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Abstract. Numerical simulations of black-hole binaries, obtained with the Lean code, are
presented. The code is demonstrated to produce state-of-the-art evolutions of inspiralling and
merging black holes with convergent waveforms. We further compare results from head-on
collisions of Brill-Lindquist and Kerr-Schild data to study the dependency of the waveforms on
the choice of initial data type. In this comparison we find good qualitative agreement between
the results of both data types, but observe a systematic discrepancy of about 10 % in the wave
amplitudes. Several attempts to explain the observed discrepancy are discussed.

1. Introduction
The era of gravitational wave physics has recently entered a very exciting stage. On the
experimental side, groundbased laser interferometric detectors, GEO600, LIGO, TAMA and
VIRGO, have started collecting data at or even beyond design sensitivity. Simultaneously, the
modelling of the strongest source of gravitational waves, the inspiral and coalescence of black-
hole binaries, has seen ground-breaking progress. Because of the complexity of the Einstein
equations, the study of such systems in the framework of full general relativity is possible
only by using super computers to generate numerical solutions. The extraction of physical
information from such simulations is not only of fundamental importance for the detection and
eventual interpretation of the observed gravitational wave patterns, but also provides valuable
insight into the dynamics of compact objects and its implications for scenarios of astrophysical
investigation.

The first attempts at numerically modelling black-hole-binary spacetimes dates back to the
pioneering work of Eppley, Smarr and coworkers in the 1970s (see e. g. [1, 2]). Right from
the start, however, numerical simulations of black-hole spacetimes were troubled by instabilities
which severely inhibited progress in the ensuing decades in spite of the increasing computational
resources. It is only in very recent years, that an improved insight into the formulation of the
Einstein equations [3, 4, 5, 6] and coordinate or “gauge” conditions (see e. g. [7, 8, 9, 10, 11])
in combination with advanced treatment of the black hole singularities has lead to stable
simulations on orbital time scales.

The first complete orbit of a black hole binary has been obtained by Brügmann et. al. [8] by
evolving black hole data of puncture type [12] using the Baumgarte-Shapiro-Shibata-Nakamura
(BSSN) formulation [3, 4] in co-rotating coordinates. The first inspiral and merger of a black
hole binary together with the resulting gravitational waveforms was presented by Pretorius [13]
who implemented a generalized version of the harmonic formulation of the Einstein equations in
the framework of special numerical techniques such as spatial compacitification and inplicit finite
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differencing. The most recent develpment, now commonly referred to as “moving punctures”
has been simultaneously discovered by Campanelli et. al. and Baker et. al. [14, 15, 10, 11]. Their
simulations also start from puncture initial data, but allow for the punctures to move across
the computational domain. Probably, the most remarkable feature of this type of simulations is
that their success has now been confirmed by various groups [16, 17] and appears to generalize
straightforwardly to the inclusion of spinning holes and unequal mass-ratios [18, 19, 20]. While
most of the numerical work on black hole evolutions has been performed in the framework of
finite differencing, spectral methods are being investigated by Scheel et. al. [21] who are able to
evolve black hole orbits at relatively large separations with high accuracy.

Not withstanding the dramatic progress in black hole simulations, there remain various open
questions. With regard to the ongoing effort to detect gravitational waves, these concern in
particular the accuracy and efficiency of the numerical codes. Among the primary targets of
numerical relativity will be the generation of template banks of gravitational waveforms covering
the parameter space of binary-black hole configurations. In view of the high dimensionality of
this parameter space, especially when allowing for spinning holes, this requires a very large
number of numerical simulations. Furthermore, the use of numerically generated waveforms in
the process of data analysis requires high accuracy and knowledge of the remaining errors.

Inaccuracies do not only arise out of the numerical implementation, such as discretization of
the equations, but are likely to also contain systematic errors, in particular related to the initial
data. The difficulties in this regard are two-fold. First, initial parameters, such as the orbital
angular momentum need to be chosen so as to resemble as closely as possible astrophysically
realistic scenarios. Second, the construction of initial data is commonly based on single black
holes described in particular types of coordinates, such as isotropic or Kerr-Schild coordinates.
In the case of single black holes, the corresponding spacetime metrics are related by coordinate
transformations and are known to represent physically identical configurations. Unfortunately,
it is currently unknown, to what extent such uniqueness theorems generalize two binary data.
In other words, given two initial data sets of a black-hole binary, to what extent can we expect
these to represent the same physical configuration and thus to result in similar waveforms? In
many cases, such data sets are already known to contain certain amounts of gravitational waves
besides the black holes and thus do not represent identical setups.

