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Abstract

This work investigates the optial properties of hybrid metal-dielectric and ionic-solid largely
regular nanostructures in the presence of nanosized features such as gaps and thin walls
in tubular structures. The fundamental optical response of plasmonic, ionic and dielectric
systems is considered from a classical electromagnetic perspective, including properties of
amorphous materials, rough interfaces, nonlinear and semi-classical charge interactions. We
focus hereby on two aspects: (i) nonclassical effects stemming from the quantum nature of
freely moving charges and (ii) nonlinear optical response. The overall aim is to realistically
describe complex nanoparticle distributions and ultrathin multilayers with reliable and rapid
methods of computational nanophotonics while extending its scope towards multiphysics
aspects beyond classical electrodynamics. The analytical and numerical models developed
over the past years are presented in this work in detail with standard, but necessary technical
details available in the appendices.

We often assume a multilayered system where one layer is a nanostructure with either one-
or two-dimensional symmetry, i. e., a grating or laminar structure in the first and an array of
nanoparticles (disks, holes, pillars, etc.) in the latter case. Given the symmetries and overall
composition of the structure, our method of choice is the Fourier Modal Method (FMM) (also
referred to as Rigorous Coupled Wave Analysis (RCWA)) together with the scattering matrix
approach to connect the different layers.

The standard FMM formulation is extended to include spatial dispersion effects of conduc-
tion band electrons in metals introducing not only an additional boundary condition, but an
overall third longitudinal solution to the standard transversal solutions of the electromagnetic
wave equation.

In simple geometries, single nanoparticles and planar homogeneous structures, such
effects have an impact on their optical response for very small system parameters, e. g. gap
sizes of the order of 1 nm, particle sizes below 10 nm and film thicknesses of similar order. We
find, however, that anomalous diffraction in nanostructures and strong coupling of particles to
semiconductor substrates can further promote the influence of short-ranged charge carrier
interaction onto a larger structure. Strong electromagnetic coupling of semiconductor surfaces
to spatially dispersive metal nanoparticles can lead to an Autler-Towns splitting (dynamical
Stark effect) of modes that is not classically observed. Hereby, the particle sizes need to be
again of the order of 10 nm and below. On the other hand, regular nanostructures offer a
range of high parallel momenta contributions from diffracted waves which are not available in
planar homogeneous systems. Therefore, light-induced charge dynamics can be excited in
nanostructured systems even with light at normal incidence and for much larger structural
parameters of the order of 100 nm. Moreover, nanostructured systems enable the coupling
to nonclassical longitudinal modes via an increased number of geometrical parameters that
can achieve a nonclassical limit. In holey metal films, e. g., the hole size can be considered
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classical as long as a small hole-to-hole distance provides nanoscale metallic bridges where
spatial dispersion effects take place locally.

Next to metal-dielectric interfaces and plasmonic optical response in such systems, we
are interested in soft plasmonics, where charge interactions in ionic systems are studied
in analogy to plasmons in solid metals. This can be used to describe, e. g. electrolytes in
chemical or biological systems, e. g. as part of nerve cell signaling. Ions are much heavier
and slower than electrons which shifts their plasmonic resonances outside of the optical
window into the GHz regime. Here, positive and negative charges typically coexist and the
light-induced charge dynamics needs to be expanded towards not only one, but two (or more)
longitudinal excitations. This two-fluid model for ionic systems was first introduced through
our work and we have studied spherical systems, chains of ionic microspheres and planar
electrolyte-solid systems. Similar findings as for the electron plasma were made with respect
to ionic systems with, however, overall much weaker electromagnetic response even under
resonant conditions due to the material system. In general, ionic systems can be treated
within a soft plasmonic approach in full analogy to the plasmonics of electron response in
rigid metal solids.

As a further step, we use the standard FMM formulation to explore the impact of higher
harmonic waves from the local fields around the nanostructures studied. This way, we explore
surface second harmonic generation (SSHG) in one- and two-dimensional structures, as well
as THG in amorphous nanoparticle composites embedded in a transparent host matrix.

Within the FMM, second order nonlinear quantities such as the material-dependent suscep-
tibility and the macroscopic polarization can be treated fully in reciprocal space. Ultimately,
an overlapp integral of the second order polarization, calculated from the local fields at the
Fundamental Harmonic (FH), and the local fields at the Second Harmonic (SH) determines
the nonlinear fields around the nanostructure which can be calculated from a line integral
of the corresponding reconstructed quantity in reciprocal space. This makes FMM a rapid
computational approach for assessing nonlinear optical response. Apart from classically
expected SSHG, we consider metal gratings with spatial dispersion towards truly nanosized
gaps and study the impact of nonlocal electron-electron interaction on the nonlinear response
in metallic nanostructures.

We investigate amorphous composites of nanoparticles embedded in a transparent host
matrix employing effective medium theories (EMTs) to homogenize the respective layers for
efficient use within FMM in comparision to real-world samples as obtained from Atomic Layer
Deposition (ALD). These EMTs include Bruggeman (Br), Maxwell-Garnett (MG) and modified
Maxwell-Garnett-Mie (MMGM). For dispersive media, only very small volume fractions
yield a good agreement with different compuational techniques such as Finite Difference
Time Domain (FDTD). Within this regime, we study ALD samples deposited onto a metal
grating both in the linear and nonlinear regime. Nonlinear properties of the amorphous
composite can stem from either the host or the metallic nanoparticle inclusions or both media.
Due to local field enhancement occurring at the inclusion surface, the effective third order
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susceptibility of the effective homogeneous layer is strongly increased as compared to the
intrinsic susceptibility of a single nanoparticle. This leads to an overall enhancement of
nonlinear optical properties in amorphous composites which we studied in close collaboration
with experimental partners.

The present work is organized as follows.

The first part and chapter is dedicated to the fundamentals of computational nanophotonics.
First, we discuss the challenges in nanoscale optical modeling and critically compare the
suitability of a number of available computational methods for different systems underlining
again why we focus on the Fourier Modal Method for most of this work. Then we introduce the
classical FMM as far as is needed to develop the extensions pointed out above. Fundamental
aspects and limitations are discussed. We conclude the first chapter with our own applications
of the standard method to nanostructured devices for spectroscopy and photovoltaics to
demonstrate its applicability to experiments and design tasks. The highlighted works deal with
two extensions to analytically Fourier transformable unit cells for FMM routines, namley hollow
nanotube pillars and supercells with disk-shaped particles of different size and composition.
For photovoltaic systems, an emphasis was put on the accurate inclusion of optimized doping
profiles and the photocurrent gain attributed to nitride nanostructures.

Part II deals with nonclassical aspects of the optical response of charged plasma in nano-
and mesoscopic systems as part of a large-scale device structure. In the second chapter, we
introduce spatial dispersion in general and the hydrodynamic model to combine Maxwell’s
equations with the dynamics of a charged and freely oscillating plasma. We then turn
explicitly to the Fourier Modal Method and introduce its extension to include the hydrodynamic
response model in the third chapter. This is further applied to holey metal films and the impact
of nonclassical charge interaction on Extraordinary Optical Transmission (EOT) is studied.
In chapter 4, We discuss a number of effects regarding mesoscopic electron dynamics in
nanoparticle arrays with applications to photovoltaic (PV) devices including the details on the
aformentioned mode splitting. Lastly, we turn to a generalized two-fluid hydrodynamic model
that is capable of describing nonclassical interactions in ionic systems (and electron-hole
systems, which we have not pursued) in chapter 5. Here, we derive modified Mie coefficients
for a system with two interacting charged ionic fluids confined in spherical membranes.

Part III introduces with chapter 6, nonlinear optical effects first in general terms before
diving into the fundamentals of surface second harmonic generation in chapter 7. This is
then exploited in the Fourier Modal Method (FMM) to gain insight into the surface second
harmonic generation in one- and two-dimensional structures and analyze the optical response
not only in specific higher orders of the fundamental frequency but also in higher orders
of diffraction in close collaboration with local experimental partners. We study in particular
cases under double resonant excitation, i. e. resonant coupling of a specific diffraction order
into the grating structure at both the fundamental and second harmonic wavelength exploiting
Rayleigh anomalies.

We further discuss amorphous composites in chapter 8 whose linear optical properties
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can be obtained applying effective medium theories (EMTs) to real-world ALD samples. In
section 8.1, this is extended to third order Kerr nonlinearities, i. e. the self-phase mod-
ulated (SPM) case, and discussed for thin films using the Fourier Modal Method (FMM)
self-consistently. This is further applied to nonlinear polarization holography in section 8.2
for the cross-phase modulated (XPM) case, where the phase and amplitude of the nonlin-
ear polarization reveal intrinsic dephasing times in the studied materials. For amorphous
composites, these properties become dependent on the metal loading.

These ongoing efforts aim at shaping light with nonlinear diffraction gratings. Overall
conclusions and an outlook to future directions is given in chapter 9.



Zusammenfassung

Die vorliegende Habilitationschrift untersucht die optischen Eigenschaften hybrider, metall-
dielektrischer und ionisch-rigider meist regulärer Nanostrukturen, welche nanoskale ge-
ometrische Merkmale aufweisen wie Spalten und ultradünne Wände in Nanoröhrchen. Dabei
wird die grundlegende optische Antwort plasmonischer, ionischer und dielektrischer Systeme
aus Sicht der klassischen Elektrodynamik betrachtet, wobei amorphe Materialien, rauhe
Oberflächen, nichtlineare und nichtklassische Wechselwirkungen zwischen Ladungsträgern
im Besonderen Beachtung finden werden. Wir konzentrieren uns auf zwei Hauptaspekte:
(i) nichtklassische Effekte, die sich aus den quantenmechanischen Eigenschaften frei be-
weglicher Ladungsträgern ergeben, sowie (ii) nichtlineare optische Systemantwort.

Das Ziel ist die möglichst realistische Beschreibung komplexer Nanopartikelverteilungen
und ultradünner Schichten mit verlässlichen und zugleich zügigen Methoden der comput-
ergestützten Nanophotonik während wir Ihre Anwendungen jenseits der klassischen Elektro-
dynamik erweitern hin zu multiphysikalischen und multiskalen Aspekten. Analytische und
numerische Modelle, die hierbei von uns über die letzten Jahre entwickelt wurden, werden im
Detail vorgestellt, wobei nötige Grundlagen in den Anhängen dargestellt werden.

Häufig gehen wir von einem Multilagensystem aus, bei dem eine Schicht nanostrukturiert ist.
Dies kann eine eindimensionale Rillenstruktur oder ein zweidimensionales Gitter aus Nanopar-
tikeln (Scheiben, Löcher, Säulen, Röhrchen) sein. Aufgrund der Symmetrie und Zusam-
mensetzung der Struktur ist die Methode unserer Wahl die Fourier Modal Method (FMM),
auch Rigorous Coupled Wave Analysis (RCWA), zusammen mit der Streumatrixmethode um
die verschiedenen Lagen miteinander mittels Randwertbedingungen zu verbinden.

Die Standardformulierung der FMM wird um räumlich-dispersive Effekte der Leitungsban-
delektronen in Metallen erweitert. Dies führt nicht nur zu einer zusätzlichen Grenzbedingung,
sondern zu einer dritten, longitudinalen Lösung zur elektromagnetischen Wellengleichung
neben den bekannten transversalen Lösungen in klassischen, homogenen Medien.

In einfachen Geometrien wie einzelnen Nanopartikeln und flachen, homogenen Lagen
haben solche Effekte einen Einfluss auf die optische Antwort für sehr kleine Systemparameter,
wie z. B. Abständen von ca. 1 nm, einem Durchmesser von Nanopartikeln von unter 10 nm
und Schichtdicken derselben Größenordnung.

Wir haben in unseren Studien zeigen können, dass anomale Beugungseffekte in räumlich-
dispersiven Nanostrukturen und starke Nanopartikel-Substrat-Kopplungseffekte den Einfluss
kurzreichweitiger Leitungsträger-Leitungsträger-Wechselwirkung auf eine großskalige Struk-
tur begünstigen kann. Starke elektromagnetische Kopplung von Halbleiteroberflächen und
räumlich-dispersiven Metallnanopartikeln führt zu einer Autler-Towns-Aufspaltung (dynamis-
cher Starkeffekt) von Moden, welches klassisch nicht beobachtet wird. Hierbei müssen die
Partikelgrößen jedoch wieder im Bereich von ca. 10 nm und darunter liegen. Reguläre
Nanostrukturen bieten hingegen hohe Beiträge des parallelen Impulses aus Wellen höherer
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Beugungsordnung, die in ideal flachen Systemen nicht auftreten, und nichtklassische, longitu-
dinale Ladungsträgerdichtewellen anregen können. Damit kann lichtinduzierte Ladungsträger-
dynamik in nanostrukturierten Systemen auftreten, selbst wenn bei senkrechtem Lichteinfall
und für relativ große Strukturparameter, z. B. Schichtdicken im Bereich von einigen 100
nm. Zusätzlich bieten Nanostrukturen weitere geometrische Systemparameter, die bei ideal
flachen Strukturen nicht auftreten und ebenfalls die Kopplung an nichtklassische, longitudinale
Moden erlauben. So können z. B. in löchrigen Metallfilmen die dielektrischen Perforationen
klassisch groß sein, während ihr Abstand die metallischen Brücken dazwischen auf die
Nanoskala reduzieren kann, so dass räumlich-dispersive Effekte lokal von Bedeutung für die
gesamte Struktur werden.

Neben metallisch-dielektrischen Grenzflächen und plasmonisch-optischer Antwort in solchen
Systemen haben wir in den vergangenen Jahren Plasmonik in weicher Materie untersucht,
wo die Wechselwirkung zwischen ionischen Ladungsträgern in Flüssigkeiten in Analogie zu
Elektronen in rigiden Metallstrukturen betrachtet wird. Dieser Ansatz kann für Elektrolyten
in chemischen und biologischen Systemen verwendet werden, z. B. zur Studie der Kom-
munikation von Nervenzellen, sogenannten Axonen, wo einfache elektrische Kabeltheorie
schnell auf seine Grenzen stößt. Ionen sind viel schwerer und langsamer als Elektronen in
Festkörpern. Dies verschiebt die ionischen Plasmonresonanzen aus dem optischen Spektral-
bereich ins GHz-Regime. Positive und negative Ladungsträger koexistieren in Elektrolyten
und deren lichtinduzierte Dynamik und Wechselwirkung muss erweitert werden, um zwei
(oder mehr) nichtklassische, longitudinale Anregungen zu integrieren. Wir haben ein solches
Zwei-Flüssigkeitenmodell für ionische Systeme entwickelt und an sphärischen, ionischen
Mikropartikeln, sowie flachen Elektrolyt-Festkörper-Grenzflächen untersucht. Die Ergebnisse
zu ionischen Systemen sind qualitativ vergleichbar mit denen eines reinen Elektronenplas-
mas in Metallen, wobei die elektromagnetische Antwort selbst unter Resonanzbedingungen
geringer ist, was bei dem betrachteten Materialsystem zu erwarten ist. Insgesamt gilt, dass
ionische Systeme mehrerer Ladungsträger innerhalb des Ansatzes der weichen Plasmonik
in vollständiger Analogie zu plasmonischen Eigenschaften von Elektronen in metallischen
Festkörpern durchgeführt werden kann.

Im zweiten großen Abschnitt untersuchen wir ausgehend von der Standardformulierung der
FMM höhere Harmonische. Hier betrachten wir im Besonderen oberflächeninduzierte zweite
Harmonische SSHG, die aus den Nahfeldern um Nanostrukturen entstehen, sowie dritte
Harmonische THG in amorphen Kompositen aus sphärischen Nanopartikeln eingebettet in
transparente Materialien.

Innerhalb der FMM können nichtlineare Größen zweiter Ordnung wie die materialabhängige
Suszeptibilität und die makroskopische Polarisation komplett im reziproken Raum entwick-
elt und propagiert werden, analog zu den linearen Kenngrößen wie den elektrischen und
magnetischen Feldern. Um ein nichtlineares Feld an der zweiten Harmonischen SH zu
bestimmen, muss zu guter letzt ein Überlappintegral aus der makroskopischen Polarization
zweiter Ordnung, welches aus den lokalen Feldern an der Grundschwingung FH berechnet
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wird, und den lokalen Feldern an der zweiten Harmonischen SH bestimmt werden. Dazu
muss ein Linienintegral um die Nanostruktur durchgeführt werden, welches sich aus der
im reziproken Raum gefundenen Lösung durch Fouriertransformation ergibt. Dies zeigt,
dass die FMM als computergestützte Methode in der Tat sehr geeignet ist, zügig und zu-
verlässig nichtlineare Eigenschaften von regulären Nanostrukturen zu bewerten. Neben
klassisch zu erwartenden Oberflächennichtlinearitäten SSHG werden räumlich-dispersive
Effekte in metallischen Nanostrukturen betrachtet und der Einfluss nichtlokaler Elektron-
Elektron-Wechselwirkung auf die nichtlineare Antwort untersucht.

Weiterhin untersuchen wir amorphe Komposite, d. h. sphärische Nanopartikel, die in ein
transparentes Material eingebettet sind. Wir verwenden effektive Materialtheorien (EMTs)
um amorphe Lagen für den effizienten Einsatz in der FMM zu homogenisieren. Diese
können mit Ergebnissen zu Proben aus der Atomlagenabscheidung (Atomic Layer Deposi-
tion (ALD)) verglichen werden. Die betrachteten EMTs umfassen Bruggeman (Br), Maxwell-
Garnett (MG) und die modifizierte Maxwell-Garnett-Mie-Theorie (MMGM). Bei dispersiven
Materialien führen nur sehr geringe Füllfaktoren zu einer guten Übereinstimmung mit an-
deren numerischen Methoden wie der Finite Difference Time Domain (FDTD). Innerhalb
dieses Regimes untersuchen wir ALD-Proben, die auf metallische Nanostrukturen aufgesetzt
werden sowohl im linearen als auch im nichtlinearen Regime. Dabei können nichtlineare
Eigenschaften dritter Ordnung im amorphen Komposit sowohl vom transparenten Host als
auch von den eingebetteten Nanopartikeln oder sogar von beiden Medien gleichzeitig stam-
men. Aufgrund lokaler Felderhöhungen an der Oberfläche eingeschlossener, metallischer
Nanopartikel ist die effektive Suszeptibilität dritter Ordnung der homogenisierten Schicht deut-
lich verstärkt im Vergleich zur intrinsischen Suszeptibilität einzelnen Nanopartikel. Dies führt
zu einer Verstärkung der nichtlinearen Eigenschaften von amorphen Kompositen, welche wir
zusammen mit experimentell arbeitenden Partnern untersucht haben.

Die vorliegende Habilitationsschrift ist wie folgt aufgebaut. Das erste Kapitel beschäftigt
sich mit einigen ausgewählten Grundlagen der computergestützten Nanophotonik. Zunächst
diskutieren wir die Herausforderungen, die optische Simulationen von nanoskalen Systemen
mit sich bringen und vergleichen kritisch die Eignung einer Anzahl numerischer Methoden
auf verschiedene Probleme mit dem Ziel, unsere Wahl für die Fourier Modal Method (FMM)
zu unterstreichen, aber auch ihre möglichen Grenzen aufzuzeigen. Dann führen wir die
grundlegenden Gleichungen der Standardformulierung der FMM soweit ein, wie es nötig ist,
die nachfolgenden Erweiterungen zu nichtklassischen und nichtlinearen Eigenschaften gut
nachvollziehen zu können. Am Ende des ersten Kapitels demonstrieren wir anhand eigener
Arbeiten zusammen mit experimentellen Kollaborateuren Anwendungen der klassischen FMM
auf Nanostrukturen für Entwicklungsaufgaben in der Spektroskopie und Photovoltaik. Die so
hervorgehobenen Arbeiten verwenden zwei Erweiterungen mit Nanostrukturen deren Fourier-
transformationen der jeweiligen Einheitszelle analytisch sind, nämlich hohle Nanoröhrchen
und Superzellen mit Partikelscheiben unterschiedlicher Größe und Komposition. Für photo-
voltaische Systeme liegt der Fokus auf der akkuraten Beschreibung optimierter Dopingprofile
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und der Erhöhung des Photostroms durch Nanostrukturen aus verschiedenen Nitriden.
Teil II beschäftigt sich mit nichtklassischen Aspekten der optischen Materialantwort in

Ladungsträgerplasmen in nano- und mesoskalen Systemen als Teil eines größeren Bauele-
ments. Im zweiten Kapitel führen wir zunächst die räumliche Dispersion eines frei be-
weglichen, oszillierenden Ladungsträgerplasmas allgemein ein. Wir verwenden hierfür das
hydrodynamische Modell für das freie Elektronengas gekoppelt an die Maxwellschen Gle-
ichungen. Im dritten Kapitel wenden wir uns der Fourier Modal Method (FMM) zu und ihrer
Erweiterung um das hydrodynamische Modell. Dies wird angewendet auf perforierte metallis-
che Filme, wo wir den Einfluss lichtinduzierter Elektronendynamik und Ladungsträgerwech-
selwirkung auf außergewöhnliche Transmissionsverstärkung EOT untersuchen. In Kapitel 4
diskutieren wir die Auswirkung von mesoskopischer Elektronendynamik in Nanopartikelgittern
mit Anwendungen in der plasmon-assistierten Photovoltaik PV, wie z. B. die oben genannte
Modenaufspaltung. Zu guter Letzt generalisieren wir das hydrodynamische Modell zu einem
Zwei-Flüssigkeitenmodell, das nichtklassische Ladungsträgerwechselwirkungen in ionischen
Systemen (sowie Elektron-Loch-Plasmen, die von anderen Arbeitsgruppen untersucht wur-
den) in Kapitel 5 betrachtet. Hier werden modifizierte, nichtlokale Mie-Koeffizienten für ein
System wechselwirkender geladener ionischer Fluide räumlich eingeschränkt in sphärischen
Membranen hergeleitet.

Teil III führt in Kapitel 6 zunächst allgemeine Konzepte der nichtlinearen Optik ein. Wir
verwenden die Fourier Modal Method (FMM) im Besonderen zur Untersuchung der ober-
flächeninduzierten zweiten Harmonischenerzeugung in Nanostrukturen in Kapitel 7, wo
wir Kenngrößen der SSHG in ein- und zweidimensionalen Strukturen betrachten und die
nichtlineare optische Antwort z. B. in den verschiedenen Beugungsordnungen in enger Kollab-
oration mit experimentellen Partnern untersuchen. Wir erforschen im Besonderen Systeme
mit doppelt resonanter Anregung, d. h. Licht wird resonant unter einer ausgewählten Beu-
gungsordnung gleichzeitig an der fundamentalen wie auch an der zweiten Harmonischen
in die Struktur eingekoppelt. Hierbei werden Rayleigh-Anomalien an den unterschiedlichen
Wellenlängen und Grenzschichten ausgenutzt.

Danach diskutieren wir in Kapitel 8 optischen Eigenschaften amorpher Komposite, wie sie
aus ALD-Proben gewonnen werden, und ihre selbstkonsistente Integration in die FMM. Dies
wird in Kapitel 8.1 erweitert um die dritte Harmonische im Fall der Selbstphasenmodulation
(SPM) bzw. Kerr-Nichtlinearitäten in solchen Strukturen zu ermitteln, speziell wenn diese
in dünnen Schichten verwendet werden. Weiterhin wird das so beschriebene System in
Abschnitt 8.2 für nichtlineare Polarizationsholographie verwendet. In dieser Messtechnik ist
die Krossphasenmodulation (XPM) von Bedeutung, Phase und Amplitude der nichtlinearen
Polarization verwendet werden um intrinsische Dephasierungszeiten zu bestimmen. Diese
hängen bei amorphen Kompositen von der Volumendichte der metallischen Einschlüsse ab.

Diese Vorhaben untersuchen Konzepte, Licht mittels linearer und nichtlinearer Beugungs-
gitter zu manipulieren. Kapitel 9 bietet eine Zusammenfassung und einen Ausblick auf
zukünftige Arbeiten.
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1. Nanoscale Optical Modeling

Classical electrodynamics based on Maxwell’s equations and the electromagnetic wave
equation derived from them is incredibly successful in describing optical (and electric and
magnetic) properties of systems over a wide range of wavelengths from radio frequencies
to the infrared (IR) to the visible (VIS) down to the ultraviolet (UV). The high scalability of its
fundamental equations enables their application to many problems in electromagnetism such
as scattering and wave interference. Structures range from the subnanometer, atomic scale,
to antennas the range of meters to interferometers of several kilometers in size. In the Laser
Interferometer Gravitational-Wave Observatory (LIGO) experiment, e. g., coherent laser light
travels a distance of 1200 km along 4 km long arms to detect tiny disturbances caused by
interference with graviational waves [1] obeying still the fundamental laws of wave optics. In
comparison, the original Michelson-Morley-interferometer fitted on a 1×1 m2 sized table with
only tens of meters in distance traveled [2].

Despite its validity over a wide range of wavelengths and spatial distances it remains
difficult to combine fundamental effects beyond classical electrodynamics over multiple
scales in a single framework. Introducing multiscalar and multiphysics aspects, e. g. for
a large-scale device with nanoscale features and molecules in the proximity of its surface,
is a major challenge in optical modeling [3]. Fig. 1.1 gives an example for the different
scales in a photovoltaic (PV) device. On the atomic scale, material properties such as
the bandstructure, absorption rates and its surface chemistry are best obtained with ab
initio quantum models such as Density Functional Theory (DFT) [4–6] or within the (time
dependent) local density approximation ((TD)LDA) [7–10]. However, an entire layer of
such a material, including electron transport or exciton generation as well as details of the
morphology, such as a rough interface or porosity, can no longer be described feasibly with
first principle calculations. Typically, statistical methods, Molecular-Dynamic (MD) [11–13],
Non-Equilibrium Green’s Functions (NEGF) [14] and Monte-Carlo [15, 16] simulations are
theoretical frameworks suitable for modeling electron transport through and absorption rates
of nano-scale components. One common semiclassical approach to the description of
nanosized structures is the Random Phase Approximation (RPA) [17–19]. The device scale,
in the example of Fig. 1.1 a solar cell made of functionalized multilayers, is typically well
described by classical nanophotonic computational methods. We discuss a few of them in
more detail in the next section. Similarly, the optics of the total module is well described with
electromagnetics, though other properties such as mechanical stability and realiability under
realistic environmental conditions, such as rain, heat and frost, become of interest at this
scale beyond the pure electro-optics.

This work concentrates on optical modeling on the nanoscale incorporating nanostructured
features into a large-scale device structure. Over the past years, we developed methods to
account for effects beyond classical electrodynamics in standard nanophotonic simulation
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Fig. 1.1.: Illustration of multiscale and multiphysics challenges in electro-optical modeling of
large-scale devices using the example of photovoltaic modules. [3]

schemes.

One reason of the continued interest in nanosized systems are the tremendous advances
in fabrication techniques made in the past decades in, e. g., chemical synthesis (etch-
ing) [20–24], lithography [25–27], particle self-assembly through (laser) annealing [26,28,29],
and nanoimprint [30–33]. Typically, self-assembly and chemical synthesis yield random
nanoparticle (NP) distributions with randomized size and shape characteristics at reduced
costs, while lithography techniques allow for high precision in size, shape, and placement
with nanometer resolution [26,34]. Nanoimprint in particular is a promising route to combine
the best of both worlds as it allows to keep costs low using a single imprint template which
in turn can be the result of a complex optimization procedure [32]. Topology optimization
allows tailoring a metasurface to any specified performance task [35,36] and is widely used
in mechanical manufacturing [37]. Finally, demanding multi-objective optimization procedures
can combine target performance from different fields such as specific optical and mechanical
properties [38].

Nanostructures and nanoparticle arrays allow efficient forward scattering of incident light
increasing the exposure of an underlying material system to photons. In addition, local
field effects can create strong coupling and high local fields, in particular, in hybrid metal-
dielectric systems, where surface plasmoncs can occur [39]. Research efforts exploit such
effects with functionalized layers to optimize light trapping or guidance. Plasmon-assisted
processes such as direct increase of the charge carrier generation or indirect enhancement
of energy conversion effects from neighboring nanocrystal structures have received much
interest [40–46]. Aging and oxidization effects in metals and the short-range of strong near-
field effects pose practical challenges. Bio-markers and molecular rulers [47–49] allow to
bring photo-active materials such as rare-earths [44], quantum dots [41,43] and dyes close
to NP surfaces. On the other hand, all-dielectric metasurfaces [50,51] avoid the downsides of
metal losses and reactivity while providing moderate field enhancement in tailored hot-spots.
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The key task in modeling systems at the verge between the atomic and nanoscale is the
integration of the quantum nature of atoms, electrons and molecules and their interaction with
electromagnetic fields, the interplay of optically excited nanocrystals with complex energy
transfer mechanisms stemming from electron transport. Mesoscale electron dynamics,
surface morphology and thermal effects are not typically captured in standard electrodynamics.
Though such effects are highly localized, optical coupling can lead to an impact on a larger
device via retardation and lattice effects. [52] Semiclassical approaches allow maintaining the
advantages of computational nanophotonics through extension of the standard theories [53–
56]. This is a central challenge in multiscalar modeling and one of the main motivators behind
our choice of the Fourier Modal Method (FMM) for characterizing the impact nanosized
features have as part of a large-scale multilayered device. Regarding the multiphysics aspect,
this work concentrates on two major phenomena, mesoscale electron dynamics and nonlinear
effects in nanostructured systems as part of a large-scale device and their description within
the FMM. Furthermore, we broaden the discussion to a few other topics such as rough
surface morphology and ion dynamics in soft matter systems.

The next section gives an overview on modeling classical light-matter interactions on the
nanoscale and presents a few approaches to some detail. Here, we want to clarify further
advantages of the FMM as well as some of its limitations before diving into the details. In
section 1.2, we derive the fundamental equations for the FMM and discuss the main features
and limitations of the standard formulation of this compuational method. The last section in
this chapter gives several examples of our work in recent years where the standard FMM was
applied to photovoltaic (PV) systems and in spectroscopy. Part II discusses our contributions
to microscopic electron dynamcis. Chapter 3 concentrates on regular metal nanostructures
as described with the FMM while Chapter 5 presents first steps towards spatial dispersion in
soft matter replacing electrons and metal structures with ions as part of an electrolyte. This
concludes the first part.

1.1 Comparing available Computational Methods

Within computational nanophotonics, a multitude of numerical approaches are available
each with their very own advantages and disadvantages [57]. The optical properties of
nanoparticles with arbitrary shapes [22,23,58], two-dimensional particle arrays [52,56,58]
as well as three-dimensional photonic crystal structures [59] can be described. Multiple
scattering techniques [60] allow to study particle clusters on the basis of the scattering
matrix of a specified particle type. This is in particular interesting for layers with random
distributions [26]. The scattering matrix for nanoparticles (NPs) of arbitrary shapes can be
obtained via e. g. Boundary Element Method (BEM), Discrete Dipole Approximation (DDA) or
Finite Element Method (FEM) [22,44,58].

This section shall serve as an overview and comparison of some existing computational
methods, their advantages and bottlenecks, e. g. with respect to their computational ef-
fort [22,57]. Note that the majority of them yield rigorous solutions to Maxwell’s equations in
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frequency space depending on one or more quality parameters determining convergence
of the results. All discussed field quantities are, thus, assumed to depend with e−iωt on
time. The electromagnetic field consists of effectively two three-dimensional vectors E and
H with complex amplitudes. The displacement field D = ε0E + P is obtained from the field
in free space with permittivity ε0 and the polarization P of any objects considered. Within
linear response, each object has a unique optical response to an external field inscribed in
its polarizability α via P = αE. Typically, retardation is neglected for nanoparticles and the
quasistatic approximation is introduced through E(r, t) ≈ E(r) and a scalar field φ(r) is soley
used with E = −∇φ. On the other hand, oftentimes only the lowest order dipole response
is taken into account. Both these approximations allow for analytic solutions to a number of
nano-optical systems. However, if we want to solve these complex fields in the presence of
coupled nanoparticles of arbitrary shape of any distribution as part of a large-scale device,
numerical methods are needed. In principle, all the methods described here can be applied
to complex nanostructured systems. However, the differences in the parametrization of such
structures and how these methods deal with dielectric functions and symmetries can make
one beneficial over the other.

Discrete Dipole Approximation (DDA)

The DDA, also known as Coupled Dipole Method (CDM), builds a nanoparticle from dipoles
placed on a regular lattice [22,57]. It is, thus, a method subdividing the particle volume V , but
not the surrounding medium. This has advantages regarding a distribution of nanoparticles
as the medium between them does not play a role in, e. g. storage demand. The response of
each polarizable element i at its position ri is self-consistently obtained from its polarizability
αi with respect to both the incident field Ein and scattered field Es

j produced from every other
element

Pi(ri, ω) = αi

(
Ein(ri, ω) +

∑
j 6=i

Es
j(ri, ω)

)
. (1.1)

Particles on substrates need to include the respective image dipoles. Though the parametriza-
tion is fairly straightforward, the method becomes more and more time consuming with the
particle number. In addition, due to the explicit use of dipoles an upper limit for the particle
size a and its dielectric function value ε with respect to the incident wavenlength λ is given
by |a

√
ε < 5λ| to respect the dipolar approximation of the material response. For a spectrum

consisting of nω points, the computational time scales with nωV 3 [22].

Boundary Element Method (BEM)

The fields and their derivatives or a charge and current distribution, respectively, at the bound-
aries between homogeneous regions are the basis of BEM [22,57,61,62]. Auxilliary boundary
charges and currents are used to express the fields scattered by the considered nanoparticle.
These are connected to the scalar φ and vector potential A of the electromagnetic field
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through

E(r, ω) = iωA(r, ω)−∇φ(r, ω). (1.2)

Imposing the usual boundary conditions, a system of surface integrals over the electromag-
netic Green’s function

G(r) =
eikr

4π|r|
(1.3)

is obtained [57, 61]. A discretization of the surfaces is needed to cast that into a set of
linear equations which results in a computational effort of nωV 2. Depending on the surface
morphology, the parametrization can become complex. This method can well exploit symme-
tries of the considered nanoparticle. For axial symmetry, only the integral over the surface
contour remains while the angular dependence can be integrated before the discretization
step reducing the surface integral to a line integral [61]. With this, BEM is a formidable method
to describe particles of arbitrary shape and complex symmetric systems such as tip-substrate
structures.

Multiple Elastic Scattering of the Multipole Expansion (MESME)

MESME allows evaluating the optical properties of particle clusters with an arbitrary distribu-
tion [60]. It is based on the knowledge of the scattering matrix of each single nano-object in
the system, e. g. Mie coefficients for nanospheres or core-shell structures. Such scattering
matrices can be calculated numerically for more complex shapes from, e. g., BEM and enable
subsequently a much faster evaluation of the scattering and near-field properties in complex
nanoparticle distributions. This is by far the fastest method limited only by the number of
nanoparticles in the system of any size or shape to about ∼ 103. However, homogeneous
regions other than in particles, such as substrates, cannot be included.

