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Abstract
We report on the possibility of controlling quantum randomwalks (QWs)with a step-dependent coin
(SDC). The coin is characterized by a (single) rotation angle. Considering different rotation angles,
one canfind diverse probability distributions for this walk including: complete localization, Gaussian
and asymmetric likes. In addition, we explore the entropy of walk in two contexts; for probability
density distributions over position space andwalkerʼs internal degrees of freedom space (coin space).
We show that entropy of position space can decrease for a SDCwith the step-number, quite in contrast
to awalkwith step-independent coin (SIC). For entropy of coin space, a damped oscillation is found
forwalkwith SICwhile for a SDC case, the behavior of entropy depends on rotation angle. In general,
we demonstrate that quantumwalks with simple initiativesmay exhibit a quite complex and varying
behavior if SDCs are applied. This provides the possibility of controllingQWwith a SDC.

1. Introduction

Classical randomwalks (CWs) are known (stochastic) processes that have been used for developing stochastic
algorithms [1], in studying biological behavior [2], for image segmentation [3] aswell as in earthquake
simulations [4]. A classical randomwalk is typically described in terms of a coin and some particular rule, how
the outcome of a coin toss affects themotion of awalker. For different possible outcomes of the coin, thewalker
will thenmove to the sites available for it. In general, a Gaussian probability density distribution is obtained for
most of theCWs.

In a quantum randomwalk (QW), in contrast, the behavior of thewalker is governed by quantummechanics
[5]. Both, the coin and themovement (shift) of thewalker are represented by two operators that are applied to
thewalker at each step of thewalk: while the shift operatormoves thewalker simply to the left or right on amesh,
the (so-called) coin operator just acts on the internal degrees of freedomof thewalker. In aQW, therefore, the
walker directly interacts with the coin and this leads to a number of properties such as: a ballistic spread of the
walkerʼs wave function or a non-Gaussian probability density distribution [5]. In fact, QWs have been found to
provide an efficient framework for: developing better (quantum) algorithms [6, 7], increasing the processing
power for solving problems [8] and in simulating complex physical systems [9]. It was shown,moreover, that
QWs can be utilized as a universal computational primitives [10, 11] in order to simulate other quantum
processes. In addition, various experimental realization ofQWswere demonstrated bymeans of ultracold atoms
[12], photons [13, 14] or ions[15, 16] could simulate a nontrivial one-dimensional topological phase [17–19].

Because of these properties, different classes ofQWshave been explored in the past decade, includingwalks
withmultiple [20] or decoherent coins [21], aperiodic walks [22], walks in two andmore dimensions [23] orwith
multiple walkers [24].Moreover, the concept ofQWshave been applied to position-dependent walks [25], to
time-dependent walks that remember their history [26–29] as well as to (so-called) spinor Bose–Einstein
condensate [30, 31].

SinceQWs can be utilized for simulating other quantum systems or to program and engineer different
quantumalgorithms [32, 33], a high control is desirable on the behavior and time-evolution of thewalker. In
order to enhance it, decoherentwalks have been proposed in the literature [32, 33] i.e. walks with a (non-unitary)
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coinwhich introduces some couplingwith thewalkerʼs environment. However, such a coupling requires the use
of density operators andmakes the computations very complex. Typically, such a decoherence does not enable
one (so easily) to further explore the symmetry of the system, andmay result into a loss of (parts of the)
probability density and unitarity nature of process [32, 33]. In addition, the reliability, complexity and efficiency
in simulating quantum systemswith decoherence have been challenged, see[34]. Therefore, the question
remains towhich extent, we can have a (coherent)walkwith just unitary coin and shift operators and forwhich
the desired probability density distribution is obtained by adjusting one (or a few) parameters. Below,we
demonstrate that such a control and behavior ofQWs can be achieved by applying a step-dependent coin (SDC).

Another question of this work refers to the amount of information that can be processed by aQW. Since
every (quantum) process that transforms the state of a system also changes the amount of information, it is
important to understand how a SDC affects the information of the system, compared to a usualQW.To address
this question, we shall study and discuss below also the Shannon entropy of thewalks [35]. The Shannon entropy
wasfirst introduced in 1948 byClaude Shannon [36] in order tomeasures the amount of uncertainty that is
present in the state of a physical system.Here, we show that walkswith an SDCmay exhibit a diverse behavior of
the entropy, quite different from the usualQWwith step-independent coins (SICs).

The outline of the paper is as follows. In the next sections, wefirst introduce ourwalkwith a SDC and recall
some of its properties. In section 3, then, simulations are performed and analyzed for different coins, together
with a short classification of the corresponding probability distributions.We also discuss a possible
experimental realization of such aQW in section 4 and the entropy as a function of the number of steps in
section 5. A brief summary and conclusions are finally given in section 6.

