectors μνP( )p , and does not necessarily fulfill =μνP Q( ) 0p for all p. Note that such contribution is, e.g.,
present in the polarization tensor for generic constant electromagnetic fields; [14]. To keep notations simple, we
have omitted any explicit reference to themomentum aswell as μ dependencies for both sets of projectors and
for μνQ .

b( )Secondwe assume that there is at least a single global projector μνP( ˜ )p which fulfills

≡ ≡ ′μν μν μνP P P( ˜ ) ( ) ( )p p p and ≡μνP Q( ˜ ) 0p . Taking into account the above assumptions, a contraction of
equation (2)with this particular projector results in

∫ Π= − − ′ ′
′

k A k k k A k( ) ˜ ( , ) ( ), (4)p
k

p p
2 out in

where have we introduced photons =μ μν
νA P A˜

p p polarized in mode p. As the equation of motion loses
any nontrivial Lorentz index structure, we have dropped the trivial Lorentz indices of the photon
fields, →μA k A k( ) ( )p p, . The resulting scalar equation (4) can be solved straightforwardly with Greenʼs
function methods. Below, we will show that assumptions a( ) and b( ) invoked above are in fact satisfied
in several cases of physical interest. Actually, all our subsequent considerations and insights will be
based thereon.

Let us emphasize that no analytical results are available for the photon polarization tensor in generic
inhomogeneous fields.However, the polarization tensor is known explicitly at one-loop accuracy for several
special backgroundfields that can be divided into two classes: homogeneous electric and/ormagnetic fields [40–
46] (see also [14, 47] and references therein), and generic planewave backgrounds [48, 49]; see [50] for amore
recent derivation and an alternative representation, and [34] for a novel systematic expansion especially suited
for all-optical experimental scenarios. Numerical results for inhomogeneousmagnetic backgrounds are
available fromworldlineMonte Carlo simulations [51].

In [6] we have devised a strategy to nevertheless gain analytical insights into the photon polarization
tensor in the presence of inhomogeneous backgrounds, more specifically for inhomogeneous field
configurations that may locally be approximated by a constant: as already mentioned in the introduction,
virtual electron–positron fluctuations probe typical distances of  λ( )c and exist for typical time scales of
 τ( )c . Hence, for inhomogeneities with typical scales of spatial and temporal variations w and τ much larger
than the Compton wavelength and the Compton time of the virtual charged particles, i.e., λ≫w c and
τ τ≫ c, using the constant field expressions locally is well justified. In [6] we exemplified our procedure to
build in the desired inhomogeneous field profile a posteriori for the special case of a static one-dimensional
purely magnetic field inhomogeneity starting from the photon polarization tensor in the corresponding
homogeneous background. This strategy can be straightforwardly adapted to higher-dimensional field
inhomogeneities. Here we exclusively focus on inhomogeneities to be characterized by a single field
amplitude profile  x( ). Aiming at the polarization tensor in the presence of a particularly oriented and
shaped electromagnetic field inhomogeneity, this suggests the following two-step procedure: First, we
identify an explicitly known photon polarization tensor with the desired field alignments. Second, we
incorporate the amplitude profile of the inhomogeneity by the strategy devised in [6]. Here we limit
ourselves to homogeneous background fields as starting point; starting from plane wave backgrounds would
require minimal modifications (see also the last paragraph of section 2.3.2 below).

As a consequence of Furryʼs theorem (charge conjugation symmetry ofQED), the resulting photon
polarization tensor in position space is even in the combined parameter e x( ). A corresponding perturbative
expansion can be compactly represented inmomentum space as (see section III of [6])

 ∫∑Π π′ = ′ ′μν

ℓ
ℓ

μν ℓ

=

∞

′
+ ′ ′k k k k e x˜ ( , ) ( , ) e [ ( )] , (5)

x

k k x

0

(2 )
i( ) 2
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wherewe introduced the tensorial quantity

π Π Π′ = + ′ℓ
μν

ℓ
μν

ℓ
μνk k k k( , )

1

2
( ) ( ) , (6)(2 ) (2 ) (2 )

⎡⎣ ⎤⎦
which is completely independent of the backgroundfield amplitude. The expansion coefficients Π ℓ

μν
(2 ) can be

read off from aTaylor expansion of the respective photon polarization tensor for  = const. about  =e 0.
We emphasize that the polarization tensor (5) constructed along these linesmay violate theWard identity,

Π Π′ = = ′ ′μ
μν μν

νk k k k k k( , ) 0 ( , ) . This ismore obvious in position space, where theWard identity reads

 Π Π∂ ′∣ = = ∂′ ′∣μ
μν

ν
μνx x x x( , ) 0 ( , )holding for any background-field  ; if now Π ′∣μν x x( , )has been

computed for constant  , the naive insertion of an inhomogeneous field  x( ) into Π ′∣μν x x( , ) can generically
be expected to be in conflict with theWard identity. This is, because the position space derivatives will also hit
the position space dependence of the background field  x( ).

The important point now is that the assumptions a( ) and b( ) above in fact amount to a restriction on
tensorial components of equation (5) forwhich theWard identity is fully satisfied also for an inhomogeneous  :
for the explicitly known expressions of the polarization tensor in homogeneous and planewave backgrounds
serving as starting point in our locally-constant-field approximation, the tensor structure can always—at least
partially—bewritten in terms of projectors onto photon polarizationmodes. Of course the outgoing photon
projectors ′ μνP( )p in equation (3) can be chosen accordingly, and the transversal structure −μν μ νk g k k( )2 be
decomposed in terms of these projectors. For equation (5) to be compatible with the assumptions a( ) and b( )
above, we have to single out a projectorwhich constitutes a global projector of the polarization tensor (5), i.e.,
fulfills ≡ = ′μν μν μνP P k P k( ˜ ) ( ) ( ) ( ) ( )p p p . This in turn implies that the assumptions a( ) and b( ) together with
equation (5) ensure theWard identity to remain intact for the tensorial structure of the polarization tensor (5)
projected out by the global projector μνP( ˜ )p , as then of course = ′ =μ

μν μν
νk P P k( ˜ ) ( ˜ ) 0p p holds exactly.

As in [6], we limit ourselves to incident probe photonswithwave vector in the x–y plane in the present paper.
Moreover, the incident probe photonswill always be assumed to propagate on the light cone and to be described
by a positive-energy planewave, ω= ω β β+ −A x a( ) ( )ep

tin
in

i (x cos y sin )in of energy ω > 0in and amplitude ωa( )in ,
whose propagation direction is controlled by the choice of the angle β π π∈ − …( ](see figure 1).

Aiming at the detection of induced outgoing photons in thefield free region at distances far away from the
inhomogeneity, we transform equation (4) with the appropriate boundary conditions to position space,

∫ Π□ = ′ ′ ≡
′

A x x x A x j x( ) ˜ ( , ) ( ) ( ). (7)p
x

p p p
out in

The induced current jp(x) in equation (7) is nonzero only where the background field deviates from zero, i.e.,
within the spacetime regionwhere the electromagnetic field inhomogeneity is localized, and falls off rapidly to
zero outside. This implies that the incident probe photons can only give rise to induced outgoing photons in the
regionwhere they experience a nonvanishing background electromagnetic field. It is then convenient tomake
use of amixed position-momentum space representation of the photon polarization tensor, i.e., perform a
partial Fourier transformwith respect to its second argument, andwrite

Π ω= ∣j x x k a( ) ˜ ( , ) ( ), (8)p p in in

with ω β β=μk (1, cos , sin , 0)in in , fulfilling =k 0in
2 . As jp(x) is nonzero only in the spacetime regionwhere the

electromagnetic field inhomogeneity is localized, we can extend the integration ranges to ±∞when determining