Finite Difference Time Domain (FDTD)

FDTD is, in contrast to the previously described methods, propagating the entire electro-
magnetic field in time steps on a spatial grid. It is, thus, the most direct method to solve
Maxwell’s equations. When time-resolved fields are used to excite a given system or the
time-dependent optical response is required, this should without doubt be the method of
choice. Due to its discretization of the entire inner and outer volume of a nanoparticle, it can
be applied to complex, nonsymmetric setups, but it also requires to run the calculations in a
large parametrized volume to account for the incident electric field. Therefore, a large storage
demand is inherent to this method as well as a higher time consumption than other methods
able to exploit symmetries more directly. If a spectrum is calculated with resolution ∆ω related
to the number of time steps, the computational demand is proportional to V total ω/∆ω.
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Multilayers and Photonic Crystals

Several theoretical approaches exist to describe regular nanostructured layers, i. e. photonic
crystals [59]. Complex layered systems are best described within a scattering or transfer
matrix approach, that for homogeneous layers is equivalent to Fresnel equations for a single
interface and derived expressions for multiple layers. The Fourier Modal Method (FMM), also
known as Rigorous Coupled Wave Analysis (RCWA), is a fast and reliable computational
approach [56, 63–65] that casts the electromagnetic wave equation into an eigenvalue
problem. It is based on a plane-wave expansion (PWE) of the fields according to the one- or
two-dimensional symmetry of the considered nanostructure. This enables the evaluation of
large-scale, regular devices possibly with nanoscale features, such as wedges, nanogaps
and thin walls [66]. No discretization of the surface or volume is needed, however, the
convergence strongly depends on the number of plane waves taken into account. For all-
dielectric systems, tens to hundreds are sufficient, but hybrid metal-dielectric systems need
hundreds to thousands of expansion coefficients to be considered. The high contrast in the
refractive indices across boundaries limits a fast convergence of the oscillating fields.

Remarks on mesoscopic charge carrier dynamics

Classcial material models rely on tabulated refractive indices from measurements from bulk
materials formulated into Drude-Lorentz models fitted to the measured data [67–69]. Such
data does not include or distinguish surface and finite size effects. When applying light to
nanosized systems, the inherent quantum nature of materials plays an increasingly important
role often yielding additional damping channels accounting for confinement effects [70].
Classical electrodynamics uses the local response approxmiation (LRA) and confinement
and nonlocal interaction effects stemming from the spatial dispersion of charge carrier
interactions are not included in the standard material models and the absorption in thin films
and nanoparticle clusters is underestimated. First principle theories can address charge
carrier dynamics and their mutual interaction with light in detail [4–9, 71]. However, the
computational effort increases rapidly with the system size. One the other hand, effective
microscopic theories such as the RPA [17–19] allow investigating fundamental damping
mechanisms arising from electron scattering in the bulk material and with the particle surface.
Moreover, it allows addressing electron irradiation effects stemming from the accelerated
movement of the oscillating electrons forming the plasmon excitation. For simple geometries,
analytic expressions for the damping phenomena can be obtained [18,54,55,72].

Spatial dispersion of electron-electron coupling has been studied in semiclassical methods
with the hydrodynamic approach [53,70,73,74], where the dynamics of the electron plasma are
separated from polarization effects of bound electrons. This theory yields an additional wave
solution, an electron pressure wave, longitudinal in character, and can be solved for different
geometries leading to nonlocal extensions of, e. g., Mie and Fresnel coefficients [53, 75].
The advantage of semiclassical models lies in their mostly analytic formulation and thus
compatibility with and straightforward integration into existing numerical procedures. In
addition, the common assumption of a material system to consist of a series of homogeneous
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regions in space with abrupt, hard-wall boundaries also fails on the nanoscale, where the
wavefunctions of electrons are no longer bound within an arbitrary particle size, but can extend
smoothly into the surrounding dielectric medium. This electron spill-out has also captured
some attention due to its possible overlap for facing metal surfaces with subnanometer
gaps [73,76,77]. The main observations of nonlocal theories in nanosized particles are a
blueshift of the plasmon resonance with respect to the common local approximation, field
quenching and plasmon broadening. However, such theories have shown a sizable effect for
very small particle and layer sizes < 10 nm or gaps in the system < 1 nm.

Conclusions

It should be noted that the methods briefly described in this section have been developed
and improved further exploiting, e. g., adaptive meshing, Fast Fourier Transform (FFT) and
Galerkin schemes [57,78–81].

The aim of this work is to consider nonclassical and nonlinear effects stemming from
nanostructures and their impact on large-scale devices. Our method of choice is the FMM
as it enables us to study one- and two-dimensional regular nanostructure arrays with a
straightforward control over geometrical parameters. We restrict ourselves to structures
simple enough to obtain the Fourier transform of their respective unit cells analytically, see
appendix A. This allows concentrating on formulating additional computational modules
to deal with the multiphysics aspects of interest. One of our efforts over the past years
was finding a formulation of the FMM approach including semiclassical corrections [52] to
study the effects surface and quantum properties of the electron plasma would have on the
larger device structure and how they impact its performance. This is discussed in Part II.
More recently, we incorporated procedures to assess nonlinear effects and higher harmonic
generation into FMM. These are presented in Part III. A major limitation to convergence is
posed by the frequent use of hybrid metal-dielectric systems. Hence, special care is taken to
check and report on the computational time and convergence as a function of the plane-waves
taken into account.

Where necessary and appropriate, we include calculations based on other methods in
particular multiple scattering techniques [60] for clusters of nanoparticles and the Boundary
Element Method for rough surface morphologies [57,61,62].

1.2 Fourier Modal Method in Classical Electrodynamics

The Fourier Modal Method (FMM) is at the heart of this work and can be used to design
and optimize optical devices with broad applications from solar cells, optical sensors, spec-
troscopic and microscopic systems. It is a frequency space method and is best suited for
layered systems of which one or more layers are nanostructured in the plane parallel to the
layered structure as depicted in Fig. 1.2.

In this section, we introduce the basic equations needed for an implementation of the FMM
from standard concepts describing periodic photonic crystals. These are based on a rigorous
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Fig. 1.2.: Example for a two-dimensional nanostructure made from circular nanodisks in a
rectangular unit cell.

plane-wave expansion (PWE) method limited only by the number of plane waves that can be
taken into account. To include further layers towards a device structure, this is combined with
the planar scattering matrix approach [64,65]. From this basis, further numerical modules
to investigate nanostructures with spatial dispersion in its metal components and nonlinear
properties in any of its constituent materials are developed in the next chapters.

We consider nanostructured multilayered devices in two steps. Firstly, we evaluate the
modes of a photonic crystal infinite in z-direction and with a one- or two-dimensional periodicity
in the x-y-plane. We formulate the electromagnetic wave equation as an eigenvalue equation
in reciprocal space. Its eigenvectors represent the possible electromagnetic fields and their
polarization in the nanostructure and its eigenvalues contain the propagation directions and
wavenumbers of different diffraction orders. Secondly, we determine the boundary conditions
of a finite slab of the photonic crystal bordering to other layers in the multilayered system. With
the scattering matrix method, optical properties of the finite system are calculated such as
near-field maps or transmission spectra. At all time, we maintain the capability to distinguish
the contributions of different diffraction orders from each other and the fully integrated result.

1.2.1 Preparations

The electromagnetic eigenvalue equation can be formulated in terms of the electric or the
magnetic field. Though equivalent in terms of their physical meaning, mathematically, it has
advantages to use the formulation in terms of the magnetic field [59]. Starting from Maxwell’s
equations in structured, but homogeneous materials with spatial permittivity (permeability)
function ε(ω, r) (μ(ω, r)) without external charges and currents using the convention mentioned
before that yields ∂t• = −iω•

∇×H = −iωD = −iωε0ε(ω, r)E, ∇× E = iωB = iωμ0μ(ω, r)H, (1.4)

we introduce a plane-wave expansion (PWE) to describe all diffraction orders

H(R, z) =
∑
G

H̃(G, z)ei(G+k‖)R (1.5)
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with two-dimensional reciprocal lattice vectors G = (Gx, Gy)
T and R = (x, y)T . The parallel

momentum k‖ = (kx, ky)
T is the part of the wave vector k of the external field that is in-plane

with the structure. This can be defined through an angle of incidence, e. g. in spherical
coordinates kx = k0 sin θ cosϕ and ky = k0 sin θ sinϕ, with k0 =

√
εin ω/c =

√
εin 2π/λ defining the

frequency ω and wavelength λ, resp., of the incident light in the outer medium with permittivity
εin. The free-space permittivity ε0 is together with the free-space permeability µ0 connected
to the speed of light c via ε0µ0 = 1/c2. On the other hand, some setups provide large parallel
momenta through evanescent waves, where the definition of an incident angle is no longer
feasible.

Assuming a rectangular two-dimensional lattice in real-space, the reciprocal lattice vectors
are Gnm = 2π/ax nx̂ + 2π/ay mŷ where ax, ay are the lengths of the real-space lattice vectors
defining the size of the rectangular unit cell and n,m ∈ Z0 are integers. Let N = 2nG + 1

be the number of plane waves (in one dimension) taken into account with diffraction orders
ranging from −nG . . . nG. The sign is connected to the direction of the diffracted wave. Note
that always |n|, |m| ≤ (N − 1)/2.

The in-plane magnetic field h‖ in reciprocal space is then described by a vector with 2N

components in one-dimensional structures as compared to 2 before the expansion

h‖ =

(
hx

hy

)
=



H̃x(G−nG , z)
...

H̃x(GnG , z)

H̃y(G−nG , z)
...

H̃y(GnG , z)


. (1.6)

The vectorial character of the components hx,hy,hz stems from the expansion in Fourier
coefficients. Matrices that emerge in the eigenvalue equation have, thus, the dimension
2N × 2N in one-dimensional structures. Convergence critically depends on the number nG
taken into account and at the same time poses the main limitation of this approach as the
related vectors and matrices increase quickly with nG.

In the same way, the permittivity ε(ω, r) and for magnetic materials the permeability µ(ω, r)

are expanded into Fourier components

ε(ω, r) =
∑
G

ε(G)eiGR (1.7)

over a unit cell. For simple structures, their Fourier coefficients are analytical which are
collected in appendix A. Suffice to say, that the material properties are described by a matrix
ε̂, µ̂ of dimension N ×N when introducing the PWE. This is for isotropic materials with scalar
material functions in real-space. For anisotropic materials that are 3× 3 tensors before the
expansion, the reciprocal counterpart would increase accordingly to a N ×N matrix where
each entry is a 3× 3 tensor. Note that for a strictly two-dimensional system N → N2 as both
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Gx and Gy run from −nG . . . nG.

Now we are equipped to derive the eigenvalue equation and with its solution obtain the
optical properties of a regular photonic crystal extended indefinitely in the z-direction, i. e.,
with constant material properties in the z-direction.

1.2.2 Properties of an Infinte Photonic Crystal

We introduce the PWE for ∇×H = −iωε0ε(ω, r)E and write for each component

∂yhz − ∂zhy = ik̂yhz − ikzhy = −iωε0ε̂ex, (1.8)

∂zhx − ∂xhz = ikzhx − ik̂xhz = −iωε0ε̂ey, (1.9)

∂xhy − ∂yhx = ik̂xhy − ik̂yhx = −iωε0ε̂ez (1.10)

and analogous for ∇× E = iωµ0µ(ω, r)H

∂yez − ∂zey = ik̂yez − ikzey = iωµ0µ̂hx, (1.11)

∂zex − ∂xez = ikzex − ik̂xez = iωµ0µ̂hy, (1.12)

∂xey − ∂yex = ik̂xey − ik̂yex = iωµ0µ̂hz. (1.13)

Each component of the parallel momentum kx, ky becomes a diagonal matrix k̂x, k̂y which
includes the reciprocal lattice vectors Gx, Gy

k̂x,nm = kx + x̂ ·Gn0δnm and k̂y,n′m′ = ky + ŷ ·G0m′δn′m′ . (1.14)

Next, we eliminate the electric fields ei from the equations for the magnetic field. In addition,
making use of the orthogonality condition k ·H = 0, we can eliminate the z-component of the
magnetic field

hz = − 1

kz

(
k̂xhx + k̂yhy

)
. (1.15)

Thus, the method is reduced to calculating the magnetic fields hx,hy in plane with the
structure. The remaining two equations can be rearranged to read

k2
zhx = ε̂

((ω
c

)2

µ̂hx + k̂y ε̂
−1k̂xhy − k̂y ε̂−1k̂yhx

)
− k̂xk̂xhx − k̂xk̂yhy, (1.16)

k2
zhy = ε̂

((ω
c

)2

µ̂hy − k̂xε̂−1k̂xhy + k̂xε̂
−1k̂yhx

)
− k̂yk̂xhx − k̂yk̂yhy. (1.17)

This defines the electromagnetic wave equation in form of an eigenvalue equation. Hereby, the
eigenvalues are the z-components of the propagation vectors k2

z supported by the structure
defining the direction of the corresponding diffraction order and the related in-plane magnetic
field vectors h‖ are the eigen vectors.
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We can write this in a compact way [64] as a matrix equation

k2
zh‖ =

(
E
((ω

c

)2

µ̂−K
)
−K

)
h‖, (1.18)

with the matrices

E =

(
ε̂ 0

0 ε̂

)
, K =

(
k̂y ε̂
−1k̂y −k̂y ε̂−1k̂x

−k̂xε̂−1k̂y k̂xε̂
−1k̂x

)
, K =

(
k̂xk̂x k̂xk̂y

k̂yk̂x k̂yk̂y

)
. (1.19)

Solutions to this eigenvalue equation allow solving the classical Maxwell’s equations and
computing the Bloch modes forming in the structure as well as the allowed propagation
directions for the k-vector for any angle of incidence (kx(θ, ϕ), ky(θ, ϕ))T or incident evanescent
wave. The unit cell of the structure is described via ε̂ and µ̂ at a specified frequency of the
incident light. Please note the remarks on the practical use of the inverse of the permittivity
matrix appearing in K in appendix A.

One major advantage of this method is that different diffraction orders are readily available
as the varying entries in the extended magnetic field vector (hx,hy)

T in reciprocal space. This
enables analyzing the contribution to a specified total quantity stemming from each diffraction
order separately. This includes properties of computational interest such as the convergence
behaviour. Analyzing the eigenvalues allows discussing the nature of the diffracted waves as,
e. g., Re(kz) ≡ 0 describes modes purely evanescent in z-direction. The z-component of the
field is retrieved any time through the orthogonality condition k ·H = 0 as the electric and
magnetic fields are orthogonal to each other and to their propagation direction. Real-space
field distributions are obtained from inverse Fourier transform once the eigenvalue equation
is solved and are a major tool to investigate near-field properties.

For optical materials of our interest µ = 1 −→ µ̂ = I becomes the identity matrix. In the
following, we will, thus, neglect the permeability.

1.2.3 Finte Photonic Crystal Slab

Characterizing the modes and bandstructure of the infinite two-dimensional photonic crystal
often gives a first important insight into its optical properties. In practical applications, however,
nanostructures with a finite extension become part of a complex, large-scale device. We next
apply the boundary conditions of electromagnetic fields at interfaces to the crystal structure
to obtain a description of a finite nanostructured slab of thickness d.

Firstly, we specify the magnetic field further and write it as a field stemming from forward
(amplitude vector a) and backward (amplitude vector b) propagating waves. The fields in
each layer are expanded as

h‖ = Φ(f̂kz(z)a + f̂kz(d− z)b). (1.20)
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The propagators f̂kz ,nm in z-direction are defined as the diagonal matrices

f̂kz ,nm(z) = eikzzδnm. (1.21)

Note that the parallel propagation is inherent in the PWE eq. (1.5) so that it does not appear
here explicitly. The eigenvalue equation becomes

k2
zΦ =

(
E
(
(ω/c))2 −K

)
−K

)
Φ, (1.22)

where Φ can be understood as the matrix that contains in each of its 2N columns the
normalized eigen vectors (hx,hy)

T corresponding to different diffraction orders. The amplitude
vectors a,b remain unknown until the boundary conditions are solved.

The in-plane electric field e‖ is derived from the magnetic field through Maxwell’s equations
with the practical definition

e‖ =

(
−ey

ex

)
(1.23)

and

e‖ = E
((ω

c

)2

−K
)

Φ(kzωε0)−1. (1.24)

Similarly to the previous case, ez can be obtained from its orthogonality condition. Note that
the solutions to the classical electromagnetic wave equation are strictly transversal and that
we obtain two per diffraction order.

The boundary conditions are given by the continuity of in-plane field components e‖ and h‖

which can be written in a compact way for each layer l as(
e‖,l

h‖,l

)
=Ml

(
fkl(z)al

fkl(d− z)bl

)
, Ml =

(
Ml,00 −Ml,00

Φl Φl

)
, (1.25)

with

Ml,00 ≡ ((ω/c)2I − Kl)Φl(kl,zωε0)−1. (1.26)

The layer index l is a reminder that each layer is comprised of a different material leading to
different input parameters and, ultimately, different solutions to the eigenvalue equation in
each layer. It should be noted, however, that homogeneous, i. e. non-structured layers, have
simple analytic solutions to the eigenvalue equation, namely

Φ = I and kGz =
√
k2

0εin − |k‖ −G|2. (1.27)

An analytical inverse [64] of the 2× 2 block matrixMl exists from which the interface matrix I
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Fig. 1.3.: A scattering matrix is a mathematical object that connects incident quantities through
the (optical, electronic, thermal etc.) response to corresponding outoing quantities:(
aout

bout

)
= S

(
ain

bin

)
. On the right, we illustrate the multilayered system and the

relevant forward (al) and backward (bl) scattering coefficients and thickness dl.

can be calculated more efficently than through direct inversion

I l,l+1
LRA = Ml

−1Ml+1 =
1

2
M−1

l,00Ml+1,00

(
1 −1

−1 1

)
+

1

2
Φ−1l Φl+1

(
1 1

1 1

)
. (1.28)

This matrix contains the boundary conditions at the interface between layer l and layer
l + 1 in a compact way. The scattering matrix S, illustrated in Fig. 1.3 for the cross-layer
field propagation follows an iterative scheme to propagate solutions which is given here for
completeness [64].

S l′l+1
11 = [I l,l+1

11 − fkzlS l′l
12I

l,l+1
21 ]−1fkzlS l′l

11 (1.29a)

S l′l+1
21 = S l′l

22S l′l+1
11 + S l′l

21 (1.29b)

S l′l+1
12 = [I l,l+1

11 − fkzlS l′l
12I

l,l+1
21 ]−1

(
fkzlS l′l

12I
l,l+1
22 − I l,l+1

21

)
fkzl+1 (1.29c)

S l′l+1
22 = S l′l

22S l′l+1
12 + S l′l

22I
l,l+1
22 fkzl+1. (1.29d)

The first step in this iteration is given by S l,l = I. If only a0 contributes to the incident field and
no light is incident onto the last layer (bN = 0), the reflection coefficient is given by S0,N

21 a0

and the transmission coefficient results from S0,N
11 a0 and can be used further to calculate the

transmitted and reflected photon flux [24]. These results on far-field quantities obtained in
reciprocal space do not need to be Fourier transformed into real-space. Apart from calculating
the entire scattering matrix of a complex layered system, it can also be computed partially
and, thus, used to obtain the amplitude vectors within a specific layer. This can be used to
study near-fields in nanostructured layers or absorption efficiencies in light harvesting devices
as in some of the following examples. Only in case near-field information is sought after the
fields made from al and bl scattering coefficients need to be transformed back.

As a final note, due to the isomorphic relation between electrodynamics and quantum
mechanics, the scattering matrix approach discussed in this section can with little adjustments
be used in quantum systems describing, e. g., electron wavefunctions with propagation
eigenvalues defined through their energy in relation to the work functions of the materials
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the electron passes. Most notably, different boundary conditions need to be applied at the
interface between materials, but the overall scheme remains the same.

1.3 Applications to Nanophotonic Devices

In this section, we want to briefly discuss some of the applications of the standard Fourier
Modal Method (FMM) and how the basic procedure introduced in the previous section can
be used to describe the optical properties of complex multilayered devices within classical
electrodynamics.

Both regular and irregular (self-assembled) arrays of both dielectric and plasmonic parti-
cles have been investigated for further improving light management in 3rd generation solar
cells [82–91]. Nanotechnology has opened up different routes to reduce front surface reflec-
tion [24,28,92], boost internal absorption through up- and down-conversion [41,93,94] and
increase light trapping employing particle layers as back reflectors [95–98]. Light harvesting
has mostly exploited collective and scattering properties, but also field enhancement effects
on the nanoparticle surfaces. While regular particle arrays typically show narrow spectral res-
onances, randomly distributed particles yield a broader optical response at weaker coupling
strengths. [75,99]

Nanostructured layers as extra components to photovoltaic devices face another difficulty.
Even commercially available baseline solar cells are already highly optimized. The Solar
cell efficiency tables Ref. [100] record the highest photocurrent Jsc measured for n-type
c-Si integrated back contact (IBC) systems at 42.65 mA/cm2 (efficiency of 26.7 ± 0.5%),
while thin-film modules achieve Jsc = 38.5 mA/cm2 (efficiency of 21.2 ± 0.4%). With this in
mind, nanostructured layers need to add a convincing amount to the photocurrent or overall
efficiency.

The central quantitiy to evaluate the performance of solar cells with respect to their optical
properties is the short circuit photocurrent Jsc which is obtained from integrating the absorption
A(λ) over the solar spectrum

Jsc =
q

hc

∫ λmax

λmin

λA(λ)AM1.5G(λ)dλ, (1.30)

where q is the electric charge, h is the Planck constant, and AM1.5G(λ) denotes the solar
spectrum that reaches the surface of earth. The relative photocurrent gain is calculated from

∆ηJsc = 1− Jsc/Jrefsc

comparing the photocurrent of a flat baseline cell J ref
sc with the equivalent solar cell decorated

with a nanostructure.
In spectroscopy, the target wavelengths can differ from the VIS central to PV devices.

Functionalized surfaces for spectroscopy, e. g., surface enhanced Raman scattering (SERS),
are pursued where the measurements benefit from artificially roughened surfaces exploiting
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(a)

Fig. 1.4.: (a) Increase in surface area as a function of nanotube length d for two different
outer radii R and lattice period a = 160 nm. The shaded areas span the minimum to
maximum achievable surface area from solid nanopillars (wall thickness w = R) to
ultrathin walls w → 0, the dashed lines mark w = 10 nm. Insets: SEM image of real
geometry after self-assembly of hollow TiO2 nanotubes on a Ti substrate [101] and
illustration of the idealized structure used in our modeling; (b,c) Field enhancement
of a d = 500 nm NT with R = 70 nm for three neighboring unit cells (b) at the top
of the NTs z = d and (c) in the orthogonal plane in the center of the unit cell at
y = a/2.

local field enhancement in hot-spots rather than regular nanostructures with spectrally thin
resonances. However, for specific detection tasks, carefully tailored regular surface structures
are pursued as well.

We take a special interest in thin-walled hollow nanotube pillars grown from Ti foil. Arrays
of TiO2 nanotubes (NTs) have wide applications in sensing [102], as filters and nanosized
test tubes in biomedicine [103], as photonic crystal fiber lasers and demultiplexers [104–106],
and as nanostructured electrodes for SERS [101,107]. In addition, the possible enhancement
of reaction or transport rates due to a large surface area, see Figure 1.4(a), strong electron
confinement and short diffusion paths make them highly interesting nanostructures for (photo-
)catalysis [108–111] and PV [112–116]. While typically grown on Ti substrates or alloys,
TiO2 NTs can be produced as membranes through a lift-off process [117]. This technique
allows employing them on different substrates such as Si or GaAs for solar cells. A further
advantage for use in bionanotechnology, catalysis and related fields is the biocompatiblity of
the material [101,107], which makes an additional protective coating of the obtained oxide
unnecessary. Self-assembled nanostructures are favorable with view to their fabrication costs
in particular in a highly competitive industry such as PV technology [3,26]. The high refractive
index (RI) of TiO2 makes this an interesting material for a broad range of further photonic and
hybrid applications, i.e., exploiting plasmon-assisted enhancement effects by combining with
metal nanoparticles or planar waveguide structures [39,118]. These setups are typically used
to enhance intrinsically low quantum efficiencies, e. g., rare earth transition rates [116], and to
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(a)

1-type 2-type

4-type

Fig. 1.5.: (a) Unit cells of multi-type particle layers from the standard 1-type unit cell to 2- and
4-type unit cells which allows to study particle layers of varying composition and
configuration. (b), (c) The absorbance of the bare Si reference cell Aref , the overall
device absorption A and the absorption in the homogeneous, active Si wafer region
Ahom are compared (b) relative to the absorbance of the reference cell and (c) in
absolute values. The example spectrum shows these quantities for r = 25 nm Si
particle layer with a = 100 nm, d = 100 nm, including the lowest order of diffraction
AG=0

hom .

sensitize the UV-active TiO2 towards visible light [109] which is important for photocatalytic
reactions. The nanotubular geometry adds directionality to incoming light improving charge
transfer towards an electrode or photon scattering towards a photo-active substrate [114,115].
The sensitivity in such photonic crystal structures is high and robust with respect to fabrication
defects due to collective optical modes in the regular lattice structure [33].

1.3.1 Multi-type Particle Layers for Solar Cells

One basic aspect of the FMM is the use of a unit cell to describe nanostructured layers. Our
work Ref. [56] investigates multi-type particle layers combining nanodisks of different radii
and configurations in a single unit cell. Such a layer with particles made of a single material
of varying sizes can be fabricated with e. g. EBL techniques [26]. Broadband total absorption
can be achieved in a regular particle array combining different particle sizes and shapes to
create a spectral overlap of resonances. This has been demonstrated experimentally for
metamaterials in the mid-infrared region [119,120] and total absorption was also predicted
for textured graphene surfaces [121]. We emphasize that in photovoltaic devices it is not
enough to reduce the overall device reflectivity or boost its overall absorption: the absorption
within the photo-active region must be enhanced and parasitic absorption avoided [28,122].
The latter can stem from resonant absorption in the textured layer or ohmic heating in metal
components, respectively.

We investigated regular Si particle arrays as textured front layers made of unit cells that
include more than a single particle, shown in Fig. 1.5(a), and how they influence light trapping
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Fig. 1.6.: 2-type cells made of Si using (a) different disk radii r2 while keeping constant height
h = 100 nm and r1 = 25 nm, and (b) scaling the height for these cells with constant
r1 = 25 nm and r2 = 45 nm. Selected curves are plotted on the left hand side of
each contour.

in the underlying structure [56]. These multi-type particle layers are placed on top of a thick
Si wafer which is supported on a SiO2 substrate. Both lower layers are considered to be
homogeneous and described by a wavelength-dependent permittivity [68]. The structured
layer efficiently decreases the RI of the front surface and thus reduces reflection and improves
significantly the light scattered forward into the structure. This is corrected by losses in the
particle array itself, which we denominate absorption of the homogeneous region Ahom as
opposed to total absorption of the optical device.

The FMM allows a straightforward extension to include several particles within a single
unit cell, which is detailed in appendix A.2.2. While the computational effort is increased
by a finite summation over the number of particles in the unit cell, one has to keep in mind
that the size of the unit cell increases and thus, in order to obtain results of equal quality, a
similarly higher number of plane-waves has to be considered, which is the main drawback in
this approach. This leads to a moderate increase in the computational time (2N)2 → (2mN)2,
with m the multi-type number (square root of particle number in the unit cell). Si has a low
refractive index contrast to air and convergence is reached rapidly. Note that averaging
over orthogonal polarization directions is not necessary as long as we maintain a symmetric
unit cell. However, this approach does allow for asymmetric, including random [75], particle
distributions and an arbitrary assignment of material properties.

An improvement of the average absorbance for already 1-type layers, see Fig. 1.5(b),
lies first of all in the effective reduction of the refractive index on the front surface reducing
the reflectivity and allowing a larger fraction of the incoming light to be transmitted into
the structure. Additionally, diffracted and scattered light exhibits an increased optical path
length inside the structure, which enhances the absorption mainly within the long wavelength
spectrum of the light coupled into the structure. However, this can be further improved by
providing an even larger density of (resonant) optical modes which can be done by combining
different particle sizes within a single structure.

Fig. 1.6(a) shows the normalized absorbance for an all Si 2-type layer where two diagonal
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Front Contact Passivating layer / SiNx
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Fig. 1.7.: Illustration of the considered setup and its range. (a) n-PERT BiSoN cell, here with
flat passivating layer as simulated. (b) Cylindrical pillars of height h and radius
R made of nitrides and other materials for comparison standing on the n-PERT
device with particle-particle separation a. The nanopillars are placed within the SiNx

passivation. Range of measured (c) real and (d) imaginary part of the permittivity
of gold (orange [69]), TiN (blue [123]) and further nitride materials (grey [124]).

disks have a fixed radius of 25 nm (0.125 a) and height of h = 0.5a = 100 nm. The size of the
other two disks is changed to produce the contour plot relative to the corresponding 1-type Si
result. For smaller sizes, the absorption in the blue range is suppressed through absorption
in the disks which yields a smaller, but still positive, enhancement of the short circuit current.
The normalized absorbance is close to 1 for small disk heights, but increases significantly for
taller disks, see table 1.1.

h (nm) 20 40 60 80 100
ηIsc 5% 17% 28% 33% 32%

Table 1.1.: Relative photocurrent gain of the Si-Si 2-type cells with particle sizes r1 = 25 nm,
r2 = 45 nm, varying height h, and lattice constant a = 100 nm.

Multi-type layers made of Si disks with two different radii achieved up to 33% and with four
different radii, namely r1 = 15 nm , r2 = 25 nm , r3 = 35 nm , r4 = 45 nm and a periodicity
of a = 400 nm, up to 40% improvement in the short circuit current within the photo-active
region. Despite the use of several smaller disks, this constitutes an increase in the efficiency
compared to the 2-type cells which underlines the effect of boosting the absorption by
providing a multitude of optical modes through the particle layer.

1.3.2 Accurate Doping Profiles

A further aspect of photovoltaic devices is their designed doping profiles which are obtained
through an imbalance of charge carriers. These are redistributed in the front and/or back
surface region of the solar cell in a drift diffusion phase. Measurements of the carrier
distribution as a function of the depth into the solar cell reveal the final doping profiles.
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Fig.1.8.:Sidopingprofilesasinputfordevicemodeling.(a)Electrondopingasafunctionof
thedepthofthecellobtainedfromexperimentalmeasurements.(b)Calculatedfree
carrierabsorptionacrossthecell.Theinsetshowstheadiabaticconnectioninthe
n-dopedcenterofwidth150µm.

Inrecentyears,conductivetransitionmetalnitrideshavebeenproposedasalternative

plasmonicmaterials,allowingforresonantfieldenhancementeffectswhileatthesame

timebeinglessabsorptiveoverabroadrangeofthespectrum[124–126]. Fabrication

processesandstudiestointegratethesematerialsforPVapplicationsareinplace[127].

Wecomparethepotentialphotocurrentgainfromanadditionallayermadeofnanopillars

ofnitrideswithothermaterialclassesobtainedinanoptimizedc-Sibaselinesolarcell,

consideringanexperimentaldopingprofile.Thesolarcellparametersofthefabricated

samplesconsideredinthisstudyhavebeentakenfromann-PERTBiSoNprocessdeveloped

atISCKonstanz[128].TheBiSoNsolarcellemploysalow-costindustrialfabricationprocess

developedonn-typemono-crystallinewaferswithtexturedfrontsideboronasanemitter

andflatrear-sidephosphorousdiffusionasabacksurfacefield(BSF).Theexperimental

shortcircuitcurrentJscwithastandardindustrialantireflectioncoating,hasbeenmeasured

between39.0−39.2mA/cm2.Aschematicrepresentationofthen-PERTBiSoNcellwitha

flatfrontsideisillustratedinFigure1.7(a).Thisiscombinedwithanadditionalfrontlayerof

disk-shapednanoparticles,seeFigure1.7(b).Thenanostructureleadstodiffractionoflight

inforwardandbackwarddirection,asindicatedbytheredarrowsinthisfigure.

Diffusedp+–andn+–dopingprofilesweremeasuredandusedfortheelectro-optical

modelingoftheflatbasestructure. Withthemeasureddopingprofiles,weaccountfor

integratedelectro-opticaleffectsstemmingfromthefreecarrierabsorption(FCA)indoped

Si[129].WepresentsimulationsofnanostructuredPVdevicesachievingarealisticdescription

ofahighlyefficientandlow-costindustrialphotovoltaicdevicewiththeaimtoimprovethe

photocurrentfurtherthroughnanostructuring.

Therealandimaginarypartofthepermittivity(ω)= +i ofamaterial,seeforinstance
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Figure 1.7(c) and (d), are related to the wavenumber

k2 − κ2 = (ω/c)2ε′ and 2kκ = (ω/c)2ε′′, (1.31)

where the imaginary contribution κ gives the absorption coefficient α(ω) = 2κ = (ω/c)2ε′′/

k = ωε′′/(cn). The real-valued refractive index is obtained from

n(ω) =

√
1

2

(
ε′(ω) +

√
(ε′(ω))2 + (ε′′(ω))2

)
. (1.32)

This is typically approximated to n(ω) ≈
√
ε′(ω) for low absorptivity. We obtain the absorption

coefficient of Si from

α(ω) =
ω

c

ε′′

nSi
. (1.33)

This coefficient is a measure of the exponential absorption inside the considered material with
intensity dropping as I ∼ e−αz. Eq. (1.33) can be used to reconstruct the related permittivity
ε′′ = αcnSi/ω. With this approach the effect of free carrier absorption in highly doped Si is
added to the experimentally available permittivity of undoped Si [68]. Using measured data
for the electron density N(z) in c-Si wafers, we calculate the FCA and the resulting modified
permittivity following the empirical relation α(z) = CN(z)λδ discussed in depth in Ref. [129].
Hereby, we use their results on p+–doping (δ = 2.18 and C = 1.8 × 10−9) and n+–doping
(δ = 2.88 and C = 1.68 × 10−6). The range of validity is given for λ ∈ {1, . . . , 1.5µm} and
N ∈ {1018, . . . , 5× 1020} due to available data in their study. The calculations presented here
are within the VIS spectrum.