2.QWwith SDC

When comparedwithCWs,many features ofQWs arise from the interplay of the coin andwalker, i.e. from the
walkerʼs internal degrees of freedom.Due to this interplay, QWsmay exhibit amuch richer behavior of its
probability distribution thanCWs (if different coins and initial states are considered). Of course, this freedom in
choosing the coin and state of thewalker can be employed also tofind novel probability density distributions for
thewalker after a given number of stepswhich is one of centralmotivations of this investigation.We here apply a
SDCof the form

q q
q q

= ñ á + ñ á
+ ñ á - ñ á

 ∣ ∣ ∣ ∣
∣ ∣ ∣ ∣ ( )

C T T

T T

cos 0 0 sin 0 1

sin 1 0 cos 1 1 , 1
C C

C C

inwhichT refers to the number of step andwhere the rotation angle θ is characteristic for the givenwalk. The
factorwhich enables controlling thewalk isTθ. Such a SDC can be realized, for example, with photons if their
polarization are rotated by the (step-dependent) angleTθ [13, 14]. Such a step-dependent ‘rotation’ can be
achieved alsowith trapped ions if proper (resonant) radio-frequency pulses are applied to the internal state of the
ions [15]. Below,we shall therefore refer to θ simply as the (fixed) rotation angle that is characteristic for a
particular coin. The coin operator (1) is unitary and independent of the particular choice of θ and number of
steps, and thus reversible [16]. Indeed, this property helps simplifymany computations and ensures the
symmetries which are required for exploring topological phases [17] and for employing it as a single-qubit
gate [35].

For a (single-qubit)walker on a linearmesh, theHilbert space,C, of the coin space is simply spanned by
ñ ñ{∣ ∣ }0 , 1 . The overall operator of the (quantum)walk consists out of two parts: (i) the coin operator that just acts

upon the internal degrees of freedom and (ii) the shift operator thatmoves thewalker along themesh, in
dependence on the internal state of thewalker.Here, we consider the (standard) conditional shift operator

å
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andwhere the position (Hilbert) space,P, is spanned by ñ Î{∣ }i i:P . Of course, theQWproceeds overall
within the product space  º ÄP C and by applying successively the evolution operator =  U S C upon
the initial state, say

f f fñ = ñ = ñ∣ ∣ ∣ ( )U . 3T
T

fin int

In general, it is possible to start at position ñ∣0 P with any initial state

fñ = ñ + ñ Ä ñ∣ ( ∣ ∣ ) ∣ ( )a b0 1 0 , 4C C Pint

andwith a and b just satisfying the normalization condition, + =∣ ∣ ∣ ∣a b 12 2 . For the sake of simplicity, we shall
employ below the following initial states to performourQW
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The coin-shift operator can be applied to these initial states and gives rise, independent of the particular
values of θ andT to
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From expressions (5) and (6), we find that thewalker generally occupiesT+1 positions afterT steps, i.e. there is
a non-zero probability atT+1 positions. Amaximumof 2T termsmay arise afterT steps for occupied positions
for thewave function of thewalker. For an odd number of steps, only the odd positionswill have non-zero
probability density, while the same is true for the even positions after an even number of steps.Moreover, the
walker can generally occupy only positionswithin -[ ]T T, . In the next section, we shallmake use of these
properties to further classify the behavior of walker, and hence its probability density distribution in position
space, if different rotation angles are considered.

3. Simulation of thewalk

3.1. Classification
The stepwise evolution (equations (5) and (6)) of theQWshows that the state and probability distribution of the
walker sensitively depend on the particular choice of the rotation angle θ. Below,we shall therefore highlight the
possible classes of behavior for thewalkerwith different choices of θ.We compare their behaviors with those of a
SIC in order to better understand the effects of a SDCupon the evolution of awalk.We focus on thewave
function and the probability density distribution in position space. All the simulations are done for the initial
state of ñ Ä ñ∣ ∣0 0C P.

3.1.1. Localized walk
In this class, the probability density distribution is whether completely localized at some position and/or it is
periodically distributed only over two positions. In otherwords, at each step, thewalker is relocated fromone
position into anotherwithout any distribution in its wave function. This property of relocation and absence of
the distribution inwave function remain unchanged for arbitrary number of steps. In general, this class contains
three subclasses; (I) free localized walk: inwhich afterT steps of thewalk, the probability density of thewalker at
positionT is 1 while at other positions, it is zero. An example of this case is θ=0 (see figures 1(1) andB2(1)). (II)
Bounded localized walk:where the relocation of walker is limited to some specific range of positions. Thewalker
starts at position 0 and after arbitrary steps, it returns to position 0 again. In contrast to the previous case, the
probability distribution of thewalker oscillates at different andwithin a specific range of positions. The rotation
angle of θ=π/2 is an example of this walk (see figures 1(2) andB2(2)). (II)Bounded localized walk with periodic
splitting: here, at particular number of steps, the probability density distribution is completely localized at one
position.While at other step numbers, the probability density of thewalker is distributed over two positions.
Thewalk is limited to specific range of positions and after several steps, the same behavior and probability
density distributions are repeated. Using coinswith θ=π/4 and θ=π/6 results into this behavior (see
figures 1(3) andB2(3)).

