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Simple Summary: According to CDC, autism spectrum disorder (ASD) was diagnosed in one of
every 36 children in the United States in 2020. Over 2000 genes have been identified as altered in ASD,
yet a coherent model of ASD etiology is lacking. Here, we present a novel hypothesis of ASD origins
based on common gene network features involving an interplay of glial and neuronal cells in the
developing brain, starting during fetal development. We report statistical findings with implications
for understanding the causes of ASD, early detection, and the development of new treatments.

Abstract: Fetal neuroinflammation and prenatal stress (PS) may contribute to lifelong neurological
disabilities. Astrocytes and microglia, among the brain’s non-neuronal “glia” cell populations, play a
pivotal role in neurodevelopment and predisposition to and initiation of disease throughout lifespan.
One of the most common neurodevelopmental disorders manifesting between 1–4 years of age is
the autism spectrum disorder (ASD). A pathological glial–neuronal interplay is thought to increase
the risk for clinical manifestation of ASD in at-risk children, but the mechanisms remain poorly
understood, and integrative, multi-scale models are needed. We propose a model that integrates
the data across the scales of physiological organization, from genome to phenotype, and provides
a foundation to explain the disparate findings on the genomic level. We hypothesize that via gene–
environment interactions, fetal neuroinflammation and PS may reprogram glial immunometabolic
phenotypes that impact neurodevelopment and neurobehavior. Drawing on genomic data from the
recently published series of ovine and rodent glial transcriptome analyses with fetuses exposed to
neuroinflammation or PS, we conducted an analysis on the Simons Foundation Autism Research
Initiative (SFARI) Gene database. We confirmed 21 gene hits. Using unsupervised statistical network
analysis, we then identified six clusters of probable protein–protein interactions mapping onto the
immunometabolic and stress response networks and epigenetic memory. These findings support
our hypothesis. We discuss the implications for ASD etiology, early detection, and novel therapeutic
approaches. We conclude with delineation of the next steps to verify our model on the individual
gene level in an assumption-free manner. The proposed model is of interest for the multidisciplinary
community of stakeholders engaged in ASD research, the development of novel pharmacological
and non-pharmacological treatments, early prevention, and detection as well as for policy makers.
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1. Introduction

A body of preclinical and epidemiological evidence shows that in utero exposure to
infection or stress results in altered neurodevelopmental trajectories, including psychiatric
conditions such as autism spectrum disorder (ASD) [1].

However, the mechanisms explaining the individual risk and framework for early
detection and treatment have remained elusive.

ASD is a complex neurodevelopmental disorder that is thought to be caused by a
combination of genetic and environmental factors. ASD may be caused by changes in genes
that are involved in brain development and function. Environmental factors that may
contribute to the development of ASD include exposure to toxins, infections, medications
such as valproic acid and chronic stress experienced during pregnancy.

There is no single test that can diagnose ASD. Doctors typically diagnose ASD based
on a child’s developmental history, behavior, and medical exam. There is no cure for ASD,
but there are treatments that can help improve symptoms and quality of life. Treatment for
ASD may include early intervention services, speech therapy, occupational therapy, and
medication.

It is important to note that not everyone who is exposed to these risk factors will
develop ASD. ASD is a complex disorder that is caused by a combination of factors.

Here, we synthesize the evidence of connections between fetal neuroinflammation,
prenatal stress (PS) and ASD to generate a new model of ASD etiology accounting for
the contribution of microglia and astrocytes, the key players in brain inflammation. We
deployed a multi-species approach to data synthesis [2]. Combining biomarkers derived
from observations in multiple species, such as rodent, ovine and human in the present case,
should increase the likelihood of identifying a translationally valid disease etiology.

As a result, we propose a novel model of neuro-immunometabolic etiology of ASD. By
way of an initial validation of this model on the population level, in a large genome database
sample of children affected by ASD, we tested for the presence of disruptive mutations
to genes involved in the respective pathways and systems. We conclude with discussion
of the implications and recommendations for assumption-free validation of the proposed
model in the existing genomic data on the individual level, the subject of an ongoing research
study. The proposed model is of interest for the multidisciplinary community of stakeholders
engaged in ASD research, the development of novel pharmacological and non-pharmacological
treatments, early prevention, and detection as well as for policy makers.

