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Abstract

We report on the possibility of controlling quantum random walks (QWs) with a step-dependent coin
(SDCQ). The coin is characterized by a (single) rotation angle. Considering different rotation angles,
one can find diverse probability distributions for this walk including: complete localization, Gaussian
and asymmetric likes. In addition, we explore the entropy of walk in two contexts; for probability
density distributions over position space and walker’s internal degrees of freedom space (coin space).
We show that entropy of position space can decrease for a SDC with the step-number, quite in contrast
to a walk with step-independent coin (SIC). For entropy of coin space, a damped oscillation is found
for walk with SIC while for a SDC case, the behavior of entropy depends on rotation angle. In general,
we demonstrate that quantum walks with simple initiatives may exhibit a quite complex and varying
behavior if SDCs are applied. This provides the possibility of controlling QW with a SDC.

1. Introduction

Classical random walks (CWs) are known (stochastic) processes that have been used for developing stochastic
algorithms [1], in studying biological behavior [2], for image segmentation [3] as well as in earthquake
simulations [4]. A classical random walk is typically described in terms of a coin and some particular rule, how
the outcome of a coin toss affects the motion of a walker. For different possible outcomes of the coin, the walker
will then move to the sites available for it. In general, a Gaussian probability density distribution is obtained for
most of the CWs.

In a quantum random walk (QW), in contrast, the behavior of the walker is governed by quantum mechanics
[5]. Both, the coin and the movement (shift) of the walker are represented by two operators that are applied to
the walker at each step of the walk: while the shift operator moves the walker simply to the left or right on a mesh,
the (so-called) coin operator just acts on the internal degrees of freedom of the walker. In a QW, therefore, the
walker directly interacts with the coin and this leads to a number of properties such as: a ballistic spread of the
walker’s wave function or a non-Gaussian probability density distribution [5]. In fact, QWs have been found to
provide an efficient framework for: developing better (quantum) algorithms [6, 7], increasing the processing
power for solving problems [8] and in simulating complex physical systems [9]. It was shown, moreover, that
QWs can be utilized as a universal computational primitives [10, 11] in order to simulate other quantum
processes. In addition, various experimental realization of QWs were demonstrated by means of ultracold atoms
[12], photons [13, 14] orions[15, 16] could simulate a nontrivial one-dimensional topological phase [17-19].

Because of these properties, different classes of QWSs have been explored in the past decade, including walks
with multiple [20] or decoherent coins [21], aperiodic walks [22], walks in two and more dimensions [23] or with
multiple walkers [24]. Moreover, the concept of QWs have been applied to position-dependent walks [25], to
time-dependent walks that remember their history [26—-29] as well as to (so-called) spinor Bose—Einstein
condensate [30, 31].

Since QWs can be utilized for simulating other quantum systems or to program and engineer different
quantum algorithms [32, 33], a high control is desirable on the behavior and time-evolution of the walker. In
order to enhance it, decoherent walks have been proposed in the literature [32, 33] i.e. walks with a (non-unitary)
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coin which introduces some coupling with the walker’s environment. However, such a coupling requires the use
of density operators and makes the computations very complex. Typically, such a decoherence does not enable
one (so easily) to further explore the symmetry of the system, and may result into a loss of (parts of the)
probability density and unitarity nature of process [32, 33]. In addition, the reliability, complexity and efficiency
in simulating quantum systems with decoherence have been challenged, see [34]. Therefore, the question
remains to which extent, we can have a (coherent) walk with just unitary coin and shift operators and for which
the desired probability density distribution is obtained by adjusting one (or a few) parameters. Below, we
demonstrate that such a control and behavior of QWs can be achieved by applying a step-dependent coin (SDC).

Another question of this work refers to the amount of information that can be processed by a QW. Since
every (quantum) process that transforms the state of a system also changes the amount of information, it is
important to understand how a SDC affects the information of the system, compared to a usual QW. To address
this question, we shall study and discuss below also the Shannon entropy of the walks [35]. The Shannon entropy
was first introduced in 1948 by Claude Shannon [36] in order to measures the amount of uncertainty that s
present in the state of a physical system. Here, we show that walks with an SDC may exhibit a diverse behavior of
the entropy, quite different from the usual QW with step-independent coins (SICs).

The outline of the paper is as follows. In the next sections, we first introduce our walk with a SDC and recall
some of its properties. In section 3, then, simulations are performed and analyzed for different coins, together
with a short classification of the corresponding probability distributions. We also discuss a possible
experimental realization of such a QW in section 4 and the entropy as a function of the number of steps in
section 5. A brief summary and conclusions are finally given in section 6.