3.1.2. Classical like walk
The behavior of walker for this class results intoGaussian like probability density distribution. The speed and the
variance of walker is relatively smaller than usualQWs and similar toCW.There are two distinctive subclasses
for this class; (II) compact classical walk: inwhich aGaussian like probability density distribution is found for the
walker. But, unlike theCWs, probability density is distributed over just a very fewnumber of positions and could
not exceed this range of positions for arbitrary number of steps (it is bounded). This results into a steeper
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Gaussian like behavior, hence compact classical likewalk. Coinwith θ=π/12 leads to such behavior (see
figures 1(4) andB2(4)). (II)Classical like walk:where in contrast to previous case, theGaussian like probability
density distribution of thewalker is not bounded to specific range of positions and it is an increasing function of
steps. The rotation angle of θ=3.59π/5 is an example of this case (see figures 1(5) andB2(5)). The justification
for this classification and its subclasses are provided in appendix A.1.

3.1.3. Semi-classical/quantum like walk
In this class, thewalker enjoys some characteristics of the both quantumand classical walks. There is a significant
peak in the probability density distribution at center of position (or very close to it). But, other noticeable peaks
are also observed at left and/or right hand side of it. This results into amultimodal distribution for the
probability density. In general, it is hard to classify this distribution intomore subclasses. This is because each
example of this class has specific properties (similar to classical or quantumwalk)which are different from the
other examples. But in general, they have similarities to the cases where decoherence is present in theQW. For
example, in case of θ=2π/5, observed probability density distribution has the highest peak at the center of
positionwith two other smaller peaks at left and right hand sides of the distribution (see figures 1(6) andB2(6)).
This is similar to the case where systemhas decoherent coin (formore details, please see appendix A.2). Another
example for this class is walk with a coin characterized by θ=π/5. Amultimodal distribution is observed for the
probability density (see figures 1(7) andB2(7)).

3.1.4. Quantum like walk
For this class, thewalker could obtain a ballistic asymmetric like distribution in its probability density. The
highest peak in probability density is at right/left hand side of position’s center and its place is an increasing
function of the steps. Fast spread of thewalker’s wave function and large variance are other characteristics of this
class. These are the properties of usualQW.Coinwith rotation angle of θ=π/3 results into suchwalk (see
figures 1(8) andB2(8)).

The different behaviors of aQWwith a SDC (1) are summarized again in table 1.

Figure 1.Probability density versus position for different rotation angles. Results are shown for seven subsequent stepsT=6..12.
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Next, we studywalkswith a rotation angle q q q¢ = + j0. inwhich j is an integer running between 0 and 10.
We choose θ=π/3 (see figure 2). The goal is to examine how theQWbehaves for different rotation angles θ for
specific values between θ=π/3 to θ=2π/3. For θ=π/3, thewalker exhibits a quantum like probability
density. For odd integers of j, thewave function is completely localized at position−1while an identical semi-
Gaussian like distributionwith a peak at zero is found for j=2 and j=8.One can categorize this distribution
under semi-classical/quantum like behavior. For j=4 and 6, the distribution of probability density is also
identical and it shows classical like behavior (similar to the θ=3.59π/5 case). Finally, probability density
distribution of the case θ=2π/3 is identical to the one observed for θ=π/3. To summarize, we can see that
from θ=π/3 to θ=2π/3, probability density distributionwill bemodified as shown infigure 3.

It is worthwhile tomention that the probability density distributions of θ andπ−θ are always identical.

3.2. Step-dependent versus step-independent
Whencomparedwith a SICwalk, wefind the following behaviors forQWwith a SDC; for θ=0, both SDCand
SICwalks have identical distribution for probability density (seefigure 4(1)). As for the rotation angle of θ=π/2,
completely localizedprobability density distribution is observed for both SDCand SICbut at different positions
(seefigure 4(2)). As for theθ=π/3,wenotice two significant differences betweenSDCandSIC cases: (I) the
variance of SDCwalk is larger than SICone. (II)TheSIChas an asymmetric probability density distributionwith
sharp peaks at right and left hand sides of the distribution (not at the center).Whereas for SDC, there is a peak at the
center of position andprobability density of thehighest peak is larger comparing to SICwalk (seefigure 4(8)).

Figure 2.Probability density versus position for q q q¢ = + j0. where θ=π/3.

Table 1.Classification of observed probability density
distribution forwalkwith step-dependent coin.

