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Abstract. The recent breakthroughs in numerical relativity have made it possible to generate
gravitational wave signals coming from binary systems. The waveforms are extracted using the
Newman-Penrose formalism and in particular the Weyl scalar Ψ4. In order for Ψ4 to contain
the physical information on the gravitational wave signal, the tetrad chosen for its calculation
should converge to the Kinnersley tetrad in the limit of single black hole space-time.

In this work we present a compact expression for Ψ4 that automatically enforces this
condition; the result is a simple function of curvature invariants that can be easily calculated
in a numerical code.

1. Introduction
Given the recent successes of numerical relativity and the ability of current codes [1, 2, 3] to
simulate a binary black hole merger, the accuracy of generated waveforms has become of primary
importance. This is the so called problem of wave extraction which consists of calculating specific
quantities from the numerically evolved variables that are directly related to the gravitational
wave degrees of freedom. To achieve this, most groups use the Newman-Penrose (NP) formalism
and in particular the Weyl scalar Ψ4.

The relevant quantities in the NP formalism are the mentioned Weyl scalars, given by the
contraction of the Weyl tensor over a specific combination of the four null tetrad vectors, and
the connection coefficients (spin coefficients) related to the covariant derivatives of the same
tetrad vectors. All of these quantities are scalars, making the choice of the coordinate system
irrelevant for their calculation; they are however dependent on the tetrad choice which constitutes
the gauge freedom in this formalism.

It is well known that these variable, under certain assumptions, acquire a precise physical
meaning. For example Ψ0 and Ψ4 are related to the ingoing and outgoing gravitational
wave contribution, while Ψ2 is related to the background contribution to the curvature. This
explains the use of Ψ4 for numerical simulations of Einstein’s equations. However, a suitable
tetrad choice is fundamental for the calculation of these quantities. The importance of a
robust wave extraction technique has been underlined by some recent articles [4, 5, 6, 7].
Recent works [8, 9, 10] have identified in transverse tetrads, i.e. those tetrads satisfying the
condition Ψ1 = Ψ3 = 0, a convenient candidate for wave extraction and in general for a better
understanding of the equations governing the Newman-Penrose formalism.
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The advantages of the choice Ψ1 = Ψ3 = 0 have already been shown in [8, 9, 10], namely one
of these three frames naturally converges to the frame where Ψ0 = Ψ4 = 0 when the spacetime
approaches Petrov type D. This property ensures that the values for the two scalars Ψ0 and
Ψ4, in the linear regime, are at first order tetrad invariant, and directly associated with the
gravitational wave signal [11].

To determine the tetrad completely, however, one also needs to fix the spin-boost degree
of freedom. The Kinnersley tetrad [12] identifies the spin-boost parameter by imposing the
condition on one spin coefficient ε = 0.

In this paper we show that, choosing the tetrads where Ψ1 = Ψ3 = 0, it is possible to find a
connection between the spin-boost parameter and the expressions for the spin coefficients. This
will allow us to impose the condition ε = 0 and find the correspondent value for the spin-boost
parameter. Applying this spin boost parameter to the expression of Ψ4 will give us a compact
result which is function of curvature invariants.

2. General definitions
Weyl scalars are given by contraction of the Weyl tensor over a certain combination of four null
vectors, two real (`µ and nµ) and two complex conjugates (mµ and m̄µ), according to

Ψ0 = −Cabcd`amb`cmd, (1a)
Ψ1 = −Cabcd`anb`cmd, (1b)
Ψ2 = −Cabcd`ambm̄cnd, (1c)
Ψ3 = −Cabcd`anbm̄cnd, (1d)
Ψ4 = −Cabcdnam̄bncm̄d. (1e)

These expressions are obviously tetrad dependent, however it is possible to construct two
quantities which are no longer dependent on the tetrad choice. Such quantities are the
curvature invariants I and J , and their expressions as functions of the Weyl scalars are given by
I = Ψ4Ψ0 − 4Ψ1Ψ3 + 3Ψ2

2 and J = Ψ4

(
Ψ0Ψ2 −Ψ2

1

)
−Ψ3 (Ψ3Ψ0 −Ψ1Ψ2) + Ψ2

(
Ψ1Ψ3 −Ψ2

2

)
.

In transverse frames (i.e. when Ψ1 = Ψ3 = 0) the non-vanishing Weyl scalars can be written
directly as functions of curvature invariants, yielding

Ψ0 = − iB
−2

2
·Ψ−, (2a)

Ψ2 = − 1
2
√

3
·Ψ+, (2b)

Ψ4 = − iB
2

2
·Ψ−, (2c)

where

Ψ± = I
1
2

(
e

2πik
3 Θ± e−

2πik
3 Θ−1

)
. (3)

In these expressions Θ =
√

3PI−
1
2 , P =

[
J +

√
J2 − (I/3)3

] 1
3

and k is an integer number

assuming the values {0, 1, 2} corresponding to the three different transverse frames. The spin-

boost parameter is given by B =
(

Ψ4
Ψ0

) 1
4 . The limit of type D corresponds to Θ→ 1.
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3. The connection between spin coefficients and spin-boost parameter
In this section, we will use the Ricci identities to understand how the spin coefficients ε, γ, α
and β relate to the spin-boost parameter B.