2. QW with SDC

When compared with CWs, many features of QWs arise from the interplay of the coin and walker, i.e. from the
walker’s internal degrees of freedom. Due to this interplay, QWs may exhibit a much richer behavior of its
probability distribution than CWs (if different coins and initial states are considered). Of course, this freedom in
choosing the coin and state of the walker can be employed also to find novel probability density distributions for
the walker after a given number of steps which is one of central motivations of this investigation. We here apply a
SDC of the form

C =cosTH [0)c (0] + sinTO [0)c (1]
+sinTf [1)c(0] — cosTO |1)c(1], (1)

in which T refers to the number of step and where the rotation angle 6 is characteristic for the given walk. The
factor which enables controlling the walk is T6. Such a SDC can be realized, for example, with photons if their
polarization are rotated by the (step-dependent) angle T9[13, 14]. Such a step-dependent ‘rotation’ can be
achieved also with trapped ions if proper (resonant) radio-frequency pulses are applied to the internal state of the
ions [15]. Below, we shall therefore refer to 8 simply as the (fixed) rotation angle that is characteristic for a
particular coin. The coin operator (1) is unitary and independent of the particular choice of § and number of
steps, and thus reversible [16]. Indeed, this property helps simplify many computations and ensures the
symmetries which are required for exploring topological phases [17] and for employing it as a single-qubit

gate [35].

For a (single-qubit) walker on a linear mesh, the Hilbert space, H, of the coin space is simply spanned by
{]0), |1)}. The overall operator of the (quantum) walk consists out of two parts: (i) the coin operator that just acts
upon the internal degrees of freedom and (ii) the shiff operator that moves the walker along the mesh, in
dependence on the internal state of the walker. Here, we consider the (standard) conditional shift operator

S =10)c (0] @ S i + L) (il
+ (1l @ Y i = i, ()
and where the position (Hilbert) space, Hp, is spanned by {|i)p: i € Z}. Of course, the QW proceeds overall

within the product space H = Hp ® Hc and by applying successively the evolution operator U = S C upon
the initial state, say

=T
|¢>T = |¢>ﬁn =U |¢>int- (3
In general, it is possible to start at position |0)» with any initial state
[P)ine = (@10)c + bl)c) @ [0), )

and with a and b just satisfying the normalization condition, [a]> + |b]* = 1. For the sake of simplicity, we shall
employ below the following initial states to perform our QW
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[#)int = 10)c © [0)p,
[P)ine = [1)c @ [0)p.

The coin-shift operator can be applied to these initial states and gives rise, independent of the particular
values of fand T'to

1th
[0)c ® [0)p = sinf |[1)c ® |—1)p + cosf |0)c @ [1)p

2th
= cos20sinf [1)c ® |—2)p + sin20[sin b [0)c + cosb [1)c] @ |0)p + cos26 cosb [0)c & |2)p...

Tth T T

= |d)gn = (H cosn@] [0)c @ |T)p + ... + (—l)T“[H %]sin@ e ® |—T)p, (5)
n=1 1oy COS

1th .
[)c ® [0)p = cost [1)c @ |—1)p + sind [0)c @ [1)p

2th

=t>c0529 cosd |1)c ® |—2)p + sin20[—cosf |0)c + sind [1)c] @ [1)p + cos26 sinb [0)c @ [2)p...

Tth T 0 r

=[Py = (H %)sin@ 0)c @ |T)p + ... + (—I)T(H cosnﬁ] [1)c ® |—T)p. (6)
n=1 n=1

From expressions (5) and (6), we find that the walker generally occupies T + 1 positions after T'steps, i.e. there is
anon-zero probability at T + 1 positions. A maximum of 2” terms may arise after T'steps for occupied positions
for the wave function of the walker. For an odd number of steps, only the odd positions will have non-zero
probability density, while the same is true for the even positions after an even number of steps. Moreover, the
walker can generally occupy only positions within [— T, T]. In the next section, we shall make use of these
properties to further classify the behavior of walker, and hence its probability density distribution in position
space, if different rotation angles are considered.

3. Simulation of the walk

3.1. Classification

The stepwise evolution (equations (5) and (6)) of the QW shows that the state and probability distribution of the
walker sensitively depend on the particular choice of the rotation angle 6. Below, we shall therefore highlight the
possible classes of behavior for the walker with different choices of 8. We compare their behaviors with those of a
SIC in order to better understand the effects of a SDC upon the evolution of a walk. We focus on the wave
function and the probability density distribution in position space. All the simulations are done for the initial
state of [0)c ® [0)p.

3.1.1. Localized walk

In this class, the probability density distribution is whether completely localized at some position and/or it is
periodically distributed only over two positions. In other words, at each step, the walker is relocated from one
position into another without any distribution in its wave function. This property of relocation and absence of
the distribution in wave function remain unchanged for arbitrary number of steps. In general, this class contains
three subclasses; (1) free localized walk: in which after T steps of the walk, the probability density of the walker at
position T'is 1 while at other positions, it is zero. An example of this case is § = 0 (see figures 1(1) and B2(1)). (II)
Bounded localized walk: where the relocation of walker is limited to some specific range of positions. The walker
starts at position 0 and after arbitrary steps, it returns to position 0 again. In contrast to the previous case, the
probability distribution of the walker oscillates at different and within a specific range of positions. The rotation
angle of § = /2 is an example of this walk (see figures 1(2) and B2(2)). (II) Bounded localized walk with periodic
splitting: here, at particular number of steps, the probability density distribution is completely localized at one
position. While at other step numbers, the probability density of the walker is distributed over two positions.
The walk is limited to specific range of positions and after several steps, the same behavior and probability
density distributions are repeated. Using coins with # = 7/4 and § = 7/6 results into this behavior (see

figures 1(3) and B2(3)).