Classes θ

Localized: free 0

Localized: bounded π/2

Localized: boundedwith periodic splitting π/4,π/6

Compact classical like π/12

Classical like 3.59π/5

Semi-classical/quantum like π/5, 2π/5

Quantum like π/3
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A significant difference between SDC and SICwalks could be seen for θ=π/4. For the SIC, this coin is
known asHadamard. Thewave functionwithHadamard coin is asymmetrically distributed over
-[ ]T T2 , 2 positions [37].Whereas, for the SDCwalk, the complete localizationwith periodic 50–50
distribution over two positions takes place for thewave function. In addition, the distribution of wave function
of the SIC case is an increasing function of the stepswhile for the SDC, it is limited to specific number of the
positions (see figure 4(3)). As for θ=π/5, the SIC provides wave functionwith larger number of the occupancy
over positions comparing to SDC. In addition, the highest probabilities are located at left and right hand sides of
distribution in SICwalk, whereas, the SDChas amultimodal distribution (seefigure 4(7)). In case of θ=2π/5,
larger variance in probability density distribution is observed for SDC comparing to SICwalk. For the θ=π/12,
in the SDCwalk, variance of wave function is limited to specific regionwhile for the SIC, it is an increasing
function of the steps. On the other hand, thewalkwith SDCpresents a compact Gaussian like distribution in
probability density, while the SIC enjoys an asymmetric behavior (seefigure 4(4)). The same properties could be
stated for θ=3.59π/5with smallmodifications (Gaussian like distribution and unbounded variance) (see
figure 4(5)).

Next, we study the number of positionswith non-zero probability density as a function of steps for SDC and
SICwalks (see figure 4(k)). Evidently, one can recognize the periodic behavior and complete localization that
were reported before for cases θ=π/4 andπ/12. For characteristic rotation angles of θ=π/5 and 3.59π/5,
comparing to SICwalk, SDCwalk has smaller number of positionswith non-zero probability density. This
confirms the classical like property that wasmentioned for these cases. In contrast, SDCwalkswith θ=π/3 and
2π/5 have higher number of positions with non-zero probability density comparing to SICwalk. This shows
that SDCwalk is faster than SICwalk for these rotation angles.

3.3.Discussion onphysical interpretations
A localized probability density distributionmay signal the presence of Anderson localization. About 60 years
ago, Anderson predicted that destructive interferences among scattering paths of a quantumparticle
propagating in a disorderedmediamay occur and results into a localization of thewave function [38]. Such
localizations have been extensively investigated in different physical contexts such as photons and photonic
lattices [39], Bose–Einstein condensate [40], microwaves in strongly scattering samples [41] and inverted
opals [42].

In the context ofQW, anAnderson localization could be realized as a case where themean-squared distance
of thewalker from the origin stays bounded even in the infinite-time limit. The theoretical existence of such
localization for theQWwas pointed out in [43, 44]. In [19], the Anderson localizationwas observed in one-
dimensional split-step quantumwalk. This localizationwas due to introduction of static, symmetry-preserving
disorder in the parameters of walk. Experimentally, an Anderson localizationwas observed for photonic
implementation of a one-dimensional quantumwalk in the presence of decoherence [14, 45] and pairs of
polarization-entangled photons in a discrete quantumwalk affected by position-dependent disorder [46]. In all
of thementioned papers, the existence of Anderson localizationwas shown to be rooted in the presence of
disorder in theQW. Fromour discussion above, we see that awalkwith a SDC can result into anAnderson
localizationwithout any disordermust occur. In otherwords, it was shown that a unitary evolution of awalk
without any specialmodification can result into probability density distributions similar to the ones in the
presence of disorder. This shows thatQWwith a SDC can be utilized to realize the processes such as Anderson

Figure 3.Modification in thewalker’s behavior for q q q q p= + = =¢ /j j0. with 3 and 1, 2, ...,10.
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localization in amore simplified framework. Inmany experimental setups,moreover, it is simpler to use a SDC
walk to achieve Anderson localization and exploiting its properties, instead of using disorder-included systems
(see for example [47]).

Previously, it was shown that transition fromQW into classical one could be achieved by introducing the
decoherence into system through; (I) subjecting the decoherence into coin of system [48, 49]. (II) Introduction
of randomphase shifts to the coin particle [50]. (III)Measurements performedwith timing provided by the Levi
waiting time distribution [51]. All of these processes require introduction of decoherence into the system. The
SDCpresented in this paper provides the possibility of achieving classical like behaviorwithout introduction of
the decoherence into system. This indicates that while we are employing the unitary operators, it is possible to
have classical probability density distribution for thewalker. This enables us to avoid certain complex
calculations (formore details please see [32, 33] and references within). This results into amore simplified
framework to study theQWs and its applications for classical like behavior [13, 14, 45, 52].

Figure 4. Step-dependent coin (blue colored diagrams) versus step-independent coin (red colored diagrams).
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Existence of different probability density distributions (ranging fromquantum like to complete localization)
for SDCprovides uswith amulti-purposeQW.Due to these different classes of the probability density
distribution, one can develop amore adaptable quantumwalk-based search algorithm [53]. Themain issue that
must be taken into account is the capability of coherentQW.An isolatedQWsystem (absence of decoherence),
with certain considerations (here, it is step dependency of the coin) has the capability of providing large number
of the possibilities for thewalker. This indicates thatQWhas the possibility of addressing complicated
simulations in the present literature in amore simplified framework.

