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Abstract. By solving analytically and numerically dynamical diffraction equations, we study 
the modulation of X-rays in ideal crystals by a co-propagating wave of impulsively excited 
optical phonons. Our results for a diamond crystal suggest that the output diffracted X-ray field 
can have a time structure much shorter than the period of the excited vibrational mode (Tv= 
25fs). We explain this dynamics in terms of high-order Raman scattering of X-rays by optical 
phonons. The potential of this ultrafast modulation technique for controlling X-rays from 
synchrotron and FEL sources is discussed. 

 

1.  Introduction 

In recent years a great variety of new fascinating experiments utilizing time-resolved X-ray diffraction 
have been reported from fields as diverse as solid-state physics [1,2], chemistry [3], and biology [4]. 
This breakthrough has been made due to the development of novel ultrafast hard X-ray sources, e.g. 
high-brilliance synchrotrons delivering few-ps X-ray pulses [5] and, especially, laser-plasma-based 
sources [6,7] able to generate bursts of X-rays of a sub-ps duration.The shortest presently available 
hard X-ray pulses (≈100fs) are, however, too long to resolve many ultrafast processes in liquids and 
solids, and much less to visualize the dynamics of inner shell electrons developing on the time scale of 
a few femtoseconds. Here we note the recent advances in the soft X-ray region, where attosecond X-
ray sources have become available and made possible unique spectroscopic studies [11]. 
  Recent attempts to generate extremely short hard X-ray pulses have included different   techniques 
[7-10]. One of the most promising approaches is the idea that very short bursts of X-rays can be 
produced by controlling X-ray diffraction with a fs-laser pulse. In [7] a fs-laser was used to melt the 
crystal surface to interrupt X-ray Bragg reflection. Modulation of X-ray diffraction by acoustic [9] and 
optical [10] phonons generated by a fs-pulse photoabsorption was also demonstrated. However, the 
efficiency of these processes is still low due to the fact that the interaction occurs within the optical 
absorption depth which is much smaller than the X-ray diffraction length. On the other hand, increase 
of the driving field intensity is limited by the onset of the unwanted effects (irreversible structural 
changes, nonthermal melting etc.[1]).    
   In this paper we discuss a new mechanism of generation of ultrashort X-ray pulses which uses a 
scattering of X-rays by a co-propagating wave of coherent optical phonons excited by a fs-laser pulse 
[19]. Unlike the available X-ray modulation techniques [6-10], the method explores the transparency 
region of the crystal for both X-ray and laser radiation, thus allowing one to take advantage of a 
minimum loss and a maximum interaction length. Propagation effects play a central role in this 
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method, leading to a new physics: We show that the modulation rate achievable with this technique is 
not limited by the period of the excited phonon mode and may lie in the sub-vibrational-period region, 
as a consequence of a higher-order Raman scattering. We start from the fact that significant vibrational 
amplitudes can be generated without excitation of electronic transitions using nonresonant impulsive 
Raman scattering (ISRS)[12,14]. As a result, large volumes can be excited uniformly. Another 
important moment is the principle feasibility to synchronize a diffracted X-ray field with a wave of 
laser produced phonons to enhance the interaction. This can be done either by adjusting the Bragg 
angle (by choosing an appropriate reflection) or by tuning the X-ray energy [13]. The use of the Laue 
(transmission) geometry is especially attractive, since unlike the Bragg (reflection) scheme it enables 
accumulating the interaction over many diffraction lengths, similar to the travelling wave Raman 
scattering scheme in nonlinear optics [14]. In addition, in Bragg modulators [12], it might be difficult 
to separate the weak laser-induced satellite reflection from the background of the main Bragg 
reflection. We show that the Laue scheme offers a principally new possibility: The generated ultrafast 
bursts of X-rays can be accurately sliced from the long input bunch using the "pendulumlike" behavior 
of X-rays in a Laue crystal. 