2. Methods
Gathering the Biomarkers across Cell Systems and Species

Based on our observations in fetal microglia [3,4], the simplistic hypothesis is that
exposure to endotoxins or chronic stress augments energy conservation-driving pathways,
and the α7 nicotinic acetylcholine receptor α7nAChR agonism reduces that response. Such
gene-environment adaptations should be reflected in changes of epigenetic memory medi-
ated by histone acetylation/deacetylation enzymes (HDAC/HAT) involved in microglial
memory of inflammation [3].

Synthesizing findings from the studies in the rodent, ovine and human species, we
identified genes associated with the inflammatory, stress and metabolic phenotypes of
microglia and astrocytes (Figure 1 and Table 1). We included the genes involved in energy
homeostasis based on observations linking neuroimmune and metabolic memory signa-
tures in fetal microglia exposed to LPS and the larger emerging gestalt of physiological
stress response in immunometabolism, in particular by astrocytes [5,6].
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We included the iron homeostasis genes based on the recently postulated interaction
between this signaling network and the α7nAChR modulation of the immunometabolic
phenotype of fetal microglia [4].

We included the complement pathway genes expressed in microglia and known
to be modulated by neuroinflammation in microglia and to play an important role in
neurodevelopmental synaptic pruning [4,7].

Based on the evidence that in utero inflammation or stress increases risk for ASD,
we sought to identify genes linked to the ASD diagnosis and falling into the family of
signaling pathways listed in Table 1. We tested that hypothesis statistically against the
Simons Foundation Autism Research Initiative (SFARI) Gene database. The SFARI Gene
database is an online resource for genes implicated in autism susceptibility. The SFARI
gene database is a continually updated repository of genetic risk factors for ASD as they
emerge from research. We used the human gene module, which is freely accessible online
and contains 1231 genes identified as playing a role in ASD. This module is combined with
a gene scoring module that assesses quantitatively the levels of evidence for each gene’s
association with ASD. So far, 418 high-confidence and strong candidate ASD risk genes
have been identified.

Figure 1 summarizes the systems level approach to selecting the targets from animal
models and identifying those that are also listed in SFARI. Such targets are listed centered
in each system’s box. We provide further details on the selected targets in Table 1 with the
level of each gene’s association indicated in squared brackets. Scores denoted as S identify
syndromic category, and lower numbers in the range from 1 to 6 mean higher confidence in
the association, with 1 being the highest and 6 being the lowest.

Based on the above-described etiological understanding of the developmental inter-
play between the glial cells, neurons and the following signaling pathways, the genes were
grouped into those identifying the phenotypes of glial cells (microglia and astrocytes); and
genes implicated in inflammation, stress, energy or iron homeostasis, complement pathway
or epigenetic memory, while being implicated in ASD via preclinical or clinical studies,
as referenced. Where applicable, we denote the effects of acute or chronic exposure to
inflammation or stress on these genes. These notes are somewhat simplified for brevity;
sometimes, a temporally biphasic or tissue-specific pattern was observed, and we made
note of that, as appropriate.

Table 1. Genes implicated in the signature of astrocytes and microglia exposed to chronic inflamma-
tion or stress.

Groups Genes Function Effect of Inflammation Effect of Stress

Glial cell phenotype

TMEM119
Transmembrane protein 119; identifies resident
microglia (from blood-derived macrophages)

[8,9]
Up Up

TGFβ [4] Transforming growth factor beta-1; resident
microglial biomarker [10,11] First up, then down Down

CD11b Resident microglial biomarker [9–11] Up Up

CD11c Activated microglia [10,11] Up Up

CD45 [4] Protein Tyrosine Phosphatase Receptor Type C
(PTPRC); Resident microglial biomarker [9–11] Up Up

Iba1
Ionized calcium binding adaptor molecule 1:

Non-specific microglial/macrophage biomarker
[3,9–12]

Up Up

CX3CR1 [4] CX3C chemokine receptor 1; required for
synaptic pruning during brain development [13] Up Up

BRD4 [4]
Bromodomain containing 4; polarizes microglia
toward inflammatory phenotype [14]; involved

in epigenetic memory [15]
Up Up

SLC1A2 [S]
Astrocytic GLT-1 transporter required for

neuron–astrocyte communication and astrocyte
maturation [16]

Up Down
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Table 1. Cont.