In [33], three key points are introduced for building an algorithmbased on quantumwalks: (I) the unitary
operators (II) themeasurement operators (III) decoherence effects in order to control the quantumwalk
algorithmic effects bymanipulating probability distributions ormimicking natural phenomena. Specially, in
[9], the importance of decoherence formanipulating probability density distribution of thewalker for
mimicking natural phenomenawas highlighted. Aswe can see, SDC randomwalk has the possibility of
addressing decoherence-includedQW.This indicates that for development of algorithm, the third condition
could be relaxed and only the twofirst conditions are left. Thefirst condition is also automatically satisfied due to
unitary nature of the coin-shift operator of SDCwalk. Therefore, only the second condition remains to be
addressed.

In quantum simulation, themain goal is providing quantum systemswhich could be programmed tomodel
the behavior of other quantum systems [9, 54]. Due to the diverse behaviors and possibilities for SDCwalk, it is
clear that the SDCwalk could catch the idea of ‘programmable quantum system’ in a better suit. The general
structure of the SDCprovides a simplified framework formanipulating the quantum system. The fact is that
SDChas a comfortable adaptability for providing different probability density distributions whichmakes it ideal
in terms of programmability for quantum computation/simulation purposes. Finally, the comparison for
quantum like behavior case of SDC versus SIC showed that the variance in SDC is bigger. This indicates a faster
spread of wave function of thewalker for SDC. This difference in the variance could be employed to conclude
that algorithms based on SDC could be faster comparing to their SIC counterpart [37, 55]. Therefore, quantum
like behaviors observed for SDCwalks are showing better efficiency regarding the hitting andmixing times
comparing to SICwalks [56].

QWs can be used as universal generators of probability density distributions [57]. In [58], the unitary
equivalence of classes ofQWswith different SU(2) coin operators was shown and it was pointed out that the
nonequivalentQWs can be distinguished by a single parameter. In fact, it was pointed out that walkwith a
dynamical coin is equivalent to electricQWs.Due to these properties and the fact thatQWbeing a universal
computational primitive, there has been a growing interest in usingQWs as a tool for state engineering, initial
state preparation and state transferring. For example, it was pointed out that using the localization like effects in
QWs, one can engineer a state of walker and obtain specific desired details for its state [59, 60]. In [61], a beautiful
theoretical frameworkwas proposed for quantum state engineering of arbitrary superpositions of thewalkers
sites. Experimentally, Nitsche et alusedQWswith dynamical control to prepare non-localized input states and
implement a state transfer scheme for an arbitrary input state [62]. In this direction, we can see that walkswith a
SDC can also be used as a stand alone framework for generating desired probability density distributions,
preparing initial state and/or engineer them. The classification thatwe provided shows that each class actually is
made out of different subclasses. For example, for localizedwalk, we showed that there are at least three
suclasses. In classical likewalk, we see two subclasses that are corresponding toGaussian distributions with
differentGaussian parameters (see appendix A.1). In addition, wematched our results in semi-classical/
quantum likewalkwith those in the presence of decoherence (see appendix A.2). These were some of the issues
that yet to be addressed in literature. That being said, we see that for state engineering and preparation purposes,
walkswith a SDChas high capability. In following sections, we givemore details and comparison in the context
of entropy.

4. Experimental implementation

The next issue thatwe should address is the feasibility of an experimental implementation for SDCwalk. The
experimental implementation that we have inmind is inspired by an earlier work of Schreiber et al [13]. The
setup employs passive optical elements in order to preform thewalk. Thewalker is a photon and internal degrees
of freedom are its polarizations. The coin operator could be realized by a half-wave plate changing the
polarization of the photon. The reasonwhy such experimental setup is of interest for us is due to itsflexibility in
its coin operator. Thematrix representation of the coin operator changing the polarization of the photon is given
by [13]
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inwhich η is the rotation angle of the half-wave plate relative to one of its optical axes. Considering that the coin
operator in theQW introduced in this paper ismodified at each step, the setup of coin in this experimental
scheme is ideal one.

The initial state of thewalker could be provided by a combination of a half- and quarter-wave plates. The
coin operator is half-wave plate and step operation is given by an optical feedback loop. A pulsed laser source
provides the photonʼs wave packet while these pulses are attenuated to the photonʼs level by using density filters.
The internal degrees of freedomof the photon are horizontal and vertical polarizations. In each step, the
horizontal and vertical components of the polarization are separated spatially and temporally, then recombined
and is sent back to the input beam splitter for the next step. In the next step, the application of coin operator
creates a superposition of states which their analyze in the internal degree of the photon (horizontal and vertical
polarizations) displays interference. Each step of thewalk in this setup corresponds to one loop. At each step, the
photon could be coupled out of the loopwith 50%probability. If such case takes place, an avalanche photodiode
registers a click. This click is recorded by a computer via a time-to-digital converter interface and combination of
these clickswhich are due to a series of consecutive runs of the experiment, characterizes thewalk. Among the
important properties of this experimental setup, one can point out: (I) a high degree of coherence and the
scalability of system. (II)Keeping the amount of required resources constant as thewalkerʼs positionHilbert
space is increased. (III)Theflexibility of setupwhichwas essential for thewalk introduced in this paper.
It is worthwhile tomention that another experimental setupwas also proposedwith similar ingredients by
Broome et al inwhich a tunable decoherencewas added into the system [14].