It is a key motivation of this work to study the implications of such differences in different
types of binary initial data on the resulting gravitational waveforms. For this purpose a
numerical code has been developed which facilitates evolutions of black-hole binaries using
different types of initial data as well as different evolution techniques. Specifically, we investigate
in detail the head-on collisions of equal-mass binaries obtained from two types of initial data
which have been popular in recent studies in the literature: Brill-Lindquist [22] and superposed
Kerr-Schild data [23, 24].

This article is organized as follows. After describing the code in Sec. 2, we present state-of-
the-art simulations of orbiting and merging black hole binaries with convergent waveforms in
Sec. 3. Finally we investigate the dependency of the waveforms in the case of head-on collisions
starting from a wide range of initial separations in Sec. 4 and discuss our observations.

2. The Lean code
The Lean code has partly been inspired by the Maya code [25, 26, 27] and partly by the recent
development of the moving puncture technique [14, 15]. A detailed description of the Lean
code has been given in [17] and we refer the reader to this work for all those aspects of the code
which we only mention briefly here.

The code is based on the Cactus computational toolkit [28] which provides parallelization,
data I/O, the apparent horizon finder AHFinderDirect [29, 30] and the initial data thorn
TwoPunctures [31]. Mesh refinement is implemented using the Carpet package [32, 33].
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Dynamic mesh refinement is implemented inside the Lean code by steering in accordance with
the motion of the black holes the regridding option inherent to Carpet.

We have already mentioned the importance of the choice of formulation of the Einstein
equations for achieving long-term stable evolutions. For all simulations presented in this work,
we use the BSSN formulation which describes the spacetime in terms of a conformal metric γ̃ij ,
the conformal factor eφ, a conformally rescaled traceless extrinsic curvature Ãij , the trace of the
extrinsic curvature K and an auxiliary connection function Γ̃i. These variables are related to
the traditional ADM variables (see, e. g. [34]) according to

φ = 1
12 ln γ, γ̃ij = e−4φγij ,

K = γijKij , Ãij = e−4φ
(

Kij − 1
3
γijK

)
,

Γ̃i = γ̃mnΓ̃i
mn, (1)

where γij and Kij denote the three-metric and extrinsic curvature, respectively. In addition to
the Hamiltonian and momentum constraints inherent to the Einstein equations, this choice of
variables leads to three auxiliary constraints, namely the definition of Γ̃i as well as

γ̃ = det γ̃ij = 0 Ãi
i = 0 (2)

The exact form of the BSSN equations as used in the Lean code, including the enforcement of
constraints, is given by Eqs. (2)-(7) in [17].

In order to start the time integration, we need to prescribe initial data for all variables. In
general relativity, this task is complicated by the requirement that these data solve the Einstein
constraint equations, at least with good approximation. Furthermore, they need to represent
an astrophysically realistic configuration. The construction of initial data thus represents a
special branch of numerical relativity and we refer the reader to [35] for an overview. A key
purpose of the present study is to compare the impact of the choice of initial-data on the physcial
results. To this end, the Lean code facilitates evolutions of puncture or Brill-Lindquist data
and superposed Kerr-Schild data.

Puncture data represent a generalization of the conformally flat Schwarzschild solution
in isotropic coordinates. Brill-Lindquist data are given by the superposition of these single
black hole metrics, which is obtained by merely adding the quotients in the conformal factor:
eφ =

∑ mi
2|~r−~ri| . Non-zero spin and momenta of the individual holes can be incorporated in the

form of a non-vanishing extrinsic curvature [36]. Finally, Brandt and Brügmann cast this data
into a form substantially more convenient for their use in numerical simulations and demonstrate
existence and uniqueness of the solution of the Hamiltonian constraint. These data are commonly
referred to as punctures and have been widely used in numerical simulations (see e. g. [7, 8, 37]).

An alternative construction of black-hole binary data which does not assume conformal
flatness, is based on the single black hole solution of Kerr and Schild [23]. The superposition
of two Kerr-Schild holes has been suggested in [24] and is sometimes referred to as “HuMaSh”
data. In contrast to the Brill-Lindquist case, this superposition does not exactly satisfy the
Einstein constraints even for zero spin and momenta. The constraint violations have been found
to be rather small in practice, however, [38, 27] and can be made arbitrarily small by increasing
the initial separation of the black holes. To our knowledge, all time evolutions of Kerr-Schild
data presented in the literature have thus been obtained from this direct superposition without
applying an additional constraint solving procedure (see e. g. [39, 27]).

