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Abstract
We experimentally investigate the suitability of a multi-path waveguide interferometer with
mechanical shutters for performing a test for hypercomplex quantum mechanics. Probing the
interferometer with coherent light, we systematically analyse the influence of experimental
imperfections that could lead to a false-positive test result. In particular, we analyse the effects of
detector nonlinearity, input-power and phase fluctuations on different timescales, closed-state
transmissivity of shutters and crosstalk between different interferometer paths. In our experiment,
a seemingly small shutter transmissivity in the order of about 2 × 10−4 is the main source of
systematic error, which suggests that this is a key imperfection to monitor and mitigate in future
experiments.

1. Introduction

Quantum mechanics, like any theory in physics, is built upon a certain set of axioms. Even though they are
by design not provable, they can be checked for consistency with nature by experiments. If the outcome
does not falsify the axiom, it is most desirable to compare the experimental results with quantitative

predictions of alternative theories, such that these alternatives can be ruled out or their parameter space
restricted. For example, the Bell inequality [1, 2] bounds correlations between pairs of entangled particles
based on the assumption of local realism (i.e. the presence of hidden variables governing these correlations).
Experimental violations of this bound [3], especially when found in absence of loopholes [4–8] or with very
high statistical significance [9, 10], allow ruling out hidden-variable models of quantum mechanics with
high confidence.

Even on the more fundamental level of single-particle quantum mechanics, there is ongoing research
probing the connection between wave functions and the probability as their measurable, physical quantity,
as postulated by the axiom of Born’s rule [11]. These experiments test for the existence of higher-order
interferences [12–20], which would contradict Born’s rule or linearity and would require adaptations of
quantum mechanics and/or alternative theories.

An axiom, which only very few experiments were able to probe so far, is the representation of quantum

mechanical states by rays in a Hilbert space based on complex numbers. In theory, states could be described
using Hilbert spaces based on other fields, such as real, quaternion, octonion and possibly other
hyper-complex numbers. Two notable theories using a different number system are real quantum
mechanics [21, 22] and quaternionic quantum mechanics (QQM) [23]. Both theories are mathematically
consistent, but only quaternionic and (standard) complex quantum mechanics (CQM) are able to correctly

describe the dynamics of a two-level system like the polarization state of a photon. In order to determine
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whether CQM is sufficient or whether QQM would better describe nature, specialized experiments are
needed.

In 1979, Peres proposed a test to distinguish between quantum theories based on different number
systems [24]. This test is based on the dimension of the phase. While complex numbers can be represented
by a single real phase parameter, three phase components are needed for quaternions. This allows
distinguishing between complex and hypercomplex quantum mechanics in a scattering experiment with
variable presence of one to three independent scatterers. In the same publication, he also proposed a
specialized version based on the commutation of phase shifts. Only in the case of CQM do such shifts
commute. This version of the test has so far been implemented via the interference of neutrons [25] and of
single photons [26], both showing no trace of quaternions whatsoever. The proposed scattering experiment
can also be recast as an interference scenario with three individually switchable amplitudes. Due to its
intrinsic sensitivity to a variety of experimental imperfections, such an interferometric test requires a
well-characterised high-precision setup and has so far not been implemented in any system.

In this work, we designed and set up an integrated optical waveguide interferometer, to be used in a
Peres three-path interference test with photons. In order to access the required amplitude combinations,
each path can be individually blocked by mechanical shutters. Compared to free-space setups [17] or
partially integrated solutions [27], the present setup provides much better phase stability, which is a
prerequisite to obtain meaningful results. For an in-depth analysis of potential systematic errors, which
would bias a Peres test with single photons, we probed the interferometer with bright coherent light with
negligible shot noise. While this will not let us distinguish between CQM and QQM, it enables
identification of the dominant error mechanisms to be addressed before a Peres test with single photons can
be run.

2. Concept of the Peres test

In the standard formulation of quantum mechanics, a three-path interferometer with the paths A, B and C
is fully described by three complex amplitudes with real phases 0 � φi � 2π (with i ∈ {A, B, C}). Assuming
full coherence, their respective phase differences Δφij = φi − φj (i �= j) must add to zero:

ΔφAB +ΔφBC +ΔφCA = 0. (1)

Applying the cosine function to (1) and using trigonometrical transformations results in the so-called Peres
parameter

F ≡ α2 + β2 + γ2 − 2αβγ = 1, (2)

with α ≡ cos(ΔφBC), β ≡ cos(ΔφCA) and γ ≡ cos(ΔφAB) describing the normalized interference terms.
The description of quantum mechanical waves with hypercomplex numbers increases the dimension of
their phase. In the case of quaternions the phase becomes three-dimensional, such that (2) does not
necessarily hold, which is the starting point for the formulation of the interferometric Peres test. Deviations
from the expected value F = 1 are, according to [24], interpreted as

F =

{
< 1 hypercomplex numbers are admissible

> 1 superposition principle is violated.
(3)

In order to connect this parameter with directly measurable probabilities, the photon detection rates
PA, PB, PAB are measured at one of the interferometer’s outputs for various path transmission settings (A
open, B open, A and B open, etc) and constant input flux. In the case of a two-path interferometer with
paths A and B, the measured photon rate PAB is given by

PAB = PA + PB + 2
√

PAPBγ. (4)

This equation can be used to express the normalized interference term as

γ =
PAB − PA − PB

2
√

PAPB
. (5)
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The equations for α and β can be derived analogously and give

α =
PBC − PB − PC

2
√

PBPC
and (6)

β =
PCA − PA − PC

2
√

PAPC
. (7)

In order to obtain all normalized interference terms and calculate F, all shutter combinations with a single
open path or two open paths need to be measured.