3.1.2. Classical like walk

The behavior of walker for this class results into Gaussian like probability density distribution. The speed and the
variance of walker is relatively smaller than usual QWs and similar to CW. There are two distinctive subclasses
for this class; (II) compact classical walk: in which a Gaussian like probability density distribution is found for the
walker. But, unlike the CWs, probability density is distributed over just a very few number of positions and could
not exceed this range of positions for arbitrary number of steps (it is bounded). This results into a steeper
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Figure 1. Probability density versus position for different rotation angles. Results are shown for seven subsequent steps T = 6..12.

Gaussian like behavior, hence compact classical like walk. Coin with § = /12 leads to such behavior (see

figures 1(4) and B2(4)). (I) Classical like walk: where in contrast to previous case, the Gaussian like probability
density distribution of the walker is not bounded to specific range of positions and it is an increasing function of
steps. The rotation angle of § = 3.597/5 is an example of this case (see figures 1(5) and B2(5)). The justification
for this classification and its subclasses are provided in appendix A.1.

3.1.3. Semi-classical/quantum like walk

In this class, the walker enjoys some characteristics of the both quantum and classical walks. There is a significant
peak in the probability density distribution at center of position (or very close to it). But, other noticeable peaks
are also observed at left and/or right hand side of it. This results into a multimodal distribution for the
probability density. In general, it is hard to classify this distribution into more subclasses. This is because each
example of this class has specific properties (similar to classical or quantum walk) which are different from the
other examples. But in general, they have similarities to the cases where decoherence is present in the QW. For
example, in case of § = 27/5, observed probability density distribution has the highest peak at the center of
position with two other smaller peaks at left and right hand sides of the distribution (see figures 1(6) and B2(6)).
This is similar to the case where system has decoherent coin (for more details, please see appendix A.2). Another
example for this class is walk with a coin characterized by = 7/5. A multimodal distribution is observed for the
probability density (see figures 1(7) and B2(7)).

3.1.4. Quantum like walk
For this class, the walker could obtain a ballistic asymmetric like distribution in its probability density. The
highest peak in probability density is at right/left hand side of position’s center and its place is an increasing
function of the steps. Fast spread of the walker’s wave function and large variance are other characteristics of this
class. These are the properties of usual QW. Coin with rotation angle of § = 7/3 results into such walk (see
figures 1(8) and B2(8)).

The different behaviors of a QW with a SDC (1) are summarized again in table 1.
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Figure 2. Probability density versus position for 8’ = 6 + 0.j6 where § = /3.

Table 1. Classification of observed probability density
distribution for walk with step-dependent coin.

Classes 0
Localized: free 0
Localized: bounded /2
Localized: bounded with periodic splitting w/4,7/6
Compact classical like w/12
Classical like 3.597/5
Semi-classical /quantum like w/5,27/5
Quantum like /3

Next, we study walks with a rotation angle 8 = 6 + 0.j¢ in which jis an integer running between 0 and 10.
We choose § = 7/3 (see figure 2). The goal is to examine how the QW behaves for different rotation angles ¢ for
specific values between § = 7/3to @ = 27/3.For § = m/3, the walker exhibits a quantum like probability
density. For odd integers of j, the wave function is completely localized at position —1 while an identical seri-
Gaussian like distribution with a peak at zero is found forj = 2 andj = 8. One can categorize this distribution
under semi-classical/quantum like behavior. For j = 4 and 6, the distribution of probability density is also
identical and it shows classical like behavior (similar to the § = 3.597/5 case). Finally, probability density
distribution of the case # = 27/3 is identical to the one observed for § = 7/3. To summarize, we can see that
from § = 7/3to 6 = 27/3, probability density distribution will be modified as shown in figure 3.

It is worthwhile to mention that the probability density distributions of  and = — 6 are always identical.