Figure 1. Schematic depiction of quantum reflection for a static one-dimensional field inhomogeneity [6]. The incident probe
photons with fourwave vector ω β β=μk (1, cos , sin , 0)in in propagate towards the inhomogeneity of amplitude profile  (x)which
asymptotically falls off to zero for large values of ∣ ∣x . The inhomogeneity is infinitely extended in the transversal directions.
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A x( )p
out in terms of aGreenʼs function integral,

∫= ′ ′
′ +A x G x x j x( ) ( , ) ( ). (9)p

x

R
p

out

Here +G R denotes the positive energy branch3 of the retardedGreenʼs function = ++ −G G GR R R for the
D’Alembert operator □ = ∂ ∂μ

μ, which is determined straightforwardly inmomentum space, where its defining
equation reads

ω ϵ π δ− − + ′ = + ′G k k k kk ( i ) ( , ) (2 ) ( ). (10)2 2 R 4⎡⎣ ⎤⎦
Auseful integral representation of this Greenʼs function is

∫Θ
π

′ = − ′ −− ′ − ′+ −( )G x x t t
k

k
( , ) ( )

d

(2 )

1

2i
e e , (11)k x x k x xR

3

3 2

i ( ) i ( )

with ≡ ±μ
±k k k( , )2 and =±k 02 , encompassing both positive and negative energy waves propagating on the

light cone. Causality is ensured by the overall Heaviside function, nullifying ′G x x( , )R for − ′ <t t 0. In a sense
thisHeaviside function also provides the time arrow, and thus ameans to distinguish between positive and
negative energies. Correspondingly, we have

∫Θ
π

′ = ± − ′±
− ′±G x x t t

k

k
( , ) ( )

d

(2 )

1

2i
e . (12)k x xR

3

3 2

i ( )

In our calculationwewill always assume − ′ >t t 0 to be fulfilled, such that the detection takes place at times
t after the interaction, but nevertheless extend the t′ integration up to +∞. For inhomogeneities localized in time
this is clearly justified for the reasons given above.4

Plugging the integral representation (12) of +G R into equation (9) andmaking use of ∫ Π ′ ∣′
− ′+ x ke ˜ ( , )

x
k x

p
i

in

Π= − ∣+k k˜ ( , )p in , wefinally obtain

∫ω
π

Π
=

− ∣+
+A x a

k k k

k
( ) ( )

d

(2 )
e

˜ ( , )

2i
, (13)p

k x pout
in

3

3
i in

2

i.e., the induced photonfield can bewritten in terms of a Fourier integral of the photon polarization tensor in
momentum space Π ′∣k k˜ ( , )p accounting for a given field inhomogeneity  x( ).

As both in- and out-going four-momenta fulfill = =+k k 0in
2 2 , the photon polarization tensor only has to be

evaluated on the light cone. In this limit it is of a particularly simple form.We emphasize that equation (13)
accounts for all induced positive energy photonmodes. An induced contribution is to be considered as physical
at a given far-field position if it amounts to an outgoingwave originating from the inhomogeneity.

When adapted to the particular kinematics in equation (13) and contractedwith the respective global
projector, equation (5) reads

 ∫∑Π π− ∣ = − ′
ℓ

ℓ
ℓ

+
=

∞

+
′

− ′+k k k k e x˜ ( , ) ( , ) e [ ( )] , (14)p p
x

k k x
in

1

,(2 ) in
i( ) 2in

wherewe omitted the zerofield (ℓ=0) contribution as it vanishes on the light cone. If an electromagnetic field
inhomogeneity characterized by  x( )does not depend on a given coordinate, equation (14) gives rise to a δ
function ensuring the conservation of the correspondingmomentum component. This in turn can be employed
to reduce the dimension of the integral to be performed in equation (13). If, e.g., the inhomogeneity depends on
the x coordinate only, i.e.,  =x( ) (x), we show that the result for a static one-dimensional inhomogeneity
derived in [6] is reproduced. In this limit equation (14) becomes

 Π π δ ω β δ δ ω Π ω β− = − − −+k k k k kk˜ ( , ) (2 ) ( sin ) ( ) ( ) ˜ ( , cos ), (15)p pin
3

y in z
2

in
1dim

x in

3
With regard to the Fock space representation of the photon field in position space ∫∣ 〉 = ∣ 〉

π
A x a( ) e 0p

k

k

kx
pk

d

(2 )

1

2

i
,

†3

3 0
, where =k k0 2 ,

only positive energy waves amount to propagating real photons.
4
Let us briefly comment on a subtlety associatedwith field inhomogeneities infinitely extended in time.Namely, we argue that also in this

casewe can formally extend the t′ integration up to +∞: our calculation, assuming a continuous inflowof plane-wave probe photons
actually is for a steady state.Hence, we do not expect the induced photon fields to exhibit any explicit time dependence apart from a trivial
time dependence in the exponential. Other explicit references to time scales in intermediate steps of the calculation should drop out. The
corresponding scattering ratesmediating incident probe photons into induced photons involve amodulus squared and are then rendered
time independent, as expected for a steady state (see below).Moreover, for a given incident photon, the interactionwith the inhomogeneity
is always limited to that section of its trajectory traversing the inhomogeneity (see above).Hence, also in case of a field inhomogeneity
infinitely extended in time the detection takes placewell after the actual interaction, and can formally be assumed to happen at asymptotic
times.
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with

 ∫∑Π ω β π− ∣ = − ∣ ′ ′
ℓ

ℓ ω β
ω β ℓ

=

∞

+ = =
− ′( )k k k e˜ ( , cos ) ( , ) dx e [ (x )] , (16)p p k k

k1dim
x in

1

,(2 ) in sin , 0
i cos x 2

y in z
in x

wherewe only account for the non-conserved xmomentum components in the argument of Π̃p
1dim

. Taking into
account the δ functions for the y and zmomentum components, we can rewrite the δ function implementing

energy conservation as δ ω δ ω β− → ∑ −
β∣ ∣ =± k lk( ) ( cos )l

2
in

1

cos x in . Correspondingly, upon performing

the integration over three-momenta, equation (13) decomposes into two contributions,

 Π ω β ω β
ω β

Π ω β ω β
ω β

=
− ∣

+
∣

ω β−A x A x( ) ( )
˜ ( cos , cos )

2i cos
e

˜ ( cos , cos )

2i cos
, (17)p p

p pout in

1dim
in in

in

i2 x cos

1dim
in in

in

in

⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

with ω= ω β β+ −A x a( ) ( )ep
tin

in
i (x cos y sin )in . Thefirst expression in the curly braces describes induced photons

transmitted in forward directionwith unmodifiedmomentum components. The second expression amounts to
the reflected part of the induced photon field, with allmomentum components apart from the xmomentum
component conserved. In the latter case the xmomentum component is reversed, i.e., amomentumof
magnitude ω β∣ ∣2 cosin has been absorbed from the electromagnetic field inhomogeneity. The associated
reflection coefficient is defined as themodulus squared of the reflectedwave normalized by the incident wave
amplitude and reads

Π ω β ω β
ω β

=
∣

R
˜ ( cos , cos )

2 cos
, (18)p

p
1dim

in in

in

2

which agreeswith the expression given in equation (17) of [6].
In the following, we go beyond static one-dimensional field inhomogeneities and discuss two generic classes

of inhomogeneities, characterized by a singlefield amplitude profile  x( ): first, purelymagnetic field
inhomogeneities for which =x xB B( ) ( ) ˆ , with themagnetic field pointing into a fixed direction B̂. Second,
electromagnetic field inhomogeneities featuring both electric =x xE E( ) ( ) ˆ andmagnetic =x xB B( ) ( ) ˆ field
components constrained by ⊥E Bˆ ˆ , withfixed unit vectors Ê and B̂.