Inside the Lean code, “HuMaSh” data are obtained by superposing two Kerr-Schild holes at
positions Axi and Bxi according to

γij = Aγij + Bγij − δij , (3)
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Ki
j = AKi

j + BKi
j , (4)

βi = Aβi + Bβi, (5)

α =
(

Aα−2 + Bα−2 − 1
)−1/2

, (6)

Where the quantities associated with the individual holes are calculated according to Eqs. (4)–
(7) in Ref. [40]. We note that with this specific superposition, lapse α and shift βi obey the
close-limit condition, i. e. they lead to the lapse and shift of a single Kerr-Schild hole in the limit
of zero separation.

In addition to the evolution of the physical variables, we also need to specify conditions
for the lapse function α and the shift vector βi which incorporate the choice of coordinates or
gauge. In the case of puncture and Brill-Lindquist data, we initialize lapse and shift by their
flat spacetime values α = 1, βi = 0 and subsequently evolve these variables according to

∂tα = βi∂iα− 2αK, (7)
∂tβ

i = Bi, (8)

∂tB
i = ∂tΓ̃i − ηBi. (9)

For all simulations presented in this work, the parameter in Eq. (9) has been set to η = 1. We
have also experimented with these evolution equations in the case of Kerr-Schild data, but not
managed to obtain long-term stable evolutions so far. We therefore proceed differently in the
Kerr-Schild evolutions and prescribe the gauge analytically along the lines of Ref. [27]. That
is, we prescribe analytic trajectories Axi(t), Bxi(t) for black holes A and B and calculate the
resulting gauge functions by superposing the analytic gauge of the individual holes. Specifically,
we construct polynomial functions of the type x = y = 0 and

±z(t) = z0 + v0t +
1
2
a0t

2 +
1
6
j0t

3, (10)

during the early stages and match these curves smoothly up to third derivatives to the constant
z = 0 in a specified range t1 < t < t2. The exact parameters are listed in Table 1 as used for
each Kerr-Schild model. Following [26] we prescribe the analytic slicing condition in the form
of the densitized lapse Q. We thus obtain the superposed gauge functions

βi = γij(βA
j + βB

j ), (11)

Q = γ−1/2
(
α−2

A + α−2
B − 1

)−1/2
. (12)

Here the quantities denoted with an A or B are the analytic expressions for the individual black
holes and γij is the superposed metric defined in Eq. (3).

All evolution equations are implemented using the method of lines with a second order in
time iterated Crank-Nicholson scheme. For the spatial discretization we use fourth order stencils
for evolving punctures and second order stencils for the Kerr-Schild evolutions. The use of
second order stencils in the latter case is a consequence of the use of black hole excision and
the difficulties of using the wider fourth order stencils near the excision boundary (see [17] for
details).

3. Orbiting black-hole binaries
Before we compare the head-on collisions of Kerr-Schild and puncture data, we demonstrate
the code’s capability to produce evolutions of orbiting black-hole binaries with convergent
waveforms. For this purpose we consider the model R1 of Table I of Ref. [11]. Here two black

XXIXth Spanish Relativity Meeting (ERE 2006) IOP Publishing
Journal of Physics: Conference Series 66 (2007) 012049 doi:10.1088/1742-6596/66/1/012049

4



0 100 200 300
t [M]

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

Ψ
22

Re[Ψ
22, h

1
]

Re[Ψ
22, h

2
]

Re[Ψ
22, h

3
]

-0.004

-0.002

0

0.002

0.004

∆Ψ
22

Ψ
22, h

3
-Ψ

22, h
2

2.78 (Ψ
22, h

2
-Ψ

22, h
1
)

0 100 200 300
t [M]

-0.0004

-0.0002

0

0.0002

Ψ
22, h

3
-Ψ

22, h
2

2.78 (Ψ
22, h

2
-Ψ

22, h
1
)

Figure 1. The ` = 2, m = 2 waveform extracted from the R1 simulation at rex = 30 M obtained
for resolutions h1, h2 and h3 (left) and convergence analysis of these results (right panel).