2.  Theoretical model 

Let us consider an interaction of X-rays with a 
wave of optical vibration in terms of the 
scheme shown in Figure 1, where the X-ray 
field propagates in conditions of symmetric 
Laue scattering, and the excitation laser pulse 
moves parallel to the crystal planes along the 
Z-axis. We assume that both the laser and the 
X-ray field are infinite and uniform in the 
transverse(X-Y) direction. The interaction is 
then independent of the transverse coordinates, 
and the evolution of the X-ray field in the 
crystal is described by one-dimensional 
nonstationary equations of dynamical theory 
for the amplitudes of the forward diffracted A0 
and  reflected Ag wave [15]: 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
                              Figure  1. 
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In equations (1) the X-ray fields are represented in the form: 1
20 0( , ) exp( ) . .E r t A i k r i t c cω= − + , 

1
2( , ) exp( ( ) ) . .g gE r t A i k g r i t c cω= + − + , where g  is the corresponding reciprocal lattice vector; 

( )1 3( ) , ( 0, )mi g r
m V r e d r m gχ χ−= ∫ = ±  is the Fourier component of the crystal susceptibility, λ X is 

the X-ray wavelength, and ∆θ is the detuning from the Bragg angle θB . The Fourier components are 
related through 2 2 2( / )( / )

mm X ge mc V Fχ λ π= −  to the structure factor of a unit cell ( , )
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which depends on the positions of atoms in the cell and the atomic scattering factor ( )j mf g . We focus 
on the mechanism of modulation of the structure factor

mgF due to the excitation of lattice vibrations. 
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The vibrations change positions of the atoms in the cell: (0)( ) ( )j j jr t r u t= +  ( ( )ju t  is the deviation 

of the j-th atom from the equilibrium (0)jr ), but do not change the cell's size and, thus, the gross 
periodicity is unchanged. The structure factor

mgF is assumed to vary adiabatically slow (e.g. the 
characteristic temporal (Tv) and spatial (Λv) scale of the variation are Tv>> 2π/ωX and Λv>>λX), 
leading to a slow change of the amplitudes A0(z,t) and Ag(z,t) in the crystal. The deviations ( )ju t can 

be represented as a superposition of normal vibrational modes ( )Q tα of the crystal ( ) ( ) j
ju t Q tα αψ= ∑  

where j
αψ  is the polarization vector of the α-th vibration, and we have:  

                          (0) (0)( , ) ( , )

1

( ) ( ) ( , )m j m j

m

N
i g r i g rj

g j m j
j j

F t f e i Q t g f eα α
α

ψ
=

≈ +∑ ∑∑         (2) 

  The laser pulse propagating in the crystal excites optical vibrations via stimulated Raman process, 
and dynamics of a normal mode ( )Q tα obeys the equation of a Raman oscillator: 
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where αΩ is the characteristic frequency and Tα is the relaxation constant of the oscillator, 

( , )iE z t (i=x,y,z) is a component of the laser field, and ˆ( / )ij Qαχ∂ ∂  is the Raman scattering tensor.   

3.  Ultrafast modulation of X-rays by impulsively excited phonons 

When a single fs-pulse with a duration τp<<( 2 / απ Ω ) interacts with the oscillator, a vibrational motion 
produced in the "impulsive" regime has the form of damped oscillations, 

( ) sin[ ] exp ( / )Q t q t t Tα α α α= Ω − , with the amplitude 21 ( / ) ( )q Q E t dtα α χ
∞−

−∞
= Ω ∂ ∂ ∫  proportional to 

the integrated laser intensity [14]. The first Fourier component of the susceptibility, which ís 
responsible for the modulation of X-ray diffraction, is found by summing over all the impulsively 
excited vibrational modes: 
                                    ( ) sin[ ]exp( / )g g gt t t Tα

α α
α

χ χ δχ= + Ω −∑                        (4) 

where 
( 0 )

22
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e i q g f e
mc V

α
α α

λδχ ψ
π

= − ∑ is the amplitude of the deviation of ( )g tχ  from the 

unperturbed value gχ due to α-th optical vibration. We note that the sum in g
αδχ over the indexes j of 

the atoms within a unit cell differs from that appearing in the case of acoustic vibrations, where all the 
atoms of a cell experience equal displacement, which leads to a phase shift in gF and χg [18]. When 
optical phonons are excited, the amplitude of χg is generally changed [15]. To get an insight into the 
physics of the modulation process, we consider that as a result of ISRS-excitation the susceptibility 
acquires only amplitude modulation. Assuming further that only the strongest mode is excited, the 
susceptibility wave generated by the pulse is described by ( , )g z tχ = sin[ ( / )]g g Lt z vχ δχ+ Ω − . By 

passing in equations (1) to new variables (z, =t-z/v )τ  , where v cos( )Bc ϑ=  and considering  
∆θ ≈ 0,  equations (1) can be solved exactly: 
                        { }0

0 0( , ) (0) cos ( / ) ( )sin[ ( /2)]i z
extA z A e z L z zβ χτ π ξ τ= + Ω −∆            (5a) 