The total width of the c-Si region is dSi = 155 µm and the additional doping profiles affect
about 0.4 µm at the front and back of the structure. For each subdivision of these regions,
the free carrier absorption is calculated and from this the modified permittivity ε(ω) of doped
Si which results in capturing the absorption effects, see Figure 1.8(b), beyond the usage of
available data [68] for undoped bulk material. These multilayered systems typically converge
for ∼ 102 subdivisions. The photocurrent for the simulated baseline cell before introducing
the front side emitter and back surface field is J ref

sc = 28.33 mA/cm2. Adding the free carrier
absorption through the doping profiles increases the photocurrent for the completed baseline
cell to J ref

sc = 36.29 mA/cm2. In comparison, the measured photocurrent for the n-PERT
BiSoN cell including an antireflection coating is Jexp

sc = 39.2 mA/cm2.

Adding nanopillars of different materials to this setup, we give a competitive overview of
results for ∆ηJsc in Figure 1.9 for three geometries varying the r/a–ratio. To each material
r/a = 0.125 , r/a = 0.25 , and r/a = 0.5 are shown side-by-side. The colors are meant
as a guide to the eye: yellow for moderate, orange or red for high losses due to parasitic
material absorption in the nanostructure itself. The different shades of blue indicate positive
photocurrent gain from minor (light blue) to moderate (dim blue) to large (bright blue) gains.
Metals show strong losses for the case of touching nanopillars (a = 2R). The same is true for
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Fig.1.9.:Relativephotocurrentgainforann-dopedSisolarcellwithparticlelayersofdifferent
materials.Comparingthedifferentmaterialclassesforthreegeometricalsetups
withvaryingr/a-ratioshowingr/a=0.125,r/a=0.25,andr/a=0.5side-by-sidefor
eachmaterial.

thosenitrideswhoseplasmonicresonanceismostcomparabletogold,i.e.,ZrNandHfN

and,thus,haveanoverlapwiththeoptimizedspectralregionofthebaselinesolarcell.In

thesecases,theabsorptioninthenanoparticlelayerstronglyhinderstheabsorptionwithin

thebaselinecell.Overall,thiscaseisconnectedtotheshadingeffect.Iftoomuchadditional

materialisplacedontopofthesolarcelldevice,theincidentlightwillbeeitherreflectedor

absorbedintheparticlelayeritself,whichstronglyreducesthephotocurrentyield.

Typically,mostmaterialshavetheirlargestphotocurrentgainforthemediumsizednanopillar

structure,i.e.,thereisnottoomuchnortoolittlescatteringmaterial.Incontrast,some

materialsshowstrongestphotocurrentgainforthelargestparticletolatticeparameterratio.

ThisincludesthedielectricSiandthenitridesWN,MoNandTaNwithrelativegainofover10%

intheseparticularcases.Fromallthenitridesstudied,thesematerialslookmostpromising

combiningthebestofthetwootherworlds:theirfieldenhancementismoderateandtheir

associatedplasmonresonanceisfarawayfromthewavelengthregionwherethebaselinecell

ishighlyoptimized[128],hence,contributingtoimprovethedeviceatotherwavelengths.At

thesametime,theyexhibitstrongestphotocurrentgainsforfurtherincreasingthenanopillar

particlesize.Wecan,thus,characterizetwotypesofnitrides:nitridesforwhichtheshading

effectremainsaproblemsimilartometals,andotherswhichbehavelikedielectricscatterers

withhighphotocurrentgain.

1.3.3 NanotubeArraysforRamanSpectroscopy

Two-dimensionalarraysofhollownanotubesmadeofTiO2areapromisingplatformforsens-

ing,spectroscopyandlightharvestingapplications[66,101,117,130].Theirstraightforward

fabricationviaelectrochemicalanodization,growingnanotubepillarsoffinitelengthfrom

aTifoil,allowsprecisetailoringoftheirgeometryand,thus,opticalresonances.TheNT

arraysobtainedcanshowahighdegreeoforderandregularity,seeFig.1.4whichallows

studyingandoptimizingtheirpropertieswithFMM.AnnealedcrystallineTiO2NTsshowan



22 Chapter 1. Nanoscale Optical Modeling

300 600 900 1200
0

0.2

0.4

0.6

0.8

1.0
(a)

W
al

l t
hi

ck
ne

ss
 w

 (R
)

Wavelength (nm)

0.5

0

R
ef

le
ct

io
n 

|r|
2

solid nanotubes

hollow nanotubes

300 600 900 1200
0

200

400

600

800

1000

Wavelength (nm)

(b)

N
an

ot
ub

e 
le

ng
th

 d
 (n

m
)

0.5

0

R
ef

le
ct

io
n 

|r|
2

Fig. 1.10.: Studying the reduction in surface reflection for spectra of TiO2 NT arrays as a
function of (a) nanotube wall thickness w ∈ {0+ . . . R}, and (b) nanotube length
d ∈ {0 . . . 1000} nm.

increased charge carrier doping level allowing to further improve electron transfer efficiency
for bio-electrochemistry applications [107]. We demonstrate that FMM is highly apt to explain
experimental findings in hollow nanotube arrays, in particular, that additional, free electrons
can yield high optical field enhancement in densely packed, thin-walled TiO2 NT arrays,
independent from the chemical environment [101].

We theoretically investigate these photonic crystal structures with respect to reduction
of front surface reflection, achievable field enhancement, and photonic bands [66]. Next to
calculating the overall reflection, the Field Enhancement Factor (EF) is assessed as it is the
central quantity for Raman spectroscopy.

It was observed experimentally that additional charge carriers are injected into the system
during the growth process of TiO2 nanotubes [101,111]. We account for this effect considering
refractive index (RI) data modified by the presence of free electrons in a Drude model

ε(ω) = εTiO2 −
nee

2

ε0me

1

ω(ω + iγ)
. (1.34)

We assume a small, intrinsic damping γ = 0.01 eV, varying the carrier density ne. The
calculations were performed using frequency-dependent, tabulated RI data in the visible
spectrum for TiO2 from Ref. [131] measured from thin films and Ti from Ref. [67] for bulk
material. Besides explaining experimental findings with respect to field enhancement, this
approach allows identifying the doping level and conductivity of the fabricated samples.

We normalize the electric field E with respect to the field obtained for a flat Ti electrode
Eref (d = 0 case). The evaluation is done either (i) directly as EF = |E(x, y, z)|2 / |Eref |2 used
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Fig. 1.11.: (a) Averaged field enhancement Eav,2D in the unit cell at the top of the NTs z = d
at λ = 600 nm as a function of nanotube length compared to analytic maxima,
Eq. (1.36); (b) Averaged enhancement factor |Eav,2D|2/|Eref |2 within the unit cell
as a function of the nanotube lattice parameter a ∈ {2R . . . 24R} with R = 70 nm
for several nanotube lengths d and excitation wavelengths λ. Divergences are
observed where the ratio a/R is an integer and, in particular, where the lattice
parameter coincides with a multiple of the wavelength.

in field maps, or (ii) as 2D averaged EF, taking the mean over the unit cell area (x− y-plane)

EFav,2D(z) =
1

a2 |Eref |2
∫ a

0

dx

∫ a

0

dy |E(x, y, z)|2 , (1.35)

typically, at the top of the NTs (z = d). If not stated otherwise, an interparticle distance
a = 160 nm, a particle diameter of 2R = 140 nm and a wall thickness of w = 10 nm are used.
This defines a dense NT array where the TiO2 pillars are not yet touching.

Convergence is reached quickly in this dielectric system. 169 Plane-waves (n,m ∈
{−6 . . . 6}) are usually enough to produce converged far-field spectra, 529 (n,m ∈ {−11 . . . 11})
was used for near-field data, but convergence was checked for up to 961 plane-waves
(n,m ∈ {−15 . . . 15}), in particular, where plasmonic properties emerge when free carrier
doping was assumed.

The hollow TiO2 nanotube structures discussed are shown in an SEM image [101] and the
related simulated structure is likewise depicted in the inset of Figure 1.4(a). We consider the
active surface A of a unit cell with and without nanotubes in Figure 1.4(a). For nanotubes
with outer radius R and wall thickness w, the surface area becomes A = a2 + d2π(2R− w).
Hence, the active surface increases linearly with the tube length from a2 for the flat device
while the slope flattens with increasing unit cell size. A ten-fold surface area is reached at
nanotubes of a few hundred nanometers long which is well within experimentally achievable
setups [101,117]. Figure 1.4(b) and (c) show the electromagnetic field enhancement along
the x − y- and x − z-planes, resp., revealing an oscillatory structure for field maxima in
between the nanotubes and inside the hollow structures along the nanotube length. Typically,
the field inside the nanotube (NT) wall is supressed and an enhancement is observed directly
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λ

Fig. 1.12.: (a) Comparison of the calculated averaged field enhancement |Eav,2D|2/|Eref |2 for
different doping levels with experimental enhancement factors (stars). The black
curve is the undoped result, the red curve has lowest, the blue largest doping. (b)
Same as a function of the wall thickness w for d = 500 nm and λ = 400 nm adding
the field maps for two maxima.

at the TiO2 surface. The overall enhancement is small compared to other material choices,
but stable for the entire UV and VIS spectrum.

Strong optical lattice effects are observed in TiO2 hollow nanotubes where the influence of
the wall thickness on the front surface reflection is studied in Figure 1.10(a). Furthermore,
Figure 1.10(b) shows this dependence for the NT length d. Reflection minima are hereby
linearly shifting with the wavelength, rendering a broadband optimization impractical. Shorter
NT lengths are most promising, since the shifted optimum is varying slowly across the
spectrum. This oscillation with the nanotube length in the spectrum is connected to the spatial
oscillations of the electromagnetic field across the nanotube length, investigated further in
Figure 1.11(a). The maximum value of the intensity evaluated at the front surface z = d

follows a sinusoidal law related to Bragg diffraction in crystal structures

|E|2 ∼ |E0|2 sin2(kd) = |E0|2 sin2

(√
εGG

2π

λexc

d

)
. (1.36)

The field enhancement in the x− y-plane of the nanotube array shows a general dipole field
distribution around the nanotubes, see Figure 1.4(b) and insets in Figure 1.12(b). Hereby,
the roots are characterized by d = nλexc/(2

√
εGG) with integer n. Hence, the maxima are

found for n± 1
2

values. The position of these analytic maxima as a function of the nanotube
length are marked in Figure 1.11(a). Discrepancies can be expected, since taking the diagonal
value εGG of the permittivity matrix becomes less valid for longer nanotubes where higher
order Fourier components become increasingly important, see the small descrepancies in
Figure 1.11(a).

Further analytically comprehensive traits of this crystal structure are shown in Figure 1.11(b).
The two-dimensional averaged EF is shown as a function of the NT separation for a number
of wavelengths and NT lengths. Here, we observe a number of divergent resonances, which
can be understood in an empty lattice picture. Resonant bands are found where |k‖ −G| = k.
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However, if the parallel momentum is k‖ = 0, then the reciprocal lattice vector |G| = 2πn/a

equals the wave vector k = 2π/a, leading to the condition λn = a. Hence, where the lattice
parameter a is a multiple of the wavelength λ, we observe strong resonant field enhancement
promoted by geometrical lattice conditions. Weaker, non-divergent resonances are often
observed close to the condition of a = 2nR at lower wavelengths, i. e., higher photonic
energies. Here, the lattice parameter is a multiple of the NT diameter. However, since we
study hollow NTs and not solid nanopillars, these resonances are less pronounced and
dominated by losses. Calculations including a low doping of additional free electrons is
compared to experimentally available data [101] in Fig. 1.12(a). This allows to estimate the
doping effect of the growth process.

Figure 1.12(b) studies the dependence of the TiO2 thin-walled nanotube arrays on the wall
thickness, a degree of freedom not typically available in nanoarrays fabricated with physical
methods. Figure 1.12(b) shows the 2D averaged field enhancement, adding the near-field
maps of the two observed maxima and indicating the wall thickness. Note that for sufficiently
thin walls, optical surface modes from both sides of the ring layer can couple and lead to
higher local fields.

The straightforward fabrication and geometrical tuning of TiO2 nanotubes makes this
an ideal material system to study photonic crystals made of hollow nanotube arrays for
bio-chemical applications in spectroscopy and catalysis.

1.3.4 Rough Surface Morphologies

Complex nanostructed matter is of great interest for spectroscopy, biochemical sensors,
microscopy, (photo-)catalysis [109] and 3rd generation photovoltaic systems [132], due to
their tunability of spatial and spectral properties, boosting energy conversion efficiency with
high local fields or improving absorption through directional scattering.

Surface roughness poses a major challenge to theoretical methods aiming at accurately
describing realistic experimental situations. The inclusion of additional scattering effects of
naturally rough surfaces as well as deliberately roughened structures such as, e. g. Raman
electrodes and the systematic investigation of structures with low symmetries, such as
composites and random particle distributions makes a feasible numerical description of rough
surface morphologies necessary.

In this section, we briefly summarize two ways in which we have used the FMM to assess
optical properties from rough surfaces.

Scattering from rough silver surfaces for photovoltaics

Rough silver layers were studied in an experiment by Springer et al. Ref. [133] with a focus
on absorption loss spectroscopy as a function of surface roughness. The optical properties of
the corresponding flat layered devices intended for photovoltaics can be obtained with the
FMM. In addition, we applied diffraction theory [134,135] to model the specular and diffuse
far-field properties of the samples, see Fig. 1.13, with varying surface morphology. This is
based on the Fourier analysis of an aperture function that contains the height information and
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Fig. 1.13.: (Left) (a) Height function z(x, y) extracted from AFM images of rough Ag surfaces
(Ref. [133]) with varying root mean square (rms) roughness and (b) their Fourier
components of the reflected scalar field. The red circle indicates the condition
k2
x + k2

y = k2
0n

2. (Right) Absorptance of two devices compared to corresponding
experimental data (blue) [133].

is thus fully compatible with the FMM although the large number of diffracted waves makes it
unfeasible to use a fully numeric scattering approach. Using the original data provided by
the authors [133] we obtained excellent agreement with their experimental findings [136].
This method, however, relies on a number of approximations and does not allow studying
near-field effects in a rigorous way as the contribution of evanescent waves prominent in
metallic structures is suppressed.

Raman Scattering from rough TiN nanostructures

Another focus is put on rough surface morphologies in optical sensing and catalysis. Metasur-
face platforms for Raman spectroscopy [137] where rough surfaces are of particular interest.
In continuation of our collaboration Ref. [101], we recently studied rough TiN nanostructures.
The structure was obtained from regular photonic crystals of TiO2 nanotubes through nitrida-
tion. During this process the regular structure collapsed and Raman measurements were
performed on the rough surface morphology, see Fig. 1.14(a) for the structure and Fig. 1.14(b)
for the measured absorption spectrum.

We used the Fourier Modal Method (FMM) to assess the two observed peaks in the
absorption. Comparing the optical response of the regular structures to the measured results
allowed the identification of the observed optical modes. The maximum absorption at around
400 nm can be associated to the surface plasmon polariton (SPP) of the conductive nitride
substrate. We found a lattice resonance of the collapsed nanopillar structure at around
700 nm. In a regular lattice, this lattice resonance is especially sensitive to changes in the
nanopillar height leading to sizeable shifts in its peak position as well as in its overall predicted
absorption value. Hence, we are using an averaging procedure over a range of regular
two-dimensional structures employing the FMM. Our technique yields good results where the
range of heights necessary for the averaging procedure was estimated by SEM imaging and
lead to a natural broadening of the lattice resonance peaks.
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Fig. 1.14.: (A) SEM image of a TiN electrode created from TiO2 nanotubes. (B) UV-Vis
spectrum of the nanostructured TiN electrode. Colored vertical lines indicate the
laser excitation wavelengths in the SERS experiments. (C) Calculated relative
absorbance A = 1−R− T from averaging over a range of nanotube lengths with
good agreement to the measured result.
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2. Nonlocality in Nanostructures

An accurate description of microscopic properties of metal nanoparticles (MNPs) is important
to predict the optical response of, e. g., molecules in close proximity to metal surfaces, the
resulting field enhancement and quenching effects. While ab initio methods can do this
for isolated particles and small coupled systems, they cannot describe the performance of
large-scale devices employing regular arrays or randomly distributed particles. Nanopar-
ticles as part of functionalized layers in sensing, spectroscopy [101] and light harvesting
applications, such as photovoltaics [26, 28, 34, 84, 99] and photocatalysis [109, 138–141],
can improve the performance of such devices. They are efficient subwavelength scatterers
improving the light trapping effect and free charge carriers in MNPs provide, in particular, large
local fields enhancing charge carrier generation and absorption in a photo-active material,
and light-induced effects from other nanostructures such as spectral conversion [116] or
photoluminescence [41] efficiencies.

For over a hundred years, modeling of the optical properties of MNPs relies on classical
electrodynamics. In highly symmetric cases (spherical and cylindrical NPs) analytic solutions
are obtained within Mie scattering theory [142] using corresponding basis functions. The
electric part E of the electromagnetic field creates a polarization field P = α(ε1, ε2)E in solid
matter, expressed in terms of the permittivities ε1(ω) and ε2(ω) of the environment and the
bulk material of the scatterer, respectively. The polarizability α, depending only on the optical
response at a frequency ω, neglects microscopic electron interaction effects at the ultimate
nanoscale arising not only from the quantum nature of the free electron gas in metals, but
also from accelerated motion in the plasmon oscillation.

Light-matter interaction involves processes within the electron subsystem in solids, crystals
and molecules. Inhomogeneities on the length scale of the de Broglie wavelength λe =

h√
2mE

produce scattering and interference effects of electrons which mutually interact with incoming
light, see Figure 2.1a. Hereby, h is Planck’s constant, m is the (effective) electron mass
which depends on the bulk material, and E is the energy of the electron wave. Typically, this
wavelength is about 7.5 nm in solids at room temperature T = 300K, where E = kBT with
the Boltzmann constant kB. For MNPs, the main source of electron scattering is the particle
surface, see Figure 2.1b, where the surface-to-volume ratio indicates the relevance of such
scattering events.

Microscopic interaction effects of electrons in atomistic matter are accurately described
using first-principle methods, e. g., Density Functional Theory (DFT) [4–6]. These solve
Schrödinger’s equation for a large, but finite number of electron wave functions from all atoms
in the considered system. Unfortunately, even with strong approximations such as the Time
Dependent Local Density Approximation (TDLDA), time-consuming algorithms limit their
applicability to particles of a few nanometers in size [7–9] with available computers. Hence,
the complex electromagnetic field distributions arising from functionalized surfaces cannot
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Fig. 2.1.: Illustration of sources of plasmon damping and electron interaction phenomena.
(a) Electron-electron collisions in the bulk material; (b) Electron-surface collisions
due to confinement; (c) Electron irradiation due to acceleration during plasmon
oscillation; (d) Short-ranged electron-electron interactions, such as Coulomb force
and electron diffusion.

be captured and the light-matter interaction is simplified to single particles [6–9]. Moreover,
advances in fabrication of nanostructures along with experimental access to particle sizes
and interparticle spacings below 10 nm led to the possibility of direct or indirect observation
of such effects [21, 143, 144]. In recent years, experiments to verify nonlocality stemming
from the quantum nature of free electrons in metals [76,145–148] were made and theories
pursued the extension of classical electrodynamics to scalable, semi-classical descriptions
of damping and interaction effects stemming from the quantum nature of charge carriers as
illustrated in Figure 2.1.

The original formulation of light scattering by a sphere by Gustav Mie in 1908 [142] excluded
microscopic dynamics of the conduction band electrons in bulk and related surface effects.
However, efforts to extend it have been made since the 1970s [149–158]. Advanced semi-
classical material models can be derived from perturbative theories [53,159]. A description
of the Lorentz friction in metals from RPA [55,160], i. e., the loss of energy in the collective
motion of electrons due to acceleration in the plasmon oscillation [18, 54, 55, 72, 161, 162]
was introduced. Short-ranged electron–electron interactions, such as the Coulomb force and
diffusion, are investigated by separating the free electron dynamics from the core electron
polarization via the hydrodynamic equation for an electron plasma [52,53,70,71,74,75,163–
176]. Such spatial dispersion effects are inherently nonlinear and have been reviewed with
respect to nonlinear phenomena in Ref. [177] and have most recently been summarized in
Ref. [178] with respect to modeling efforts.

It should be noted that a major advantage of ab initio methods lies in their capability to
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account for the electron spill-out of the electron density into the surrounding dielectric medium
from the evanescent tail of the electron wave functions. It was shown within the hydrodynamic
framework that the electron spill-out can be adequately incorporated [73,174] and a potential
dependent on the tunnel current can be accounted for [77].

The major challenge in modeling complex hybrid metal-dielectric systems is, thus, de-
scribing the impact of localized mesoscopic charge interactions effects at nanoscale fea-
tures [70,177]. Though such effects are highly localized and short-ranged, optical coupling
can lead to mediating their influence on the overall device performance via retardation ef-
fects [162, 179] in a large-scale, patterned structure, as discussed in detail for one- and
two-dimensional gratings in chapter 3. The strong optical coupling of metal nanoparticles with
semiconductor substrates needs to be considered beyond the classical approach [180] which
is presented in chapter 4. Classical electrodynamics does not address optically induced
charge interactions effects in standard schemes such as Mie or Fresnel coefficients. Meso-
scopic electron dynamics plays a major role in highly doped semiconductors and metallic
nanostructures, however, charge interactions are also of wider interest in ionic systems. We
introduce the concept of soft plasmonics and its nonlocal formulation in chapter 5.

Our approach relies hereby on the semiclassical hydrodynamic model as the main ingredi-
ent in the Generalized Nonlocal Optical Response (GNOR) approach [70]. The advantage of
employing semi-classical theories is their mostly analytic formulation and thus compatibility
and straightforward integrability with existing numerical procedures for improved electro-
optical simulations.

2.1 Phenomenological Approach

Typically, the optical response of a metal is described with the Drude model via the frequency-
dependent permittivity

εD(ω) = εb −
ω2
p

ω(ω + iγp)
, (2.1)

where εb is the background permittivity given by bound (valence band) electrons, ω2
p

=n0e2/ε0me

is the plasmon frequency, determined by the material dependent (bulk) electron density n0

and mass me, and γp is the inherent (bulk) damping rate. This widely used Drude model
applies only to bulk material and should be modified for nanostructures to include effects
due to the finite size of the system. One of the corrections considered by Kreibig and von
Fragstein [181] is the inclusion of an additional damping due to the scattering on the physical
particle boundaries, depicted in Figure 2.1(b). This is in particular important in particles of
sizes equal or smaller than the mean free path λb of electrons in bulk metal. In such a case,
the electrons will classically experience additional scattering from the boundary of the system.
Kreibig damping is described as γK = vF/Leff, where vF is the Fermi velocity of the electron
gas and Leff is the effective mean free path of electrons resulting from collisions with the
particle surface [157,181,182]. In spherical particles, it can be replaced by the radius of the
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nanoparticle R, to become γK(R) = CvF/R, where C is a constant of the order of unity which
depends on the type of scattering and particle radius. Similarly, collision effects in the bulk,
depicted in Figure 2.1a, can be described via the damping term γp = vF/2λb. We will consider
such phenomenological expressions together with further analytic damping terms from RPA
calculations in chapter 4.

2.2 Hydrodynamic Model

In this work, we apply the hydrodynamic model [163,183] to calculate the electric field E at
a given frequency ω. Its central idea is to treat the conduction band electrons as a plasma
with the (linearized) Navier–Stokes equation, separate their dynamics from bound valence
electrons and couple the electromagnetic wave equation with the hydrodynamic equation via
the induced charge current. This emphasizes a real-space interaction [53,74,168,184]. The
semi-classical corrections include Coulomb interactions and diffusion effects [70] through the
pressure term. This results in an additional excitation, longitudinal in character, which can be
interpreted as a pressure-wave stemming from the electron charge. In comparison, in the
case of the local response approxmiation (LRA), only transverse TE and TM modes can be
excited.

The induced current jind and charge ρind densities

jind =
iε0

ω + iγp

(
ω2
pE− β2∇ρind

)
(2.2)

couple to the electromagnetic wave equation as

∇×∇× E− k2εbE = iωµ0j
ind. (2.3)

This wave equation describes a polarization field stemming from the valence electrons with
dielectric background εb. In contrast to a traditional Drude model, see eq. (2.1) above, an
additional pressure term p = β2ρind couples to the electromagnetic wave equation with
interaction strength of the conduction band electrons β =

√
3/5vF , where vF is the Fermi

velocity. The pressure of the electron gas can be derived from classical gas theory and is
detailed in appendix B.

Using∇D = ρind, we can write the wave equation in a compact form in terms of the induced
charge density

∇2E + k2εDE = η∇ρ
ind

ε0
, where η =

1

εb
− k2β2

GNOR

ω(ω + iγ)
. (2.4)

On the left hand side, the Drude expression εD is recovered. Together with the continuity
equation ∇jind = iωρind, we readily obtain a separate wave equation for the induced charges,
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describing the nonlocal interactions

−β2
GNOR∇2ρind =

εD
εb
ω(ω + iγp)ρ

ind. (2.5)

This yields the wave vector of the longitudinal field and motion of electrons

q =
1

βGNOR

√
εD
εb
ω(ω + iγp). (2.6)

Nonlocal theories predict finite distributions of induced charges at an illuminated metal
surface—in contrast to classical electrodynamics, where charges are induced in a δ-sheet—
with a characteristic penetration depth |Im(1/q)| comparable to the electron spill-out [53,185].
The main observations of nonlocal theories are a blueshift of the plasmon resonance with
respect to the common local approximation and plasmon broadening, in particular tied to the
diffusion coefficient D which can be set to fully capture the broadening found with Kreibig
damping [70, 74]. Simple geometries, such as MNPs, nanoshells and clusters described
with nonlocal Mie coefficients [53], and thin metal slabs and waveguides described with
nonlocal Fresnel coefficients [75] show a remarkable nonlocal response only in the limit of
small particles <10 nm and separations <1 nm. The impact of spatial dispersion is seen in
terms of significant blueshifts of the surface plasmon resonance (SPR) by several tenths of
nanometer as well as plasmon quenching. Furthermore, this approach was extended to go
beyond the hard wall boundary condition εlhsElhs = εrhsErhs of standard electromagnetism
to consider smooth electron density distributions at realistic metal surfaces in addition to
electron–electron interaction [73,174].

A fundamental perspective on the origin of spatial dispersion in the interaction of charges
is inherent to the full solution of the displacement field D in the Coulomb equation

∇D(ω, r) = 0⇒ D(ω, r) = ε0

∫
dr′ε(ω, r, r′)E(ω, r′). (2.7)

It is common to assume a local response approxmiation (LRA) in classical electrodynamics
relying on permittivities that depend only on the frequency of the incident light field. However,
nonlocal interaction effects dominates electron coupling over short distances as depicted in
Figure 2.1(d) [159]. In homogeneous media, we can assume a dependence on the distance
|r− r′| rather than on the specific position of electrons, which allows solving Maxwell’s
equations in Fourier space D(ω,k) = ε0ε(ω,k)E(ω,k).

The dependence on the wave vector k enables us to describe nonlocal electron-electron
interaction such as Coulombic forces and electron diffusion effects in the Generalized Nonlocal
Optical Response (GNOR) model [70,74]. Here, the nonlocal strength paramter β is extended
by the diffusion parameter D so that

β2
GNOR = β2 +D(γp − iω). (2.8)
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It is important to note that the large-k response that originates in the subwavelength oscilla-
tions of plasmonic excitations is not only an inherent prerequisite for many intriguing wave
phenomena, but also particularly sensitive to nonlocality. However, the common Mie result
has no upper wavelength cut-off and does suppress short-range electron interactions which
can strongly dampen the response beyond ω/vF . Accounting for nonlocal response leads
to longitudinal pressure waves as additional solutions to the combined system of differential
equations of the electromagnetic wave equation and the (linearized) Navier-Stokes equation.
This is in contrast to the phenomenological damping expressions derived by Kreibig and for
the RPA approach. Such additional waves offer further damping channels as well, however,
they can also support resonant enhancement effects [52,75,141,176].

Thus, this system of coupled equations yields an additional wave solution, longitudinal
in character, and can be solved for different geometries leading to nonlocal extensions of
Mie [53,168] and Fresnel coefficients [75], including for charge carriers in electrolytes [141].
Typically, hard-wall boundary conditions are assumed for the additional boundary condition

n̂ · jind ≡ 0 (2.9)

prohibiting electrons to trespass through the particle surface into the dielectric surrounding,
using a uniform electron density n0 ∼ ω2

p inside the material and neglecting the electron
spill-out. However, it was shown that a smooth surface distribution of electrons can be taken
into account accurately [73,174] and that the hydrodynamic model is capable of dealing with
the spill-out by solving the above equations with position-dependent material parameters
n(z), ωp(z), εD(z), e. g. within a multilayer approach.

The interest in GNOR of nanostructures extends to many scientific fields. We introduce in
chapter 3 the hydrodynamic model for implementation into the Fourier Modal Method (FMM)
and its application to plasmonic crystals and extraordinary optical transmission (EOT) [52,176]
is subsequently discussed. Chapter 5 transfers the hydrodynamic model to coupled ion
dynamics in electrolytes [55,141] for which a two-fluid approach for interacting positive and
negative charges is necessary. A two-fluid model is also necessary to describe coupled
electron and hole dynamics in (highly doped) semiconductors [186,187].
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3.1 Nonlocality in Multilayered Systems

The increasing ability to fabricate particle arrays and holey metal films with nanoscale
resolution has made the design and characterization of a wide range of nanostructured
materials an attractive field to achieve new solutions towards total light control. Plasmonic
crystals are intensely studied both in theory and experiment for their unique optical properties.
Hybrid photon-plasmon modes are found for corrugated metal films [188,189], nanoparticle
and hole arrays [190–193], photonic crystals supported by metal substrates [194,195] and in
a range of other periodic and aperiodic realizations. Photons are strongly confined at the edge
of band gaps in the crystal structure yielding strong local field enhancements. Such structures
can achieve unidirectional emission radiation through plasmon induced transparency and
photon tunneling effects that are interesting for optical filters and light guidance through
directed transmission [69,196–199].

Using the hydrodynamic model introduced in the previous section, we aim to include
short-ranged electron-electron interactions in periodic grating systems as part of a complex
multilayer. Nonlocal Fresnel coefficients [75] can be used to describe homogeneous nonlocal
metallic layers in the system together with the planar scattering matrix method [64,65]. In
this section, we derive the necessary equations to include nonlocal properties of metallic
components in grating structures in the framework of the Fourier Modal Method (FMM).
Hereby, we focus on the limitations and challenges of the nonlocal extension of the FMM as a
generalization of the standard method in the local response approxmiation (LRA).

Within the framework of the hydrodynamic model, we observe significant changes with
respect to the commonly employed local response approximation, but also in comparison with
homogeneous metal films where nonlocal effects have previously been considered [75].
Notably are the emergence of a contribution from nonlocality at normal incidence and
the surprisingly large structural parameters at which finite blueshifts are observed, which
we attribute to diffraction that offers non-vanishing in-plane wave vector components and
increases the penetration depth of longitudinal nonlocal modes.

One of the main differences to the local case discussed in section 1.2 is the coupling
to an additional wave equation for the free conduction band electrons. Similarly to the
electromagnetic wave equation, it has to be expanded into higher diffraction orders and
formulated as an eigen value equation. This will be demonstrated in detail in the next section.
Hence, not only the permittivity εD(ω, r), but also further material parameters such as the
strength of the nonlocal interaction β and the plasma frequency ωp are modulated across the
two-dimensional crystal. All those parameters are typically step functions in real space when
neglecting the electron spill-out and the respective Fourier transforms are analytical for many
geometries, see appendix A.
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We study the impact of spatial dispersion on promising building blocks for photonic circuits.
Our aim is to investigate the influence of spatial dispersion in metal components of two-
dimensional plasmonic crystals and to increase the understanding of the underlying physical
phenomena and investigate the limiting regimes of structural parameters towards the LRA at
the nanoscale. While we focus our discussion on holey metal films, the presented theoretical
framework is applicable to any type of periodic gratings in one and two dimensions.

3.1.1 Infinite nonlocal Plasmonic Crystals

The additional wave equation for the nonlocal longitudinal modes is scalar in terms of the
induced charge density ρind. The dimension of the related vectors in reciprocal space is,
thus, reduced with respect to the local problem and the increase in computational effort is
moderate. As for the local problem, eigenvalues and modes from the infinite crystal are
used in the scattering matrix technique to describe the case of a plasmonic crystal slab
of finite thickness between two homogeneous semi-infinite dielectric regions, see inset in
Fig. 3.1(a). In this specific setup (IMI – insulator-metal-insulator), the complexity of the original
local problem can be maintained and with it the iterative steps in propagating the scattering
matrix. However, the field expressions and boundary conditions – extended by an additional
boundary condition stemming from Navier–Stokes equation – become more involved leading
to complex expressions for the interface matrices.

As the nonlocal contributions are pressure-like waves of longitudinal character, they only
add to the electric field, but leave the magnetic field unchanged [53,74], i. e. e‖ = (−ey, ex)T =

e‖0 + e‖nl, h‖ ≡ h‖0. The nonlocal wave equation is, thus, independent from the local
contributions and results from the divergence of the induced current density jind, eq. (2.2),
where the continuity equation iωρind = ∇jind is used. After introducing the plane-wave
expansion (PWE), we obtain the eigenvalue equation

q2
z ρ̂ =

(
(β̂2)−1ω(ω + iγ̂p)ε̂⊥ε̂

−1
b − k̂xk̂x − k̂yk̂y

)
ρ̂. (3.1)

From Eqs. (2.3) and (2.2) we find the relevant matrix for nonlocal contributions [73,75]

N00 ≡ −i [ε̂⊥ω(ω + iγ̂p)]
−1 β̂2

(
−k̂y
k̂x

)
ρ̂. (3.2)

Both expressions – M00 from the local boundary conditions and N00 for the nonlocal contribu-
tions – are key ingredients to compute the optical properties of the finite crystal slab. The
expression N00 shows that – for vanishing parallel momentum k‖ = 0 – a homogeneous metal
film does not support this type of pressure waves, but a nanostructured surface allowing for
multiple diffraction orders still results in k̂x 6= 0, k̂y 6= 0 and is able to sustain such modes even
for light at normal incidence. This is a striking difference to previous results for nonlocal, but
homogeneous thin films [26,33].
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3.1.2 Optical Properties of the finite Crystal

The fields are in each layer expanded as

ρl = ρ̂l(fql(z)al,nl + fql(d− z)bl,nl), (3.3)

where ρ̂l are the matrices containing the (nonlocal) charge density eigenvectors obtained
in the previous section. The diagonal matrices fql(z)nn′ = δnn′ exp(iql,znz) are propagators
composed of the respective eigenvalues ql,zn and al,nl,bl,nl are the nonlocal forward and
backward scattering coefficients within each region.