Various experimental imperfections like input-power fluctuations, phase fluctuations and non-zero
transmissivity of the shutter can lead to deviations from F = 1. For a meaningful interpretation of the Peres
experiment, it is therefore necessary to characterise or measure all these imperfections of the interferometer
as precisely as possible (see section 5).

3. Experimental setup

To perform the Peres test we used a three-path Mach–Zehnder interferometer integrated in a fused silica
glass chip, with external mechanical shutters, as can be seen in figure 1. The waveguides were directly
inscribed using femtosecond laser pulses, which enables three-dimensional path designs [28, 29], including
three-path interferometers [30]. In the present work, the three waveguides were aligned in a triangle, which
was continuously rescaled in a form-preserving manner to produce the various functional elements of the
chip. At minimal size (base length = 18(1) μm), the reduced spacing between each waveguide leads to
evanescent coupling (see the left inset of figure 1). The length of the evanescent coupler was chosen to yield
for each input an approximately balanced output splitting between the three ports [31]. Note that a
perfectly balanced splitting ratio is not critical for the Peres test. One such unit opens the interferometer
(henceforth termed splitter), while a mirror-inverted copy (combiner) closes it. In the region between
splitter and combiner, the triangle has a maximal baselength of 201(1) μm, minimizing cross-coupling
between the separate waveguides. These straight paths are intersected by rectangular 60 μm × 60 μm holes,
produced by laser-inscription of nanocracks (in the same fabrication step as the waveguides) and
subsequent selective chemical etching with HF-acid [32–34]. Steel wires with 50 μm diameter were inserted
into these holes to act as mechanical shutters, whose open/closed state depends on the vertical position of
the wire. Each wire is mounted in a ferrule and connected to a stepping motor via an eccentric. This allows
to set the various shutter configurations fully automatised during the Peres test. In order to reduce losses
from refraction and reflection for the open shutter position, the holes were filled with an index-matching
oil, with a refractive index difference of Δn ≈ −5 × 10−3 at 23 ◦C in comparison with the fused silica. The
transmission through a hole with index-matching oil was independently measured at 635 nm to be >95%,
within the accuracy of the measurement. This serves as a lower bound for the transmission at 808 nm, as
longer wavelengths are less affected by the sidewall roughness of the holes.

The in- and output paths of the chip were connected to optical fibres via fiber-arrays with refractive
index matching gel bridging the gap between the fibre end and the chip surface. The gel has a refractive
index difference of Δn ≈ −3 × 10−3 with respect to the fused silica. On the input we used a
polarization-maintaining fibre and on the output side a single-mode fibre, in order to reduce the detected
stray-light in comparison to using a multimode or free-space imaging. For our measurements we used port
B at the in- and output side, as shown in figure 1. The light of the output fibre is collimated onto a
photodiode (Physimetron A139-001). As light source we used an 808 nm laser diode (Thorlabs
LD808P030), which is temperature, power stabilised. The power stabilisation is performed by a liquid
crystal noise eater (Thorlabs LCC3112), which results in a relative power stability (standard deviation) of
0.32% over 9.2 h.

The close proximity of the waveguides in the evanescent couplers can lead to a rotation of the
polarization, which depends on the orientation of the waveguides in the triangle relative to the orientation
of the elliptical waveguide profiles [35]. As the detector is polarization insensitive and not every path
experiences the same rotation, a polarizer was placed in front of the detector to project the output light into
a single polarization and, thereby, prevent systematic errors in our measurements (see appendix A.4).

The whole fused silica chip was enclosed in an aluminium housing. The bottom and sides of the housing
are insulated with polystyrene sheets, with gaps for the shutter holes and the in- and output ports of the
photonic circuit (see figure C1). The housing was temperature stabilized so that the largest observable
fluctuations were smaller than 10−3 K by a proportional–integral-controlled resistive heater at the bottom
of the housing, centred below the shutter holes. The temperature sensor was mounted on the outside of the
housing and was almost completely covered by the insulation. As the top part of the housing was not
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Figure 1. Schematics of the three-path Mach–Zehnder interferometer in a fused silica chip with mechanical shutters. A 808 nm
cw laser is coupled via a fibre into one of the three waveguide paths A, B and C (shown in blue) and split equally among them via
evanescent coupling (left inset). Holes through each waveguide path allow steel wires to act as shutters (middle inset). The light
in each path is then recombined using evanescent coupling. The three paths A, B and C are aligned as a triangle (right inset).

insulated, the heater created a vertical temperature gradient. Due to the triangular arrangement of the three
interferometer paths, this led to a relative phase change between path B (tip of the triangle) and paths A and
C (base of the triangle). Therefore, it was possible to slightly tune the phase differences ΔφAB and ΔφBC

simultaneously by changing the housing temperature. They changed by roughly −2.5 × 10−2 rad K−1 in the
range from 25 ◦C to 35 ◦C.

The housing was mounted with nylon screws onto machinable glass-ceramic posts, to reduce the heat
flow at the bottom of the housing and, thereby, increase the strength of the temperature gradient.
Furthermore, these posts reduced the influence of temperature changes on the in- and output coupling
efficiency of the chip to the fibre arrays, thanks to their lower thermal expansion coefficient in comparison
to stainless steel posts. We inserted indium foil between the chip and its housing to eliminate air gaps and
increase the thermal conductance.