Groups Genes Function Effect of Inflammation Effect of Stress

Inflammation

HMGB1

Hypermobility group box protein 1, a
pleiotropic signaling molecule in glia cells and
neurons: a growth factor, a pro-inflammatory

molecule [17]; implicated in ASD [18]

Up Up

IL-10 Key regulator of neuroimmune homeostasis via
cross-talk of microglia and astrocytes [19] Down or Up Down

IL-6 [5] Early inflammatory cytokine Up Up

NLRP3 Inflammasome activated in ASD [20] Up Up

Stress

CRH [5]
Corticotropin-releasing hormone, key hormone
linking chronic stress with anxiety [21,22]; has

direct effects on microglia [23]
Up Up

CRHR2 [5] Corticotropin-releasing hormone receptor 2; [23] Up or Down,
locoregional Up

HSD11B1 [4] 11β-Hydroxysteroid dehydrogenase type 1 [24] Up Down

POMC Proopiomelanocortin [25] Down Up

p-Akt Phosphorylated-Akt [26] Up Up

PI3K [S] PI3K/Akt signaling pathway; e.g., PIK3CA
[26,27] Up Up

OGT [5]
O-GlcNAc transferase; a placental biomarker of

maternal stress exposure related to
neurodevelopmental outcomes [28,29]

Up Up

GAP43 [5]

Growth associated protein 43; in astrocytes,
GAP43 mediates glial and neuronal plasticity
during astrogliosis and attenuates microglial

activation under LPS exposure [30]

Down Down

SLC22A3 [5] Solute carrier family 22 member 3; modulates
anxiety and social interaction [31,32] Up Up

PLPPR4 [5]
Phospholipid Phosphatase Related 4;

stress-related behaviors such as reduced
resilience [33]

Up Up

PRKCB [3] Protein Kinase C Beta; involved in stress-related
behavior [34] Up Up

UCN3 [5] Urocortin 3; binds specifically CRHR2 [23] Down Down

DLG4 [5] Disks large homolog 4; modulates stress
reactivity and anxiety [35,36] Down Down

Energy homeostasis

Cx43
Connexin 43 gap junction maintaining
astrocytes’ homeostasis via metabolic

cooperation [37]
Down Down

AMPK Adenosine monophosphate kinase, intracellular
energy sensor [38] Up Up

FBP Fructo-biphosphokinase: signature of second-hit
memory of inflammation in fetal microglia [3] Up Up

mTOR [S] Mammalian target of the rapamycin signaling
pathway [39,40] Up Up

Iron homeostasis

HAMP

Hepcidin, a regulator of iron homeostasis and
inflammation; implicated, along with

ferroportin and transferrin, in microglial
response to endotoxin interfering with

α7nAChR signaling [4]

Up Up

SLC40A1 Ferroportin Up Up

TFR2 Transferrin receptor 2; involved in iron
sequestration Up Up

TFRC Transferrin receptor protein 1; needed for iron
sequestration Down Down

HMOX1

Hemoxygenase 1, key enzyme of iron
homeostasis; also serves as a signature of
second-hit memory in fetal microglia and
promoted by α7nAChR stimulation [3,41]

Up Up

SLC25A39 [4]
Member of the SLC25 transporter or

mitochondrial carrier family of proteins;
required for normal heme biosynthesis

Up Up
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Table 1. Cont.