2.2. Purelymagnetic backgroundfields
In the purelymagnetic field case B̂ provides a global spatial reference direction, with respect towhich vectors can
be decomposed into parallel and perpendicular components. In particular,

ω= + = =μ μ μ μ μ
∥ ⊥ ∥ ∥ ⊥ ⊥k k k k kk k, ( , ), (0, ), (19)

with =∥k k B B( · ˆ ) ˆ and = −⊥ ∥k k k . In the sameway tensors can be decomposed, e.g., = +μν μν μν
∥ ⊥g g g . As

detailed in the previous section, to determine the induced photon field equation (13)we only need the photon
polarization tensor on the light cone. In this particular limit and for ∦k B, which is implicitly assumed here (for
subtleties associatedwith the special alignment ∥k B we refer to [47]), the tensor structure of the respective
photon polarization tensor is spanned by just two projectors,

= − = −μν μν
μ ν

μν μν
μ ν

∥ ∥
∥ ∥

∥
⊥ ⊥

⊥ ⊥

⊥
P k g

k k

k
P k g

k k

k
( ) , ( ) . (20)

2 2

They project onto photonmodes polarized parallel and perpendicular to the plane spanned by B and k ,
respectively.

Themain effort in adopting the strategy outlined above is to identify inhomogeneous field configurations
compatible with the existence of a global projector μνP( ˜ )p .We emphasize that even though the polarization
tensor isfinally only evaluated on the light cone (see equation (13)), the requirement for a global projector is that
it remains invariant both on and off the light cone. Taking into account equation (5) the induced photon field is
then inferred straightforwardly from equation (13).

Each of the projectors in equation (20) depends on two independent four-momentum components. This
implies that in order to allow for the definition of an invariant global projector as required by our approach, at
least two four-momentum components have to remain unaffected by the inhomogeneity. Themomentum
components to be affected can be inferred from the coordinates the amplitude profile  depends on, e.g., an
inhomogeneity described by the amplitude profile  t(x, ) can impact photon energies andmomenta along ex.
Correspondingly, in themagnetic field case we can study inhomogeneities varying atmost in time and one
spatial direction or alternatively static inhomogeneities varying in two spatial directions.
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The case of a static one-dimensionalmagnetic field inhomogeneity has been discussed in detail in [6], where
two different situations compatible with a global projector were identified.Here we slightly generalize these
situations to allow also for insights into higher dimensional and spatio-temporal field inhomogeneities. These
situations require special alignments of the direction of the inhomogeneity  x( )with respect to themagnetic
field vector B̂:




∂ = → = ′ ≡ = ′

∂ = → = ′ ≡ = ′

μ
μ

μν μν μν

μ
μ

μν μν μν
∥ ∥ ∥ ∥ ∥ ∥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

i k x P k P k P k k

ii k x P k P k P k k

( ): ( ) 0 ( ) ( ) ˜ and ,

( ): ( ) 0 ( ) ( ) ˜ and , (21)

2 2

2 2

In case (i) the parallelmomentum components are not affected by the inhomogeneity and correspondingly the
parallel polarizationmode does not sense the inhomogeneity. For ii( ) the perpendicularmomentum
components remain invariant such that the perpendicular polarizationmode is conserved. Obviously only case
ii( ), being independent ofω, is compatible with amagnetic field inhomogeneity that varies in both space and
time.Herewe can study an inhomogeneity which varies atmost in +1 1dimensionswith  ∼x B( ) ˆ .
Assuming the spatial variation along x such that the profile of the inhomogeneity is given by  t(x, ) this implies
that ∼B eˆ

x. Conversely, in case (i)we can only study purely spatial—atmost two dimensional—
inhomogeneities. Aiming at an inhomogeneity whichw.l.o.g. depends on the coordinates x and y , i.e.,  (x, y),
the condition (i) in equation (21) can only be fulfilled if ∼B eˆ

z.
To keep the expressions as compact and transparent as possible, the following explicit examples are limited

to the leading contributions in a perturbative expansion in powers of the amplitude of the electromagnetic field
inhomogeneity, i.e., to the ℓ = 1contribution in equation (5). Such a truncation is alsowell-justified froman
experimental point of view, as the field strengths available in high-intensity laser facilities all fulfill  ≪ 1e

m2
; see

section 3 below. All relevant information about the photon polarization tensor in a constantmagnetic
backgroundfield is recollected in appendix A.1.

2.2.1. Static one-dimensional inhomogeneity
Let us briefly recall the results of [6] for a static one-dimensionalmagnetic field inhomogeneity fulfilling

∂ ∼μ x e( ) x, depicted infigure 1. As detailed above, we have identified two specific situationswhere a global

projector μνP( ˜ )p can be identified. In case (i)we can give results for probe photons in the = ∥p polarization
mode. Contrarily, in case ii( ) this is possible for = ⊥p . For these two cases, the induced photonfield (17) is
given by

   ∫ ∫

α
π β

ω=
∢

× ′ ′ + ′ ′ +ω β ω β− ′ ( )

A x A x
c

e

m

e

m

B k
( ) i ( )

90

sin ( , )

cos

dx
(x )

e dx e
(x )

, (22)

p p
p

e

m

out in
2

in
in

2

2
i(2 cos )x i(2 cos )x

2

2
4

in in
2

⎜ ⎟
⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

⎛
⎝

⎞
⎠

with numerical coefficients =∥c 7, =⊥c 4. The corresponding reflection coefficients read (see equation (18))

  ∫α
π β

ω=
∢

′ ′ +ω β ′ ( )R
c e

m

B k

90

sin ( , )

cos
dx e

(x )
. (23)p

p e

m

2
in

in
i(2 cos )x

2

2 2
6

in
2

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

As discussed already in [34], equation (23) diverges for β → ±π
2
. This unphysical behavior can be attributed to

the unphysical limit of an infinitely long interaction of the probe photons and the inhomogeneity at ‘grazing
incidence’ (see also section 3). A perturbative treatment of the induced photon field, as employed here, of course
can only be justified for ≪R 1p .

2.2.2. 1+ 1 dimensional spatio-temporal inhomogeneity
Apart from the static one-dimensional inhomogeneity considered in section 2.2.1, case ii( ) is also compatible
with a +1 1dimensional inhomogeneity of amplitude profile  t(x, ). For this background field, equations (13)
and (14) result in

  

∫

∫ ∫

ω α
π

ω β
π ω

=

× ′ ′ ′ ′ +

ω β ω

ω β ω ω

⊥
−

− ′− − ′ ( )

A x a
k

k

t
e t

m

( ) i ( )e
2

45
sin

d

2

1

( )
e

dx d e
(x , )

, (24)

k k t

k k t e

m

out
in

i sin y
in
2 2 x

x

i( x ( ) )

i[( cos )x ( ( )) ]
2

2
4

in x x

in x in x
2

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

with ω ω β= +k k( ) sinx x
2

in
2 2 .