5. Shannon entropy

Of the fundamental concepts in quantum information and computing is the Shannon entropy [35]. The
Shannon entropywasfirst introduced in 1948 byClaude Shannon [36] in order tomeasures the amount of
uncertainty that is present in the state of a physical system. The Shannon entropy has been employed to address
different issues in physical systems such as processing and transmitting quantum information [63], atomic
physics [64], crystallography [65], ultracold trapped interacting bosons [66] and quantifying the information
encoded in complex network structures [67]. In the context ofQW, the Shannon entropywas computed and
numerically presented for different types of generalizedHadamard coin in [68, 69]. In addition, limit theorems
for the Shannon entropy and its valuewere computed by using a path countingmethod in [70].

Here, wewould like to address the Shannon entropy associated to SDCwalk and compare it with SIC case. In
the context of QW, the Shannon entropy is calculated using probability densities of the positions/internal
degrees of freedom that are occupied bywave function of thewalker in each step. Therefore, the entropy is step-
dependent. Also, one can introduce two different entropies forQW; (I) SC, associated to internal degrees of
freedomor simply coin space. (II) SP, related to position space. The Shannon entropy for these two subspaces is
given by [35, 68, 70]

å= - ( )S P PLog , 8P
n

n n

å= - ( )S P PLog , 9C
i

i i

inwhich Pn andPi are the probability density of the position n and internal degrees of freedom i, respectively.
The logarithm is given in base of e. According to (8) and (9), for fully localizedwalk, the entropy is zero (which is
physically expected). Based on previous section, the entropy as a function of step is given for SDC (blue colored
lines) and SIC (red colored lines)walks for different rotation angles infigure 4(q).

For the entropy associated to probability density distribution in position space (SP), the following could be
stated:

(I) In SIC case, the entropy is an increasing function of the steps, irrespective of considered θ.Whereas, for
the SDC case, the general behavior of entropy depends on θ.

(II) In general, the entropy of SDCwalk is smaller than its corresponding SIC one. This is even valid for the
θ=π/3where thewalker is faster and its variance is bigger comparing to its SIC counterpart (see figure 4(q)).
The only exception is θ=2π/5 (see figure 4(15)). This is because, for this coin, SDCwalk has amore
symmetrical probability density distribution in position space comparing to its SIC counterpart. It is a well
established concept that systemwithmore symmetrical probability density distribution has higher entropy [71].

(III)The periodic behavior and localization in probability density distribution of SDCwalk could also be
detected in entropyʼs evolution. The periodic behavior is where identical entropy is found and repeated on a
regular basis. Localization happenswhere entropy is zero.
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(IV)The evolution of entropy for SDCwalk shows that: although in each step the number of positions
occupied bywave function of thewalker increases, this does not necessarymean that entropy is also increasing
(in contrast to SICwalk). In fact, for certain steps,minimums are formed for the entropy.

In case of the entropy associated to probability density distribution in coin space (SC), one can highlight the
following points:

(I) Since the coin space contains two elements (two internal degrees of freedom), entropy of the coin space is
bounded by an upper limit. The highest value of SC is obtainedwhen probability density distribution in coin
space is equally distributed over these two elements. Therefore, themaximum SC that walker with two internal
degrees of freedom can obtain is 0.693 147.

(II) Forwalkswith SIC, a damped oscillation is observed for SC. This shows that by increasing the number of
steps, the entropy of coin space converges to a specific value. For SDC case, the general behavior depends on the
θ. For semi-classical/quantum and quantum likewalks, a damped oscillation is also seen for the SC (see lower
panels offigures 4(15) and 4(17)). In contrast, for localized and compact classical likewalks, the entropy of coin
space has periodic behavior. Finally, for the classical likewalk, it has an irregular behavior but converging one.

(III)The complete localization for thewalker takes placewhen both the entropy of position and coin spaces
are zero. Such cases take place for specific steps in localized and compact classical likewalks (see figures 4(12)
and 4(13)).

In order to understand the differences between entropy of SDC and SICwalks inmore details, we investigate
the relative entropy. To do this, we use Kullback–Leibler divergence whichmeasures howone probability
density distribution diverges from the other one. TheKullback–Leibler divergence is given by

å=
¢

( )D P
P

P
Log , 10P

n
n

n

n

å=
¢

( )D P
P

P
Log , 11C

i
i

i

i

where ¢Pn and ¢Pi are theprobabilitydensityof thepositionn and internal degreesof freedom i for SICwalk, respectively.
Kullback–Leibler divergence is zerowhen theprobabilitydensitydistributions for SDCandSICwalks are identical.The
results for different rotation angles arepresented infigure5. ForKullback–Leibler divergenceof position space,DP: In
general,wehave the following relation forKullback–Leiblerdivergenceofdifferent rotationangles
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This relation reminds us the earlier classification for different rotation angles.We see that in this context as
well, our classification could be applied. The smallest Kullback–Leibler divergence between SDCwalk and its

Figure 5.Kullback–Leibler divergence between SDC and SICwalks for different rotation angles.
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SIC counterpart is observed for the quantum likewalk (θ=π/3)while the largest one is found for localizedwalk
(θ=π/4). Overall, the Kullback–Leibler divergence between SDC and SICwalks increases but its rate of
increment depends on θ.