4. Experimental results

We measured the transmitted optical power for all eight shutter combinations in random order and
repeated these cycles multiple times (each time with a new independent random ordering to average over
possible long-term drifts). The configuration with all three shutters closed P0 represents the experimental
background, e.g. stray-light or detector dark-current. We subtracted the measured background from the
other combinations of the same cycle to correct for these influences. The shutter configuration of all paths
open PABC is only needed to analyse specific systematic errors as detailed in section 5.4. We performed the
Peres test for two different temperature settings of the chip housing, 23 ◦C and 30 ◦C, respectively. The
temperature stability is 3 mK to 9 mK (standard deviation) for timescales in the order of the presented
measurements. The two different temperatures correspond to different phase differences between the
waveguides at the base and the one at the tip of the triangular path arrangement. The results of both
measurements were filtered for shutter malfunctions. The durations of the two measurements were 9.2 h
and 13.2 h for 23 ◦C and 30 ◦C, respectively. Figure 2 shows the result of the Peres test for each cycle at the
two temperature settings of 23 ◦C and 30 ◦C, respectively. The mean of the measured Peres parameter F is

〈F23◦C〉 = 0.9553(4) and 〈F30◦C〉 = 0.9683(9), (8)

where the indicated uncertainties are the standard errors of the mean corrected for the autocorrelation
according to [36]. Both results show a significant deviation in the order of −10−2 from the expected value
of F = 1, which we attribute to systematic errors of the experiment. We will go into more detail about
possible sources of such errors in section 5.
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Figure 2. Peres parameter F (in blue) for multiple successive measurements, with index k, on the left and the corresponding
histogram on the right. The plots of each row were measured at different housing temperature as stated in the top right of each
plot. The red horizontal lines describe the mean values and the orange shaded bands represents one standard deviation. The
expected value of F = 1 is indicated by a black dashed line.

Table 1. Directly reconstructed and corrected sets of normalized
interference terms {α,β, γ} averaged over all cycles for the two
housing temperatures Th. The corrected sets satisfy (1) with minimal
Euclidean distance to the directly reconstructed sets. All given errors
are the standard deviation over all cycles.

Th 〈α〉 〈β〉 〈γ〉

23 ◦C
Reconstructed −0.765(16) 0.961(3) −0.664(15)
Corrected −0.806(15) 0.941(5) −0.612(15)

30 ◦C
Reconstructed −0.405(19) 0.980(5) −0.355(16)
Corrected −0.449(18) 0.989(3) −0.310(20)

5. Systematic error analysis

The Peres parameter is influenced by various experimental imperfections, e.g. fluctuations of the input
power and cross-influence of shutters. How much any of these effects influence the result depends on the
prevailing phase differences of the interferometer paths. These can be directly reconstructed from the
measured combinations using (5)–(7). However, due to the very same error sources influencing the Peres
test, the total of the so-obtained phase differences is not zero. In order to estimate the original uninfluenced
set of phases for each temperature setting, we calculated the closest set of phases, that is consistent with (1)
(see appendix A.1 for details). With this set of corrected phases we can then apply various models of
experimental imperfections and determine their influence on the measured Peres parameter. The directly
reconstructed and the corrected phase differences are listed as normalized interferences terms (cosine of the
phase difference) in table 1.

In the following, we will analyse a number of effects that lead to a systematic shift of the Peres
parameter. In general these effects will also lead to random errors.

5.1. Detector nonlinearity
In tests searching for higher-order interferences, any nonlinearity in the experiment can lead to a
false-positive detection of higher-order interferences [17, 37]. Similarly, nonlinearities also have a systematic
effect on the Peres test, because they bias the addition of the rates in (5)–(7). In our experiment, which uses
low-power continuous-wave illumination, the photodetector and its subsequent electronics are the
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Table 2. Influence on the Peres parameter F caused by power and
phase fluctuations, respectively. The mean of the distribution
calculated with a Monte Carlo simulation is given as a deviation
from the expected value ΔF = F − 1. The standard deviation is
described by σF. The results are listed for the two datasets at
different housing temperatures Th.

Power fluctuations Phase fluctuations

Th ΔFPow σFPow ΔFPhase σFPhase

23 ◦C 5.1 × 10−4 1.8 × 10−2 0.8 × 10−4 1.0 × 10−2

30 ◦C 1.4 × 10−4 1.4 × 10−2 −8.1 × 10−4 1.4 × 10−2

dominant sources of nonlinearity, which need to be accounted for. Therefore, we measured the nonlinearity
of the detector in independent beam combination experiments, following the procedure outlined in [38].
Correcting the measured data of the Peres experiment for this detector nonlinearity results in a correction
of F by

ΔFNL
23◦C = −4.7 × 10−5 and ΔFNL

30◦C = −9.4 × 10−5. (9)

These deviations are negligible compared to the observed deviation. Thus, we can rule out nonlinearity as a
relevant source of error in our experiment.

5.2. Fluctuations
The measurements shown in this work were taken over periods of 9 h and 13 h and temporal effects can
occur on various timescales. The effect of slow drift in power or phase difference on a timescale much
longer than a measurement cycle (∼1.75 min) is reduced by measuring all eight path combinations in
random order. Power fluctuations occurring on timescales shorter than the measurement duration for one
shutter combination (∼13 s) are averaged over multiple successive data points. Phase fluctuations on that
timescale, however, reduce the interference contrast, which is considered in section 5.3. In this section, we
concentrate on power and phase fluctuations on the intermediate timescale of one measurement cycle.