Equation (24) can readily be used for generalfield inhomogeneities  t(x, ). For simplicity, we limit ourselves
tofield inhomogeneities of the type   Ω=t t(x, ) (x) cos ( ), with frequency Ω ⩾ 0. This scenario resembles
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figure 1, with the inhomogeneity featuring an additional global harmonic time dependence Ω∼ tcos ( ).
The Fourier integral over time canbe performed straightforwardly, resulting in

∫ ∑Ω π δ Θ ω β Ω

ω
δ δ

′ ′ = + − −

×
∣ ∣

− ∣ ∣ + + ∣ ∣

ω ω− − ′

=−

+

( ) ( )t t n

k

k
k k k k

d e cos ( )
2

1 (1 sin ) 2

( )
( ) ( ) , (25)

k t

n

n

n
n n

i( ( )) 2

1

1

0 in

x

x,2
x x,2 x x,2

in x

⎡⎣ ⎤⎦

wherewe have rewritten the δ functions for the energy in terms of δ functions for kx. Here δ ′nn is theKronecker
delta and ω Ω ω β≡ − −k n( 2 ) sinnx,2

2
in

2
in
2 2 . Correspondingly, the integrals in equation (24) can be reduced to

a single one. Upon insertion of equation (25) into equation (24), we obtain



  

∫

∫

∑

ω α
π

ω β

δ Θ ω β Ω

=

× + − −

× ′ ′

+ ′ ′ +

ω β

ω Ω

ω β

ω β

⊥

=−

+
∣ ∣ − −

−∣ ∣ ′

− ∣ ∣ +∣ ∣ ′ ( )

( ) ( )

A x a

n
k

e

m

e

m

( ) i ( )e
1

90
sin

1 (1 sin ) 2
1

e

dx e
(x )

e dx e
(x )

, (26)

( )

n

n
n

k i n t

k

k k e

m

out
in

i y sin
in
2 2

1

1

0 in
x,2

i x ( 2 )

i cos x
2

2

2i x i( cos )x
2

2
4

n

n

n n

in

x,2 in

in x,2

x,2 in x,2
2

⎜ ⎟

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

⎛
⎝

⎞
⎠

which is still applicable for arbitrarily shaped amplitude profiles  (x) compatible with the locally constant field
approximation.

For a transparent discussion (see figure 2), it is convenient to distinguish between induced photonfields
propagating in forward and backward direction, respectively: we consider a given inducedwave component as
propagating in forward direction if the x component of its wave vector ′ = ±∣ ∣k k nx x,2 fulfills

β′ = ′ >k k ksign( ) sign( cos ) 0x in,x x , and as propagating in backward direction if β′ <ksign( cos ) 0x . Clearly,
the induced photon field (26) ismade up of variouswave components propagating in forward and backward
direction.

As expected from its harmonic oscillation in timewith frequencyΩ, the backgroundfield can absorb and
supply energy to the probe photons.Moreover, as χ = + +χ χ−cos (e e )2 1

2

1

4
2i 2i , we always encounter elastic

contributions resembling equation (22)without energy transfer from the inhomogeneity. Correspondingly, the
induced photonfield is a superposition of planewaveswith different positive frequencies ω ω Ω′ = − n2n2 in and
propagation directions ω β′ = ±∣ ∣± kk ( , sin , 0)n n,2 x,2 in , where ∈ ±n {0, 1}. As these waves propagate on the

Figure 2.Quantum reflection for a +1 1dimensional field inhomogeneity featuring a harmonic time dependence Ω∼ tcos ( ). The
basic scenario is the same as depicted infigure 1 and the inhomogeneity is infinitely extended in the transversal directions. However,
due to the harmonic oscillationwithΩ, apart from the elastic contributions (n=0), also inelastic contributions ( = ±n 1) with
frequencies ω ω Ω′ = − n2n2 in and propagation directions ω β′ = ± ∣ ∣± kk ( , sin , 0)n n,2 x,2 in are induced (seemain text).We label
induced photonwaves propagating into the half-space right of the inhomogeneity with (+) and those propagating into the left half-
spacewith −( ). For convenience wewill also speak of ‘backward’ (white) and ‘forward’ (gray-shaded) directions: if the xmomentum
component of a given induced contribution has the opposite (same) sign as the x momentum component of the incident probe
photon, it is induced in backward (forward) direction.
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light cone and themomentum component along ey is conserved, a change in frequency inevitably alters the x
component of their wave vector and thus their propagation direction.However, in the limit Ω → 0 we recover
equation (22) with = ⊥p , but β∢ →B ksin ( , ) sin2

in
2 , with the latter substitution accounting for the different

kinematic situation considered here; the three photon components induced in forward and backward direction
thenmerge to form a single transmitted and reflected photonwave, respectively.

In close analogy to equation (23) above, for a given induced photonwave of frequency ω ′n2 we define

reflection—ormore generally scattering—coefficients ±R n2
( ) as themodulus squared of the respective induced

photonfield normalized by ωa ( )in . For equation (26) this results in

  ∫

Θ ω β Ω

α
π

δ ω β

= − −

×
+

′ ′ +ω β

⊥
±

± ′ ( )

( )

( )

R n

k

e

m

(1 sin ) 2

1

90

sin
dx e

(x )
. (27)

n

n

n

k e

m

,2
( )

in

0 in
2 2

x,2

i cos x
2

2 2
6

nin x,2
2

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

TheHeaviside function only allows for contributions satisfying ω ω β′ ⩾ ∣ ∣sinn2 in . For ∈ −n { 1, 0} this
condition is trivially fulfilled. By contrast, this condition becomes nontrivial for n= 1: incident probe photons of
energy ωin can induce photonswith n=1only if themodulus of the photon energy after emission of two quanta
of energyΩ is still large enough to facilitate induced outgoing photons propagating on the light conewhile
simultaneously ensuringmomentum conservation along y .

2.2.3. Static two-dimensional inhomogeneity
Case (i) also allows for localized static two-dimensional inhomogeneities of amplitude profile  (x, y) (see
figure 3). Inserting this profile into equations (13) and (14) and performing the integrations over kx and ky by
resorting to polar coordinates, we obtain the following compact expression for the induced photon field,

  

∫ω α
π

ω ω= ′ − ′

×
′ ′

+

ω ω β β
∥

− ′+ ′

( )

( )A x a J

e

m

x x x( ) i ( )e
7

90
d e

(x , y )
, (28)

t

e

m

out
in

i
in
2 2 i [cos x sin y ]

0 in

2

2
4

in in

2
⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

with =x (x, y, 0), ′ = ′ ′x (x , y , 0) and ∫ ∫ ∫′ = ′ ′xd dx dy2 . Here χJ ( )n is the Bessel function of thefirst kind
of order ∈ n 0, which for large real valued arguments χ behaves as (see formula 8.451.1 of [52])

χ
πχ

χ= + − +χ χ
+

− −( )J ( )
1

i

i

2
e 1 i( 1) e . (29)n n

n
1

i 2i 3 2⎡⎣ ⎤⎦

For a localized inhomogeneity, the integral in equation (28) only receives contributions from a limited range
of ′x . Conversely, detection is assumed to take place in the farfield, i.e., far outside the regimewhere the integral
over ′x receives any substantial contributions (see section 2.1).Hence, themodulus ∣ − ′∣x x can be expanded as

follows  ε∣ − ′∣ = ∣ ∣ − +′
∣ ∣

x x x (1 ( ))x x

x

· 2
2 , with ε ≡ ∣ ′∣ ∣ ∣ ≪x x 1.

Defining ω ω β β′ = = ′ ′∣ ∣k (cos , sin , 0)x

xin in and adopting the expansion (29) in equation (28), we
approximate the factor ∣ − ′∣x x in the phase of the exponential as ∣ − ′∣ ≈ ∣ ∣ − ′ ′

ω
x x x k x·1

in
, and that in the

prefactor just by ∣ − ′∣ ≈ ∣ ∣x x x . Focusing on the contribution describing an outgoing circular wave only, we
obtain

Figure 3.Visualization of quantum reflection in the case of a localized static two-dimensional field inhomogeneity. Upon interaction
with the inhomogeneity, the incident probe photonswithwave vector ω β β=k (cos , sin , 0)in in induce outgoing circular photon
waves withwave vector ω β β′ = ′ ′k (cos , sin , 0)in . As the inhomogeneity is independent of time, the energy of the induced photons
equals that of the incident probe photons.
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ω≈ ′
ω

∥

−

∥A x a f
x

k k( ) ( )
e

( , ), (30)
tx

out
in

i ( )

in

in

with scattering amplitude

  ∫πω
α
π

ω′ = ′
′ ′

+∥
− ′ ′ ( )( ) ( )f e

e

m
k k x,

i

2
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90
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. (31)e
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k k x
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in

in
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2

2
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in
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⎛
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⎞
⎠⎟

