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Abstract.
Low mechanical loss materials are needed to further decrease thermal noise in upcoming

gravitational wave detectors. We present an analysis of the contribution of Akhieser and
thermoelastic damping on the experimental results of resonant mechanical loss measurements.
The combination of both processes allows the fit of the experimental data of quartz in the
low temperature region (10K to 25 K). A fully anisotropic numerical calculation over a wide
temperature range (10K to 300K) reveals, that thermoelastic damping is not a dominant noise
source in bulk silicon samples. The anisotropic numerical calculation is sucessfully applied to
the estimate of thermoelastic noise of an advanced LIGO sized silicon test mass.

1. Introduction
The detection of gravitational waves demands a very high precision length measurement. Even
strong gravitational wave sources will just cause an effect in the order of 10−19 m on earth.
In modern interferometric gravitational wave detectors thermal noise significantly limits the
sensitivity. Especially in the most sensitive frequency range from 10 Hz - 200 Hz thermally
driven random vibrations of the surface of the optical substrates become important. Besides the
classical Brownian noise [1, 2] other noise mechanisms have been identified to contribute to the
total thermal noise: thermoelastic and photothermal noise [3] as well as thermo-refractive noise
[4, 5]. All noise processes can equivalently be described by a corresponding process consuming
energy. The link between noise and loss is given by the fluctuation-dissipation-theorem [6].
Consequently knowing the dissipative properties, i.e. the temperature and frequency behaviour
of all loss processes, of a system allows the computation of its thermal noise.

In the case of a gravitational wave detector the displacement noise of the surface is connected
with the dissipation of mechanical energy within the material. Therefore, the mechanical loss
of different substrate materials has been studied in the past, e.g. [7, 8, 9, 10, 11], to understand
the origin of the mechanical dissipation. All these studies rely on ring down measurements of
cylindrical bulk samples at their resonances. The estimated characteristic ring down time is
finally used as a measure for the mechanical loss.
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The results of these measurements consist of a superposition of many different internal loss
processes. In order to understand or even minimise these different loss contributions it is
necessary to separate them within the measured data sets. Therefore a subsequent analysis aims
at the identification of the different mechanical loss processes within the material. Fundamental
intrinsic loss processes in bulk materials are thermoelastic damping and Akhieser damping,
which is the result of phonon-phonon-interaction. We will focus on a detailed description of these
fundamental loss processes within this paper. Due to the small height of the cylindrical samples
an isotropic plate theory [12] is applied for evaluating the effect of thermoelastic damping.
Furthermore, a finite element analysis is developed to extend the theory of thermoelastic loss
to anisotropic samples. This treatment allows an easy application to arbitrarily shaped test
masses as well and helps identifying the loss sources in the ring-down experiments. For silicon
we examplarily compare our approach to the isotropic plate model.

The second part of the paper applies the developed code to the calculation of thermoelastic
noise of a gravitational wave detector bulk material having anisotropic material properties.

2. Mechanical loss processes
2.1. Thermoelastic damping
A test sample under vibration exhibits regions being compressed and regions being expanded
during a vibrational cycle. Accordingly, the described volume change is linked to a temperature
change by means of the coefficient of thermal expansion. The arising temperature gradient
within the sample leads to a heat flow and, consequently, increases the entropy of the system [3]
which leads to dissipation. This dissipation process causes the vibrational amplitude to decrease
with time and is known as thermoelastic damping (TED). A non-vanishing coefficient of thermal
expansion only occurs in a material if the interatomic potential has anharmonic contributions
and thus TED is classified as a nonlinear effect of the lattice.

In order to calculate the TED numerically the mode shape of the resonant vibration of the
substrate is required. With the knowledge of the mode shape one can estimate the volume
change within the sample under deformation. This volume change is directly linked to the stress
tensor σ. Quantitatively the temperature distribution T within the sample is obtained by using
the equation of heat transport (see e.g. [13]):

CpṪ − λij
∂T

∂xi∂xj
= −αij σ̇ijT0 . (1)

In this equation λ and α represent the tensors of thermal conductivity and thermal expansion
respectively. Furthermore Cp is the specific heat per unit volume and T0 the average temperature
of the sample. In Eq. (1) the Einstein convention is used, i.e. to sum over double indices.