3.2. Step-dependent versus step-independent

When compared with a SIC walk, we find the following behaviors for QW with a SDC; for § = 0, both SDC and
SIC walks have identical distribution for probability density (see figure 4(1)). As for the rotation angle of § = 7/2,
completelylocalized probability density distribution is observed for both SDC and SIC but at different positions
(seefigure 4(2)). As for the § = m/3, we notice two significant differences between SDC and SIC cases: (I) the
variance of SDC walk is larger than SIC one. (IT) The SIC has an asymmetric probability density distribution with
sharp peaks at right and left hand sides of the distribution (not at the center). Whereas for SDC, there is a peak at the
center of position and probability density of the highest peak is larger comparing to SIC walk (see figure 4(8)).
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A significant difference between SDC and SIC walks could be seen for § = 7/4. For the SIC, this coin is
known as Hadamard. The wave function with Hadamard coin is asymmetrically distributed over
[—T/~2, T/2]positions [37]. Whereas, for the SDC walk, the complete localization with periodic 50-50
distribution over two positions takes place for the wave function. In addition, the distribution of wave function
of the SIC case is an increasing function of the steps while for the SDC, it is limited to specific number of the
positions (see figure 4(3)). As for § = 7/5, the SIC provides wave function with larger number of the occupancy
over positions comparing to SDC. In addition, the highest probabilities are located at left and right hand sides of
distribution in SIC walk, whereas, the SDC has a multimodal distribution (see figure 4(7)). In case of § = 27/5,
larger variance in probability density distribution is observed for SDC comparing to SIC walk. For the § = 7/12,
in the SDC walk, variance of wave function is limited to specific region while for the SIC, it is an increasing
function of the steps. On the other hand, the walk with SDC presents a compact Gaussian like distribution in
probability density, while the SIC enjoys an asymmetric behavior (see figure 4(4)). The same properties could be
stated for & = 3.597/5 with small modifications (Gaussian like distribution and unbounded variance) (see
figure 4(5)).

Next, we study the number of positions with non-zero probability density as a function of steps for SDC and
SIC walks (see figure 4(k)). Evidently, one can recognize the periodic behavior and complete localization that
were reported before for cases § = 7/4 and 7/12. For characteristic rotation angles of § = 7/5 and 3.597/5,
comparing to SIC walk, SDC walk has smaller number of positions with non-zero probability density. This
confirms the classical like property that was mentioned for these cases. In contrast, SDC walks with § = 7/3 and
2m/5 have higher number of positions with non-zero probability density comparing to SIC walk. This shows
that SDC walk is faster than SIC walk for these rotation angles.

3.3. Discussion on physical interpretations

Alocalized probability density distribution may signal the presence of Anderson localization. About 60 years
ago, Anderson predicted that destructive interferences among scattering paths of a quantum particle
propagating in a disordered media may occur and results into a localization of the wave function [38]. Such
localizations have been extensively investigated in different physical contexts such as photons and photonic
lattices [39], Bose—Einstein condensate [40], microwaves in strongly scattering samples [41] and inverted
opals [42].

In the context of QW, an Anderson localization could be realized as a case where the mean-squared distance
of the walker from the origin stays bounded even in the infinite-time limit. The theoretical existence of such
localization for the QW was pointed out in [43, 44]. In [19], the Anderson localization was observed in one-
dimensional split-step quantum walk. This localization was due to introduction of static, symmetry-preserving
disorder in the parameters of walk. Experimentally, an Anderson localization was observed for photonic
implementation of a one-dimensional quantum walk in the presence of decoherence [14, 45] and pairs of
polarization-entangled photons in a discrete quantum walk affected by position-dependent disorder [46]. In all
of the mentioned papers, the existence of Anderson localization was shown to be rooted in the presence of
disorder in the QW. From our discussion above, we see that a walk with a SDC can result into an Anderson
localization without any disorder must occur. In other words, it was shown that a unitary evolution of a walk
without any special modification can result into probability density distributions similar to the ones in the
presence of disorder. This shows that QW with a SDC can be utilized to realize the processes such as Anderson
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Figure 4. Step-dependent coin (blue colored diagrams) versus step-independent coin (red colored diagrams).

localization in a more simplified framework. In many experimental setups, moreover, it is simpler to use a SDC
walk to achieve Anderson localization and exploiting its properties, instead of using disorder-included systems

(see for example [47]).

Previously, it was shown that transition from QW into classical one could be achieved by introducing the
decoherence into system through; (I) subjecting the decoherence into coin of system [48, 49]. (IT) Introduction
of random phase shifts to the coin particle [50]. (III) Measurements performed with timing provided by the Levi
waiting time distribution [51]. All of these processes require introduction of decoherence into the system. The
SDC presented in this paper provides the possibility of achieving classical like behavior without introduction of
the decoherence into system. This indicates that while we are employing the unitary operators, it is possible to

have classical probability density distribution for the walker. This enables us to avoid certain complex
calculations (for more details please see [32, 33] and references within). This results into a more simplified
framework to study the QWs and its applications for classical like behavior [13, 14, 45, 52].
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Existence of different probability density distributions (ranging from quantum like to complete localization)
for SDC provides us with a multi-purpose QW. Due to these different classes of the probability density
distribution, one can develop a more adaptable quantum walk-based search algorithm [53]. The main issue that
must be taken into account is the capability of coherent QW. An isolated QW system (absence of decoherence),
with certain considerations (here, it is step dependency of the coin) has the capability of providing large number
of the possibilities for the walker. This indicates that QW has the possibility of addressing complicated
simulations in the present literature in a more simplified framework.