Groups Genes Function Effect of Inflammation Effect of Stress

Complement pathway

C1QA Aside from their traditional role in innate
immunity [42], elements of the complement

pathway are involved in neuronal–glial
interactions; recognized as essential players in

brain development, especially in
synaptogenesis/synaptic pruning and

predisposition for neurodegenerative diseases
[7,43]; their microglial expression is also
susceptible to LPS exposure in utero [4]

Up Up

C1QB Up Up

C43AR1 Up Up

CR2 Up Up

C4B [4]
Up Up

Epigenetic memory HDAC [S] and HAT
families

Histone acetylation/deacetylation enzymes:
HDAC 1, 2, 3, 7 and 9 found in SSC database of

ASD gene mutations.HDAC 1, 2, 4 and 6
involved in fetal microglial memory of LPS

exposure; HDAC 1, 2, 4 and 7 increased with
altered neuronal AChE signaling and increased

anxiety behavior due to adult chronic stress
exposure [3,4,25,27,44,45]

Up or Down Up or Down

Hits in the SFARI database are in bold. ASD association score indicated in square brackets: S: syndromic; 1: high
confidence; 2: strong candidate; 3: suggestive evidence; 4: minimal evidence; 5: hypothesized; 6: not supported.
For details, see https://gene-archive.sfari.org/about-gene-scoring/ (accessed on 8 May 2023). “Syndromic”
distinction contains mutations that are associated with a substantial degree of increased risk and consistently
linked to additional characteristics not required for an ASD diagnosis.
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Figure 1. * Systems-driven selection of potential targets from animal studies, followed by confirma-
tion via SFARI database (centered in each box), thus identifying possible system targets reflecting
ASD (see Table 1 for details). Systems validation using Homo sapiens genes followed, using the
protein network analysis of ASD-associated genes driven by exposure to stress or inflammation
followed by Markov Cluster Algorithm for unsupervised clustering identified significant interactions
between six clusters containing microglial and astrocytic phenotypes, inflammation, stress, energy
(but not iron) homeostasis, and complement pathway. Note that stress pathways are represented in
four clusters (yellow, green, aquamarine, dark cyan), while microglial phenotype, inflammation and
complement pathway form one cluster (red). Protein–protein interaction (PPI) enrichment p-value:
0.00085. PPI legend by string-db.org [46]. The detailed list of participating node members is provided
in Supplementary Table S1 [47]. * (Hi-res version at the end of the manuscript).

https://gene-archive.sfari.org/about-gene-scoring/
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We used the SFARI database (using Homo sapiens only) to identify genes with varying
degrees of disruptive mutations associated with ASD, as defined in the SFARI database,
to any of the genes in Table 1 (from any species). The analysis was based on accessing the
database in August 2019 corresponding to the SFARI database update of 20 June 2019.

We identified 21 hits, indicated in Table 1 in bold along with the level of confidence for
association with ASD using the SFARI scoring criteria. It was apparent that all categories
defined in Table 1 were represented in the SFARI database: microglial or astrocytic pheno-
type, inflammation, stress, energy homeostasis, iron homeostasis, complement pathway,
and epigenetic memory. The response to chronic inflammation or stress is a multifaceted
one, depending on tissue type and duration/frequency of exposures. It is the system’s level
pattern of changes that provides a clearer picture of the disease phenotype.

3. Results
Systems Validation: Many Species, One Network

We sought to validate the significance of the association of the identified protein
products shown in Table 1 using network analysis with string-db.org. The results can
be accessed online at the permanent URL. They represent the analysis of the subset of
21 proteins identified in Table 1 against the background of all known protein–protein
interactions in Homo sapiens. String-db extracted the data for this from Biocarta, BioCyc,
Gene Ontology, KEGG and Reactome. In the version 11.0 we used, this corresponded to
24,584,628 proteins from 5090 organisms with a total of 3,123,056,667 interactions or 19,566
distinct protein-coding genes from Homo sapiens. While individually, 16 out of the 21
identified proteins were scored as weakly associated with ASD (scores 4 or 5, denoting
minimal evidence or hypothesized), the network analysis showed a significant interaction
between all 21 nodes on the protein–protein interaction level with six network clusters
shown in Figure 1. These clusters were organized into subsets of networks associated
with stress, metabolism, glia phenotype and epigenetic memory aspects of the proposed
neuro-immunometabolic network exposed to stress or inflammation.