In a first scenario, we assumed fluctuations of the input power during a cycle and overall perfect phase
stability. To simulate this, we expressed the power Pi of each single path combination i ∈ {A, B, C} as

Pi = Pin,i · Ti. (10)

The variable Pin,i is the average power coupled into the chip during the measurement of the combination i
and Ti the fraction passing through the open shutter i and ending up at the path of the detector, effectively
depending on the overall splitting factor of both beam splitters of the photonic circuit and the total
transmission. For the two-path combinations i, j ∈ {A, B, C}, with i �= j, the power Pij is given by

Pij = Pin,ij

(
Ti + Tj + 2

√
TiTj cos(Δφij)

)
. (11)

As the total transmission of the chip factors out in the analysis, it is sufficient to determine the normalized
splitting factors ti = Ti/(TA + TB + TC), which were measured in a separate experiment as tA = 0.26,
tB = 0.52 and tC = 0.22. While the phase differences were calculated from the corrected normalized
interference terms (see table 1). Each input power is treated as an independent normally distributed
random variable with mean and standard deviation extracted from the measured data (for details see
appendix A.2). Based on the measurement data we can determine the standard deviation of the fluctuations
on either the timescale of a single shutter setting or the timescale of the whole measurement, but not
directly on the scale of one cycle. The standard deviation on the timescale of the whole measurement is
larger and thus leads to more deviations in the Peres parameter. We therefore use it as an upper-bound
estimation for the effect of input-power fluctuations. We calculated the deviations of the Peres parameter
from the expected value ΔF = F − 1 and its spread σF with a Monte Carlo simulation. The results in table 2
show that power fluctuations mainly lead to a random uncertainty of the measured Peres parameter and
only a small systematic shift.

To estimate the impact of phase fluctuations, we considered fluctuations on a timescale slower than one
shutter combination. Any faster fluctuations would lead to a reduction of the interference contrast, which
we discuss in section 5.3. To model the slower phase fluctuations we used equations (10) and (11) and
assumed perfect stability of the input power for each combination Pin,ij = Pin,i = Pin. The phase differences
of each two-path combination are modelled by independent Gaussian distributed numbers with mean
values given by the corrected phase differences (see table 1) and the standard deviation given by the
observed fluctuations on the timescale of the whole measurement (see appendix A.2 for details). We again
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performed a Monte Carlo simulation and obtained the values for ΔF and σF as given in table 2. As it turns
out, the phase fluctuations have a similar impact as the power fluctuations, i.e. they mainly lead to a larger
random uncertainty and only to a small systematic shift of the Peres parameter. The latter is for both types
of fluctuations two orders of magnitude smaller than the observed ΔF and therefore negligible.

5.3. Interference contrast
Phase fluctuations that are faster than the duration of one shutter setting lead to a reduction of the
normalized interference terms χ ∈ {α,β, γ}. Our model of this effect describes the measured normalise
interference terms χ̃ as

χ −→ χ̃ = Cχ · χ, (12)

where Cχ < 1 is the reduced interference contrast. This model predicts a strong dependence of the Peres
parameter on the interference contrast Cχ of each pair of paths. Assuming the same interference contrast
for all three interference terms (Cχ = 1 −ΔC), the deviation of the Peres parameter is calculated as follows:

ΔFC = 2 (αβγ − 1)ΔC − (4αβγ − 1)ΔC2 + 2αβγ ·ΔC3. (13)

To estimate the reduction of the interference contrast, we used the corrected phase fluctuations on the
timescale between a shutter setting (∼13 s) and a single measurement (∼0.11 s). How these were extracted
from the measured data is outlined in appendix A.2. We used these fluctuations to calculate the interference
contrasts with a Monte Carlo simulation around the mean phase difference Δφ = 0 for each interference
term. Due to the maximum of the cosine function at this point, phase fluctuations lead to a unidirectional
reduction of the power, such that the resulting interference contrast serves as an estimate at all possible
mean phases. However this method does not consider the effect of fluctuations on a timescale below a single
measurement (above ∼9 Hz). As worst a case estimate, we used the smallest of these interference contrasts
(C = 0.999 998) for each normalized interference term χ̃ resulting in a deviation from the Peres parameter
ΔFC in the order 10−6 for both measurements. Compared to the measured deviations this effect is
negligible.

We also separately measured the interference contrast of our setup for one path combination by
thermally tuning the phase difference, which gives a contrast of Cα = 1.000(29). The measurement and its
evaluation is described in appendix A.3. Note that the number of subsequent measurements per shutter
setting is only 1/10 of the number in the main experiment. This leads to reduced duration of each shutter
setting and therefore reduces the range of fluctuation frequencies affecting the contrast. Hence this
interference contrast probably underestimates the degradation of contrast from fluctuations.

5.4. Crosstalk
Ideally, the state of each shutter should only influence the path it is inserted to. However, experimentally
one cannot exclude the possibility that closing one shutter also affects the light in the other two paths. The
moving steel wires could for example lead to bending of the chip and with it to a change of the phase of the
other paths. In theory, the shutter could also influence the transmitted power of other paths, however this
seems less likely than an influence on the phase and is, therefore, not considered here.

In the following model of phase crosstalk, the closed shutter of path i changes the phase of another path
j by Δφi

j as opposed to the open state in path i. This is shown for our triangular path arrangement in
figure 3. We constrained these six parameters by symmetry considerations: Due to the slightly elliptical
waveguide profiles, which are common for femtosecond laser writing, the symmetry axis of the interfero-
meter runs vertically through path B (cf figure 3). Therefore, it seems very plausible to impose this mirror
symmetry also on the crosstalk terms. That is, we assumed that the crosstalk originating from path A is
equal to the one from path C and the crosstalk originating from B is the same for both of the other paths:

ΔφA
C = ΔφC

A ≡ ΔφH,

ΔφA
B = ΔφC

B ≡ ΔφCA
D ,

ΔφB
A = ΔφB

C ≡ ΔφB
D.