holes with mass parameter m = 0.483 start at coordinate positions x = ±3.257M with linear
momentum parameter P = ±0.133 in the y-direction. We have evolved this configuration using
eight nested refinement levels. In the coarse resolution run, we use N3 = 72 points and a grid
spacing of h3 = 5.2 in the outermost level and double the resolution consecutively on each of
the seven finer levels. The number of points is 72 for the six outer levels, while the two finest
levels use 54 points each in two components centered around either hole. The corresponding
setup for the medium and high resolution simulations uses finer resolutions h2 = 4

5h3, h1 = 3
5 h3

and correspondingly larger numbers of points N2, N1.
In Fig. 1, we show the resulting NewmanPenrose scalar Ψ4 extracted at r = 30 for all three

simulations. We note that the waveform shows good agreement with the results obtained from
similar evolutions in the literature [19, 18]. A factor two discrepancy with Fig. 2 of [18] results
from a trivial rescaling depending on the choice of the eigenmode basis [cf. their Eq. (4)].

With regard to a convergence analysis, we first note that the error is dominated by the shift in
phase because of the oscillating behaviour of the waveforms. We therefore study the convergence
both with and without applying a phase shift to align the global maxima of the curves. These
are shown in the right panel of Fig. 1 where we have amplified the differences between the higher
resolution runs by a factor 2.78 expected for fourth-order convergence. The analysis shows good
agreement with fourth-order convergence in both cases. These findings are in accordance with
the results of [18] who also observe fourth order convergence in spite of the presence of second
order ingredients in the numerical implementation.

We finally calculate the total energy radiated by the system according to Eq. (22) in Ref. [41].
At extraction radii r = 30 and 40, we measure the radiated energy to be 3.48% and 3.46%,
respectively, of the total ADM mass of the system.

4. Head-on Collisions
In this section we address the question to what extent gravitational waveforms of black-hole
binary collisions depend on the type of initial data and the evolution techniques. First steps
in this direction have been undertaken in the literature with regard to the initial seperation
of the black holes and some technical aspects of the evolution. In Ref. [42] head-on collisions
of Brill-Lindquist data obtained with and without black-hole excision have been found to yield
good agreement. A comparison between plunge waveforms obtained from moving puncture
evolutions with those resulting from Lazarus calculations [43] has been presented in Ref. [11].
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Finally, the waveforms resulting from inspiralling black holes of puncture type starting from
different separations have been found to show excellent agreement in Refs. [19, 18]. To our
knowledge, however, there exist no comparisons of three-dimensional simulations of black-hole
binaries using conceptually different types of initial data.

In order to quantitatively address these questions, we compare the simplest type of binary
simulations, namely head-on collisions of equal-mass black holes starting from rest. In this
context, we note that the total amount of radiated energy is almost two orders of magnitude
weaker than that obtained from orbiting binaries. Head-on collisions thus represent a particularly
sensitive type of simulation for this type of analysis. In this study, we compare evolutions of
Brill-Lindquist data with those of superposed Kerr-Schild data. In case of either data type, a
specific initial configuration is obtained by fixing three parameters: the bare mass m of either
hole, the coordinate separation D and the initial linear momenta P1,2 of the holes. In the
case of Brill-Lindquist data, the latter corresponds to the linear ADM momentum associated
with the hole and we obtain a time symmetric initial data set of two holes at rest by setting
P1 = P2 = 0. In the case of the Kerr-Schild data, the linear momentum of an isolated hole is
given by the boost velocity parameter v. Black holes at rest are thus given by v = 0. Unlike
the Brill-Lindquist data, however, superposed Kerr-Schild data are not time symmetric in the
limit of vanishing boost parameters. The implications of non-vanishing initial velocities on the
resulting gravitational waveforms will be discussed in more detail below.

In order to fix the remaining parameters m and D for both data types, we impose the
conditions that the ADM mass of the total system equal unity and the irreducible masses M1,2

are identical for both data sets. Both, for Brill-Lindquist and superposed Kerr-Schild data, the
ADM mass is given by MADM = m1 + m2 = 2m so that we set m = 0.5 in all simulations
discussed in this section. The irreducible masses are calculated from the apparent horizon area
and depend on the coordinate separation of the holes. We have thus calculated four initial data
configurations with parameters listed in Table 1.