In [33], three key points are introduced for building an algorithm based on quantum walks: (I) the unitary
operators (IT) the measurement operators (IIT) decoherence effects in order to control the quantum walk
algorithmic effects by manipulating probability distributions or mimicking natural phenomena. Specially, in
[9], the importance of decoherence for manipulating probability density distribution of the walker for
mimicking natural phenomena was highlighted. As we can see, SDC random walk has the possibility of
addressing decoherence-included QW. This indicates that for development of algorithm, the third condition
could be relaxed and only the two first conditions are left. The first condition is also automatically satisfied due to
unitary nature of the coin-shift operator of SDC walk. Therefore, only the second condition remains to be
addressed.

In quantum simulation, the main goal is providing quantum systems which could be programmed to model
the behavior of other quantum systems [9, 54]. Due to the diverse behaviors and possibilities for SDC walk; it is
clear that the SDC walk could catch the idea of ‘programmable quantum system’ in a better suit. The general
structure of the SDC provides a simplified framework for manipulating the quantum system. The fact is that
SDC has a comfortable adaptability for providing different probability density distributions which makes it ideal
in terms of programmability for quantum computation/simulation purposes. Finally, the comparison for
quantum like behavior case of SDC versus SIC showed that the variance in SDC is bigger. This indicates a faster
spread of wave function of the walker for SDC. This difference in the variance could be employed to conclude
that algorithms based on SDC could be faster comparing to their SIC counterpart [37, 55]. Therefore, quantum
like behaviors observed for SDC walks are showing better efficiency regarding the hitting and mixing times
comparing to SIC walks [56].

QWs can be used as universal generators of probability density distributions [57]. In [58], the unitary
equivalence of classes of QWs with different SU(2) coin operators was shown and it was pointed out that the
nonequivalent QWs can be distinguished by a single parameter. In fact, it was pointed out that walk with a
dynamical coin is equivalent to electric QWs. Due to these properties and the fact that QW being a universal
computational primitive, there has been a growing interest in using QWs as a tool for state engineering, initial
state preparation and state transferring. For example, it was pointed out that using the localization like effects in
QWs, one can engineer a state of walker and obtain specific desired details for its state [59, 60]. In [61], a beautiful
theoretical framework was proposed for quantum state engineering of arbitrary superpositions of the walkers
sites. Experimentally, Nitsche et al used QWs with dynamical control to prepare non-localized input states and
implement a state transfer scheme for an arbitrary input state [62]. In this direction, we can see that walks with a
SDC can also be used as a stand alone framework for generating desired probability density distributions,
preparing initial state and/or engineer them. The classification that we provided shows that each class actually is
made out of different subclasses. For example, for localized walk, we showed that there are at least three
suclasses. In classical like walk, we see two subclasses that are corresponding to Gaussian distributions with
different Gaussian parameters (see appendix A.1). In addition, we matched our results in semi-classical /
quantum like walk with those in the presence of decoherence (see appendix A.2). These were some of the issues
that yet to be addressed in literature. That being said, we see that for state engineering and preparation purposes,
walks with a SDC has high capability. In following sections, we give more details and comparison in the context
of entropy.

4. Experimental implementation

The nextissue that we should address is the feasibility of an experimental implementation for SDC walk. The
experimental implementation that we have in mind is inspired by an earlier work of Schreiber et al [13]. The
setup employs passive optical elements in order to preform the walk. The walker is a photon and internal degrees
of freedom are its polarizations. The coin operator could be realized by a half-wave plate changing the
polarization of the photon. The reason why such experimental setup is of interest for us is due to its flexibility in
its coin operator. The matrix representation of the coin operator changing the polarization of the photon is given
by [13]
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c_ (cos(Zn) sin(2n) )) )

~ |sin(2n) —cos(2n)

in which 7 is the rotation angle of the half-wave plate relative to one of its optical axes. Considering that the coin
operator in the QW introduced in this paper is modified at each step, the setup of coin in this experimental
scheme is ideal one.

The initial state of the walker could be provided by a combination of a half- and quarter-wave plates. The
coin operator is half-wave plate and step operation is given by an optical feedback loop. A pulsed laser source
provides the photon’s wave packet while these pulses are attenuated to the photon’s level by using density filters.
The internal degrees of freedom of the photon are horizontal and vertical polarizations. In each step, the
horizontal and vertical components of the polarization are separated spatially and temporally, then recombined
and is sent back to the input beam splitter for the next step. In the next step, the application of coin operator
creates a superposition of states which their analyze in the internal degree of the photon (horizontal and vertical
polarizations) displays interference. Each step of the walk in this setup corresponds to one loop. At each step, the
photon could be coupled out of the loop with 50% probability. If such case takes place, an avalanche photodiode
registers a click. This click is recorded by a computer via a time-to-digital converter interface and combination of
these clicks which are due to a series of consecutive runs of the experiment, characterizes the walk. Among the
important properties of this experimental setup, one can point out: (I) a high degree of coherence and the
scalability of system. (II) Keeping the amount of required resources constant as the walker’s position Hilbert
space is increased. (IIT) The flexibility of setup which was essential for the walk introduced in this paper.