The data summarized in Figure 1 support our initial hypothesis linking both neuroin-
flammation and stress exposures in utero to the etiology of ASD in a gene-environment
paradigm: developmental combinations of genetic alterations in key pathways susceptible to
environmental stimuli of inflammation or stress increase risk for or cause ASD. The clusters of
interactions map onto the neuro-immunometabolic and stress response networks.

4. Discussion
4.1. Information Processing, Energy Demand and Stress

Current estimates suggest that variation in as many as 1000 different genes could
affect susceptibility to ASD. In an attempt to tie this wealth of data together conceptually
in a unified model, a unified model of autism has been proposed [48]. It is defined as a
predictive impairment.

Sinha et al. note in [48] that providing a cohesive conceptualization of ASD, such
as the predictive impairment, would ameliorate the search for broadly effective thera-
pies, diagnostic markers, and neural/genetic correlates. Indeed, setting the ASD on the
information-theoretical platform in terms of prediction impairment reveals links to a major
disruptor of neural information processing—the stress. For example, the prediction im-
pairment hypothesis interprets the reduced habituation and hence greater stress in ASD
subjects as being caused by an endogenous predictive impairment that leads the environ-
mental stimuli to appear more chaotic. By the same token, an autistic individual responds
to the chaotic-appearing environment with endogenous mechanisms geared to reducing
the chaos by exhibiting ritualized behaviors. These features of the proposed ASD model
as a predictive impairment all have in common an attempt to reduce stress arising from
increased uncertainty.

Peters et al. provide a neurobiological perspective on these psychological obser-
vations [49]. Their observations are based on the well-founded physical-mathematical
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concepts linking the energy expenditure, entropy and information processing, going back
to Shannon and Boltzmann [50,51]. This is combined with a body of neurobiological litera-
ture on the neuronal substrate of the brain’s stress and prediction networks [49]. Herein, the
so-called Selfish Bayesian Brain resolves stress, or information uncertainty, by an internal
Bayesian update of the knowledge state. This must take place at the expense of transiently
increased energy needs (hence “selfish”). If this update succeeds, the stress is a eustress; if
it does not, it becomes a distress. The present findings suggest that one possible mechanism
for when such an update can fail is when the increased energy demands cannot be met.

4.2. Defining a Cohesive Cell Systems Correlate of ASD as Predictive Impairment

We are proposing a developmental origins perspective on this framework. The neuro-
immunometabolic and stress response networks interact, and in utero exposure to stress
or inflammation may alter the glial immunometabolic phenotype, i.e., the pattern of this
network interaction. That consequence translates into less energy availability under the
increased demands due to stress [49]. If the energy needs are not met, the allostatic load
turns into an allostatic overload [52]. A neuropathophysiological state may ensue unless
the situation is corrected.

The above findings and their interpretation are further supported by the emerging evi-
dence for the dynamic relationship between epigenetic memory and energy availability. In
a broad sense, epigenetics refers to the chemical mechanisms that modify gene expression,
without altering the DNA sequence. The main epigenetic modifications that change the
chromatin architecture include DNA methylation, histone post-translational modifications
and micro-RNA-mediated repression. While epigenetic regulation is dynamic, it is often
also referred to as epigenetic memory, implying the stable propagation of changes in gene
expression induced by a developmental or environmental stimulus [53]. Environmental
stimuli include nutrients and energy metabolites to which we are exposed regularly and
that are known to regulate gene expression through modulation of the epigenome. This
paradigm was recently termed “metaboloepigenetics”, bringing forward the crucial role of
metabolites as co-factors of chromatin-modifying enzymes that are responsible for epige-
netic modifications [54,55]. Enzymes such as methyltransferases, deacetylases and kinases
employ cofactors such as α-ketoglutarate, acetyl-CoA, nicotinamide adenine dinucleotide,
S-adenosylmethionine and ATP, and the availability of these cofactors as well as nutrients
such as glucose, oxygen and glutamine can reduce or enhance gene expression [56]. This
implies that the response to a stressful microenvironment, such as intrauterine or postna-
tal adversity, will ultimately lead to a pathological state. Exposure to in utero stress and/or
inflammation is likely to result in impaired levels of micronutrients and cofactors, leading to
a pathological methylation/demethylation of DNA and histone proteins and histone acetyla-
tion/deacetylation of the genes clustered in the neuro-immunometabolic network proposed.
The presence of such effects can be validated in future preclinical and clinical studies.