The convergence properties of both types of evolutions has been discussed in detail in Ref. [17].
There, second order convergence has been demonstrated in both cases and the errors in the
waveforms arising out of the discretization have been found to be of the order of a few per cent.
We now use these findings for a quantitative comparison of the gravitational waves generated by
head-on collisions of Brill-Lindquist and Kerr-Schild data. The resulting real part of the ` = 2,
m = 0 mode of Ψ4 obtained for models 1-4 of both data types are shown in Fig. 2. We first
note a strong wave pulse in the Kerr-Schild evolutions starting around t = 50. From the timing
of the pulse and its notable decrease in amplitude at larger initial separations of the holes, we
interprete this feature as spurious radiation inherent to the initial data. Similar features are

Table 1. Parameters for the Brill-Lindquist and Kerr-Schild version of models 1-4. We also
list the coefficients used for the gauge trajectories in the Kerr-Schild evolutions and the total
radiated energy in percent of the ADM mass for both data types.

Model DKS DBL Mirr z0 v0 a0 j0 t1 t2 EKS EBL

1 10 8.6 0.514 5 0 -0.037 0.0038 10 35 0.066 0.051
0.514 5 -0.08 -0.0061 -0.0002 20 40 0.066 0.051

2 12 10.2 0.512 6 0 -0.029 0.0029 10 55 0.067 0.052
3 14 12.5 0.510 7 0 -0.022 0.0021 12 60 0.073 0.054
4 16 14.6 0.508 8 0 -0.021 0.0022 9.3 76 0.086 0.054

XXIXth Spanish Relativity Meeting (ERE 2006) IOP Publishing
Journal of Physics: Conference Series 66 (2007) 012049 doi:10.1088/1742-6596/66/1/012049

6



-0.02

-0.01

0

0.01

0.02

rΨ
20

BL1: rΨ
20

(t-8.5 M, r=50 M)

KS1: rΨ
20

(t, r=50 M)

0 50 100 150
t [M]

-0.02

-0.01

0

0.01

BL2: rΨ
20

(t-9.7 M, r=50 M)

KS2: rΨ
20

(t, r=50 M)

-0.02

-0.01

0

0.01

0.02

rΨ
20

BL3: rΨ
20

(t-15 M, r=50 M)

KS3: rΨ
20

(t, r=50 M)

0 50 100 150 200
t [M]

-0.02

-0.01

0

0.01

BL4: rΨ
20

(t-19 M, r=50 M)

KS4: rΨ
20

(t, r=50 M)

Figure 2. Real part of the ` = 2, m = 0 mode of rΨ4 extracted at rex = 50 for the Kerr-Schild
and Brill-Lindquist versions of model 1-4. For presentation purposes, the waveforms have been
shifted in time, so that their global maxiam align.

also present in the Brill-Lindquist waveforms, although with a substantially smaller amplitude.
Starting at correspondingly later times, between t = 80 for models 1 and t = 120 for model 4,

the figure shows the actual wave signal generated by the head-on collisions. While the waveforms
of the two data types show good qualitative agreement, we note a systematically larger wave
amplitude in the case of the Kerr-Schild data by about 10− 20%. This discrepancy is relatively
large compared with the differences encountered when evolving either data type with different
grid-resolutions. Furthermore, the discrepancy does not appear to diminish as we increase the
initial separation of the holes. In contrast, we observe the largest difference in the case of model
4. These results are confirmed by the calculation of the total radiated energy which is obtained
from Ψ4 by the relation

dE

dt
= lim

r→∞

[
r2

16π

∫

Ω

∣∣∣∣
∫ t

−∞
Ψ4dt̃

∣∣∣∣
2

dΩ

]
. (13)

The resulting values of E as a percentage of the total ADM energy of the system are listed in
Table 1. In the calculation of these values, we have excluded the early part of the waveforms
containing the spurious signal inherent to the initial data.

We next discuss several possible sources of systematic error which may be responsible for
the observed discrepancies. First, we consider the possible influence of the gauge trajectories
used in the evolutions of the Kerr-Schild data. While the choice of gauge does not influence
the physical results in the continuum limit, at finite resolutions, gauge effects can significantly
affect aspects of black-hole binary evolutions (see e. g. [37]). We therefore evolve model 1 with
different gauge trajectories. We emphasize, in this context, that arbitrarily chosen trajectories
will in general not result in stable simulations, and special care must be taken in specifying the
parameters z0, v0, a0, j0, t1 and t2. Still, there is some degree of freedom in the choice and
we have listed in Table 1 two parameter sets for model 1. The corresponding trajectories are
shown in the left panel of Fig. 3. The resulting waveforms plotted in the right panel of the figure
are practically indistiguishable and demonstrate the robustness of the results versus the choice
of gauge trajectory. In particular, this choice does not appear to account for the discrepancies
observed in the head-on collisions of the Brill-Lindquist and Kerr-Schild data.