(14)

We further assume the two diagonal phase crosstalks ΔφB
D and ΔφCA

D to be of same magnitude

ΔφB
D = ΔφCA

D ≡ ΔφD. (15)

7
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Figure 3. Three slightly elliptical waveguides A, B and C in a triangular arrangement, with the corresponding phase crosstalk
parameters Δφi

j , where i is the shutter affecting path j. The dashed line represents the symmetry axis.

Table 3. Calculated deviation of the Peres
parameter from its expected value
ΔFCT = FCT − 1 due to phase crosstalk with a
phase shift of ΔφDH. The results are given for the
two measurements at different housing
temperatures Th.

Th ΔφDH (10−2 rad) ΔFCT (10−3)

23 ◦C −1.7 −9.0
30 ◦C −1.4 6.6

These simplifications lead to the following equations for the normalized interference terms

α = cos(ΔφBC +ΔφDH),

β = cos(ΔφCA),

γ = cos(ΔφAB −ΔφDH),

(16)

with ΔφDH = ΔφD −ΔφH. The effects on the normalized interference term β cancel each other out,
leaving only the parameter ΔφDH to be quantified. For this purpose, we additionally performed the Sorkin
test, which probes for higher-order interferences in quantum mechanics (see [12–20] and appendix B), on
the same set of data used for the Peres test. The Sorkin test has the advantage that of all effects considered in
this chapter only crosstalk and nonlinearity (which can here be excluded due to its miniscule effect on the
measured data; cf section 5.1) can lead to a systematic shift in its result, ε [17]. Therefore, the deviation
from the expected value ε = 0 can be used to estimate the magnitude of the crosstalk present in our setup.
The measured ε (see appendix B) deviate significantly from ε = 0 for both temperatures. Using our
crosstalk model one can then calculate the crosstalk strength ΔφDH required to produce the observed
deviation. Based on these results we then calculated the expected deviation of the Peres parameter ΔF as
listed together with ΔφDH in table 3. Note that we also tested an asymmetric model, where all phase
crosstalk arises from a single path (e.g. from one wire moving under stronger friction than the others). This
delivered consistently smaller |ΔF|. The results of this section indicate that some crosstalk is present in our
experiment. It could well lead to a non-negligible bias on the Peres test, yet the size of this effect seems to
fall short of the observed deviations |ΔF| by one order of magnitude.

5.5. Residual light
Unfortunately, our wire-based shutters exhibit finite transmissivity in their closed state. Therefore we
assign to the shutter in each path i a closed-state transmissivity τ i, due to residual light passing through the
wire-blocked hole. This additional light can interfere with the light from open paths and influence the
measured Peres parameter. To simplify things, we consider the same transmissivity for each shutter
(τ i = τ∀i ∈ {A, B, C}) and the phase of the residual light to be shifted with respect to the phase in the
open-state by φSh. With this model the measured background P0 (all shutters closed), the single path Pi and
the two path combinations Pij are described by

P0 = P̃0 + Pinτ

⎛
⎝∑

i

Ti +
∑

i,j

(1 − δi,j)
√

TiTj cos(Δφij)

⎞
⎠ (17)

8
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Figure 4. Influence of residual light passing through closed shutters on the Peres parameter F. The deviation from the expected
value ΔF = F − 1 is shown in dependence of the phase shift φSh caused by passing through a closed shutter. The result for a
housing temperature of 23 ◦C is shown in blue (left) and for 30 ◦C in orange (right). The dashed lines describe the
experimentally measured deviation for each temperature.

Pi = P̃0 + Pin

⎛
⎝Ti + τ

∑
j�=i

Tj + 2
√
τTi

∑
j�=i

√
Tj cos(Δφij + φSh)+ 2τ

√
TkTl cos(Δφkl)

)
(18)

Pij = P̃0 + Pin

(
Ti + Tj + τTk + 2

√
TiTj cos(Δφij)+2

√
τTiTk cos(Δφik + φSh) + 2

√
τTjTk cos(Δφjk + φSh)

)
, (19)

with i, k, l ∈ {A, B, C} and i �= k �= l. The input power Pin already includes in- and out-coupling efficiencies.
The transmissivities Ti are the percentage of light passing through path i and reaching the detector. The
power P̃0 describes a generic shutter-independent incoherent background, e.g. from straylight or detector
dark current. This term subsequently drops out, when calculating the normalized interference terms, as the
measured background is subtracted from the single- and two-path combinations.

We estimated the shutter transmissivity based on the measured background signal P0. For this
calculation we assumed Pi = P̃0 + PinTi, i.e. neglecting the contribution of τ compared to Ti. Furthermore
we assumed that the shutter-independent background is only given by the dark voltage of the detectors
P̃0 = Pdark. Any additional shutter-independent background would further decrease the shutter
transmissivity and, therefore, the result would act as an upper bound. Applying these assumptions to (17),
results in

τ =
P0 − P̃0

(P̄A + P̄B + P̄C + 2
√

P̄AP̄Bγ + 2
√

P̄AP̄Cβ + 2
√

P̄BP̄Cα)
, (20)

where P̄i = Pi − P̃0, describing the experimentally measured single path terms Pi with the
shutter-independent background P̃0 already subtracted. For the set of normalized interferences α, β and γ,
we used the corrected points in phase space. Evaluation of this equation for each measured cycle gives an
average shutter transmissivity of

〈τ23◦C〉 = 2.20(2) × 10−4 and 〈τ30◦C〉 = 2.707(4) × 10−4, (21)

with the uncertainty being the standard error of mean resulting from variations of the corrected points in
phase space, as well as variations of the measured single path and background signals during the
experiment. Applying these shutter transmissivities to our model results in the data shown in figure 4 for
each housing temperature. The deviation of the Peres parameter from its expected value can be negative as
well as positive and strongly depends on the phase shift φSh of the residual light. The fact that the bias is
stronger for the 30 ◦C measurement is not due to the slightly larger shutter transmissivity, but due to its
point in phase space causing an increased sensitivity to the effect. Due to the oscillations in ΔF with the
unknown phase φSh, we cannot reliably estimate a specific figure for the impact of the non-zero shutter
transmissivity on our measured results, but can only provide a range given by its extrema. This range is
wide enough to contain our experimental result (30 ◦C) or at least in the same order of magnitude as the
observed deviation (23 ◦C).