For Kullback–Leibler divergence of coin space,DC: in some steps,DC becomes zero indicating that
probability density distributions in coin space for SDC and SICwalks are identical. In general, some semi-
periodic behavior is observed for different rotation angle. The only exception is for θ=π/12.Overall, we notice
thatDC tends to decrease indicating that probability density distributions in coin space for SDC and SICwalks
becomemore similar to each other.

The Shannon entropy is oneof the central concepts in quantum information theory.According toNielsen and
Chuang [35], this quantitymeasures the amount of uncertainty (information/randomness) that is present in the
state of a physical system.Therefore, smaller entropy indicates loweruncertainty (information/randomness).
Throughour calculations, it was shown that SDCwalk enjoys smaller entropyof the position space comparing to its
SIC counterpart (with some exceptions). Therefore, the SDC imposes smaller uncertainty in the state ofwalker
comparing to SIC.One can also conclude that amount of information (randomness) acquired/modified through
SDCevolution is smaller than the one obtained/modified through SICevolution. In the context of data
communication, entropy provides the limit on length that a lossless compression encoding of thedata could be
achieved. If the entropyof source is smaller than the capacity of communication channel, the receiver could reliably
attains the communication from the source. Therefore,we see that SDCcase provides an entropywhichwidens the
limiting range and includes larger possibilities in the context of data communication (comparing to SICwalk). In
addition,we should oncemore emphasize on the fact that despite expectation, the increase in number of the
positions occupied bywave functionof thewalker does not necessarilymean increase in entropy. The entropy
measures disorder in the system.Generally, the common sense indicates that if thewave functionof thewalker is
dispersed over larger number of the positions between two steps, the entropy should increase. But aswe saw for SDC
case, this is not the case. In fact, thewider dispersionover position resulted into smaller entropy for specific steps.

6. Conclusion

In this paper, we studied a class ofQWwith a SDC. Such a coin can result in a reach behavior of thewalker. It was
shown, in particular, that such a coinmay result, for different choices of the rotation angle, into four
distinguishable behaviors in probability density of walker including: complete localization, (compact) classical
like, semi-classical/quantum like and quantum like. This diversity in probability density distribution signals the
controllability overQWwhere controlling factor is rotation angle. In the context of speed, it was shown that the
walkwith a SDC could be faster (slower) comparing to its step-independent counterpart.

In addition, we studied the entropy of walkswith the SDC and compare it with its corresponding SIC case.
The entropywas calculated for two cases of probability density distributions in coin (SC) and position (SP)
spaces. Interestingly, it was shown that for thewalkwith SDC, the SP is smaller than thewalkwith SIC (with
some exceptions). In addition, it was shown that general behavior of the SP as a function of steps, depends on
choices for the rotation angle inwalkwith a SDC.Whereas for walks with the SIC, irrespective of choices for
rotation angle, amonotonic behavior was observed for SP as a function of steps. Finally, it was pointed out that
by increasing the number of positions occupied bywave function of thewalker, SP does not increase. In fact, for
special SDCs, SP could decrease. Regarding to the SC, a damped oscillation behaviorwas observed forwalks with
SIC. In the contrast, for SDCwalk, three distinctive behaviors were observed for SC as a function of steps: a
damped oscillation, periodic and irregular behaviors.

The study conducted in this paper can be generalized also tomulti-walker systems, higher dimensionalwalk as
well as to (decoherent)walks that couple to their environment. TheseQWs canbe applied to explore topological
phases [17, 72] and especiallynew classes of such topological phases. In addition, itwouldbe interesting to see how
different entropy properties thatwere obtained for thewalker here couldbe employed in the context of data
compression, communication, and cryptography.Wewill leave thesematters for futureworks.

AppendixA. Justification for classification

Through out the paper, it was shown that using SDC results into obtaining diverse probability density
distribution in position space.We classified these distributions according to their properties. Among them,we
had the classical like and semi-classical/quantum like behaviors.

A.1. Classical like behavior
The classical behaviors are the ones that present normal (Gaussian) like distributions for their probability
density distributions. The probability density of the normal distribution is given by
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whereμ is themean or expectation of the distribution, σ is the standard deviation, andσ2 is the variance. In our
study, we had two subclasses for classical like behaviors for different rotation angles: compact and usual classical
likes. To show thatmentioned cases actually haveGaussian like distribution, we study the 6th step of these walks
and compare their probability density distributions withGaussian ones. The task is to estimate the parameters of
theGaussian distribution that would correspond to thementioned cases. This could be done by using the
number of positions occupied by thewave function and their probability density. The results are given in
following diagrams (see figure A1).