It is worthwhile to mention that another experimental setup was also proposed with similar ingredients by
Broome et al in which a tunable decoherence was added into the system [14].

5.Shannon entropy

Of the fundamental concepts in quantum information and computing is the Shannon entropy [35]. The
Shannon entropy was first introduced in 1948 by Claude Shannon [36] in order to measures the amount of
uncertainty that is present in the state of a physical system. The Shannon entropy has been employed to address
different issues in physical systems such as processing and transmitting quantum information [63], atomic
physics [64], crystallography [65], ultracold trapped interacting bosons [66] and quantifying the information
encoded in complex network structures [67]. In the context of QW, the Shannon entropy was computed and
numerically presented for different types of generalized Hadamard coin in [68, 69]. In addition, limit theorems
for the Shannon entropy and its value were computed by using a path counting method in [70].

Here, we would like to address the Shannon entropy associated to SDC walk and compare it with SIC case. In
the context of QW, the Shannon entropy is calculated using probability densities of the positions/internal
degrees of freedom that are occupied by wave function of the walker in each step. Therefore, the entropy is step-
dependent. Also, one can introduce two different entropies for QW; (I) S¢, associated to internal degrees of
freedom or simply coin space. (II) Sp, related to position space. The Shannon entropy for these two subspaces is
given by [35, 68, 70]

Sp = —>_ BLogD, )
Sc = —)_ PLogP, )

in which P, and P;are the probability density of the position # and internal degrees of freedom i, respectively.
The logarithm is given in base of e. According to (8) and (9), for fully localized walk, the entropy is zero (which is
physically expected). Based on previous section, the entropy as a function of step is given for SDC (blue colored
lines) and SIC (red colored lines) walks for different rotation angles in figure 4(q).

For the entropy associated to probability density distribution in position space (Sp), the following could be
stated:

(I) In SIC case, the entropy is an increasing function of the steps, irrespective of considered 6. Whereas, for
the SDC case, the general behavior of entropy depends on 6.

(II) In general, the entropy of SDC walk is smaller than its corresponding SIC one. This is even valid for the
0 = /3 where the walker is faster and its variance is bigger comparing to its SIC counterpart (see figure 4(q)).
The only exception is § = 27/5 (see figure 4(15)). This is because, for this coin, SDC walk has a more
symmetrical probability density distribution in position space comparing to its SIC counterpart. It is a well
established concept that system with more symmetrical probability density distribution has higher entropy [71].

(IIT) The periodic behavior and localization in probability density distribution of SDC walk could also be
detected in entropy’s evolution. The periodic behavior is where identical entropy is found and repeated on a
regular basis. Localization happens where entropy is zero.

9
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Figure 5. Kullback-Leibler divergence between SDC and SIC walks for different rotation angles.

(IV) The evolution of entropy for SDC walk shows that: although in each step the number of positions
occupied by wave function of the walker increases, this does not necessary mean that entropy is also increasing
(in contrast to SIC walk). In fact, for certain steps, minimums are formed for the entropy.

In case of the entropy associated to probability density distribution in coin space (S¢), one can highlight the
following points:

(I) Since the coin space contains two elements (two internal degrees of freedom), entropy of the coin space is
bounded by an upper limit. The highest value of S is obtained when probability density distribution in coin
space is equally distributed over these two elements. Therefore, the maximum S that walker with two internal
degrees of freedom can obtain is 0.693 147.

(II) For walks with SIC, a damped oscillation is observed for Sc. This shows that by increasing the number of
steps, the entropy of coin space converges to a specific value. For SDC case, the general behavior depends on the
6. For semi-classical/quantum and quantum like walks, a damped oscillation is also seen for the Sc (see lower
panels of figures 4(15) and 4(17)). In contrast, for localized and compact classical like walks, the entropy of coin
space has periodic behavior. Finally, for the classical like walk, it has an irregular behavior but converging one.

(IIT) The complete localization for the walker takes place when both the entropy of position and coin spaces
are zero. Such cases take place for specific steps in localized and compact classical like walks (see figures 4(12)
and 4(13)).

In order to understand the differences between entropy of SDC and SIC walks in more details, we investigate
the relative entropy. To do this, we use Kullback—Leibler divergence which measures how one probability

density distribution diverges from the other one. The Kullback-Leibler divergence is given by

Dp = ZPnLogﬂ",, (10
n Pﬂ

P
D¢ = ZPiLOgF’ (11)
where P, and P! are the probability density of the position 2 and internal degrees of freedom i for SIC walk, respectively.
Kullback—Leibler divergence is zero when the probability density distributions for SDC and SIC walks are identical. The
results for different rotation angles are presented in figure 5. For Kullback—Leibler divergence of position space, Dp: In
general, we have the following relation for Kullback—Leibler divergence of different rotation angles

2T m

D 9:5)<D(9:—)<D(9:—)

P( 3 i 5 i 5
3.597 s s
<DplO = < Dpl0=—| < Dpll=—1|
P( 5) P( 12) P( 4)

This relation reminds us the earlier classification for different rotation angles. We see that in this context as
well, our classification could be applied. The smallest Kullback—Leibler divergence between SDC walk and its

10
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SIC counterpart is observed for the quantum like walk (§ = 7/3) while the largest one is found for localized walk
(6 = w/4). Overall, the Kullback-Leibler divergence between SDC and SIC walks increases but its rate of
increment depends on 6.