We assume to be in the Petrov type D limit, where Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0 and also, as a
consequence of the Goldberg-Sachs theorem, the four spin coefficients λ, σ, ν and κ vanish. We
begin with the following Ricci identity

Dβ̃ − δε̃ = ε̃ (π∗ − α∗ − β) + β̃ (ρ∗ + ε− ε∗) . (4)

which is expressed in terms of the reduced spin coefficients ε̃ = ε+ 1
2D lnB and β̃ = β+ 1

2δ lnB.
Comparing Eq. (4) with the expression of the commutator [D, δ] (again assuming σ = κ = 0)

[D, δ] = (π∗ − α∗ − β)D + (ρ∗ + ε− ε∗) δ, (5)

it is possible to see that the Ricci identity is consistent with having ε̃ = DH1 and β̃ = δH1,
where H1 is a function to be determined. Using the equivalent Ricci identity obtained after
exchanging the tetrad vectors ` ↔ n and m ↔ m̄ we obtain an equivalent result for the
reduced spin coefficients γ̃ = γ + 1

2∆ lnB and α̃ = α + 1
2δ

∗ lnB and conclude that they also
can be expressed as γ̃ = ∆H2 and α̃ = δ∗H2, and from the properties of transformation of spin
coefficients under exchange operation one must have H1 = −H2 = H. The expression for H can
be found using the following two other Ricci identities

Dγ̃ −∆ε̃ = α̃ (τ + π∗) + β̃ (τ∗ + π) + τπ (6a)
− γ̃ (ε+ ε∗)− ε̃ (γ + γ∗) + Ψ2,

δα̃− δ∗β̃ = µρ+ α̃α∗ + β̃β∗ − 2α̃β̃ (6b)
+ γ̃ (ρ− ρ∗) + ε̃ (µ− µ∗)−Ψ2,

which, together with the just found properties of these spin coefficients as directional derivatives
of the function H, lead to the following equation for H:

∇µ∇µH+∇µ ln
(
I

1
6

)
∇µ
(

2H+ ln I
1
12

)
= −2Ψ2, (7)

where we have also used the fact that in the Petrov type D limit ρ = D ln I
1
6 , µ = −∆ ln I

1
6 ,

τ = δ ln I
1
6 and π = −δ∗ ln I

1
6 . The solution for Eq. (7) in the case of Kerr space-time using

Boyer-Lindquist coordinates, is given by

H =
1
2

ln
(

Γ
1
2 I

1
6 sin θ

)
, (8)

where Γ = r2 − 2Mr+ a2, M and a being mass and spin parameter of the black hole. The spin
coefficient ε is therefore given by

ε =
1
2
D ln

(
Γ

1
2 I

1
6B−1 sin θ

)
. (9)

Setting ε = 0 leads to the following expression for the spin-boost parameter

B = B0f (θ) I
1
6 Γ

1
2 sin θ, (10)

where B0 is an integration constant and the function f(θ) can be found from the expression
of the spin coefficient β and is given by f (θ) = sin−1 θ. The final result for B is therefore
B = B0I

1
6 Γ

1
2 .
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When applied to the expression for the Weyl scalars given in Eq. (2), Eq. (10) yields

Ψ0 = B−2
0 · Γ

−1I
1
6
(
Θ−Θ−1

)
, (11a)

Ψ4 = B2
0 · ΓI

5
6
(
Θ−Θ−1

)
, (11b)

for ingoing waves, and

Ψ0 = B2
0 · ΓI

5
6
(
Θ−Θ−1

)
, (12a)

Ψ4 = B−2
0 · Γ

−1I
1
6
(
Θ−Θ−1

)
, (12b)

for outgoing waves.
These expressions for the scalars immediately give the correct radial fall-offs at future null

infinity once the peeling behavior of the Weyl tensor is assumed, corresponding to I ∝ r−6 and
J ∝ r−9. The function Γ is defined in the limit of Petrov type D and gives no radial contribution
at future null infinity; the variable Θ gives no contribution either as it is the ratio of quantities
that have the same radial behavior at future null infinity. In conclusion, Eq. (12) gives Ψ0 ∝ r−5

and Ψ4 ∝ r−1 for outgoing waves, as is expected from perturbation theory.
Future work will address the determination of the integration constant B0 as well as relating

the function Γ to other invariant properties of the space-time under consideration.
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