                         { }0
0( , ) (0) sin ( / ) ( )sin[ ( /2)]gi z i

g extA z i A e z L z zβ χ ϕτ π ξ τ+= + Ω −∆             (5b) 
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where  A0(0) is the amplitude of the incident X-ray bunch at z=0, β= π/(λXcos(θB)), and ϕg is the phase 
of the susceptibility: exp( )g g giχ ϕ χ= . As follows from (5), in the absence of the modulation term 
(e.g. of the time-dependent term in brackets), the formulas describe the well-known pendulumlike 
solution [18], in which the energy of the X-ray beam flows over from the forward diffracted to the 
reflected wave periodically in the z direction on the spatial scale of the extinction length Lext = 
λXcos(θB)/ gχ . The relative role of the modulation term in the X-ray diffraction depends on the 
magnitude of the modulation amplitude in equations (5) given by: 

                                                   [ ]sin / 2
( )

/ 2
g

g ext

z
z

L
δχ πξ
χ

Ω ∆
=

Ω ∆
                        (6)   

where the parameter (1/ v 1/ v )L∆ = − characterizes the group velocity (GV) walk-off between the 
excitation pulse and the diffracted X-ray fields. In the absence of synchronism, an increase of the 
modulation amplitude ξ(z) with the distance is limited by the length zsat ≈ π/Ω∆ at which the phase of 
the lattice vibrations modifying diffraction of the co-propagating X-ray field changes its sign. 
However, when the fields are synchronized (∆=0), the amplitude grows linearly with the length: ξ(z) = 

( / )( / )g g extz Lπ δχ χ . This reflects the fact that the effect of the modulation is accumulated over the 
propagation length and, as we show below, dramatically modifies the X-ray diffraction. Indeed, by 
representing the X-ray fields (5) as a series:  

                { }0
0 0( , ) (0) ( ) cos ( / )i z

n ext
n

A z A e J z L nβ χτ ξ π τ
∞

=−∞

= + Ω∑                     (7a) 

               { }0
0( , ) (0) ( )sin ( / )gi z i
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n

A z i A e J z L nβ χ ϕτ ξ π τ
∞

+

=−∞

= + Ω∑                   (7b) 

we can see that the perturbation leads to a generation of an infinite number of harmonics of the 
vibrational frequency, which are Stokes and anti-Stokes Raman components of the X-ray field: ωn = ω 

± nΩ. The number of components making a major contribution to the X-ray field (7) is determined by 
the argument ξ(z) of the Bessel functions Jn(ξ). A direct consequence of this fact is that for z 
> ( / ) /ext g gL π χ δχ  the X-ray spectrum is enriched with higher (n>1) order harmonics, that is, the time 
scale of the field variation becomes faster than the period of lattice vibrations. Note that the ultrafast 
modulation can also be thought of as originating from the time modulation of the effective extinction 
length,Leff(τ)=Lext[1+( / )g gδχ χ sin(Ωτ) ]-1, defining a spatial scale on which the X-ray field is reflected by 
the atomic planes. 
   Since the X-ray fields have the form of ultrafast transients developing against a background of the 
long input X-ray bunch, the important question is how to cut the transients from the background. This 
appears to be possible since the net phase of the pendulum-like solutions (5) contains the time 
independent phase shift Φ0(z)=(πz / Lext). By choosing the crystal thickness L so that in the absence of 
the perturbations the output deflected (or forward scattered) X-ray field is zero due to the pendulum-
like behavior (this is the case when (L/Lext) = k or (2k +1)/2, respectively, (k=1,2,...)), the background 
can be completely removed. In fact, the fs-burst of X-rays emerges from the crystal only after the 
crystal was exposed to the laser field.  
 

4.  Discussion and conclusions 

 In order to make quantitative predictions, we studied equations (1)-(4) numerically for different 
crystals. A diamond crystal is especially interesting because of its very high optical phonon frequency: 
Ω=1332cm-1 (Tvibr= 25fs). In addition, synchronism can be achieved in the spectral regions where X-
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rays and the pump laser pulse exhibit a low absorption. For example, for a pump pulse at λ=0.8µm 
(Ti:Sapphire laser), GV-synchronism takes place for (202) reflection with X-ray energy E=5.3KeV 

(λX = 2.3
0

A , θB=63°). According to [12,14], ISRS can produce atomic displacements ∼10-1 0
A per 