Summing the work done by the new thermal field against the original stress field finally
gives the dissipated energy ∆E per oscillation cycle [14, 15]. By using the complex notation for
harmonic processes one obtains:

∆E = π

∫
V

αij σ̂ij=
(
T̂
)

dV , (2)

where =(T̂ ) is the imaginary part of the temperature amplitude T̂ (T = T̂ eiωt) which is taken
as the solution from Eq. (1). This part of the temperature change is phase shifted compared to
the mechanical stress. The mechanical loss φ is then given by:

φ =
1
2π

∆E

E
(3)

with the total vibrational energy E.
The presented scheme allows the full anisotropic treatment of thermoelastic damping in solids.
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2.2. Akhieser damping
The second important contribution to the mechanical damping in bulk samples results from
the interaction of acoustic waves with thermal phonons. Thermal phonons carry the thermal
energy of the sample and obey a Planck distribution in thermal equilibrium. In 1939 Akhieser
[16] developed a theory for this effect, where he treated the acoustic wave as a homogeneous
stress background for the thermal phonons. In the field of resonant loss measurements the
homogeneous stress background is provided by the excited eigenmode of the sample. This
approximation requires that the lifetime of thermal phonons τ is short compared to the period
1/f of the acoustic vibration. For all materials and temperatures considered in this paper this
condition (fτ � 1) is well satisfied. At a frequency of 25 kHz and at a temperature of 10 K fτ
reveals to be 6× 10−3 for silicon and 2.2× 10−3 for quartz.

Mechanical stress leads to a change of the phonon energies in the crystal via the
Grüneisenparameter γ. In general each phonon branch shows a distinct parameter and therefore
a distinct energy shift. Consequently, the whole phonon ensemble is brought out of thermal
equilibrium by an external stress. The thermodynamical equilibrium state is characterized by
the maximum of entropy. Any process reestablishing equilibrium, here the collision between
phonons, will, therefore, increase the entropy and, thus, dissipate energy. The speed of phonon
redistribution is limited by the phonon lifetime τ as the typical time between interactions.

Again Akhieser damping is a nonlinear effect, because without having anharmonic
contributions in the interatomic potential phonon-phonon-interaction would be forbidden.

Akhieser losses φph for the bulk vibrating solid are given by the following expression [17]

φph =
CpTγ2

ρv2
s

ωτ

1 + ω2τ2
. (4)

In this model the Akhieser loss φph depends on the sound velocity vs, the angular freqency of
the acoustic wave ω and the density ρ of the material.

3. Numerical estimation and application to experimental data
3.1. Crystalline quartz
Akhieser and thermoelastic damping have been applied to the measured loss values of a
crystalline quartz sample. The sample has a cylindrical shape (z-axis parallel to the cylinder axis)
with a diameter of 76.2 mm and a height of 12 mm. The mechanical loss above 25K is dominated
by processes which can be described in the model of double well potentials [18]. Former
investigations identified interstitial aluminum together with alkali atoms to cause mechanical loss
in quartz [19] at temperatures above 25 K. For the defect model does not satisfactorily explain
the low temperature data, one has to take further mechanical loss processes into consideration.

In this paper we concentrate on the temperature region below 25 K to exclude the influence of
defects and to explain the behaviour with a combined model of TED and Akhieser damping. For
a detailed description of this model see [20]. Due to the small height of the sample compared
to its diameter we used the approach of Bishop and Kinra [12] to estimate TED in a plate.
Mechanical losses due to Akhieser damping were calculated with the use of Eq. (4) into which
we inserted the material properties of quartz from the literature [21].