5.6. Conclusion
The estimated effect of the various imperfections discussed and modelled in this work on the Peres
parameter F is summarized in table 4. The results suggest that the only imperfection resulting in deviations
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Table 4. The calculated deviation of the Peres parameter F from F = 1 for different models
and each of the two measurements at a housing temperature of 23 ◦C and
30 ◦C, respectively. Both fluctuation models only provide an upper bound for their effect and
have a lower bound of 0. The residual light lists the deviation as an upper and lower bound,
which corresponds to a phase shift of the transmitted light of φsh ≈ ±π and φsh ≈ 0,
respectively. The last two rows list the total as an upper and lower bound and the
experimentally measured deviation for each measurement.

F − 1

Model 23 ◦C 30 ◦C Notes

Detector nonlinearity −4.7 × 10−5 −9.4 × 10−5

Power fluctuations < 4.1 × 10−4 < 1.4 × 10−4

Phase fluctuations < 1.8 × 10−4 > −8.1 × 10−4

Interference contrast −2.5 × 10−6 −4.2 × 10−6

Crosstalk phase −6.4 × 10−3 6.6 × 10−3

< 2.8 × 10−2 < 9.6 × 10−2 φSh ≈ ±π
Residual light

> −2.7 × 10−2 > −8.7 × 10−2 φSh ≈ 0

< 2.2 × 10−2 < 10.2 × 10−2

Total
> −3.3 × 10−2 > −8.1 × 10−2

Measured −4.47(4) × 10−2 −3.16(9) × 10−2

of the same order of magnitude as experimentally measured is the residual light transmission through
closed shutters. While in the case of the 30 ◦C measurement this effect could have caused the entire
deviation, for the 23 ◦C measurement, it falls somewhat short of the observed deviation, even if all other
considered effects are included. One has to keep in mind, though, that such a sum of all deviations does not
take into consideration the interplay of multiple error sources and that each model rests upon certain
assumptions and simplifications. For example, if one assumes that the residual light is only caused by
shutter C (τA = τB = 0) instead of equally by all shutters (τA = τB = τC), the lower bound on the
deviation of the Peres parameter is reduced by 1.1 × 10−2 to −3.8 × 10−2. This results in a total deviation
of −4.4 × 10−2, which would almost eliminate the observed difference. All considered potential systematic
error sources, besides residual light, lead to effects at least one order of magnitude below the measured
deviation. The different deviations for both housing temperatures show that the effect of each error source
can be minimized by choosing an optimal set of phase differences.

In order to narrow down the range resulting from the residual light model, phase modulators in each of
the paths would be necessary. This could be achieved by placing three heaters on the surface of the chip in
between both splitters [39–41]. Arranging them in a similar triangle as the paths allows to create
temperature gradients between each of the paths and with that tuning of the phase differences between
them. Using phase modulators to sweep the phase of each path would allow determining φSh and thus
increase the accuracy of this analysis. Alternatively, one could cancel out the interference effect (relative
magnitude

√
τ) by scrambling the phase in all closed channels, which would reduce the effect of residual

light transmission (to order τ). Control of each path’s phase, would furthermore allow to use a specific
feature of the three-amplitude Peres test: sweeping one phase leads to a modulation of the Peres parameter
F in the case of QQM. This would permit to isolate the fingerprint of a quaternionic phase from
experimental imperfections with different phase dependencies. Furthermore, this modulation technique
would allow to identify cases, which otherwise would lead to negative results [26]. Even though the actual
value of φSh and, with it, the actual impact on F cannot be determined from our experiment, these results
clearly show that shutters with a low residual transmission in the closed-state and, ideally, full phase control
are critical for any interferometric test of hypercomplex quantum mechanics.
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Appendix A. Simulation details

A.1. Reconstruction of the point in phase space
The results of each systematic error model presented in this work depend on the point in phase space,

where the Peres test is performed, i.e. the set of phase differences {ΔφBC, ΔφCA, ΔφAB}. For conventional
interference of complex amplitudes, by definition, the sum of this set must be zero (see (1)). However
experimental imperfections, like the ones analysed in this work (cf section 5), can lead to a deviation from
zero and to seemingly non-physical phase differences. The goal here is to estimate the most probable
original physical point in phase space, with phase differences summing to zero and therefore also F = 1.
This provides a starting point to estimate the effect of each individual experimental influence on the Peres
parameter. The following section shows how we determined this point in detail.

The phase space is three-dimensional, as shown in figure A1. The physically allowed phases
ΔφBC +ΔφCA +ΔφAB = 2πn, with n ∈ Z, form a periodic set of planes in phase space. From the
measured set of phase differences we find the closest (using Euclidean distance) physical point in phase
space by normal projection onto the planes. Due to the sign ambiguity in the cosine function (e.g.
α = cos(ΔφBC)), the measured set {α,β, γ} corresponds to eight points. As a global sign flip of all phase
differences has no effect on any of the models considered, this reduces to two sets of four inequivalent
points, whose projections are shown in orange and blue, respectively. We therefore only consider one of the
two sets e.g. the one depicted in blue. Within each set, two points project onto the n = 0 plane and two
points onto the ±2π-planes. The latter ones are excluded, as they would require much larger shifts, most
likely due to inconsistent sign assignments. From the two remaining points we chose the one closer to the
n = 0 plane for each temperature. This results in the corrected phase differences listed in table 1. Note that
choosing the second-closest point to the n = 0 plane gives results in the same order of magnitude. The only
exception is the phase crosstalk at 30 ◦C, where the point farther from the n = 0 plane leads to no real
solution for ΔφDH (see section 5.4).