Transversal and longitudinal fields are summed up(
e‖,l

h‖,l

)
=Ml

(
fkl(z)al

fkl(d− z)bl

)
+Nl

(
fql(z)al,nl

fql(d− z)bl,nl

)
, Nl =

(
N00 N00

0 0

)
. (3.4)

A full solution without further restrictions requires 4 × 4 block matrices and two additional
boundary conditions for the induced charge and current to be continuous in order to solve for
the four unknowns involved here. However, we can strongly simplify the calculation when we
evoke the additional boundary condition first. This poses a few limitations to our approach,
mainly that we restrict ourselves to metallic nanostructures in between dielectric layers. This
procedure and the widely analytic solution to the additional boundary condition are discussed
in the next section. Anticipating the results, we will be able to rewrite(

e‖,l

h‖,l

)
=M?

l

(
fkl(z)al

fkl(d− z)bl

)
(3.5)

with an extended matrix M?
l . This allows maintaining the scattering matrix scheme on

extracting fkl(z) and fkl(d− z) from the parameters found, as discussed in section 3.1.4, and
we can still find an analytic inverse forM?

l . This together with reducing the problem to the
original matrix equations of 2×2 block matrices leads to a moderate increase in computational
effort in contrast to a waste increase in computational demand for the full problem of 4× 4

block matrices. This latter case, however, would have to be solved for nonlocal metal-metal
interfaces.

3.1.3 Additional Boundary Condition

Treating the free conduction band electrons with the linearized hydrodynamic equation makes
it necessary to consider an Additional Boundary Condition (ABC) [26,53,168,184,200,201].
The component along the surface normal of the induced current density should vanish
n̂ · jind ≡ 0 at the crystal slab interfaces when both neighboring layers are dielectric, i. e. local,
and a trespassing of the electron current is prohibited in the limit of an exceedingly high work
function of the metal. It should be noted that this assumption neglects the impact of the
electron spill-out relevant to metals with more modest work functions [33,174,175,202] and
does not allow for neighboring metal layers.
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While this step introduces a non-iterative aspect into the layer-by-layer solution of the
scattering matrix approach [64], it reduces the computational effort enormously, since we can
solve the ABC inside the crystal layer independently from electronic properties of neighboring
layers. We show in this section that we can maintain the dimensionality of the original problem
with this limitation, instead of solving a system of four unknowns (local and nonlocal forward
and backward scattering amplitudes) which would make an extension of the scattering matrix
approach to 4 × 4 matrices of block matrices necessary in each iteration step immensely
increasing computational demand.

We start from Eq. (2.2) using Eq. (3.2) with 0 = n̂ · jind = jindz

0 = ω2
pez − β2∂zρ

ind = ω2
pe

0
z −

εb
ε⊥
β2∂zρ

ind. (3.6)

Note that we omit the layer index l for clarity, all material parameters and field amplitudes
relate to the central plasmonic crystal layer in the considered IMI structure. Inserting the
e0
z component and expanding into the field amplitudes Eq. (3.3), we summarize material

parameters in the matrix

L = i(ρ̂)−1 1

qz
(β̂2)−1 ε̂⊥

ε̂b

ω̂2
p

k

1

ε̂⊥

(
−k̂y k̂x

)
Φ, (3.7)

and can write the ABC in a compact way

L(fk(z)a + fk(d− z)b) = fq(z)anl − fq(d− z)bnl.

We evaluate this for the two interfaces z = 0 and z = d and abbreviate fξ = fξ(d)

L(a + fkb) = anl − fqbnl, (3.8a)

L(fka + b) = fqanl − bnl, (3.8b)

from which we can work out

[IN − fqfq]anl = (L − fqLfk)a + (Lfk − fqL)b, (3.9a)

[IN − fqfq]bnl = (fqL − Lfk)a + (fqLfk − L)b. (3.9b)

In the next step, the interface matrix needs to be adjusted to include the additional terms.

3.1.4 Interface Matrix in nonlocal Case

The extended interface matrixM?
l can be built by using Eqs. (3.9) in Eq. (3.4) which yields

the general, z-dependent expressions

M?
l,00 = M00 +N00[IN − fqfq]−1(fq(z)(L − fqLfk) + fq(d− z)(fqL − Lfk))fk(z)−1,

M?
l,01 = −M00 +N00[IN − fqfq]−1(fq(z)(Lfk − fqL) + fq(d− z)(fqLfk − L))fk(d− z)−1.
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Two cases can occur: Is the nonlocal crystal layer the next l + 1 layer, we simply find

I l,l+1 =Ml
−1M?

l+1 = I l,l+1
loc +

1

2
M−1

00 N00

(
χ ξ

−χ −ξ

)
(3.10)

with the parameters

χ = [IN − fqfq]−1([IN + fqfq]L − 2fqLfk), (3.11)

ξ = [IN − fqfq]−1([IN + fqfq]L − 2fqLf−1
k ). (3.12)

When the nonlocal layer is the current layer l, the inverse of the extended matrix is needed.
Due to our simplified approach of having the metal crystal layer between dielectric layers, this
inverse is analytic

(M?
l )
−1 =

(
(ν)−1 (ν)−1µΦ−1

l

−(ν)−1 (IN − (ν)−1µ)Φ−1
l

)
, (3.13)

where ν = 2(M00 −N00(χ+ ξ)/2), µ = M00 −N00χ and the interface matrix becomes

(M?
l )
−1Ml+1 = (ν)−1M ′

l+1,00

(
1 −1

−1 1

)
+ Φ−1

l Φ′l+1

(
(ν)−1µ (ν)−1µ

(IN − (ν)−1µ) (IN − (ν)−1µ)

)
.

(3.14)

It should be noted, that in the homogeneous case N00L = kz⊥
kε⊥

k2‖
qkz⊥

(
1− ε⊥

εb

)
≡ kz1

kε⊥
g as found

previously [26] for nonlocal Fresnel coefficients.

3.2 Diffraction Anomalies in two-dimensional Plasmonic Crystals

We observe significant changes with respect to the local response approxmiation (LRA),
but also in comparison with homogeneous metal films where nonlocal effects have been
considered [26,33,203]. The most striking observations are the emergence of a contribution
from spatial dispersion at normal incidence and the surprisingly large structural parameters
at which small, but finite blueshifts of resonances in the optical response are observable
when compared to the spectral position predicted in the LRA [52]. The former can be
attributed to the diffraction the incoming light experiences due to the space modulated crystal
structure, which provides contributions from higher parallel momenta via kG

‖ = k‖ + G =

(kx + 2π/a n)x̂ + (ky + 2π/a m)ŷ in the plane-wave expansion. Hereby, reciprocal lattice vectors
G define the diffraction order through integers n,m. The latter effect can be seen as an
interplay of a larger number of geometrical parameters relevant in a crystal that do not play
any role in homogeneous films: not only film thickness, but also hole (or particle) size and
lattice period become important. Moreover, when considering metal films with dielectric holes,
larger holes provide narrow metal bridges or constrictions between different unit cells. From
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these results, a remarkable impact on high-Q sensing applications, quantum dot emitters,
molecular decay rates and absorption spectra in large area nanostructured materials is
anticipated. A nonlocal methodology for 2D PlCs can give a full account on the impact of
nonlocal response for important concepts and applications in photonics, such as particle array
enhanced spectroscopic methods [53,69,197,198,204–208] and transmission through holey
metal films. We show that additional pressure waves induced by the electron oscillation lead
to a change in the band structure and electromagnetic fields supported by a plasmonic crystal.
This has previously been shown in 1D hyperbolic metamaterials and slit arrays [201,209–211]
and in 2D periodic particle arrays exploiting the nonlocal polarizability of single particles [212].

The inset in Fig. 3.1(a) depicts the setup of the finite plasmonic crystal – here a holey
gold film. In Fig. 3.1(b) and (c) we compare the developed theory in the homogeneous limit
(vanishing hole size r → 0) with analytic theory [26] for two cases of parallel momentum that
result in local response in (b) and nonlocal response in (c). Note that for the homogeneous
film the power flux of the incoming light vanishes for excitation with an evanescent source in
Fig. 3.1(c), where coupling to higher diffraction orders is not possible, so that we compare the
resulting reflection and transmission coefficients directly. Comparing to previous theoretical
results on plasmonic crystals, Refs. [69,197], Fig. 3.1(a) reveals that these earlier studies are
within the local-response regime as both local and nonlocal descriptions coincide. However,
on decreasing the film thickness in the otherwise unchanged setup from t = 250 nm to
t = 150 nm and t = 100 nm, we begin to observe differences in the spectra. Those are in
agreement with previous findings on nonlocal interaction, that is, we observe a blueshift in the
transmission peak (and reflection dip) positions as well as a reduction of the peak magnitudes
(increase in the dips, resp.). Most strikingly, we consider light at normal incidence which in
the case of a homogeneous film always results in a suppression of longitudinal waves that
need a finite value in the parallel momentum to emerge, cp. Fig. 3.1(b).

The crystal structure does provide modes of higher order with finite in-plane components
in the wave vector through G which become larger for smaller a and we expect an increasing
influence on decreasing the distance between the air holes. This is seen in Fig. 3.2. The
stable mode A is the usual surface plasmon polariton present at the front surface of a
homogeneous metal film. The observed blueshift of the modes B and C with respect to the
spectral position predicted in the LRA increases on decreasing the hole-hole separation,
while both theories converge for larger hole distances. The geometry of the two-dimensional
crystal allows switching its properties from local to nonlocal through further parameters as in
the simple case of homogeneous layers. Interestingly, decreasing the hole size does yield the
homogeneous film limit for vanishing hole sizes, so that indeed larger dielectric holes result in
a stronger nonlocal response. For a hole radius close to the maximum of r = 0.5a thin metal
bridges are left between the neighboring holes and we conclude that strong nonlocal effects
in holey metal films stem thus from fields scattered at the edges of the dielectric holes and
longitudinal fields arising in thin metal walls confined by these holes. The film thickness plays
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π
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Fig. 3.1.: (a) A holey metal film with thickness t of space-modulated, frequency dependent
permittivity ε1 (using bulk gold properties from tabulated experimental data) is
investigated, see inset. The lattice constant is a and separates air holes of radius r.
A substrate with ε2 supports the structure. The local crystal limit, see Refs. [69,197],
with a = 400nm, r = 114.5nm, t = 250nm and ε2 = 2.25 is shown. At this film
thickness, no nonlocal response is noted. (b), (c) For a symmetric environment
(ε1 = ε2 = 1) the homogeneous film limit (r → 0) is demonstrated, see Ref. [26]. (b)
At vanishing parallel momentum local and nonlocal theories coincide (no longitudinal
waves supported in a homogeneous film at k‖ = 0). (c) For high enough parallel
momentum, the homogeneous film shows nonlocal optical response. (d) Reducing
the film thickness to t = 150nm and t = 100nm reveals resonance shifts and
reduced intensities in the optical response induced by nonlocal effects in the crystal
structure. (e) The film thickness is varied for two angles of incidence and the position
of the lowest order transmittance peak is shown. Sizable resonance shifts are found
for t ≤ 50 nm.

a similar role as for homogeneous nonlocal films, i. e. the thinner the nanostructured layer
the stronger the observed resonance shifts as shown in Fig. 3.1(d) and (e).

Let us consider the analytic limit of a homogeneous metal film, where Eq. (1.22) re-
duces to kz =

√
(ω/c)2ε⊥ − k2

‖, while the nonlocal wave number Eq.3.1 becomes qz =√
ε⊥/(β2εb)ω(ω + iγ)− k2

‖. Assuming vanishing parallel momentum and damping, as well
as for the sake of argument a Au metal film described by a Drude model with constant
εb = 9, the remaining values allow a direct comparison to the expected analytic value through√

(c/β)2/εb ≈ 90. The local and nonlocal wave numbers differ by a large factor in quantity
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π
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Fig. 3.2.: (a) Reflection and (b) shift in peak positions as a function of hole separation for
local and nonlocal plasmonic crystals using k‖ = 10π/a, r = 0.2a, t = 250 nm and in
(a) for constant a = 100nm for experimental data of gold. The reflected modes B
and C are strongly impacted in the nonlocal theory at this high parallel momentum.

which means that the wavelength of the associated induced nonlocal electric field is much
smaller than the wavelength of the transversal solutions [52].

To conclude, for a plasmonic crystal placed in a dielectric environment, an extension
of an existing rigorous plane-wave method accounting for nonlocal response in the metal
components of the crystal wad achieved that maintains the complexity of the original problem.
Hereby, the additional boundary condition stemming from the hydrodynamic equation for
the free electron gas was exploited in an analytic way. An additional, but scalar eigenvalue
equation has to be solved, and the interface matrices used in the layer-by-layer propagation
(scattering matrix theory) become more involved. It was demonstrated that nonlocal response
plays a role already at normal incidence for nanostructured metal films whereby diffraction
plays a major role in offering in-plane components in the wave vector not present in the
incoming wave. Furthermore, a number of geometrical parameters influences the impact
of nonlocality in these systems: (i) decreasing film thickness and (ii) increasing hole size in
accordance to what can be expected from homogeneous films, as well as (iii) decreasing hole
separation and (iv) thin metal walls confined between dielectric holes. We expect that our
findings will stimulate additional studies of plasmonic crystals when taking into consideration
nonlocal effects in holey films of experimentally accessible parameters in two-dimensional
hole arrays.

3.3 Extraordinary Optical Transmission

Light transmitted through tiny apertures can be significantly enhanced thanks to the excitation
of surface plasmons at the patterend structure. [192] The ability to efficiently squeeze light
through a metal film with an array of holes smaller than the wavelength of the incoming
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Fig. 3.3.: (a) Contribution of the nonlocal mode (D = 0) to the electric field Enl at the front
surface for a holey gold film with lattice constant a = 200nm, radius r = 0.25a and
t = 10nm at resonance frequency λ = 719nm. (b) Induced charge density for
this case. Note that kx = ky = 10−42π/a ≈ 1.5 × 10−6/nm. (c) Transmittance at
normal incidence comparing the common local response approximation (dashed)
with the generalized nonlocal optical response (GNOR, solid). The film of thickness
t = 20 nm is comprised of a square array of circular air holes with radius r = 100 nm
and period a = 400 nm as illustrated in the inset.

light has fascinated and inspired science and technology for two decades [58,69,190,191,
198,213–217]. The resonance of this phenomena is strongly influenced by the environment
including the presence of molecules which makes label-free biosensing [218] an important
application for hole arrays. The advantages lie in the straightforward optical detection at
normal incidence, integration in microfluidic devices, [219] and miniaturization allowing a
small sensor size and on-chip, multiplexing technology with high sensitivity and low detection
limits [220]. Advancing the rich palette of applications and unravelling novel physics requires
progress in the electromagnetic treatment of holey metal films. When the conduction band
electrons in metals are strongly confined their quantum nature becomes important.

In this section, we investigate implications of nonlocal electron dynamics on the Extraor-
dinary Optical Transmission (EOT) in holey gold films as illustrated in Fig. 3.3 based on
the generalized hydrodynamic approach including electron diffusion. Beyond the familiar
resonance blueshift with decreasing film thickness, the complex interference of longitudinal
pressure waves in the holey structure generates an unexpected oscillatory response with
geometrical parameters. An increase in the transmittance relative to the local result of up to
33% was observed, but it can also be suppressed when absorption dominates.

Fig. 3.3(a) shows an example for the distribution of the nonlocal field (inside the holey metal
film, underneath the front surface) at the resonance wavelength of the nonlocal response
using the standard hydrodynamic model (D = 0, λ = 719nm). A strong dipolar mode is
observed in the corresponding induced charge density ρind, see Fig. 3.3(b). Note that the
finite number of modes included in this calculation (restricted to N = 529 plane waves) yields
a real-space contribution to the Fourier transform even inside the metal. Note that the number
of plane waves used (N2) ranges from N = 23 (N2 = 529) for the near-field plots at a specific
wavelength to typically N = 31 (N2 = 961) for the calculated spectra. The convergence was
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Fig. 3.4.: Comparing the transmittance spectra with varying hole radius r/a for classical local
calculations with the nonlocal optical response of the standard hydrodynamic model
(diffusion constant D = 0) and GNOR (D = v2F/γp) for t = 50 nm and (a) a = 400 nm.
The resonance position is marked with a dot for convenience. (b), (c) The resonance
shift as a function of the hole size r/a is shown for a lattice period of (b) a = 200 nm
and (c) a = 400 nm. The datapoints are connected by a spline to stress the observed
oscillatory behavior.

checked for several spectra using up to N = 47 (N2 = 2209).

We plot the transmission spectra of the scattering parameters in Fig. 3.3(c) where we
concentrate on the optical response beyond λ/a > 1 where transmission through the sub-
wavelength air holes is enhanced. The intriguing result here is the increase in the observed
EOT. At the resonance position λ/a = 1.83 (shifted by 16.5 nm) the transmittivity is increased
by 3%. Comparing the transmittivity at λ/a = 1.8, we observe an increase of 33% due to
strong broadening. In turn the absorbance of the system is also reduced. This means that
the presence of the additional longitudinal waves provides an additional efficient coupling
mechanism to add up to the extraordinary transmission instead of absorbing the incoming
light. The emergence (or disappearance) of absorbance peaks, as well as the observation
of Fano-type resonances further indicate that nonlocal optical response in holey metal films
goes beyond the typically observed resonance shifts and plasmon broadening. Additional
resonances in the optical response contrasting the predictions in the LRA might be a route to
verify the presence of nonlocal modes in large-scale, two-dimensional systems.

We emphasize that increasing the lattice period (while scaling the radius as r/a) enhances
the impact of nonlocal effects due to reducing the lowest order reciprocal vector |G10| = 2π/a.
Diffraction becomes more important where the wavelength λ (k = 2π/λ) is of the same
magnitude as the structural parameter a.

In order to maintain a high impact of anomalous diffraction, the hole radius needs to be
relatively large, which we study in Fig. 3.4. Again, a blueshift of the transmittance as well as a
broadening is observed in the spectra in Fig. 3.4(a) when increasing the size of the air holes.
A closer look at Figs. 3.4(b) and (c) reveals that, as could be expected, the GNOR approach
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yields stronger blueshifts of the main transmittance peak and overall impacts the optical
response of the metal holey film at structural parameters closer to the local limit. Interestingly,
both nonlocal theories exhibit an oscillatory behavior on decreasing the hole size. This
indicates, that the longitudinal, nonlocal mode excited in the crystal structure is subject to
interference effects that allow canceling the observed phenomena arising from additional
electron dynamics. We believe this can be understood with the formation of standing waves
in metal bridges between air holes.

Next, we study how nonlocality influences the transmittance. We consider several values
for the electron diffusion constant from the standard hydrodynamic model (D = 0) to the
bulk model (D = v2

F/γp) in Fig. 3.5(a) and compare the relative change in the transmittance
calculated as (1− Tloc/Tnl) in %. All cases of the nonlocal strength parameter behave similarly.
However, it is surprising that both a reduction and an increase in the transmittance is observed,
here as a function of the film thickness, with very steep transitions between these cases.
This relative change in transmittance lies between −4% and +6% in the considered cases
compared to the classical local result and increases e. g. when the lattice period is further
increased. Figs. 3.5(b) and (c) show how the increase or decrease of the transmittance
translates into an influence on both the reflectance and absorbance for two selected cases.
In Fig. 3.5(b) the increase in transmittance–together with the appearance of an additional
resonance–in the nonlocal case is accompanied by a reduction in both reflection on the front
surface and absorbance, thus leading to an efficient transmittance through the t = 10 nm thick
film. In addition, a pronounced absorption peak appears at a larger wavelength leading to the
strong reduction in transmittance between the also classically observed resonances.

On the other hand, the transmittance is reduced in the t = 20 nm thick slab in Fig. 3.5(c) due
to reflection at a resonant front surface mode which in turn reduces the share absorbed inside
the film. It is such additional reflective or absorptive modes that might allow for experimental
verification of the described effects. Increasing the parallel momentum of the incoming light
enhances the impact of nonlocal phenomena [52]. However, varying the angle of incidence
between k‖ = 0 (0◦) and k‖ = ±π/a (90◦), i. e. within the first Brillouin zone, does not
dramatically increase the parallel momentum and does therefore not alter the observations
significantly [176].

To summarize, we studied the impact of nonlocal, longitudinal electron waves on the
optical properties on EOT phenomena. We discussed the electron diffusion added in the
GNOR theory which leads to an effectively complex β-parameter. This results in stronger
induced shifts (real part) and an increased broadening (imaginary part) of the considered
resonances. We demonstrated up to ±6% relative change in transmittance compared to the
local result at the resonance position and an increase of 33% under off-resonant conditions;
other geometries might yield stronger modulations. This nonlocal increase in the linewidth of
plasmon resonances limits the figure of merit (FOM) in nanoplasmonic sensors based on thin
metal films patterned with hole arrays.
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4. Nonlocality in Nanoparticles

Nanoparticles–regularly patterned or randomly dispersed–are a key ingredient for emerging
technologies in photonics. Of particular interest are scattering and field enhancement effects
of metal nanoparticles and transition metal nitrides for energy harvesting and converting sys-
tems. An often neglected aspect in the modeling of nanoparticles are light interaction effects
at the ultimate nanoscale that cannot be captured within classical electrodynamics. Those
arise from microscopic electron dynamics in confined systems, the accelerated motion in the
plasmon oscillation and the quantum nature of the free electron gas in metals, as discussed
in the previous chapters. We give a detailed account on free electron phenomena in metal
nanoparticles and discuss analytic expressions stemming from microscopic (RPA) and semi-
classical (GNOR) theories. These can be incorporated into standard computational schemes
to produce more reliable results on the optical properties of metal nanoparticles. We combine
these solutions into a single framework and study their joint impact on isolated nanoparticles
and dimer structures in section 4.2.1, and consider strong coupling of nanoparticle arrays with
a semiconducting substrate in section 4.2.2. The spectral position of the plasmon resonance
and its broadening as well as local field enhancement show an intriguing dependence on the
particle size due to the relevance of additional damping channels. Moreover, including strong
coupling effects with the substrate, we observe a mode splitting induced by nonlocal effects.

4.1 Spherical Geometries in the Hydrodynamic Model

We briefly present the derivation of nonlocal Mie scattering coefficients of individual spheres
and nanoshells described with the hydrodynamic model [53] starting from Eq. (2.4) which
describes the evolution of the electric field, together with Eq. (2.5) which is the wave equation
for the induced charge. The resulting scattering matrices can be used to investigate interacting
spheres with a multiple scattering method [60]. The hydrodynamic model has no free
parameters which makes the resultant nonlocal response for the short distances involved
in the interaction (Coulomb force, diffusion) between the charges of MNPs the sole source
of these effects, in contrast to the quantum-confinement picture for plasmon broadening
presented by Kreibig.

It is convenient to use an expansion of the electric field into scalar functions [221] as

E = (1/k)∇ψL + LψM +
∇× L

ki
ψE, (4.1)

where L = −ir×∇ is the classical angular momentum operator, and the superscripts E, M ,
and L indicate electric, magnetic, and longitudinal components, respectively. The additional
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boundary condition, Eq. (2.9), becomes with r̂ · j = 0

β2
GNOR

∂ρ

∂r

ind

=
ω2
p

k

(
∂ψ

∂r

L

+
1

r
l(l + 1)ψE

)
(4.2)

in terms of the scalar functions and the angular momentum number l using the identity
−r · (∇× L) = (−ir×∇) · L = L2 = l(l + 1). The boundary conditions for the electric and
magnetic field components result in the continuity of ψM , (1 + r ∂

∂r
)ψM , ψL + (1 + r ∂

∂r
)ψE, and

εψE for the scalar functions [53,162,221].

The magnetic and electric scalar functions ψν (ν = {E,M}) obey a Helmholtz equation
of the form (∇2 + k2ε⊥)ψν = 0 and can therefore be expanded in terms of spherical Bessel
functions ψν =

∑
L ψ

ν
LjL(k⊥r). Similarly, the electron density is expanded into ρind(r, ω) =∑

L ρLjL(qr), with the longitudinal wave vector q given by Eq. (2.6). The longitudinal scalar
function satisfies a different wave equation, namely ∇2ψL = k/εbε0, which we find from the
Coulomb law ∇εbE = ρind/ε0.

Note that the above analysis is needed for the metal region, where the electric (ν = E)
and magnetic (ν = M ) field are given by Aνl jL, with jL = jlm(k⊥r) and k⊥ = k0

√
ε⊥. Outside

the particle, the longitudinal scalar function vanishes since there are no induced charges in
the dielectric surrounding. Therefore, the electric scalar field in the outer region is given by
jlm(k0r) + tνl h

+
lm(k0r), with the corresponding spherical Bessel and Hankel functions and the

related vector field from Eq. (4.1). The unknown parameters Aνl and the particle scattering
matrix tνl are found exploiting the boundary conditions stated above. We then find a set of
linear equations for the magnetic and electric scattering matrices. Interestingly, the magnetic
scattering matrix is unchanged with respect to the local theory, indicating that magnetic
modes are not sensitive to the induced longitudinal modes. This is in agreement with findings
of the previous chapter for grating structures. The scattering matrix for the electric scalar
function is more complicated than in the local approximation due to the appearance of ψL in
the metal region that contains information on the nonlocal response. The additional boundary
condition yields a prescription to calculate ρL.

The local scattering matrix can then be extended by a single parameter describing nonlocal
behavior of the electron motion in the conduction band

gl =
l(l + 1)jl(θ⊥)jl(qR)

qaj′l(qR)

(
ε⊥
εb
− 1

)
(4.3)

and becomes with θ0 = kR
√
ε0 and θ⊥ = kR

√
ε⊥

tEl =
−ε⊥jl(θ⊥)[θ0jl(θ0)]′ + ε0jl(θ0)([θ⊥jl(θ⊥)]′ + gl)

ε⊥jl(θ⊥)[θ0h
+
l (θ0)]′ − ε0h+

l (θ0)([θ⊥jl(θ⊥)]′ + gl)
, (4.4)

where the primes indicate differentiation with respect to the θ variables. The scattering
coefficients tνl fully contain the optical response of the particle for an external observer.

Note that the nonlocal parameter g vanishes under the assumption of local response
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(βGNOR → 0 ⇒ gl → 0) fully recovering the original Mie coefficients [142, 222]. This allows
us to study the electro-optical properties of NPs with only a small correction in available
numerical procedures.

The magnetic response is also insensitive to the nonlocal properties of the material
for a nonlocal metal nanoshell. The electric part, however, mixes with the longitudinal
components from the two interfaces of the metal intermediate layer. For the electric scalar
functions, we obtain a linear system of six equations and analytical solutions exist for the
metal nanoshell [53,223]. For more complex systems, such as dimers and particle clusters,
we use a multiple elastic scattering approach [60].

The nonlocal theory introduces a novel type of electron motion, longitudinal pressure
waves, in addition to the transversal modes stemming from the classical electromagnetic
wave equation. This additional electronic excitation offers further damping channels due to
the energy lost in dampened motion. Here, the Mie coefficients are derived from the coupled
system of optical and electronic excitation yielding modified scattering matrices that can again
be implemented in existing methods. The properties of the longitudinal wave are given by
the analytic expressions derived above through their wave vector and their importance with
respect to the common Mie solution is entirely captured in a single additional term.

To make predictions that can be compared to experiments, the expressions obtained are
used to calculate, e. g., the extinction cross section of an individual sphere via

σext =
2π

k2ε0

∑
l

(2l + 1)Im(tEl + tMl ). (4.5)

Note that only the electric scattering matrix is sensitive to nonlocal contributions.

4.1.1 Damping from Random Phase Approximation (RPA) Calculations

We compare quantum correction models stemming from microscopic RPA derivations [162,
179] yielding the following, semi-classical damping expressions

γ = γp, (Mie) (4.6a)

γ = γp +
CvF
R

, (Kreibig) (4.6b)

γ = γp +
CvF
R

+
ω1

3

(
ω1R

c

)3

, (perturbative) (4.6c)

γ = Im(Ω2) =
−1

3l
+

1 + 6lq

2
2
3 3lA

+
A

2
1
3 6l

, (Lorentz). (4.6d)

The dynamics of the electron density can be described using a driven, damped oscillator,
with the incident electromagnetic wave being the driving force and the damping arising from
electron scattering (from bulk γp and from the surface via Kreibig damping, Eq. (4.6b)) and
from electromagnetic field irradiation, the so-called Lorentz friction.

Both of the presented semi-classical approaches towards microscopic corrections in the
mesoscale electron dynamics in metal nanoparticles have the advantage of analytic ex-
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pressions fully compatible with existing computational procedures. The modified damping
terms above can be used to directly replace the damping in a Drude expression for the
permittivity given in Eq. (2.1) and subsequently be used in standard Mie calculations and pro-
cedures to calculate optical properties of complex structures, e.g., with a multiple scattering
approach [60] or within commercial software such as COMSOL (http://www.comsol.com)
which is detailed in the next sections.

Lorentz friction

The accelerated movement of electrons in the plasmon oscillation leads to energy loss via
irradiation of the electromagnetic field, see Figure 2.1(c). In case of nanoparticles much
smaller than the incident wavelength, this effect can be expressed by the Lorentz friction, an
effective field stemming from the plasmon induced dipole field D(t) as [224]

EL =
2

3c3

∂3D(t)

∂t3
. (4.7)

An analytical form of the exact solution for the damping γ and self-frequency ωL (the exponents
Ωi of solutions∼ eiΩit for self-modes i) including Lorentz friction exists [54], which is discussed
in more detail in the appendix C. They can be summarized as follows

Ω1 = − i
3l
− i21/3(1+6lq)

3lA − iA
21/33l

∈ Im,
Ω2 = − i

3l
+ i(1+i

√
3)(1+6lq)

22/33lA + i(1−i
√

3)A
21/36l

= ωL + iγ,

Ω3 = −ωL + iγ = −Ω∗2,

(4.8)

where A =
(
B +

√
4(−1− 6lq)3 + B2

) 1
3
, B = 2 + 27l2 + 18lq, q = 1

τ0ω1
, l = 2

3
√
ε0

(
Rωp
c
√

3

)3

and
1/τ0 = γp. The exact inclusion of the Lorentz friction indicates that the radiative losses and
the self-frequencies are a complicated function of particle radius as given by Eq. (4.8).

It is important to note that although all electrons participate in plasmon oscillations, part
of their irradiation is absorbed by other electrons in the system. This is in analogy with the
skin-effect [225] in metals and introduces an effective radiation active electron layer of the
depth h ∼ 1/σω with the conductivity σ underneath the particle surface. Therefore, the effective
energy transfer outside of the nanoparticle will be reduced by the factor 4π

3 (R3−(R−h)3)/4πR3

3
.

According to this, we expect a decrease of radiative damping, especially for larger particles.
Direct comparison to experimental work for this framework is available within Refs. [54,

55, 72, 161] and good agreement has been found. Further experimental work focussed
on the blueshift found for nanoparticles decreasing in size, as well as the influence of the
electron-spill out [21,76,143–148,174].

4.1.2 Combined RPA and GNOR Approach

The hydrodynamic model can be implemented into commercial software such as COMSOL
Multiphysics 5.0 (http://www.comsol.com). This was also achieved in Ref. [174] for two-
dimensional nanowires. In order to include the nonlocal effects arising from spatial dispersion
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of the dielectric function, the main equation of the COMSOL model is modified

∇×
(

1

µ0

∇× E

)
− k2

0

(
ε− j σ

ωε0

)
E = iωµ0J(r, ω). (4.9)

In particular, we introduce the induced current density J(r, ω) on the right hand side, which is
obtained via coupling with the (linearized) hydrodynamic equation in the form

β2∇[∇ · J(r, ω)] + ω(ω + iγ)J(r, ω) = iωω2
pε0E. (4.10)

Note that in the limit β −→ 0 this equation simplifies to Ohm’s law and describes the local
case.

Comsol software allows introducing an additional partial differential equation in the weak for-
mulation, by using the interface Weak form PDE. The function which we integrate weakly has
three components and reads for the x component:

0 =

∫ β2∂J̃x
∂x

∑
j∈{x,y,z}

∂Jj
∂x
− ω(ω − iγ)JxJ̃x − iωε0ωpExJ̃x

 dL, (4.11)

where J̃x is the weight function. We need to define an additional boundary condition on the
particle boundary J · r̂ = 0. In our case, this is a three-dimensional modification. The analytic
damping expressions Eqs. (4.6a)–(4.6d) are directly introduced as damping terms in the
permittivity of the different material permittivities, Eq. (2.1).

4.2 Applications

4.2.1 Quantum Corrections in Metal Nanoparticles

We compare and combine the different processes of mesoscale electron dynamics stemming
from scattering, Figure 2.1(a), (b), irradiation (Lorentz friction), Figure 2.1(c), and nonlocal
interaction, Figure 2.1(d), and study their impact on the optical response of isolated MNPs
and dimers. An emphasis is put on the size regimes where these effects are dominant for
different materials, see Figure 4.1.

Retardation is important when either the particle radius or the overall system size becomes
large, i. e., for particle dimers, clusters and arrays. Although the presented microscopic effects
are highly localized, coupling of nonlocal modes within particle arrays can have a strong
impact on a larger system. It is noteworthy that the hydrodynamic theory and the damping
terms stemming from microscopic analysis within the RPA allow fully retarded calculations;
equally for planar geometries (nonlocal Fresnel coefficients) [75] and regular, two-dimensional
particle arrays [52, 53, 176] and even charge carriers in ionic systems as discussed in the
next chapter in the framework of Nonlocal Soft Plasmonics [141].
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Fig. 4.1.: Impact of quantum corrections on single nanoparticles. (a) Spectral position of

the localized surface plasmon resonance (LSPR) for gold, silver and aluminum;
(b) Extinction cross section normalized to the surface of a hemisphere for silver
evaluated at the respective LSPR wavelengths from (a).

Single Metal Nanoparticles

We compare the quantum correction models introduced in the previous sections, see Fig-
ure 2.1, as well as the combined effect of Kreibig damping Eq. (4.6b), Lorentz friction
Eq. (4.6d) and spatial dispersion Eq. (4.4) to classical Mie calculations for silver in Figure 4.1.
Hereby, we show the effect on the Localized Surface Plasmon Resonance (LSPR) for all
materials in Figure 4.1(a), confirming that the modified damping rates do not alter the reso-
nance position predicted by the classical calculations, whereas nonlocal response–and in
combination with any damping model–does predict an increasing blueshift of the nanoparticle
resonance with decreasing particle size. Looking at the extinction cross section as a function
of particle radius in Figure 4.1(b) for silver, we find that all correction models result in a
reduction of the optical response in dependence of the particle size. Different materials
typically yield a different optimized particle size [162]. Hereby, Kreibig damping with a ∼ 1/a

dependence drastically attenuates the optical response for the smaller size regime below
the maxima (15 nm for Ag), while the complex size dependence of Lorentz friction results
in a greater effect above this particle size. The diffusion coefficient in the hydrodynamic
(GNOR) model (imaginary part of the nonlocal parameter βGNOR) is chosen thus that its
damping effect captures the Kreibig result [70]. The hydrodynamic pressure (real part of the
nonlocal parameter βGNOR) describes Coulomb interaction between electrons and results in
the blueshift observed in Figure 4.1(a) at very small particle sizes below 5 nm. We can further
incorporate the analytical expressions for Lorentz friction. This combined result shows the
strongest attenuation since all different damping channels are included. At a larger particle
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size (60 nm for Ag, 80 nm for Au, and 40 nm for Al) all material models converge with classical
Mie theory where the mesoscale electron dynamics cease to have an impact.