We next consider the dependency of the waveforms on the initial momenta of the black holes.
We have already mentioned that Brill-Lindquist data are inherently time symmetric, whereas a
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Figure 3. The two trajectories listed in Table 1 for model 2 (left panel). The resulting ` = 2,
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Figure 5. The radiated energy as a function
of the initial proper-separation of the holes for
Brill-Lindquist, Kerr-Schild and Misner data.

zero boost parameter does not result in time symmetry in the case of superposed Kerr-Schild
data and we cannot exclude a non-vanishing initial linear momenta of the black holes. We
investigate this issue by calculating the coordinate velocity of the individual Kerr-Schild holes
from the central positions of the apparent horizons. In the case of model 2 we thus measure a
velocity of v = 0.06 for either hole in the direction towards the other. We assess the impact
of such a linear momentum by initializing the punctures of model 2 with a linear momentum
giving rise to the same velocity. The resulting waveforms are compared in Fig. 4 and only differ
by the expected shift in time. The difference in amplitude, on the other hand, is much smaller
than the discrepancy between the two data types. It thus appears, that a possible difference in
initial momenta of the black holes between Brill-Lindquist and Kerr-Schild data is not sufficient
to account for the observed differences in amplitude.

Finally, we compare our results with those reported in [44] for head-on collisions of Misner
data. For this purpose, we plot in Fig. 5 their values for the radiated energy obtained at rex = 70
using the Zerilli formalism as well as our results as functions of the initial three-dimensional
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proper distance of the holes. The scattering of the values reported in [44] indicates fairly large
error-bars, so that caution is advised in a detailed comparison. Still, we note good agreement
between their results and our values for Kerr-Schild data.

It will be interesting, to recalculate the results for the Misner data using modern techniques
and thus obtain more accurate values for the energy. This will facilitate a more detailed
compariosn with the Kerr-Schild and Brill-Lindquist data. A further interesting question is
the impact of the constraint violations inherent to the superposed Kerr-Schild data. Such a
study, however, represents a highly non-trivial task and requires numerical solving of a coupled
set of non-linear elliptic equations in three spatial dimensions using mesh-refinement. Due to
the complexity of this task, evolutions of such data have not yet been reported in the literature
and are beyond the scope of this work.
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[8] Brügmann B, Tichy W and Jansen N 2004 Phys. Rev. Lett. 92 211101 (Preprint gr-qc/0312112)
[9] Pretorius F 2005 Phys. Rev. Lett. 95 121101 (Preprint gr-qc/0507014)

[10] Campanelli M, Lousto C O and Zlochower Y (2006) Phys. Rev. D 73, 061501(R) (Preprint gr-qc/0601091)
[11] Baker J G, Centrella J, Choi D-I, Koppitz M and vanMeter J 2006 Phys. Rev. D 73 104002 (Preprint

gr-qc/0602026)
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[31] Ansorg, M, Brügmann B and Tichy W 2004 Phys. Rev. D 70 064011 (Preprint gr-qc/0404056)
[32] Carpet Code homepage
[33] Schnetter E, Hawley S H and Hawke I 2004 Class. Quantum Grav. 21 1465–1488 (Preprint gr-qc/0310042)
[34] York Jr J W 1979 Sources of Gravitational Radiation , ed L Smarr (Cambridge: Cambridge University Press)

pp 83–126
[35] Cook G B 2000 Living Rev. Relativity http://relativity.livingreviews.org/Articles/lrr-2000-5
[36] Bowen J M and York Jr J W 1980 Phys. Rev. D 21 2047–2056
[37] Diener P, Herrmann F, Pollney D, Schnetter E, Seidel E, Takahashi R, Thornburg J and Ventrella J 2006

Phys. Rev. Lett. 96 121101 (Preprint gr-qc/0512108)
[38] Marronetti P, Huq M, Laguna P, Lehner L, Matzner R and Shoemaker D 2000 Phys. Rev. D 62 024017

(Preprint gr-qc/0001077)
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