A.2. Power and phase fluctuations
To simulate the effect of power and phase fluctuations on the Peres parameter (see section 5.2) the
magnitude of the respective fluctuations has to be determined. The signal of a single open path Pi is only
influenced by fluctuations of the input power and we therefore used its standard deviation to describe this
fluctuation. In the case of two open paths, the measured signal fluctuations are a superposition of
input-power and phase fluctuations. To estimate the strength of the power fluctuations we calculated the
standard deviation of the two-path signals based on the single-path power fluctuations using Gaussian error
propagation. The signal of two open paths i and j is described by

Pij = Pi + Pj + 2
√

PiPj cos(Δφij) (A.1)

andtherefore its input-power fluctuations σPpow
ij

as:

σP
pow
ij

=

√√√√(√
Pj

Pi
cos(Δφij) + 1

)2(
σPi

)2
+

(√
Pi

Pj
cos(Δφij) + 1

)2(
σPj

)2
, (A.2)

where σPi and σPj are the standard deviation of the single-path signal for path i and j respectively. We
assumed phase and power fluctuations to be independent of each other and therefore the measured
standard deviation of a two-path term is described by

σPij =
√

(σP
pow
ij

)2 + (σ
P

ph
ij

)2. (A.3)

With this equation we calculated the phase fluctuation σ
Pph

ij
using the experimentally measured fluctuation

σPij for the open paths i and j.
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Figure A1. Phase space of a three-path interferometer, which is defined by its three phase differences. The black points are
calculated from the measurement data averaged over all cycles. The planes describe the relation ΔφBC +ΔφCA +ΔφAB = 2πn
with n ∈ Z. The case n = 0 is shown in orange, n = 1 in blue and n = −1 in green. The orange and blue points represent the
closest points on the plane to the measured points (black). The dashed lines connect each measured point with its point on the
plain and indicate the direction of projection.

A.3. Measuring the interference contrast
In order to measure the interference contrast independently from estimations of the magnitude of phase
fluctuations, we reduced the interferometer to a two-path one by keeping one path closed. Sweeping the
phase difference over a range including fully constructive or destructive interference allows to directly
measure the interference contrast. By creating a vertical temperature gradient along the triangular path
arrangement, only the phase differences between path B (tip of the triangular path arrangement) and path
A or C (base of the triangle) can be tuned. We decided to closed path A and sweep the phase difference
between path B and C. To tune this temperature gradient we heated the sample to about 34.9 ◦C and shut
off the heater afterwards. We measured all four shutter combinations of path B and C in random order
about 70 times, during the thermalization of the setup with its surrounding. To increase the time resolution
we only took five successive measurements per combination. Each combination took about 5.71 s including
5.16 s for changing the shutter combination. Each cycle takes about 23.25 s with 0.41 s for logging
additional parameters like input power and housing temperature.

The thermalization of the housing temperature Th can be described by an exponential function

Th = T0 +ΔT exp(−κk), (A.4)

where k is the cycle index, T0 the room temperature, ΔT the range of the temperature change and
κ the thermalization coefficient. The recorded temperature is shown together with an exponential fit
(T0 = 22.04(3) C, ΔT = 13.269(28) C and κ = 0.020 55(10)/cycle) in figure A2. This description fits the
data quite well and therefore the influence on the normalized interference can be modelled by

α = Cα cos(Δφ0 + η ·ΔT exp(−κk)), (A.5)

where Cα describes the interference contrast, Δφ0 the phase difference at room temperature and
η the change of the phase difference per temperature change. This model, with the parameters
κ = 0.0415(13)/cycle, Δφ0 = 3.44(7) rad, η = 0.203(9) rad ◦C−1 and Cα = 1.000(29), fits the measured
data very well as shown in figure A2. The fit parameter of Cα shows that the interference contrast of these
two paths is, within the experimental precision of this measurement, quite high.

Note that the parameters of the temperature fit were not used for fitting the normalized interference,
due the position of the temperature sensor. It is mounted on the outside of the housing, between the
insulation and the housing. Therefore the measured housing temperature does not perfectly describe the
change of the temperature gradient and with it the change of the phase difference. Also the phase change
per temperature η, resulting from the fit of the left plot in figure A2, can not be compared with the one
given in section 3, which described a fully thermalized situation and here we have a dynamic thermal
process.

12
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Figure A2. Thermalization of the chip housing with its surroundings over multiple cycles k. In total the duration of the
measurement was about 28 min. The left plot shows the exponential drop of the housing temperature Th during the
thermalization and the solid orange line describes an exponential fit. The right plot shows the change of the normalized
interference term α over the same time period. The green solid line describes a fit using all parameters from the temperature fit,
besides the thermalization coefficient, which is set as a free parameter.