The damping associated with the Lorentz friction can be approximated to the simpler
perturbative expression Eq. (4.6c) in a narrow size window. Since the exact solution can
be obtained with analytical expressions which can be incorporated into standard calculation
schemes, we discuss exclusively exact Lorentz friction results. Lorentz friction is closest to
the classical calculation for smaller sizes and deviates stronger at larger sizes, see Figure 4.1.
The complexity of the Lorentz friction makes it necessary to restrict ourselves to the dipolar
response of the plasmon oscillation. It is therefore important to consider the material, particle
size and wavelength regime in order to assess whether the dipolar response model is
adequate for the system under study. The dipolar approximation is valid up to ca. 100 nm in
Au particle radius which in general covers the discussed microscopic effects well.

Dimers

For particle dimers, in addition to their size, the particle distance becomes important and
retardation effects cannot be neglected for larger particles in close proximity. This can transfer
the impact of localized microscopic electron dynamics onto a larger structure. Figure 4.2
shows the (maximum) field Field Enhancement Factor (EF) at the center of a gold dimer in
water as a function of both particle size and distance for the different theories considered.
The impact of nonlocal response, Figure 4.2(b), on the classical Mie theory, Figure 4.2(a), is
visible as strong quenching of the local fields. In addition, the maximum field enhancement
within the range of investigated particle and gap size is EF ≈ 9000 for the Mie calculations
and EF ≈ 3000 for the nonlocal theory, showing that indeed there is a strong impact of the
longitudinal waves. The damping observed within Kreibig theory, Figure 4.2(c), is dramatic for
the dimer setup and the dominant contribution in the combined theory as seen in Figure 4.2(d).
This is also evidenced by comparing the Lorentz friction with and without nonlocal damping,
see Figure 4.2(e), (f), respectively. The Lorentz friction has a strong impact on the optical
response for larger particle sizes, but also dampens the dimer setup for increasing gap size,
which points towards retardation and the increasing structural size as the main source for this
damping effect. This leads to slightly stronger damping when combined with the additional
plasmon quenching within GNOR in Figure 4.2(f).

The strong field quenching poses limitations to many photonic applications, such as the
photovoltaic effect in solar cells. However, considering different materials for MNPs and their
environment, the size regimes where local field quenching is dominant can be avoided with
the presented theory of combined sources of damping.

Pure damping models, such as the Kreibig damping and Lorentz friction, derived from
microscopic RPA theory, show an intriguing dependence on the particle size, where the
material influences relevant size regimes. On the other hand, semi-classical nonlocal theories
allow evoking additional modes in the system by explicitly considering mesoscopic dynamics
of free electrons. This results in a correction of the spectral position of resonant phenom-
ena and introduces additional, implicit damping channels. The phenomenological Kreibig
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Fig. 4.2.: Impact of microscopic electron dynamics on gold dimers in water. Field enhance-
ment at the gap center in dependence on particle radius (a > 0.5 nm) and separation
(>0.1 nm) for (a) classical Mie calculations, (b) spatial dispersion with GNOR, (c)
Kreibig damping, (d) all RPA corrections combined, (e) Lorentz friction and (f) GNOR
with Lorentz friction. The incident field is polarized along the dimer axis and the
maximum EF is evaluated at the respective resonance frequency calculated for
each case.

damping does yield a plasmon broadening that agrees with experiments [157], however, it
also introduces a redshift of the resonance with respect to the classical Mie result contrary
to measurements on nanoparticles [76, 145, 146, 148]. This is addressed using the hydro-
dynamic Generalized Nonlocal Optical Response (GNOR) approach, i. e., by introducing a
diffusion parameter, able to reproduce the Kreibig damping while fully capturing the observed
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plasmon broadening. An important aspect is that the resulting analytical expressions can be
implemented into existing computational procedures in a straightforward manner, as isolated
theories or combined, allowing the comparison to experiments with little added numerical
effort. The straightforward inclusion of electro-optical effects at the nanoscale into (metal)
nanoparticle systems is of importance in nanostructures employed for photovoltaics and
catalysis as well as in spectroscopy and sensing applications.

4.2.2 Strong Particle-Substrate Coupling and nonlocal Mode Splitting

We next consider strong optical coupling of metal nanoparticle arrays with dielectric sub-
strates [226] applied to a simplified solar cell setup. One crucial parameter affecting the
efficiency of solar cells is the absorption rate of the solar spectrum impinging on their surface.
It was shown experimentally that the efficiency of the photo-effect increases due to the
deposition of metal nanoparticles (MNPs) on the photoactive surface [95,227,228] for light
emitters [180,229–232], in catalytic [233–235] and photovoltaic devices [26,34,56,82,85,90,
113,236–243].

While the observed scattering effects can be described with classical linear electrodynamic
theory for most applications, the coupling between plasmon oscillations and semiconductor
states, and the energy transfer related to hot carriers are best captured within quantum
mechanics. We use a model of plasmon-enhanced solar cells based on the microscopic de-
scription of the interaction between plasmon excitations inside MNPs and the semiconductor
states using the Fermi Golden Rule [180]. A modified dielectric function of the semiconductor
is derived by calculating the photon absorption probability in the presence of the dipole field
arising from the plasmon oscillation. This enables us to compare with calculations accounting
for scattering effects. In addition, we assume both local and nonlocal electron dynamics in
the strong optical coupling model, i. e., the dipole near-field. In the local case, the dielectric
function of the metal is assumed to be spatially constant, i. e., D(r, ω) = ε0ε(ω)E(r, ω), while
in the more general, nonlocal case we account for spatial dispersion of it, i. e., ε = ε(r, r′, ω)

and we have D(r, ω) = ε0
∫
ε(r, r′, ω)E(r′, ω)dr′. Both strong coupling and nonlocality are

inherently nonlinear effects [70,177]. Appendix D shows how using the Fermi Golden Rule,
the particle–substrate coupling can be derived in terms of the photon absorption probability
assuming a local dipole field. Both, the expressions derived for the particle–substrate coupling
and the additional hydrodynamic equation for electrons are integrated into COMSOL and the
simulations presented here are conducted in two steps. In the first step, we calculate the
electromagnetic field around the substrate without nanoparticles in response to the incident
light wave defined on the top boundary of the mesh as a TM plane wave. Simultaneously, on
the side boundaries of the computational cell, we apply Flouquet periodic boundary conditions.
In the second step, we calculate the electromagnetic field distribution with Au NPs deposited
on the top of a Si substrate within the scattered field formulation using the results from the
first step as a background field.

The combined effect of the strong optical coupling between metal nanoparticles and the
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dielectric substrate together with nonlocal electron dynamics is shown in Figure 4.3. The
absorption and the scattering cross sections are shown for MNP arrays of R = 20 nm with
several particle separations Λ. Hereby, the nonlocal electron–electron interactions in the
metal nanoparticles become increasingly important for smaller particle separations, seen in
a reduction and slight shift in the resonance of the photo-effect in the scattering efficiency
and without significant effect in the absorption. Note that, next to the impact of particle size,
the scattering cross section is larger for strong-coupling with additional electron dynamics,
increasingly so as the particle size is reduced. This can be expected, as nonlocality becomes
more important for structures with smaller features, where the surface-to-volume ratio is
larger.

This is further investigated in terms of the photocurrent gain in the substrate region in our
simplified solar cell setup in Figure 4.4. We study the influence of nanoparticle size (panels A
and B) and the interparticle separation (panels C and D) in order to estimate the range of
parameters for which the nonlocal effects significantly change the overall photocurrent gain.
We have compared the strong coupling approach with the classical one. Without quantum
corrections from the particle–substrate coupling, nonlocal electron dynamics enhances the
photocurrent by up to 6%. On including the optical coupling via the Fermi Golden Rule,
both theories yield significantly enhanced photocurrent and reduces the difference between
classical and nonlocal theory to an enhancement of 1.5–2% due to the additional electron
dynamics. Overall, the coupling theory allows quantifying the photocurrent gain to great
agreement with recent experiments on solar cells [55].
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Fig. 4.4.: Impact of nonlocality on the photocurrent with and without particle–substrate cou-
pling. The lattice period is Λ = 20 nm. The insets show the difference between
classical and nonlocal theory results. (A) Strong coupling approach for various
nanoparticle radii and constant interparticle separation Λ = 20 nm. (B) As in
(A) for the standard classical theory. (C) Strong coupling approach for the radii
R = a = 20 nm and various interparticle separations Λ. (D) As in (C) for the standard
classical theory.

The impact of mesoscopic electron dynamics becomes significant for true nanoparticles.
In Figure 4.5, we compare the absorption and scattering cross section for square nanoparticle
arrays with an interparticle separation of 20 nm, reducing the NP radius from 20 nm to 12 nm
in Figure 4.5A, B. While there is a sizeable impact of nonlocality, it becomes even more visible
in Figure 4.5C, D, where we start to observe a splitting of the local resonance for particles of
radius 6 nm and 8 nm strongly coupled to the semiconductor substrate. At the larger particle
sizes, this is seen in the formation of a second peak at higher wavelengths, with only slightly
shifting the main (local) resonance. The modes become evenly split spanning several tenths
of nanometers, sharpened and largely enhanced with respect to the related local result.

We attribute the resonance mode splitting to the dynamical Stark effect, known as Autler–
Townes splitting [244–246]. While strong coupling can by itself result in mode splitting, it is
remarkable that we only observe this effect when the metal nanoparticle is described with
mesoscopic electron dynamics. Nonlocal electron interaction in the hydrodynamic model
is also a semi-classical approach and inherently nonlinear. It typically has an impact on
particles with radii well below 20 nm. In the classical picture, with local electron dynamics, the
incident field can excite two known transversal modes with opposite directions within the metal
nanoparticle (MNP). Nonlocal electron dynamics, however, allows for a third type of excitation,
a longitudinal mode of a pressure-like electron density wave [53,70,75]. The strong optical
coupling of the semiconductor states to this classically neglected excitation in small metal
nanoparticles promotes the Autler–Townes splitting. We believe that these additional nonlocal
modes are vital for this effect to be observed under solar irradiation. The shift observed in the
presented simulations is around ±14 nm (ca. ±80–87 meV).

We study the mode splitting in more detail in Figure 4.6 showing the electromagnetic field
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Fig. 4.5.: Impact of nonlocality on the strongly coupled system. A gold nanoparticle array
with lattice period Λ = 2a + 20 nm is placed on a Si substrate. Normalized (A)
absorption (σacs) and (B) scattering cross section (σscs) for particle sizes above 10
nm comparing classical and nonlocal theory. (C) Absorption and (D) scattering
cross section for particle sizes below 10 nm comparing classical and nonlocal theory.
In this regime, strong coupling leads to the Autler–Townes splitting of the local mode
in the semi-classical picture.

in Figure 4.6A, B and charge distribution in Figure 4.6C, D at the two shifted resonances for
the smallest particle size considered, R = 6 nm. It clearly shows a different mode pattern.
Apart from the strongly localized charge and field at the particle–substrate interface, the
modes spanning the nanoparticle can be characterised as a dipolar (at larger wavelengths)
and quadrupolar (at lower wavelengths) distribution. Accounting for the additional nonlocal
mode, the physical picture is thus: The incident electric field acts on the electrons and pushes
them to different positions. If an electronic state has its electron displaced with the electric
field direction, its energy is lowered, while its energy is raised if the electron is displaced
against the field direction.

In our semi-classical treatment of the plasmon oscillation, we attribute this behaviour to
the dynamical Stark effect, known as Autler–Townes splitting [244–246], which occurs due
to nonlinear interactions between light and matter [247]. Electric fields affect the optical
interband properties of semiconductors and, in particular, fields in the THz energy range can
couple conduction or valence subbands [248,249]. Typically, this quantum confined Stark
effect is used in telecommunications, quantum-well modulators and switches [250].
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Fig. 4.6.: Nonlocal modes after Autler–Townes splitting due to strong coupling for a = 6 nm.
Cut through the particle center at x = 0. (A,B) Field distribution and (C,D) induced
charge distribution for the (A,C) mode shifted to higher energy and (B,D) Mode
shifted to lower energy.
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5. Nonlocal Soft Plasmonics

The field of plasmonics is widely understood as the investigation of collective oscillations of the
electron plasma in metallic systems induced by an external electromagnetic field [39,164,183].
In a broader sense, such plasma oscillations can be found for any system where charged
carriers are induced, such as stretchable [251] and amorphous materials [252] and charged
plasmas in space [253, 254], e. g. the high energy nuclear plasma in the solar core, the
ion gas in the ionosphere or intergalactic clouds. Coupled charge carriers relevant for
photonic applications include electron-hole pairs in semiconductors [186, 187] and ionic
systems [141,255,256] where both charge plasmas need to be considered. Their plasmonic
properties can be derived from classical electrodynamics, introducing a two-fluid model for
positive and negative ionic charges [141].

Plasmons of noble metals are studied with respect to applications in sensing and spec-
troscopy [218], optical filters [257], plasmonic colors [258], lasers [259], and quantum plasmon-
ics [260] exploiting the extreme confinement and sensitivity of their electro-optical excitation.
The plasmonic properties of ions in solution, on the other hand, are of interest in biological
and chemical systems. Local energy transfer and communication are central in the signaling
and conductivity of nerve cells (axons) [160] with great importance to the functionality of the
biological system in question. The interaction of an electrolyte with its environment and, in
particular, with functionalized surfaces is of central interest in catalytic processes.

The masses of ions are many orders of magnitude larger than the electron mass me which
results in a plasmon frequency in the far infrared (>3μm, GHz-regime). The ion concentration
can be used to further tune the system similar to doping in semiconductors and, depending
on the choice of material, the charge Q itself can be different from the elementary charge e

allowing a wide range of resonance frequencies. Notably, due to these degrees of freedom,
the ionic system is widely tunable via ion concentration, mass and charge, in contrast to solid
metal nanoparticles. Using multiple scattering techniques [60,75], the plasmonic properties of
both single ionic spheres and more complex structures, such as chains of ions, can be studied
in comparison to solid metal nanoparticles. To achieve such geometries experimentally, lipid
membranes can be used to confine ionic charge carriers in the desired way.

In addition, classical electrodynamics typically neglects interaction between strongly con-
fined charges. The classical description of plasmons in metals starts to fail on the nanoscale
as shown in the previous chapters. Spatial interaction effects between charge carriers in ionic
systems play a sizable role beyond a classical Maxwellian description and are explored in
this chapter. Soft plasmonics for spherical ions [255] and chains of axons [160] have been
studied within the RPA method including Lorentz friction, i. e., electron radiation due to the
acceleration of charges in the oscillations. We develop a nonlocal, two-fluid, hydrodynamic
theory of charges and study ionic plasmon effects, i. e. collective charge oscillations in
electrolytes. Analytic expressions can be found for nonlocal Mie coefficients for ionic spherical
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particles. [53,141] This has been generalized into a multi-fluid description by others [261].
Ionic spatial dispersion arises from both positive and negative charge dynamics with an
impact in the (far-)infrared. Despite highly classical parameters, nonlocal quenching of up to
90% is demonstrated for particle sizes spanning orders of magnitude.

A nonlocal soft plasmonic theory for ions is relevant for biological and chemical systems
bridging hard and soft matter theory and allowing the investigation of non-classical effects in
electrolytes in full analogy to solid metal particles. The semi-classical approach presented
here can be fully integrated into standard nano-optic simulation frameworks and is considered
to be of great interest for plasmonic photo-catalysis [109] introducing nonlocal aspects into
electrolyte-surface interactions possibly avoiding the hardship of DFT calculations. On the
other hand, it provides a novel perspective on phenomena in biological systems, e. g. the
signal transfer of nerve cells, can likewise profit from the plasmonic perspective on local field
effects.

5.1 Two-fluid Model

Please note throughout this section the analogies to the hydrodynamic model for the electron
plasma in metals, section 2.2. The optical response of an ionic system with free negative and
positive charges in a fluid is based in the hydrodynamic model on separating the dynamics of
both types of ions, assuming

∇D = ε0εb∇E = ρ− + ρ+. (5.1)

Hereby, εb is the dielectric background permittivity of the solution and ρ± are the charge
densities of the ions treated as additional charges in the system. Ion masses m± and charge
Q± may differ for the ions in the system, however, the total charge is balanced, i. e. the
charges are mutually compensated by setting

|n+Q+| ≡ |n−Q−|. (5.2)

This yields an equal density n = n+ = n− of charges in most standard cases such as of
hydronium (H3O+) and hydroxide (OH−) in splitted water or dilluted salts in biological systems
with equal but opposite charges of the constituent materials. The electromagnetic wave
equation then reads

∇×∇× E− k2εbE = iωµ0 (j− + j+) . (5.3)

Hereby, j± are the charge current densities of the ions in the electrolyte. Together with the
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Fig. 5.1.: Ionic bulk plasmon frequency values ω2
p = nQ2/ε0m for (a) different choices of the mass

and (b) different values of the charge. Fixed values are Q = 3e,m = 104me, εb =
1.77, n = 10−2N0, with the one-molar concentration N0.

linearized hydrodynamic equations for each type of ion

j± =
iε0

ω + iγ±

(
Q2
±n±
ε0m±

E−∇β2
GNOR±ρ±

)
(5.4)

this can be brought into the form [141] of

∇2E + k2εions⊥ E = ∇(η−ρ− + η+ρ+), (5.5)

where the right hand side vanishes in the local limit, η± comprise of material dependent
parameters

η± =
1

ε0εb
−

k2β2
GNOR±

ω(ω + iγ±)
(5.6)

and we have defined the permittivity of the coupled ionic system as

εions⊥ = εb −
ω2
p−

ω(ω + iγ−)
−

ω2
p+

ω(ω + iγ+)
. (5.7)

Note that we obtain the common expressions for the (ionic) bulk plasmon frequencies
ω2
p± = Q2

±n±/ε0m±, shown in Fig. 5.1, without introducing an auxiliary jellium in which the ions
are contained. The latter is a prerequisite for the RPA approach [255,256].

For the nonlocal strength βGNOR±, we rely on the thermal velocity of the heavy ions
vth =

√
3kBT/m, which is much smaller than the Fermi velocities found for free charges in solid

materials (vF = 1.4× 106m/s for Au and Ag) due to the large masses involved (vth ∼ 103m/s,
see table 5.1 for some examples). Note that for positive charges β+ = −β−, due to integration
over the valence band below the Fermi energy for positive charges, rather than over the
conduction band above the Fermi energy for negative charges. The local limit is obtained for
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Ion mass (Da) mass (me) vth (m/s) free mean path (nm) γ (meV)
H+ 1.007 1835 2727 0.33 17.22

OH− 17.008 31005 663 1.35 1.02
H3O+ 19.02 34670 627 1.42 0.91
Na+ 22.990 41907 571 0.89 1.32
K+ 39.098 64628 459 1.11 1.11
Cl− 35.453 71270 437 1.27 1.27

Table 5.1.: Electrolyte parameters for an aqueous solution in thermodynamic equilibrium. All
charges are Q± = ±1e.

βGNOR± → 0 which suppresses the interaction of the charged particles in the fluid. However,
part of the field induced current density remains and yields the ionic plasmon effects within
classical electrodynamics.

To estimate the mean free path and damping of ions diluted in water as given in table 5.1,
we use the density of water at a temperature T = 25

◦C, ρH20 = 997kg/m3, and its dynamic
viscosity µH20 = 8.9 × 10−4kg/m s = 8.9 × 10−4Pa s, from which we deduce the kinematic
viscosity

ν = µ/ρ. (5.8)

For salts diluted in water [262–264], these values depend on parameters such as pressure
and temperature and their concentrations. Crystalline sodium chloride has a density of
2160kg/m3 with an atomic mass of 58.443 Da and potassium chloride 1980kg/m3 with an atomic
mass of 74.551 Da. In solution, these are reduced to values close to the above value for
water and increase with concentration.

Furthermore, we can use the kinematic viscosity to calculate the mean free path

l = ν/vth (5.9)

and the damping of the ionic movement in the solution

γ = v2
th/(2ν). (5.10)

The range of the ionic bulk plasmon frequency is investigated in Fig. 5.1 with respect to the
ion mass and charge which can be selected via the material. The ionic plasmon frequency is
far smaller than that of common metals and lies in the infrared and beyond (> 3µm).

5.1.1 Coupled nonlocal Wave Equations

From the continuity equations iωρ± = ∇j±, we find for each type of charge a separate wave
equation yielding additional longitudinal modes. Introducing the Drude permittivity for the
respective charges as εD± = εb −

ω2
p±

ω(ω+iγ±)
and using ∇E = (ρ−+ρ+)/ε0εb, we obtain coupled
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hydrodynamic equations typical for a two-fluid model

ρ− =
εb
ω2
p+

(
∇2β2

GNOR+ +
ω(ω + iγ+)

ε0εb
εD+

)
ρ+ (5.11)

and vice versa, exchanging the index sign for the result of the respective other charge.
Inserting this into the above equation yields a wave equation of fourth order

0 = β2
GNOR+β

2
GNOR−

(
∇2 + q2

+

) (
∇2 + q2

−
)
ρ− −

ω2
p+ω

2
p−

ε2
b

ρ−, (5.12)

which can be solved analytically for different geometries. The analytic solutions confirm
the simple fact that positive charges have the opposite oscillation direction from negative
charges. Note that we introduced the nonlocal wave vectors q± from the single charged
plasma result [53] q2

± = 1
β2
GNOR±

ω(ω+iγ±)
ε0εb

εD±.

5.2 Mie coefficients for nonlocal ionic spheres

In order to study specific geometries of the resulting plasmon oscillations, the electrolyte
system has to be confined in the desired way. In this section, we apply boundary conditions to
investigate finite spherical geometries. We concentrate on ionic carriers in a finite electrolyte
system made of hydronium H3O+ (more abundant than H+) and hydroxide OH− at room
temperature. Together with their masses and charges, this yields the parameters collected in
table 5.1. These can be created from confined ions within insulating membranes typically in
the micrometer scale. In particular, the large ion mass and low concentration results in an
energy and size regime very distinct from metal nanoparticles.

5.2.1 Finite Spherical Ionic Systems

The nonlocal two-fluid hydrodynamic approach has many parallels with the theory of a
single electron plasma in metal nanoparticles with spatial dispersion for which we find Mie
parameters extended by a single nonlocal term g, see Eq. (4.3) [53]. We derive the nonlocal
Mie coefficients within the two-fluid model in analogy to the solid metal nanoparticle case
presented in section 4.1 and report here the main differences in the derivation steps.

The additional boundary condition in spherical coordinates êrj = 0 yields

β2
GNOR±

∂

∂r
ρ± =

Q2
±n±

ε0m±k

(
∂ψ

∂r

L

+
1

r
l(l + 1)ψE

)
, (5.13)

where the magnetic and electric scalar functions ψν (ν = {E,M}) obey a Helmholtz equation
of the form (∇2 + k2εions)ψν = 0 and can therefore be expanded in terms of spherical
Bessel functions ψν =

∑
L ψ

ν
LjL(kionsr). Similarly, the electron density is expanded into

ρind(r, ω) =
∑

L(ρl+jL(qMie
+ r) + ρl−jL(qMie

− r)).

The longitudinal wave vectors qMie
± given by (qMie

± )2 = − p̃
2
±
√(

p̃
2

)2 − q̃ are the solutions to
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Eq. (5.12) with

p̃ = −
(
q2

+ + q2
−
)
, q̃ = −

(
1

β2
GNOR-β

2
GNOR+

ω2
p+ω

2
p−

ε2b
− q2

−q
2
+

)
. (5.14)

We demand Im(qMie
± ) > 0, i. e. that nonlocal, longitudinal excitations remain absorptive, which

reduces the four solutions to two physically relevant ones.

The boundary conditions above lead to the following set of equations for the electric scalar
field

εionsAEl jl(Θ
ions) = εb

(
jl(Θ0) + tEl h

+
l (Θ0)

)
, (5.15)

− k

εions

(
β2
GNOR−ρl−j

′(qMie
− R)

ε0ω(ω + iγ−)
+
β2
GNOR+ρl+j

′(qMie
+ R)

ε0ω(ω + iγ+)

)
+ AEl

[
Θionsjl(Θ

ions)
]′

= [Θ0jl(Θ0)]′ + tEl
[
Θ0h

+
l (Θ0)

]′
, (5.16)

where Θµ = kµR
√
εµ. We use the additional boundary conditions, Eq. (5.13), to find expres-

sions allowing the substitution of ρl± in the above equations.

β2
GNOR-ρl−q

Mie
− j′(qMie

− R) =
ω2
p−l(l + 1)

kR
AEl jl(Θ

ions)

−
ω2
p−

εions

(
β2
GNOR-q

Mie
− j′(qMie

− R)

ε0ω(ω + iγ−)
ρl− +

β2
GNOR+q

Mie
+ j′(qMie

+ R)

ε0ω(ω + iγ+)
ρl+

)
(5.17)

and vice versa. From this, we find for the charges

ρl± = AEl
l(l + 1)

kR

jl(Θ
ions)

qMie
± j′(qMie

± R)

εions

εb

ω2
p±

β2
GNOR±

. (5.18)

Next, we insert the charge densities into the equations obtained with the common boundary
conditions (5.15) and (5.16) and rewrite after some algebra

AEl

{[
Θionsjl(Θ

ions)
]′

+ gionsl

}
= [Θ0jl(Θ0)]′ + tEl

[
Θ0h

+
l (Θ0)

]′
,

Exploiting the usual boundary conditions and additional boundary conditions stemming
from the nonlocal wave equations for each type of ion, we obtain the scattering matrix for the
two-fluid, spherical ionic system in full, formal analogy

tEl =
−ε⊥jl(θ⊥)[θ0jl(θ0)]′ + εbjl(θ0)([θ⊥jl(θ⊥)]′ + gionsl )

ε⊥jl(θ⊥)[θ0h
+
l (θ0)]′ − εbh+

l (θ0)([θ⊥jl(θ⊥)]′ + gionsl )
, (5.19)

with gionsl = gl+ + gl−

gl± =
l(l + 1)jl(Θ

ions)

R

jl(q±R)

qMie
± j′(qMie

± R)

(
ε⊥±
εb
− 1

)
. (5.20)

Note that the nonlocal parameter gionsl vanishes under the assumption of local response fully
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recovering the original Mie coefficients [142,222] for a classical ionic system. This allows us
to study the electro-optical properties of spherical membranes filled with a nonlocal electrolyte
with only a small correction in available numerical procedures. This is very similar to the single
plasma result, where we now sum nonlocal contributions from two charge carrier plasmas.
The main differences lie in the nonlocal wavevectors qMie

± from Eq. (5.12) and the fact, that
we have two contributions from different type of charge carriers ±. Significantly different
amplitudes can be expected when the masses and charges strongly differ.

5.2.2 Results for nonlocal Ionic Spheres

Fig. 5.2 exemplifies the similarities between the plasmons in a solid metal nanoparticle (gold
in a simplified Drude model for clarity) and the electrolyte system at increased density in
terms of both the extinction cross section and field enhancement.

Plasmons in metals are an excitation of the conduction band electrons via a polarizing
electromagnetic field that displaces the freely moving electrons with respect to the positively
charged atomic cores, see Fig. 5.2(a). In an electrolyte, we find even at thermal equilibrium
a small density n± of ions of possibly different charge Q± and mass m±, see Fig. 5.2(b).
However, in the absence of a rigid crystal lattice, both types of ions can oscillate with typically
different plasmon frequencies ω2

p± = Q2
±n±/ε0m±. The coupled system yields an effective

localized surface plasmon resonance (LSPR) for spherical geometries at

ωLSPR =
√

(ω2
p++ω2

p−)/3εb, (5.21)

where εb is the background permittivity inside the confining membrane. Assuming self-
ionization of water at the thermodynamic equilibrium, we arrive at a concentration nThermEq =

6.022× 1016m−3 for each type of ion. The localized plasmon resonance for this low density
limit for a hydroxide and hydronium system, see table 5.1 for further parameters, results in
λLSPR = 6.38m (ωLSPR = 4.7× 107Hz).

The plasmons of metals are of great interest due to their ability to capture electromagnetic
fields, i. e. their optical cross section is far greater than their geometrical cross section, and the
associated strong local field enhancement in the proximity of the particle surface as depicted
in Figs. 5.2(c) and (e). Note that we used a Drude model for gold (ωp,Au = 9 eV, εb,Au = 9,
γp,Au = 0.071 eV) excluding intraband effects for clarity. This is put in comparison to the
considered electrolyte system in Figs. 5.2(d) and (f). The aforementioned effective LSPR,
Eq. (5.21) for the coupled system agrees with the extinction cross section maximum, see also
Fig. 5.3 and given the small membrane size of R = 10 nm considered here the light trapping
is several orders of magnitude higher than for the gold particle of the same size. However,
the associated local field enhancement at resonance is much smaller than for the metal. This
can be understood and potentially remedied as follows. We have considered (neutral) water
as background everywhere, while in the metal system a strong refractive index contrast is
found at the surface. Due to the commonly known boundary condition of continuous ε n̂ · E
this yields an increase in the field on the outside of the spherical nanoparticle. In case of the
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solid Au particle lipid membrane
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Fig. 5.2.: Concept of (localized surface) plasmon resonance (LSPR) in ionic systems com-
pared to metals. Illustration of charge carrier displacement in (a) a metal solid
and (b) an ionic fluid confined by e. g. a lipid cellular membrane. (c), (d) Field
enhancement map of the plasmonic resonance in both systems. (e), (f) Impact of
nonlocal charge dynamics (with and without electron diffusion D) on metals and
ions in terms of the extinction cross section (upper panel) and the maximum field
enhancement (lower panel). The particle size is R = 10 nm and a Drude model for
gold was used for clarity. The charge density is n = n+ = n− = 1mol/m3NA.

ionic system, no such strong contrast is found, however, the lipid membrane used to confine
the electrolyte could be filled with a different medium than water, e. g. a cytoplasm. It should
also be noted that the field enhancement increases for even lower energies until it saturates.
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Fig. 5.3.: Extinction cross section and quenching of field enhancement at different ion con-
centration levels and for several orders of magnitude in particle size. (a) Extinction
cross section normalized to geometrical cross section of the membrane. (b), (c)
Comparing the maximum intensity at the particle surface for ionic systems with
an ion concentration of (b) n = 1mol/m3NA and (c) n = 10−3mol/m3NA for varying
membrane size.

This region is most strongly affected by non-classical charge carrier interactions.

Finally, we compare classical electrodynamic results (standard Mie coefficients) with our
nonlocal model. For the metal system, as reported previously, a blueshift of the LSPR
is observed and on inclusion of electron diffusion effects the resonance becomes more
strongly broadened and attenuated, see Fig. 5.2(e). The coupled ionic system also shows an
attenuation, see Fig. 5.2(f). The LSPR position is marked by a vertical line.

We observe the blueshift of the LSPR of the electrolyte with respect to the classical picture
in Fig. 5.3(a). We consider two different ion concentrations that yield different resonance
wavelengths and consider two membrane sizes, one that behaves classically (R = 50 nm)
and one that shows nonlocal response (R = 5 nm). Zooming into the resonances (note the
log-log axis), we indeed note a blueshift, though it is not as dramatic as for the metal system,
since the resonances are much broader.

Next, we consider near-field quenching in dependence on the particle size for two different
ion concentrations in Figs. 5.3(b) and (c). The ion concentration determines the LSPR and
frequency range of interest for the system. With this, the impact of nonlocal quenching of
the local field can be shifted to larger particle sizes. In general, a large enough membrane
size yields the local limit where nonlocal charge carrier dynamics are no longer sizable.
The minimum value for the diffusion constant to show an additional effect was found to be
D± = 0.5× 10−5m2/s (with γ± ≈ 1011 Hz, hence D±γ± ≈ 5× 105m2/s), where in comparison
|β±| ≈ 1.5× 105(m/s)2.

Fig. 5.4(a) and (b) show the penetration depth of the nonlocal excitation for the two types of
ions as a function of ion mass and incident light frequency. Due to the difference in sign in the
nonlocal parameters, the nonlocal contribution from the positive charges can be suppressed
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Fig. 5.4.: Properties of the coupled ionic system with spatial disperson. We compare exact
solutions of the penetration depth of nonlocal pressure waves as a function of (a)
photon energy and (b) ion mass. (c) Quenching of the field enhancement as a
function of membrane size and charge imbalance.

under specific conditions, however, in general, the penetration depths is in the nanometer
and subnanometer range and can be observed around the ionic spheres.

Fig. 5.4(c) shows that even at a distance of 1 nm away from the membrane surface, nonlocal
field quenching of up to 30% can be expected depending to some extent on the imbalance of
charges which yields an imbalance of ion concentration for the two types, balancing the total
charge. Due to the different masses, it makes a difference which type of ions has the larger
charge count. Evaluating this directly at the membrane surface for different ion concentrations
results in more dramatic nonlocal field quenching, where the system with the largest charge
imbalance shows the lowest quenching. This can be explained by noting that the LSPR of
the systems is pushed further away from the excitation frequency.

A further imbalance of interest is the mass imbalance. We study the local field quenching
due to spatial dispersion in Fig. 5.5. For heavy ions paired with light ions (lower part of the
graph) stronger quenching can be expected for a larger range of membrane sizes.