⎛
⎝

⎞
⎠

For large far-field distances ∣ ∣x about the scattering center, themodulus-squared of the induced photonfield
amplitude through a polar angle interval β′d is independent of ∣ ∣x , i.e., β∣ ∣ ∣ ∣ ′A x x( ) dout 2

β= ∣ ∣ ∣ ′ ∣ ′A x f k k( ) ( , ) din 2
in

2 . Hence, the differential cross section for inducing outgoing photons propagating in
direction ′k is given by

σ
β′

′ ≡ = ∣ ′ ∣( ) A x

A x
fk k

x
k k

d

d
,

( )

( )
( , ) . (32)in

out 2

in 2 in
2

The cross section for photons hitting a detector located at β′ and spanning an opening angle δβ β′ ′( ) about a

given value of β′ is obtained straightforwardly by integration, ∫σ β δβ β β′ ′ = ′δβ
σ
β′ ′[ , ( )] d ( )d

d
. Provided that the

extent of the inhomogeneity is larger than the probe beamdiameter wprobe, the differential number of induced

outgoing photons per angle is given by =
β

σ
β′ ′

N N

w

d

d

d

d
out probe

probe
, and the number of induced outgoing photons

corresponding to a cross section σ β δβ β′ ′[ , ( )]by β δβ β σ β δβ β′ ′ = ′ ′N [ , ( )] [ , ( )]
N

wout
probe

probe
.

For completeness, note that equations (30) and (31) resemble the result of a quantummechanical
calculation in the Born-approximation (see also the quantummechanical analogy presented in [6]).We can
easily vary detector sizes and analyze the fraction of scattered photons for all angles π β π− < ′ ⩽ .

In the standard language of scattering theory, the angle β′ is related to the scattering angle θ by θ β β= ′ − ,
where θ denotes the angle between k in and ′k . As the process is elastic, we have ∣ ∣ = ∣ ′∣k kin , such that the
scattering amplitude is in fact only a function of ωin, θ and, of course, the parameters of the inhomogeneity
(including β).

2.3. Crossedfields
Wenow focus on crossedfields, i.e., a class of electromagnetic field inhomogeneities featuring both electric and
magnetic field components. The electric andmagnetic fields are assumed to be orthogonal to each other, i.e.,

⊥E Bˆ ˆ withfixed unit vectors Ê and B̂, having the same amplitude profile, i.e., =x xE E( ) ( ) ˆ and
=x xB B( ) ( ) ˆ .This scenario is, e.g., applicable to linearly polarized planewavefields.

As outlined above, an inhomogeneous field configuration can only affect thosemomentum components
which sense the inhomogeneity. Thus, a convenient strategy tofind invariant projection operators μνP̃ for a
given inhomogeneity of profile  is to identify specific kinematic situations forwhich at least one projector is
insensitive to changes in themomentum components associatedwith the coordinates of the inhomogeneity.

On the light cone, the photon polarization tensor in constant crossedfields is again spanned by just two
projectors denoted by μνP k( )p with ∈p {1, 2} (see equation (A.7)), projecting onto photon polarizationmodes.
As the explicit expressions for these projectors are less intuitive as in themagnetic field case, we relegate them to
appendix A.2, where also all necessary details for the polarization tensor in constant crossed fields are
recollected. For probe photons polarized inmode p=1, the electric field component of the photon field is
perpendicular to Ê, and lies in the plane spanned by the photonʼs wave vector k and B̂. Formode p=2, the roles
of the electric andmagnetic background field components are interchanged [14].

2.3.1. Static one-dimensional inhomogeneity
Wefind that μνP k( )1 is invariant under → + c kk k E( ) ˆ , with c(k) denoting an arbitrary function of the

components of μk . Analogously μνP k( )2 is invariant under → + c kk k B( ) ˆ . Hence, for  ∼ Ê the projector
μνP1 corresponds to a global projector, while for  ∼ B̂ the projector μνP2 is a global projector.
For a one-dimensional spatialfield inhomogeneity  (x), the corresponding reflection coefficients essentially

agreewith equation (23). They are obtained by the substitution β∢ → −B k s esin ( , ) (1 · sin )2
in y

2, with
= ×s E Bˆ ˆ , accounting for the different kinematic situation. Also,we thenhave =c 71 , =c 42 . Again, the

reflection coefficients generically diverge for β → ±π
2
.However, for the special case of =s ey onlyone divergent

direction remains, while the reflection coefficient approaches zero for β → π
2
. The reason for this is that the

propagation of light is not affected byweak crossedbackgroundfields, if k E B(ˆ , ˆ , ˆ ) form the basis of an ortho-
normalized coordinate system [14].

We skip the discussion of a +1 1dimensional inhomogeneity for crossed fields whichwould follow
section 2.2.2 and directly jump to a +2 1dimensional inhomogeneity.
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2.3.2. 2+ 1 dimensional spatio-temporal inhomogeneity
In sharp contrast to the case of a purelymagnetic field, the projectors can be renderedmomentum independent
for crossedfields by setting a single spatialmomentum component to zero, say =k 0z , and adjusting the probe
photon polarization accordingly.

Without loss of generality we assume ≡ × =s E B eˆ ˆ
y , and for the remainder of this paper limit ourselves to

the two special cases

= = − = + = = + = +{ } { }p pE e B e E e B e1, ˆ , ˆ and 2, ˆ , ˆ . (33)x z z x

These are chosen such that the associated projectors are energy-independent and independent of the kinematics
in the x–y plane (see appendix A.2). Correspondingly, in thefirst (second) case μνP1 ( μνP2 ) amounts to a global
projector, implying that in these cases we can consider spatio-temporal field inhomogeneities of amplitude
profile  t(x, y, ). To keep notations compact, we label our results by p only. One should, however, keep inmind
the additional constraints on the field orientations (33). For a field inhomogeneity of this type, equations (13)
and (14) result in

  

∫ ∫

∫ ∫ ∫

ω α
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2

2
4

x y x
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in x in y in x
2
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⎛
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⎞
⎠

where =c 71 , =c 42 are the numerical coefficients associatedwith the two cases in equation (33).
Amuchmore handy expression is obtainedwhen the amplitude profile of thefield inhomogeneity factorizes

into a longitudinal ‘planewave’ profile Ω∼ − tcos ( (y )) and a transversal profile  (x). This is assumed in the
following,   Ω= −t t(x, y, ) (x) cos ( (y )), see alsofigure 4. This has several advantages: first, from a
practical point of view, the five integrals to be performed in equation (34) can be reduced to a single remaining
integral in this case. The integrations over ′y and t′ yield δ functionswhich in turn render the integrations over
kx and ky trivial. Second, this amplitude profile actually approximates the electromagnetic field inhomogeneities
generated by high-intensity lasers (see also section 3 below).