The theoretical values using both TED and Akhieser damping are compared to the measured
loss values in Fig. 1 for an eigenmode at f= 11.7 kHz. It is seen that we obtained a good
quantitative agreement between experiment and theory for the quite reasonable value of the
Grüneisen parameter γ =2. This is an indication that the low temperature loss in quartz can
exclusively be described by these two mechanisms.

At the experimental frequency of 11.7 kHz the contribution of Akhieser losses is negligibly
small (see Fig. 1). However, when the eigenfrequencies exceed a few MHz, the contribution of
Akhieser losses will become dominating.
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Figure 1. Measured mechanical loss (◦ ) of
a Ø 76.2 mm × 12 mm quartz sample in z-cut
at f= 11.7 kHz. Calculated mechanical loss
(——) as the sum of TED (· · · · · ·) and phonon
damping (- - - -) as described in the text. In
the lower right corner the deformation of the
substrate in the cylinder axis is shown.

Figure 2. Measured mechanical loss (◦ )
of a Ø 76.2 mm × 12 mm silicon sample in
(100) direction at f= 24.1 kHz. The data are
compared to TED obtained by a isotropic
model (——) and our anisotropic approach
(- - - -). In the lower right corner the
deformation of the substrate in the cylinder
axis is shown.

3.2. Crystalline silicon
We also investigated silicon, the most promising candidate for future cryogenic gravitational
wave detectors [22, 23, 10]. The cylindrical sample has the same geometry as the quartz sample
(Ø 76.2mm × 12 mm) and was oriented along the cylinder axis in (100) direction. Again TED
in silicon was at first calculated with the isotropic plate theory described in [12]. We used
the FE software COMSOL [24] for a completely numerical and anisotropic calculation of TED.
Consequently, the results of both models are compared in Fig. 2. Thermophysical properties of
silicon are taken from the references [21, 25].

For the given silicon resonance we encounter deviations between the anisotropic and isotropic
model of up to 20%. However, TED alone is not capable of explaining the measured loss data
over the whole temperature range. The results show, that TED significantly affects mechanical
loss in our bulk-like sample only at a small temperature region around 40K. There the calculated
dissipation even exceeds the experimental values. The origin of this discrepancy could be found
in the deviation of the real sample parameters from the table values used in the calculation.

The Akhieser damping strongly depends on the thermal conductivity (see [17]) which is in
turn strongly dependent on the impurity concentration. Unfortunately, for the sample, used in
this paper, this parameter is not known to a degree which would justify any estimate on Akhieser
damping. Further investigation of the effect of phonon interaction on damping in silicon is on
the way.

4. Thermal noise due to TED in a gravitational wave detector
The effect of TED was first outlined in 1937 by Zener for vibrating reeds [26]. In 1999 the
importance of TED as a serious noise contribution in gravitational wave detectors was pointed
out in [3]. This behaviour is especially relevant for crystalline test masses as sapphire and silicon
which are proposed to be used in future detectors [27, 28]. A refined model was developed in
order to cover finite test mass sizes and non-adiabatic conditions [29]. These conditions become
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important when small beams (e.g. in laser stabilization cavities), high thermal conductivity
materials or low frequencies are used.

Using Levin’s theorem [30] the resulting thermoelastic noise of the mirror is obtained by the
calculation of the losses due to a virtual mechanical pressure applied to the front surface of the
sample. The spatial distribution of pressure along the surface p(~r) of the sample has to mimic
the intensity distribution of the laser beam:

p(~r) =
F0

r2
0

exp

(
−r2

r2
0

)
, (5)

where F0 is an arbitrarily chosen force amplitude of the excitation. The beam radius r0 indicates
the point of the 1/e decay of the laser intensity.

The spectral noise power density S2
x(f) due to surface fluctuations then results from [30]:

S2
x(f) =

2kBT

π2f2

Wdiss

F 2
0

. (6)

In Eq. (6) Wdiss describes the energy dissipated per cycle due to all relevant loss mechanisms. In
order to obtain thermoelastic noise the dissipation due to TED needs to be considered. Applying
the pressure p(~r) in the quasistatic approximation allows the calculation of Wdiss with the FE
software COMSOL. Fig. 3 compares the full anisotropic FEA with the results obtained by using
the analytical calculation in [29, Eq. (20)].