The presented framework on nonlocal spherical ionic systems is bridging hard and soft
matter theory by offering insights into non-classical effects in electrolytes in terms of plasmonic
properties of oscillating charge carriers. We have relied on classical gas theory, where ionic
charge carriers move much slower than free electrons in metals, and low diffusion parameters.
In addition, in the absence of a solid crystal lattice as in metal nanoparticles, the probability of
scattering events becomes strongly reduced, which is reflected in the small plasmon damping
coefficients for the considered electrolyte system, see table 5.1. Despite these highly classical
parameters resulting in a low nonlocal coupling strength β, we found that nonlocal charge
interaction plays a sizable role in ionic systems mediated by the coupling of their dynamics
and interaction with an external electromagnetic field. In contrast to spatial dispersion in solid
metal particles, this is found even at large particle sizes and low plasmon frequencies. These
nonlocal effects arise from both positive and negative charge dynamics and show an impact
in the (far-) infrared depending on the composition of the ionic system being tunable via their
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Fig. 5.5.: Quenching of field enhancement as a function of membrane size and mass imbal-
ance. Comparing the ratio of the maximum intensity between local and nonlocal
theories at a 1 nm distance from the membrane surface for ionic systems with an
ion concentration of n− = 1mol/m3NA evaluated at ω = 10 GHz as a function of mem-
brane size and mass. The white lines mark the masses of H+ and the parametrized
OH−. White areas show classical behavior, about 10% to 20% quenching is given
in red areas. Black and blue areas are dominated by nonlocal charge dynamics.

charges and masses.

Chains of Ionic Spheres

We study ionic nanoparticle chains as an alternative plasmonic waveguide model for nerve
cell (axon) communication [160]. Cell signaling is understood as electromagnetic energy
transfer promoted by the alignement and geometrical parameters through (prolongated)
microspheres filled with and surrounded by an ionic fluid.

Using multiple scattering techniques, we consider ionic particle chains in comparison
to metallic ones in Fig. 5.6. Metallic nanoparticle chains in the upper row show clear
dipolar, quadrupolar and octupolar modes with large scattering cross section values ∼ 103

at their respective resonances as a function of particle size and particle separation. These
observations can also be made for the ionic system, however, with less clearer modes as
they are much broader and do not reach such high field enhancement values as discussed
previously for single ionic spheres. Here, the maximum values normalized to the geometrical
cross section and number of particles in the chain are around unity.

Planar Ionic Interfaces

With view to photocatalytic applications, overall planar, layered structures are of further
interest to investigate plasmonic effects of charged ions. For electrolytes confined in a planar
system, the local limit is additionally given for light at normal incidence. The vanishing
parallel momentum of the incoming light suppresses coupling to longitudinal modes in the
ionic system. Further studies for planar nonlocal ionic interfaces and nonlocal ionic Fresnel
coefficents are carried out.
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Fig. 5.6.: Comparison of (a), (b) metallic and (c), (d) ionic particle chains of 15 particles with
the incident light polarized along the chain axis. The particle-to-particle distance is
d = 3R. The ion concentration is n = 10mol/m3NA.
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6. Modelling Nonlinear Optical Properties

Nonlinear materials enable ultrafast switching for a wealth of operations such as frequency
conversion, pulse generation and signal processing [265,266]. In addition, structuring can
yield enhanced optical nonlinearities and metasurfaces not only allow efficient coupling of light
into a nonlinear system boosting the weak multiple photon processes [267], but also controlling
the nonlinear fields via beam steering, phase, polarization and amplitude modulation, as
well as manipulating their spectral response. Both metal [268] and semiconductor [269]
materials can provide strong nonlinearities. Nonlinear properties of several metals were
investigated for thin films [270, 271], two-dimensional monocrystalline gold flakes [272]
and metal metasurfaces made from both isotropic and anisotropic particles [273]. The
enhancement of the optical nonlinearity of metals can reach several orders of magnitude but
depends strongly on the employed structure and illumination conditions. This part of our work
studies nonlinear optical properties from metal nanoparticles and metal nanostructures.

We take a classical perspective on nonlinear effects in nanostructures, namely, that we
understand nonlinear properties of a material through the macroscopic nonlinear polarization
P of a medium stemming from higher order response to a strong external electric field
E [274]. Classical electrodynamics uses the refractive index n, the permittivity ε = n2 and the
susceptibility χ = ε− 1 as fundamental material parameters. They connect the microscopic
material response to an external electric field E through the macroscopic polarization P of
the material. Depending on the strength of the incident light field, this can yield nonlinear
contributions

D = ε0E+P = ε0ε
linE+PNLO, (6.1)

with the linear response captured in the permittivity εlin. The nonlinear polarization PNLO

is a function of the electric driving field to a higher order. For weak fields, this can be
done in terms of an expansion P =

∑
n P

(n), each order induced by corresponding multiple
photon processes. We consider both (surface) second harmonic generation stemming from
nanostructures and third order centrosymmetric nanoparticle systems, where the second
order vanishes due to symmetry. Each order P(1) (linear), P(2) (quadratic nonlinearities), P(3)

(cubic nonlinearities) is determined through respective susceptibilities χ(1), χ(2), χ(3) which
become tensorial for higher orders. Both nonlinear models used in this work are explained
in detail in the appendix, namely, the expressions used for the χ(2) tensor are introduced in
appendix E and the anharmonic oscillator model for the third order nonlinear polarization
of free and quasi-free electrons in a metal is sketched in appendix F. Resonant nonlinear
effects in nanostructures with third order nonlinearities are, thus, understood through a
collective response of excited electrons via the standard anharmonic oscillator model yielding
susceptibilities built upon Lorentz oscillators around resonances in the linear regime such
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as the Mie resonances of the nanoparticles [275]. In this case, the nonlinear strength
can be determined in different ways. For gold, we have used fitting of the susceptibility to
experimental data in Ref. [271] and checked its overall shape, position and amplitudes with
another nonlinear material model stemming from hot electron excitation [276]. However, a
common estimation of the nonlinear optical response of materials away from their resonance
is given by Miller’s rule [274, 277] which can equally be used to obtain an estimate for the
nonlinear amplitude strength and will be introduced in the related section.

At nanostructured surfaces, (surface) second harmonic generation is the most prominent
type of nonlinear response where the symmetry of nonlinear contributions within the bulk
is broken. We study surface second harmonic generation (SSHG) from gold nanogratings
where the central goals are the efficient nonlinear optical response within higher diffraction
orders and the resonant coupling of the macroscopic nonlinear polarization into the grating
structure. The surface lattice resonance in the grating structure can be adjusted by tilting
the angle of incidence and, thus, the second harmonic generation can be enhanced. For
optimized geometries, both the fundamental and the second harmonic wavelength can be in
resonance simultaneously further enhancing the nonlinear signal through doubly resonant
lattice plasmon excitation [278].

Third order harmonics become important when due to symmetries in the structure the
second order response can be neglected. This is the case for centrosymmetric systems
such as spherical nanoparticles. For amorphous composites made from gold and iridium
nanoparticles embedded in a transparent host material, we study the optical Kerr effect,
i. e. assuming that the driving field and nonlinear polarization the coincide in frequency,
and the influence of the mixture on the overall optical and nonlinear properties. For Cross-
Phase Modulation (XPM), i. e. cases where the incident and polarization fields are at
different frequencies, we study the impact of the metal loading on the dephasing time [279].
Different dephasing mechanisms, for instance, can lead to identical linear responses, however,
nonlinear investigation techniques, such as nonlinear polarization holography [280, 281]
with an increased parameter space in the XPM regime, enables insights into excitation
dynamics and relaxation mechanisms such as dephasing times. This is done in collaboration
with experimental partners where the fabrication of such amorphous composites is based
on Atomic Layer Deposition (ALD) [282, 283]. Their work focuses on iridium composite
structures used e. g. in x-ray mirrors. In the literature, the most comprehensive collection of
experimentally obtained nonlinear data is available for gold [271] and we make use of this
data to build and understand a model for iridium nanostructures. Here, we study thin films of
gold and iridium nanocomposites with respect to saturated and reversed saturated absorption
effects [284].

The ultimate goal of this line of research is the tailoring of nanostructured and nanocom-
posite metasurfaces with respect to not only their linear but also their nonlinear optical
response.



7. Structure-induced Nonlinearities

7.1 Surface Second Harmonic Generation

We study gold nanostructures and their ability to produce and enhance a second harmonic
signal stemming from symmetry breaking at the surface due to nanostructuring. Special
attention is put to the question of efficient coupling of the nonlinear signal into specific diffrac-
tion orders maximizing their respective intensities. Conditions are investigated under which
both the fundamental and the second harmonic wave are in resonance with the structure,
thus, allowing a doubly resonant plasmonic lattice excitation in gold nanostructures [278].

Here, we present our results on one-dimensional Au gratings on a fused silica substrate
in vacuum. The structure has a period of ax and the gold grating has a stripe width of wx,
along the y-axis the structure is assumed to be infinite with fully translational symmetry. The
thickness of the gold diffraction grating is set to d = 50 nm.

7.1.1 Structure-induced diffraction anomalies

Evaluating the empty lattice condition for the lowest, non-vanishing diffraction order

|k‖ −G| = k0
√
ε ⇒ 2π

ax
=

2π

λ

√
ε (7.1)

at normal incidence (k‖ = 0) yields the Rayleigh condition

λR = ax
√
ε (7.2)

resulting in the expected wavelength with transmittance minima (reflection maxima) due to a
low order lattice resonance with the environment. In non-dispersive, weakly interacting media,
this is a good approximation and Rayleigh anomalies, including for higher angles, can be
interpreted analytically for different environments and substrates ε.

In metallic gratings, another type of anomaly can be observed when the folded SPP
condition

|k‖ −G| = kSPP (7.3)

if fulfilled, i. e. when the parallel momenta of the incident light matches the bound surface
plasmon polariton (SPP) for the considered interface. At normal incidence and for the lowest,
non-vanishing diffraction order similar to before

2π

ax
=

2π

λ

√
εεnn

ε+ εnn
. (7.4)

Hereby, εnn represents the effective permittivity of the nanostructure. Its lowest order Fourier
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Fig. 7.1.: Transmission of one-dimensional gold gratings with grating period a = 1000 nm and
(a) height of d = 50 nm and varying grating width and (b) varying grating height at
constant width w = 0.5a.

σ σ σ σ

ω

Fig. 7.2.: The nonlinear cross section, see eq. (7.6), is shown as a function of (a) the angle
of incidence at wx/ax = 0.5 and (b) the fill factor of the gold grating in the unit cell
at Θ = 0◦ for all orders of diffraction (dashed lines) and the first order of diffraction
only (solid lines). The fundamental wavelength here is 1.5μm. (c) Symmetries in the
different diffraction orders of the second order macroscopic polarization with respect
to the angle of incidence. The total polarization (black) and the zeroth diffraction
order (red) are fully symmetric, while all higher numbers, here the positive first order
(blue) and negative first order (green), are symmetric to each other and regain full
symmetry upon summation.

coefficient is given by the diagonal element of the coefficient matrix derived in detail for
different structures in appendix A. This allows for an improved estimation of the folded
SPP condition in contrast to evaluating the kSPP for flat interfaces between homogeneous
structures.

We evaluate these photonic bandgap conditions for one-dimensional gold nanogratings
shown in Fig. 7.1 varying stripe widths and heights. Despite these geometrical changes the
numerically observed Rayleigh anomaly at λR = ax

√
ε ≈ 1446nm for ax = 1000 nm as well as

the folded SPP position at λSPP ≈ 1028 nm are remarkably stable and confirm the analytic
empty lattice picture. These analytics allow a first estimation of optimal parameters, here for
the linear case. Considering the fundamental and second harmonic wavelength together, it
enables us to find conditions under which both waves coexist and deepens the understanding
of doubly resonant structures in the nonlinear case.
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7.1.2 Second Order Macroscopic Polarization

We study the nonlinear properties of nanostructures in terms of the surface second order
macroscopic polarization Ps

2ω = Ps
2ω‖ + Ps

2ω⊥. The main ingredient are the near-fields
calculated at the excitation wavelength along the surface. For the one-dimensional structure,
this involves the four sides of the grating in the unit cell, as the y-direction contributes with a
pure scaling factor. The expressions for the related susceptibilities relevant for the polarization
field perpendicular and parallel to the nanostructure are given in appendix E.

The nonlinear polarization can further be used to calculate a nonlinear cross section from
the Poynting vector S with electric fE and magnetic fH field amplitudes

fE = k2 (p− r(r · p)) , fH = k2 (r× p) , ⇒ fE × fH = k4p(r× p) = k4
(
|p|2 − |p · r|2

)
,

(7.5)

where p is the electric dipole moment. The number of scattered photons in terms of an
energy rate or power is

P = 2Re

∫
(S · r̂)r2dΘ =

2c

4π
k4

∫
dΘ
(
|p|2 − |p · r|2

)
=

2πc

2π
k4

∫ 1

−1

d cos θ|p|2(1− cos2 θ) =
4

3

ck4

~ω
|p|2.

This is set in relation with the incoming photons, i. e. the photon flux, normalized by the unit
area, to obtain a nonlinear cross section σ

P0 =
2c

4π~ω
|E0|2

a2
σ =

P
P0

=
8

3
πk4a2 |Ps

2ω|2

|E0|2
. (7.6)

In Fig. 7.2(a), we study the second order cross section derived from the local near-fields
at the fundamental wavelength for a number of changing setups as a function of the angle
of incidence. Rayleigh anomalies are observed for only two of the setups while the other
geometries do not show a resonance complying with the Rayleigh condition independently of
the diffraction order. The careful tailoring of the geometry under given material parameters
will allow to find illumination and geometrical conditions under which the incident light as
well as the nonlinear polarization are resonant in the photonic crystal structure. Fig. 7.2(b)
studies the second order nonlinear cross section for varying stripe width wx. It substantiates
that the SSHG truly stems from (i) the metal and (ii) the nanostructuring simultaneously
since the nonlinear signal vanishes at low wx < 0.3ax as much as towards high wx > 0.9ax

stripe widths. Noticeably, the optimum geometry in terms of maximizing the nonlinear signal
at this fixed angle of incidence differs for the first order from the the full cross section
summing up all contributions. The Fourier Modal Method (FMM) allows to study the surface
second order macroscopic polarization in different diffraction orders. Fig. 7.2(c) shows the
symmetries of the zeroth, first and total sum of the second order polarization varying the
angle of incidence. Notably, the zeroth order vanishes for low angles so that the nonlinear
polarization is concentrated in the first order, a behaviour in one-dimensional structures which
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ω ωω ω ⊥

Fig. 7.3.: Second order macroscopic polarization stemming from surface near-fields around
one-dimensional gold nanogratings of increasing grating period at varying angle
of incidence. Showing (a) the total polarization including contributions from all
faces, parallel and perpendicular fields; (b) the parallel contribution from the upper
gold surface to the air/vacuum environment and (c) the perpendicular contribution
from the lower gold interface to the fused silica substrate. The calculation uses a
decomposition into 201 plane waves. Arbitrary units are used.

was experimentally observed in Ref. [285]. All orders show the aforementioned Rayleigh
anomalies, here stemming from the near-fields at the fundamental wavelength at the upper
and lower interface of the nanostructure.

In Fig. 7.3, we calculate the nonlinear polarization from different surfaces as well as for
the parallel and perpendicular contributions. The contributions to the surface second order
macroscopic polarization on each side of the nanograting reflect the Rayleigh anomalies (RA)
in the system at the different surfaces. Note that the side contributions are minor compared to
the upper and lower surface and cancel each other due to opposite signs when the ratio of the
stripe width to the unit cell length is exactly 0.5 = wx/ax. Next to the full result of all contributions
in Fig. 7.3(a), it is instructive to consider them separately. From these results it can be seen
that each setup exhibits two relevant resonant features at different angles of incidence related
to the Rayleigh anomalies at the upper (RA air) and lower (RA substrate) surfaces. However, if
we consider the upper interface contributions as in Fig. 7.3(b), the RA at the lower surface will
be suppressed and vice versa in Fig. 7.3(c). We compare to experiments performed at one-
dimensional gold nanostructures measuring the second harmonic signal in zeroth order for
gratings with varying periodicity as a function of incident angle for both positive and negative
angular range [278]. The angles of incidence showing Rayleigh anomalies are identified. In
Fig. 7.4(a), we compare the measured signal at the RA of the upper surface as a function of
the grating period with the calculated nonlinear polarization at the respective surface. While
their units cannot be compared, the overall behaviour is in very good agreement. To allow
quantitative comparisons, we evaluate for each grating period the relative amplitude of the
Second Harmonic Generation (SHG) signals at the two Rayleigh anomalies at the upper
and lower interfaces in Fig. 7.4(b). The experiment allows evaluating this for positive and
negative angle of incidence with little differences between these two (shaded green area).
Comparing the relative peak strength from the total nonlinear polarization to corresponding
experimental results [278], we see that the agreement is very good up to the maximum value
of the relative peak amplitudes. For larger grating periods, the theoretical approach does
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ω ω

Fig. 7.4.: Comparison between experiment and theory for one-dimensional gold nanogratings.
(a) Second harmonic signal measured (squares) and calculated (circles) at the
upper interface towards air adjusting the angle of incidence to meet the Rayleigh
condition. (b) Relative peak strength between the signal amplitudes at the two
Rayleigh anomalies for the measured (green and blue curve) and the calculated
(circles) SHG signal.

predict a reduction of the relative peak strength, but it does not drop as quickly as observed
in the experiment. This can be better understood by considering the different contributions
separately, as was shown in Fig. 7.3. One of the peaks associated to the Rayleigh condition
matched at the upper or lower interface vanishes when considering the contribution from
the opposite interface. Hence, the parallel and perpendicular contributions to the Rayleigh
anomaly of the upper interface vanish at the lower interface and vice versa. In the relative
peak strength, this leads to divergent contributions. Considering, therefore, the separate
contributions, it can be seen that indeed, the ones not diverging agree with the measurements
better, while still showing a broader peak structure than the experiment.

In both these results, the theoretical curves are oscillatory with the grating period. As they
are calculated from the near-fields at the surfaces, this is directly connected to the oscillatory
nature of the electric fields. The Bloch modes forming between the metallic stripes, which are
calculated numerically from the FMM are highly sensitive to structural changes.



8. Properties of amorphous Composites

8.1 Kerr Nonlinearities of amorphous Nanostructures

Many applications exploit nanoparticles randomly distributed in a transparent layer. Amor-
phous composite materials can be obtained from techniques such as Atomic Layer Deposition
(ALD) [282,283] with high precision with respect to the final film thickness, composite density
f and surface morphology with very low root mean square (rms) randomness of the obtained
surfaces. If using metal inclusions, such amorphous layers can be used for increasing local
fields inside the host matrix allowing for intense near-field interactions with the host material,
e. g. in polymer platforms for photovoltaic devices such as dye-sentisized and other organic
solar cell technologies [34,243]. Likewise, metal nanoparticles on surfaces enhance signals
for spectroscopic measurements such as SERS or in microscopy such as Scanning Near-
Field Optical Microscope (SNOM) and Atomic Force Microscopy (AFM). On the other hand,
should the composite materials exhibit nonlinear optical properties, the total nonlinear output
fields can likewise be enhanced due to the presence of nanoparticles. Ultimately, the design
of nonlinear metasurfaces [265,286–288] has the potential to add a new dimension to the
control of light fields and enhancement phenomena at the nanometer scale.

Obtaining the optical response of such inhomogeneous materials from rigorous calculations
is often tedious. Hence, amorphous composites are typically described with effective medium
theories (EMTs) where the material parameters are homogenized to obtain a single, effective
permittivity for the entire composite layer. To achieve this, however, a number of critical
approximations are made such as dipolar and quasistatic approximations and an overall
limitation to very low particle densities is needed to avoid particle-particle interactions and omit
multiple scattering and coupling effects, which strongly restricts the applicability and quality
of EMTs [289–291]. A more recent approach is a gradient model, where a film containing
nanoparticles of different sizes is subdivided into layers for which an effective permittivity is
calculated separately [292]. It does slightly improve upon the common EMTs, however, does
not reach the material predictions of rigorous FDTD calculations.

Amorphous composites of low fill fraction f both in solids and in liquids are typically studied
within Maxwell-Garnett (MG) [293] and Bruggeman (Br) theory and to both of them nonlinear
extensions exist [294–296] and are introduced in appendix G. In this section, we critically
compare these two EMTs for thin gold films with third order nonlinear properties and give
a detailed account on the conditions to observe saturated and induced absorption [284] as
was discussed in experiments, see for instance Ref. [297] on nanoplanets. Our findings are
important for understanding the mechanism of Kerr nonlinearity in amorphous composites and
nonlinear enhancement in metallic composites with little losses at low densities. Moreover,
our approach can be used to investigate stacks of amorphous composites building nonlinear
hyperbolic materials [275].
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(b)
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Fig. 8.1.: Illustration of effective medium theories: (a) Metal nanoparticle (b) with permittivity
εi embedded in the nonlinear host material Al2O3 of permittivity εh. (c) The system
is treated within nonlinear Maxwell-Garnett and Bruggeman theory to arrive at a ho-
mogeneous layer with effective permittivity εeff and effective third order susceptibility
χ

(3)
eff .

We consider the two metals gold and iridium. While we can rely on their linear bulk
properties being well described by tabulated data (gold [67], iridium [298,299]) obtained from
ellipsometry measurements, a lack of nonlinear optical data over a wide range of wavelength
makes a simple, but consistent model of nonlinear parameters challenging. For a small
number of incident wavelengths, pulse durations and measurement techniques, available
datasets for gold were collected in Ref. [271]. In recent work, similar studies were performed
on iridium nanoparticle layers [299]. As detailed in appendix F, we use a third order nonlinear
susceptibility from the anharmonic oscillator model, ascribing the nonlinear optical response
to the resonant excitation of the free electron gas. To obtain a nonlinear amplitude strength,
we fit to experimental data available for gold [271] and to the common low frequency result
from Miller’s rule [274,277] for a purely theoretical model for the low-frequency limit ω → 0.
We find the latter to overestimate the susceptibilities in the resonant regime. The former
is in good agreement with a material model based on temporal electron dynamics using
thermo-modulation of the nonlinear response [276] for the bulk material.

In this section, we study nanoparticles embedded in a finite layer within linear and nonlinear
Maxwell-Garnett (MG) and Bruggeman (Br) theory [293]. The former starts from spherical
NP inclusions in a host matrix while the latter does not differentiate between the roles the
materials in the composition take. For arbitrary mixtures, Br theory is often to be preferred.
Nonlinear extensions to both MG and Br theory are available in the literature allowing to study
either nonlinear host materials or inclusions or their combined nonlinear effects [294–296].

The lowest order electric Mie resonance of truly nano-sized particles in amorphous thin
films determines the spectral position of their nonlinear response. It is therefore important
to take the particle size distribution into account, in particular, for a large size spread [300].
Besides the dipole approximation, standard Maxwell-Garnett theory [293] uses the quasistatic
approximation to the electric polarizability, a term that should be replaced by its corresponding
dipolar Mie coefficient for larger particle sizes [300] to correctly include radiation losses.

For the thin films we study here, see Fig. 8.1, we restrict ourselves to metal nanoparticles of
5 nm size where the dipolar and quasistatic approximation are valid for both of the discussed
materials, gold and iridium. The shift of their Localized Surface Plasmon Resonances (LSPR)
with changing diameter can be neglected in this size range. Fig. 8.1(b) shows the amorphous
structure in mind with metal nanoparticles dispersed in the nonlinear, transparent host material
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and Fig. 8.1(c) illustrates the concept of effective medium theories. Here, an effective linear
permittivity is calculated as well as an effective nonlinear third order susceptibility which
together form the nonlinear effective permittivity. This latter quantity is dependent on the
intensity the material system is exposed to and thus, ultimately, on the depth within such an
amorphous layer as the intensity drops inside due to absorption.

8.1.1 Third order nonlinear susceptibilities

In general, the anharmonic oscillator model, see appendix F , yields for the i-th component
(i ∈ {x, y, z}) of the third order macroscopic polarization P(3)

P
(3)
i (ωq) =ε0

∑
jkl

∑
mno

Nbe4

3ε0m3
e

(δijδkl + δikδjl + δilδjk)Ej(ωm)Ek(ωn)El(ωo)

D(ωm + ωn + ωo)D(ωm)D(ωn)D(ωo)
δ(ωq − ωm − ωn − ωo).

(8.1)

Hereby, e is the elementary charge of an electron, me the electron mass, ε0 the free space
permittivity and N is the electron density, which can be summarized into the plasmon
frequency ωp of the considered material through ω2

p = Ne2/ε0me. Furthermore b characterizes
the strength of the nonlinearity. The first sum runs over the components of the incident
electric fields Ei at different frequencies. The latter sum over frequencies demands that
ωq = ωm + ωn + ωo. This is reflected in the denominators D(ω) = ω2

0 − ω2 − iγω, where ω0 is
the material resonance stemming from the electron motion and γ is the associated damping
due to charge carrier collisions. These are given by the Mie resonances of the respective
materials. As we are interested in studying amorphous materials, it is important to note that
the size distribution should be taken into account if the size range covers multiple resonance
frequencies. For the linear regime, this has been addressed by Ref. [300]. For particle sizes
below 10 nm only small variations in the resonance position are expected within classical
electrodynamics and, thus, we do not consider a shift in the resonance positions in our thin
film calculations. Here, nonlinear properties are studied purely for the case of self-phase
modulation, i. e. all fields are monochromatic at the same frequency ±ω, so that a major
contribution to the macroscopic polarization stems from nonlinear response at the incident
frequency. The anharmonic oscillator model yields the third order susceptibility at frequency
ω as χ(3)(−ω|ω, ω,−ω) = B/(|D(ω)|D(ω))2 ≡ χ(3)(ω) for materials with an electronic response.

We consider planar thin films with p-polarized incident light. The total optical response
including third order polarization effects stemming from Kerr nonlinearities at frequency ω
and third harmonic generation (THG) at frequency 3ω can be described through the electric
displacement vector in frequency space

D(ω, r) = ε0εNLOE(ω, r) = ε0E(ω, r) + ε0χ
(1)(ω)E(ω, r)

+ ε0χ
(3)(−ω|ω, ω,−ω)|E(ω, r)|2E(ω, r) + ε0χ

(3)(−3ω|ω, ω, ω)E3(ω, r). (8.2)

Note that we have already taken advantage of the fact, that spherical metal nanoparticles
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exhibit vanishing second order nonlinear response. The contribution from the THG term is
negligible for frequencies around the incident frequency ω and third order nonlinear effects
can be considered separately. For thin film calculations around resonance, we determine an
effective permittivity εNLO from linear calculations [295] in a first step

εNLO(z, ω) = εeff(ω) + χ
(3)
eff (ω)|E(z, ω)|2. (8.3)

and–as it is dependent on the incident, local field–iterate the input fields until we obtain a self-
consistent result exploiting the scattering matrix scheme for several hundreds of subdivisions
of the nonlinear amorphous layer.

Nonlinearities are sensitive to the duration of an incident laser pulse. A fully time- and
space-dependent light beam of Gaussian shape can be described by

I(x, y, t) = I0(τ, w, frep)e−2(t/τ)2e−
x2+y2

w2 (8.4)

assuming the surface of the structure at z = 0. Hereby, τ is the pulse duration, frep is the
repetition rate and w is the beam width. The average power P of the pulse is related to the
pulse energy E via the repetition rate P = Efrep. The peak intensity is then given by

I0 =

(
2

π

)3/2
P

τ w2frep
. (8.5)

This allows us to deduce the equivalent electric field from

I0 =
1

2
cε0
√
εE2

eq (8.6)

and connect experimental input parameters to our calculations. However, while this renders
the local electric field input dependent on the pulse duration and beam width, it does not
inform about intrinsic nonlinear material parameters. Next, we discuss different models for
the third order nonlinear susceptibility χ(3)

eff (ω).

8.1.2 Amplitude according to Miller’s rule

Miller’s empirical rule [274,277] connects the nonlinear strength b to material constants in
the limit ω → 0. This allows an assessment of the nonlinear amplitude. Hereby, we rely on
fundamental properties of the solid crystal structure such as the lattice constant a0 which gives
an estimate of the displacement an electron in the atomic crystal structure can experience.
The shortest distance between atoms in an fcc atomic lattice is a0/

√
2.

For the third order, it implies that b = 2ω2
0/a20 yielding the low-frequency limit according to

Miller’s rule

χ
(3)
Miller = χ(3)(ω → 0) =

2ω2
pe

2

m2
eω

6
0a

2
0

= const. (8.7)
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Fig. 8.2.: Third order bulk susceptibility χ(3)
i as a function of photon energy E = ~ω for (a),

(c) Au and (b) Ir using (a), (b) the analytic Miller’s rule and (c) fitting the nonlinear
strength amplitude to available experimental data [271].

In this limit, 5 nm gold nanoparticles (a0 = 4.078Å, γ = 0.13 eV, ωp = 8.9 eV) close to
their Mie resonance ω0 = 2.23 eV have an estimated third order nonlinear susceptibility
of χ(3)

Miller, Au = 2.0 × 10−15m2/V2, while this yields χ(3)
Miller, Ir = 2.51 × 10−17m2/V2 for iridium

(a0 = 3.839Å, ω0 = 4.87 eV, γ = 0.18 eV, ωp = 7.2 eV) both in Al2O3. Note that the environment
enters this estimation through the Mie resonances calculated for the nanoparticles in that
specific host material.

The bulk susceptibilities of gold and iridium are compared in Fig. 8.2 for the two cases
using Miller’s rule for Au and Ir and experimental data for Au [271] to find a nonlinear
amplitude. Miller’s rule can support the understanding of the general behaviour of such
systems, however, it shows a strong discrepancy compared to the bulk susceptibility fitted
to available experimental values. In general, Miller’s rule overestimates the nonlinearity of
metal structures under resonant conditions [301]. A further factor that comes into play during
experiments is the pulse duration of the incident light field which can shift the measured
susceptibility by many orders of magnitude as was shown in Ref. [271]. The anharmonic
oscillator model yields an instantaneous result which corresponds to τ → 0 and does not
include the aspect of finite pulse duration. Density functional theory (DFT) could take into
account the impact of a finite pulse [302–304] and will be discussed in future work. Finally, it
should be noted that in the case of gold, measurements under both resonant and off-resonant
conditions are available.

8.1.3 Ultra-Thin Films made from Nonlinear Composites

Within the composite thin films the incident light is absorbed by the present metal nanopar-
ticles and we expect a typical absorption curve within the homogenized layers. The local
intensity modifies the local permittivity depending on the nonlinear coefficients and the depth
inside the thin film which is iterated until a stable output field at each position along the
layer is found. In a first step, we present in Fig. 8.3 the modified nonlinear permittivity as a
function of both frequency ω of the incident light wave and varying fill fraction f independent
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Fig. 8.3.: Imaginary part of the modified nonlinear permittivity, eq. (8.3), relative to the linear
case for gold using the data fitted to available experimental data [271]. Results for
(a) Bruggeman and (b) Maxwell-Garnett theory for varying fill fraction as a function
of incident photon energy are compared. The incident field is |E|2 = 7× 1014V2/m2.
Note the strong difference in predicted changes in the local permittivity.

from the film thickness as different depths will be exposed to different light intensities. We
concentrate on the case of gold with parameters fitted to experimentally available values [271]
and show in Fig. 8.3(a) the results for Bruggeman and in Fig. 8.3(b) the corresponding results
for Maxwell-Garnett theory of the nonlinear permittivity. Due to the nature of the effective
susceptibility, we observe spectral regions with increased or decreased total permittivity
depending on the sign of the effective susceptibility around the Mie resonance of the consid-
ered nanoparticle. Qualitatively, this is the same result for different metallic materials, where
the main contribution to the suceptibility in the anharmonic oscillator model stems from the
electronic excitation. Increasing the fill factor increases overall absorption with a critical value
depending on the material as depicted in Fig. G.2(c) for gold and overall shifts the position of
the maxima and minima observed. Here, again, the large local field factors in M-G theory
are strongly overestimating the nonlinear response of the amorphous films leading to the
prediction of strong changes in the modified permittivity several orders of magnitude larger
than Bruggeman. This is in contradiction to observations made on nonlinear properties of
thin films and we restrict our further considerations to Bruggeman theory.

Note that the sign of real and imaginary part are opposite in the respective spectral regions
close to the resonance frequency. In total there are four possible sign combinations, as
detailed in Fig. G.1 in the appendix: (i) Both real and imaginary part can be positive, typically
close to but above the resonance frequency; (ii) the real part is negative shortly before
reaching the resonance frequency while the imaginary part is still positive; (iii) far from
resonance the real part is negative below and (iv) positive above the resonance, however, the
sign of the imaginary part depends more subtly on the material model due to the local field
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Fig. 8.4.: As a function of the position z inside a 300 nm composite film for frequencies
below the Mie resonance of gold nanoparticles the (a), (d) change in total intensity
∆I = INLO − Ilin (forward and backward scattering) and (b), (c), (e), (f) change in
the imaginary part of the nonlinear permittivity ∆Im ε = Im εNLO − Im εeff are shown
for gold with input values fitted to available experiments. [271] Cases with saturated
and induced absorption are observed. The set frequencies are 2.15 eV in the upper
panel and 2.20 eV in the lower panel. The incident power density is 1.6 GW/cm2.

factors. These combinations can lead to different behaviours inside the film with increasing
intensity. As the incident intensity modifies the local permittivity in eq. (8.3) it changes in turn
the local intensity the particles experience.

We demonstrate in Fig. 8.4 cases for saturated and induced absorption in amorphous
gold/Al2O3 films. A self-consistent, iterative scheme is used to recalulate the local, saturated
intensity after reintroducing the modified nonlinear permittivity a number of times. This is
done throughout the film to obtain the local permittivity self-consistently with the scattering
matrix scheme for planar systems using a few hundred subdevisions of the film. The change
in the imaginary part of the modified nonlinear permittivity ∆Im ε = Im εNLO− Im εeff is shown
as a function of the depth in Figs. 8.4(b) and (e) and as a function of the incident power
density in Fig. 8.4(c) and (f), respectively. For both dependencies, the change induced by
the nonlinearity of the amorphous film is of the order of 10−3 refractive index units tending
towards zero further inside the film where the local intensity drops towards the linear case. For
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Fig. 8.5.: Varying the film thickness of amorphous composite films of different fill fractions
f , (a) the normalized difference in transmitted intensity ∆I = INLO − Ilin and the
(b) relative intensity enhancement due to nonlinear effects in ultra-thin metallic
amorphous films are shown. The incident power density is 1.6 GW/cm2.

frequencies well below the Mie resonance of the gold nanoparticles, the absorption related to
the imaginary part of the nonlinear permittivity decreases for increasing laser intensity with
increasing intensity. The changes induced by the nonlinearity are in the range of a few MW/cm2.
This effect is known as saturated absorption [284], i. e. the effective susceptibility is positive
in its imaginary part.