With the help of the following identity, somewhat reminiscent of equation (25) above,

∫ ∫ ∑Ω π δ Θ

δ ω β Ω δ δ

− = +

×
+

− + − + +

ω β ω− − − +

=−

+

( ) ( )

( ) ( ) ( )

t t k

k k

k
k n k k k k

d dy e cos ( (y )) 1

sin 2 , (35)

k k k t

n

n n

n
n n

i[( sin )y ( ) ] 2 2

1

1

0 x,2
2

x
2

y
2

x,2
y in x x,2 x x,2

in y in x
2

y
2

⎡⎣ ⎤⎦

Figure 4. Schematic depiction of quantum reflection for a +2 1dimensional field inhomogeneity   Ω= −t t(x, y, ) (x) cos ( (y ))
for p=1. This situation grasps the basic features of the experimental scenario of quantum reflection in a high-intensity laser set-up. In
the vicinity of its beamwaist the pump field configuration iswell compatible with such a field profile (see section 3). Incident probe
photons of fourmomentum μkin traveling in the x–y plane induce outgoing photons of fourmomentum ′μk . As the spacetime
dependence of thefield inhomogeneity allows for both energy andmomentum exchange between the probe and pump fields, energy
andmomentum, and thus also direction of the induced photons in general differ from that of the incident probe photons.
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where now ω Ω ω β Ω≡ − − −k n n( 2 ) ( sin 2 )nx,2
2

in
2

in
2 , we obtain
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made up of induced photonwaves of positive frequencies ω ω Ω′ = − n2n2 in andwave vectors ′±k n,2

ω β Ω= ± ∣ ∣ −k n( , sin 2 , 0)nx,2 in , with ∈ ±n {0, 1}. The basic scenario resembles figure 3 above. The
corresponding scattering coefficients are given by (see section 2.2.2)
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Taking into account that ω > 0in and Ω ⩾ 0, the restriction to ⩾k 0nx,2
2 implemented by theHeaviside

function can alternatively be expressed as ⩽Ω
ω

β+n2 1 sin

2in
. For ∈ −n { 1, 0} this condition is always fulfilled, as

then <Ω
ω

0n2

in
, while < <β+0 11 sin

2
. Conversely, for n=1 the left-hand side of the above condition becomes

positive ⩾Ω
ω

02

in
. This implies that we have to ensure that ⩽Ω

ω
β+2 1 sin

2in
. For ⩾Ω

ω
12

in
this inequality can no longer

be fulfilled, irrespectively of the value of β in order to facilitate any induced photonwaveswith n=1 for a given
angle of incidence β. The physical reason for this is that under these circumstances the probe photon energy is
too small to allow for an energy transfer of Ω2 to the background field.

For completeness, we remark that the results derived in this section are also attainable from the photon
polarization tensor in a linearly polarized planewavefield, which is a special case of the the polarization tensor in
a generic, elliptically polarizedmonochromatic planewave background [48, 49]. A particularly convenient
representation tailored to soft photon fields and perturbative weakfield strengths is given in [34]. The only
difference to the procedure outlined in section 2.1 to build in the field inhomogeneity in the constant field
polarization tensor a posteriori, is that the polarization tensor in a linearly polarized planewave already accounts
for the longitudinal profile of thefield inhomogeneity Ω∼ − tcos ( (y )). Hence, only the transversal profile

 (x)has to be built in along the lines outlined in section 2.1. At  e(( ) )2 and on the light cone (in the notation
of [34]: = =k k 01

2
2
2 ), the tensor structure of the photon polarization tensor in a linearly polarized planewave

(i.e., either ξ1or ξ2 of [34] vanishes) is spanned by just two projection operators, conventionally represented as

Λ Λμ ν
1 1 and Λ Λμ ν

2 2 , with normalized four vectors Λ Λ= = 11
2

2
2 [34]. In fact these projectors can be identified

with the projectors μνP1 and μνP2 for constant crossedfields.

2.3.3. Static two-dimensional inhomogeneity
In close analogy to our considerations for a static two-dimensional, purelymagnetic field inhomogeneity in
section 2.3.3, we can also investigate the case of a two-dimensional inhomogeneity  (x, y) featuring crossed
fields. Specializing to =s ey and the special cases in equation (33) we obtain (see section 2.2.3 andfigure 3)
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3. Towards experimental estimates

Let us nowdiscuss the resultsmore quantitatively, adopting real laser parameters.We consider an experimental
scenario of an all-optics pump–probe type experiment employing two high intensity lasers. An electromagnetic
field inhomogeneity is generated in the focal spot of the pump laser, and probed by a second probe laser. The
probe beam is assumed to intersect the pump laser beam right at its waist under an angle of β (see figure 4). The
number of induced photons ismeasured by a detector in thefield free region, thereby facilitating a clear
geometric signal to background separation.

The electromagnetic field pulses as generated by high intensity lasers evolve along thewell-defined envelope
of aGaussian beam,whose transversal profile is of Gaussian type. Correspondingly, we exclusively limit
ourselves to transversal field profiles  = −(x) e w(2x )x

2
of amplitude  , with wx denoting the full width at 1 e of

itsmaximum.Of course, an optimization of amplitude profiles could certainly allow for a substantial
enhancement of the induced photon signal. As a freely propagatingGaussian beam ismoreover characterized by
modulated crossedfields, the inhomogeneities featuring crossed electric andmagnetic fields are ofmost direct
relevancewith respect to an actual experimental realization. In particular, linearly polarizedGaussian beams
correspond tofixed orientations Ê and B̂. The experimental realization of purelymagnetic fields bymeans of
high intensity lasers requires additional efforts like, e.g., the superposition of two counter propagating laser
beams tomutually cancel the electricfield components at the beamwaist.

Tomaximize the intensity, the focus area is preferably rendered as small as possible. However, in generic
high-intensity laser experiments the focal spot area cannot be chosen at will, but is limited by diffraction.
AssumingGaussian beams, the effective focus area is conventionally defined to contain 86%of the beam energy
(1 e2 criterion for the intensity). Theminimumvalue of the beamdiameter wx in the focus is given by twice the

laserwavelengthmultipliedwith f #, the so-called f-number, defined as the ratio of the focal length and the
diameter of the focusing aperture [53]; f-numbers as low as =f 1# can be realized experimentally. Thus,
assuming the pump laser (energyWpump, wavelength λpump, pulse duration τpump) to be focused down to the
diffraction limit, i.e., λ=w 2x pump, the attainablefield strengths are of the order of


τ σ

= ≈I
W0.86

, (40)2
pump

pump

pump pump

with focal area σ πλ≈pump pump
2 . The typical scale of variation associatedwith the longitudinal evolution of the

pump laser beam, i.e., the temporal variation as well as the spatial variation along the pumpʼs propagation
direction, is set by the laser wavelength λpump. Hence, the typical temporal variation is clearly of the same
order as the typical spatial scales characterizing the field inhomogeneity generated in the focal spot of the
pump laser. Therefore, accounting for the temporal variation is crucial, and a static approximation cannot be
justified.

In the present study, we do however not aim at a realisticmodelling of the pump laser, requiring in particular
a closer look at the longitudinal pulse shape evolution. Instead, we rather intend to account for themost relevant

Figure 5.Plot of the outgoing angle β′ = ∢ ′k e( , )x as a function of the incidence angle β = ∢ k e( , )in x , adopting the design
parameters of the Jena high-intensity laser systems, JETI 200 and POLARIS (seemain text) in the n=0 and = −n 1 channels; no
photons are induced in the n=1 channel for this set-up.Quantum reflection gives rise to induced photons propagating in ‘forward’
(gray-shaded) and ‘backward’ (white) directions; see alsofigure 3.
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features in the vicinity of the beamwaist where the field strengths aremaximal, while on the other hand keeping
the resulting expressions as simple and compact as possible. Therefore, we focus on the following +2 1
dimensional amplitude profile (see section 2.3.2),

   Ω= − = −( )t t(x, y, ) (x) cos( (y )), where (x) e , (41)w2x x
2

for both cases (33), tomimic thefield inhomogeneity generated in the focal spot of a linearly polarized pump
laser (see figure 4). This field profile accounts for the plane-wave character of the longitudinal submodulation of
the pump laserfield.

With respect to an actual experimental realization thefield profile in equation (41) involves several
limitations:first, we neglect the effect of diffraction spreading about the beamwaist, whichwe expect to
constitute a viable approximationwithin the Rayleigh range zR of the pump laser; in the diffraction limit we
have πλ=zR pump [53]. Second, we do not account forfinite pulse length and longitudinal focusing effects in the

field amplitude profile, assuming that these effects amount to sub-leading corrections within the Rayleigh range
and for sufficiently long pulse durations τpump.