For Kullback-Leibler divergence of coin space, D¢: in some steps, D¢ becomes zero indicating that
probability density distributions in coin space for SDC and SIC walks are identical. In general, some semi-
periodic behavior is observed for different rotation angle. The only exception is for § = 7/12. Overall, we notice
that D tends to decrease indicating that probability density distributions in coin space for SDC and SIC walks
become more similar to each other.

The Shannon entropy is one of the central concepts in quantum information theory. According to Nielsen and
Chuang [35], this quantity measures the amount of uncertainty (information/randomness) that is present in the
state of a physical system. Therefore, smaller entropy indicates lower uncertainty (information,/randomness).
Through our calculations, it was shown that SDC walk enjoys smaller entropy of the position space comparing to its
SIC counterpart (with some exceptions). Therefore, the SDC imposes smaller uncertainty in the state of walker
comparing to SIC. One can also conclude that amount of information (randomness) acquired/modified through
SDC evolution is smaller than the one obtained /modified through SIC evolution. In the context of data
communication, entropy provides the limit on length that a lossless compression encoding of the data could be
achieved. If the entropy of source is smaller than the capacity of communication channel, the receiver could reliably
attains the communication from the source. Therefore, we see that SDC case provides an entropy which widens the
limiting range and includes larger possibilities in the context of data communication (comparing to SIC walk). In
addition, we should once more emphasize on the fact that despite expectation, the increase in number of the
positions occupied by wave function of the walker does not necessarily mean increase in entropy. The entropy
measures disorder in the system. Generally, the common sense indicates that if the wave function of the walker is
dispersed over larger number of the positions between two steps, the entropy should increase. But as we saw for SDC
case, this is not the case. In fact, the wider dispersion over position resulted into smaller entropy for specific steps.

6. Conclusion

In this paper, we studied a class of QW with a SDC. Such a coin can result in a reach behavior of the walker. It was
shown, in particular, that such a coin may result, for different choices of the rotation angle, into four
distinguishable behaviors in probability density of walker including: complete localization, (compact) classical
like, semi-classical /quantum like and quantum like. This diversity in probability density distribution signals the
controllability over QW where controlling factor is rotation angle. In the context of speed, it was shown that the
walk with a SDC could be faster (slower) comparing to its step-independent counterpart.

In addition, we studied the entropy of walks with the SDC and compare it with its corresponding SIC case.
The entropy was calculated for two cases of probability density distributions in coin (S¢) and position (Sp)
spaces. Interestingly, it was shown that for the walk with SDC, the Spis smaller than the walk with SIC (with
some exceptions). In addition, it was shown that general behavior of the Spas a function of steps, depends on
choices for the rotation angle in walk with a SDC. Whereas for walks with the SIC, irrespective of choices for
rotation angle, a monotonic behavior was observed for Spas a function of steps. Finally, it was pointed out that
by increasing the number of positions occupied by wave function of the walker, Sp does not increase. In fact, for
special SDCs, Sp could decrease. Regarding to the S¢, a damped oscillation behavior was observed for walks with
SIC. In the contrast, for SDC walk, three distinctive behaviors were observed for Scas a function of steps: a
damped oscillation, periodic and irregular behaviors.

The study conducted in this paper can be generalized also to multi-walker systems, higher dimensional walk as
well as to (decoherent) walks that couple to their environment. These QWs can be applied to explore topological
phases [17, 72] and especially new classes of such topological phases. In addition, it would be interesting to see how
different entropy properties that were obtained for the walker here could be employed in the context of data
compression, communication, and cryptography. We will leave these matters for future works.

Appendix A. Justification for classification

Through out the paper, it was shown that using SDC results into obtaining diverse probability density
distribution in position space. We classified these distributions according to their properties. Among them, we
had the classical like and semi-classical/quantum like behaviors.

A.1. Classical like behavior
The classical behaviors are the ones that present normal (Gaussian) like distributions for their probability
density distributions. The probability density of the normal distribution is given by

11
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Figure A1. Probability density distribution for 6th step.

_a—p?