Evidently, by tuning theGaussian parameters, the probability density distributions of the SDCQWwith
considered rotation angles could be highlyfittedwith those ofGaussian distributions. Themean variance
considered forfitting theGaussian distributions show that one of these distributions is indeedmore compact
comparing to the other one. These facts justify our earlier classification of thewalks with these coins into classical
like behavior and their corresponding subclasses. Although this is done for the 6th step, the same could be done
for other steps aswell. It should be noted that in each step, theGaussian parameters would be different.

Figure A1.Probability density distribution for 6th step.
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A.2. Semi-classical/quantum like
The next classification that we address is semi-classical/quantum like. To do so, we consider thewalkswith
decoherence. It is a well established concept that depending on the amount of decoherence inQW, system’s
behavior could range frompurely quantum like to classical one [21, 73, 48]. There are differentmethods to
include decoherence inQW.One of them is bymeasuring the coin and/or position space after each step.
Inclusion of decoherence results into losing the unitary nature of the process. Therefore, one should use density
operator formalism to address the nonunitary evolution of thewalk at each step given by [21, 73, 48]

 
 

r r r

r

+ = - - +

+

ˆ ( ) ( ) ˆ ˆ ( ) ˆ ˆ ˆ ( ) ˆ
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, 13
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P P

where C and P are projections to coin and position spaces, respectively. q and s are the probabilities of a
decoherence event happening per time step.Here, we restrict our study to s=0. The value of decoherence
parameter will be within the range of 0�q�1, where q=0 and q=1 correspond to purely quantumand
classical like behaviors, respectively. The coin operator of the decoherence case isHadamard. For SDCwalk, we
consider the rotation angle of θ=2π/5which had semi-classical/quantum like behavior.We consider three
different initial states. The results are presented infigure A2 for the 10th step.

Accordingly, we observe that by tunning the decoherence parameter, the results of SDCwalkwith rotation
angle of θ=2π/5 andwalkwith decoherence could befitted together. Tomathematically confirm this issue, we
investigate the fidelity for these two probability density distributions given by

å=
⎛
⎝⎜

⎞
⎠⎟( ) ( )F P Q P Q, , 14

i
i i

2

where Pi andQi are the probability density of the position i for SDC and decoherent walks, respectively. The F(P,
Q) is bounded by  ( )F P Q0 , 1where F(P,Q)=1 corresponds to have identical distributions. Our
calculations shows thatfidelity for these cases ismore than 0.97 (please seefigure A2), hence twowalks being
fitted together. Since q< 1, thewalkwith decoherence is semi-classical/quantum like. Therefore, our earlier
classification for SDCwalkwith rotation angle of θ=2π/5 is justified. Although this is done for 10th step, the
same process could be done for other steps aswell confirming the validity of our argument. It should be noted
that if one considers ¹s 0, the fittingwould even improve further. For further comparison between SDCwalk
with rotation angle of θ=2π/5 and decoherent one, please compare figure B2(6)withfigure 2 in [73].

Appendix B

In this section, we expand the discussion of walker’s behavior with SDC for different rotation angles.Wewill
construct the Bloch vectors at each position for subsequent steps. The results are presented infigure B1.

For subclasses of localizedwalk, we have the followingmodifications in internal degrees of freedomof the
walker: in free localizedwalk (θ=0), the distribution over internal degree of thewalker remains unchanged at
each step (seefigure B1(1)). In bounded localizedwalk (θ=π/2), in every two steps, the Bloch vectors remain
the same and then rotated clockwise with the rotation angle ofπ/2 (see figure B1(2)). For θ=π/4, we have two
specific behaviors: (I)distribution equally over two positions; inwhich the Bloch vector at one position is
perpendicular to the other one. (II)Complete localization; where distribution in coin space could be in
superposition (steps 3 and 6 infigure B1(3)).

Figure A2.Probability density distribution for 10th step; Continuous line: SDCwalkwith θ=2π/5. Dashed line: decoherence walk
withHadamard coin and q=0.8.
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For other caseswherewehave distribution inwave function of thewalker,we canhighlight two important
points:first of all, the Bloch vectors at the leftmost and rightmost hand sidepositions are always perpendicular to
eachother (seefiguresB1(5)–B1(8)). In these positions, the Bloch vectors couldbe rotatedwith rotation angle ofπ
or remains the same. The stepswhere rotation is taking place is different for the leftmost and rightmost hand side
positions (depending highly on the coin under consideration). The only exception is forwalkwith θ=π/12. In
this case, thewave function of thewalker periodicallyfirst becomes distributed and then completely localized.
When thewave function of thewalker becomes distributed, Bloch vectors at the leftmost and rightmost hand side
positions are perpendicular to each other. Butwhen thewave function of thewalker starts to localize again, this
perpendicular property is vanished and at the leftmost and rightmost hand sidepositions, theBloch vectorswould
be indifferent superpositions (seefigureB1(4)).Wehave also plotted the chessboarddiagrams forprobability
density distribution inposition space for 50 steps of SDCwalkwithdifferent coins infigure B2.

Figure B1.Reconstructed Bloch vectors at each position for eight subsequent stepsT=0..8.
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