1J/cm2, and we estimated that for the pump pulse with τp =20fs and energy 0.1mJ focused to a 
diameter 300µm the change of the susceptibility will be /g gδχ χ ≈0.1. Because the pendulum 

oscillation length depends on the Bragg detuning, Lext(∆θ)=Lext(0)[1+y2]-1/2 where 
y=(∆θ)sin(2θΒ)/ gχ [18] , the optimum crystal thickness L and the generated pulse shape are functions 

of ∆θ . Figures 2a,b show the temporal structure of the output reflected X-ray field for different ∆θ .  
In Figure 2a the optimum crystal thickness L(∆θ) is small (for instance, for ∆θ=0 the latter is L(0)= 
17.1 µm), and the modulation regime is close to linear (ξ<<1).  The output X-ray field is seen to 
replicate the sinusoidal behavior of the perturbed susceptibility. In a thicker crystal (Figure2b, 
L(0)=85.5 µm), high-order scattering comes to play (ξ>1) and leads to the specific temporal splitting 
of the generated structures. The most efficient modulation is observed within a 10-arcsec angle near 
the Bragg angle, where the output X-ray field is comparable in intensity to the long input X-ray bunch. 
  
 
 
 
 
 
 
 
 
 
 
 

 
 
 

   
                                         Figure  2a.                                                            Figure  2b. 
Intensity of the output diffracted X-rays modulated by a wave of optical phonons  in diamond (202)versus the 
Bragg detuning (the pump pulse: λp= 0.8µm, τ p=20fs, Ip=2.5TW/cm2). The crystal length is chosen such that the 
background is removed due to the pendulumlike behavior: Figure 2a - L=3Lext, Figure 2b - L=15Lext, where 
Lext(∆θ)= 5.7(µm)(1+0.04 (∆θ)2)-1/2  with ∆θ in arcsec.The intensity is normalized by the input intensity. 
 
 Whereas duration of the transients in Figure 2a,b are determined by the relaxation time of the excited 
vibrations, much faster structures can be produced by applying two identical fs-laser pulses. If the 
second pulse is delayed by the half vibrational period (12.5fs) it will turn off the coherent lattice 
vibration, and a half-oscillation vibration will be produced [16]. Figures 3a,b display the X-ray 
transients generated by the half-oscillation vibration excited by two 7fs-laser pulses (Ip=5TW/cm2) in 
diamond for different crystal lengths: (a)- L(0)=171 µm, and (b)- L(0)=256,5 µm. Owing to the low 
dispersion of diamond at λ=0.8 µm (kωω ≈ 103fs2/cm), reshaping of the pump pulses in the crystal is 
small. As can be seen from Figures 3a,b, the output X-ray field exhibits temporal modulations on the 
time scale essentially shorter than Tvibr=25fs. Fourier transform of the time structure in Figure 3b 
suggests that Raman sidebands up to 10-order contribute to the output X-ray field. Note that the X-ray 
intensity in Figure 3b is somewhat smaller than that in Figure3a due to linear attenuation (La=300 µm).  
  To observe the sub-10fs structures, the diffraction properties of the X-ray beam must be well-
pronounced over interaction lengths of tens of Lext. This implies a rather good quality of the X-ray 
beam.We estimated that a beam divergence below 10 arcsec is required, and therefore the technique 
could be used to control X-rays from modern synchrotron sources [9]. In view of the ongoing progress 
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                                     Figure  3a                                                               Figure  3b 
The intensity of the diffracted X-ray field modulated by a half-wavelength lattice vibration in diamond, which is 
produced by a sequence of two 7fs-laser pulses (λp= 0.8µm, τ p=20fs, Ip=2.5TW/cm2). The crystal length is 
chosen such that the background is removed: Figure 3a - L=25Lext, Figure 3b - L=45Lext, where Lext(∆θ)= 
5.7(µm)(1+0.04 (∆θ)2)-1/2  with ∆θ in arcsec. The intensity is normalized by the input intensity. 
 
in intensity and brilliance of X-rays sources, it could also be interesting for shaping of X-rays 
generated by future sources, such as hard X-ray free electron lasers [17]. 
   In conclusion, we studied the modulation of X-rays by a wave of coherently excited optical phonons. 
We found that the modulation rate achievable with this process may lie in the sub-vibrational-period 
region, as a result of higher order Raman scattering of X-rays. The results of modeling of X-ray 
diffraction in diamond under the conditions of impulsive excitation of the phonon mode at Ω=1332 
cm-1 suggests that ultrafast X-ray transients with duration as short as only few femtosecond can be 
generated. Fundamentally, our results show that travelling wave interaction schemes (analogous to 
those long known in nonlinear optics) can give access to a significant increase of the efficiency of 
laser-assisted processes in the angström region.  
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