€ 202
[y, 0?) = —, (12)
2mo

S}

where 1 is the mean or expectation of the distribution, o is the standard deviation, and &% is the variance. In our
study, we had two subclasses for classical like behaviors for different rotation angles: compact and usual classical
likes. To show that mentioned cases actually have Gaussian like distribution, we study the 6th step of these walks
and compare their probability density distributions with Gaussian ones. The task is to estimate the parameters of
the Gaussian distribution that would correspond to the mentioned cases. This could be done by using the
number of positions occupied by the wave function and their probability density. The results are given in

following diagrams (see figure A1).
Evidently, by tuning the Gaussian parameters, the probability density distributions of the SDC QW with

considered rotation angles could be highly fitted with those of Gaussian distributions. The mean variance
considered for fitting the Gaussian distributions show that one of these distributions is indeed more compact
comparing to the other one. These facts justify our earlier classification of the walks with these coins into classical
like behavior and their corresponding subclasses. Although this is done for the 6th step, the same could be done
for other steps as well. It should be noted that in each step, the Gaussian parameters would be different.
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Figure A2. Probability density distribution for 10th step; Continuous line: SDC walk with § = 27/5. Dashed line: decoherence walk
with Hadamard coinand g = 0.8.

A.2. Semi-classical/quantum like

The next classification that we address is semi-classical/quantum like. To do so, we consider the walks with
decoherence. It is a well established concept that depending on the amount of decoherence in QW, system’s
behavior could range from purely quantum like to classical one [21, 73, 48]. There are different methods to
include decoherence in QW. One of them is by measuring the coin and/or position space after each step.
Inclusion of decoherence results into losing the unitary nature of the process. Therefore, one should use density
operator formalism to address the nonunitary evolution of the walk at each step given by [21, 73, 48]

pit+1D)=01-q-90p")0" + qRUp()U'PL
+sBUp)U'P, (13)

where [P, and Py are projections to coin and position spaces, respectively. g and s are the probabilities of a
decoherence event happening per time step. Here, we restrict our study tos = 0. The value of decoherence
parameter will be within the range of 0 < q < 1, whereq = 0and g = 1 correspond to purely quantum and
classical like behaviors, respectively. The coin operator of the decoherence case is Hadamard. For SDC walk, we
consider the rotation angle of @ = 27/5 which had semi-classical /quantum like behavior. We consider three
different initial states. The results are presented in figure A2 for the 10th step.

Accordingly, we observe that by tunning the decoherence parameter, the results of SDC walk with rotation
angle of # = 27/5 and walk with decoherence could be fitted together. To mathematically confirm this issue, we
investigate the fidelity for these two probability density distributions given by

2
F(P,Q = [2 M) , (14)

where P;and Q; are the probability density of the position i for SDC and decoherent walks, respectively. The F(P,
Q)isboundedby 0 < F(P, Q) < 1where F(P, Q) = 1 corresponds to have identical distributions. Our
calculations shows that fidelity for these cases is more than 0.97 (please see figure A2), hence two walks being
fitted together. Since q < 1, the walk with decoherence is semi-classical/quantum like. Therefore, our earlier
classification for SDC walk with rotation angle of = 27/5 is justified. Although this is done for 10th step, the
same process could be done for other steps as well confirming the validity of our argument. It should be noted
thatif one considers s = 0, the fitting would even improve further. For further comparison between SDC walk
with rotation angle of @ = 27/5 and decoherent one, please compare figure B2(6) with figure 2 in [73].

Appendix B

In this section, we expand the discussion of walker’s behavior with SDC for different rotation angles. We will
construct the Bloch vectors at each position for subsequent steps. The results are presented in figure B1.

For subclasses of localized walk, we have the following modifications in internal degrees of freedom of the
walker: in free localized walk (8 = 0), the distribution over internal degree of the walker remains unchanged at
each step (see figure B1(1)). In bounded localized walk (¢ = 7/2), in every two steps, the Bloch vectors remain
the same and then rotated clockwise with the rotation angle of 77/2 (see figure B1(2)). For § = m/4, we have two
specific behaviors: (I) distribution equally over two positions; in which the Bloch vector at one position is
perpendicular to the other one. (IT) Complete localization; where distribution in coin space could be in
superposition (steps 3 and 6 in figure B1(3)).
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Figure B1. Reconstructed Bloch vectors at each position for eight subsequent steps T = 0..8.

For other cases where we have distribution in wave function of the walker, we can highlight two important
points: first of all, the Bloch vectors at the leftmost and rightmost hand side positions are always perpendicular to
each other (see figures B1(5)-B1(8)). In these positions, the Bloch vectors could be rotated with rotation angle of 7
or remains the same. The steps where rotation is taking place is different for the leftmost and rightmost hand side
positions (depending highly on the coin under consideration). The only exception is for walk with § = 7/12. In
this case, the wave function of the walker periodically first becomes distributed and then completely localized.
When the wave function of the walker becomes distributed, Bloch vectors at the leftmost and rightmost hand side
positions are perpendicular to each other. But when the wave function of the walker starts to localize again, this
perpendicular property is vanished and at the leftmost and rightmost hand side positions, the Bloch vectors would
be in different superpositions (see figure B1(4)). We have also plotted the chessboard diagrams for probability
density distribution in position space for 50 steps of SDC walk with different coins in figure B2.
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