In Bruggeman theory, the effective susceptibility decreases with the fill factor for gold
which is why the strongest change in the imaginary part of the permittivity is seen for smaller
fill fractions in contrast to Ir where the susceptibility does not change as notably with the
fill fraction. In contrast, for frequencies much closer to the Mie resonance as depicted in
Figs. 8.4(d), (e) and (f), this behaviour is reversed because the imaginary part of the effective
susceptibility vanishes at resonance and reverses its sign. The lowest fill factor shows a
weaker saturated absorption as before while the higher fill factors with a larger input from
the small but negative nonlinear susceptibility enter the regime of induced absorption. This
observation is independent of the considered material as it is directly related to the sign of
the susceptibility given by the material-dependent Mie resonance and the overall position.
It is shifted to lower frequencies for the amorphous structures with increasing fill factors as
discussed in Fig. G.2 in the appendix.

We study the transmitted power flux of ultra-thin amorphous composite Au/Al2O3 layers in
Fig. 8.5(a) as a function of film thickness using the experimentally available data [271]. The
difference between linear and nonlinear case is notable in the relative enhancement factor
extracted in Fig. 8.5(b). For large enough films, the intensity inside the composite layer drops
due to absorption entering the linear regime before reaching the glass substrate. Nonlinear
intensity enhancement effects take place within the first tenth to hundreds of nanometers in
the homogenized film. The enhancement factors are susceptible to the fill fraction reaching a
maximum for different film thicknesses. The detriment of metallic absorption to the nonlinear
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enhancement is reflected in the fact that the larger fill factors show decreasing nonlinear
enhancement as compared to smaller particle densities.

8.1.4 Concluding Remarks

In this section, we focused on self-phase modulated (SPM) nonlinear effects in amorphous
composites made of gold and iridium nanoparticles embedded in an equally nonlinear host
matrix employing nonlinear formulations of Maxwell-Garnett and Bruggeman theory. Effective
medium theories allow homogenization of the linear and nonlinear material properties of
amorphous composite layers [275]. The validity is bound to sufficiently low densities where
interparticle effects are negligible both for the linear and the nonlinear regime. For the bulk
susceptibility, we consider the anharmonic oscillator model and fit its nonlinear strength
amplitude to both an analytic expression based on Miller’s rule off-resonance and available
experimental data for gold susceptibilities.

Note that such material parameters should ultimately be calculated from ab inito theories,
e. g. Density Functional Theory (DFT) for bulk material as well as finite clusters of atoms. In
addition to the instantaneous nature of the model used here (τ → 0), ab initio theories allow
including the dependence of the susceptibility χ on the pulse duration τ of the system. A
realistic material will not reach its full nonlinear optical response immediately, but build it up
with some delay. Moreover, the longer the material is exposed to the incident electric fields,
the stronger the nonlinear optical response can become until saturation sets in.

Such homogenized material properties can further be implemented in standard frameworks
to evaluate light interaction with multi-layered systems such as the scattering matrix theory,
reducing the light propagation problem to one dimension. This was used here in a self-
consistent approach, i. e. the thin films were subdivided into hundreds of layers and in each
the modified, depth-dependent nonlinear permittivity was calculated. Moreover, as it is also
intensity-dependent, this was done several times recalculating the local intensity each layer is
exposed to when nonlinear enhancement is included. This approach is applicable to nonlinear
hyperbolic materials from stacks of amorphous composites and nonlinear enhancement in
metallic composites with little losses at low densities. We evaluate thin films of amorphous
composites with a focus on achievable nonlinear enhancement, saturated and induced
absorption based on the compositional configuration. Reasonable values are found with
Bruggeman theory using a nonlinear material model fitted to available experimental data for
gold. In contrast, both Miller’s rule and Maxwell-Garnett theory tend to strongly overestimate
the nonlinear susceptibility.

The limits of effective medium theories, in particular for large nanoparticle densities and
distances that make interaction effects sizable can be addressed using rigorous methods
such as multiple scattering from nanoparticles using nonlinear Mie theory [305–307], and
comparison with random nanoparticle distributions at increasing fill factors [26]. A further
difficulty with homogenization could be waveguiding effects arising in the host material that
are suppressed in EMTs. Another interesting aspect is the influence of finite-size effects in
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ultrasmall metal nanoparticles, such as nonlocal optical response which can be addressed
with semi-classical theories [53,162,179] and ab initio methods [308,309]. This typically yields
shifts of the LSPR position directly impacting the nonlinear susceptibility and, in addition, is
accompanied by nonlocal quenching of the local fields overall reducing local intensites found
in the classical picture.

8.2 Cross-Phase Modulation (XPM)

So far, we have concentrated on the case of a single monochromatic input field and self-phase
modulation involving a single frequency. The more general case of Cross-Phase Modulation
(XPM) considers several input fields at different frequencies as is the case in pump-probe
and wave-mixing experiments. In this section, we expand the case of amorphous composite
materials to Cross-Phase Modulation, i. e. allow the third order nonlinear susceptibility to
result from several incident frequencies. For the bulk susceptibility, according to eq. (F.18)
derived in appendix F

χ
(3)
i (−ωq|ωn, ωm, ωo) =

f̃

D(ωq)D(ωn)D(ωm)D(ωo)
. (8.8)

The effective third order susceptibility for such nonlinear nanoparticle inclusions χ
(3)
i (ω)

becomes within nonlinear Maxwell-Garnett theory [293]

χ
(3)
eff (−ωq|ωn, ωm, ωo) = fµ(ωq)µ(ωn)µ(ωm)µ(ωo)χ

(3)
i (−ωq|ωn, ωm, ωo), (8.9)

while the corresponding expression for nonlinear Bruggeman mixtures becomes

χ
(3)
eff (−ωq|ωn, ωm, ωo) =

1

f
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∂εeff
∂εi
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(
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χ
(3)
h . (8.10)

For the derivation of this, it is important to realize that the total energy of each electric field is
conserved within the volume leading to the homogenized effective permittivity at the given
frequencies [289,310]

εeff(ωα)E2
eff(ωα) =

1

V

∫
V

ε(r, ωα)E2(r, ωα)d3r. (8.11)

Here, Eeff is the corresponding homogeneous incident field. Taking the spatial average of the
electric field leads to the expression

εeff = fεi
〈E2(r, ωα)〉
E2

eff(ωα)
(8.12)
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Fig. 8.6.: The (a) amplitude and (b) phase of the nonlinear polarization from XPM, eq. (8.13)
for the metallic bulk susceptibility and electric fields stemming from two Gaussian
pulses at frequencies ω and ωτ . Observed resonances can be tied to the material
resonance ω0 obtained from Mie calculations for Ir nanoparticles in a specific
environment (fused silica).

and the above effective third order susceptibility in the case of different incident frequencies
during a Cross-Phase Modulation (XPM) process follows by differentiation and evaluation at
the different incident frequencies α ∈ {q,m, n, o}.

8.2.1 Nonlinear Polarization Holography

The dynamics of energy transfer in dielectric holographic films can be revealed experimentally
by attosecond nonlinear polarization spectroscopy [280]. In contrast to standard spatial
holography, a spatial off-axis hologram is produced. An object emits a wave from a nonlinear
process together with the probe pulse. A reference wave is overlapped on a spectrometer and
their combined interference pattern is, thus, investigated in time and frequency space. The
pump pulse and the reference wave have a determined time delay τ , however, the nonlinear
polarization only emits a sizable signal where τ is close to zero and the pulses overlap tempo-
rally. We consider the case of an amorphous metal composite holographic film of low metal
density in which data was stored using the Cross-Phase Modulation (XPM) technique [281].
Its nonlinear polarization induced by a sufficiently intense laser is subsequently obtained as
described and analysed in Fourier space. In this scenario [279], we consider the cross-phase
modulated effective susceptibility for amorphous composites of varying fill fraction and study
the dependence of the nonlinear polarization on the properties of the mixture. In particular,
we study integrals of the form

PNL
τ (ω) ∼

∫ ∞

∞
dω′R(ω′)R(ωτ − ω′)χ(3)(−(2ω + ωτ − ω′)|ω, ωτ + ω, ω′), (8.13)

with normalized and dimensionless Gaussian beam profiles R(ω) of 25 fs pulses, representing



8.2 Cross-Phase Modulation (XPM) 95

the pump and the delayed probe pulse. Note that a third electric input field is missing here as
the information on this is not experimentally accessible and we aim to reproduce data obtained
in a two-dimensional parameter space. In this expression, we use the third order, cross-phase
modulated susceptibility χ(3) for bulk iridium in Fig. 8.6 and the effective susceptibility for Ir
nanoparticles in fused silica in Fig. 8.7 for both effective medium theories discussed.

Fig. 8.6(a) shows the amplitude of the nonlinear polarization from XPM calculations and
Fig. 8.6(b) the related phase. The observed resonances can be traced back to material
dependent properties in relation to the Mie resonance ω0 of the Ir nanoparticles due to the
dependence on D(ω) = ω2

0 − ω2 − iγω. Observed phase changes are strongly correlated to
the main resonance feature where ω = ω0−ωτ corresponding to the delayed probe pulse term
R(ωτ − ω′). Another resonant response is found for the pump pulse term R(ω′) itself where
ω = ω0. A third resonant feature can be observed following ω = ω0/

√
2− ωτ . The resonance

conditions in the bulk susceptibility stem from the denominators D(ωα) for fields at different
incident frequencies ωα. Hence, ω2

0
∼= ω2

α for negligible imaginary part. As we integrated over
ω′ two of the D(ωα) terms change and can become equal to others. The third resonance is
connected to the higher order term D2(ω + ωtau) developped into a Taylor series to second
order

D(ω + ωτ )
2 = ω4

0 − 2ω2
0(ω + ωτ )

2 +O((ω + ωτ )
4) ⇒ ωτ = ± ω0√

2
− ω. (8.14)

It is weaker and broader than the other resonances observed for the bulk case as this
approximated condition is met for different ω′ during the integration process.

Fig. 8.7 shows this two-dimensional parameter space of the nonlinear polarization using
the effective susceptibility of the amorphous composites for both Maxwell-Garnett (upper
panel) and Bruggeman (lower panel) theory increasing the fill fraction from left to right. While
both effective medium theories employed are quantitatively and qualitatively rather different,
they overall predict equal material specific resonances with respect to the pump-probe setup
with pump at frequency ω and the probe pulse delayed by τ with frequency ωτ . Further higher
order terms appear when integrating over ω′. Connected to the second order through the
total sum of all incident fields is

D(2ω + ωτ )
2 = ω4

0 − 2ω2
0(2ω + ωτ )

2 +O((2ω + ωτ )
4) ⇒ ωτ = ± ω0√

2
− 2ω, (8.15)

which is a very weak resonance at low fill fractions but gains prominance on increasing the
metal load. The other two lines observed that were not seen in the bulk case arise from the
third order and the total sum of the incident fields, i. e.

D(2ω)3 = ω6
0 − 3ω4

0(2ω)2 +O((2ω)4) ⇒ ω = ± ω0

2
√

3
, (8.16)

D(2ω + ωτ )
3 = ω6

0 − 3ω4
0(2ω + ωτ )

2 +O((2ω + ωτ )
4) ⇒ ωτ = ± ω0

2
√

3
− ω. (8.17)
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Fig. 8.7.: The amplitude of the nonlinear polarization from XPM using the effective suscepti-
bility from (a)-(c) Maxwell-Garnett and (d)-(f) Bruggeman theory. Incident electric
fields stem from two Gaussian pulses at frequencies ω and ωτ . Observed reso-
nances can be tied to the material resonance ω0 obtained from Mie calculations
for Ir nanoparticles in fused silica. The nonlinear polarization is given in units of
1/E2

Hartree. Fill factors are (a), (d) f = 0.1, (b), (e) f = 0.4 and (c), (f) f = 0.7.

The first case occurs when ω′ cancels ωτ from the frequency sum and the second case occurs
when ω′ vanishes. With this, all observed resonances can be traced back to the Lorentzian
form of the bulk susceptibility. Additionally, increasing the metal load in the mixture, the line
broadening clearly increases for both effective medium theories. The final form is determined
by the further prefactors in the EMTs.

The future goal of this study is to further study the line width as a function of the material
density in the amorphous mixture and to relate this to experimentally observed dephasing
times of the optical excitation [279].



9. Overall conclusions and Outlook

Nanostructured materials interact with light in various ways. Localized resonances are in
interplay with lattice resonances over a large scale. Diffuse scattering from rough surfaces
can excite optical modes–classical and non-classical–that are not predicted under ideal
circumstances. Apart from the structure at hand, the properties of light such as its polarization
state, incident angle and, most prominently, its wavelength determine the optical response
of a material. Computational nanophotonics is a powerful tool to decipher the structure-
performance relationship, to design and optimize nanostructured devices towards targeted
tasks. We discussed various numerical methods in the first chapter of which several were
applied in our research.

With a focus on the Fourier Modal Method (FMM), suitable to optically characterize one-
and two-dimensional nanostructures as part of a multilayered device based on scattering
matrix theory, we discussed in this body of work a number of applications under assumption
of purely classical and linear optics from photovoltaics and spectroscopy and we studied how
to expand this standard approach to include mesoscopic charge dynamics and nonlinear
properties. Mesoscopic electron dynamics plays a central role in nanostructures with metal
components, where at least one dimension–particle separation, particle width or height and
nanofilm thickness–reaches below 10 nm while, however, other dimensions can be notably
larger than this finite-size limit. Here, anomalous diffraction in the structured films induced by
the additional mesoscopic electron dynamics plays a major role. We detailed the necessary
steps to expand the standard FMM to include the hydrodynamic model of electron dynamics
for hard-wall boundary conditions and studied their impact on holey metal films which show
extraordinary optical transmission. In addition, we discussed the extension of Mie coefficients
applied for spherical geometries towards inclusion of both the single-fluid hydrodynamic
model for the electron gas in metal nanoparticles and the two-fluid hydrodynamic model for
spherical ionic particles, where both positive and negative charge carriers are interacting
through coupled electromagnetic wave and hydrodynamic equations. For such nonclassical
electrolyte systems we continue studying planar and large-scale nanostructured systems.
One futue goal is to study hyperbolic ionic systems and demonstrate soft plasmonic sensing
platforms. The quantum corrections for spherical nanoparticles are used to study strong
particle-substrate or metal-dielectric coupling which yields a mode splitting induced by non-
classical effects and compare their influence on dimers and particle chains.

In the second part of this work, we study nonlinear optical properties from nanostructures,
namely, structure-induced surface second harmonic generation in one-dimansional gold
nanogratings and third order nonlinearities stemming from amorphous nanocomposites. The
former uses the computational abilities of the FMM in the linear regime to calculate the
second order polarization from local fields at the fundamental harmonic. Symmetry and
resonance conditions were studied. A direct comparison with measurements yields very
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good agreement. This approach can widely be adapted to further geometries and material
compositions and will be explored in future collaborations to study the efficient enhancement
of higher harmonics with resonant nanostructures. In contrast, the latter is based on and
compares effective medium theories that allow homogenization of the composite material
parameters. Third order nonlinearities are investigated for both Kerr or self-phase modulated
nonlinearities where all incident and outgoing frequencies are assumed to be equal and
cross-phase modulated (XPM) nonlinearities where all incident frequencies are different and a
number of outgoing frequency combinations can be achieved. In case of SPM, heterogeneous
stacks of materials will be studied in the future. In the linear regime, Ir-based amorphous
multilayers are typically used for conventional X-ray mirrors while we seek to study their
nonlinear optical properties as a nonlinear source for the UV region. These structures were
further used to simulate a setup from nonlinear polarization holography where pump and
probe pulse are temporally shifted via a time delay τ yielding a two-dimensional map of the
nonlinear polarization. We clearly observe line broadening of the resonances for amorphous
films of varying composition tied to both the material resonances and sum frequencies as
obtained from a simple Taylor series. We will further study the details of this line broadening
to deduce the lifetime of excitations and gain an insight into dephasing mechanisms through
the multiparameter-space offered by the nonlinear polarization holography technique.

It is our goal to provide a deeper comprehension of mesoscopic charge dynamics and
nonlinear optical properties in large-scale nanostructured devices with continued efforts
towards active metasurfaces where optical properties can be understood from localized
spatial features under the influence of nano-scale effects in strongly nonlocal and strongly
nonlinear materials. Ultimately, highly tunable, robust and actively switchable structures will
need to account for such localized effects as they are in the interplay with retardation and
lattice modes across the larger scale.
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A. Analytic Fourier Transforms

The Fourier Modal Method (FMM) is a plane-wave expansion (PWE) approach in frequency
space in which the Fourier Transform (FT) of a unit cell — representing a periodic one- or
two-dimensional nanostructured grating or particle array, respectively — is central to solving
the related electromagnetic eigenvalue problem. The decomposition into plane waves in
reciprocal space reads

ε(ω, r) =
∑
G

ε(G)eiGR, (A.1)

where R and G are the in-plane (two-dimensional) real space and reciprocal lattice vector,
respectively. This yields a permittivity matrix εGG′ with the Fourier coefficients derived from

εGG′ = ε(ω,G−G′) =
1

A
∫
A
ε(ω, r)e−i(G−G

′)RdA, (A.2)

where A represents the unit cell length or area or volume, respectively, depending on the
dimension of the considered nanostructure. Note that the expressions derived in this chapter
are independent of the choosen material model and their frequency dependence.

It is important to notice that the periodicity of ε(ω, r) is passed on to its inverse

1

ε(ω, r)
=

∑
G

κ(G)eiGR (A.3)

with Fourier coefficients

κGG′ = κ(G−G′) =
1

A
∫
A

e−i(G−G
′)R

ε(ω, r)
dA. (A.4)

For abrupt boundaries, the spatial dependence is entirely governed by unit step (Heaviside)
functions and the substitution ε(ω, r) → 1

ε(ω,r)
in the real-space material functions is valid.

However, only if all Fourier components are taken into account, the expressions actually
coincide in Fourier space.

Simple nanostructures feature analytic Fourier Transforms. However, more complex struc-
tures can be won through direct numerical transformation, best optimized with adaptive
meshes and Fast Fourier Transform (FFT) [65,78–81].

A.1 One-dimensional laminar grating structures

We consider a one-dimensional grating of alternating materials with periodicity ax and width
wx of the nanostructure along the x-direction, see Figure A.1. We denote the surrounding
material with ε0 and the nanostructure material with εm. The permittivity of the unit cell can
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εAu

εvac

εsub
x

z

d

wx ax

Fig. A.1.: Illustration of the structure. The one-dimensional unit cell of a grating structure
consisting of material stripes of width wx and height d, the lattice period is ax. The
grating is extended indefinitely in the y-direction.

then be described as

ε(ω, r) = (εm − ε0)Θ(wx − x) + ε0 (for 0 < x < ax). (A.5)

The reciprocal wave vectors are themselves one-dimensional Gn = n2π/ax x̂ with n ∈ Z0.
Note that the FT yields two terms. One for the case of n ≡ n′ (diagonal term) and n 6= n′

(off-diagonal contributions). We find

εGG′ =
1

ax

∫ ax

0

ε(ω, r)e−i
2π
ax

(n−n′)x dx

=
1

ax

∫ wx

0

εme
−i 2π

ax
(n−n′)x dx+

1

ax

∫ ax

wx

ε0e
−i 2π

ax
(n−n′)x dx

= δnn′

[
wx
ax

(εm − ε0) + ε0

]
+

εm − ε0
π(n− n′)

e−iπ
wx
ax

(n−n′) sin

(
π(n− n′)wx

ax

)
. (A.6)

We exploited the fact that e±2πi(n−n′) ≡ 1 for all values of n 6= n′.

A.2 Two-dimensional structures

We consider various two-dimensional nanostructures in a rectangular unit cell. The reciprocal
wave vectors are G = n2π/ax x̂ +m2π/ay ŷ with n,m ∈ Z0, with the lattice vectors with ax and
ay along the x- and y-direction, respectively.

A.2.1 Rectangular nanoantenna structures

Rectangular nanostructures, i. e. nanoantennas or nanobars, have a width wx along x-
direction and wy along y-direction. The permittivity of the unit cell is defined through

ε(ω, r) = (εm − ε0)Θ(wx − x)Θ(wy − y) + ε0. (A.7)
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Fig. A.2.: Illustration of the unit cell of two-dimensional nanostructures. The unit cell is made of
lattice vectors ax, ay and height d. In the case of (Left) nanobars, the nanostructure
has widths wx, wy. For the (Right) triangular structure, we consider a symmetric
triangle with base side length wx and height wy at x = wx/2.

In similar steps as for the one-dimensional case, we find the result

εGG′ =δnn′δmm′

[
wxwy
axay

(εm − ε0) + ε0

]
+ δnn′

wx
ax

εm − ε0
π(m−m′)

e
−iπwy

ay
(m−m′)

sin

(
π(m−m′)wy

ay

)
+ δmm′

wy
ay

εm − ε0
π(n− n′)

e−iπ
wx
ax

(n−n′) sin

(
π(n− n′)wx

ax

)
(A.8)

+ (εm − ε0)
e−iπ

wx
ax

(n−n′)e
−iπwy

ay
(m−m′)

π(n− n′)π(m−m′)
sin

(
π(n− n′)wx

ax

)
sin

(
π(m−m′)wy

ay

)
.

Fig. A.3 shows the quality of the reconstructed permittivity for an increasing number of Fourier
coefficients taken into account in the reconstruction based on eq. (A.1) once the FT has
been performed. A low number of Fourier coefficients reveals the underlying sin-functions
present in the reconstruction. For a sufficiently high number of Fourier coefficients, there is
no difference to the original material functions.

A.2.2 Spherical nanostructures

We consider circular dielectric holes of radius R at position r0 = (x0, y0), e. g. in the center of
the unit cell, defined through the material function

ε(ω, r′) = (ε0 − εm)Θ(R− |r′ − r0|) + εm. (A.9)
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ε ε ε ε

Fig. A.3.: Reconstructed real parts of the real-space material functions (permittivities) of
the (Left) one-dimensional and (Right) two-dimensional rectangular structure from
analytic Fourier coefficients for different numbers of coefficients taken into account.
Blue areas are a metal with negative real permittivity, red areas are vacuum with
positive real permittivity.

The linear shift of the center of the structure to r0 leads to a constant factor and we use the
prescription r = r′ − r0, dr = dr′ and finally dxdy = rdrdφ. We find

εGG′ =
1

ax

1

ay

∫ ax

0

d x

∫ ay

0

d yε(ω, r)e−i(G−G
′)(r′−r0)

= δ(G−G′)
[
πR2

axay
(ε0 − εm) + εm

]
+

1

ax

1

ay
ei(G−G

′)r0
∫ ax

0

d x

∫ ay

0

d yεme
−i2π((n−n′)x/ax+(m−m′)y/ay)

+
2π

axay
ei(G−G

′)r0
∫ R

0

d rr(ε0 − εm)J0(|G−G′|r) (A.10)

= δ(G−G′)
[
πR2

axay
(ε0 − εm) + εm

]
+

2πR2

axay
(ε0 − εm)e

i(G−G′)r0 J1(|G−G′|R)

|G−G′|R ,

with the Bessel functions Jn(x) of n′th order and
∫
dφe−i|G−G

′|r cosφ = 2πJ0(|G−G′|r). The
Fourier transform is analytical for spherical shapes and via coordinate transformations [311]
also for elliptical particles.

Hollow nanotubes and multilayered disks

The Fourier Transform of a spherical nanostructure allows the straightforward extension
towards multilayered, such as core-shell structures like arrays of thin-walled nanotubes [66,
101]. We study generalized unit cells of multilayered spherical disks with a material function
of the form

ε(ω, r) = ε0 +
N∑

n=1

(εn − εn−1)Θ(Rn − |r− r0|). (A.11)
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All disks have the same center r0 and different radii Rn. This can be solved in complete
analogy to the simple case above, such that

εGG′ = δ(G−G′)

[
ε0 +

N∑
n=1

πR2
n

axay
(εn − εn−1)

]

+
N∑
n=1

2πR2
n

axay
(εn − εn−1)ei(G−G

′)r0
J1(|G−G′|Rn)

|G−G′|Rn

. (A.12)

These results remain analytical and the computational effort is increased by a summation.
Such a straightforward summation can be performed with any of the other structures discussed
previously as well.

Multi-type particle arrays

We consider inhomogeneous nanodisk arrays made of particles of different sizes, shapes and
even materials randomly distributed in the unit cell [56]. The material function in real space is

ε(ω, r′) =
∑
n

((ε0 − εn)Θ(Rn − |r′ − r0n|) + εn) (A.13)

for nanodisks of different radii Rn and positions r0n. We obtain

εGG′ = δ(G−G′)
∑
n

[
πR2

n

axay
(ε0 − εn) + εn

]
+
∑
n

2πR2
n

axay
(ε0 − εn)ei(G−G

′)r0n
J1(|G−G′|Rn)

|G−G′|Rn

(A.14)

in Fourier space.

A.3 Nonlocal Material Models in the Fourier Modal Method

Metallic components with spatial dispersion are described by additional parameters, in
particular the nonlocal strength β, that vanishes in the dielectric material, such that for the
unit cell in one-dimensional systems we can write

β2(x) = β2Θ(wx − x) and, e. g., β2(r) = β2Θ(R− |r′ − r0|) (A.15)

in circular two-dimensional structures. The FT results are the same as before, substituting
the corresponding εm → β2 and ε0 → 0. Similar results are obtained where ωp or γp are
needed explicitly in the nonlocal wave equation as for the Generalized Nonlocal Optical
Response (GNOR) theory further including diffusion effects.



B. Pressure of an Electron Plasma

In Thomas-Fermi theory the free electron gas is associated with a characteristic pressure
term p. The internal energy U =

∑
k εkn

F
k is locally defined as a sum over all occupied energy

states εk [312–314]. The total number N of states of the fermionic system in volume V results
in the density n = N

V
and is described by a sphere in momentum space with radius 2π

kF
, where

kF is the corresponding Fermi wave vector. With the T → 0 Fermi distribution function this
results in

n =
g

V

∑
k

nF
k = g

4π

3

(
kF
2π

)3

⇒ kF =

(
N

V

6π2

g

) 1
3

(B.1)

where we account for the degeneration of states with g = 2s+1. With the energy at the Fermi
level εF =

�
2k2F
2me

and the spin of electrons s = 1
2

we find

εF =
�
2

2me

(
3π2

) 2
3n

2
3 . (B.2)

With that, the kinetic internal energy U results in

U =
∑
k

εkn
F
k =

V

(2π)3
�
2

2me

∫
d3kk2nF

k =
3

5
εF

4π

3

k3
F

(2π)3
=

3

5
εFN, (B.3)

leading to a mean energy per fermionic particle of U/N = 3
5
εF . The pressure p of the electron

plasma is given by the variation of the kinetic energy with respect to volume −p = ∂U
∂V

p =
1

5

�
2

me

(3π)2/3n5/3. (B.4)

Assuming small changes δn in the electron density n = n0 + δn with respect to the equilibrium
state of an unperturbed electron density profile n0, we find

p =
1

5

�
2

me

(3π)2/3n
5/3
0 +

1

3

�
2

me

(3π)2/3n
2/3
0 δn+O(δn2) ≡ p0 + β2

clδn+O(δn2). (B.5)

This defines the nonlocal interaction strength from classical gas theory

β2
cl =

1

3

�
2

m2
e

(3π)2/3n
2/3
0 =

1

3
v2F ≈ (p− p0)/(meδn) (B.6)

from the statistics of a free non-interacting Fermi gas. Fully taking the quantum nature of
electrons into account, the prefactor is corrected to 3

5
, as found by Refs. [183, 315] . This

quantum mechanical result is in agreement with the low momentum limit of the Lindhard
dielectric function.



C. Electron Dynamics in the RPA

We describe electron dynamics inside metal nanoparticles (MNPs) [18,54,72] with an exten-
sion to the Random Phase Approximation (RPA) theory developed by Pines and Bohm [17]
for bulk metals. A finite, rigid jellium defines the shape of the MNP. Plasmon oscillations are
described as local electron density fluctuations ρ̂(r, t) obtained from the Heisenberg equation

d2ρ̂(r, t)

dt2
=

1

(i�)2

[[
ρ̂(r, t), Ĥe

]
Ĥe

]
(C.1)

with a corresponding Hamiltonian Ĥe for electrons inside the MNP in the jellium model

Ĥe =
N∑
j=1

[
−�

2∇2
j

2m
− e2

∫
ne(r)d

3r

|rj − r|
]
+

1

2

∑
j �=j′

e2

|rj − rj′ | . (C.2)

The first term gives the kinetic energy of electrons, the second the interaction between
electrons and positive background charges (approximating the ion lattice potential) and the
last the electron-electron Coulomb interaction. The operator of the local electron density is

ρ(r, t) = 〈Ψe(t)|
∑
j

δ(r− rj)|Ψe〉 (C.3)

where Ψe is the electron wave function, N is the number of collective electrons, rj and m are
their positions and mass. The ion field is approximated as background charge density and
described as ne(r)|e| = neΘ(R− r)|e|, where R is the radius of the MNP and ne = N/V .

Taking into account the sharp form of the positive charge density ne(r), one can decompose
Eq. (C.1) into contributions from the inside and outside of the NP, which leads to two separate
solutions describing the surface and bulk plasmons. This description is valid for NPs larger
than ca. 5 nm for which the surface is well defined and the spill-out effect is negligible.

δρ̃(r, t) =

{
δρ̃1(r, t), for r < R,

δρ̃2(r, t), for r ≥ R, (r → R+)
. (C.4)

The electron density fluctuations are then described with the formulas

∂2δρ̃1(r, t)

∂t2
=

2

3

εF
m

∇2δρ̃1(r, t)− ω2
pδρ̃1(r, t) (C.5)

and
∂2δρ̃2(r, t)

∂t2
= −

[
2

3

εF
m

r

r
∇δρ̃2(r, t)+

ω2
p

4π

r

r
∇

∫
d3r1

1

| r− r1 |(δρ̃1(r1, t)Θ(R− r1) + δρ̃2(r1, t)Θ(r1 −R))

]
δ(R + ε− r)
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− 2

3m
∇
{[

3

5
εFne + εF δρ̃2(r, t)

]
r

r
δ(R + ε− r)

}
. (C.6)

The structure of the above equations is of an harmonic oscillator, which allows including a
damping term in a phenomenological manner by adding to the right hand side −2/τ0∂ρ̃1(2)(r,t)/∂t.
The damping 2/τ0 = γp + γK includes collision effects and Kreibig damping due to the
particle boundary [157].

Assuming homogeneity of the external electric field E(t) inside the NP (dipole approxima-
tion), the solution for surface modes reduces to a single dipole mode

δρ̃(r, t) =
1∑

m=−1

Q1mY1m(Ω), for r ≥ R,(r → R+) (C.7)

and for bulk modes δρ̃(r, t) = 0 where r < R.
The function Q1m(t) (m = −1, 0, 1) represents dipole modes and Ylm(Ω) is the spherical

Legendre function. The former can be related to the vector q(t) via Q11 =
√

8π/3 qx(t), Q10 =√
4π/3 qx(t), Q1−1 =

√
8π/3 qy(t) satisfying the equation[

∂2

∂t2
+

2

τ0

∂

∂t
+ ω2

1

]
q(t) =

ene
m

E(t). (C.8)

Then the plasmon dipole can be defined as

D(t) = e

∫
d3rrδρ(r, t) =

4π

3
eq(t)R3. (C.9)

Lorentz friction

Knowing this, the damping caused by the electric field irradiation can be added to the right
hand side of Eq. (C.8) as additional field EL = 2/3c3∂

3D(t)/∂t3 hampering charge oscillations
and can be rewritten in the form[

∂2

∂t2
+ ω2

1

]
D(t) =

∂

∂t

[
− 2

τ0

D(t) +
2

3ω1
√
ε0

(
ωpR

c
√

3

)3
∂2

∂t2
D(t)

]
. (C.10)

The above equation is a third order linear differential equation and the exponents ∼ eiΩit of
its solutions are given in Eq. (4.8). A perturbation approach can be applied to Eq. (C.10) for
small particles using ∂2D(t)/∂t2 = −ω2

1D(t). Then the resulting damping term takes the form
γ = 2/τ0 + (ω1/3

√
ε0) (ωpR/c

√
3)3.

For larger radii, the discrepancy between both solutions grows rapidly since the irradiation
losses within the perturbation approach scale as R3. Therefore, the radiative losses dominate
plasmon damping for large nanospheres. On the other hand, scattering is more important for
smaller nanospheres scaling as 1

R
.



D. Particle-Substrate Coupling

Our derivation of the semi-classical coupling between a plasmonic particle on an Si substrate
is based on the following assumptions. The presence of the semiconductor in the vicinity
of MNPs provides an additional damping channel of the plasmon energy via coupling to the
semiconductor band states. We consider a simple parabolic band semiconductor model.
The plasmon coupling to the semiconductor can be described as a driven and damped
oscillator, where the driving force is the electromagnetic field of the incident plane wave,
and the damping force is the near-field energy transfer to the semiconductor. For this, we
consider that the field generated by the plasmon oscillation stems from dipole radiation, i. e.,
we restrict ourselves to a regime where the near-field coupling is the most important, while
medium- and far-field contributions are neglected. This is justified as long as the particle size
is much smaller than the incident wavelength R � λ. Furthermore, we apply this to particle
arrays on Si substrates, which is justified as long as the particle size is also much smaller
than the interparticle separation R � Λ, see Fig. D.1A for an illustration of the geometrical
parameters.

With this, we calculate the photon absorption probability δw with the Fermi Golden Rule
approach for a dipole near-field via

δw(k1,k2) =
2π

�
|〈k1|W |k2〉|2 δ(Ep(k1)− En(k2) + �ω). (D.1)

Hereby, k1(k2) is the momentum of the holes (electrons) and W defines the coupling
between the subbands. With this, we obtain the absorption coefficient

α(ω) =
�ωδw

Ee

, (D.2)

where Ee = 〈|S|〉 cos θ is the irradiance and θ is the angle between the Poynting vector S
and the vector normal to the semiconductor surface. The coupling matrix W depends on
the environment. Without nanoparticles, it is governed solely through the incident planar
electromagnetic wave with vector potential A0

W = i�
e

mn

ei(ωt−kr)A0 · ∇ (D.3)

and the properties of the semiconductor via the effective electron mass mn. This changes in
the presence of the dipole field of a NP with radius R and bulk plasma frequency ωp to

W =
e

4πε0d2
n̂ ·D0 sin(ωt+ φ) = W+eiωt +W−e−iωt,

where terms W+ and W− corresponds to the absorption and emission of photons, respectively
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Fig. D.1.: Illustration of the photo-effect. (A) The computational square unit cell of width Λ
consists of a gold nanoparticle in its center on a Si substrate. (B) The probability
of photon absorption for a single gold nanoparticle of R = 50 nm in the Si sub-
strate increases significantly in the optically coupled system compared to the bare
substrate.

and have the form

W+ = (W−)∗ =
e

4πd2ε0

eiφ

2i
n̂ ·D0,

where φ is a phase factor, d is the distance from the dipole axis and n̂ the surface normal
of the substrate. The dipole moment D0 is analytic for a spherical nanoparticle and local
electron dynamics, namely D0 =

ω2
p

ω2
1
ER3

2
, where ω1 = ωp/

√
3 is the related Mie frequency of the

dipole and E = iωA0e
i(ωt−kr) is the incident field at frequency ω as before.