5. Limitations and Future Directions

The proposed neuro-immunometabolic hypothesis can be used in future in vivo stud-
ies to probe causally for the role of the immunometabolic gene and protein networks in ASD
etiology, in particular in the areas described as being the core of both the prediction process-
ing network and contextual fear memory, the anterior cingulate cortex [57–59]. Indeed, a
recent study reported that an immunometabolic dysregulation reduces the thickness of the
anterior cingulate cortex, while another study revealed 1223 differentially methylated genes
(5018 differentiated methylated regions, DMRs) in this brain region 4 weeks after contex-
tual fear conditioning [60,61]. In another, most recent study in a human cohort of stressed
pregnant mothers and their newborns, we identified novel associations between newborn
epigenome-wide methylation status in saliva and chronic stress suffered by the mother dur-
ing pregnancy [62]. Among the positively associated CpGs is the CpG annotated to YAP1
(Yes1 regulated transcription factor) whose deletion has been related to reactive astrogliosis
and astrocyte-driven microglial activation [63]. The protein of another gene (CSMD1, CUB
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And Sushi Multiple Domains 1) associated with maternal cortisol, CSMD1, seems to play
a crucial role in regulating complement activation and inflammation in the developing
brain [64,65]. Two DMRs were also found annotated to DAXX (Death-associated protein
6) and ARL4D (ADP-Ribosylation factor 4D), which together with CSMD1 have all been
directly or indirectly involved in neurodevelopmental disorders such as ASD, highlighting
the impact of prenatal stress on the epigenetic landscape of the newborn in genes associated
to neuroinflammation and ASD [66–70].

Moreover, inflammatory priming in maternal immune activation (MIA) can, in general,
substantially alter neurodevelopment [71]. Specifically, microglia, as the key players in
MIA, can modify neurogenesis, maturation of synapses and neural circuits. Due to various
triggers, bacterial/viral or autoimmune triggers, as reviewed extensively elsewhere [71],
MIA can influence the efficacy of microglia to sculpt neuronal connections. This can result
in a dysfunctional neurodevelopment, culminating in ASD and other neurodevelopmental
disorders in the offspring, such as attention-deficit/hyperactivity disorder and Tourette
syndrome. Hence, inclusion of MIA studies might lead to additional insights into the role
of neuro-immunometabolic changes in neurodevelopmental disorders such as ASD.

The therapeutic approaches may include prenatal and early neonatal screening using
early biomarkers of altered brain development due to intrauterine exposure to stress or
inflammation, followed by early postnatal reprogramming of these effects using behavioral
(e.g., environmental enrichment) or bioelectronic tools to correct brain developmental
trajectories at an early stage [2,72–74].

In the context of the discussed neuro-immunometabolic and Selfish Bayesian Brain
paradigms, environmental enrichment may help reduce the allostatic load by providing
opportunities to perform the required knowledge state update in the face of existing
uncertainties, i.e., stress.

Other salutary mechanisms mediating the therapeutic approaches may involve acti-
vation of the efferent and afferent cholinergic pathways. The efferent wiring of the vagal
cholinergic pathway has begun to unravel in the last decade, while our understanding of
the afferent signaling is only beginning to emerge.