The transversal amplitude profile (x) in equation (41) squared is easily Fourier transformed to
momentum space, such that all residual integrations in equation (37) can be performed straightforwardly,
resulting in

Figure 6.Number of induced photons for the field inhomogeneity (41), p=1 and ∈ −n { 1, 0} plotted as a function of the incidence
angle β for the JETI 200 and POLARIS set-up detailed in themain text; no photonswith n=1 are induced. For β = °90 all
contributions vanish. Conversely, for β = − °90 the number of induced photonswith n=0 diverges (seemain text). The
corresponding outgoing angles can be inferred from figure 5. The results for p=2 follow bymultiplicationwith a factor of

≈c c( ) 0.332 1
2 .Left: forward direction.While the n=0 contribution is induced in probe laser direction, ≠n 0 contributions are

deflected.Right: backward direction.

Figure 7.Number of induced photons in backward direction in the angular rangewhere ≳=N 1p 1
out .Left: close up offigure 6 (right) for

the 2 + 1 dimensional inhomogeneity (41).Right: static two dimensional inhomogeneity (43). For this result, we integrated over all
photons induced in backward direction for elastic kinematics (seemain text). The divergence at β = − °90 is physically regularized by
the finite extent of the inhomogeneity along ey specified here inmultiples of the Rayleigh range zR .
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with ∈p {1, 2}, ∈ ±n {0, 1}, =c 71 and =c 42 . The number of available photons of frequency
ω π λ= 2in probe for probing can be estimated from the probe laser energyWprobe, ω≈N Wprobe probe in. The
number of induced photons per shotwith particular reflection or transmission kinematics is estimated as

= ±N R f Np n
out

,2
( )

int probe, wherewe have introduced a factor =
τ
τ

f min {1, }int
pump

probe
, providing afirst estimate of the

fraction of the number of incident probe photons interactingwith the inhomogeneity.
As in [6] and [34]we exemplarily adopt the design parameters of the two high-intensity laser systems to

become available in Jena5: the terawatt-class laser system JETI 200 [54] (λ = ≈ −800 nm 4.06 eVprobe
1,

= ≈ ×W 4 J 2.50 10 eVprobe
19 , τ = ≈ −20 fs 30.4 eVprobe

1) as probe, and the petawatt-class laser system

POLARIS [55] (λ = ≈ −1030 nm 5.22 eVpump
1,Wpump = ≈ ×150 J 9.36 10 eV20 , τ = ≈ −150 fs 228 eVpump

1)
as pump.Hence, the frequency scaleΩ governing the submodulation in equation (41) is to be identifiedwith
Ω π λ= 2 pump, and =f 1int .Wewill specialize to these parameters in the remainder of this paper.

As discussed in section 2.3.2 above, additional requirements have to bemet in order to allow for
nonvanishing contributions for n=1 in equation (42).Namely, we have to ensure that <Ω

ω
12

in
and

β ⩾ −Ω
ω

arcsin( 1)4

in
. For the JETI 200-POLARIS set-up outlined above, these relations cannot be fulfilled, such

that the n=1 channel does not give rise to nonzero contributions and =±R 0p,2
( ) . Figure 5 depicts the emission

directions of the induced photons, to be characterized by the angle β′ ∈ − °… °( 180 180 ](see figure 4), as a
function of the incidence angle β ∈ − °… °( 180 180 ]: as detailed above, apart from the elastic channel without
energy exchange between probe photons and pump beam (straight lines labeled by n=0), we encounter an
inelastic channel (curved lines; = −n 1). In thefirst case, the outgoing directions are fully determined by the
kinematics of the probe photons. Conversely, in the latter case the outgoing directions do not only depend on
the probe photon kinematics, but also on the frequencyΩ of the pumpbeam; see Equations (36) and (37).

Infigures 6 and 7we plot the number Np
out of induced photons as a function of the incidence angle β. The

corresponding outgoing angles can be read off fromfigure 5.Highest numbers of induced photons are achieved
for the elastic channel =n( 0), while the contributions in the nonvanishing inelastic channel = −n( 1) are
considerably smaller. For β = + °90 the induced contributions vanish for all channels, reflecting thewell
known fact that the invariant ω∣ = × −=sk k E B( ) · ( ˆ ˆ )k 02 vanishes in crossed fields of the same amplitude for
this particular choice of β (see appendix A.2). Contrarily, for β = − °90 the induced contributions in the elastic
channel diverge; the reason for this unphysical divergence is the idealization of an infinite extent of the
inhomogeneity along ey , allowing for an infinitely long interaction region at ‘grazing incidence’. This divergence
is physically cut off by thefinite range of any experimentally attainablefield inhomogeneity, see also section 3.

However, we still expect to retain the basic features offigures 6 and 7 (left), like a substantial enhancement of
the number of induced photons to ≳N 1out in the vicinity of β = − °90 , particularly in the angle range depicted
infigure 7. Let us demonstrate that this is indeed the case. As the divergence is encountered in the elastic n=0
contribution, we argue that it is sufficient to show that the induced contributions independent ofΩdo no longer
diverge for β → − °90 when the extent of the inhomogeneity along ey is rendered finite. Correspondingly, for
the present discussionwe can specialize to Ω = 0 from the outset [see also the argument given in the second
paragraph below equation (26)]. Recall, that the longitudinal field profile of a real Gaussian beam about its beam

waist depletes as ∼ + z1 1 (y )R
2 , with Rayleigh range zR [53]. In order to demonstrate that the divergence is

regularized as soon as the extent of thefield inhomogeneity along ey finite, we thus focus on the alignments (33)
and a static two-dimensional field profile,

   
ζ

=
+

= −(x, y)
(x)

1 (y )
, where (x) e . (43)w

2

(2x )x
2

This corresponds to equation (41) evaluated at Ω = 0 andmultipliedwith an overall longitudinal damping

factor of ζ+1 1 (y )2 . For the choice ζ πλ= =zR pump the longitudinal field profile decreases in the same
way as aGaussian beam. Conversely, for ζ → ∞ the infinitely extended inhomogeneity is recovered. Plugging
thefield profile (43) into the scattering amplitude (39), we determine the number of reflected photons in the
followingway: we integrate the differential cross section (32) over all values of β′which characterize induced
photonwaves propagating into the backward half-space (seefigure 2), andmultiply the results by N wprobe probe.

5
SeeHelmholtz Institute Jena: http://www.hi-jena.de.
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Assuming also the probe beam to be focused down to the diffraction limit, we identify λ=w 2probe probe. In
figure 7 (right) we depict our results for different values of ζ = z{1, 5, 10, 50} R . The emergence of an
unphysical divergence at β → − °90 when increasing ζ to large (unphysical) values is clearly visible. The
numbers of induced photons tend to be somewhat larger than in figure 7 (left), which can be attributed to the β′
integration over all backward directions, covering an angular range of π. As a function of the incidence angle β,
the number of induced photons in the elasticmode becomes larger than one in roughly the same angular range
for all choices of ζ depicted infigure 7 (right),most importantly also for the physicallymotivated choice of
ζ = zR. Amore in depth analysis of the precise behavior about β = − °90 is outside the scope of our present
work, andwill be subject of further investigations.

Focusing on the results of the +2 1dimensional calculation, for the JETI 200-POLARIS set-up, the number
of reflected photons becomes larger than one for angles in the range between β = − °101.79 ↔ β′ = − °78.21
and β = − °78.21 ↔ β′ = − °101.79 (see figure 5), i.e., both incident and outgoing angles within ≈ ± °10 about
−ey . This should be compared to the divergence of aGaussian beam focused down to the diffraction limit,

θ ≈ ≈ °
π

181
. Thismakes the detection of reflected photonswithin 10° about the beam axis a nontrivial

experimental issue. In the present ‘two-color’ JETI 200-POLARIS set-up, we expect that frequency filtering
techniques can be used for sufficient background suppression. In a single laser set-up using a suitably split beam,
background suppressionmay require special pulse design and a high time resolution for the probe photon
detection. Finally, let us emphasize that our estimates presented here are of the same order ofmagnitude and
thus compatible with our previous—much less realistic—estimates based on a static one-dimensional, purely
magnetic field inhomogeneity [6].