We calculate the plasmonic dipole amplitude D0 from the formula for the total power of the
dipole radiation, which allows us to account for either local or nonlocal electron dynamics

D2
0 =

4πε0λ
4

(2π)4c

∫
Σ

S · dσ, (D.4)

by integrating the Poynting vector S over the electromagnetic field at the NP surface Σ for
either case. For the ordinary photo-effect without nanoparticles, eq. (D.3), the above approach
yields

δw0 =

√
2

3π

e2μ5/2

ωε0m2
p�

3
(�ω − Eg)

3
2 . (D.5)

The probability of photon absorption by the semiconductor substrate in the vicinity of the
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MNP results in [180]:

δw =
4

3

µ3/2
√

2
√

~ω − Ege2D2
0

R~4ε2
. (D.6)

Both expressions reflect the semiconductor band gap Eg and the effective masses of the
electrons mn and holes mp, respectively, via their reduced mass µ = mpmn

mp+mn
. From this, we

calculate the absorption coefficient. Figure D.1B shows the increase of the photo-effect effect
in the semiconductor substrate due to the presence of a single gold nanoparticle.

The ratio of the probabilities with and without MNPs deposited on the surface of the
semiconductor defines the photocurrent gain

I ′

I
= 1 +

βNmδw

δw0

, (D.7)

where Nm is the number of MNPs and β is a factor accounting for any additional effects,
such as separation and surface properties reducing the coupling strength [180]. Likewise,
the absorption enhancement is defined as

A(ω) =
QNP

Q0

=
ω
4π

∫
V
nε
′′
m(ω)E2

with NPdV
ω
4π

∫
V
nε
′′
0(ω)E2

without NPdV
, (D.8)

where

ε
′′

m(0) =
nc~δw

Eirradiance
(D.9)

is imaginary part of the modified dielectric function of Si with (ε′′m) and without (ε′′0) MNPs on
the top. The numerical evaluation with COMSOL uses for the photocurrent gain

Ienh =

∫
QNPAM1.5G(λ)dλ∫
Q0AM1.5G(λ)dλ

, (D.10)

integrating over the solar spectrum AM1.5G(λ). In the balanced state, we consider the
stationary solution of a driven and damped oscillator, which yields for the second term

βNmδw

δw0

=
8πR2βC0m

2
pe

4n2
eω

2f 2(ω)

3µm2
n(~ω − Eg)~2ε2

, (D.11)

where C0 = ns4πR
3/(3H), ns is the MNP density, H is the depth of Si layer. Since we

consider the near-field close to the Si surface, H = 200 nm is sufficient to calculate the
localized quantities. The damping force f(ω) = 1√

(ω2
1−ω2)2+4ω2/τ2

is calculated by comparison

of the average power of the oscillator with the total power transfer to the semiconductor via
the photon absorption: 〈P 〉 = ~ωβδw and is of the form of 1

τ
=

ω2
pR

3

3ω2 β~ω δw
D2

0
.

The modified local dipole field of a MNP is calculated in the nonlocal theory and inserted in
eq. (D.4) in order to switch from classical local to mesoscopic electron dynamics.



E. Second Order Susceptibility

E.1 Macroscopic second harmonic surface polarization

The macroscopic second harmonic surface polarization Ps
2ω = Ps

2ω‖+Ps
2ω⊥ is determined from

the near-fields at the excitation wavelength along the a considered surface. Its contributions
stem from polarization fields perpendicular Ps

2ω⊥ and parallel Ps
2ω‖ to the nanostructure

surface. These are in turn based on respective susceptibilities χs
⊥(ω) and χs

‖(ω).

The SSHG signal is calculated following the procedure by Mendoza et al. [316]. The bulk
dielectric function is used as εB ≡ 1+ω2

pα(ω). Note that bound and free electron contributions
could be separated explicitely [317]. The electron density n0 is connected to the plasma
frequency via ω2

p = n0e2

ε0me
. The polarizability α(ω) is given as a Lorentzian in their approach

leading to a typical Drude model for metals. Spatial variations of the driving field lead to
nonlinear response in terms of sizable surface nonlinear polarization which has a dipolar
character and can be written in terms of the macroscopic fields. We use, however, tabulated
material data εB(ω) by calculating α(ω) from the above expression. This way, both inter- and
intraband transitions are included in the material data.

The macroscopic second harmonic surface polarization Ps
2ω depends on the geometrical

parameters that define the grating, such as the height of the structure and the distance
between grating stripes (lattice period or pitch) through the near-fields which are Bloch modes
following the overall photonic crystal structure. Here,

P s
2ω⊥ = χs

⊥(ω)D
2
⊥, (E.1)

P s
2ω‖ = χs

‖(ω)E‖D⊥, (E.2)

where χs
⊥(ω) and χs

‖(ω) are the corresponding susceptabilities taken from Ref. [316] as

χs
⊥(ω) =

α2(ω)

8πe

α(2ω) ln(εB(ω)/(εB(2ω)))

[α(ω)− α(2ω)]2
+

α(ω)

8πe

εB(ω)− 1

εB(ω)

(
1

εB(ω)
+

α(2ω)

α(2ω)− α(ω)

)
,

(E.3)

χs
‖(ω) =

1

2e

n0α
2(ω)

εB(ω)
. (E.4)

The local near-field at the surface of a metal object is obtained with FMM/RCWA calcula-
tions. For our grating system of rectangular symmetry being infinite along y-direction, we
describe the macroscopic second harmonic surface polarization vectors as

Ps
2ω = P s

⊥,2ωn̂+ P s
‖,2ω t̂. (E.5)
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εAu

εvac

εsub
x

z

d

wx ax

Fig. E.1.: (Left) Illustration of the structure. The one-dimensional unit cell of a grating structure
consists of gold stripes of width wx and thickness d, the lattice period is ax. The
grating is in vacuum on a SiO2 substrate. We calculate the local fields close to
the surface of the Au stripes (green lines) to obtain the surface generated SHG
signal. (Right) Transition of the electron density distribution from a metal region to a
dielectric.

with contributions from fields parallel and perpendicular to the surface with orthonormal
vectors n̂ = ±ẑ, t̂ = ±x̂. The sign determines whether we consider opposite normal vectors
on front or back, and left and right of the structure, resp. We obtain the following field vectors

E‖ = E · t̂ = Ex D⊥ = εB(ω)E · n̂ = εB(ω)Ez (E.6)

Here, E‖ = Ex for the parallel components. At normal incidence Ey ≡ 0 for this geometry,
though the above conditions suppress the y-contribution in any case for a one-dimensional
structure.

Thus, the macroscopic second harmonic surface polarization Ps
2ω can be evaluated in

reciprocal space within the FMM formulation and real space information can be obtained from
inverse Fourier transform. This is in particular interesting to obtain the nonlinear electric field

Enlo(2ω) =

∫
S

Ps
2ω · Elin(2ω) (E.7)

which is the integral of the scalar product of the local fields at the second harmonic frequency
with the macroscopic polarization along the surface S of the structure as depicted in Fig. E.1.

E.2 Detailed derivation

E.2.1 First order (linear) polarization

To arrive at the second order susceptibilities, we start from the equation of motion for an
electric charge e of mass me at a position x(t) away from its equilibrium x0.

meẍ = −eE−meω
2
0x−meγẋ− e

c
ẋ×B. (E.8)
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We use linear response theory for monochromatic driving fields

E(x0 + x, t) ≈ E(x0, t) + x∇E(x0, t), B(x0 + x, t) ≈ B(x0, t) + x∇B(x0, t) (E.9)

leading to the parametric forced oscillator equation

meẍ = −eE(x0, t)− ex∇E(x0, t)−meω
2
0x−meγẋ + eẋ×

∫ t

0

d t′∇× E(x0, t
′). (E.10)

The nonlinearity stems from spatial variations of the driving field, in particular, across an
interface. We consider the perturbation approach x(t) = x(1) +x(2) with the stationary solution
x(1) = Re(xωe

−iωt). The first order polarization is solved as pω = −exω = α(ω)Eω with the
linear polarizability

α(ω) =
e2/me

ω2
0 − ω2 − iγω

Eω =
e2/me

D(ω)
Eω = ε0

ω2
p

D(ω)
Eω. (E.11)

E.2.2 Second order (nonlinear) polarization

After evaluating the first order polarization, the remaining terms which are quadratic in E are,
accounting for the fact that x(1) is linear in E,

meẍ
(2) = −ex(1)∇E(x0, t)−meω

2
0x

(2) −meγẋ(2) + ex(1) × (∇× E(x0, t)) , (E.12)

which can be solved to

−me(2ω)2x2ω =
e2/me

D(ω)
Eω∇Eω −meω

2
0x2ω + imeγ2ωx2ω −

e2/me

D(ω)
Eω × (∇× Eω) . (E.13)

The dipole contribution to the second order nonlinear polarization becomes

p2ω = −ex2ω = −1/e α(ω)α(2ω) (Eω∇Eω − Eω × (∇× Eω)) . (E.14)

Using the vector identity 1
2
∇E2 = E∇E + E× (∇× E) yields

p2ω = −1/2e α(ω)α(2ω)
(
∇E2

ω − 4Eω × (∇× Eω)
)
. (E.15)

The relevant quadrupole contribution can be added via

q2ω = −exωxω = −1/e α(ω)2EωEω. (E.16)

Electron density distribution

The next step is to consider the change in the electron density across the interface. First,
assuiming a system size a � λ, we can neglect the contribution of the magnetic field
∼ (∇×Eω) and overall retardation effects, i. e., we are entering a quasistatic picture from here
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on. Let the surface be situated at z = 0 with the limits n(z → −∞) = 0 and n(z →∞) = nB,
defining the dielectric and metal region through the bulk density nB. The transition shall
be smooth but arbitrary on a sub-nanometer length scale, see Fig. E.1(Right). The surface
second harmonic generation (SSHG) contributions stem from the spatial variation of only the
electric fields across the surface region, i. e. the discrete positions of atoms is not considered
and, thus, modifications induced by the local shape of the surface in x and y direction are not
considered.

The second order polarization derived so far reads

P2ω = np2ω −
1

2
∇ (nq2ω) = nα(2ω)E2ω −

1

2e

(
α(ω)α(2ω)n∇E2

ω − α(ω)2∇ (nEωEω)
)
. (E.17)

It is assumed that the external field is only contributing at the fundamental harmonic. With
no external field at the second harmonic, we can assume the nonlinear field to be entirely
governed by the polarization itself ε0E2ω = −P2ω. The shape of the surface enters via
ε(ω, z) = 1 + n(z)α(ω)/ε0. These two aspects yield

P2ω(z) = − 1

2e

1

ε(2ω, z)

(
α(ω)α(2ω)n(z)∇E2

ω − α(ω)2∇ (n(z)EωEω)
)
. (E.18)

Finally, the macroscopic second order polarization stemming from the surface is obtained
from integration over the surface region

Ps
2ω =

∫ ∞
−∞

dz P2ω(z). (E.19)

Note that this integration is analytical by substituting dz = dn
dn/dz

and independent of the given
profile n(z) as long as it is smooth.

Performing the integration with respect to the electron density distribution n for the par-
allel Ps

2ω,‖ and perpendicular Ps
2ω,⊥ polarization fields, we can derive the corresponding

susceptibilities χs‖z‖ = χs‖‖z and χszzz.

Perpendicular contributions of the bulk material

The polarization perpendicular to the surface from the above equations results in

P2ω,z(z) = − 1

2e

1

ε(2ω, z)

(
α(ω)α(2ω)n(z)

∂

∂z
E2
ω − α2(ω)

∂

∂z
n(z)EωEω

)
(E.20)

with Dω = ε0ε(ω, z)Eω and P s
2ω,z = χszzzD

2
z , we rearrange to the form

P 2ω
z (z) = − 1

2e

1

ε(2ω, z)

(
α(ω)α(2ω)

ε20
n(z)

∂

∂z

1

ε2(ω, z)
− α2(ω)

ε20

∂

∂z

n(z)

ε2(ω, z)

)
D2
z . (E.21)
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χ χ⊥
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χ χ⊥
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Fig. E.2.: Surface second order nonlinear susceptibilities. (Left) Amplitude and (Right) argu-
ment of surface susceptibilites in different orders of diffraction.

After integration along the interface, this allows to deduce the corresponding second order
surface susceptibility

χs
zzz =

α(ω)

2e

(
α(ω)α(2ω) ln εB(ω)/εB(2ω)

(α(ω)− α(2ω))2
+

εB(ω)− 1

εB(ω)

(
1

εB(ω)
+

α(2ω)

α(2ω)− α(ω)

))
. (E.22)

Parallel contributions of the bulk material

In similar steps as for the perpendicular contribution, we arrive at

P2ω,‖(z) =
1

2e
α2(ω)

∂

∂z
n(z)Eω,‖Eω,z(z) (E.23)

for the parallel polarization field and compare the expression after integration to Ps
2ω,‖ =

χs
‖‖zEω,‖Dz. Due to symmetry

χs
‖z‖ = χs

‖‖z =
1

2e

nBα2(ω)

εB(ω)
. (E.24)

Susceptibilities at nanostructured surfaces

As a final note, given a simple enough nanostructure, the effective susceptibility of a textured
surface can be deduced from the lowest order Fourier coefficients used in the FMM procedure.
In a one-dimensional grating, this yields χs(0, 0) = χs wx

ax
for the zeroth diffraction order and

χs(0,±1) = ±χs 1
π
e∓iπwx/ax sin (±πwx/ax) for the first diffration orders. In Fig. E.2, the amplitude

and argument of the parallel and perpendicular susceptibilities are shown for the two lowest
orders as obtained from a one-dimensional structure with grating period ax = 800 nm and
gold stripe width of wx = 300 nm. In comparison with results from Ref. [317] where the
susceptibility is calculated based on Fresnel coefficients the overall shape and range of
values is in good agreement.



F. Anharmonic Oscillator Model

In this section, we briefly discuss the anharmonic oscillator model used to describe third
order nonlinearities. It should be noted that for the third order to be the dominant nonlinear
contribution the second order needs to vanish. This is usually the case in centrosymmetric
systems to which spherical nanoparticles belong.

F.1 Harmonic Oscillator model for linear response χ(1)

In first order as linear response to an electric field the polarization can be understood from
the physical displacement x of electrons beyond their equilibrium position x = 0

P = −enx = ε0χ
(1)E. (F.1)

Hereby, n is the density of oscillating electrons. For the linear susceptibility and permittivity
ε = εb + χ(1) follows χ(1) = |P|/ε0|E|. The equation of motion for electrons under the influence of
an external electric field in the harmonic oscillator model is

ẍ+ γẋ+ ω2
0x =

F

me

= − e

me

E0e
−iωt. (F.2)

The characteristic equation of the related homogeneous differential equation yields the
resonance condition D(ω) = ω2

0 − ω2 − iωγ ≡ 0 as in the previous case. We obtain

χ(1)(t) =
−en|x(t)|
ε0|E(t)| =

ω2
p

D(ω)
(F.3)

for the linear susceptibility with the plasmon frequency ωp.

F.2 Higher order response χ(n)

To study susceptibilities for higher order nonlinear effects, the above harmonic oscillator is
extended by an anharmonic term with nonlinear strength amplitude f

ẍ+ γẋ+ ω2
0x+ fx2 = − e

me

E0e
−iωt. (F.4)

We assume that the nonlinear response is weak compared to the dominant linear response
and make use of a perturbative approach introducing a small parameter λ

x(t) =
∑
n

λnx(n), E → λE. (F.5)
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For each order of n we obtain a separate equation with analytic solutions. The lowest order is
the linear result of the harmonic oscillator briefly introduced in the previous section. The first
and second order in n yield

ẍ(2) + γẋ(2) + ω2
0x

(2) + f(x(1))2 = 0, and ẍ(3) + γẋ(3) + ω2
0x

(3) + 2fx(1)x(2) = 0, (F.6)

so that the second order nonlinearity becomes

ẍ(2) + γẋ(2) + ω2
0x

(2) = −f
(

eE0

ε0meD(ω)

)2

e−i2ωt. (F.7)

The displacement x(2) is driven by light at the second harmonic wavelength if all incident
fields are monochromatic at this wavelength. Analoguous to the previous case, we introdcue
higher order susceptibilities as

χ(n) =
|P|
ε0|E|n

. (F.8)

This leads to the second order (Second Harmonic Generation (SHG)), here, generalized to
any incident frequencies ωn, ωm

χ(2)(−ωq | ωn, ωm) =
ef

me

ω2
p

D(ωq)D(ωn)D(ωm)
δ(ωq − ωn − ωm) (F.9)

with a small nonlinear field strength f . Note that D(ωq) is the resonance term stemming
from the second order differential equation and the condition ωq = ωn + ωm must hold for any
frequency combination. Many experimental situtations, such as pump-probe experiments
or four-wave-mixing make use of cross-phase modulation with fields incident at different
frequencies. Higher orders of the nonlinear susceptibility are, therefore, in general of tensorial
character. Each component of the second order polarization takes the form

P
(2)
i (ωq) = ε0

∑
nm

∑
kj

χ
(2)
ikj(−ωq | ωn, ωm)Ek(ωn)Ej(ωm)δ(ωq − ωn − ωm) (F.10)

where the indices i, k, j run over x, y, z components. The second order polarization strongly
depends on the polarization of the incoming fields.

Due to symmetry, the second order polarization may vanish in centrosymmetric systems
where all contributions interfere destructively. However, surface second harmonic generation
(SSHG) is an important aspect in nonlinear nanostructures where the symmetry is broken at
nanostructured surfaces.
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Third order nonlinear susceptibility

In the case of third order nonlinearities at a frequency ωq = ωn + ωm + ωp this becomes

P
(3)
i (ωq) = ε0

∑
nmp

∑
jkl

χ
(3)
ijkl(−ωq | ωn, ωm, ωo)Ek(ωn)Ej(ωm)El(ωo). (F.11)

Possible contributions of exclusively third order are

1

ε0
P

(3)
i =

∑
jkl

[ χ
(3)
ijkl(−3ω|ω, ω, ω)Ek(ω)Ej(ω)El(ω) + χ

(3)
ijkl(3ω| − ω,−ω,−ω)Ek(−ω)Ej(−ω)El(−ω)

+ χ
(3)
ijkl(ω| − ω, ω,−ω) {Ek(−ω)Ej(−ω)El(ω) + Ek(ω)Ej(−ω)El(−ω) + Ek(−ω)Ej(ω)El(−ω)}

+ χ
(3)
ijkl(−ω| − ω, ω, ω) {Ek(−ω)Ej(ω)El(ω) + Ek(ω)Ej(−ω)El(ω) + Ek(ω)Ej(ω)El(−ω)} ] .

(F.12)

Identifying possible permutations and symmetries, we can make the transition

∑
jkl

→ 1

3

∑
jkl

(δjkδil + δjlδik + δjiδkl) . (F.13)

Introducing Kleinmann symmetry χ(3) ≡ χ
(3)
iikk = χ

(3)
ikik = χ

(3)
ikki to summarize the above

expression and simplifying the notation for the susceptibility overall, we obtain

1

ε0
P

(3)
i =

1

3

∑
k

[ 3χ(3)(3ω)E2
k(ω)Ei(ω) + 3χ(3)(−3ω)E2

k(−ω)Ei(−ω)

+ 3χ(3)(−ω)
{
E2
k(−ω)Ei(ω) + 2Ek(−ω)Ek(ω)Ei(−ω)

}
+ 3χ(3)(ω)

{
E2
k(ω)Ei(−ω) + 2Ek(ω)Ek(−ω)Ei(ω)

}
] . (F.14)

Finally, as vectors

1

ε0
P(3) = χ(3)(3ω)E2(ω)E(ω) + χ(3)(−3ω)E2(−ω)E(−ω)

+ χ(3)(−ω)
{
E2(−ω)E(ω) + 2|E(ω)|2E(−ω)

}
+ χ(3)(ω)

{
E2(ω)E(−ω) + 2|E(ω)|2E(ω)

}
.

(F.15)

The different contributions to the third order nonlinear polarizability result in Third Harmonic
Generation (THG) at triple the incident frequency

P(THG)(3ω) = ε0χ
(3)(3ω)E2(ω)E(ω) (F.16)

and Kerr nonlinearities at the fundamental harmonic

P(Kerr)(ω) = ε0χ
(3)(ω)

(
E2(ω)E∗(ω) + 2|E(ω)|2E(ω)

)
. (F.17)
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In case of the anharmonic oscillator model, the susceptibility can be deduced as

χ(3)(−ωq|ωn, ωm, ωo) =
f̃

D(ωq)D(ωn)D(ωm)D(ωo)
(F.18)

and for self-modulated Kerr nonlinearities, where all frequencies are at the fundamental
wavelength, i. e. ωα = ±ω, the third order susceptibility reduces to the simplified notation

χ(3)(ω) =
f̃

|ω2
0 − ω2 − iΓω|2(ω2

0 − ω2 − iΓω)2
. (F.19)

The main contribution of electrons in nanoparticles is given at Mie resonances ω0.
This case is often given in terms of a higher order refractive index n2

n2 =
3

2

1

n2
0ε0c

χ(3), n̄ = n0 + n2I. (F.20)

The related nonlinear absorption coefficient β is defined as

β = 2k0Im(n2), ᾱ = α0 + βI. (F.21)



G. Effective Nonlinear Media

We compare results for nonlinear gold and iridium nanoparticles in alumina for different fill
fractions f describing the relative volume density of particles in the host. Within effective
medium theory (EMT), amorphous composites are described as a homogeneous film with an
effective (linear) permittivity and in its nonlinear extension an effective third order susceptibility
as the nanoparticles are assumed to be centrosymmetric and, thus, do not exhibit a second
order nonlinear response.

G.1 Nonlinear Maxwell-Garnett-Theory

Maxwell-Garnett (MG) theory [293] assumes spherical inclusions of a material i with per-
mittivity εi arbitrarily distributed in a host material h with permittivity εh. The volume fraction
f = Vi/Vh = N4πR3

av/3Vh for N inclusions of average size Rav has to be small, so that we can
exclude interactions between them with distances larger than the wavelength. Moreover,
assuming sufficiently small spherical inclusions allows us to work in the dipolar regime and
electrostatic approximation [222] where the polarization of a single nanoparticle becomes
p = αE

1 E with the (electric) polarizability given by

αE
1 = R3 εi(ω)− εh(ω)

εi(ω) + 2εh(ω)
≡ R3 η(ω). (G.1)

In this approximation, the effective permittivity is

εeff = εh(ω)
1 + 2η(ω)f

1− η(ω)f
. (G.2)

For larger particle sizes or a large particle size variance, the quasistatic polarizability should
be replaced by the lowest order Mie coefficient [300] to account for radiation losses and other
size effects such as a size-dependent shift in the resonance position as given by eq. (4.4) in
section 4.1.

The effective third order susceptibility for nonlinear nanoparticle inclusions χ
(3)
i (ω) reads [294–

296]

χ
(3)
eff = fμ2 |μ|2 χ(3)

i , (G.3)

with an enhancement factor from the linear response of a nanoparticle mixture

μ =
εeff(ω) + 2εh(ω)

εi(ω) + 2εh(ω)
(G.4)

and the effect of a nonlinear host material χ(3)
h (ω) can be included as well, though its impact
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10-15 Maxwell Garnett Theory

Bruggeman Theory
(c) Miller's rule (Ir)(b) Miller's rule (Au)(a) Fitted (Au)

(d) Fitted (Au) (e) Miller's rule (Au)

Solid (Real), Dashed (Imaginary)

(f) Miller's rule (Ir)

Fig. G.1.: Real (solid) and imaginary (dashed) parts of the third order effective susceptibility
χ

(3)
eff for nonlinear (upper panel) Br theory and (lower panel) MG theory as a function

of photon energy E = ~ω for (a), (b), (d), (e) Au and (c), (f) Ir using (a), (d) fitting
the nonlinear strength amplitude to available experiments [271] and (b), (c), (e), (f)
the analytic Miller’s rule.

is rather small with metallic inclusions.

G.2 Nonlinear Bruggeman Theory

For high concentrations, i. e. larger volume fractions f , and more homogeneous mixtures,
the Bruggeman (Br) model for the effective permittivities is to be preferred [294]. The general
equation describing the mixture of two materials is given by

f
εi − εeff

εeff + g(εi − εeff)
+ (1− f)

εh − εeff
εeff + g(εh − εeff)

= 0. (G.5)

There is no difference made between host and inclusion material and, thus, no restrictions to
the shape of the composite. Both constituents are treated on equal footing and the resulting
differences to Maxwell-Garnett theory can be striking [290,318]. The geometrical factor g is
typically set to 1

3
(as here) for three-dimensional and 1

2
for two-dimensional inclusions. This
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equation results in two explicit solutions from a quadratic equation of which one is physical

εeff =
−c±

√
c2 + 4(1− g)gεhεi
2(1− g)

with c = (g − (1− f))εh + (g − f)εi. (G.6)

To determine the physical branch, the condition Im(εeff(ω)) > 0 needs to be fulfilled. The
effective degenerate third-order susceptibility in case of weakly nonlinear composites [310] is

χ
(3)
eff =

1

1− f

∣∣∣∣∂εeff∂εh

∣∣∣∣ (∂εeff∂εh

)
χ

(3)
h +

1

f

∣∣∣∣∂εeff∂εi

∣∣∣∣ (∂εeff∂εi

)
χ

(3)
i ,

where in the case of two constituent materials the derivatives can be determined analytically
to

∂εeff
∂εh

=
g + f − 1

2(g − 1)
− (1− f − g)A(ω)− 2(g − 1)gεi

2(g − 1)
√
A(ω)2 − 4(g − 1)gεhεi

, (G.7)

∂εeff
∂εi

=
g − f

2(g − 1)
− (f − g)A(ω)− 2(g − 1)gεi

2(g − 1)
√
A(ω)2 − 4(g − 1)gεhεi

, (G.8)

with A(ω) = εi(f − g) + εh(1− f − g).

The real and imaginary part of the effective third order susceptibilities of the amorphous
mixture in the two considered EMTs are shown in Fig. G.1 varying the fill fraction. Bruggeman
in the upper and Maxwell-Garnett theory in the lower panel agree on the resonance position
at low fill factors, but differ by two to three orders of magnitude in the predicted amplitudes of
the amorphous composite. For MG theory in the lower panel, a typical redshift of resonances
is observed with increasing fill factor for gold but is not yet seen for iridium at low fill factors.
Both the linear and nonlinear local field factors yield a strong increase in the effective
susceptibilities with respect to their bulk counterparts for gold, but have little impact on iridium,
as they are close to unity. This means that amorphous films are expected to show stronger
nonlinear response than bulk materials which is reflected in the collected experimental data
in Ref. [271]. The large susceptibilities observed around resonance for MG theory are
strongly overestimating the nonlinear response of weakly metallic films as it would allow
strong alterations in the material properties at moderate incident intensities. We will, therefore,
concentrate on evaluating further the impact of the effective nonlinear material parameters
predicted by Bruggeman theory.

The susceptibilities in both EMTs clearly have two separable contributions from the host and
from the inclusion material and are easily reduced to the case of only one component being
nonlinear. We assume the host to be nonlinear with constant [274] χ(3)

h = 3.1× 10−22m2/V2

which has little effect on the overall properties of the films even at low fill factors. We
denote the absolute values of the prefactors fµ2 |µ|2 to χ

(3)
i in the Maxwell-Garnett EMT

and 1
f

∣∣∣∂εeff∂εi

∣∣∣ (∂εeff∂εi

)
in the Bruggeman EMT the corresponding nonlinear local field factors.

We consider the nonlinear local field factor from MG theory in Fig. G.2(a) for gold and (b)
for iridium and with it the expected nonlinear enhancement of the third order susceptibility
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max
∣∣∣χ(3)

eff (ω)
∣∣∣/max

∣∣∣χ(3)
i (ω)

∣∣∣ of different amorphous composites in Figs. G.2(c) with gold and (d) with
iridium nanoparticle inclusions compared to the bulk case. Fig. G.2(a) underlines that for
gold strong enhancement factors are expected both for the linear and the nonlinear material
parameters while it can be seen in Fig. G.2(b) that iridium yields enhancement factors of
around unity. Considering the maximum of the total effective susceptibility for increasing
metal load of the transparent, nonlinear host material in Figs. G.2(c) and (d), we find an
optimum nanoparticle density with maximum enhancement factor with respect to the bulk
case before absorption processes start to dominate the material response. Furthermore,
the increase in the nonlinear response from Ir remains moderate which could be expected
already from comparing the Ir results in Fig. 8.2 showing minor changes. These findings
are, however, contrary to the observations with Bruggeman theory where the values are well
below unity (and thus not shown in Figs. G.2(a) and (b)). Here, in Fig. G.2(c), the largest
relative nonlinear coefficent for amorphous gold/Al2O3 composites is found for smallest fill
fractions. With increasing metal load and absorption it drops from the beginning. On the other
hand, the predictions for Ir follow a similar path.
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symposium, 34th PIERS, Session 4P4 SC2, 1569 (2013)
Inclusion of nonlocal effects in the hydrodynamic description of metal surfaces
with smooth density profiles, C. David und F. J. García de Abajo, 34th PIERS,
Session 4P4 SC2, 1563 (2013)
Plasmonic Nanoparticle Integration with Si Back Contact Solar Cells, F. Cortés-
Juan, C. Chaverri Ramos, J. P. Connolly, C. David, V. D. Mihailetchi, S. Ponce-Alcántara,
G. Sánchez , 28th EPVSEC, 375–379 (2013)

2011 Towards Efficient Integration of metallic Nanoparticle Layers in Photovoltaic
Devices, C. David, J. P. Connolly, G. Sánchez, F. J. García de Abajo, Int. Conference on
Electrodynamics of Complex Materials for Advanced Technologies (PLASMETA’11)

2010 Spatial nonlocality in the optical response of metal nanoparticles, C. David und
F. J. García de Abajo, Metamaterials’2010 Karlsruhe Proceedings (2010)
Analysis of Plasmonic Nanoparticle Fabrication Techniques for Efficient Inte-
gration in Photovoltaic Devices, J. P. Connolly, C. David, P. Rodriguez, A. Griol, P.
Welti, L. Bellières, J. Ayucar, J. Hurtado, R. López, G. Sánchez, F. J. García de Abajo,
25th EPVSEC, 773–776 (2010)
Nonlocal Effects in the Optical Response of Metal Nanoparticles, C. David und
F. J. García de Abajo, AIP Conference Proceedings, 1291, 43-45 (2010)

Eingeladene Vorträge, Gastvorträge, Kolloquien
Juli 2023 Meta2023, Paris, Frankreich, Nanostructures for Photocatalysis - From regular to den-

dritic Architectures
Juli 2023 Piers2023, Prag, Tschechien, Selectively Enhancing Second Harmonic Generation from

Diffraction at Gold Nanogratings

B christin.david@uni-jena.de



Juni 2023 AES2023 - Antennas and Electromagnetic Systems, Torremolinos, Spanien, Nonli-
near Metasurfaces: Third order Nonlinearities of amorphous Composites and structure-
induced Second order Surface Nonlinearities

Mai 2023 Habilitationsvorteidigung, Friedrich-Schiller-Univeristät Jena, Hybrid Nanostructured
Systems beyond classical Electrodynamics: Mesoscale Electron Dynamics and Nonlinear
Effects (Kolloquium)

Nov. 2022 Leibniz Universität Hannover, Structure-induced optical phenomena: Their potential
and their limits (Kolloquium)

Okt. 2022 3D-ICOMAS 2022 – International Conference on Materials Science, Verona,
Italien, eingeladener Vortrag, Selectively enhancing second harmonic generation from
diffraction at gold nanogratings

Mai 2022 Habilitationsvorstellung, Friedrich-Schiller-Univeristät Jena, Hybrid Nanostructured
Systems beyond classical Electrodynamics: Mesoscale Electron Dynamics and Nonlinear
Effects (Kolloquium)

April 2021 Gastvortrag Seminar, Universität von Twente, Niederlande (online), Willem Vos,
Plasmonic Properties of Electrolytes Beyond Classical Nanophotonics – Nonlocal Soft
Plasmonics

Sept. 2020 NUSOD 2020 – International Conference on Numerical Simulation of Opto-
electronic Devices, Turin, Italien (online), eingeladener Vortrag (aufgenommen)
Quantum corrections to the efficiency of solar cells with conductive nanostructured layers

Sept. 2020 KIT Summer School in Computational Photonics, Karlsruhe, Vorlesungen, Fourier
Modal Method und Nonlocality in Nanophotonics sowie Übungen

Mai 2020 Photonics North2020, Niagara Falls, Kanada (online), eingeladener Vortrag
Soft Plasmonics: A novel perspective on electrolyte-metal interactions

Juli 2019 Meta2019, Lissabon, Portugal, Holey metal films for sensing applications - Impact of
nonlocality on extraordinary optical transmission

Okt. 2018 Leibniz Universität Hannover, Application of the Rigorous Coupled Wave Approach
(RCWA) for optical technologies in spectroscopy and photovoltaics (Kolloquium)

Aug. 2018 Friedrich-Schiller-Univeristät, Jena, Enhancing electro-optical effects with nanostruc-
tures – Spectroscopy, Optical Data Storage, Photovoltaics (Lecture)

Aug. 2017 Plasmonica2017, Belgrade, Serbien, Enhancing Solar Cells with Nanostructures (Lecture)
Sept. 2016 METANANO-2016, Anapa, Russland, Spatial dispersion in plasmonic crystals

seit 2009 des Weiteren 19 eigene Vorträge und 16 eigene Posterbeiträge auf Konferenzen
seit 2018 7 Vorträge und 12 Posterbeiträge auf Konferenzen von Mitgliedern meiner Arbeitsgruppe

Berufungsverfahren
Nov. 2022 A-Liste für die W2 Professur ”Optische Materialien: Rechnergestützte Methoden“ an der

Leibniz Universität Hannover
Okt. 2018 A-Liste für die Nachwuchspaktprofessur ”Optisches Design und Multiphysics Simulation“

an der Leibniz Universität Hannover

Ehrenamt
Wahlvorstände Wahlhelferin zur Ortsteilbürgermeisterwahl in Jena-Süd und Closewitz am 26.06.2022

Wahlhelferin zur Bundestagswahl in der Stadt Jena am 26.09.2021
Bürgergremium Mitglied des Observatorio de la Ciudad der Stadt Madrid, 2019/2020

C. David 19. Juni 2023

B christin.david@uni-jena.de