The efferent component is also referred to as the inflammatory reflex, which acts via
the cholinergic anti-inflammatory pathway (CAP), a neural mechanism that influences the
magnitude of innate immune responses to inflammatoQry stimuli and maintains home-
ostasis [75]. Through CAP, increased vagal activity inhibits the release of pro-inflammatory
cytokines. We found that spontaneous CAP activity is present in the sheep fetus at as early
as 0.76 gestation [76]. Moreover, CAP activation near-term suppresses activation of ovine
microglia and astrocytes that express α7 nAChR or hypoxic-ischemic brain damage in
newborn rats [12,17,77–80].

Vagal afferent signaling affects widely distributed areas of the brain via Nucleus tractus
solitarii, and studies indicate that stimulation of the vagus nerve activates many neurons
in both cerebral hemispheres and the hippocampus [81,82]. Vagal signaling in near-term
fetus decreases HMGB1 concentrations in neuronal and astrocyte cytoplasm expressing
α7nAChR and decreases microglial activation, which may decrease glial priming [12].
Hence, efferent peripheral or afferent vagal activity may mediate central neuroprotection
via regulation of neuroinflammation. Vagus nerve stimulation has been shown to alter the
phase synchrony in the anterior cingulate cortex, improving decision making in rats [83].
Several models of interactions between afferent vagus nerve signaling, stress, inflammation
and glial plasticity as well as the risk for neurodevelopmental disorders have been proposed.
Notably, the present analysis confirmed the implicated effects of stress and inflammation on
iron homeostasis, yielding SLC25A39 as a target associated with ASD (cf. Figure 8 in [4]).

In the following, we indicate this study’s limitations and propose some solutions to
overcome these in future work. Our model and hypothesis presented in this study may be
further strengthened and deepened through validation via a model-free approach. This
can be achieved by analyzing the individual genomic and transcriptomic information from
the same SFARI database and evaluating the evidence of the presence of the observed
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networks—by investigating independent datasets that were not utilized in deriving the
networks in Figure 1 by means of methodologically distinct analytic approaches. For
this purpose, we envision the use of the following three computational pathway and
network analysis schemes. First, we may quantitatively assess the relevance and relative
importance of known pathways (e.g., canonical pathways curated in KEGG database)
based on the differential activity of each pathway under different conditions (e.g., whether
or not an individual has experienced exposure to fetal neuroinflammation and prenatal
stress). It has been shown that differential pathway activity can be effectively inferred from
gene expression data using probabilistic graphical models, and that highly differentially
activated pathways detected therefrom can serve as better biomarkers for complex diseases
(such as cancer) with higher discriminative power as well as improved reproducibility [84].
Next, we may identify differentially expressed genes or differentially activated pathways as
“seeds” and identify potential network modules that include these seeds. For example, we
may adapt the strategy proposed by Wang et al. [85], in order to find out whether the seed
genes/pathways would be part of a well-conserved network module with characteristic
topological features often sighted in known functional modules (e.g., signaling pathways,
protein complexes). Another promising approach is to carry out a network-based analysis
of the transcriptomic data in integration with protein interaction data for unsupervised
detection of potential network modules that may be associated with the cellular response
to fetal neuroinflammation and prenatal stress. As shown in [86], recent advances in deep
learning (esp., graph convolutional networks) can facilitate such investigation. These
remain the subjects of our ongoing research.

6. Conclusions

The immediate take-away from the present work is the putative common foundation
of neuro-immunometabolic networks, on genes and protein levels, as etiology of ASD.

In context with the literature, from a translational viewpoint, we speculate that early
behavioral therapy or enhancing fetal CAP activity via vagal nerve stimulation or α7nAChR
agonists will suppress the activation of microglia and astrocytes, restoring their physiologi-
cal immunometabolic phenotype, thus decreasing glial priming and preventing a sustained
switch to a reactive phenotype. This approach might decrease the degree of brain injury
sustained from fetal systemic and brain inflammatory responses and stress exposures,
thus improving postnatal short- and long-term health outcomes, including susceptibility
to ASD.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biology12070914/s1, Table S1: Protein-protein interaction clusters
identified by the MCL algorithm on string-db.
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