A.4. Polarization
The three-dimensional coupling between the waveguides in the fused silica chip leads to polarization
rotations. These changes in polarization depend on the orientation of the adjacent waveguides in regards to
the orientation of their elliptical waveguide profile. Therefore, the two waveguides at the base of the triangle
are affected differently than the one at the tip. This effect leads to a superposition of light of different
polarizations in the output ports of the chip. Without a polarizer in front of the detector the combined
signal of both orthogonal polarizations is measured. For example if only one path i is open this can be
described using the horizontal H and vertical V polarization basis as

Pi = PH
i + PV

i . (A.6)

In case of a two open paths i and j the same principle can be applied leading to

Pij = PH
i + PH

j + 2
√

PH
i PH

j cos(ΔφH
ij ) + PV

i + PV
j + 2

√
PV

i PV
j cos(ΔφV

ij ). (A.7)

A polarizer in front of the detector can be set to filter all H-components resulting in F = 1, which is trivial
to show using (2) and (5)–(7).

Without a polarizer the resulting equation for F is quite long and does not reduce to 1. This can be
shown for the case of equal powers for both polarizations PH

i = PV
i = Pi/2. This reduces Pij to

Pij = Pi + Pj +
√

PiPj(cos(ΔφH
ij ) + cos(ΔφV

ij )). (A.8)

Calculating F for this case results in

F =
1

2

⎛
⎝1 + αHαV + βHβV + γHγV − 1

2

∑
i,j,k∈{H,V}

αiβjγk + αHβHγH + αVβVγV

⎞
⎠ . (A.9)

It is easy to find normalized interference terms αi, βi and γi, which fulfill Fi = 1 for each polarization i, but
result in F �= 1. This shows that a measurement of a combination of orthogonal polarizations can lead to a
deviation in the Peres parameter. In contrast, by projecting to a single polarization, this effect can be
avoided.

Appendix B. Determination of crosstalk via Sorkin test

To determine the phase crosstalk ΔφDH in our experiment we utilize the Sorkin test [12, 42], usually
applied to probe the presence of higher-order interferences, which would violate Born’s rule [13–20]. We
resorted to this test as it is unbiased by most error sources, except by nonlinearity in the setup and crosstalk
between the modes. For a three-path interferometer, as used in our experiment, the output rate for all
shutters open can be obtained via Born’s rule as

PABC = |ψA + ψB + ψC|2 = PAB + PBC + PCA − PA − PB − PC. (B.1)
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Figure B1. The rate ε (in blue) for multiple successive measurements, with index k, on the left and the corresponding histogram
on the right. The plots of each row were measured at different housing temperature as stated in the top right corner of each plot.
The red horizontal lines describe the mean values and the orange shaded bands represents one standard deviation. The expected
value of ε = 0 is indicated by a black dashed line.

Any experimental deviation from this result can be subsumed in the rate ε:

ε ≡ PABC + PA + PB + PC − PAB − PBC − PCA. (B.2)

According to Sorkin, deviations from ε = 0 indicate higher-order interference and would violate Born’s
rule. To foster a comparison across different experimental platforms, a normalized version of this rate
(called Sorkin parameter) is used. A common variant is the normalization of the mean of ε in regards to the
mean sum of the absolute values of the pairwise interference terms:

〈κ〉 ≡ 〈ε〉
〈|PAB − PA − PB|+ |PBC − PB − PC|+ |PAC − PA − PC|〉

. (B.3)

This normalization makes κ independent of input power and interference contrast.
Performing the Sorkin test with the same measurement data, supplemented by data of the rate PABC,

resulted in the data as shown in figure B1 and the following mean values for each housing temperature:

〈ε23◦C〉 = −2.58(16) nW and 〈ε30◦C〉 = 1.5(5) nW (B.4)

〈κ23◦C〉 = −14.0(8) × 10−4 and 〈κ30◦C〉 = 11(4) × 10−2. (B.5)

The given error is the standard error of mean corrected by the autocorrelation according to [36]. Using this
method for the error calculation, both housing temperatures show a significant deviation from the expected
value ε = κ = 0. When comparing these values with the literature one has to keep in mind, that this test is
usually performed with an interferometer tuned to fully constructive or destructive interference, where
phase deviations have smaller effects. As this is not the case in our experiment, the systematic deviations
from 0 are larger than they would be at the extremal points.

As higher-order interferences have been experimentally ruled out in other experiments for coherent light
illumination to at least |κ| < 3 × 10−5 [17], any apparent higher-order interference appearing in the present
experiment can be attributed to nonlinearity or crosstalk. We determined the nonlinearity to be negligible
by independent measurements (see section 5.1), such that effectively the Sorkin test turns into a measure of
crosstalk. We can therefore associate systematic deviations from the predicted ε = 0 to cross-channel
influences of shutter settings between the waveguides (see discussion in section 5.4). To calculate the phase
crosstalk ΔφDH based on the measured ε, we used the normalized interference terms modified by the phase
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Figure C1. Sketch of the mounted chip cross section. The fused silica chip (in blue) is wrapped in indium foil (red) to improve
thermal contact to the aluminium housing (light grey). A hole in the top of the housing (white) allows access to the shutter holes.
The heater (dark grey) is attached to the bottom of the housing and the bottom and the sides of the housing are insulated
(green). The shown dimensions are not to scale.

crosstalk ΔφDH (as described in (16)) and inserted them into the corresponding two-path rates Pij in (B.2).
This results in the following equation connecting the phase crosstalk ΔφDH with the rate ε:

ε = 2Pin

(√
TATB (γ − cos(ΔφAB −ΔφDH)) +

√
TBTC (α− cos(ΔφBC +ΔφDH))

)
. (B.6)

For each temperature, this equation leads to two solutions for ΔφDH, which differ by one order of
magnitude. We chose the solution with the lower crosstalk strength (given in table 3), as we expect it to be a
small effect.

Appendix C. Setup details

Figure C1 shows the cross-section of the mounted chip in detail.
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