4. Conclusions

In this paper we have investigated the phenomenon of quantum reflection of probe photons off a strong
inhomogeneous field for a large class offield inhomogeneities. This includes spatio-temporal field
inhomogeneities with up to two nontrivial spatial directions facilitating the exploration of this phenomenon on
a new level. In particular the time-dependence gives rise to new effects such as frequencymixing though on a
quantitatively sub-dominant level. In general, our new results—thoughmuchmore detailed and realistic—
support our earlier estimates based on one-dimensional static inhomogeneities [6]. This endorses our viewpoint
that quantum reflection can become a valuable novelmeans to probe the nonlinearity of the quantum vacuum.
A particularly beneficial feature is given by the fact that a signal-to-background separation is supported by the
kinematics of searching for reflected photons in thefield free region.

Our approach as already suggested in [6] heavily relies on analytical insights into the photon polarization
tensor in constant and homogeneous electromagnetic field backgrounds. Resorting to a given electromagnetic
field alignment the inhomogeneity is built in a posteriori bymeans of the locally constant field approximation. In
the present paper we have discussed both purelymagnetic field and crossed-field inhomogeneities. For the
application of our approach, it is important to realize, that theWard identity can in fact be violatedwithin this
approximation scheme.However, we have been able to identify those kinematic and polarization configurations
forwhich theWard identity can be guaranteed to hold exactly evenwithin the approximation scheme. The
resulting requirements include +2 1dimensional inhomogeneities compatible with field configurations
attainable in realistic high-intensity laser experiments.We emphasize, however, that the present approach if
applied to generic +3 1dimensional field inhomogeneities would need new theoretical insights that go beyond
the locally constant field approximation.

Building on contemporary knowledge about the photon polarization tensor, we present fully analytical
estimates for the effect of quantum reflection in a pump–probe type set-up consisting of a typical terawatt- and
petawatt-class high-intensity laser system. In support of our previous results [6], our new estimates are based on
muchmore realistic, spatio-temporal electromagnetic field configurations, compatible with the
inhomogeneous fields attainable in the focal spots of high-intensity laser systems. The fact that we obtain similar
numbers of induced photons experiencing quantum reflection, corroborates the robustness of the effect with
respect to generalizations of the inhomogeneity. Correspondingly, our investigations establish quantum
reflection as a prospective candidate for the experimental verification of quantumvacuumnonlinearity in strong
electromagnetic fields.
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AppendixA. Photon polarization tensor in theweak-field limit

A.1.Magnetic backgroundfield
On the light cone =k 02 , the photon polarization tensor in a constant homogeneousmagnetic field takes a
particularly simple form. In the perturbative weak-field limit it is conveniently represented as (see [14, 47] and
references therein)

Π Π= +μν μν
=

( )k k eB eB( ) ( )( ) ( ) , (A.1)
k 0

(2)
2 4

2

with tensorial coefficient

Π α
π

= −μν μν μν
∥ ∥ ⊥ ⊥( )k k P k k P k

m
( )

1

45
7 ( ) 4 ( )

1
, (A.2)(2)

2 2
4

and projectors onto photon polarizationmodes defined in equation (20). Herewe expressed the tensorial
coefficient (A.2) in a particularly suggestive form,making use of = ↔ = −∥ ⊥k k k02 2 2 for the scalar prefactors
of the projectors μνP k( )p .

In this particular limit, the tensorial quantity π ′μν k k( , )(2) as defined in equation (6) is obtained
straightforwardly. For a purelymagnetic background, it is given by

π α
π

′ = + ′ ′ − + ′ ′μν μν μν μν μν
∥ ∥ ∥ ∥ ⊥ ⊥ ⊥ ⊥k k k P k k P k k P k k P k

m
( , )

1

90
[7( ( ) ( )) 4( ( ) ( ))]

1
. (A.3)(2)

2 2 2 2

4

For the two cases specified in equation (21), a contractionwith the corresponding global projector
μν

P̃p results in

π α
π

π α
π

= = −∥ ∥ ⊥ ⊥i k
m

ii k
m

( ):
7

45

1
, and ( ):

4

45

1
. (A.4),(2)

2
4 ,(2)

2
4

A.2. Constant crossedfields
Analogous statements hold for the photon polarization tensor in constant crossedfields, characterized by

=E B· 0 and  = ∣ ∣ = ∣ ∣E B , i.e., perpendicular electric andmagnetic fields of the samemagnitude [41]. In this
case it is convenient to introduce the four vector = ×μs E B(1, ˆ ˆ ). In theweak-field limit and for =k 02 the
photon polarization tensor is then given by (see also [14])

  Π Π= +μν μν
=

( )k k e e( ) ( )( ) ( ) , (A.5)
k 0

(2)
2 4

2

with tensorial coefficient

Π α
π

= − +μν μν μν( )k sk P k P k
m

( )
1

45
( ) 7 ( ) 4 ( )

1
, (A.6)(2)

2
1 2 4

and projectors onto photon polarizationmodes defined as

 = =μν
μ ν

μν
μ ν

P k
Fk Fk

sk
P k

Fk Fk

sk
( )

(* ) (* )

( )
, ( )

( ) ( )

( )
. (A.7)1 2 2 2 2 2

Here ϵ=μν μναβ
αβF F* 1

2
denotes the dualfield strength tensor, andwe havemade use of the shorthand notation

= α
αsk s k( ) , =μ μα

αFk F k(* ) * and =μ μα
αFk F k( ) . Correspondingly, we obtain [see equation (6)]

π α
π

′ = − + ′ ′ + + ′ ′μν μν μν μν μν( ) ( )k k sk P k sk P k sk P k sk P k
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90
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1

2
1

2
2

2
2 4

⎡⎣ ⎤⎦
For this particular field configuration it is convenient tomake use of amore explicit representation of the

projectors: without loss of generality we set =s ey andwrite the directions of themagnetic and electric fields as

φ φ=B̂ (cos , 0, sin ) and φ φ= −Ê ( sin , 0, cos ), respectively. The angle φ π∈ …[0 2 )parameterizes all
possible orientations of the electric andmagnetic field vectors for constant crossedfields fulfilling =s ey . The

projectors (A.7) can then be represented as =μν μ νP u u1 1 1 and =μν μ νP u u2 2 2 with

φ φ

φ φ

= − −

= −

μ φ φ φ φ

μ φ φ φ φ

+ +

− −

( )
( )

u

u

, cos , , sin ,

, sin , , cos . (A.9)

k k
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k k

sk

k k

sk

k k

sk

1
sin cos

( )

sin cos

( )

2
cos sin

( )

cos sin

( )

z x z x

z x z x

It is easy to see that for general kinematic situations μu1 is invariant under → + c kk k E( ) ˆ , while μu 2 is invariant
under → + c kk k B( ) ˆ , where c(k) is an arbitrary function of the components of μk .
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For the special situationwhere ≡k 0z , we can identify two cases where either μu1 or
μu 2 assumes a particularly

simple form: for φ = π
2
and =k 0z wehave = −μu e(0, )1 z , while for φ = 0 and =k 0z wehave = −μu e(0, )2 z .

Obviously, for these special choices the projectors μνP1 or μνP2 , respectively, are independent of the values of kx,
ky andω, i.e., are conserved for general kinematics restricted to the x–y plane.

For the cases considered in section 2.3 a contractionwith the corresponding global projector
μν

P̃p yields

π α
π

π α
π

′ = − + ′ ′ = − + ′
k k

sk sk

m
k k
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