Figure 3. Numerical estimate (◦ ) of ther-
moelastic noise in an isotropically modelled sili-
con substrate with advLIGO geometry (Ø 340mm
× 220 mm) in comparison to the analytical treat-
ment given in [29] for the same substrate (——).
For both calculations a beam waist radius of w0 =√

2r0 = 60mm and a temperature T = 300K were
used. The full anisotropic treatment leads to the
same result as the isotropic one. Thus, the plot is
omitted. The inset shows the deformation due to
the Gaussian pressure profile.

At first we compared the thermoelastic noise level given by the analytical and our numerical
theory for an isotropic body of finite size (advLIGO geometry). Both results exhibit a good
agreement although the analytical calculation is strictly valid for infinite test masses. This
effect of finite sized geometry explains the encountered difference below 5 % over the frequency
range of 1Hz to 10 kHz between the models. An analytic expression for the effect of finite
sizes [31] on isotropic test masses also explains changes in the order of 5 %. The only major
discrepancy occurs at low frequencies where the difference in the boundary conditions become
important.

Our analysis showed that introducing anisotropy into the problem only leads to a minor
change in the noise level of less than one per cent. Thus, in the quasistatic model far away
from any resonances, for silicon the effect of anisotropy on thermoelastic noise is negligible.
Close to the resonances this assumption breaks down and a full anisotropic treatment is needed.
Although this is not necessary for the optical components (where the resonances are always well
outside the detection band) this might become important for the suspension elements having
resonances inside the operation frequency band.
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5. Conclusion
Considering both Bömmels model for phonon damping and the model of Bishop and Kinra for
thermoelastic damping in plates allows the interpretation of the low temperature behaviour of
mechanical losses in quartz. We showed a quantitative agreement with our measurement for
the temperature interval from around 10 K to 25 K. In contrast, the repeated analysis for a bulk
silicon sample revealed that thermoelastic damping is not to be the dominating factor within the
experimental temperature interval from 5 K to 300K. TED alone does not explain the measured
data. Therefore we expect other loss mechanisms to contribute essentially to the mechanical
loss within the considered temperature region.

Finally the comparison of our noise calculation to an analytical approach proved the reliability
of our numerical code. This code allows to include arbitrary sample geometries as well as the
anisotropic character of the material. Its application on bulk silicon shows, that the influence
of the anisotropy on thermoelastic noise can be neglected for this material for typical mirror
geometries.

Nevertheless, in the field of mechanical loss measurements on samples of varying size the effect
of anisotropy is important in order to seperate different loss mechanisms. Thus, the developed
code is a valueable tool to include anisotropy into the mechanical loss data analysis as well as
the thermal noise calculation for small structures.
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[22] Winkler W, Rüdiger A, Schillig R, Strain K A and Danzmann K 1994 Optics Communications 112 245–52
[23] Rowan S, Hough J and Crooks D R M 2005 Phys. Lett. A 347 25–32
[24] URL www.comsol.com

[25] Hull R, ed 1999 Properties of Crystalline Silicon (INSPEC, the Institution of Electrical Engineers, London)
[26] Zener C 1937 Phys. Rev. 52 230–5
[27] Kuroda K 2006 Class. Quantum Grav. 23 S215–21
[28] URL www.et-gw.eu

[29] Cerdonio M, Conti L, Heidmann A and Pinard M 2001 Phys. Rev. D 63 082003
[30] Levin Y 1998 Phys. Rev. D 57 (2) 659–63
[31] Liu Y T and Thorne K S 2000 Phys. Rev. D 62 122002

8th Edoardo Amaldi Conference on Gravitational Waves IOP Publishing
Journal of Physics: Conference Series 228 (2010) 012032 doi:10.1088/1742-6596/228/1/012032

6




